

HP OpenView Service Desk 4.0

API Programmer’s Guide

First Edition

Manufacturing Part Number: N/A

August 2001

 2

Legal Notices
Hewlett-Packard makes no warranty of any kind with regard to this
manual, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be held liable for errors contained herein or direct, indirect,
special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Restricted Rights Legend. Use, duplication or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause
in DFARS 252.227-7013.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are as
set forth in FAR 52.227-19 (c)(1,2).

Copyright Notice. © Copyright 2000-2001 Hewlett-Packard Company

The nomenclature of each version of this software (and manuals
therefore) has been devised for commercially convenient reasons, and is
not intended to denote the degree of originality of any version of the
software with respect to any other version. The extent of protection
afforded by, and duration of copyright is to be determined entirely
independently of this nomenclature.

Trademark Notices

Java is a U.S. trademark of Sun Microsystems, Inc.

Microsoft is a U.S. registered trademark of Microsoft Corporation.

Contents

 3

1. The API

API Overview .16
The API Javadoc. .16

Deprecated API elements .16
Runtime Architecture. .17
Requirements .19

Running API-based programs .19
Developing API-based programs .20

2. API Principles

The Object Model .24

Principle API Functions .25
Connecting to the Application Server .25
Identifying Entities and Attributes. .25
Finding the Proper Entity Instantiation. .26
Getting an Entity Instantiation .26
Getting Attribute Values .27
Setting Attribute Values .27
Saving Instantiations. .27
Single Instantiation Processing. .28
Error Presentation .28

3. Examples

Installing the Examples .30

Connecting to the Application Server. .31

Identifying Entities and Attributes .33

Finding the Proper Entity Instantiation .38
More about Finding Entity Instantiations .43

Getting an Entity Instantiation .45

4

Contents

Creating New Objects . 49

Getting and Setting Attribute Values . 51

Saving Instantiations. 55

Single Instantiation Processing. 58

Error Presentation . 62

Handling a Reference to a Set of Entities. 65

 Glossary

 5

Preface
The Service Desk API is an application programming interface designed
to give developers programmatic access to the Service Desk application.
By using the API, you can create customized integrations with Service
Desk.

NOTE Service Desk 4.0 comes with a new API: the Web API. This will replace
the Service Desk API documented in this guide. The Service Desk API is
obsolete: it will not be maintained anymore and it will be discontinued at
the same time as Service Desk 3.0. With Service Desk 4.0, the obsolete
API and documentation are supplied as a courtesy to assist you in
migrating to the new Web API. We strongly recommend that you migrate
to the Web API as soon as possible and we discourage any new
developments with the deprecated API. The Web API consists of
pure-Java interfaces to the Service Desk entities. The Web API has a
highly intuitive structure which makes it easy to learn and to use. For
more information about the Web API, please refer to the following
documents:

• HP OpenView Service Desk: Release Notes

• HP OpenView Service Desk: Web API Programmer’s Guide

• HP OpenView Service Desk Web API: Javadoc

This guide contains information about the structure and potential use of
the Service Desk API. It is a technical guide designed for use by
experienced Java application programmers.

NOTE You must have knowledge and experience programming with MS Visual
J++ to develop programs using the Service Desk API and this guide. The
Service Desk API is formed by a combination of Java classes written in
MS Visual J++ 6.0.

This guide is organized as follows:

• Chapter 1, “The API,” on page 15 provides an overview of the API, the

6

Service Desk architecture, and a list of requirements for using the
API.

• Chapter 2, “API Principles,” on page 21 briefly describes basic
functions available with the API.

• Chapter 3, “Examples,” on page 29 provides explanations and
examples of the most common API functions.

• The “Glossary” on page 69 provides a list of terms which may be
unfamiliar to you, with definitions.

 7

Revision History

When an edition of a manual is issued with a software release, it has
been reviewed and tested and is therefore considered correct at the date
of publication. However, errors in the software or documentation that
were unknown at the time of release, or important new developments,
may necessitate the release of a service pack that includes revised
documentation. Revised documentation may also be published on the
Internet, see “We Welcome Your Comments!” in this preface for the URL.

A revised edition will display change bars in the left-hand margin to
indicate revised text. These change bars will only mark the text that has
been edited or inserted since the previous edition or revised edition.

When a revised edition of this document is published, the latest revised
edition nullifies all previous editions.

Table 1

Edition and Revision Number Issue Date Product Release

First Edition August 2001 Service Desk 4.0

8

Related Publications
This section helps you find information that is related to the information
in this guide. It gives an overview of the Service Desk documentation and
lists other publications you may need to refer to when using this guide.

The Service Desk Documentation
Service Desk provides a selection of books and online help to assist you in
using Service Desk and improve your understanding of the underlying
concepts. This section illustrates what information is available and
where you can find it.

NOTE This section lists the publications provided with Service Desk 4.0.
Updates of publications and additional publications may be provided in
later service packs. For an overview of the documentation provided in
service packs, please refer to the readme file of the latest service pack.
The service packs and the latest versions of publications are available on
the Internet. See the section “We Welcome Your Comments!” in this
preface for the URLs.

• The Readme.htm file on the Service Desk CD-ROM contains
information that will help you get started with Service Desk. It also
contains any last-minute information that became available after the
other documentation went to manufacturing.

• The HP OpenView Service Desk: Release Notes give a description of
the features that Service Desk provides. In addition, they give
information that helps you:

— compare the current software’s features with those available in
previous versions of the software;

— solve known problems.

The Release Notes are available as a PDF file on the HP OpenView
Service Desk 4.0 CD-ROM. The file name is Release_Notes.pdf.

• The HP OpenView Service Desk: User’s Guide introduces you to the
key concepts behind Service Desk. It gives an overview of what you
can do with Service Desk and explains typical tasks of different types
of Service Desk users. Scenario descriptions are provided as examples
of how the described features could be implemented.

 9

The User’s Guide is available as a PDF file on the HP OpenView
Service Desk 4.0 CD-ROM. The file name is User’s_Guide.pdf .

• The HP OpenView Service Desk: Supported Platforms List contains
information that helps you determine software requirements. It lists
the software versions supported by Hewlett-Packard for Service Desk
4.0.

The Supported Platforms List is available as a PDF file on the HP
OpenView Service Desk 4.0 CD-ROM. The file name is
Supported_Platforms_List.pdf.

• The HP OpenView Service Desk: Installation Guide covers all aspects
of installing Service Desk.

The Installation Guide is available as a PDF file on the HP OpenView
Service Desk 4.0 CD-ROM. The file name is
Installation_Guide.pdf.

• The HP OpenView Service Desk: Administrator’s Guide provides
information that helps application administrators to set up and
maintain the Service Desk application server for client usability.

The Administrator’s Guide is available as a PDF file on the HP
OpenView Service Desk 4.0 CD-ROM. The file name is
Administrator’s_Guide.pdf .

• The HP OpenView Service Desk: Data Exchange Administrator’s
Guide explains the underlying concepts of the data exchange process
and gives instructions on exporting data from external applications
and importing it into Service Desk. The data exchange process
includes importing single service events and batches of data.

The Data Exchange Administrator’s Guide is available as a PDF file
on the HP OpenView Service Desk 4.0 CD-ROM. The file name is
Data_Exchange.pdf.

• The HP OpenView Service Desk: VantagePoint Operation Integration
Administrator’s Guide explains the integration between Service Desk
and VantagePoint for Windows and UNIX. This guide covers the
installation and configuration of the integration and explains how to
perform the various tasks available with the integration.

The VantagePoint Operation Integration Administrator’s Guide is
available as a PDF file on the HP OpenView Service Desk 4.0
CD-ROM. The file name is VPO_Integration_AG.pdf.

• The HP OpenView Service Desk: Migration Guide provides a detailed

10

overview of the migration from ITSM 5.7 to Service Desk 4.0, to
include an analysis of the differences in the two applications. Detailed
instructions in this guide lead through the installation, configuration
and other tasks required for a successful migration.

The Migration Guide is available as a PDF file on the HP OpenView
Service Desk 4.0 CD-ROM. The file name is Migration_Guide.pdf.

• The HP OpenView Service Desk: API Programmer’s Guide contains
information that will help you create customized integrations with
Service Desk. This guide depicts the API structure, and explains
some of the basic functions with examples for using the Application
Programming Interface (API) provided with Service Desk. The API
extends the HP OpenView Service Desk environment by providing
independent programmatic access to data-centered functionality in
the Service Desk application server environment.

The API Guide is available as a PDF file on the HP OpenView Service
Desk 4.0 CD-ROM. The file name is API_pg.pdf.

• The HP OpenView Service Desk: Web API Programmer’s Guide
contains information that will help you create customized
integrations with Service Desk using the Service Desk Web API. This
API is particularly suited for developing Web applications.

The Web API Programmer’s Guide is available as a PDF file on the
HP OpenView Service Desk 4.0 CD-ROM. The file name is
Web_API_pg.pdf.

• The HP OpenView Service Desk: Data Dictionary contains helpful
information about the structure of the application.

The Data Dictionary is available as an HTML file on the HP
OpenView Service Desk 4.0 CD-ROM. The file name is
Data_Dictionary.htm.

• The HP OpenView Service Desk 4.0 Computer Based Training (CBT)
CD-ROM is intended to assist you in learning about the functionality
of HP OpenView Service Desk 4.0 from both a user and a system
administrator perspective. The CD-ROM contains demonstration
videos and accompanying texts that explain and show how to perform
a wide variety of tasks within the application. The CBT also explains
the basic concepts of the Service Desk application.

The HP OpenView Service Desk 4.0 Computer Based Training (CBT)
CD-ROM will be shipped automatically with the regular Service Desk
software. The CBT will be available for shipment shortly after the

 11

release of the Service Desk software.

• The online help is an extensive information system providing:

— procedural information to help you perform tasks, whether you
are a novice or an experienced user;

— background and overview information to help you improve your
understanding of the underlying concepts and structure of Service
Desk;

— information about error messages that may appear when working
with Service Desk, together with information on solving these
errors;

— help on help to learn more about the online help.

The online help is automatically installed as part of the Service Desk
application and can be invoked from within Service Desk. See the
following section entitled “Using the Online Help” for more
information.

Reading PDF Files
You can view and print the PDF files with Adobe Acrobat Reader.
This software is included on the HP OpenView Service Desk 4.0
CD-ROM. For installation instructions, see the readme.htm file on the
CD-ROM.

