
Opsware® SAS ISM
Development Kit 2.0

Guide

Corporate Headquarters

599 North Mathilda Avenue Sunnyvale, California 94085 U.S.A.
T + 1 408.744.7300 F +1 408.744.7383 www.opsware.com

Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Opsware Inc. Unpublished Confidential Information. NOT for Redistribution. All Rights

Reserved.

Opsware is protected by U.S. Patent Nos. 6,658,426, 6,751,702, 6,816,897, 6,763,361

and patents pending

Opsware, Opsware Command Center, Model Repository, Data Access Engine, Web

Services Data Access Engine, Software Repository, Command Engine, Opsware Agent,

Model Repository Multimaster Component, and Code Deployment & Rollback are

trademarks and service marks of Opsware Inc. All other marks mentioned in this

document are the property of their respective owners.

Additional proprietary information about third party and open source materials can be

found at http://www.opsware.com/support/opensourcedoc.pdf.

Table of Contents

Preface ix

About this Guide. ix

Contents of this Guide . ix

Conventions in this Guide. x

Icons in this Guide . xi

Chapter 1: Overview 1

Introducing the IDK and ISMs .1

Benefits of the IDK .1

IDK Tools and Environment .2

Supported Package Types .2

What’s New in This Release. .2

Shared Runtime Packages .3

Passthru Packages .3

Meta Data Update .3

Installing the IDK .4

Installing the IDK for the Visual Packager .4

Installing the IDK for Command-Line Package Development5

Installing the IDK on Opsware SAS 4.x. .6

IDK Quickstart. .6

Creating, Building, and Uploading a Simple ISM .6

Examining the Node and Packages in the Opsware Command Center . .9
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. i

Opsware® SAS ISM Development Kit 2.0 Guide
Chapter 2: ISM Build Environment 11

ISM File System Structure. .11

Build Process .13

When to Invoke the --build Command .13

Multiple Command-Line Options. .14

Actions Performed by the --build Command .14

Packages Created by the --build Command. .15

Specifying the Application Files of an ISM .15

Placing Archives in the bar Subdirectory. .16

Specifying Passthru Packages .16

Compiling Source (Unix Only) .17

ISM Name, Version Number, and Release Number .20

Initial Values for the ISM Name, Version, and Release20

ISM Version and Release Numbers Compared .21

Upgrading the ISM Version. .21

Chapter 3: ISM Scripts 23

Overview of ISM Scripts .23

Installation Hooks. .24

Creating Installation Hooks. .24

Invocation of Installation Hooks. .25

Installation Hook Functions .25

Scripts for Control-Only ISMs .26

Location of Installation Hooks on Managed Servers26

Default Installation Hooks for Unix .27

Default Installation Hooks for Windows .28

Control Scripts .29
ii Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Creating Control Scripts .30

Control Script Functions .30

Location of Control Scripts on Managed Servers .31

Dynamic Configuration with ISM Parameters .31

Development Process for ISM Parameters .32

Adding, Viewing, and Removing ISM Parameters. .32

Accessing Parameters in Scripts. .33

The ISM parameters Utility .33

Example Scripts .34

Search Order for Custom Attributes. .35

Installation Scripts .37

Differences Between Installation Scripts and Hooks.37

Creating Installation Scripts .38

Invocation of Installation Scripts and Hooks. .39

Chapter 4: ISMTool Commands 41

ISMTool Argument Types. .41

Informational Commands. .42

--help. .42

--env .43

--myversion .43

--info ISMDIR .43

--showParams ISMDIR .43

--showPkgs ISMNAME .44

--showOrder ISMNAME .44

--showPathProps ISMNAME .44
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. iii

Opsware® SAS ISM Development Kit 2.0 Guide

i

Creation Commands. .44

--new ISMNAME .44

--pack ISMDIR .45

--unpack ISMFILE .45

Build Commands .46

--verbose .46

--banner .46

--clean. .46

--build .46

--upgrade .46

--name STRING. .47

--version STRING .48

--prefix PATH .48

--ctlprefix PATH. .50

--user STRING (Unix only). .51

--group STRING (Unix only) .51

--ctluser STRING (Unix only) .51

--ctlgroup STRING (Unix only) .51

--pkgengine STRING (Unix only) .51

--ignoreAbsolutePaths BOOL (Unix only) .51

--addCurrentPlatform (Unix only) .52

--removeCurrentPlatform (Unix only) .52

--addPlatform TEXT (Unix only) .52

--removePlatform TEXT (Unix only). .52

--target STRING (Unix only) .52

--skipControlPkg BOOL. .52

--skipApplicationPkg BOOL .53
v Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

--chunksize BYTES (Unix only). .53

--solpkgMangle BOOL (SunOS only) .53

--embedPkgScripts BOOL .54

--skipRuntimePkg BOOL .54

Opsware Interface Commands .54

--upload .55

--noconfirm .55

--opswpath STRING .55

--dataAccesEngine HOST[:PORT] .56

--commandEngine HOST[:PORT] .56

--softwareRepository HOST[:PORT] .56

--description TEXT .56

--addParam STRING. .57

--paramValue TEXT .57

--paramType PARAMTYPE .57

--paramDesc TEXT .57

--removeParam STRING .57

--rebootOnInstall BOOL .57

--rebootOnUninstall BOOL .58

--registerAppScripts BOOL (Windows only) .58

--endOnPreIScriptFail BOOL (Windows only) .58

--endOnPstIScriptFail BOOL (Windows only) .58

--endOnPreUScriptFail BOOL (Windows only) .58

--endOnPstUScriptFail BOOL (Windows only) .59

--addPassthruPkg {PathToPkg} --pkgType {PkgType} ISMNAME59

--removePassthruPkg {PassthruPkgFileName} ISMNAME60

--attachPkg {PkgName} --attachValue BOOLEAN ISMNAME60
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. v

Opsware® SAS ISM Development Kit 2.0 Guide

v

--orderPkg {PkgName} --orderPos {OrderPos} ISMNAME61

--addPathProp {PathProp} --propValue {PropValue} ISMNAME62

--editPkg {PkgName} --addPkgProp {PkgProp} --propValue {PropValue}
ISMNAME .63

Environment Variables .65

CRYPTO_PATH .65

ISMTOOLBINPATH .66

ISMTOOLCE .66

ISMTOOLCUSTOMER .66

ISMTOOLDA .66

ISMTOOLPASSWORD .67

ISMTOOLSITEPATH .67

ISMTOOLSR .68

ISMTOOLUSERNAME .68

Appendix A: ISMUsertool 69

Appendix B: Platform Differences 71

Solaris .71

Windows .72
i Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Preface

Document Date: 2/27/06

Welcome to the Opsware Server Automation System (SAS) — an enterprise-class

software solution that enables customers to get all the benefits of Opsware Inc.’s data

center automation platform and support services. Opsware SAS provides a core

foundation for automating formerly manual tasks associated with the deployment,

support, and growth of server and server application infrastructure.

About this Guide
This guide describes how to create and upload Intelligent Software Modules (ISMs) with

the ISMTool. An ISM is a set of files and directories that include application bits,

installation scripts, and control scripts. With the ISMTool, a command-line utility, you

create ISMs and upload them to the Opsware core. After an ISM has been uploaded, it

appears in the Opsware Command Center (OCC) as a software node with attached

packages.

This guide is intended for developers and advanced Opsware administrators who will

create and upload ISMs. To understand the material in this guide, you should already be

familiar with script programming and package installation on the OS platforms that you

support.

This guide explains how to develop ISMs in a command-line environment. For instructions

on using the Opsware Visual Packager, a GUI tool that creates software packages, see

the Opsware® SAS User’s Guide.

Contents of this Guide

This guide contains the following chapters:

Chapter 1: Overview - Summarizes the IDK and provides a tutorial for creating and

uploading a simple ISM.

Chapter 2: ISM Build Environment - Describes files and directory structure of an ISM.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. ix

Opsware® SAS ISM Development Kit 2.0 Guide
Chapter 3: ISM Scripts - Explains how to customize ISMs with scripts and parameters.

Chapter 4: ISMTool Commands - Describes the syntax of the ISMTool command, the

primary utility of the IDK.

Appendix A: ISMUserTool - Describes the syntax of the ISMUserTool.

Appendix B: Platform Differences - Summarizes IDK differences between operating

system platforms.

Conventions in this Guide

This guide uses the following typographical and formatting conventions.

NOTATION DESCRIPTION

Bold Defines terms.

Italics Identifies guide titles and provides emphasis.

Courier Identifies text of displayed messages and other output from

programs or tools.

