
Opsware® Automation Platform
Developer’s Guide: Pre-Release

Draft

Corporate Headquarters

599 North Mathilda Avenue Sunnyvale, California 94085 U.S.A.
T + 1 408.744.7300 F +1 408.744.7383 www.opsware.com

Opsware SAS Version 6.0.1

Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Opsware Inc. Unpublished Confidential Information. NOT for Redistribution. All Rights

Reserved.

Opsware is protected by U.S. Patent Nos. 6,658,426, 6,751,702, 6,816,897, 6,763,361

and patents pending.

Opsware, OCC, Model Repository, Data Access Engine, Web Services Data Access

Engine, Software Repository, Command Engine, Opsware Agent, Model Repository

Multimaster Component, and Code Deployment & Rollback are trademarks and service

marks of Opsware Inc. All other marks mentioned in this document are the property of

their respective owners.

Additional proprietary information about third party and open source materials can be

found at http://www.opsware.com/support/sas600tpos.pdf.

Table of Contents

Preface 7

Pre-Release Status. .7

About this Guide. .7

Contents of this Guide .7

Chapter 1: Overview 9

Overview of the Opsware Automation Platform .9

Supported Clients. .10

Security .11

Opsware API Design. .12

Services .12

Objects in the API. .13

Exceptions .14

Event Cache .15

Searches .15

API Documentation and the Twister .16

Java RMI Client JAR File .17

Importing and Exporting Packages With PUT and GET 17

Chapter 2: Opsware CLI Methods 19

Overview of Opsware CLI Methods .19

Method Invocation .20
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 3

Opsware® Automation Platform Developer’s Guide: Pre-Release Draft
Security .20

Mapping Between API and OCLI Methods .21

Differences Between OCLI Methods and Unix Commands21

OCLI Method Tutorial .22

Format Specifiers .27

Position of Format Specifiers .28

Default Format Specifiers .28

ID Format Specifier Examples .29

Structure Format Specifier Syntax .29

Structure Format Specifier Examples. .30

Directory Format Specifier Examples. .32

Value Representation. .32

Opsware Objects in the OGFS .33

Primitive Values. .35

Arrays .36

OCLI Method Parameters and Return Values .37

Method Context and the self Parameter .37

Passing Arguments on the Command-Line. .38

Specifying the Type of a Parameter .39

Complex Objects and Arrays As Parameters .39

Overloaded Methods .39

Return Values .40

Exit Status .40

Search Filters and OCLI Methods. .41

Search Syntax .41

Search Examples .42

Searchable Attributes and Valid Operators. .44
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Example Scripts .44

create_custom_field.sh .45

create_device_group.sh .46

create_folder.sh .47

remediate_policy.sh .48

remove_custom_field.sh .50

schedule_audit_task.sh .50

Getting Usage Information on OCLI Methods .51

Listing the Services .51

Finding a Service in the API Documentation. .52

Listing the Methods of a Service. .52

Listing the Parameters of a Method .52

Getting Information About a Value Object .52

Determining If an Attribute Can Be Modified .53

Determining If an Attribute Can Be Used in a Filter Query 53

Appendix A: Search Filter Syntax 55

Filter Grammar .55

Usage Notes .56
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 5

Opsware® Automation Platform Developer’s Guide: Pre-Release Draft
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Preface

Pre-Release Status
The Opsware Automation Platform, API, and CLI described in this document are not yet

supported. However, “preview” versions of these technologies are included in this release

of Opsware SAS. You can learn about these technologies by experimenting with them in a

test environment, but do not use them in a production environment.

Opsware SAS version: 6.0.1
Document Date: August 30, 2006

Welcome to the Opsware Server Automation System (SAS) — an enterprise-class

software solution that enables customers to get all the benefits of Opsware Inc.’s data

center automation platform and support services. Opsware SAS provides a core

foundation for automating formerly manual tasks associated with the deployment,

support, and growth of server and server application infrastructure.

About this Guide
This guide is a pre-release, partial draft.

Intended for advanced system administrators and software developers, this guide

explains how to create client applications for the Opsware Automation Platform.

Contents of this Guide

This guide contains the following chapters:

Chapter 1: Overview - Summarizes the Opsware Automation Platform, the Opsware API,

and the supported client technologies.

Chapter 2: Opsware OCLI Methods - Explains the concepts and syntax of the Opsware

CLI methods. Provides scripting examples for the methods.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 7

Opsware® Automation Platform Developer’s Guide: Pre-Release Draft
Chapter 3: TBD - The remaining chapters in this guide have not yet been written.
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 1: Overview

Overview of the Opsware Automation Platform
The Opsware Automation Platform (OAP) is a set of APIs and a runtime environment that

facilitate the integration and extension of Opsware SAS. The Opsware APIs expose core

services such as audit compliance, Windows patch management, and OS provisioning.

The runtime environment (hub) executes scripts that can access the Opsware Global File

System (OGFS).

With the Opsware Automation Platform, you can perform the following tasks:

• Build new automation applications and extend Opsware SAS to improve IT productivity

and comply with your IT policies.

• Exchange information with other IT systems, such as existing monitoring, trouble

ticketing, billing, and virtualization technology.

• Use the Opsware Model Repository to store and organize critical IT information about

operations, environment, and assets.

• Automate the management of a wide range of applications and operating systems

without having to wait for Opsware, Inc. to deliver out-of-the-box support for a particular

technology.

• Incorporate existing Unix and Windows scripts with Opsware SAS, enabling the scripts

to run in a secure, audited environment.

I N T H I S C H A P T E R

This chapter discusses the following topics:

• Overview of the Opsware Automation Platform

• Opsware API Design
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 9

Opsware® Automation Platform Developer’s Guide: Pre-Release Draft

1

Supported Clients

The Opsware Automation Platform supports programmers with different skills, from

system administrators who write shell scripts to Java programmers familiar with the latest

tools and technologies. All of the clients shown in Figure 1-1 call the same set of

methods, which are organized into the services of the Opsware Automation Platform. You

can create the following types of clients that call methods in the Opsware API:

• Opsware Command-line Interface (OCLI) - Launched from Global Shell sessions,

shell scripts can access the Opsware API by invoking the OCLI methods, which are

executable programs in the OGFS. Each OCLI method corresponds to a method in the

Opsware API.

• Web Services - Using SOAP over HTTPS, these clients send requests to Opsware SAS

and get responses back. The Web Services operations (defined in WSDLs) correspond

to the methods in the Opsware API. You can write Web Services clients in popular

languages such as Perl and C#.

• Java RMI - These clients invoke remote Java objects from other Java virtual machines.

The Web Services and Java RMI clients can run on servers different than the Opsware

SAS core or managed servers. The OCLI methods execute in a Global Shell session on

the core server where the OGFS is installed.

The Opsware SAS Client invokes the same APIs and follows the same security model as

the other clients shown in Figure 1-1. Formerly called the OCC Client, the Opsware SAS

Client is the desktop GUI application for end-users. The Opsware SAS client is included in

the installation and cannot be modified on-site.
0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 1: Overview
Figure 1-1: Clients of the Opsware Automation Platform

Security

Users of the Opsware Automation Platform must be authenticated and authorized to

invoke methods on the Opsware API. To connect to Opsware SAS, a client supplies an

Opsware user name and password (authentication). To invoke methods, the Opsware

user must belong to a user group with the necessary permissions (authorization). These

permissions restrict not only the types of Opsware SAS operations that users can perform,

but also limit access to the servers and network devices used in the operations.

Before running clients, you must specify the required users and permissions with the

Opsware Command Center. For instructions, see the User Group and Setup chapter of

the Opsware® SAS Administration Guide. For information about security-related

exceptions, see “Exceptions” on page 14.

Communication between clients and Opsware SAS is encrypted. For Web Services

clients, the request and response SOAP messages (which implement the operation calls)

are encrypted using SSL over HTTP (HTTPS).

Opsware SAS Core Components

Opsware API

Java
RMI
Client

Perl
Web Services
Client

C#
Web Services
Client

Managed Servers: . . .

Opsware
SAS
Client

Shell Script

OGFS
and
OCLI Methods
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 11

Opsware® Automation Platform Developer’s Guide: Pre-Release Draft

1

Opsware API Design
The Opsware API is defined by Java interfaces and organized into Java packages. To

support a variety of client languages and remote access protocols, the API follows a

function-oriented, call-by-value model.

Services

In the Opsware API, a service encapsulates a set of related functions. Each service is

specified by a Java interface with a name ending in Service, such as

ServerService, FolderService, and JobService.

Services are the entry points into the API. To access the API, clients invoke the methods

defined by the server interface. For example, to retrieve a list of software installed on a

managed server, a client invokes the getInstalledSoftware method of the

ServerService interface. Examples of other ServerService methods are

checkDuplex, setPrimaryInterface, and changeCustomer.

The Opsware API contains over 70 services – too many to describe here. Table 1-1 lists a

few of the services that you may want to try out first. For a full list of services, in a browser

go to the URL shown in “API Documentation and the Twister” on page 16.