The latest version of Adobe Acrobat Reader is also freely available from
Adobe’s Internet site at http://www.adobe.com.

Using the Online Help
You can invoke help from within Service Desk in the following ways:

• To get help for the window or dialog box you are working in, do one of
the following:

— Press F1.

— Click the help toolbar button .

— Choose Help from the Help menu.

— Click the help command button in a dialog box.

• To search for help on a specific subject using the table of contents or
the index of the help system: choose Help Contents & Index from
the Help menu.

http://www.adobe.com/

12

When you are in the help viewer, you can find help on how to use the help
system itself by clicking the Help toolbar button:

Service Desk also provides tooltips and “What’s This?” help for screen
items like buttons, boxes, and menus.

A tooltip is a short description of a screen item. To view a tooltip, rest the
mouse pointer on the screen item. The tooltip will appear at the position
of the mouse pointer.

“What’s This?” help is a brief explanation of how to use a screen item.
“What’s This?” help generally gives more information than tooltips. To
view “What’s This?” help:

1. First activate the “What’s This?” mouse pointer in one of the following
ways:

• Press Shift+F1.

• Click the “What’s This?” toolbar button .

• Choose What’s This? from the Help menu.

• In dialog boxes, click the question mark button in the title bar.

The mouse pointer changes to a “What’s This?” mouse pointer .

2. Then click the screen item for which you want information. The
“What’s This?” help information appears in a pop-up window.

To close the pop-up window, click anywhere on the screen or press any
key on your keyboard.

Other Related Publications
In addition to the Service Desk documentation mentioned above, you
may want to refer to the following publications when using this guide:

• http://java.sun.com/products/jdk/javadoc/index.html. This link
connects to the Javadoc tool home page on the Internet.

• http://msdn.microsoft.com/visualj/default.asp. This is the home Web
site for MicrosoftVisual J++.

• http://www.microsoft.com/java/sdk/. This is the site for Microsoft SDK
for Java.

http://java.sun.com/products/jdk/javadoc/index.html
http://java.sun.com/products/jdk/javadoc/index.html.
http://msdn.microsoft.com/visualj/default.asp
http://msdn.microsoft.com/visualj/default.asp
http://www.microsoft.com/java/sdk/32/default.htm
http://www.microsoft.com/java/sdk/32/default.htm.
http://www.microsoft.com/java/sdk/.
http://www.microsoft.com/java/sdk/.
http://java.sun.com/j2se/javadoc/index.html
http://java.sun.com/j2se/javadoc/index.html

 13

Typographic Conventions
The table below illustrates the typographic conventions used in this
guide.

Font What the Font Represents Example

Italic References to book titles See also the HP OpenView Service
Desk: Installation Guide.

Emphasized text Do not delete the System user.

Bold First-time use of a term that is
explained in the glossary

The service call is the basis for
incident registration.

Courier Menu names You can adjust the data view with the
commands in the View menu.

Menu commands Choose Save from the menu.

Button names Click Add to open the Add Service
Call dialog box.

File names To start the installation, double-click
setup.htm.

Computer-generated output, such as
command lines and program listings

If the system displays the text
C:\>dir a:
The device is not ready
then check if the disk is placed in the
disk drive.

Courier bold User input: text that you must enter in a
box or after a command line

If the service call must be solved
within 30 minutes, enter 30.

Courier italic Replaceable text: text that you must
replace by the text that is appropriate
for your situation

Go to the folder X:\\Setup, where X is
your CD-ROM drive.

Helvetica bold Keyboard keys

A plus sign (+) means you must press
the first key (Ctrl in the example), hold
it, and then press the second key (F1 in
the example).

Press Ctrl+F1.

14

We Welcome Your Comments!
Your comments and suggestions help us understand your needs, and
better meet them. We are interested in what you think of this manual
and invite you to alert us to problems or suggest improvements. You can
submit your comments through the Internet, using the HP OpenView
Documentation Comments Web site at the following URL:

http://ovweb.external.hp.com/lpe/comm_serv

If you encounter errors that impair your ability to use the product, please
contact the HP Response Center or your support representative.

The latest versions of OpenView product manuals, including Service
Desk manuals, are available on the HP OpenView Manuals Web site at
the following URL:

http://ovweb.external.hp.com/lpe/doc_serv

Software patches and documentation updates that occur after a product
release, will be available on the HP OpenView Software Patches Web site
at the following URL:

http://support.openview.hp.com/cpe/patches

http://ovweb.external.hp.com/lpe/doc_serv
http://ovweb.external.hp.com/lpe/comm_serv
http://ovweb.external.hp.com/lpe/doc_serv
http://ovweb.external.hp.com/cpe/patches

 15

1 The API

This chapter provides an overview of how the API fits into the Service
Desk architecture. It also lists the requirements which must be met to
use the Service Desk API effectively.

16 Chapter 1

The API
API Overview

API Overview
The Service Desk API is a set of Java classes, written in Visual J++.
These classes are part of the standard Service Desk software bundle. The
API provides a means of integrating with the Service Desk application
server independently from the user interface, while ensuring that all
authorization and business rules are enforced. You can use this API to
integrate other management tools with Service Desk. For example, an
inventory tool could be integrated so that it automatically updates the
Service Desk database when new items or changes in existing items are
found by the external inventory tool. The Data Exchange feature
included with the Service Desk application was created using this API,
for example.

For information on the basic functions performed with the API, see
Chapter 2, “API Principles,” on page 21, or Chapter 3, “Examples,” on
page 29.

The API Javadoc

A Javadoc document for this API is provided on the Service Desk CD. It
consists of a set of hyperlinked HTML files, generated from the API
source files, that describe the classes, interfaces, constructors, methods
and fields of the API. It also includes the examples described in Chapter
3.

You can find the Javadoc files on the HP OpenView Service Desk 4.0 CD,
in the Doc\Api Javadoc folder. To open the Javadoc, open the
index.html file. This file contains links to the other files in the
Doc\API Javadoc folder.

Deprecated API elements

The Javadoc refers to this guide for information about deprecated API
elements. The Service Desk API does not provide alternatives for the
deprecated elements. Instead of using the Service Desk API, we strongly
recommend that you use the Service Desk Web API. The Service Desk
API will soon be obsoleted. Please refer to the “Preface” in this guide for
more information about this.

Chapter 1 17

The API
API Overview

Runtime Architecture

The API is tightly integrated with the Service Desk architecture. Figure
1-1 on page 18 shows how the API fits into this architecture. The Service
Desk application architecture is made up of four layers, with each layer
performing a specific task:

• The presentation layer contains the user interface. This layer is in
effect replaced by the API.

• The workflow layer contains the rules that determine what
information is required to complete an operation.

• The business layer contains rules that determine how an operation
is validated or completed. It communicates with the data access layer.

• The data access layer provides access to the data in the database. It
communicates between the application’s object model and the
relational representation of what exists in the underlying database.

18 Chapter 1

The API
API Overview

Figure 1-1 Service Desk Architecture

End users normally communicate with the Service Desk application

-

User
Service Desk

Data Access
Layer

Layer
Business

Layer
Workflow

Layer
Presentation (GUI)

Layer
Data Access

Layer
Business

Layer
Workflow

Layer
API

Third-party
Program

 Database Database

Without API Integrated With API Integrated

Chapter 1 19

The API
API Overview

through the graphical user interface (GUI) referred to as the presentation
layer shown on the left in Figure 1-1 on page 18. The API takes the place
of the presentation layer, while the role of the user is replaced by a
third-party program developed to interact with the API. This is depicted
on the right side of Figure 1-1 on page 18. The third-party application
provides input to Service Desk while following a number of self-defined
rules to ensure the input will be processed appropriately. The API is
capable of communicating with the application server over the workflow
layer with the same result as if the actions were initiated from the user
interface. The difference is that the API reacts to input from another
application, causing Service Desk to perform an action.

The API depends heavily on the availability of the Service Desk
workflow layer for access to the Service Desk environment. The workflow
layer assures that all rules normally applied to actions in the user
interface are also applied to the same actions when they are performed
by the API. For example, rules exist in the workflow layer to ensure that
a service call can never have an end date before the start date. The
business and workflow layers work together to make a business object
fully functional.

Requirements

The Service Desk API can be run from both the server or client
environment. The classes that form the API are stored in the
sd_import.zip file installed with the Service Desk application. The
installation procedure adjusts the class path to include the API package
by default. Additional requirements for successful use of the API include:

Running API-based programs

Requirements for running API-based programs:

• The sd_import.zip file must be referred to in the local class path
setting.

• Programs must be run from a machine that is set up as a Service
Desk application server. For more information, refer to the HP
OpenView Service Desk Installation Guide and the HP OpenView
Service Desk: Administrator’s Guide.

• A Service Desk account needs to be created providing access to all
applicable areas. It can be a non-UI account, see page 71 for more
information.

20 Chapter 1

The API
API Overview

Developing API-based programs

Requirements for developing API-based programs:

• Programming knowledge of MS Visual J++.

• MS Visual J++ 6.0, or an equivalent development environment. For
example, you can compile with the Microsoft Software Development
Kit (SDK) and then run it with a Microsoft Jview virtual machine.
Jview is installed with Service Desk by default. More information
about the Microsoft SDK is available at the following Web site:
http://www.microsoft.com/java/sdk/

• Reference to the Service Desk sd_import.zip delivered with the
Service Desk application in the IDE’s class path setting.

NOTE The Service Desk API is formed by a number of Java classes written in
Microsoft Visual J++ 6.0. These classes indirectly use some
Microsoft-specific extensions of the Java language. Their
inter-operability with non-Microsoft virtual machines and compilers is
not guaranteed.

http://www.microsoft.com/java/sdk/

 21

2 API Principles

The API provides users with access to data-related functions in the
Service Desk environment. It forms a layer in the software environment
with the purpose of assuring optimum communication between the
entities on either side:

22 Chapter 2

API Principles

• The third-party program performing actions on Service Desk entities

• The Service Desk application server giving access to Service Desk
entities

The Service Desk application is created around a kernel, which is
defined as a collection of generic reusable sources called ITSM
Foundation Classes (IFC). The generic elements that make up the kernel
come from all layers of the application. The API is included in the kernel.
Because Service Desk-specific functions do not exist in the IFC, the IFC
can be used for developing other database-dependent applications. The
primary classes that form the API are in the com.hp.ifc.ext package.
You will also need classes from com.hp.ifc.util.marshal to
communicate with the workflow layer, and specific object classes from
com.hp.ifc.types.