Courier Bold Identifies user-entered text (commands or information).

Courier Italics Identifies variable user-entered text on the command line or

within example files.
x Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Icons in this Guide

This guide uses the following icons to indicate important information.

ICON DESCRIPTION

This icon is a note. It identifies especially important concepts that war-

rant added emphasis.

This icon is a requirement. It identifies a task that must be performed

before an action under discussion can be performed.

This icon is a tip. It identifies information that can help simplify or clar-

ify tasks.

This icon is a warning. It is used to identify significant information that

must be read before proceeding.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. xi

Opsware® SAS ISM Development Kit 2.0 Guide

x
ii Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 1: Overview

Introducing the IDK and ISMs
Opsware SAS includes the Intelligent Software Module (ISM) Development Kit (IDK). The

IDK consists of command-line tools and libraries for creating, building, and uploading

ISMs. An ISM is a set of files and directories that include application bits, installation

scripts, and control scripts. You build an ISM in a local file system and then upload the

ISM into an Opsware core. The upload operation creates a node for the application in the

software tree and associates installable packages with the node. After uploading the ISM,

you use the Opsware Command Center to install the ISM’s application onto managed

servers.

Benefits of the IDK

The IDK offers the following benefits:

• Encapsulates best practices for managing software products, enabling standards

teams to deliver stable and consistent software builds and manage change in complex

data center environments.

• Uploads modules into Opsware SAS, making them immediately available for installation

onto managed servers.

• Separates an application’s installation and control scripts from the bits to be installed.

You can update the scripts without having to re-install the application bits.

• Enables dynamic configuration by querying Opsware SAS for custom attributes.

I N T H I S C H A P T E R

This chapter discusses the following topics:

• Introducing the IDK and ISMs

• What’s New in This Release

• Installing the IDK

• IDK Quickstart
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 1

Opsware® SAS ISM Development Kit 2.0 Guide
• Automatically builds native packages (such as RPMs) from binary archives.

• Support on Unix platforms for building from source code with a common specification

format.

• Provides command-line tools for developers and administrators who prefer building

packages and writing installation scripts in a shell environment.

IDK Tools and Environment

The IDK includes the following:

• ISMTool - A command-line tool that creates, builds, and uploads ISMs.

• ISMUserTool - A command-line tool that specifies the users allowed to upload ISMs.

• Environment variables - Shell environment variables accessed by the ISMTool.

• Runtime libraries - The Opsware SAS routines that support the IDK tools.

Supported Package Types

You can use the IDK to create the following types of packages:

• AIX LPP

• HP-UX Depot

• RPM

• Solaris Package

• Windows MSI

What’s New in This Release
Version 2.0 of the IDK has the following new features:

• Shared Runtime Packages

• Passthru Packages

• Meta Data Update
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 1: Overview
Shared Runtime Packages

An ISM requires runtime routines that are provided by Opsware SAS. Prior to IDK 2.0, the

ISMTool --build operation added the runtime routines to the control package of each

ISM. (A separate runtime package was not created.) If you installed more than one ISM

onto a managed server, multiple copies of the runtime routines were also installed.

IDK 2.0 enables the sharing of the runtime routines. The ISMTool --build operation

adds the routines to the runtime package of the ISM. The runtime package resides in

pkg, the same subdirectory as the control and application packages. If you upload

multiple ISMs into a core, just one copy of the runtime package is stored in the Software

Repository. Likewise, if you install multiple ISMs onto a managed server, just one copy of

the runtime package installed. During uninstallation, the runtime package is removed from

the managed server only if no other installed ISM relies on it.

Passthru Packages

Before version 2.0 of the IDK, to include third-party packages (such as RPM and ZIP files)

in an ISM, you copied them to the ISM’s bar subdirectory. During the upload process, the

ISMTool unpacked the third-party packages it found in the bar subdirectory and

repackaged their contents into the ISM.

Starting with the IDK 2.0 release, you can associate third-party packages with an ISM. The

ISMTool copies these passthru packages to the ISM’s pkg subdirectory, does not unpack

them, and uploads them unchanged. (The ISMTool still unpacks the third-party packages

that are in the bar subdirectory.)

The new ISMTool options for passthru packages are as follows:

--addPassthruPkg
--removePassthruPkg
--showPkgs
--attachPkg
--showOrder
--orderPkg

Meta Data Update

The meta data for packages and software tree nodes is displayed by the Properties tabs

in the Opsware Command Center. For example, the Properties tab for a package displays

values in the Description and Install Flags fields.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 3

Opsware® SAS ISM Development Kit 2.0 Guide
Before the 2.0 version of the IDK, to change the properties you had to log in to the

Opsware Command Center after uploading the ISM. Starting with the 2.0 release, you can

specify the properties with the ISMTool before uploading the ISM.

The new ISMTool options for meta data updates are as follows:

--addPathProp
--showPathProps
--editPkg

Installing the IDK
This section discusses the following topics:

• Installing the IDK for the Visual Packager

• Installing the IDK for Command-Line Package Development

• Installing the IDK on Opsware SAS 4.x

Installing the IDK for the Visual Packager

Before using the Visual Packager feature, you must install the IDK with the Install

Template Wizard of the Opsware Command Center. To install the IDK with this wizard,

perform the following steps:

1 Log in to the Opsware Command Center.

2 Verify that the host where you install the IDK is managed by Opsware SAS.

For more information, see “Server Search Overview” in the Opsware® SAS User’s

Guide.

3 Verify that the host where you install the IDK runs the same operating system version

as the managed servers where you will install the packages created with the Visual

Packager.

For example, if you’re creating packages for Redhat Linux 7.3 managed servers,

install the IDK on a Redhat Linux 7.3 system.

4 If you are installing the IDK on a Redhat Linux Application Server, Enterprise Server,

or Workstation, then make sure that the rpm-build package is already installed. To

verify that this package is installed, enter the following command:

rpm -qa | grep rpm-build
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 1: Overview
5 In the Opsware Command Center, run the Install Template Wizard. The template to

install is located at the following path:

Opsware Tools | Visual Packager

If the Opsware Command Center reports that the IDK (ISMTool package) is already

installed, but this is a new version of Opsware SAS, go ahead and re-install the IDK.

For more information, see “Installing Templates with the Install Templates Wizard” in

the Opsware® SAS User’s Guide.

Installing the IDK for Command-Line Package Development

This guide describes how to build packages with the command-line ISMTool of the IDK.

To install the IDK for use with the ISMTool, perform the following steps:

1 Verify that the host where you install the IDK runs the same operating system version

as the managed servers where the ISM’s application will be installed.

For example, if you’re creating ISMs for applications to be installed on Redhat Linux

7.3 managed servers, install the IDK on a Redhat Linux 7.3 system.

2 If you are installing the IDK on a Redhat Linux Application Server, Enterprise Server,

or Workstation, then make sure that the rpm-build package is already installed. To

verify that this package is installed, enter the following command:

rpm -qa | grep rpm-build

3 Workaround: Until bug 32393 is fixed, you must install the IDK on a core server. If you

install the IDK on a managed server with an Agent from Opsware SAS 5.1 (or later),

this bug prevents ISMTool from contacting the core.

The core components share the CRYPTO_PATH environment variable with the IDK

tools. If you set the CRYPTO_PATH environment variable incorrectly, the core

components might cease to function.

You can install the IDK on a server that does not run a core component or an Agent,

but the functionality of the IDK will be limited. On such a server, you can build ISMs

but you cannot upload them to the core unless you set the CRYPTO_PATH

environment variable. (See “CRYPTO_PATH” on page 65 of this guide.)

4 In the Opsware Command Center, run the Install Template Wizard. The template to

install is located at the following path:

Opsware Tools | Visual Packager
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 5

Opsware® SAS ISM Development Kit 2.0 Guide
If the Opsware Command Center reports that the IDK (ISMTool package) is already

installed, but this is a new version of Opsware SAS, go ahead and re-install the IDK.

For more information, see “Installing Templates with the Install Templates Wizard” in

the Opsware® SAS User’s Guide.

If you have previously installed the ISMtool package with the Install Software Wizard,

you can continue to use the ISMTool, but you cannot use the Visual Packager until

you install the template.

5 Unix: In a terminal window, log in to the host where you’ve installed the IDK and set

the PATH environment variable to the following value.

/usr/local/ismtool/bin/

(On Windows the PATH is set automatically, but will not take effect until you log in

again.)