Table 1-1: Partial List of Services of the Opsware API

SERVICE NAME
SOME OF THE OPERATIONS PROVIDED

BY THIS SERVICE

AuditTaskService Create, get, and run audit tasks.

ConfigurationService Create application configurations, get the

software policies using an application

configuration.

DeviceGroupService Create device groups, assign devices to

groups, get members of groups, set

dynamic rules.

EventCacheService Trigger actions such as updating a client-

side cache of value objects. See “Event

Cache” on page 15.

FolderService Create folders, get children of folders, set

customers of folders, move folders.
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 1: Overview
Objects in the API

Although the Opsware API is function-oriented, its design enables clients to create object-

oriented libraries. The Opsware SAS data model includes objects such as servers, folders,

and customers. These are persistent objects; that is, they are stored in the Opsware

Model Repository. In the API, these objects have the following items:

InstallProfileService Create, get, and update OS installation

profiles.

JobService Get progress and results of jobs, cancel

jobs, update job schedules.

NasConnectionService Get host names of NAS servers, run com-

mands on NAS servers.

NetworkDeviceService Get information such as families, names,

models, and types, according to specified

search filters.

SequenceService Create, get, and run OS sequences to

install operating systems on servers.

ServerService Get information about servers, reconcile

(remediate) policies on servers (install soft-

ware), get and set custom fields and

attributes, execute OS sequences (install

OS).

SoftwarePolicyService Create software policies, assign policies to

servers, get contents of policies, remediate

(reconcile) policies with servers.

SolPatchService Install and uninstall Solaris patches, add

policy overrides.

VirtualColumnService Manage custom fields and custom

attributes.

WindowsPatchService Install and uninstall Windows patches, add

policy overrides.

Table 1-1: Partial List of Services of the Opsware API (continued)

SERVICE NAME
SOME OF THE OPERATIONS PROVIDED

BY THIS SERVICE
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 13

Opsware® Automation Platform Developer’s Guide: Pre-Release Draft

1

• A service that defines the object’s behavior. For example, the methods of the

ServerService specify the behavior of a managed server object.

• An object (identity) reference that represents an instance of a persistent object. For

example, ServerRef is a reference that uniquely identifies a managed server. In the

ServerService, the first parameter of most methods is ServerRef, which

identifies the managed server operated on by the method. The Id attribute of a

ServerRef is the primary key of the server object stored in the Opsware Model

Repository.

• One or more value objects (VOs) that represent the data members (attributes, fields) of

a persistent object. For example, ServerVO contains attributes such as

agentVersion and loopbackIP. The attributes of ServerHardwareVO include

manufacurer, model, and assetTag. Most attributes cannot be changed by client

applications. If an attribute can be changed, then the API documentation for the setter

method includes “Field can be set by clients.”

For performance reasons, update operations on persistent objects are coarse-grained.

The update method of ServerService, for example, accepts the entire ServerVO as

an argument, not individual attributes.

Exceptions

All of the API exceptions that are specific to Opsware SAS are derived from one of the

following exceptions:

• OpswareException - Thrown when an application-level error occurs, such as when

an end-user enters an illegal value that is passed along to a method. Typically, the

client application can recover from this type of exception. Examples of exceptions

derived from OpswareException are NotFoundException,

NotInFolderException, and JobNotScheduledException.

• OpswareSystemException - Thrown when an error occurs within Opsware SAS.

Usually, the Opsware Administrator must resolve the problem before the client

application can run.

The following exceptions are related to security:

• AuthenticationException - Thrown when an invalid Opsware user name or

password is specified.
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 1: Overview
• AuthorizationException - Thrown when the user does not have permission to

perform an operation or access an object. For more information on permissions, see

the Opsware® SAS Administration Guide.

Event Cache

Some client applications need to keep local copies of Opsware SAS objects. Accessed by

clients through the EventCacheService, the cache contains events that describe the

most recent change made to Opsware SAS objects. Clients can periodically poll the

cache to check whether objects have been created, updated, or deleted. The cache

maintains events over a configured sliding window of time. By default, events for the most

recent 2 hours are maintained. To change the sliding window size, edit the Web Services

Data Access Engine configuration file, as described in the Opsware® SAS Administration

Guide.

Searches

The search mechanism of the Opsware API retrieves object references according to the

attributes (fields) of value objects. For example, the getServerRefs method searches

by attributes of the ServerVO value object. The getServerRefs method has the

following signature:

public ServerRef[] getServerRefs(Filter filter) . . .

Each get*Refs method accepts the filter parameter, an object that specifies the

search criteria. A filter parameter with a simple expression has the following syntax:

value-object.attribute operator value

(This syntax is simplified. For the full definition, see “Filter Grammar” on page 55.)

The following examples are filter parameters for the getServerRefs method:

ServerVO.hostName = "d04.opsware.com"
ServerVO.model BEGINS_WITH "POWER"
ServerVO.use IN "UNKNOWN" "PRODUCTION"

Complex expressions are allowed, for example:

(ServerVO.model BEGINS_WITH "POWER") AND (ServerVO.use =
"UNKNOWN")
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 15

Opsware® Automation Platform Developer’s Guide: Pre-Release Draft

1

Not every attribute of a value object can be specified in a filter parameter. For

example, ServerVO.state is allowed in a filter parameter, but

ServerVO.OsFlavor is not. To find out which attributes are allowed, locate the value

object in the API documentation and look for the comment, “Field can be used in a filter

query.”

API Documentation and the Twister

The Opsware SAS 6.0 core ships with API documentation (javadocs) that describe the

Opsware API. To access the API documentation, specify the following URL in your

browser:

https://occ_host:1032/twister/docs/index.html

Or:

https://occ_host:443/twister/docs/index.html

The occ_host is the IP address or host name of the core server running the Opsware

Command Center component.

To list the services in the API documentation, specify the following URL:

https://occ_host:443

Also included in the core, the Twister is a program that lets you invoke API methods, one

at a time, from within a browser. For example, to invoke the

ServerService.getServerVO method, perform the following steps:

1 Open the API documentation in a browser.

2 In the All Classes pane, select com.opsware.server.

3 In the com.opsware.server pane, select ServerService.

4 In the main pane, scroll down to the getServerVO method.

5 Click Try It for the getServerVO method.

6 Enter your Opsware SAS user name and password.

7 In the Twister pane for ServerService.getServerVO, enter the ID of a

managed server in the oid field.

8 Click Go. The Twister pane displays the attributes of the ServerVO object returned.
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 1: Overview
Java RMI Client JAR File

To compile and run Java RMI clients, you need the opswclient.jar file, which you can

download from the following location:

https://occ_host/twister/opswclient.jar

Importing and Exporting Packages With PUT and GET

The following wiki page is available only to Opsware, Inc. employees:

http://wiki.corp.opsware.com/owiki/
OpswareReleases_2fEinstein_2fPatchManagement_2fFileTransferApi
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 17

Opsware® Automation Platform Developer’s Guide: Pre-Release Draft

1
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods

Overview of Opsware CLI Methods
In order to understand this chapter, you should already be familiar with the Opsware

Global Shell and the OGFS. For a quick introduction to these features, see the “Global

Shell Tutorial” in the Opsware® SAS User’s Guide: Server Automation.

End-users access Opsware SAS through the GUI utilities, that is, the SAS Client and the

SAS Web Client. At times, advanced users need to access Opsware SAS in a command-

line environment to perform bulk operations or repetitive tasks on multiple servers. In

Opsware SAS, the command-line environment consists of the Global Shell, OGFS, and

Opsware Command-line Interface (OCLI) methods.

To perform Opsware SAS operations from the command-line, you invoke OCLI methods

from within a Global Shell session. An OCLI method is an executable in the OGFS that

corresponds to a method in the Opsware API. When you run an OCLI method, the

underlying API method is invoked.

I N T H I S C H A P T E R

This chapter contains the following topics:

• Overview of Opsware CLI Methods

• OCLI Method Tutorial

• Format Specifiers

• Value Representation

• OCLI Method Parameters and Return Values

• Search Filters and OCLI Methods

• Example Scripts

• Getting Usage Information on OCLI Methods
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 19

Opsware® Automation Platform Developer’s Guide: Pre-Release Draft

2

Method Invocation

As shown by Figure 2-1 when an OCLI method is invoked, the following operations occur:

1 In a Global Shell session, the user enters an OCLI method with parameters.

2 The command-line entered in the previous step is parsed to determine the API

method and parameters.

3 The underlying API method is invoked.

4 An authorization check verifies that the user has permission to perform this

operation. Then, Opsware SAS performs the operation.

5 The API method passes the results back to the OCLI method.

6 The OCLI method writes the return value to the stdout of the Global Shell session.

If an exception was thrown, the OCLI method returns a non-zero status.

Figure 2-1: Overview of an OCLI Method Invocation

Security

OCLI methods use the same authentication and authorization mechanisms as the SAS

Client and the SAS Web Client. When you start a Global Shell session, Opsware SAS

authenticates your Opsware user. When you run an OCLI method, authorization is

performed. To run an OCLI method successfully, your Opsware user must belong to a

group that has the required permissions. For more information on security, see the

Opsware® SAS Administration Guide.