An additional supporting package within the kernel is
com.hp.ifc.rep.ext. This package contains the supporting classes that
define mapping to external data sources used by the API classes. This
package is part of the repository, see page 71.

The following object model shows how API classes work together. It is
followed by a section about the object model and sections explaining the
most commonly used API functions.

Chapter 2 23

API Principles

Figure 2-1 Main API Functions

24 Chapter 2

API Principles
The Object Model

The Object Model
The object model describes the objects used by Service Desk. Objects
contain attributes and methods. Attributes can be:

• Simple java types (like int)

• References to other objects, which can be:

— Aggregated objects (only belong to this parent object)

— Associated objects (can have different parent objects)

Both can be a set of objects.

An object description is sometimes called an entity. Every entity and
every object has an ID. The object ID is of type long and sometimes
wrapped in class AppOID.

The layers of Service Desk use the object model to get information about
the objects (mandatory attributes, display information, and so on). So
every layer has to know the AppOIDs of the object descriptions.

In the API layer, the class ITSMExternalEnum contains the AppOIDs of
the object descriptions. Actually, the API layer offers two ways to retrieve
information from the object model:

• By Number: class ITSMExternalEnum

• By Label: in the mappings of Service Desk, you can define a label for
each object description in the object model and you can use this label
in the API layer.

In the API layer, you must indicate which entity and which attributes
you want to use. The API layer can track attributes that are referenced
objects. However, it cannot do this for referenced sets of objects. You
must handle each object of the set separately.

For example, the entity ID of the text attribute of an assignment status
of a work order:

long appOID =
new long[] {ITSMExternalEnum.WorkorderDefEnum.atAssignment
,ITSMExternalEnum.AssignmentDefEnum.atAssignStatus
,ITSMExternalEnum.AssignmentStatusDefEnum.atText
}

Chapter 2 25

API Principles
Principle API Functions

Principle API Functions
The following sections briefly explain some of the primary API functions.
A more detailed explanation together with examples can be found in
Chapter 3, “Examples,” on page 29.

Connecting to the Application Server

To obtain access to functions available from the workflow layer, all
programmatic API sessions must first log on. API sessions log on using a
specialized class, AppExternalAccess that also operates as an object
server for Service Desk, creating and retrieving objects from the Service
Desk environment as needed. For example, retrieving a service call so
that it can be modified.

The class AppExternalAccess provides access to data managed by the
Service Desk application server. This class can be considered a gateway
into the workflow layer for all requests going to the application server.
Every program that uses the API will be organized around at least one
AppExternalAccess object to establish a connection with the application
server. After successfully logging on, this same object functions as a
Service Desk entity server. It takes care of:

• logging on and off from the Service Desk environment;

• activating import mapping settings and presenting those settings;

• creating new Service Desk objects and retrieving existing objects for
further processing;

• presenting warnings and error messages created by the Service Desk
environment.

For more information, including a detailed example, see “Connecting to
the Application Server” on page 31.

Identifying Entities and Attributes

An important part of the integrating with Service Desk involves the
manipulation of Service Desk entities and their attributes. A reliable
method for identifying entities and attributes must be available for that
purpose. The API uses two means of identifying Service Desk entities
and attributes for processing:

26 Chapter 2

API Principles
Principle API Functions

• By communicating with the application server, creating or modifying
Service Desk entities and attributes as necessary. The enumeration
class ITSMExternalEnumeration identifies the objects and
attributes by means of the numeric values assigned to them in the
Service Desk repository. This means of identification is also referred
to as reference by number. Reference by number provides a high
degree of freedom when manipulating Service Desk entities.

• By communicating with the application server using pre-defined
import mapping settings. Import mapping requires setup by the
Service Desk application administrator prior to actually
programming the integration. These settings are labels defined by the
user for entities and attributes. Once defined, the labels can be used
within the Service Desk environment. Using labels to access data is
referred to as reference by label. In order to access the settings, the
active AppExternalAccess object must be set to use the proper
group of import mapping settings.

For more information, including a detailed example, see “Identifying
Entities and Attributes” on page 33.

Finding the Proper Entity Instantiation

Once a relevant Service Desk entity is identified, the proper
instantiations of that entity must be located. The AppExternalAccess
class contains methods for the construction of search criteria, using
either the reference by number or the reference by label methods. These
criteria can then be used in an AppExternalAccess method that returns a
list of identifiers for the objects that comply with the search conditions.

For more information, including a detailed example, see “Finding the
Proper Entity Instantiation” on page 38.

Getting an Entity Instantiation

After obtaining the entity instantiation identifier, the actual data can be
retrieved from the Service Desk application server. AppExternalAccess
offers a number of methods for retrieving the data. Methods differ
mainly in the way they reference entities and attributes. When reference
by number is used, the method returns an AppExternalEntity object.
When reference by label is used, an AppMappedExternalEntity object is
returned. AppMappedExternalEntity is an extension of the
AppExternalEntity class.

Chapter 2 27

API Principles
Principle API Functions

The AppExternalAccess also offers methods for the creation of new
Service Desk objects. When used with the AppMappedExternalEntity
class, the template defined in the import mapping settings and its
default values are applied immediately.

For more information, including a detailed example, see “Getting an
Entity Instantiation” on page 45.

Getting Attribute Values

After obtaining an AppExternalEntity object wrapping Service Desk
data, the current attribute values can be determined. When you use the
methods defined in AppExternalEntity class, these values are returned
as Java objects. The objects are either standard Java classes,
java.lang.String for example, or IFC classes from the com.hp.ifc.types
package. When using the methods in AppMappedExternalEntity, a
String object is returned for all values.

For more information, including a detailed example, see “Getting and
Setting Attribute Values” on page 51.

Setting Attribute Values

The attribute values for an AppExternalEntity object can be also be set.
You can either send Java objects directly to the API with
AppExternalEntity using the reference by number method or send
strings with AppMappedExternalEntity using the reference by label
method. Strings are converted into objects and passed to the Service Desk
application by the API. With both reference methods, all business rules
defined for the object will be applied by the workflow layer.

For more information, including a detailed example see “Getting and
Setting Attribute Values” on page 51.

Saving Instantiations

Once the correct data is wrapped in an AppExternalEntity object, it can
be saved to the database. This will create a new object in the Service
Desk environment, or change an existing one, as existing or new objects
are processed. While saving the data, all current business rules
applicable for that Service Desk entity will be applied.

For more information, including a detailed example, see “Saving
Instantiations” on page 55.

28 Chapter 2

API Principles
Principle API Functions

Single Instantiation Processing

The separate actions outlined in the sections above offer maximum
control over the functionality realized using the API classes. For
integrations limited to relatively simple operations, utility classes are
provided. The utility actions are a combination of the actions described
in the preceding sections. These are AppSingleLoad, for Service Desk
entities, and AppRelationLoad, for relations between Service Desk
entities. Both classes use the reference-by-label method. These utilities
are capable of:

• adding an object;
• removing an object;
• setting object values;
• adding relations;
• removing relations.

For more information, including a detailed example, see “Single
Instantiation Processing” on page 58.

Error Presentation

Exceptions raised within the Service Desk environment usually result in
a Microsoft-specific ComFailException. These exceptions can be
converted to ExternalException by the AppExternalAccess class.
Exceptions are easier to manipulate in the standardized environment
provided by the ExternalException class.

For more information, including a detailed example, see “Error
Presentation” on page 62.

 29

3 Examples

Most example classes explain two methods of referencing Service Desk
entities and attributes. Most methods in the example files are defined as
static. This has no relevance on the examples, but is intended for easy
use within a test class.

30 Chapter 3

Examples
Installing the Examples

Installing the Examples
All example classes provided use the API classes and rely on the contents
of the Service Desk demo database. The demo database is installed when
you install the evaluation version of Service Desk. When working with
the full client version of Service Desk, you will need to select the demo
database option during installation.

The examples classes are located in the Javadoc. You can find the
Javadoc in the Doc\API Javadoc folder on the HP OpenView Service
Desk 4.0 CD.

In order for the examples to work, you must complete the following
procedure:

Step 1. Compile the example classes, using Microsoft Visual J++ compiler.

Step 2. Add the location of the compiled example classes to the current class
path. The examples are located in the com.hp.ifc.ext.example package.
For example, if the compiled classes are located in C:\Program
Files\Service Desk\classes\com\hp\ifc\ext\examples, the
class path should list C:\Program Files \Service Desk\classes
as one of its entries.

Step 3. Run the CreateStatus executable. This executable adds some status
values to the demo database that are essential when using the examples.
A valid Service Desk user name, password, and server will be needed.
The syntax is: CreateStatus <username> <password> <server>.
This program requires the same classpath set for normal Service Desk
operations.

Chapter 3 31

Examples
Connecting to the Application Server

Connecting to the Application Server
The AppExternalAccess class provides access to data managed by the
Service Desk application server. This class can be considered a gateway
into the workflow layer for all requests going to the application server.
Every program that uses the API will be organized around at least one
AppExternalAccess object to establish a connection with the application
server. After successfully logging on, this same object functions as a
Service Desk entity server. The Example1 class shows how to make a
connection and how to verify that a valid connection exists.

The easiest way to log on is with the AppExternalAccess(String,
String, String) constructor. This uses a user name, password, and
server as arguments. These credentials can represent any Service Desk
account, including a non-UI account. The use of this method is shown
in the Example1.connect() method. The actual connection is made with
the code in line 17:

access = new AppExternalAccess(username, password, server);

The rest of this method ensures that a message is displayed when a
connection is not made.

The connected() method shows how to check whether an
AppExternalAccess object contains a valid connection or not. The
essential work is being done by calling AppExternalAccess.loggedIn()
at line 25. This method returns a boolean value, indicating whether a
valid connection exists or not. In the connected() method the boolean
value determines what message to print.