6 In a terminal window, check the IDK installation by entering the following command:

ismtool --myversion

Installing the IDK on Opsware SAS 4.x

The IDK software is included with Opsware SAS 5.x. To install the IDK on Opsware SAS

4.x, perform the following steps:

1 Obtain the IDK software from the Opsware Inc. download page.

2 Perform the steps in the preceding section, except for step 4.

IDK Quickstart
This section shows how to create, build, and upload a simple ISM. After the upload

operation, you can examine the resulting Opsware node and packages by running the

Opsware Command Center.

Creating, Building, and Uploading a Simple ISM

Perform the following steps in a terminal window of the host where you’ve installed the

IDK. Unless otherwise noted, the commands are the same on Unix and Windows.

1 Grant your Opsware user the privilege to upload ISMs by entering the following

command:

ismusertool --addUser johndoe
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 1: Overview
This command generates several prompts. First, it asks you to confirm the core into

which you are uploading the ISM:

Using the following Opsware Core:
 Command Engine : d02 192.168.198.91:1004

Is this correct? [y/n]: y

Next, the command prompts for the Opsware admin user name and password:

Enter Opsware Admin Username: admin
 Enter admin's Opsware Password:

For more information, see Appendix A, “ISMUsertool.”

2 Create a new ISM.

For example, to create an ISM named foo, you enter the following at the

command-line prompt:

ismtool --new foo

This command creates a directory named foo at the current directory level. The

ISM is made up of the contents of the foo directory. You’ll specify the foo ISM in

the subsequent ismtool commands.

3 Add the application files to the ISM.

One way to add the application files is to copy one or more archives to the bar

subdirectory. For example, if the application bits are in a file named

mytest.zip, you might add them to the ISM as follows:

Unix:

cp /tmp/mytest.zip foo/bar

Windows:

copy c:\temp\mytest.zip foo\bar

4 Set the path to the application node of the Opsware software tree.

This node is created in a later step when you upload the ISM into the Opsware core.

The following ismtool command sets the path to the node:

Unix:

ismtool --opswpath '/System Utilities/test/abc' foo

Windows:

ismtool --opswpath "/System Utilities/test/abc" foo

On Unix you enclose the path in single quotes, but on Windows you use double

quotes. For both Unix and Windows, the path contains forward slashes.

5 Build the packages within the ISM by entering the following command:
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 7

Opsware® SAS ISM Development Kit 2.0 Guide
ismtool --build foo

This command creates three packages in the foo/pkg subdirectory. On a Linux

system, these packages are as follows:

foo-1.0.0-1.i386.rpm
foo-ism-1.0.0-1.i386.rpm
ismruntime-rpm-2.0.0-1.i386.rpm

The foo-1.0.0-1.i386.rpm package contains the application bits, which in this

example were copied to the foo/bar subdirectory in step 3. The foo-ism-

1.0.0-1.i386.rpm package holds the installation hooks and control scripts.

(Because this example is simple, it has no control scripts.) The ismruntime-rpm-

2.0.0-1.i386.rpm package contains the Opsware shared runtimes that the

Opsware agent will use when it installs the package on a managed server.

Note that the package type (RPM) corresponds to the native packaging engine of a

Linux System. On Windows, the --build command creates following MSI

packages in the foo\pkg subdirectory:

foo-1.0.0-1.msi
foo-ism-1.0.0-1.msi
ismruntime-msi-2.0.0-1.msi

6 Upload the ISM into the Opsware core by entering the following command:

ismtool --upload foo

This command generates several prompts. First, it asks you to confirm the core into

which you are uploading the ISM:

Using the following Opsware Core:

 Data Access Engine : d02 192.168.198.91:1004
 Software Repository: d02 192.168.198.91:1003
 Command Engine : d02 192.168.198.91:1018

 Is this correct? [y/n]: y

Next, the --upload command prompts for the Opsware user, password, and

customer:

 Enter Opsware Username: johndoe
 Enter johndoe’s Opsware Password:
 Enter Opsware Customer: Customer Independent
.. .
Success!

The upload operation creates the software node you specified in step 4 and attaches

to the node the packages you built in step 5. The --upload command is the last

step that you perform with the IDK’s tools.
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 1: Overview
Examining the Node and Packages in the Opsware Command Center

To see the results of the upload operation from the preceding section, perform the

following steps:

1 Log in to the Opsware Command Center.

2 In the software tree, navigate to the application node you specified with the

ismtool --opswpath command in step 4 of the previous section.

Figure 1-1 shows the Properties tab for the /System Utilities/test/abc node.

Figure 1-1: Properties of an Application Node

3 To list the packages attached to this node, select the Packages tab.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 9

Opsware® SAS ISM Development Kit 2.0 Guide

1

Figure 1-2 shows the Packages tab of the /System Utilities/test/abc node.

These packages were uploaded from the foo/pkg subdirectory of the ISM.

Figure 1-2: Packages of an Application Node
0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 2: ISM Build Environment

ISM File System Structure
The ISMTool --build and --upload commands operate on the ISM directory, which

you create with either the --unpack or --new commands. The --unpack command

unzips a file (containing the ISM directory contents) that was previously zipped with --

pack. The --new command initially creates the ISM directory. For example, the following

command creates a new directory named ntp-4.1.2:

ismtool --new ntp-4.1.2

This command creates the following subdirectories under the ntp-4.1.2 directory:

• bar - Contains binary archives, the contents of which are used to create the application

package.

• doc - A location for documentation (HTML) generated automatically during ISM build.

You can also create other documentation files in the directory.

• ism - Contains all the files needed to create the control package of the ISM. The ism

directory is where you can edit the default package hooks (pre-install, post-install, pre-

uninstall, post-uninstall), as well as add control scripts to ism/control.

• log - Holds files which keep track of the output from source transformations

(compilation or local installs), output from native packaging engines such as msi, rpm,

pkgtrans, swpackage, or an Opsware upload.

I N T H I S C H A P T E R

This chapter discusses the following topics:

• ISM File System Structure

• Build Process

• Specifying the Application Files of an ISM

• ISM Name, Version Number, and Release Number
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 11

Opsware® SAS ISM Development Kit 2.0 Guide

1

• pad - Contains the installation scripts (pre-install, post-install, pre-uninstall, post-

uninstall) specified by the ISMTool --addPkgProp option.

• pkg - Contains the application, control, and shared runtime packages, all of which are

generated by --build. This subdirectory also contains copies of passthru packages.

• tmp - Used as scratch space for ISMTool operations.

• src - May optionally contain files that can control the compilation of sources into binary

archives.

The following listing shows the contents of the ISM subdirectories after the following

command:

ismtool --build ntp-4.1.2

The output of the source build is in the binary archive directory with the generated name

__ntp-4.1.2_src_ntp.spec.cpio. The build creates the files in the log, pkg, and

tmp subdirectories, in addition to the other files with names beginning with two

underscores.

ntp-4.1.2/
 src/
 ntp-4.1.2.tar.gz
 ntp.spec
 bar/
 __ntp-4.1.2_src_ntp.spec.cpio
 __ntp-4.1.2_src_ntp.spec.cpio.meta
 pkg/
 ntp-4.1.2-3.i386.rpm
 ntp-ism-4.1.2-7.i386.rpm

ismruntime-rpm-2.0.rpm
 log/

. . .
doc/

 index.html
 index/
 ntp-4.1.2-3.i386.rpm.html
 ntp-ism-4.1.2-7.i386.rpm.html
 tmp/
 . . .

ism/
 ism.conf
 bin/
 ismget
 parameters
 platform
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 2: ISM Build Environment
 python
env/

 ism.sh
 ism.py
 ism.pl

pkg/
 ism_check_install
 ism_post_install
 ism_post_uninstall
 ism_pre_install
 ism_pre_uninstall
 control/

pad/
ismruntime-rpm-2.0.0.i386.rpm
. . .

ntp-4.1.2-3.i386.rpm/
pkg.conf
scripts/

ntp-ism-4.1.2-7.i386.rpm/
. . .

Build Process
This section describes the following:

• When to Invoke the --build Command

• Multiple Command-Line Options

• Actions Performed by the --build Command

• Packages Created by the --build Command

When to Invoke the --build Command

You run the ISMTool --build command after --new and before --upload. Whenever

you change an ISM with an option, you must invoke --build before --upload for the

change to take effect. For example, if you specify --opswpath, you must invoke --

build for the new node path to take effect before you upload the ISM into the core.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 13

Opsware® SAS ISM Development Kit 2.0 Guide

1

Multiple Command-Line Options

You may invoke multiple ISMTool options on the same command-line, or you may invoke

the options separately. In the following Unix example, the command changes the native

package engine to rpm3, the version to 2.0.47b, the default install user to root, and

the default install group to root for the ISM directory named apache:

ismtool --pkgengine rpm3 --version 2.0.47b --user root --
group root apache

The next sequence of commands is equivalent:

ismtool --pkgengine rpm3 apache
ismtool --version 2.0.47b apache
ismtool --user root apache
ismtool --group root apache

The ISMTool sorts command actions into the proper logical order for execution. The

following command, for example, will change the version of apache to 3.0 before the

build is executed.

ismtool --build --version 3.0 apache

Actions Performed by the --build Command

The ISMTool --build command performs the following steps.