Global Shell Session

$./getDeviceGroups self:i=12

Opsware API

getDeviceGroups (ServerRef self)

Opsware SAS
Core Components

1 2

4

3

5

Accounting App
All Windows Servers
Visalia Vendors

$

6

0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods
Mapping Between API and OCLI Methods

The OGFS represents Opsware SAS objects as directory structures, object attributes as

text files, and API methods as executables. These executables are the OCLI methods.

Every OCLI method matches an underlying API method. The method name, parameters,

and return value are the same for both types of methods.

For example, the setCustomer API method has the following Java signature:

public void setCustomer(ServerRef self,
CustomerRef customer). . .

In the OGFS, the corresponding OCLI method has the following syntax:

setCustomer self:i=server-id customer:i=customer-id

Note that the parameter names, self and customer, are the same in both languages.

(The :i notations are called format specifiers, which are discussed later in this chapter.)

In this example, the return type is void, so the OCLI method does not write the result to

the stdout. For information on how OCLI methods return strings that represent objects,

see “Return Values” on page 40.

Differences Between OCLI Methods and Unix Commands

Although you can run both Unix commands and OCLI methods in the Global Shell, OCLI

methods differ in several ways:

• Unlike many Unix commands, OCLI methods do not read data from stdin. Therefore,

you cannot insert an OCLI method within a group of commands connected by pipes (|).

(However, OCLI methods do write to stdout.)

• Most Unix commands accept parameters as flags and values (for example,

ls -l /usr). With OCLI methods, command-line parameters are name-value pairs,

joined by equal signs.

• Unix commands are text based: They accept and return data as strings. In contrast,

OCLI methods can accept and return complex objects.

• With OCLI methods, you can specify the format of the parameter and return values.

Unix commands do not have an equivalent feature.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 21

Opsware® Automation Platform Developer’s Guide: Pre-Release Draft

2

OCLI Method Tutorial
This tutorial introduces you to OCLI methods with a few examples for you to try out in your

environment. After completing this tutorial, you should be able to run OCLI methods,

examine the self file of an Opsware object, and create a script that invokes OCLI

methods on multiple servers.

Before starting the tutorial, you need the following capabilities:

• You can log on to the SAS Client.

• Your Opsware user has Read & Write permissions on at least one managed server.

Typically assigned by a security administrator, permissions are discussed in the

Opsware® SAS Administration Guide.

• Your Opsware user has all Global Shell permissions on the same managed server. For

information on these permissions, see the “aaa Utility” section in the Opsware® SAS

User’s Guide: Server Automation.

• You are familiar with the Global Shell and the OGFS. If these features are new to you,

before proceeding with this tutorial you should step through the “Global Shell Tutorial” in

the Opsware® SAS User’s Guide: Server Automation.

The example commands in this tutorial operate on a Windows server named

abc.opsware.com. This server belongs to a server group named All Windows Servers.

When trying out these commands, substitute abc.opsware.com with the host name of

the managed server you have permission to access.

1 Open a Global Shell session.

You can open a Global Shell session from within the SAS Client. From the Actions menu,

select Global Shell. You can also open a Global Shell session from a terminal client

running on your desktop. For instructions, see “Opening a Global Shell Session” in the

Opsware® SAS User’s Guide: Server Automation.

2 List the OCLI methods for a server.

The method subdirectory of a specific server contains executable files-- the methods you

can run for that server. The following example lists the OCLI methods for the

abc.opsware.com server:

$ cd /opsw/Server/@/abc.opsware.com/method
$ ls -1
addDeviceGroups
attachPolicies
attachVirtualColumn
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods
checkDuplex
clearCustAttrs
. . .

These methods have instance context – they act on a specific server instance (in this

case, abc.opsware.com). The server instance can be inferred from the path of the

method. Methods with static context are discussed in step 5.

3 Run an OCLI method without parameters.

To display the public server groups that abc.opsware.com belongs to, invoke the

getDeviceGroups method:

$ cd /opsw/Server/@/abc.opsware.com/method
$./getDeviceGroups
Accounting App
All Windows Servers
Visalia Vendors

4 Run a method with a parameter.

Command-line parameters for methods are indicated by name-value pairs, separated by

white space characters. In the following invocation of setCustomer, the parameter

name is customer and the value is 20039. The :i at the end of the parameter name is

an ID format specifier, which is discussed in a later step.

The following method invocation changes the customer of the abc.opsware.com

server from Opsware to C39. The ID of customer C39 is 20039.

$ cd /opsw/Server/@/abc.opsware.com
$ cat attr/customer ; echo
Opsware
$ method/setCustomer customer:i=20039
$ cat attr/customer ; echo
C39

5 List the static context methods for managed servers.

Static context methods reside under the /opsw/api directory. These methods are not

limited to a specific instance of an object.

To list the static methods for servers, enter the following commands:

$ cd /opsw/api/com/opsware/server/ServerService/method
$ ls

The methods listed are the same as those displayed in step 2.

6 Run a method with the self parameter.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 23

Opsware® Automation Platform Developer’s Guide: Pre-Release Draft

2

This step invokes getDeviceGroups as a static context method. Unlike the instance

context method shown in step 3, the static context method requires the self parameter

to identify the server instance.

For example, suppose that the abc.opsware.com server has an ID of 530039. To list

the groups of this server, enter the following commands:

$ cd /opsw/api/com/opsware/server/ServerService/method
$./getDeviceGroups self:i=530039
Accounting App
All Windows Servers
Visalia Vendors

Compare this invocation of getDeviceGroups with the invocation in step 3 that

demonstrates instance context. Both invocations run the same underlying method in the

API and return the same results.

7 Examine the self file of a server.

Within Opsware SAS, each managed server is an object. However, OGFS is a file system,

not an object model. The self file provides access to various representations of an

Opsware SAS object. These representations are the ID, name, and structure.

The default representation for a server is its name. For example, to display the name of a

server, enter the following commands:

$ cd /opsw/Server/@/abc.opsware.com
$ cat self ; echo
abc.opsware.com

If you know the ID of a server, you can get the name from the self file, as in the

following example:

$ cat /opsw/.Server.ID/530039/self ; echo
abc.opsware.com

8 Indicate an ID format specifier on a self file.

To select a particular representation of the self file, enter a period, then the file name,

followed by the format specifier. For example, the following cat command includes the

format specifier (:i) to display the server ID:

$ cd /opsw/Server/@/abc.opsware.com
$ cat .self:i ; echo
com.opsware.server.ServerRef:530039
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods
This output shows that the ID of abc.opsware.com is 530039. The

com.opsware.server.ServerRef is the class name of a server reference, the

corresponding object in the Opsware API.

The leading period is required with format specifiers on files and method return values,

but is not indicated with method parameters.

9 Indicate the structure format specifier.

The structure format specifier (:s) indicates the attributes of a complex object. The

attributes are displayed as name-value pairs, all enclosed in curly braces. Structure

formats are used to specify method parameters on the command-line that are complex

objects. (For an example method call, see “Complex Objects and Arrays As Parameters”

on page 39.)

The following example displays abc.opsware.com with the structure format:

$ cd /opsw/Server/@/abc.opsware.com
$ cat .self:s ; echo
{
managementIP="192.168.8.217"
modifiedBy="spujare"
manufacturer="DELL COMPUTER CORPORATION"
use="UNKNOWN"
discoveredDate=1149012848000
origin="ASSIMILATED"
osSPVersion="SP4"
locale="English_United States.1252"
reporting=false
netBIOSName=
previousSWReg=1150673874000
osFlavor="Windows 2000 Advanced Server"
. . .

The attributes of a server are also represented by the files in the attr directory, for

example:

$ pwd
/opsw/Server/@/abc.opsware.com
$ cat attr/osFlavor ; echo
Windows 2000 Advanced Server

10 Create a script that invokes an OCLI method.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 25

Opsware® Automation Platform Developer’s Guide: Pre-Release Draft

2

The example script shown in this step iterates through the servers of the public server

group named All Windows Servers. On each server, the script runs the

getCommCheckTime OCLI method.

First, return to your home directory in the OGFS:

$ cd
$ cd public/bin

Next, run the vi editor:

$ vi

In vi, insert the following lines to create a bash script:

#!/bin/bash
iterate_time.sh

METHOD_DIR="/opsw/api/com/opsware/server/ServerService/
method"
GROUP_NAME="All Windows Servers"
cd "/opsw/Group/Public/$GROUP_NAME/@/Server"

for SERVER_NAME in *
do
 SERVER_ID=`cat $SERVER_NAME/.self:i`
 echo $SERVER_NAME
 $METHOD_DIR/getCommCheckTime self:i=$SERVER_ID
 echo
 echo
done

Save the file in vi, naming it iterate_time.sh. Quit vi.