Example 3-1 Connecting to the Application Server

package com.hp.ifc.ext.examples;

import com.hp.ifc.ext.*;

/**
 * Example:
 * connecting to the HP OpenView Service Desk environment
 * and testing the connection
 */

public class Example1 {

32 Chapter 3

Examples
Connecting to the Application Server

 private AppExternalAccess access;

 public void connect
 (String username
 , String password
 , String server
) {
 try {
 access =
 new AppExternalAccess(username, password, server);
 }
 catch (ExternalException eEx) {
 System.out.println(eEx.getMessage());
 }
 }

 public void connected() {
 if ((access != null) && (access.loggedIn()))
 System.out.print(“Connected to “);
 else
 System.out.print(“Not connected to “);
 System.out.println
 (“the Service Desk application server.”);
 }

 public void disconnect() {
 if (access != null) access.disconnect();
 }

 public void finish() {
 if (access != null) access.shutdown();
 }

}

Chapter 3 33

Examples
Identifying Entities and Attributes

Identifying Entities and Attributes
An important part of the API programmer’s work involves the
manipulation of Service Desk entities and their attributes. A reliable
method for identifying entities and attributes must be available for that
purpose. The Example2 class shows two ways of doing this: one using
reference by number, the other reference by label. This class also
provides an example for extracting the labels that are used when
referencing by label.

The most reliable way to reference a Service Desk object is the use of the
ITSMExternalEnum class. This class is a collection of nested classes, each
representing a Service Desk entity. These inner classes are named after
the entity represented. For example, the class for the person entity is
called PersonDefEnum. Each inner class consists of a number of data
members, one for each attribute. These data members are named after
the attributes, with ‘at’ as a prefix. ‘atBirthDate’ thus denotes the
BirthDate attribute. An enOid member is also defined for every inner
class. The enOid member denotes the numeric value (oid) used to
identify the entity. Two simple examples:

ITSMExternalEnum.IncidentDefEnum.enOid denotes the incident
entity. ITSMExternalEnum.IncidentDefEnum.atDescription denotes
the description attribute for the incident entity.

Not every reference can be made easily with a long value, more complex
ways also exist. These occur with the aggregation and referencing
connections.

Aggregation is a means of referencing when an object is incorporated in
another object. In this situation the attributes of the aggregated object
can be considered nested objects. An example would be assignment data
for an incident. Assignment, when considered as an object, has attributes
such as a reference number or an assignment status. These attributes
are referenced using long values, that can be specified using the
ITSMExternalEnum class. For example:

long[] ref = new long[]
{ITSMExternalEnum.IncidentDefEnum.atAssignment
,ITSMExternalEnum.AssignmentDefEnum.atReferenceNumber};
denotes the reference number attribute for an incident's assignment.

In other cases an object is not aggregated, but referenced. The referenced

34 Chapter 3

Examples
Identifying Entities and Attributes

and referencing objects have an independent existence, but they are also
linked to each other. For example, when a configuration item is
mentioned in connection with an incident.

The getEntityAndAttributeLongs() shows how references for an
entity and two of its attributes are defined. It returns long values that
are referred to by the attributes used. When only indicating a reference,
it is enough to give the attribute that references the other object. For
example:

ITSMExternalEnum.IncidentDefEnum.atConfigurationItem denotes
the reference to a configuration item attribute from the incident entity.

When working with Data Exchange, labels can be defined for Service
Desk entities and attributes. These are grouped into import mapping
settings (For detailed information on import mapping settings refer to
the HP OpenView Data Exchange Administrator’s Guide). The
advantages of using these labels are:

• A tight integration with the labels used for Data Exchange is
possible.

• Default values for new objects are defined. These defaults, organized
in Service Desk templates, are applied automatically when using
reference by label.

• Provides more freedom when choosing label names.

The getEntityAndAttributeNames() shows how references for an
entity and two of its attributes are defined. As in Example1, a connection
must be made to the Service Desk application server first. Next, the
import settings must be chosen, as is done on line 25:

access.setSettings("external_event");

The getEntityAndAttributeNames () method returns an array of
Strings shown in the code. It illustrates how reference by label relies on
an external source (like a programmer’s memory) to provide the right
labels. The methods that use those labels will generate an exception
when an invalid label is passed.

The showAvailableSettings() method demonstrates means of
retrieving the labels defined for import settings, entities and attributes
in the Service Desk environment. The values retrieved are presented in
an ordered from, but this is purely meant as an example. The main
reason to include this method is to demonstrate the methods that can
retrieve these labels.

Chapter 3 35

Examples
Identifying Entities and Attributes

The important lines of code are:

• String[] settings=access.getAvailableLoadSettingNames();
(line 41).This method call returns an array of all labels defined for
import mapping.

• String[] items = access.getMappedEntityNames();(line 49).
This line results in array of all labels defined for Service Desk entities
within a given set of import mapping settings. For the method call to
be effective, the AppExternalAccess object must first be set to the
right import mapping setting with:
access.setSettings(settings[i]); (line 47)

• String[] attrib=access.getMappedAttributeNames(items[j]);
(line 55)Finally, this line produces an array of all labels defined for
attributes of a Service Desk entity within an import mapping setting.

To print the available settings in alphabetical order the retrieval labels
are organized in nested hashtables. This data structure, or a comparable
one, can be used to get an overview of the available labels. Also, this
makes it possible to check the validity of a label early on.

Apart from the actual labels, you can also retrieve object IDs. These can
be obtained as arrays of long values or as arrays of AppOID objects, as
described above.

Example 3-2 Identifying Entities and Attributes

package com.hp.ifc.ext.examples;

import java.util.*;
import com.hp.ifc.ext.*;
import com.hp.ifc.rep.ext.*;

/**
 * Example: referencing entities and attributes
 */

public class Example2 {

 public static long[] getEntityAndAttributeLongs() {
 return new long[]
 { ITSMExternalEnum.IncidentDefEnum.enOid
 , ITSMExternalEnum.IncidentDefEnum.atStatus
 , ITSMExternalEnum.StatusIncidentDefEnum.atText
 };
 }

36 Chapter 3

Examples
Identifying Entities and Attributes

 public static String[] getEntityAndAttributeNames
 (String username
 , String password
 , String server
) {
 AppExternalAccess access =
 new AppExternalAccess(username, password, server);
 access.setSettings(“external_event”);
 AppExternalEntityInfo ai =
 access.getExternalEntityInfo(“incident”);
 access.disconnect();
 return ai.getMappedAttributeNames();
 }

 public static void showAvailableSettings
 (String username
 , String password
 , String server
) {
 AppExternalAccess access =
 new AppExternalAccess(username, password, server);

 // get all Import Mappings
 String[] settings= access.getAvailableLoadSettingNames();
 Hashtable hSets = new Hashtable();
 int iSet = settings.length;

 // get items per import mapping
 for (int i = 0; i < iSet; i++) {
 access.setSettings(settings[i]);
 Hashtable hItems = new Hashtable();
 String[] items = access.getMappedEntityNames();
 int iLen = items.length;
 // get attributes per item
 // add attributes to inner hashtable
 for (int j = 0; j < iLen; j++) {
 String[] attribs =
 access.getMappedAttributeNames(items[j]);
 hItems.put(items[j], attribs);
 }
 // add items to outer hashtable
 hSets.put(settings[i], hItems);
 }
 access.disconnect();

Chapter 3 37

Examples
Identifying Entities and Attributes

 // print hashtables
 StringBuffer sOut = new StringBuffer();
 Enumeration eIKeys = hSets.keys();
 Enumeration eIVals = hSets.elements();
 while (eIKeys.hasMoreElements()) {
 String sSet = (String) eIKeys.nextElement();
 sOut.append(“Import Mapping “ + sSet + “\r\n\r\n”);
 Hashtable hItems = (Hashtable) eIVals.nextElement();
 Enumeration eEKeys = hItems.keys();
 Enumeration eEVals = hItems.elements();
 while (eEKeys.hasMoreElements()) {
 String sEnt = (String) eEKeys.nextElement();
 sOut.append(“\tMapped Entity: “ + sEnt + “\r\n”);
 sOut.append(“\tAttributes:\r\n”);
 String[] aAttrs = (String[]) eEVals.nextElement();
 int iAttr = aAttrs.length;
 for (int k = 0; k < iAttr; k++) {
 sOut.append(“\t\t” + aAttrs[k] + “\r\n”);
 }
 sOut.append(“\r\n”);
 }
 sOut.append(“\r\n\r\n”);
 }
 System.out.println(sOut.toString());
 }

38 Chapter 3

Examples
Finding the Proper Entity Instantiation

Finding the Proper Entity Instantiation
The Example3 class shows how to obtain a list of Service Desk entities
that comply to a given search criteria. This is important when checking
whether a given entity exists, or when retrieving a list of entities with
certain characteristics.

In this example, three new classes are introduced. The most important
one is the AppCriterium class, used to pass search criteria to the method
that performs the actual search. In the construction of an AppCriterium
object, the AppWhereOperatorEnum class is used to indicate the logical
operators to use when combining AppCriterium objects. Apart from this,
the AppAttributeSelection class is introduced. This class is used to
specify the attributes that should be exposed on an entity. These classes
belong to the Service Desk IFC and reside in the
com.hp.ifc.util.marshal package. This package is imported on line 4
of the Example3 class.

Both methods used in this example produce an array of long values that
represent the relevant object IDs. Relevance is determined here by the
search criteria defined in the method. Also, the Service Desk entity must
be defined for a search action.

An illustration of this process is given in the findIncidentByLabel()
method. As the name indicates, this method uses reference by label. The
construction of the actual list of object IDs is done by the
listMappedEntitiesAsLong() method defined in the
AppExternalAccess class (line 58). This method uses two arguments:

• The label for the Service Desk entity within the current import
mapping settings.

• An array of AppCriterium objects defining the search criteria.

The single AppCriterium object used in this example is created in a call
to another AppExternalAccess method,
createEqualSearchCondition() on line 49. This is a utility method for
the creation of a simple search condition. As arguments it takes:

• an indicator for the logical operator used in the combination of
subsequent AppCriterium objects. This is a value from
AppWhereOperatorEnum and can be either crtAnd (value 1) or
crtOr (value 2). The first AppCriterium object in an array is

Chapter 3 39

Examples
Finding the Proper Entity Instantiation

normally given the and operator;

• the label for the Service Desk entity;

• the label for the Service Desk attribute involved;

• the attribute value to use in the search. This must always be a
String object when working with reference by label.