1 Performs a pre-build clean by removing all side-effect build products. However, this

step will leave any cpio archives generated during a previous build as a form of

build cache. The build cache can be cleaned using the --clean command.

2 Runs the optional script ism/build/ism_clean. The scripts in the ism/build

subdirectory are hooks into the build process. To use these scripts, you must create

them manually.

3 Runs a checksum on the application sources and increment the application release

number if the current checksum does not match the previous checksum.

4 Runs a checksum on the control sources (the contents of the ism subdirectory) and

increment the control release number if the current checksum does not match the

previous checksum.

5 Runs the optional script ism/build/ism_pre.

6 For source builds, recursively searches for .spec files in the src subdirectory,

compiling and executing each.

7 Creates the shared runtime package.
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 2: ISM Build Environment
8 Creates the control package.

9 Creates the application package.

10 Generates the automatic HTML document doc/index/index.html.

11 Runs the optional script ism/buid/ism-post.

Packages Created by the --build Command

The --build command creates the following packages in the pkg subdirectory:

• Application package - Created from the contents of the bar (binary archive)

subdirectory, this package contains the application bits. You copy the application

archives to the bar subdirectory before invoking the --build command. The file

name of the application package has the following syntax. The <version> is for the

entire ISM, and the <release> is specific to the application package. (See “ISM

Name, Version Number, and Release Number” on page 20 of this guide.)

<name>-<version>-<release>.<package-extension>

• Control package - This package contains the control and installation scripts from the

ism subdirectory. The control package file name has the following syntax:

<name>-ism-<version>-<release>.<package-extension>

• Shared runtime package - This package holds the shared runtime routines that are

invoked by the Opsware agent (during installation) and by any control scripts. These

runtime routines are for Opsware SAS, not for the application itself. The file name of the

shared runtime package has the following syntax. (The <ctl-prefix> is included in

the file name only if you’ve specified a non-default value with the --ctlprefix

option.)

ismruntime-<ctl-prefix>-<package-type>-<idk-
version>.<package-extension>

• Passthru packages - You specify these packages with the --addPassthruPkg

option, which copies them into the pkg subdirectory unchanged.

Specifying the Application Files of an ISM
This section discusses the methods for getting application files into an ISM:

• Placing Archives in the bar Subdirectory

• Specifying Passthru Packages
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 15

Opsware® SAS ISM Development Kit 2.0 Guide

1

• Compiling Source (Unix Only)

Placing Archives in the bar Subdirectory

Before running --build, you may manually copy file archives to the ISM’s bar (binary

archive) subdirectory. Alternatively, the archives in the bar subdirectory may be generated

as cpio files by the directives in the %files section of the specfile. (See “Compiling

Source (Unix Only)” on page 17 of this guide.)

The --build command repackages the archives in the bar subdirectory into the

application package of the pkg subdirectory. The following table lists the types of

archives that may reside in the bar subdirectory.

Specifying Passthru Packages

Unlike an archive in the bar subdirectory, a passthru package is not extracted and re-

packaged. The --addPassthruPkg command copies a passthru package unchanged

into the pkg subdirectory. The package specified by --addPassthruPkg cannot

reside in the ISM directory. The following example adds a passthru package to an ISM

and designates the package for attachment to the software node:

ismtool --addPassthruPkg /tmp/bos.rte.libs.5.1.0.50.U --pkgType
lpp ISMNAME
ismtool --attachPkg bos.rte.libs-5.1.0.50 --attachValue true
ISMNAME

Table 2-1: Valid Binary Archive Types

FILE EXTENSION ARCHIVE TYPE

.cpio Unix CPIO Archive

.msi Microsoft Installer

.rpm RPM Package Manager

.tar Tape Archive

.tar.bz2 bzip2 compressed Tape Archive

.tar.gz gzip compressed Tape Archive

.tgz gzip compressed Tape Archive

.zip Info-Zip compatible Zip
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 2: ISM Build Environment
Compiling Source (Unix Only)

The --build command recursively searches the src subdirectory for specfiles (files

ending in .spec)). If found, a specfile is compiled into Bourne Shell and executed.

Specfiles are written in a simplified derivative of the RPM specfile language. The

ISMTool's specfile-like language compiler allows you to use existing RPM specfiles with

minimal modifications.

For more information about the specfile language, see the Maximum RPM document,

located at the following URL:

http://www.rpm.org/max-rpm/index.html

Example Specfile

Here is an example of a simple ISM specfile for NTP 4.1.2:

###
Common Preamble
###

%define ismname %(../ism/bin/ismget name)
%define version %(../ism/bin/ismget version)
%define prefix %(../ism/bin/ismget prefix)

Name: %{ismname}
Version: %{version}

###
prep, build, install, files
###

Source: http://www.eecis.udel.edu/~ntp/ntp_spool/ntp4/ntp-
4.1.2.tar.gz

%prep

%setup -n ntp-4.1.2

%build

%ifos Solaris2.7
echo ‘‘do something Solaris2.7 specific’’
%endif

%ifos Linux
echo ‘‘do something Linux specific’’
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 17

Opsware® SAS ISM Development Kit 2.0 Guide

1

%endif

./configure --prefix=%prefix
make

%install
/bin/rm -rf $ISM_BUILD_ROOT
make install prefix=$ISM_BUILD_ROOT/%{prefix}

%files
%defattr(-,root,root)
%prefix

Specfile Preamble

The preamble specifies information to be fetched from the ISM with the program ismget.

The following lines fetch the name, version, and prefix of the ISM.

%define ismname %(../ism/bin/ismget name)
%define version %(../ism/bin/ismget version)
%define prefix %(../ism/bin/ismget prefix)

This fetched information can be useful in the set up and compilation of sources. However,

the %define commands are optional. The only required tags in the preamble are Name

and Version.

%prep

The %prep section is designed to prepare sources for compilation. This involves

uncompressing and untaring source distributions. A single source file is identified with the

Source tag. A list of sources are identified by a vector of tags: Source0, Source1,

Similarly, patches are identified by either a Patch tag or a vector of tags: Patch0,

Patch1, The ISMTool duplicates the macro functionality as documented in Maximum

RPM. The %setup macro controls how sources are unpacked. The %prep section can

also manage patching using the %patch macro.

%build

The shell script commands in the %build section will transform the sources into binaries.

Compiling from source usually involves running ./configure -prefix=%{prefix}

and make. It is possible to perform configuration switching based on the platform

(operating system). The platform tags are designed for backward compatibility to RPMs

found in real-world installations. The following platform strings are some examples that

can be used in ISMTool specfiles for platform branching:

Linux
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 2: ISM Build Environment
RedHat
RedHat-Linux-7.2
RedHat-Linux-AS2.1
Solaris
Solaris2.8
Solaris-2.8
SunOS
SunOS5.7
SunOS-5.7
hpux
hpux11.00
hpux-11.00
HPUX
HPUX11.00
HPUX-11.00
aix
aix4.3
aix-4.3
AIX
AIX4.3
AIX-4.3

%install

The %install section specifies the copying of files from the build to a virtual install

location. For example, if the %prefix is set to /usr/local, the following line would

install NTP into /usr/local/bin:

make install prefix=$ISM_BUILD_ROOT/%{prefix}

The variable $ISM_BUILD_ROOT (or equivalently $RPM_BUILD_ROOT) is the location of

a temporary directory inside the ISM's tmp directory. This temporary directory will serve as

the virtual install root where the directives in the %files section will be applied.

The %install section also indicates where the files from a binary install could be

extracted. In a binary install, the files resulting from a binary install on a development

server can be packaged into the virtual install location. However, if that is not possible

then a binary installer could be transported to the end system and installed with an ISM

post-install hook. In this case, you would create a binary archive of the installer and copy

it to the ISM's bar subdirectory.