Change the permissions of iterate_time.sh with chmod, and then run it:

$ chmod 755 iterate_time.sh
$./iterate_time.sh
abc.opsware.com
2006/06/20 16:46:56.000
. . .
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods
Format Specifiers
Format specifiers indicate how values are displayed or interpreted in the OCLI

environment. You can apply a format specifier to a method parameter, a method return

type, the self file, and an object attribute. To indicate a format specifier, append a colon

followed by one of the letters shown in Table 2-1.

If a format specifier is indicated for a file or a method return value, a period must precede

the file or method name. For method return values that have format specifiers, the leading

period is not included.

Table 2-1: Summary of Format Specifiers

FORMAT
SPECIFIER

DESCRIPTION
VALID OBJECT

TYPES

ALLOWED AS
METHOD

PARAMETER?

:n Name: A string identifying the

object. Unique names are

preferred, but not required. For

objects that do not have a name,

this representation is the same as

the ID representation.

Opsware

objects

Yes. If the name is

ambiguous, an error

occurs.

:i ID: A format that uniquely

identifies the object type and its

Opsware ID. Also known as an

object reference.

Opsware

objects;

Dates

(java.util.

Calendar)

objects

Yes. If the type is

clear from the

context, the type may

be omitted.

:s Structure: A compact

representation intended for

specifying complex values on the

command-line. Attributes are

enclosed in curly braces.

Any complex

object

Yes
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 27

Opsware® Automation Platform Developer’s Guide: Pre-Release Draft

2

Position of Format Specifiers

A format specifier immediately follows the item it affects. For files, a format specifier

follows the file name. In the following example, note the leading period:

cat .self:s

When applied to a method return type, a format specifier follows the method name. The

following invocation displays the IDs of the groups returned:

./.getDeviceGroups:i

With method parameters, a format specifier follows the parameter name and precedes

the equal sign, as in the following example:

./setCustomer self:i=9977 customer:i=239

A method parameter with a format specifier does not have a leading period.

Default Format Specifiers

Every value or object has a default format specifier. For example, the name format

specifier is the default for the osVersion attribute. The following two cat commands

generate the same output:

cd /opsw/Server/@/d04.opsware.com/attr
cat osVersion
cat .osVersion:n

The name format specifier is the default for Opsware objects stored in the Model

Repository, such as servers and customers. The structure format specifier is the default

for other complex objects.

:d Directory: Represents an attribute

as a directory in the OGFS.

Any complex

object that is an

attribute. This

representation

cannot be used

for method

parameters or

return values.

No

Table 2-1: Summary of Format Specifiers (continued)

FORMAT
SPECIFIER

DESCRIPTION
VALID OBJECT

TYPES

ALLOWED AS
METHOD

PARAMETER?
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods
ID Format Specifier Examples

The next example displays the ID of the facility that the d04.opsware.com server

belongs to:

cd /opsw/Server/@/d04.opsware.com/attr
cat .facility:i ; echo

(The preceding echo command is optional. It generates a new-line character, which

makes the output easier to read. The semicolon separates bash statements entered on

the same line.)

The output of a value with the ID format specifier is prefixed by the Java class name. For

example, if the facility value has an ID of 39, then the previous cat command displays

the following output:

com.opsware.locality.FacilityRef:39

The following invocation of the getDeviceGroups method lists the IDs of the public

server groups that d04.opsware.com belongs to:

cd /opsw/Server/@/d04.opsware.com/method
./.getDeviceGroups:i

For more ID format examples, see “The self File” on page 34.

Structure Format Specifier Syntax

The structure format represents complex objects, which can contain various attributes.

You might use this format to specify a method parameter that is a complex object. For

examples, see “Complex Objects and Arrays As Parameters” on page 39.

The structure format is a series of name-value pairs, separated by white space characters,

enclosed in curly braces. Each name-value pair represents an attribute. The structure

format has the following syntax:

{ name-1=value-1 name-2=value-2 . . . }

Here’s a simple example:

{ version=10.1.3 isCurrent=true }

Any white space character can be used as a delimiter:

{
 version=10.1.3
 isCurrent=true
}

Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 29

Opsware® Automation Platform Developer’s Guide: Pre-Release Draft

3

Attributes can be specified as structures, enabling the representation of nested objects. In

the following example, the versionDesc attribute is represented as a structure:

{
program=agent
versionDesc={
 version=10.1.3
 isCurrent=true
 comment="Latest version"
 }
}

To specify an array within a structure, repeat the attribute name. The following structure

contains an array named steps that has three elements with the values 33, 14, and 28.

{ moduleName="Some Initiator" steps=33 steps=14 steps=28 }

Structure Format Specifier Examples

The following example specifies the structure format for the facility attribute:

cd /opsw/Server/@/d04.opsware.com/attr
cat .facility:s

This cat command generates the following output. Note that customers is an array,

which contains an element for every customer associated with this facility.

{
modifiedBy="192.168.9.246"
customers="Customer Independent"
customers="Not Assigned"
customers="Opsware Inc."
customers="Acme Inc."
. . .
ontogeny="PROD"
createdBy=
status="ACTIVE"
createdDt=-1
realms="Transitional"
realms="C39"
realms="C39-agents"
modifiedDt=1146528752000
name="C39"
displayName="C39"
}

The following invocation of getDeviceGroups indicates the structure format specifier

for the return value:
0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods
cd /opsw/Server/@/d04.opsware.com/method
./.getDeviceGroups:s

This call to getDeviceGroups displays the following output. Because

d04.opsware.com belongs to two server groups, the output includes two structures. In

each structure, the devices array has elements for the servers belonging to that group.

{
dynamic=true
devices="m302-w2k-vm1.dev.opsware.com"
devices="d04.opsware.com"
. . .
status="ACTIVE"
public=true
fullName="Device Groups Public All Windows Servers"
description="test"
createdDt=-1
modifiedDt=1142019861000
parent="Public"
}

{
dynamic=true
devices="opsware-nibwp.build.opsware.com"
devices="glengarriff.snv1.dev.opsware.com"
devices="millstreet"
. . .
fullName="Device Groups Public z_testsrvgroup"
. . .
}

The structure format specifier is the default for methods that retrieve value objects (VOs).

For example, the following two calls to getServerVO are equivalent:

cd /opsw/Server/@/d04.opsware.com/method
./.getServerVO:s
./getServerVO

In this example, getServerVO displays the following output:

{
managementIP="192.168.198.93"
modifiedBy=
manufacturer="DELL COMPUTER CORPORATION"
use="UNKNOWN"
discoveredDate=1145308867000
origin="ASSIMILATED"
osSPVersion="RTM"
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 31

Opsware® Automation Platform Developer’s Guide: Pre-Release Draft

3

locale="English_United States.1252"
reporting=false
netBIOSName=
previousSWReg=1147678609000
osFlavor="Windows Server 2003, Standard Edition"
peerIP="192.168.198.93"
modifiedDt=1145308868000
. . .
serialNumber="HVKZS51"
}

This structure represents the ServerVO class of the Opsware API. Every attribute in this

structure corresponds to a file in the attr directory. In the next example, the

getServerVO and cat commands both display the value of the serialNumber

attribute of a server:

cd /opsw/Server/@/d04.opsware.com
./method/getServerVO | grep serialNumber
cat attr/serialNumber ; echo

Directory Format Specifier Examples

The following command changes the current working directory to the customer

associated with the server d04.opsware.com:

cd /opsw/Server/@/d04.opsware.com/attr/.customer:d

The next command lists the name of this customer:

cat /opsw/Server/@/d04.opsware.com/attr/\
.customer:d/attr/name

The directory specifier can be used only in command arguments that require directory

names. The following cat command fails because it attempts to display a directory:

cat /opsw/Server/@/d04.opsware.com/attr/.customer:d # WRONG!

However, the next command is legal:

ls /opsw/Server/@/d04.opsware.com/attr/.customer:d

Value Representation
Because they run in a shell environment (Global Shell), OCLI methods accept and return

data as strings. However, the underlying API methods can accept and return other data

types, such as numbers, booleans, and objects. The sections that follow describe how the

OGFS and OCLI methods represent non-string data types.
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods
Opsware Objects in the OGFS

The Opsware data model includes objects such as servers, server groups, customers,

and facilities. In the OGFS, these objects are represented as directory structures:

/opsw/Customer
/opsw/Facility
/opsw/Group
/opsw/Library
/opsw/Realm
/opsw/Server
. . .

The preceding list is not complete. To see the full list, enter ls /opsw.

Object Attributes

The attributes of an Opsware SAS object are represented by text files in the attr

subdirectory. The name of each file matches the name of the attribute. The contents of a

file reveals the value of the attribute.

For example, the /opsw/Server/@/buzz.opsware.com/attr directory contains

the following files:

agentVersion
codeset
createdBy
createdDt
customer
defaultGw
description
discoveredDate
facility
hostName
locale
lockInfo
loopbackIP
managementIP
manufacturer
. . .