The findIncidentByNumber () method shows the same operation
performed using reference by number. The actual list is constructed by
the find () method in line 32. The Service Desk attribute is indicated
by the use of the ITSMExternalEnum class, in this case. In addition to the
AppCriterium objects, the AppAttributeSelection object created on
line 19, is passed to the find () method. This object serves to explicitly
specify the attributes to retrieve. When only building a list of object oids,
no attributes are necessary since the object ID is always retrieved by the
API. It is sufficient to use the default selection.

NOTE The Service Desk application server automatically adds the object ID,
and lockseq-value attributes used for Service Desk’s internal
administration of objects retrieved and their status (that is, whether
they are updated or not, and if changes have taken place since retrieval
or not) when returning a selection. The workflow layer also adds
attributes necessary for performing business rules. This prevents
failures during the execution of business rules.

The creation of the AppCriterium object (line 22) also uses reference by
number, diminishing the number of arguments to three. Though the
actual search value is a String object, it is important to know that the
class for the object passed here must be the same as the class defined for
the Service Desk attribute referenced.

A number of methods are available in the AppExternalAccess class for
both ways of listing Service Desk attributes. The methods differ in the
arguments they take: long values, AppOID objects, String objects, and
the results they return: arrays of long values, or AppOID objects.

The number of methods available for the creation of AppCriterium
objects is even more abundant. Five different ways exist for passing
arguments into methods. Three different types of search criteria that can
be used are described below:

• Equality searches

40 Chapter 3

Examples
Finding the Proper Entity Instantiation

• Range searches
• Free-format searches

Equality and range searches are made accessible with
createEqualSearchCondition()and createRangeSearchCondtion()
methods. Refer to the Javadoc for more information.

The free-format search methods are more complicated. Again an
AppCriterium object is being constructed, but some additional
arguments can be used. Two extensions make these methods more
flexible; the addition of an operator for the interpretation of search
values, and the use of a boolean to obtain the negation of a search
condition. Together the free-format search methods offer much greater
freedom in the construction of tailor-made search conditions.

As for the interpretation of the values specified, this is directed by labels
defined in the com.hp.ifc.util.marshal.AppCriteriumOperatorEnum
class. The available values are listed in the following table. An additional
boolean argument can be used to reverse the selection condition. For
example; instead of objects that have a value equivalent to yesterday in
an attribute, one can specify those that have any value except yesterday.
Note that some of these negations are already provided by labels:

Table 3-1 AppCriteriumOperationEnum Values

Label Int value # values

opEqual 0 1

opNotEqual 1 1

opGreaterThan 2 1

opLessThan 3 1

OpGreaterThanOr
EqualTo

4 1

opLessThanOrEqu
alTo

5 1

OpBetween 6 2

opNotBetween 7 2

opContains 8 1

Chapter 3 41

Examples
Finding the Proper Entity Instantiation

Example 3-3 Finding the Proper Entity Instantiation

package com.hp.ifc.ext.examples;

import com.hp.ifc.ext.*;
import com.hp.ifc.util.marshal.*;

/**
 * Example: listing Service Desk objects
 */

public class Example3 {

 public static long[] findIncidentByNumber

opNotContains 9 1

opEmpty 11 0

opNotEmpty 12 0

opYesterday 14 0

opToday 15 0

opTomorrow 16 0

opLast7Days 17 0

opNext7Days 18 0

opLastWeek 19 0

opThisWeek 20 0

opNextWeek 21 0

opLastMonth 22 0

opThisMonth 23 0

opNextMonth 24 0

opStartsWith 25 1

Table 3-1 AppCriteriumOperationEnum Values

Label Int value # values

42 Chapter 3

Examples
Finding the Proper Entity Instantiation

 (String username
 , String password
 , String server
) {
 AppExternalAccess access =
 new AppExternalAccess(username, password, server);

 AppAttributeSelection sel =
 new AppAttributeSelection();

 AppCriterium[] crits =
 new AppCriterium[]
 { access.createEqualSearchCondition
 (AppWhereOperatorEnum.crtAnd
 , ITSMExternalEnum.IncidentDefEnum.atDescription
 , “Server 02 booted”
)
 };

 long[] Incs =
 access.find
 (ITSMExternalEnum.IncidentDefEnum.enOid, sel, crits);

 access.disconnect();
 return Incs;
 }

 public static long[] findIncidentByLabel
 (String username
 , String password
 , String server
) {
 AppExternalAccess access =
 new AppExternalAccess(username, password, server);

 access.setSettings(“external_event”);

 AppCriterium[] crits =
 new AppCriterium[]
 { access.createEqualSearchCondition
 (AppWhereOperatorEnum.crtAnd
 , “incident”
 , “description”
 , “Server 02 booted”
)
 };

Chapter 3 43

Examples
Finding the Proper Entity Instantiation

 long[] Incs =
 access.listMappedEntitiesAsLong(“incident”, crits);

 access.disconnect();
 return Incs;
 }

More about Finding Entity Instantiations

After you have told the API layer what kind of entity you want to use,
you probably want to retrieve an instantiation of that entity type. This
can be done with a call to find:

find(entity, selection, where);

After some processing, this command is translated into an SQL query
and it can be clarifying to keep this mind:

SELECT ... FROM ... WHERE ...

In the API layer, the AppAttributeSelection class describes the
SELECT part and the AppCriterium class describes the WHERE part.

Every object has a default selection. Sometimes you have to extend that
default selection:

AppAttributeSelection asWo = new AppAttributeSelection();
asWo.putValue(ITSMExternalEnum.WorkorderDefEnum.atActualCost);

If an attribute references an object, the returned value of that attribute
would be the AppOID of the referenced object. However, the object itself
is returned when you extend the selection of the attribute with a
subselection. The following example selects the default selection of the
assignment object of a work order:

AppAttributeSelection subAsAs = new AppAttributeSelection();
AppAttributeSelection asWo = new AppAttributeSelection();
asWo.putValue

 ITSMExternalEnum.WorkorderDefEnum.atAssignment, subAsAs);

Sometimes a default selection already contains some subselections.
Probably, you still have to extend the default selection and the default
subselections in order to retrieve the desired attributes.

The following is an example of the WHERE part. This example retrieves
all work orders assigned to “Janssen, John” that have the status “open”:

44 Chapter 3

Examples
Finding the Proper Entity Instantiation

 AppCriterium[] where =
 new AppCriterium[]
 { access.createEqualSearchCondition
 (AppWhereOperatorEnum.crtAnd
 , new long []
 { ITSMExternalEnum.WorkorderDefEnum.atAssignment
 ,
ITSMExternalEnum.AssignmentDefEnum.atAssigneePerson
 , ITSMExternalEnum.PersonDefEnum.atName
 }
 , “Janssen, John”
)
 , access.createEqualSearchCondition
 (AppWhereOperatorEnum.crtAnd
 , new long []
 { ITSMExternalEnum.WorkorderDefEnum.atStatus
 , ITSMExternalEnum.AssignmentStatusDefEnum.atText
 }
 , “Open”
)
 }

Chapter 3 45

Examples
Getting an Entity Instantiation

Getting an Entity Instantiation
Example4 shows how to get a Service Desk object into the API
programming environment. A large part of this example is copied from
the example3 class, which begins the process for retrieving Service Desk
objects.

The getIncidentByNumber() method shows the retrieval of a Service
Desk incident, using reference by number. This method is similar to the
findIncidentByNumber() method in example3, with a minor extension.
After obtaining the list of relevant object IDs, the Service Desk object for
each value is retrieved and wrapped in an AppExternalEntity object.
This is done in line 40:

Ents[i]=access.open(ITSMExternalEnum.IncidentDefEnum.enOid,
sel, Incs[i]);

Arguments for this method are:

• An identifier for the Service Desk entity.

• An AppAttributeSelection object (see “Finding the Proper Entity
Instantiation” on page 41).

• The object ID for the Service Desk object.

The return type for this method is the AppExternalEntity class. This is
the API class for manipulating Service Desk objects using reference by
number.

The getIncidentByLabel() method shows how to retrieve a Service
Desk incident using labels. This is again very much like the
findIncidentByLabel() method in Example3. The essential operation
is performed on line 74:

Ents[i]=access.openMappedEntity("incident", Incs[i]);

This is a simplified variation of the open() method explained earlier.
This method does not take an AppAttributeSelection object as an
argument, because the API always retrieves all attributes that are
provided with a label, when working with reference by label.

The openMappedEntity() method returns an
AppMappedExternalEntity object. This is an extension of the
AppExternalEntity object, aimed specifically at the manipulation of
Service Desk objects using reference by label.

46 Chapter 3

Examples
Getting an Entity Instantiation

Example 3-4 Getting an Entity Instantiation

package com.hp.ifc.ext.examples;

import com.hp.ifc.ext.*;
import com.hp.ifc.util.marshal.*;

/**
 * Example: retrieval of Service Desk objects
 */

public class Example4 {

 public static AppExternalEntity[] getIncidentByNumber
 (String username
 , String password
 , String server
) {
 AppExternalAccess access =
 new AppExternalAccess(username, password, server);

 AppCriterium[] crits =
 new AppCriterium[]
 { access.createEqualSearchCondition
 (AppWhereOperatorEnum.crtAnd
 , ITSMExternalEnum.IncidentDefEnum.atDescription
 , “Server 02 booted”
)
 };
 AppAttributeSelection sel =
 new AppAttributeSelection();
 // extending the default selection
 sel.putValue
 (ITSMExternalEnum.IncidentDefEnum.atDescription);
 long[] Incs =
 access.find
 (ITSMExternalEnum.IncidentDefEnum.enOid, sel, crits);

 AppExternalEntity[] Ents =
 new AppExternalEntity[Incs.length];
 for (int i = 0; i < Incs.length; i++) {
 Ents[i] =
 access.open
 (ITSMExternalEnum.IncidentDefEnum.enOid
 , sel
 , Incs[i]

Chapter 3 47

Examples
Getting an Entity Instantiation

);
 }
 access.disconnect();
 return Ents;
 }

 public static AppMappedExternalEntity[] getIncidentByLabel
 (String username
 , String password
 , String server
) {
 AppExternalAccess access =
 new AppExternalAccess(username, password, server);
 access.setSettings(“external_event”);

 AppCriterium[] crits =
 new AppCriterium[]
 { access.createEqualSearchCondition
 (AppWhereOperatorEnum.crtAnd
 , “incident”
 , “description”
 , “Server 02 booted”
)
 };
 long[] Incs =
 access.listMappedEntitiesAsLong(“incident”, crits);