%files

In the specfile, the output of the source transformation phase is a set of files indicated by

the directives in the %files section. These files are archived into a cpio in the ISM’s

bar subdirectory.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 19

Opsware® SAS ISM Development Kit 2.0 Guide

2

The final phase of the source transformation is to select the files installed into the $ISM_

BUILD_ROOT. The directives in the %files section are a subset of the selection

mechanisms documented in Maximum RPM. These directives specify a list of files or

directories (which are recursively gathered) relative to $ISM_BUILD_ROOT. In this

example, the install is into the path $ISM_BUILD_ROOT/%{prefix}. To select these

files for packaging, you would simply give the %prefix as the directory to package.

In addition to selecting files by naming files or directories, meta information can be

described. The line %defattr(-,root,root) tells the archive engine to use the

modes it finds in the file system, but to create the archive replacing the file ownerships it

finds in the file system with root,root. For full documentation of %defattr() and

%attr(), see Maximum RPM.

ISM Name, Version Number, and Release Number
This section includes the following:

• Initial Values for the ISM Name, Version, and Release

• ISM Version and Release Numbers Compared

• Upgrading the ISM Version

Initial Values for the ISM Name, Version, and Release

The --new command creates a directory for the new ISM and specifies the internal base

name of the ISM. For example, the following command creates the mystuff directory in

the file system, sets the internal base name to mystuff, and sets the version number to

1.0.0.

ismtool --new mystuff

In most cases, you specify the version number with --new. The following command

creates a directory named ntp-1.4.2, sets the internal base name to ntp, and sets the

version number to 1.4.2:

ismtool --new ntp-1.4.2

To view the internal base name, version number, and release numbers, use the --info

command:

ismtool --info ntp-1.4.2.

The output generated by the preceding command includes the following:
0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 2: ISM Build Environment
. . .
name: ntp
version: 4.2.1
appRelease: 0
. . .
ctlRelease: 0
. . .

ISM Version and Release Numbers Compared

ISM version and release numbers differ in several ways. You may specify the version

number with either the --new or --version commands. The ISMTool automatically

generates the release numbers; you cannot specify them. The version number applies to

the entire ISM. The application and control packages each have separate release

numbers. The --build command increments the release numbers whenever it re-

generates the packages. Because application and control packages can be built

independently, the packages may have different release numbers.

The names of the application and control packages include the internal base name,

version number, and release number. For example, the ntp-4.1.2-3.i386.rpm

application package has a version number of 4.1.2 and a release number of 3. (See

“Packages Created by the --build Command” on page 15 of this guide.)

To display the version of the IDK (not the ISM), enter the following:

ismtool --myversion

Upgrading the ISM Version

Although you may modify the internal base name (with --name) and the version number

(with --version), this practice is not recommended because it does not automatically

change the directory name. If you change the internal base name or version, to avoid

confusion you should also rename the directory containing the ISM.

The recommended practice is to use a matching internal base name, version number,

directory name, and Opsware node path. For example, to upgrade foo-1.2.7 to foo-

1.2.8, you would follow these steps:

1 At the same directory level as foo-1.2.7, create a new ISM directory:

ismtool --new foo-1.2.8

2 Copy archives to the foo-1.2.8/bar directory or specify passthru packages.

3 Set the path to the software node at the same level as the previous version.

Unix:
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 21

Opsware® SAS ISM Development Kit 2.0 Guide

2

ismtool --opswpath ‘Application Servers/{$NAME}/{$VERSION}’

Windows:

ismtool --opswpath "Application Servers/{$NAME}/{$VERSION}"

The --opswpath command replaces the NAME variable with foo and the VERSION

variable with 1.2.8. To see the current values of the variables, use the --info command.

For more information on variable substitution, see “ISMTool Variables” on page 55.

4 Build and upload the foo-1.2.8 ISM with the ISMTool.

5 In the Opsware Command Center, deprecate the foo-1.2.7 packages.

6 Update templates to include the new node.

7 Reconcile managed servers against the new templates.
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 3: ISM Scripts

Overview of ISM Scripts
ISM scripts are Unix shell or Windows command-line scripts that reside in the ISM

directory. The types of ISM scripts follow:

Installation Hooks - Bundled into the ISM’s control package by the ISMTool --build

command, the installation hooks are run by the native packaging engine (such as rpm)

on the managed server. Installation hooks may invoke control scripts.

Control Scripts - Also bundled into the ISM’s control package, the control scripts perform

day-to-day, application-specific tasks such as starting software servers.

Installation Scripts - Not contained in the control package, but instead stored in the

Software Repository, installation scripts can be viewed on the Properties tab of a package

in the Opsware Command Center.

The overall process for developing and running installation hooks and control scripts

follows:

1 invoke the ISMTool --new command, which creates the default installation hooks.

2 With a text editor, create the control scripts.

3 With a text editor, modify the default installation hooks, which may call control scripts.

4 With the ISMTool, build and upload the ISM.

I N T H I S C H A P T E R

This chapter contains the following topics:

• Overview of ISM Scripts

• Installation Hooks

• Control Scripts

• Dynamic Configuration with ISM Parameters

• Installation Scripts
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 23

Opsware® SAS ISM Development Kit 2.0 Guide

2

5 In the Opsware Command Center, install the application contained in the ISM onto a

managed server. During the installation, the pre-installation and post-installation

hooks are run on the managed server.

6 During the production lifetime of the application, run or schedule the control scripts.

7 At the end of the application’s life cycle, with the Opsware Command Center,

uninstall the application. During the uninstallation, the pre-uninstallation and post-

uninstallation hooks are executed on the managed server.

Installation scripts have a different overal process than installation hooks and control

scripts. For more information, see “Installation Scripts” on page 37.

An ISM script cannot call program (such as rpm or pkgadd) that locks the package

associated with the script.

Installation Hooks
The installation hooks are scripts that reside in the ism/pkg subdirectory. (Some

documents refer to the installation hooks as “packaging scripts.”) The installation hooks

are run at certain stages during the installation and uninstallation of applications on

managed servers.

Creating Installation Hooks

The ISMTool --new command creates the following installation hooks:

Unix:

ism/pkg/
 ism_check_install
 ism_post_install
 ism_post_uninstall
 ism_pre_install
 ism_pre_uninstall

Windows:

ism\pkg\
ism_post_install.cmd

 ism_post_uninstall.cmd
 ism_pre_install.cmd
 ism_pre_uninstall.cmd

To customize the installation hooks, you modify them with a text editor. Although you may

edit the installation hooks, you cannot change their file names.
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 3: ISM Scripts
The default ism_pre_install and ism_post_uninstall hooks are just stubs; they

perform no actions. The default ism_post_install hook calls the ism_configure

and ism_start control scripts. The default ism_pre_uninstall hook calls the ism_

stop control script. Note that the control scripts are not created automatically by the

ISMTool; you must create them with a text editor. (See “Control Scripts” on page 29.)

Some native packaging engines support the ism_check_install hook directly; others

do so implicitly with the ism_pre_install hook. The ISMTool maps the check_

install feature onto the native packaging engine. If the check_install script

returns a non-zero code, the install is halted.

For the contents of the default installation hooks created by the --build command, see

the following sections:

• “Default Installation Hooks for Unix” on page 27

• “Default Installation Hooks for Windows” on page 28

Invocation of Installation Hooks

When you install (or uninstall) the application of an ISM onto a managed server, the native

packaging engine on the server invokes the installation hooks. (You do not run the

installation hooks directly.) For example, on a Linux system, the rpm utility invokes ism_

pre_install immediately before it installs the application bits and invokes ism_

post_uninstall right after it removes the bits.

See also “Invocation of Installation Scripts and Hooks” on page 39.

Installation Hook Functions

You can customize the installation hooks to perform actions such as those listed in the

following table.

Table 3-1: Installation Hook Functions

INSTALL HOOK COMMON FUNCTIONS

ism_pre_install create required directories, create

users, set directory permissions

ism_post_install call ism_configure control

script, call ism_start control

script (to start a web server, for

example)
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 25

Opsware® SAS ISM Development Kit 2.0 Guide

2

Scripts for Control-Only ISMs

If you specify the --skipApplicationPkg option, the ISMTool will not build the

application package, enabling the creation of a control-only ISM. You can use this feature

to build a controller for an application that is not installed or packaged with the ISMTool.

Examples are controllers for core operating system functions, currently running

applications that cannot be packaged, and specialized hardware.