To display the management IP address of the buzz.opsware.com server, enter the

following commands:

cd /opsw/Server/@/buzz.opsware.com/attr
cat managementIP ; echo
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 33

Opsware® Automation Platform Developer’s Guide: Pre-Release Draft

3

Custom Attributes

Custom attributes are name-value pairs that you can assign to Opsware objects such as

servers. In the OGFS, custom attributes are represented as text files in the CustAttr

subdirectory. You can create custom attributes in a Global Shell session by creating new

text files under CustAttr. The following example creates a custom attribute named

MyGreeting, with a value of hello there, on the buzz.opsware.com server:

cd /opsw/Server/@/buzz.opsware.com/CustAttr
echo -n "hello there" > MyGreeting

For more examples, see “Managing Custom Attributes” in Opsware® SAS User’s Guide:

Server Automation.

The self File

The self file resides in the directory of an Opsware SAS object such as a server or

customer. This file provides access to various representations of the current object,

depending on the format specifier. (For details, see “Format Specifiers” on page 27.)

To list the ID of the buzz.opsware.com server, enter the following commands:

cd /opsw/Server/@/buzz.opsware.com
cat .self:i ; echo

For a server, the default format specifier is the name. The following commands display the

same output:

cat self ; echo
cat .self:n ; echo

The next command lists the attributes of a server in the structure format:

cat .self:s
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods
Primitive Values

Table 2-2 indicates how primitive values are converted between the API and their string

representations in OCLI methods. Except for Dates, primitive values do not support format

specifiers. Dates support ID format specifiers.

Table 2-2: Conversion Between Primitive Types and OCLI Methods

PRIMITIVE TYPE JAVA EQUIVALENT
OUTPUT FROM
OCLI METHOD

 INPUT TO CLI
METHODS

String java.lang.

String

Character string,

presented in the

encoding of the

current session.

Character string,

converted to

Unicode from the

current session

encoding.

Number byte, short,

int, long,

float, double;

and their object

equivalents

Decimal format, not

localized. Scientific

notation for very

large or small

values.

Examples -

Decimal: 101,

512.34, -104

Hex: 0x1F32,

0x2e40

Octal: 0543

Scientific: 4.3E4,

6.532e-9,

1.945e+02

Boolean boolean,

Boolean

true or false The string “true” and

all mixed-case

variants evaluate to

true. All other

values evaluate to

false.

Binary data byte[], Byte[] Binary string. No

conversion from

session encoding.

Binary string. No

conversion to

session encoding.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 35

Opsware® Automation Platform Developer’s Guide: Pre-Release Draft

3

Arrays

The representation of array objects depends on whether they are standalone (an array

attribute file or a method return value) or contained in the structure of a complex object.

First, standalone array objects are presented according the the underlying type, separated

by new-line characters. Within an array element, a new-line character is escaped by \n

and a backslash by \\.

Array values can be output or input using any representation supported by the underlying

type. For example, by default, the getDeviceGroups method lists the groups as

names:

All Windows Servers
Servers in Austin
Testing Pool

If you indicate the ID format specifier, (.getDeviceGroups:i) the method displays the

IDs of the groups:

com.opsware.device.DeviceGroupRef:15960039
com.opsware.device.DeviceGroupRef:10390039
com.opsware.device.DeviceGroupRef:17380039

Date java.util.

Calendar

Date value. By

default, presented in

this format:

YYYY/MM/DD

HH:MM:SSS

The time is

presented in UTC. If

an ID format

specifier is

indicated, the value

is presented as the

number of

milliseconds since

the epoch, in UTC.

Same as output.

Table 2-2: Conversion Between Primitive Types and OCLI Methods

PRIMITIVE TYPE JAVA EQUIVALENT
OUTPUT FROM
OCLI METHOD

 INPUT TO CLI
METHODS
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods
Second, an array contained in the structure of a complex object is represented as a set of

name-value pairs, using the attribute as the name. The attribute appears multiple times,

once for each element in the array. The order in which the attributes appear determine the

order of the elements in the array. The following example shows a structure that contains

two attributes, a string called subject and a three-element array of numbers called

ranks:

{ subject=”my favorites” ranks=17 ranks=44 ranks=24 }

Arrays can also be represented by directories. Within an array directory, each array

element has a corresponding file (for primitive types) or subdirectory (for complex types).

The name of each entry is the index number of the array element, starting with zero.

For an array that is the attribute of a complex object, you should modify the array by

editing its attribute file. This action completely replaces the array with the contents of the

edited file.

For an array containing elements that are complex objects, you should modify the array by

changing its directory representation. To change an element value, edit the element file.

For example, suppose you have an array with five string elements. The ls command lists

the elements as follows:

0 1 2 3 4

The following command changes the value of the third element:

echo -n "My new value" > 2

OCLI Method Parameters and Return Values
This section discusses the details of method context (instance or static), parameter

usage, return values, and exit status.

Method Context and the self Parameter

In the OGFS, a method resides in multiple locations. The location of a method is related to

its context, which is either instance or static.

The method with instance context resides in method directory of a specific Opsware SAS

object. The method invocation does not require the self parameter. The instance of the

object affected by the method is implied by the method location. The following example

changes the customer of the d04.opsware.com server:

cd /opsw/Server/@/d04.opsware.com/method
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 37

Opsware® Automation Platform Developer’s Guide: Pre-Release Draft

3

./setCustomer customer:i=9

A method with static context resides in a single location under /opsw/api. The method

invocation requires the self parameter to identify the instance affected by the method. In

the following static context example, self:i specifies the ID of the managed server:

cd /opsw/api/com/opsware/server/ServerService/method
./setCustomer self:i=230054 customer:i=9

Passing Arguments on the Command-Line

The command-line arguments are specified as name-value pairs, joined by the equal sign

(=). The name-value pairs are separated by one or more white space characters, typically

spaces. The names on the command-line match the parameter names of the

corresponding Java method in the Opsware API.

For example, in the Opsware API, the setCustomField method has the following

definition:

public void setCustomField(CustomFieldReference self,
java.lang.String fieldName, java.lang.String strValue)...

The following OCLI method example assigns a value to a custom field of the server with

ID 3670039:

cd /opsw/api/com/opsware/server/ServerService/method
./setCustomField self:i=3670039 \
fieldName="Service Agreement" strValue="Gold"

As described in the previous section, a method with an instance context does not require

the self parameter. The following setCustomField example is equivalent to the

preceding example:

cd /opsw/.Server.ID/3670039
./setCustomField \
fieldName="Service Agreement" strValue="Gold"

You can specify the command-line arguments in any order. The following two OCLI

method invocations are equivalent:

./setCustomField fieldName="My Stuff" strValue="abc"

./setCustomField strValue="abc" fieldName="My Stuff"

To specify a null value for a parameter, either omit the parameter or insert a white space

after the equal sign. In the following examples, the value of myParam is null:

./someMethod myField="more info" myParam= anotherParam=9834

./someMethod myField="more info" anotherParam=9834
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods
Specifying the Type of a Parameter

If a method has an abstract type for a parameter, you must specify the concrete type as

well as the value. In the following example, the com.opsware.folder.FolderRef

type is required:

cd /opsw/api/com/opsware/folder/FolderService/method
./remove self:i="com.opsware.folder.FolderRef:730555"

Complex Objects and Arrays As Parameters

To pass an argument that is a complex object, enclose the object’s attributes in curly

braces, as shown in the “Structure Format Specifier Syntax” on page 29.

The following example creates a public server group named AllMine. The create

method has a single parameter, pattern, which encloses the parent and shortName

attributes in curly braces. In this example, getPublicRoot returns 2340555, the ID of

the top public group.

cd /opsw/api/com/opsware/device/DeviceGroupService/method
./.getPublicRoot:i ; echo
./create “pattern={ parent:i=2340555 shortName=’AllMine’ }”

Specify array parameters by repeating the parameter name, once for each array element.

For example, the following invocation of the assign method specifies the first two

elements in the array parameter named policies:

cd /opsw/api/com/opsware/swmgmt
cd SoftwarePolicyService/method
./attachPolicies self:i=4220039 \
policies:i=4400335 policies:i=4400942

Overloaded Methods

A Java method name is overloaded if multiple methods in the same class have the same

name but different parameter lists. With overloaded OCLI methods, the argument names

on the command-line indicate which method to invoke. The setCustomField method,

for example, is overloaded to support the setting of different data types. The following two

commands invoke different versions of the method:

./setCustomField \
fieldName="Service Agreement" strValue="Gold"
./setCustomField \
fieldName=hmp longValue=2245
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 39

Opsware® Automation Platform Developer’s Guide: Pre-Release Draft

4

Return Values

If the API method underlying an OCLI method returns a value, then the OCLI method

outputs the value to stdout. As with Unix commands, you can redirect a method’s

stdout to a file or assign it to an environment variable.

To change the representation of the return value, insert a leading period and append a

format specifier to the method name. The following example returns server references as

IDs, instead of the default names:

cd /opsw/api/com/opsware/server/ServerService/method
./.findServerRefs:i

If you indicate a format specifier that is incompatible with the method’s return type, the file

system responds with an error.