 AppMappedExternalEntity[] Ents =
 new AppMappedExternalEntity[Incs.length];
 for (int i = 0; i < Incs.length; i++) {
 Ents[i] =
 access.openMappedEntity(“incident”, Incs[i]);
 }
 access.disconnect();
 return Ents;
 }

 public static void showDefaultSelections
 (String username
 , String password
 , String server
) {
 AppExternalAccess access =
 new AppExternalAccess(username, password, server);
 AppCriterium[] crits =
 new AppCriterium[]

48 Chapter 3

Examples
Getting an Entity Instantiation

 { access.createEqualSearchCondition
 (AppWhereOperatorEnum.crtAnd
 , ITSMExternalEnum.IncidentDefEnum.atDescription
 , “Server 02 booted”
)
 };
 AppAttributeSelection sel =
 new AppAttributeSelection();

 System.out.println
 (“Initial selection: “ + access.showSelection(sel));
 long[] Incs =
 access.find
 (ITSMExternalEnum.IncidentDefEnum.enOid, sel, crits);
 System.out.println
 (“Default selection of find: “ +
access.showSelection(sel));

 if (Incs.length>0) {
 sel = new AppAttributeSelection();
 access.open
 (ITSMExternalEnum.IncidentDefEnum.enOid, sel, Incs[0]);
 System.out.println
 (“Default selection of open: “ +
access.showSelection(sel));
 }
 access.disconnect();
 }

Chapter 3 49

Examples
Creating New Objects

Creating New Objects
Example5 shows how new Service Desk objects are created by means of
the AppExternalAccess class.

The makeIncidentByNumber() method shows how to create Service
Desk objects using reference by number. A quick glance at the actual
method call on create() (line 24), makes clear that it is used in much
the same way as the open() method used in Example4. The only
difference is that an object ID is not passed into this method. The
create() method returns an AppExternalEntity object.

The same applies to the createMappedEntity() method used in
makeIncidentByNumber(), showing reference by label. The
createMappedEntity() method called on line 41, compares to the
openMappedEntity() as does the create() method to the open()
method. The createMappedEntity() method returns an
AppMappedExternalEntity object.

Example 3-5 Creating New Objects

package com.hp.ifc.ext.examples;

import com.hp.ifc.ext.*;
import com.hp.ifc.util.marshal.*;

/**
 * Example: creating of Service Desk objects
 */

public class Example5 {

 public static AppExternalEntity makeIncidentByNumber
 (String username
 , String password
 , String server
) {
 try {
 AppExternalAccess access =
 new AppExternalAccess(username, password, server);
 AppAttributeSelection sel =
 new AppAttributeSelection();
 sel.putValue
 (ITSMExternalEnum.IncidentDefEnum.atDescription);

50 Chapter 3

Examples
Creating New Objects

 return
 access.create
 (ITSMExternalEnum.IncidentDefEnum.enOid, sel);
 }
 catch (ExternalException exc) {
 System.out.println(exc.getMessage());
 return null;
 }
 }

 public static AppMappedExternalEntity makeIncidentByLabel
 (String username
 , String password
 , String server
) {
 try {
 AppExternalAccess access =
 new AppExternalAccess(username, password, server);
 access.setSettings(“external_event”);
 return access.createMappedEntity(“incident”);
 }
 catch (ExternalException exc) {
 System.out.println(exc.getMessage());
 return null;
 }
 }

Chapter 3 51

Examples
Getting and Setting Attribute Values

Getting and Setting Attribute Values
The Example6 class shows the creation of a new Service Desk object, and
the elementary manipulation of one of the object’s attributes.

The first example method, changeIncidentByNumber(), as always
applies to reference by number. After creating a new incident object,
this method shows the contents of the description attribute. This will be
empty (null) since we are working with a new incident.

On line 33, a value is assigned to the description. This is a done by
calling the setValue() method on the AppExternalEntity object that
represents the incident. The changeIncidentByNumber() shows the
attribute's contents, that are now set to "An example".

In this example a String object is passed into setValue(), this method
expects to receive an appropriate object type. The Java types you are
most likely to encounter are listed in Table 3-2. You will need to
determine the type of Service Desk attribute to be manipulated in order
to use the table. The determineAttribueType() method can be used to
determine this, when needed.

The changeIncidentByLabel() method shows the same sequence of
events using reference by label. Apart from the differences in object
creation that are already familiar from Example5, it will appear that the
description attribute already has a value the first time it is shown. This
is caused by the application of default values from the template, assigned
to the incident entity defined in the import settings.

Setting the attribute value on line 66 differs little from the approach
used in changeIncidentByNumber(). Apart from using reference by
label the setValue() method defined for AppMappedExternalEntity
always takes a String object for the value.

Table 3-2 Java Types

Service Desk Attribute Type Java Data Type

Boolean (Yes/No) Boolean

Currency (money) Double

52 Chapter 3

Examples
Getting and Setting Attribute Values

Date (without time) Com.ms.wfc.app.Time or Double
representing the number of hundred
nanosecond units elapsed since January 1,
100AD 12:00 midnight.

Datetime (timestamp) Com.ms.wfc.app.Time or Double
representing the number of hundred
nanosecond units elapsed since January 1,
100AD 12:00 midnight.

Description (length 80) String

Double Double

Duration Double representing number of minutes.

Email String

EntityReference AppOID

Gender AppOID (0=male, 1=female)

Integer Integer

Long Long

Longtext (memo) String

Name (length 50) String

Searchcode (length 50) String (Searchcode must be all capitals,
cannot contain any spaces or the
characters: ’.’ , ’*’ , ’_’ , ’%’ and cannot start
with any numeric characters.

Shortext (length 40) String

Telephone String

Text (length 225) String

Text64kB String

Table 3-2 Java Types

Service Desk Attribute Type Java Data Type

Chapter 3 53

Examples
Getting and Setting Attribute Values

Example 3-6 Getting and Setting Attribute Values

package com.hp.ifc.ext.examples;

import com.hp.ifc.ext.*;
import com.hp.ifc.util.marshal.*;

/**
 * Example: manipulating Service Desk objects
 */

public class Example6 {

 public static void changeIncidentByNumber
 (String username
 , String password
 , String server
) {
 Object s;
 try {
 AppExternalAccess access =
 new AppExternalAccess(username, password, server);
 AppAttributeSelection sel =
 new AppAttributeSelection();
 sel.putValue
 (ITSMExternalEnum.IncidentDefEnum.atDescription);
 AppExternalEntity oEnt =
 access.create
 (ITSMExternalEnum.IncidentDefEnum.enOid, sel);

 s = oEnt.getValue
 (ITSMExternalEnum.IncidentDefEnum.atDescription);
 System.out.println(“Description is “ + s);
 oEnt.setValue
 (ITSMExternalEnum.IncidentDefEnum.atDescription
 , “An example”
);
 s = oEnt.getValue
 (ITSMExternalEnum.IncidentDefEnum.atDescription);
 System.out.println(“Description is set to “ + s);
 access.disconnect();
 }
 catch (ExternalException exc) {
 System.out.println(exc.getMessage());
 }
 }

54 Chapter 3

Examples
Getting and Setting Attribute Values

 public static void changeIncidentByLabel
 (String username
 , String password
 , String server
) {
 Object s;
 try {
 AppExternalAccess access =
 new AppExternalAccess(username, password, server);
 access.setSettings(“external_event”);
 AppMappedExternalEntity oMEnt =
 access.createMappedEntity(“incident”);
 s=oMEnt.getValue(“description”);
 System.out.println(“Description is “ + s);
 oMEnt.setValue(“description”, “Another example”);
 s=oMEnt.getValue(“description”);
 System.out.println(“Description is set to “ + s);
 access.disconnect();
 }
 catch (ExternalException exc) {
 System.out.println(exc.getMessage());
 }
 }

 public static void showAttributeType
 (String username
 , String password
 , String server
) {
 try {
 AppExternalAccess access =
 new AppExternalAccess(username, password, server);
 String s =
 access.showAttributeType
 (ITSMExternalEnum.IncidentDefEnum.atDescription);
 System.out.println(“Type of incident description is “ +
s);
 access.disconnect();
 }
 catch (ExternalException exc) {
 System.out.println(exc.getMessage());
 }
 }

Chapter 3 55

Examples
Saving Instantiations

Saving Instantiations
Example7 shows how to save an object to the Service Desk environment.
In doing so, the new or changed object is made available for use by other
Service Desk users. This example in fact is a minor extension of the
previous example.

In both methods of the Example7 class the object is stored by a call to the
save() method on the AppExternalEntity class. In
saveIncidentByLabel(), the AppMappedExternalEntity class is used,
but the save() method is inherited from AppExternalEntity. The calls
can be found on lines 45and 64. This method saves the Service Desk
object wrapped in the AppExternalEntity object to the Service Desk
database.

The saveIncidentByNumber() method can produce an error message.
Since only some attributes are set, the Service Desk application server
can generate an exception with the text “you must fill in the
<attribute> box”. This demonstrates that it is important to know
which attributes must be filled, because if these are not set, a new object
will not be saved.

The saveIncidentByLabel() method doesn't report an error, because
the mandatory attributes are filled from the template defined by the
import settings. This demonstrates a big advantage of working with the
import settings: it is possible to define default values that make sense.
One can even define several sets for a single Service Desk entity, that
will than be applied for different labels. Of course, using a template will
only prevent messages caused by empty attributes when all mandatory
attributes have received a template value.

The AppExternalEntity class has two methods that are more or less
analogous to the save() method:

• delete()
This method will remove the Service Desk object being processed (as
far as business rules allow this). This clearly does not work on newly
created objects.

• rollback()
This method will revert all changes on the Service Desk object being
processed, since it was created or retrieved from Service Desk. If
rollback() was applied previously, rollback() will revert all

56 Chapter 3

Examples
Saving Instantiations

changes applied since the previous call on rollback().