During the installation and uninstallation of a control-only ISM, the ism_ctl_post_

install and ism_ctl_pre_uninstall scripts are run. (The scripts are run for all

ISMs, but typically you specify them only for control-only ISMs.) Because these scripts are

not generated by the ISMTool, you must create them before running the --build

command. The following listing shows the required names and locations of these scripts:

Unix:

ism/pkg/
 . . .

ism_ctl_post_install
ism_ctl_pre_uninstall

Windows:

ism\pkg\
. . .
ism_ctl_post_install.cmd
ism_ctl_pre_uninstall.cmd

Location of Installation Hooks on Managed Servers

On your development system, the --build command bundles the installation hooks into

the ISM's control package. On the managed server, the contents of the control package

are installed into the directory indicated by the ctlprefix of the ISM. By default, the

installation hooks are installed into the following directory:

Unix:

/var/opt/OPSWism/<ism-name>/pkg

ism_pre_uninstall call ism_stop control script (to

stop a server)

ism_post_uninstall do any required clean up

Table 3-1: Installation Hook Functions

INSTALL HOOK COMMON FUNCTIONS
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 3: ISM Scripts
Windows:

%ProgramFiles%\OPSWism\<ism-name>\pkg

To change the default directory of the installation hooks, specify the --ctlprefix

option before building and uploading the ISM. If you specify the ctlprefix as follows,

for example, the installation hooks will be installed in /usr/local/ntp-4.1.2/pkg:

ismtool --ctlprefix /usr/local ntp-4.1.2

Default Installation Hooks for Unix

The default ism_pre_install hook:

#!/bin/sh
#
ISM Pre Install Script
#
. ‘dirname $0‘/../env/ism.sh

The default ism_post_install hook:

#!/bin/sh
#
ISM Post Install Script
#
. ‘dirname $0‘/../env/ism.sh
if [-x ${ISMDIR}/control/ism_configure]; then
${ISMDIR}/control/ism_configure
fi
if [-x ${ISMDIR}/control/ism_start]; then
${ISMDIR}/control/ism_start
fi

The default ism_pre_uninstall hook:

#!/bin/sh
#
ISM Pre Uninstall Script
#
. ‘dirname $0‘/../env/ism.sh
if [-x ${ISMDIR}/control/ism_stop]; then
${ISMDIR}/control/ism_stop
fi

The default ism_post_unininstall hook:

#!/bin/sh
#
ISM Post Uninstall Script
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 27

Opsware® SAS ISM Development Kit 2.0 Guide

2

#
. ‘dirname $0‘/../env/ism.sh

Default Installation Hooks for Windows

The default ism_pre_install.cmd hook:

@echo off
REM
REM ISM Pre Install Hook
REM
SETLOCAL
REM
REM %1 specifies the full path to the ISM.CMD file
REM Call ISM.CMD to define ISM environment variables
REM
call %1
ENDLOCAL

The default ism_post_install.cmd hook:

@echo off
REM
REM ISM Post Install Script
REM
SETLOCAL
REM
REM %1 specifies the full path to the ISM.CMD file
REM Call ISM.CMD to define ISM environment variables
REM
call %1
REM
REM Call the ISM’s configure script
REM
IF EXIST "%ISMDIR%\control\ism_configure.cmd"
call "%ISMDIR%\control\ism_configure.cmd"
REM
REM Call the ISM’s start script
REM
IF EXIST "%ISMDIR%\control\ism_start.cmd"
call "%ISMDIR%\control\ism_start.cmd"
ENDLOCAL

The default ism_pre_uninstall.cmd hook:

@echo off
REM
REM ISM Pre Uninstall Hook
REM
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 3: ISM Scripts
SETLOCAL
REM
REM %1 specifies the full path to the ISM.CMD file
REM Call ISM.CMD to define ISM environment variables
REM
call %1
REM
REM Call the ISM’s stop script
REM
IF EXIST "%ISMDIR%\control\ism_stop.cmd"
call "%ISMDIR%\control\ism_stop.cmd"
ENDLOCAL

The default ism_post_unininstall.cmd hook:

@echo off
REM
REM ISM Post Uninstall Script
REM
SETLOCAL
REM
REM %1 specifies the full path to the ISM.CMD file
REM Call ISM.CMD to define ISM environment variables
REM
call %1

Control Scripts
The ISM control scripts reside in the ism/control directory. Control scripts perform

housekeeping or maintenance tasks for an application after it has been installed.

Installation hooks can run control scripts. If a task is performed during an installation (or

uninstallation) but might also be performed on a regular basis, it should be coded as a

control script. For example, the ism_post_install hook can invoke the ism_start

control script to start an application immediately after installation. Also, the ism_pre_

uninstall hook can invoke the ism_stop control script to shutdown the application.

End-users can run control scripts from the Control window of the Opsware Command

Center. (For more information, see “Control Scripts and Intelligent Software Modules” in

the Opsware® SAS User’s Guide.) Advanced end-users can run a control scripts from the

command-line in the Opsware Global Shell.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 29

Opsware® SAS ISM Development Kit 2.0 Guide

3

Creating Control Scripts

Unlike installation hooks, control scripts are not created by the ISMTool; you create control

scripts with a text editor. You may add any number of control scripts to the ism/control

subdirectory. By convention, the file names for control scripts are as follows:

Unix:

ism/control/
 ism_start
 ism_stop
 ism_configure
 ism_reconfigure

Windows:

ism\control\
 ism_start.cmd
 ism_stop.cmd
 ism_configure.cmd
 ism_reconfigure.cmd

The control script name might appear differently in the Control window of the Opsware

Command Center. The Action field of the Control window displays the name of the control

script, but without the leading ism_ or the file type extension. For example, a control

script named ism_start.cmd appears in Action field as start. The Action field

displays only the first 25 characters of a control script name. Therefore, the first 25

characters of the names should be unique. For both Unix and Windows, the leading ism_

must be lower case; otherwise, the Action field displays the prefix.

Control Script Functions

Control scripts are for repetitive tasks needed to manage an application. The following

table summarizes typical uses for control scripts.

Table 3-2: Control Script Functions

CONTROL SCRIPT COMMON FUNCTIONS

ism_start notifies any companion or

dependent servers, starts the

application

ism_stop notifies any companion or

dependent servers, stops the

application
0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 3: ISM Scripts
Location of Control Scripts on Managed Servers

Like installation hooks, control scripts are bundled into the control package by the

--build command. On the managed server, control scripts reside in the directory

indicated by the ISM ctlprefix value. By default, control scripts are installed in the

following directory on a managed server:

Unix:

/var/opt/OPSWism/<ism-name>/control

Windows:

%ProgramFiles%\OPSWism\<ism-name>\control

To change the default directory, specify the --ctlprefix option with ISMTool.

Dynamic Configuration with ISM Parameters
The ISM parameter utility enables control scripts and installation hooks to access the

values of Opsware custom attributes. The key of an ISM parameter matches the name of

its corresponding custom attribute. The value of a custom attribute determines the value

of the parameter. The source of a custom attribute is an Opsware object such as a facility,

customer, server, or server group.

Set with the Opsware Command Center, a custom attribute is a name-value pair that

holds configuration information. For example, to designate the port number of an Apache

web server, a custom attribute named APACHE_1.3_PORT could have a value of 80. If

an ISM has a parameter named APACHE_1.3_PORT, a control script could access the

current value of the custom attribute.

Using the Control window of the Opsware Command Center, an end-user can view the

source (Opsware object) of a parameter, view the parameter value, and override the

parameter value.

ism_configure performs configuration operations

ism_reconfigure similar to ism_configure, but

calls ism_stop first and ism_

start afterwards

Table 3-2: Control Script Functions

CONTROL SCRIPT COMMON FUNCTIONS
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 31

Opsware® SAS ISM Development Kit 2.0 Guide

3

Development Process for ISM Parameters

The overall process for developing and using ISM parameters follows:

1 With the ISMTool, add a new parameter.

2 With a text editor, write a control script (or modify an installation hook) to access the

parameter.

3 With the ISMTool, build and upload the ISM.

4 In the Opsware Command center, install the application contained in the ISM onto a

managed server.

5 In the Opsware Command Center, create a custom attribute with the same name as

the parameter.

6 In the Opsware Command Center, run the control script on the managed server. At

runtime, the script retrieves the parameter (control attribute) value from Opsware

SAS.

Adding, Viewing, and Removing ISM Parameters

The ISMTool --addParam command creates a new parameter, which may be fetched by

any script in the ISM. A parameter is a tuple with four fields, each specified by an ISMTool

option. The following table lists the fields and their corresponding options.

Table 3-3: ISM Parameter Fields

PARAMETER FIELD ISMTOOL OPTION DESCRIPTION

Name --addParam The name of the ISM parameter,

which must match the name of the

custom attribute.

Default Value --paramValue The default value of the parameter.

The script uses the default value if

a matching custom attribute is not

found.

Type --paramType The data type of the parameter.