Exit Status

Like Unix shell commands, OCLI methods use the exit status ($?) to indicate the result of

the call. An exit status of zero indicates success; a non-zero indicates an error. OCLI

methods output error messages to stderr.

Table 2-3: Exit Status Codes for OCLI Methods

EXIT STATUS CATEGORY DESCRIPTION

0 Success The method completed successfully.

1 Command-Line Parse

Error

The command-line for the method call is malformed and

could not be parsed into a set of options (--option[=value])

and parameter values (param=value).

2 Parameter Parse Error The parameter values could not be parsed into the object

types required by the API.

3 API Usage Error The call failed because of a usage error, such as an invalid

parameter value.

4 Access Error The user does not have permission to perform the

operation.

5 Other Error An error occurred other than those indicated by exit statuses

1- 4.
0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods
For example, the following bash script checks the exit status of the getDeviceGroups

method:

#!/bin/bash

cd /opsw/Server/@/toro.snv1.corp.opsware.com/method
./getDeviceGroups
cmnd_exit_status=$?

if [$cmnd_exit_status -eq 0]
then
 echo "The command was successful."
else
 echo "The command failed."

echo "Exit status = " $cmnd_exit_status
fi

An OCLI method invokes an underlying API method. If the API method throws an

exception, the OCLI method returns a non-zero exit status. When debugging a method

call, you might find it helpful to view information about a thrown exception. The

/sys/last-exception file in the OGFS contains the stack trace of an exception

thrown by the most recent API call. After this file has been read, the system discards the

file contents.

Search Filters and OCLI Methods
Many methods in the Opsware API accept object references as parameters. To retrieve

object references based on search critera, you invoke methods such as

findServerRefs and findJobRefs. For example, you can invoke

findServerRefs to search for all servers that have opsware.com in the hostname

attribute.

Search Syntax

Methods such as findServerRefs have the following syntax:

findobjectRefs filter=’[object-type:]expression’

The filter parameter includes an expression, which specifies the search criteria. You

enclose an expression in either parentheses or curly brackets. A simple expression has

the following syntax:

value-object.attribute operator value

(This syntax is simplified. For the full definition, see “Filter Grammar” on page 55)
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 41

Opsware® Automation Platform Developer’s Guide: Pre-Release Draft

4

Search Examples

Most of the SAS object types have associated finder methods. This section shows how to

use just a few of them. To see how searches are used with other OCLI methods, see

“Example Scripts” on page 44.

Finding Servers

Find servers with host names containing opsware.com:

cd /opsw/api/com/opsware/server/ServerService/method
./.findServerRefs:i \
filter=’device:{ ServerVO.hostname CONTAINS opsware.com }’

Find servers with a use attribute value of either UNKNOWN or PRODUCTION:

cd /opsw/api/com/opsware/server/ServerService/method
./.findServerRefs:i \
filter=’{ ServerVO.use IN “UNKNOWN” “PRODUCTION” }’

The following bash script shows how to search for servers, save their IDs in a temporary

file, and then specify each ID as the parameter of another method invocation. This script

displays the public groups that each Linux server belongs to.

#!/bin/bash

TMPFILE=/tmp/server-list.txt
rm -f $TMPFILE

cd /opsw/api/com/opsware/server/ServerService/method

./.findServerRefs:i \
filter='{ ServerVO.osVersion CONTAINS Linux }' > $TMPFILE

for ID in `cat "$TMPFILE"`
do
 echo Server ID: $ID
 ./getDeviceGroups self:i=$ID
 echo
done

Finding Jobs

The examples in this section return the IDs of jobs such as server audits or policy

remediations. The job_status field, a searchable attribute, can have the following

values:

CANCELLED
ABORTED
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods
SUCCESS
FAILURE
WARNING
ACTIVE
ZOMBIE
PENDING
UNKNOWN

Find the jobs that have completed successfully:

cd /opsw/api/com/opsware/job/JobService/method
./.findJobRefs:i filter='job:{ job_status = "SUCCESS" }'

Find the jobs that have completed successfully or with warning:

cd /opsw/api/com/opsware/job/JobService/method
./.findJobRefs:i \
filter='job:{ job_status IN "SUCCESS" "WARNING" }'

Find the jobs that have been started today:

cd /opsw/api/com/opsware/job/JobService/method
./.findJobRefs:i \
filter='job:{ JobInfoVO.startDate IS_TODAY "" }'

Find all server audit jobs:

cd /opsw/api/com/opsware/job/JobService/method
./findJobRefs \
filter='job:{ JobInfoVO.description = "Server Audit" }'

Find the jobs that have run on the server with the ID 280039:

cd /opsw/api/com/opsware/job/JobService/method
./.findJobRefs:i filter='job:{ job_device_id = "280039" }'

Find today’s jobs that have failed:

cd /opsw/api/com/opsware/job/JobService/method
./.findJobRefs:i \
filter='job:{ ((JobInfoVO.startDate IS_TODAY "") \
& (job_status = "FAILURE")) }'

Finding Other Objects

This section has examples that search for software policies and packages.

Find the software policies created by the Opsware user jdoe:

cd /opsw/api/com/opsware/swmgmt/SoftwarePolicyService/method
./.findSoftwarePolicyRefs:i \
filter=’{ SoftwarePolicyVO.createdBy CONTAINS jdoe }’
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 43

Opsware® Automation Platform Developer’s Guide: Pre-Release Draft

4

Find the MSIs with ismtool for the Windows 2003 platforms:

cd /opsw/api/com/opsware/pkg/UnitService/method
./.findUnitRefs:i \
filter='software_unit:{ ((UnitVO.unitType = "MSI") \
& (UnitVO.name contains "ismtool") \
& (software_platform_name = "Windows 2003")) }'

Searchable Attributes and Valid Operators

Not every attribute of a value object can be specified in a search filter. For example, you

can search on ServerVO.use but not on ServerVO.OsFlavor.

To find out which attributes are searchable for a given object type, invoke the

getSearchableAttributes method. The following example lists the attributes of

ServerVO that can be specified in a search expression:

cd /opsw/api/com/opsware/search/SearchService/method
./getSearchableAttributes searchableType=device

The searchableType parameter indicates the object type. To determine the allowed

values for searchableType, enter the following commands:

cd /opsw/api/com/opsware/search/SearchService/method
./getSearchableTypes

To find out which operators are valid for an attribute, invoke the

getSearchableAttributeOperators method. The following example lists valid

operators (such as CONTAINS and IN) for the attribute ServerVO.hostname:

cd /opsw/api/com/opsware/search/SearchService/method
./getSearchableAttributeOperators searchableType=device \
searchableAttribute=ServerVO.hostname

Example Scripts
This section has code listings for simple bash scripts that invoke a variety of OCLI

methods. These scripts demonstrate how to pass method parameters on the command-

line, including complex objects and the self parameter. If you decide to copy and paste

these example scripts, you will need to change some of the hardcoded object names,

such as the d04.opsware.com server. For tutorial instructions on creating and running

scripts within the OGFS, see step 10 on page 25.
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods
Of the following scripts, the most interesting is remediate_policy.sh on page 48. It

creates a software policy, adds a package to the policy, and in the last line, installs the

package on a managed server by invoking the startFullRemediateNow method.

create_custom_field.sh

This script creates a custom field (virtual column), named TestFieldA attaches the field

to all servers, and then sets the value of the field on a single server. Until it is attached, the

custom field does not appear in the SAS Web Client. You can create custom fields for

servers, device groups, or software policies. To create a custom field, your Opsware user

must belong to a user group with the Manage Virtual Columns permission (new in 6.0.1).

Unlike a custom attribute, a custom field applies to all instances of a type. For an example

that creates a custom attribute in the OGFS, see "Managing Custom Attributes" in the

Opsware® SAS User’s Guide: Server Automation.

The create_custom_field.sh script has the following code:

#!/bin/bash
create_custom_field.sh

cd /opsw/api/com/opsware/custattr/VirtualColumnService/method

Create a virtual column.
Remember the name because you cannot search for the
displayName.
./create vo=’{ name=TestFieldA type=SHORT_STRING \
displayName="Test Field A" }’

column_id=‘./.findVirtualColumn:i name=TestFieldA‘

echo --- column_id = $column_id

cd /opsw/api/com/opsware/server/ServerService/method

Attach the column to all servers.
All servers will have this custom field.
./attachVirtualColumn virtualColumn:i=$column_id

Get the ID of the server named d04.opsware.com
devices_id=‘./.findServerRefs:i \
filter=\
’device:{ ServerVO.hostname CONTAINS "d04.opsware.com" }’‘

echo --- devices_id = $devices_id
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 45

Opsware® Automation Platform Developer’s Guide: Pre-Release Draft

4

Set the value of the custom field (virtual column) for
a specific server.
./setCustomField self:i=$devices_id fieldName=TestFieldA \
strValue="This is something."

create_device_group.sh

This script creates a static device group and adds a server to the group. Next, the script

creates a dynamic group, sets a rule on the group, and refreshes the membership of the

group. The last statement of the script lists the devices that belong to the dynamic group.