Example 3-7 Saving Instantiations

package com.hp.ifc.ext.examples;

import com.hp.ifc.ext.*;
import com.hp.ifc.util.marshal.*;

/**
 * Example: manipulating and saving Service Desk objects
 */

public class Example7 {

 public static void saveIncidentByNumber
 (String username
 , String password
 , String server
) {
 try {
 AppExternalAccess access =
 new AppExternalAccess(username, password, server);
 AppAttributeSelection sel =
 new AppAttributeSelection();
 AppAttributeSelection subSel =
 new AppAttributeSelection();
 sel.putValue
 (ITSMExternalEnum.IncidentDefEnum.atDescription);
 sel.putValue
 (ITSMExternalEnum.IncidentDefEnum.atInformation);
 sel.putValue
 (ITSMExternalEnum.IncidentDefEnum.atStatus, subSel);

 AppExternalEntity oEnt =
 access.create
 (ITSMExternalEnum.IncidentDefEnum.enOid, sel);
 oEnt.setValue
 (ITSMExternalEnum.IncidentDefEnum.atDescription
 , “An example”
);
 oEnt.setValue
 (ITSMExternalEnum.IncidentDefEnum.atInformation
 , “An example”
);
 oEnt.setValue

Chapter 3 57

Examples
Saving Instantiations

 (ITSMExternalEnum.IncidentDefEnum.atStatus
 , “Registered”
);
 oEnt.save();
 access.disconnect();
 System.out.println(“New incident is saved”);
 }
 catch (ExternalException exc) {
 System.out.println(exc.getMessage());
 }
 }

 public static void saveIncidentByLabel
 (String username
 , String password
 , String server
) {
 try {
 AppExternalAccess access =
 new AppExternalAccess(username, password, server);
 access.setSettings(“external_event”);
 AppMappedExternalEntity oMEnt =
 access.createMappedEntity(“incident”);
 oMEnt.setValue(“description”, “Another example”);
 oMEnt.save();
 access.disconnect();
 System.out.println(“New incident is saved”);
 }
 catch (ExternalException exc) {
 System.out.println(exc.getMessage());
 }
 }

58 Chapter 3

Examples
Single Instantiation Processing

Single Instantiation Processing
Example8 shows a simplified way of working with the Service Desk API.
By using two utility classes you simplify the tasks involved in opening,
creating, and saving App(Mapped)ExternalEntities and setting their
values. A single method call can create a Service Desk object, or a
relation between two Service Desk objects. The one condition is that
import settings must be defined for these objects, because the methods
use reference by label.

The relateObjects() method shows the creation of two Service Desk
objects and a relation between these two objects. The actual objects are
created using the AppSingleLoad.processEntity() method (lines 32
and 37), the relation is created by the
AppRelationLoad.processRelation() method (line 50).

To get into the AppSingleLoad class first, this has several overloaded
versions of the processEntity() method. The one used here is the
simplest, that takes four arguments:

• The label for the Service Desk entity within the current import
mapping.

• An array of labels for the Service Desk attributes whose values are to
be set.
This is created, and filled on line 30. It is the API programmer's
responsibility to include all attribute labels that are defined as key
attributes for the entity, otherwise an exception will be thrown.

• An array of String objects, specifying the values to which these
attributes will be set.
This second array is created and filled on line 31. Labels and values
are combined according to their positions in the arrays.

• A boolean value, indicating whether the Service Desk object defined
must be saved (false) or removed (true).

A number of prominent Service Desk entities are provided with a Source
ID. This attribute is intended for the storage of object identifiers from
external systems. This is illustrated here by the use of the NNM_ID label,
this is used to store an external NNM ID field in the Source ID attribute.
This use of the Source ID field is strongly recommended.

Lines 35 through 36 show the re-use of previously defined Java objects to

Chapter 3 59

Examples
Single Instantiation Processing

process a second configuration item.

The AppSingleLoad class has a number of processEntity() methods.
The ones not shown here take the following additional arguments:

• The import setting name, relieving us from the need to set that
attribute (can be important when different import settings are used
in one program).

• The import setting name, plus a Service Desk user name, password,
and server.

The AppRelationLoad class has just one method, processRelation()
(lines 50, 51). This method takes five arguments:

• The label for the first Service Desk entity.

• An array with key attributes and values, as created on line 42
through 44. These are used for identifying the first Service Desk
object.

• A label describing the kind of Service Desk relation.

• The label for the second Service Desk entity.

• An array with key attributes and their values, as created on line 46
through 48. These are used for the identification of the second Service
Desk object.

It is the API programmer's responsibility to include all key attributes. If
all key attributes are not included, an exception will be thrown, because
the object cannot be identified.

Example 3-8 Single Instantiation Processing

package com.hp.ifc.ext.examples;

import com.hp.ifc.ext.*;
import com.hp.ifc.util.marshal.*;

/**
 * Example: simplified manipulation of objects and relations
 */

public class Example8 {

 public static void relateObjects
 (String username
 , String password

60 Chapter 3

Examples
Single Instantiation Processing

 , String server
) {
 try {
 String nextNumber = “0008”;
 String segmentId = “NNM_Segment_” + nextNumber;
 String segmentName = “Test_Segment_” + nextNumber;
 String networkId = “NNM_Network_” + nextNumber;
 String networkName = “Test_Network_” + nextNumber;
 String[] aAttr, aVals;

 AppExternalAccess access =
 new AppExternalAccess(username, password, server);
 access.setSettings(“nnm6_import”);

 AppSingleLoad load = new AppSingleLoad(access);

 aAttr = new String[] {“NNM_ID”, “NAME”};
 aVals = new String[] {segmentId, segmentName};
 load.processEntity(“SEGMENT”, aAttr, aVals, false);
 System.out.println(“Saved segment “+ segmentId);

 aAttr = new String[] {“NNM_ID”, “NAME”};
 aVals = new String[] {networkId, networkName};
 load.processEntity(“NETWORK”, aAttr, aVals, false);
 System.out.println(“Saved network “+ networkId);

 AppRelationLoad relate = new AppRelationLoad(access);

 String[][] aParentKey = new String[2][1];
 aParentKey[0][0] = “NNM_ID”;
 aParentKey[1][0] = segmentId;

 String[][] aChildKey = new String[2][1];
 aChildKey[0][0] = “NNM_ID”;
 aChildKey[1][0] = networkId;

 relate.processRelation
 (“SEGMENT”, aParentKey, “Parent”
 , “NETWORK”, aChildKey
);
 System.out.println
 (“Saved relation: “ + segmentId + “ - “ + networkId);
 access.disconnect();
 }
 catch (ExternalException exc) {
 System.out.println(exc.getMessage());

Chapter 3 61

Examples
Single Instantiation Processing

 }
 }

62 Chapter 3

Examples
Error Presentation

Error Presentation
Example9 demonstrates how Java exceptions, thrown by the Service
Desk API classes, can be caught and displayed. This has already been
shown in a number of other classes, but the Example9 class is more
detailed.

TheService Desk application server normally throws a
ComFailException when something unexpected happens. Since these
exceptions are Microsoft-specific, the Service Desk API throws them
again as ExternalExceptions. These are generic Exception objects,
that also have a severity attribute. This is used to distinguish between
errors, warnings and information messages. The severity values are
defined in com.hp.ifc.rep.AppSeverityEnum, as imported in Example9
on line 5.

The AppExternalAccess class has a method getMessage() that
re-throws any exception passed to it as an ExternalException. Any
Exception caught by the API classes is re-thrown by this method, so
these are all caught with an exception handler on ExternalExceptions.
If the exception passed is a ComFailException, its severity will be taken
over. All other exceptions will be assigned severity svCritical. Since
other kinds of exceptions can always be thrown, it is a good idea to catch
all exceptions, this example doesn’t do this.

The Example9 class contains an exception handler on both member
methods. This shows how context-specific error messages are generated
from an ExternalException (lines 31-37 and 56-61 using the switch
statement). The exception handlers record the External Exception’s
severity (lines 32 and 57), and use this to determine a prefix for the error
message.

This example can be expanded using different ways of displaying or
logging the external exceptions thrown. In doing so, error reporting can
be brought in line with the API programmer's organizational standards.

Example 3-9 Error Presentation

package com.hp.ifc.ext.examples;

import com.hp.ifc.ext.*;
import com.hp.ifc.util.marshal.*;
import com.hp.ifc.rep.AppSeverityEnum;

Chapter 3 63

Examples
Error Presentation

/**
 * Example: extended error reporting
 */

public class Example9 {

 public static void saveIncidentByNumber
 (String username
 , String password
 , String server
) {
 try {
 AppExternalAccess access =
 new AppExternalAccess(username, password, server);
 AppAttributeSelection sel =
 new AppAttributeSelection();
 sel.putValue
 (ITSMExternalEnum.IncidentDefEnum.atDescription);
 AppExternalEntity oEnt =
 access.create
 (ITSMExternalEnum.IncidentDefEnum.enOid, sel);
 oEnt.save();
 access.disconnect();
 System.out.println(“New incident is saved”);
 }
 catch (ExternalException exc) {
 String s = “INFO”;
 switch(exc.getSeverity()) {
 case AppSeverityEnum.svCritical: s = “ERROR”; break;
 case AppSeverityEnum.svWarning: s = “WARNING”; break;
 }
 System.out.println(s + “: “ + exc.getMessage());
 }
 }

 public static void saveIncidentByLabel
 (String username
 , String password
 , String server
) {
 try {
 AppExternalAccess access =
 new AppExternalAccess(username, password, server);
 access.setSettings(“external_event”);
 AppMappedExternalEntity oMEnt =

64 Chapter 3

Examples
Error Presentation

 access.createMappedEntity(“incident”);
 oMEnt.setValue(“description”, “dummy description”);
 oMEnt.setValue(“status”, null);
 oMEnt.save();
 access.disconnect();
 System.out.println(“New incident is saved”);
 }
 catch (ExternalException exc) {
 String s = “INFO”;
 switch(exc.getSeverity()) {
 case AppSeverityEnum.svCritical: s = “ERROR”; break;
 case AppSeverityEnum.svWarning: s = “WARNING”; break;
 }
 System.out.println(s + “: “ + exc.getMessage());
 }
 }

Chapter 3 65

Examples
Handling a Reference to a Set of Entities

Handling a Reference to a Set of Entities
When an attribute references a set, each item of the set must be handled
separately. This can be done as follows:

...