Allowed values:

‘String’

‘Template’

Description --paramDesc Text describing the parameter.
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 3: ISM Scripts
The following Unix command adds a parameter named NTP_SERVER to the ntp-4.2.1

ISM:

ismtool --addParam NTP_SERVER \
--paramValue 127.0.0.1 \
--paramType 'String' \
--paramDesc 'NTP server, default to loopback' ntp-4.2.1

To view the parameters that have been added to the ntp-4.2.1 ISM, enter the

following:

ismtool --showParams ntp-4.2.1

To remove the parameter added in this example, you enter the following command:

ismtool --removeParam NTP_SERVER ntp-4.2.1

Accessing Parameters in Scripts

After you’ve added a parameter with ISMTool, you can write an ISM control script to

access the parameters. The supported scripting languages follow:

• Bourne Shell

• Korn Shell

• Windows command shell

• Python

• Perl

Shell scripts access the parameters through environment variables, Python scripts

through dictionaries, and Perl scripts through hash tables.

The ISM parameters Utility

To fetch parameters, a control script runs the parameters utility, which resides in the

ISM shared runtime package. Only those parameters defined with the --addParam

command can be fetched.

For Opsware SAS 5.x, the parameters utility has the following syntax:

parameters [options]
--scope <scope> ; server|servergroup|customer|facility|

; servicelevel|os|custapps|webserver|appserver|
 ; dbserver|systemutilities|osextras|install|
; default (default is all)

-s/--sh ; Bourne Shell syntax
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 33

Opsware® SAS ISM Development Kit 2.0 Guide

3

-k/--ksh ; Korn-Shell syntax
-p/--python ; Python repr'ed dictionary
-l/--perl ; PERL map
-c/--cmd ; Windows Cmd syntax
-b/--vbscript ; Windows VBScript syntax
-h/--help ; Help
-v/--version ; Version

For Opsware SAS 4.x, the parameters utility has the following syntax:

parameters [options]
--scope <scope> ; server|customer|facility|software|os|

; install|default (default is all)
--scope group ; The 'group' scope needs to use
 ; --groupname and --grouptype
 --groupname <name> ; Group name to search
 --grouptype <type> ; Group type to search
 -s/--sh ; Bourne Shell syntax
 -k/--ksh ; Korn-Shell syntax
 -p/--python ; Python repr'ed dictionary
 -l/--perl ; PERL map
 -c/--cmd ; Windows Cmd syntax
 -b/--vbscript ; Windows VBScript syntax
 -h/--help ; Help
 -v/--version ; Version

The --scope option limits the search for the custom attribute to the specified area of

Opsware SAS. For example, if you specify --scope facility and a custom attribute

has been defined for both the facility and the customer, then the custom attribute of the

customer is not considered. See also: “Search Order for Custom Attributes” on page 35.

If the parameters utility encounters an error during retrieval, it returns a special

parameter named _OPSW_ISMERR, which contains a brief description of the error

encountered.

Example Scripts

The following Bourne Shell example is a control script that configures the NTP time

service on Unix. The parameters utility retrieves two parameters, NTP_CONF_TEMPLATE

and NTP_SERVER, that have been defined for the ISM.

#!/bin/sh
. ‘dirname $0‘/../env/ism.sh
eval ‘${ISMDIR}/bin/parameters‘
echo $NTP_CONF_TEMPLATE | \
sed "s/NTP_SERVER_TAG/$NTP_SERVER/" > /etc/ntp.conf
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 3: ISM Scripts
The following control script, written in Python, also configures NTP.

#!/usr/bin/env python
import os
import sys
import string
ismdir=os.path.split(sys.argv[0])[0]
cmd = ’%s --python’ %
(os.path.join(ismdir,’bin’,’parameters’))
params = eval(os.popen(cmd,’r’).read())
template = params[’NTP_CONF_TEMPLATE’]
value = params[’NTP_SERVER’]
conf = string.replace(template,’NTP_SERVER_TAG’,value)
fd=open(’/etc/ntp.conf’,’w’)
fd.write(conf)
fd.close()

The following example shows a configuration control script for Windows. In this example,

each parameter is output in the form of name=value (one per line). The Windows FOR

command sets each parameter as an environment variable. (In the listing that follows, the

FOR command is split into two lines, but in the actual script, the FOR command must be

on a single line.) Finally, the parameters are passed to an NTP configuration script named

WindowsNTPConfigureScript.cmd.

@echo off
SETLOCAL
for /f "delims== tokens=1,2" %%i in
(’""%ISMDIR%\bin\parameters.cmd""’) do set %%i=%%j
WindowsNTPConfigureScript.cmd %NTP_CONF_TEMPLATE% %NTP_
SERVER%
ENDLOCAL

Search Order for Custom Attributes

With the Opsware Command Center, you can set a custom attribute in several places. For

example, you could set a custom attribute named APACHE_1.3_PORT to 8085 for a

managed server named foo.opsware.com, and you could set the same custom

attribute to 80 for the Widget Corp. customer, which is associated with the

foo.opsware.com server. At runtime, if a control script on foo.opsware.com

accesses the APACHE_1.3_PORT parameter, which value will it fetch? In this case, the

value will be 8085 because a custom attribute for a server occurs first in the search order.

Note that if a custom attribute is not found, the script uses the default parameter value

that you set with the ISMTool --paramValue option.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 35

Opsware® SAS ISM Development Kit 2.0 Guide

3

Opsware SAS 5.x Search Order

For version 5.x, the search order for custom attributes is as follows:

1 Server

2 Server Group

3 Customer

4 Facility

5 Service Level

6 Operating System

7 ISM Node (created during the upload operation)

8 Applications-> Other Applications

9 Applications-> Web Servers

10 Applications-> Application Servers

11 Applications-> Database Servers

12 Applications-> System Utilities

13 Applications-> Operating System Extras

Multiple server groups and service levels are searched alphabetically. For example, if a

server belongs to the ABC and XYZ groups, the ABC group is searched for the custom

attribute before the XYZ group. Multiple software nodes are searched alphabetically by full

node path.

For server group searches, custom attributes from attached nodes are not searched. Also,

a server group that is a subgroup does not inherit the custom attributes of its parent

group.

Opsware SAS 4.x Search Order

For version 4.x, the search order for custom attributes is as follows:

1 Server

2 Customer

3 Facility

4 Service Level

5 Applications-> OS Extras
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 3: ISM Scripts
6 Applications-> System Utilities

7 Applications-> Database Servers

8 Applications-> Application Servers

9 Applications-> Web Utilities

10 Applications-> Other Applications

11 Operating Systems

Multiple service levels are searched alphabetically by the full path name of the service

levels, for example:

/ ServiceLevel / foo
/ ServiceLevel / zoo

If a managed server is attached to multiple nodes within the same software stack

(category), then the search order is determined by the node install order. If the node

install order is not set, then the nodes are searched alphabetically by the full path name of

the nodes, for example:

/ Application Servers / JBoss /
/ Application Servers / WebLogic /

Installation Scripts
The installation scripts reside in the pad subdirectory. Like installation hooks, the

installation scripts are run at specific stages during the installation and uninstallation of an

application on a managed server.

Differences Between Installation Scripts and Hooks

Although they serve a similar purpose, installation scripts and hooks have several

differences, as noted in the following table.

Table 3-4: Differences Between Installation Scripts and Hooks

INSTALLATION SCRIPTS INSTALLATION HOOKS

Displayed by the Properties tab of

the package in the Opsware Control

Center.

Displayed by the Contents tab of

the package in the Opsware Control

Center. (Only RPMs are displayed.)
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 37

Opsware® SAS ISM Development Kit 2.0 Guide

3

Creating Installation Scripts

Although the ISMTool creates the pad subdirectory structure, it does not create default

installation scripts. For each package created with --build or added with

--addPassthruPkg, the ISMTool creates a subdirectory as follows:

pad/<package-name>/scripts

For example, on Linux the --build command would create the following subdirectories

for an ISM named ntp-1.4.2:

pad/ismruntime-rpm-2.0.0-1.i386.rpm/scripts
pad/ntp-ism-4.2.1-1.i386.rpm/scripts
pad/ntp-4.2.1-1.i386.rpm/scripts

With a text editor, you create the installation scripts in the scripts subdirectory. For

example, you could create installation scripts for the ntp-4.2.1-1.i386.rpm package

as follows:

pad/ntp-4.2.1-1.i386.rpm/scripts/
preinstallscript
pstinstallscript
preuninstallscript
pstuninstallscript

The file names of the installation scripts must match the preceding example. For example,

the script invoked immediately after the installation must be named

pstinstallscript.

Reside in the pad subdirectory. Reside in the ism/pkg

subdirectory.