Here is the script’s code:

#!/bin/bash
create_device_group.sh

cd /opsw/api/com/opsware/device/DeviceGroupService/method

Get the ID of the public root group (top of hierarchy).
public_root=‘./.getPublicRoot:i‘

Create a public static group.
./create "vo={ parent:i=$public_root shortName=’Test Group A’ }"

Get the ID of the group just created.
group_id=‘./.findDeviceGroupRefs:i \
filter=’{ DeviceGroupVO.shortName = "Test Group A" }’ ‘

echo --- group_id = $group_id

cd /opsw/api/com/opsware/server/ServerService/method

Get the ID of the server named d04.opsware.com
devices_id=‘./.findServerRefs:i \
filter=\
’device:{ ServerVO.hostname CONTAINS "d04.opsware.com" }’‘

echo --- devices_id = $devices_id

cd /opsw/api/com/opsware/device/DeviceGroupService/method

Add a server to the device group.
./addDevices \
self:i=$group_id devices:i=$devices_id

Create a dynamic device group.
./create \
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods
"vo={ parent:i=$public_root \
shortName=’Test Dyn B’ dynamic=true }"

Get the ID of the device group.
dynamic_group_id=‘./.findDeviceGroupRefs:i \
filter=’{ DeviceGroupVO.shortName = "Test Dyn B" }’ ‘

echo --- dynamic_group_id = $dynamic_group_id

Set the rule so that this group contains servers with
hostnames containing the string opsware.com.
The rule parameter has the same syntax as the filter
parameter of the find methods.
./setDynamicRule self:i=$dynamic_group_id \
rule=’device:{ ServerVO.hostname CONTAINS opsware.com }’

By default, membership in dynamic device groups is refreshed
once
an hour, so force the refresh now.
./refreshMembership selves:i=$dynamic_group_id now=true

Display the names of the devices that belong to the group.
echo --- Devices in group:
./getDevices selves:i=$dynamic_group_id

create_folder.sh

This script creates a folder named /Test 1, lists the folders under the root (/) folder, and

then creates the subfolder /Test 1/Test 2. After creating these folders, you can view

them under the Library in the navigation pane of the SAS Client.

Here is the code for this script:

#!/bin/bash
create_folder.sh

cd /opsw/api/com/opsware/folder/FolderService/method

Get the ID of the root (top) folder.
root_id=‘./.getRoot:i‘

Create a new folder under the root folder.
./create members="{ name=’Test 1’ folder:i=$root_id }"

Display the names of the folders under the root folder.
./getChildren self:i=$root_id
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 47

Opsware® Automation Platform Developer’s Guide: Pre-Release Draft

4

Get the ID of the folder named "Test 1"
folder_id=‘./.findFolders:i \
filter=’{ FolderVO.name = "Test 1" }’‘

Create a subfolder.
./create members="{ name=’Test 2’ folder:i=$folder_id }"

folder_id=‘./.findFolders:i \
filter=’{ FolderVO.name = "Test 2" }’‘

remediate_policy.sh

This script creates a software policy named TestPolicyA in an existing folder named

Test 2, adds a package containing ismtool to the policy, attaches the policy to a

single server (not a group), and then remediates the server. The remediation action

launches a job that installs the package onto the server. You can check the progress and

results of the job in the SAS Client. For examples that search for jobs with OCLI methods,

see “Finding Jobs” on page 42.

In this script, in the create method of the SoftwarePolicyService, the value of the

platforms parameter is hardcoded. In most of these example scripts, hardcoding is

avoided by searching for an object by name. In the case of platforms, searching by the

name attribute is difficult because if differs from the displayName attribute, which is

exposed in the SAS Client but is not searchable. The easiest way to find a platform ID is

by going to the twister and running the PlatformService.findPlatformRefs

method with no parameters.

The update method in this script hardcodes the ID of softwarePolicyItems, an

object that can be difficult to search for by name if the Software Repository contains many

packages with similar names. One way to get the ID is to run the SAS Client, search for

Software by fields such as File Name and Operating System, open the package located

by the search, and note the Opsware ID in the properties view of the package.

In the following listing, the update method has a bad line break. If you copy this code,

edit the script so that the vo parameter is on a single line.

Here is the source code for the remediate_policy.sh script:

#!/bin/bash
remediate_policy.sh
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods
Get the ID of the folder where the policy will reside.
cd /opsw/api/com/opsware/folder/FolderService/method
folder_id=\
‘./.findFolders:i filter=’{ FolderVO.name = "Test 2" }’‘

cd /opsw/api/com/opsware/swmgmt/SoftwarePolicyService/method

Create a software policy named TestPolicyA.
This policy resides in the folder located in the preceding
findFolders call.
The platform for this policy is Windows 2003 (ID 10007)
./create softwarePolicyVO="{ platforms:i=10007 \
name="TestPolicyA" \
folder:i=$folder_id }"

policy_id=‘./.findSoftwarePolicyRefs:i \
filter=’{ SoftwarePolicyVO.name = "TestPolicyA" }’‘

echo --- policy_id = $policy_id

Call the update method to add a package to the software
policy. The package ID is 4230039.

NOTE: The following command has a bad line break.
The vo parameter should be on a single line.

./update self:i=$policy_id force=true\
The next 2 lines should be on a single line.
vo=’{
softwarePolicyItems:i=com.opsware.pkg.windows.MSIRef:4230039 }’

cd /opsw/api/com/opsware/server/ServerService/method

Get the ID of the server named d04.opsware.com
devices_id=‘./.findServerRefs:i \
filter=’device:{ ServerVO.hostname CONTAINS "d04.opsware.com"
}’‘

echo --- devices_id = $devices_id

Attach the policy to a single server (not a group).
./attachPolicies self:i=$devices_id \
policies:i=$policy_id

Remediate the server to install the package in the policy.
job_id=‘./.startFullRemediateNow:i self:i=$devices_id‘
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 49

Opsware® Automation Platform Developer’s Guide: Pre-Release Draft

5

echo --- job_id = $job_id

remove_custom_field.sh

Although not common in an operational environment, removing custom fields is

sometimes necessary in a testing environment. Note that a custom field must be

unattached before it can be removed.

Here is the code for remove_custom_field.sh:

#!/bin/bash
remove_custom_field.sh

if [! -n "$1"]
 then
 echo "Usage: ‘basename $0‘ <name>"
 echo "Example: ‘basename $0‘ hmp"
 exit
fi

cd /opsw/api/com/opsware/custattr/VirtualColumnService/method

column_id=‘./.findVirtualColumn:i name=$1‘

echo --- column_id = $column_id

cd /opsw/api/com/opsware/server/ServerService/method

Column must be detached before it can be removed.
./detachVirtualColumn virtualColumn:i=$column_id

cd /opsw/api/com/opsware/custattr/VirtualColumnService/method

Remove the virtual column.
./remove self:i=$column_id

schedule_audit_task.sh

This script starts an audit task, scheduling it for a future date. With OCLI methods, date

parameters are specified with the following syntax:

YYYY/MM/DD HH:MM:SS.sss

The method that launches the task, startAudit, returns the ID of the job that performs

the audit. For examples that search for jobs with OCLI methods, see “Finding Jobs” on

page 42.

Here is the code for schedule_audit_task.sh:
0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods
#!/bin/bash
schedule_audit_task.sh

cd /opsw/api/com/opsware/compliance/sco/AuditTaskService/method

Get the ID of the audit task to schedule.
audit_task_id=‘./.findAuditTask:i \
filter=’audit_task:{ \
((AuditTaskVO.name BEGINS_WITH "HW check") \
& (AuditTaskVO.createdBy = "gsmith")) }’‘

echo --- audit_task_id = $audit_task_id

Schedule the audit task for Oct. 17, 2008.
In the startDate parameter, note that the last delimiter for
the time is a period, not a colon.
job_id=‘./startAudit self:i=140039 \
schedule:s=’{ startDate="2008/10/17 00:00:00.000" }’ \
notification:s=’{ onFailureOwner="sjones@opsware.com" \
onFailureRecipients="jdoe@opsware.com" \
onSuccessOwner="sjones@opsware.com" \
onSuccessRecipients="jdoe@opsware.com" }’‘

echo --- job_id = $job_id

Getting Usage Information on OCLI Methods
In a future release, the OCLI methods will display usage information. Until then, you can

get the necessary information from the API documentation or the OGFS with the

techniques described in the following sections.

Listing the Services

The Opsware API methods are organized into services. To find out what services are

available for OCLI methods, enter the following commands in a Global Shell session:

cd /opsw/api/com/opsware
find . -name "*Service"

To list the services in the API documentation, specify the following URL in your browser:

https://occ_host:1032

The occ_host is the IP address or host name of the core server running the Opsware

Command Center component.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 51

Opsware® Automation Platform Developer’s Guide: Pre-Release Draft

5

Finding a Service in the API Documentation

The path of the service in the OGFS maps to the Java package name in the API

documentation. For example, in the OGFS, the ServerService methods appear in the

following directory:

/opsw/api/com/opsware/server

In the API documentation, the following interface defines these methods:

com.opsware.server.ServerService

Listing the Methods of a Service

In the OGFS, you can list the contents of the method directory of a service, For example,

to display the method names of the ServerService, enter the following command:

ls /opsw/api/com/opsware/server/ServerService/method

In the API documentation, perform the following steps to view the methods of

ServerService:

1 In the upper left pane, select com.opsware.server.

2 In the lower left pane, select ServerService.

3 In the main pane, scroll down to view the methods.

Listing the Parameters of a Method

In the API documentation, perform the steps described in the preceding section. In the

Method Detail section of the service interface page, view the parameters and return types.