 // get the set of attached items
 long[] oidAttachedItems =
 eWo.getSet
 (new long[]
 { ITSMExternalEnum.WorkorderDefEnum.atAttachment
 , ITSMExternalEnum.AttachmentDefEnum.atAttachedItems
 }
);

 // open each attached item using the object id
 for (int j = 0; j < oidAttachedItems.length; j++) {
 AppExternalEntity eAttItem =
 access.open
 (ITSMExternalEnum.AttachedItemDefEnum.enOid
 , new AppAttributeSelection();
 , oidAttachedItem[j]
);

 ...
 }
 }

 ..

The following example demonstrates how you can handle a reference to a
set of entities.

Example 3-10 Reference to a Set of Entities

package com.hp.ifc.ext.examples;

import com.hp.ifc.ext.*;
import com.hp.ifc.types.*;
import com.hp.ifc.util.marshal.*;

/**
 * Example: handling entity sets
 */

66 Chapter 3

Examples
Handling a Reference to a Set of Entities

public class Example10 {

 public static void getCiChildren
 (String username
 , String password
 , String server
) {

 // login
 AppExternalAccess access =
 new AppExternalAccess(username, password, server);

 // Set the search condition, use the default selection and
find the
 // object ID of the parent CI (the object id is of type
long, it is
 // sometimes wrapped in class AppOID)
 AppCriterium[] whereParent =
 new AppCriterium[]
 { access.createEqualSearchCondition
 (AppWhereOperatorEnum.crtAnd
 ,
ITSMExternalEnum.ConfigurationItemDefEnum.atSearchcode
 , “WAN01”
)
 };
 AppAttributeSelection selParent = new
AppAttributeSelection();
 long[] oidParents =
 access.find
 (ITSMExternalEnum.ConfigurationItemDefEnum.enOid
 , selParent
 , whereParent
);

 // extend the default selection and open each found parent
object id
 AppAttributeSelection subSelChildCis = new
AppAttributeSelection();
 selParent.putValue
 (
ITSMExternalEnum.ConfigurationItemDefEnum.atChildConfiguration
Items
 , subSelChildCis
);

Chapter 3 67

Examples
Handling a Reference to a Set of Entities

 for (int i = 0; i < oidParents.length; i++) {
 AppExternalEntity eParent = access.open
 (ITSMExternalEnum.ConfigurationItemDefEnum.enOid
 , selParent
 , oidParents[i]
);
 // get the set of ci components
 long[] oidCiComponents =
 eParent.getSet

(ITSMExternalEnum.ConfigurationItemDefEnum.atChildConfiguratio
nItems);
 // open each ci component of the set
 for (int j = 0; j < oidCiComponents.length; j++) {
 AppAttributeSelection selCiComp = new
AppAttributeSelection();
 AppExternalEntity eCiComponent =
 access.open
 (ITSMExternalEnum.CiComponentDefEnum.enOid
 , selCiComp
 , oidCiComponents[j]
);

 // get the object ID of the child
 //
getValue(ITSMExternalEnum.CiComponentDefEnum.atCiChild)
 // returns an object instead of an object id because
 // ITSMExternalEnum.CiComponentDefEnum.atCiChild has
a
 // default subselection
 Object oOidChild =
 eCiComponent.getValue
 (new long[]
 { ITSMExternalEnum.CiComponentDefEnum.atCiChild
 ,
ITSMExternalEnum.ConfigurationItemDefEnum.atObjectId
 }
);
 long oidChild = ((AppOID) oOidChild).longValue();

 // open the child
 AppAttributeSelection selChild = new
AppAttributeSelection();
 selChild.putValue

(ITSMExternalEnum.ConfigurationItemDefEnum.atSearchcode);

68 Chapter 3

Examples
Handling a Reference to a Set of Entities

 AppExternalEntity eChild =
 access.open
 (ITSMExternalEnum.ConfigurationItemDefEnum.enOid
 , selChild
 , oidChild
);

 // get the searchcode
 Object oSearch =
 eChild.getValue(

ITSMExternalEnum.ConfigurationItemDefEnum.atSearchcode);
 System.out.println(“Component searchcode is “ +
oSearch);
 }
 }
 access.disconnect();
 return;
 }

 69

Glossary

A

API Application programming
interface. An interface that
enables programmatic access to an
application.

attribute A characteristic or
property associated with a system,
network, or other item. OpenView
items represent system, network,
and personnel resources by
modeling and providing
information on the attributes
(properties and state) of an object.
An attribute has a name and a
value. An attribute is a place
holder in which a specific value is
held to provide information about
the state of the item. For example,
incident description, or employee
name.

B

business layer The business
layer contains rules that
determine how an operation is
validated or completed. It
communicates with the data access
layer and the workflow layer. The
business layer works on the
database side to find, load, delete,
or save data and then present only
the data asked for to the workflow
layer.

business rules A set of hooks that
overrule the standard behavior
defined for an entity in the
repository and inherited from the
super class. The hooks are
collected in a class that extends
AppEntity.

C

configuration item An item
belonging to the technical
infrastructure of an organization.
A configuration item may consist
of other configuration items, and
may be part of other configuration
items. For example, a PC, an
application program, a network, a
work space with desks and chairs.
Configuration items are stored in
the application database.

class An encapsulated collection
of data and methods to operate on
the data. A class may be
instantiated to produce an object
that is an instance of the class. The
class defines how the objects
should be accessed by other
objects, whether the object is
public, and under what
circumstances it can be created.

D

70

data access layer The data
access layer provides access to the
data in the database. It
communicates between the
application’s object model and the
relational representation of what
exists in the underlying database.

data mapping model Describes
how entities and their attributes in
the object model are mapped to the
database. The application server
reads it when started. It is used by
the business layer to persist the
data. The data mapping model is
persisted in the ifc_tables and the
ifc_columns.

E

encapsulate An object-oriented
programming technique that
makes an object's data private or
protected (that is: hidden) and
allows programmers to access and
manipulate that data only through
method calls. Done well,
encapsulation reduces bugs and
promotes reusability and
modularity of classes. This
technique is also known as data
hiding.

entity An entity is a logical
collection of attributes. It is the
basic item in the object model of
Service Desk. In the object model,
the entity is the top item.

I

IDL Interface definition language.
Used to describe CORBA object
interfaces. It describes the
interfaces that client objects call
and object implementations
provide.

IFC ITSM foundation classes.
These classes together form the
base of the Service Desk
application, called the kernel.
Service Desk-specific features have
not been incorporated in the IFC,
making it possible to develop other
database-based applications with
it.

instance An object that exposes a
particular interface. An object is
an instance of an interface if it
provides the operations,
signatures, and semantics
specified by that interface. An
object is an instance of an
implementation if its behavior is
provided by that implementation.

 71

interface A specification, written
in IDL, of the operations and
attributes that an object provides.

K

kernel See IFC

N

non-UI account Service Desk
accounts granting users access to
the Service Desk application but
not the user interface. Non-UI
accounts can be created for users
who will not be using the Service
Desk interfaces but need access for
other purposes. The number of
named user accounts is usually
limited by the licensing agreement,
while non-UI accounts are not.

O

object An encapsulated software
unit consisting of both state (data)
and behavior (code). Objects have
attributes, methods, and events.
Attributes make up the data that
describes an object. Methods are
the functions an object can
perform. Events are the functions
an object can perform in response
to another event. In some object

models an object is an instance of a
class as specified in some object-
modeling languages.

object model A model of the
application’s entities, attributes,
and their relations.

P

presentation layer The
presentation layer contains the
user interfaces. Information from
the presentation layer is passed to
the workflow layer.

R

repository The repository is a
collection of data that governs the
behavior of the application. The
repository contains information
about: the object model, data
mapping model, user-interface
configuration, role information,
accounts, folders, labels, and
messages.

U

user interface configuration

Includes the data form definitions,
data view definitions, and
user-specific definitions.

72

W

workflow layer The workflow
layer consists of classes on the
client. It operates directly under
the presentation layer and is
responsible for handling the data
flow between the business layer
and the presentation layer (or the
API). If data is changed by the
presentation layer or the API the
workflow layer check that the data
is logically correct.

wrapper A type of glueware that
is used to attach other software
components together. A wrapper
may encapsulate a single system,
often a data source, to make it
usable in some new way that the
unwrapped system was not.
Wrappers can be used to expose all
or some of the functionality of the
thing they are wrapping, and
present a simplified or standard
interface to make a component
more available.

Index

 73

A
AppExternalAccess, 25, 31
AppExternalEntity, 26, 27
application server, connecting to,

31
AppMappedExternalEntity, 26,

27
AppRelationLoad, 28
AppSingleLoad, 28
architecture, runtime, 17
attribute values, getting, 27, 49
attribute values, setting, 27, 51

B
business layer, 17

C
ComFailException, 28
connecting to application server,

25, 31

D
data access layer, 17
deprecated API elements, 5, 16
discontinuation of API support,

5

E
entities, finding, 38
entities, identifying, 33
error presentation, 28, 62
ExternalException, 28

F
finding entities, 38
finding entity instantiations, 38
finding instantiations, 26

G
getting attribute values, 27, 49

getting instantiations, 26, 45

H
handling errors, 28, 62

I
identifying entities, attributes,

25, 33
IFC, 22
instantiation, processing, 28
instantiations, finding, 26
instantiations, getting, 45
instantiations, processing, 58
instantiations, saving, 27, 55
ITSM Foundation Classes, 22
ITSMExternalEnumeration, 26

J
Javadoc, 16

K
kernel, 22

O
object model, 22, 24

P
presentation layer, 17
processing instantiations, 28

R
requirements, 19

S
saving instantiations, 27, 55
Service Desk architecture, 17
setting attribute values, 27, 51
single instantiation processing,

28, 58

W
workflow layer, 17

74

Index

	Preface
	1� The API
	API Overview
	The API Javadoc
	Runtime Architecture
	Requirements

	2� API Principles
	The Object Model
	Principle API Functions
	Connecting to the Application Server
	Identifying Entities and Attributes
	Finding the Proper Entity Instantiation
	Getting an Entity Instantiation
	Getting Attribute Values
	Setting Attribute Values
	Saving Instantiations
	Single Instantiation Processing
	Error Presentation

	3� Examples
	Installing the Examples
	Connecting to the Application Server
	Identifying Entities and Attributes
	Finding the Proper Entity Instantiation
	More about Finding Entity Instantiations

	Getting an Entity Instantiation
	Creating New Objects
	Getting and Setting Attribute Values
	Saving Instantiations
	Single Instantiation Processing
	Error Presentation
	Handling a Reference to a Set of Entities

	Glossary