(For more information about method parameters, see “Passing Arguments on the

Command-Line” on page 38.)

Getting Information About a Value Object

The API documentation shows that some service methods pass or return value objects

(VOs), which contain data members (attributes). For example, the

ServerService.getServerVO method returns a ServerVO object. To find out what

attributes ServerVO contains, perform the following steps:

1 In the API documentation, select the ServerVO link. You can find the this link in

several places:

• The method signature for getServerVO

• The list of classes (lower left pane) for com.opsware.server
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 2: Opsware CLI Methods
• On the Index page. A link to the Index page is at the top of the main pane of the API

documentation.

2 On the ServerVO page, note the getter and setter methods. Each getter-setter pair

corresponds to an attribute contained in the value object. For example,

getCustomer and setCustomer indicate that ServerVO contains an attribute

named customer.

Determining If an Attribute Can Be Modified

Only a few object attributes can be modified by client applications. To find out if an

attribute can be modified, perform the following steps:

1 In the API documentation, go to the value object page, as described in the preceding

section.

2 In the Method Detail section of the setter method, look for “Field can be set by

clients.”

For Opsware SAS objects represented in the OGFS, such as servers and customers, you

can determine which attributes are modifiable by checking the access types of the files in

the attr directory. The files that have read-write (rw) access types correspond to

modifiable attributes. For example, to list the modifiable attributes of a server, enter the

following commands:

cd /opsw/Server/@/server-name/attr
ls -l | grep rw

Determining If an Attribute Can Be Used in a Filter Query

To find out if an attribute of a value object can be used in a filter query (a search), perform

the following steps:

1 In the API documentation, go to the value object page.

2 In the Method Detail section of the getter method that corresponds to the attribute,

look for the string, “Field can be used in a filter query.”

From within a Global Shell session, to find out if an attribute can be searched on, follow

the techniques described in “Searchable Attributes and Valid Operators” on page 44
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 53

Opsware® Automation Platform Developer’s Guide: Pre-Release Draft

5
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Appendix A: Search Filter Syntax

Filter Grammar
A search filter is a parameter for methods such as getServerRefs. The formal syntax

for a filter follows:

<filter> ::= (<expression-junction>)+

<expression-junction> ::= <expression-list-open> <junction>
(<expression>)+ <expression-list-close>

<expression> ::= <expression-open> <attribute>
<general-delimiter> <operator> <general-delimiter>
<value-list> <expression-close>

<attribute> ::= <resource_field>
<vo_member> ::= <text>
<resource_field> ::= <text>
<value-list> ::= (<double-quote> <text> <double-
quote>)* | (<number>)*

<text> ::= [a-z] [A-Z] [0-9]
<number> ::= [0-9] [.]

<junction> ::= <union-junction> |
<intersect-junction>

<union-junction> ::= ‘|’
<intersect-junction ::= ‘&’
<expression-list-open> ::= ‘(‘
<expression-list-close> ::= ‘)’
<expression-open> ::= ‘(‘ | ‘{‘

I N T H I S A P P E N D I X

This appendix discusses the following topics:

• Filter Grammar

• Usage Notes
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 55

Opsware® Automation Platform Developer’s Guide: Pre-Release Draft

5

<expression-close> ::= ‘(‘ | ‘}’
<general-delimiter> ::= <whitespace>
<whitespace> ::= ‘ ‘
<double-quote> ::= ‘”’
<escape-character> ::= ‘\’

<operator> ::= <equal_to> |...| <contains_or_above>

Valid operators for the preceding line:

<equal_to> ::= ‘=’ | ‘EQUAL_TO’
<not_equal_to> ::= ‘!=’ | ‘<>’ | ‘NOT_EQUAL_TO’
<in> ::= ‘=’ | ‘IN’
<not_in> ::= ‘!=’ | ‘<>’ | ‘NOT_IN’
<greater_than> ::= ‘>’ | ‘GREATER_THAN’
<less_than> ::= ‘<‘ | ‘LESS_THAN’
<greater_than_or_equal> ::= ‘>=’ | ‘GREATER_THAN_OR_EQUAL’
<less_than_or_equal> ::= ‘<=’ | ‘LESS_THAN_OR_EQUAL’
<begins_with> ::= ‘=*’ | ‘BEGINS_WITH’
<ends_with> ::= ‘*=’ | ‘ENDS_WITH’
<contains> ::= ‘*=*’ | ‘CONTAINS’
<not_contains> ::= ‘*<>*’ | ‘NOT_CONTAINS’
<in_or_below> ::= ‘IN_OR_BELOW’
<in_or_above> ::= ‘IN_OR_ABOVE’
<between> ::= ‘BETWEEN’
<not_between> ::= ‘NOT_BETWEEN’
<not_begins_with> ::= ‘NOT_BEGINS_WITH’
<not_ends_with> ::= ‘NOT_ENDS_WITH’
<is_today> ::= ‘IS_TODAY’
<is_not_today> ::= ‘IS_NOT_TODAY’
<within_last_days> ::= ‘WITHIN_LAST_DAYS’
<within_last_months> ::= ‘WITHIN_LAST_MONTHS’
<within_next_days> ::= ‘WITHIN_NEXT_DAYS’
<within_next_months> ::= ‘WITHIN_NEXT_MONTHS’
<not_within_last_days> ::= ‘NOT_WITHIN_LAST_DAYS’
<not_within_last_months> ::= ‘NOT_WITHIN_LAST_MONTHS’
<not_within_next_days> ::= ‘NOT_WITHIN_NEXT_DAYS’
<not_within_next_months> ::= ‘NOT_WITHIN_NEXT_MONTHS’
<contains_or_below> ::= ‘CONTAINS_OR_BELOW’
<contains_or_above> ::= ‘CONTAINS_OR_ABOVE’

Usage Notes
The same junction type must be used within each expression junction:

• valid: ((x = y) & (a = y) & (x = a))
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Appendix A: Search Filter Syntax
• invalid: ((x = y) & (a = y) | (x = a))

A text value needs to have double-quotes surrounding it but a number does not. Any

double-quote that is part of the value must be escaped with a backslash:

• valid number: 123.456

• valid text: "abc"

• invalid text: abc

• valid text: "ab\"c"

• invalid text: "ab"c"

• invalid text: ab"c

Parentheses must surround groups of expressions which will junction with another group

of expressions:

• valid grouping: ((x = y) & (a = b)) | (n = r)

• invalid grouping: (x = y) & (a = b) | (n = r)
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 57

	Opsware® Automation Platform Developer’s Guide: Pre-Release Draft
	Table of Contents
	Preface
	Pre-Release Status
	About this Guide
	Contents of this Guide

	Chapter 1: Overview
	Overview of the Opsware Automation Platform
	Supported Clients
	Security

	Opsware API Design
	Services
	Objects in the API
	Exceptions
	Event Cache
	Searches
	API Documentation and the Twister
	Java RMI Client JAR File
	Importing and Exporting Packages With PUT and GET

	Chapter 2: Opsware CLI Methods
	Overview of Opsware CLI Methods
	Method Invocation
	Security
	Mapping Between API and OCLI Methods
	Differences Between OCLI Methods and Unix Commands

	OCLI Method Tutorial
	Format Specifiers
	Position of Format Specifiers
	Default Format Specifiers
	ID Format Specifier Examples
	Structure Format Specifier Syntax
	Structure Format Specifier Examples
	Directory Format Specifier Examples

	Value Representation
	Opsware Objects in the OGFS
	Primitive Values
	Arrays

	OCLI Method Parameters and Return Values
	Method Context and the self Parameter
	Passing Arguments on the Command-Line
	Specifying the Type of a Parameter
	Complex Objects and Arrays As Parameters
	Overloaded Methods
	Return Values
	Exit Status

	Search Filters and OCLI Methods
	Search Syntax
	Search Examples
	Searchable Attributes and Valid Operators

	Example Scripts
	create_custom_field.sh
	create_device_group.sh
	create_folder.sh
	remediate_policy.sh
	remove_custom_field.sh
	schedule_audit_task.sh

	Getting Usage Information on OCLI Methods
	Listing the Services
	Finding a Service in the API Documentation
	Listing the Methods of a Service
	Listing the Parameters of a Method
	Getting Information About a Value Object
	Determining If an Attribute Can Be Modified
	Determining If an Attribute Can Be Used in a Filter Query

	Appendix A: Search Filter Syntax
	Filter Grammar
	Usage Notes