Stored in Model Repository (after an

upload).

Bundled in the control package,

installed on the managed server in

the directory specified by

ctlprefix.

Run by the Opsware Agent. Run by the native packaging

engine.

Can be defined for each package in

the ISM.

Defined for the entire ISM.

Table 3-4: Differences Between Installation Scripts and Hooks

INSTALLATION SCRIPTS INSTALLATION HOOKS
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 3: ISM Scripts
Invocation of Installation Scripts and Hooks

If an ISM has both installation scripts and hooks, when an application is installed on a

managed server, Opsware SAS performs tasks in the following order:

1 Installs the ISM runtime package.

2 Installs the ISM control package.

3 Runs preinstallscript (installation script).

4 Runs ism_pre_install (installation hook).

5 Installs the application package (the application bits).

6 Runs ism_post_install (installation hook).

7 Runs ism_post_configure (control script).

8 Runs ism_post_start (control script).

9 Runs pstinstallscript (installation script).

During the uninstallation of an application on a managed server, Opsware SAS performs

actions in the following order:

1 Runs preuninstallscript (installation script).

2 Runs ism_pre_uninstall (installation hook).

3 Runs ism_stop (control script).

4 Uninstall the application package (the application bits).

5 Runs ism_post_uninstall (installation script).

6 Runs pstuninstallscript (installation hook).

7 Uninstalls the ISM control package.

8 Uninstalls the ISM runtime package.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 39

Opsware® SAS ISM Development Kit 2.0 Guide

4
0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 4: ISMTool Commands

ISMTool Argument Types
Table 4-1defines the argument types that are used in the ISMTool commands defined in

the rest of this chapter. The ISMNAME argument type, for example, is specified by the

syntax of the ISMTool --new command.

I N T H I S C H A P T E R

This chapter discusses the following topics:

• ISMTool Argument Types

• Informational Commands

• Creation Commands

• Build Commands

• Opsware Interface Commands

• Environment Variables

Table 4-1: ISMTool Argument Types

ARGUMENT
TYPE

DESCRIPTION EXAMPLE

PATH Absolute file system path. /foo/bar

STRING Text string with no spaces. foobar

TEXT Arbitrary quoted text. On Unix you

enclose the text in single quotes; on

Windows use double quotes.

'This is some text'

BOOL Boolean. true or false
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 41

Opsware® SAS ISM Development Kit 2.0 Guide

4

Informational Commands
This section describes the ISMTool commands that provide information about the build

environment.

--help

Display the ISMTool command-line help.

ISMFILE Path to a valid .ism file in the file

system. This file would unpack into an

ISMDIR.

/foo/bar/name.ism

ISMDIR Path to a valid extracted ISMFILE or to

a newly created ISM.

xyz

/home/sam/xyz

ISMNAME Name for a newly-created ISM. The

ISMNAME can have the format STRING

or STRING-VERSION.

ntp

ntp-4.1.2

VERSION A STRING that represents the version of

the ISM. The VERSION cannot contain

spaces and must be a legal version

string for the native packaging engine.

1.2.3

4.13

0.9.7b

HOST[:PORT] Host and optional port. www.foo.com

www.foo.com:8000

192.168.1.2:8000

BYTES Integer number of bytes. 42

SECONDS Integer number of seconds. 300

PARAMTYPE Expected type of the parameter data.

The only allowed values are the

constants ‘String’ and

‘Template’. On Unix you enclose the

values in single quotes; on Windows

use double quotes.

‘String’

‘Template’

Table 4-1: ISMTool Argument Types

ARGUMENT
TYPE

DESCRIPTION EXAMPLE
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 4: ISMTool Commands
--env

Display the locations of system-level tools found in the environment. This command is

helpful for investigating build problem and for verifying that the environment variable

ISMTOOLBINPATH is set correctly. For example, on a Unix system --env might display

the following:

% ismtool --env
bzip2: /usr/local/ismtool/lib/tools/bin/bzip2
cpio: /usr/local/ismtool/lib/tools/bin/cpio
gzip: /usr/local/ismtool/lib/tools/bin/gzip
install: /usr/local/ismtool/lib/tools/bin/install
17
patch: /usr/local/ismtool/lib/tools/bin/patch
python: /usr/local/ismtool/lib/tools/bin/python
pythonlib: /usr/local/ismtool/lib/tools/lib/python1.5
rpm2cpio: /usr/bin/rpm2cpio
rpm: /bin/rpm
rpmbuild: /usr/bin/rpmbuild
tar: /usr/local/ismtool/lib/tools/bin/tar
unzip: /usr/local/ismtool/lib/tools/bin/unzip
wget: /usr/local/ismtool/lib/tools/bin/wget
zip: /usr/local/ismtool/lib/tools/bin/zip
zipinfo: /usr/local/ismtool/lib/tools/bin/zipinfo
pkgengines: [’rpm4’]

--myversion

Display the version of the ISMTool.

--info ISMDIR

Display an overview of the internal information about the ISM contained in the directory

ISMDIR. After the build is completed, more detailed information is available, which can be

viewed in browser at this URL:

<ISMDIR>/doc/index/index.html

--showParams ISMDIR

Display the name, default value, type, and description for each control parameter.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 43

Opsware® SAS ISM Development Kit 2.0 Guide

4

--showPkgs ISMNAME

Display the list of all packages managed by the ISM. This list includes the control

package, the application package, all passthru packages, and all inner packages

contained in passthru packages. Examples of inner packages are Solaris package

instances contained in Solaris packages, or an update fileset contained in a AIX LPP

package. For each managed package, the package name, type, attached status and all

meta data that can be set will be listed.

--showOrder ISMNAME

Display the current install order of attached packages managed by the ISM.

--showPathProps ISMNAME

Displays the values currently specified for node meta data.

Creation Commands
This section describes the ISMTool commands that generate the ISM directory structure.

--new ISMNAME

Create a new ISM, which consists of directory that contains subdirectories and files. The

value of ISMNAME specifies the name of the newly-created ISM directory. The internal

ISM name varies with the format of ISNAME.

For example, the following command creates an ISM directory called foobar. The

internal name of the ISM is foobar and the initial version of the ISM defaults to 1.0.0.

% ismtool --new foobar

The next command creates an ISM directory called ntp-4.1.2. The internal name of the

ISM is ntp and the initial version of the ISM is 4.1.2. Note that the internal name of the

ISM does not include -VERSION.

% ismtool --new ntp-4.1.2

The name of the ISM directory is independent of the internal ISM name. For example, if

the developer renames the ntp-4.1.2 directory to myntp, the internal name of the ISM

is still ntp and the version of the ISM remains 4.1.2.
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 4: ISMTool Commands
--pack ISMDIR

Creates a ZIP archive of the ISM contained in ISMDIR. The name of the archive will be

<ismname-version>.ism. Note that the contents of ISMDIR must be less than 2GB.

(If the size is greater than 2 GB, then use the zip or tar utility instead.) An example of -

-pack follows:

Unix:

% ismtool --new tick
% ismtool --version 3.14 tick
% ls
tick/
% mv tick spooon
% ls
spooon/
% ismtool --pack spooon
% ls
spooon/ tick-3.14.ism

Windows:

% ismtool --new tick
% ismtool --version 3.14 tick
% dir
11/21/2003 10:17a <DIR> tick
% move tick spoon
% dir
11/21/2003 10:17a <DIR> spoon
% ismtool --pack spoon
% dir
11/21/2003 10:17a <DIR> spoon
11/21/2003 10:17a 1,927,339 tick-3.14.ism

--unpack ISMFILE

Unpacks the ISM contained in the ZIP file named ISMFILE. The ISM is unpacked into the

ISMDIR that was specified when the ISMFILE was created with the --pack command.

The following example uses the ISMFILE created in the --pack example:

Unix:

% ls
spooon/ tick-3.14.ism
% rm -rf spooon
% ls
tick-3.14.ism
% ismtool --unpack tick-3.14.ism
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 45

Opsware® SAS ISM Development Kit 2.0 Guide

4

% ls
spooon/ tick-3.14.ism

Windows:

% dir
11/21/2003 10:17a <DIR> spoon
11/21/2003 10:17a 1,927,339 tick-3.14.ism
% rmdir /s /q spoon
% dir
11/21/2003 10:17a 1,927,339 tick-3.14.ism
% ismtool --unpack tick-3.14.ism
% dir
11/21/2003 10:17a <DIR> spoon
11/21/2003 10:17a 1,927,339 tick-3.14.ism

Build Commands
This section describes the ISMTool commands that build and modify an ISM.

--verbose

Display extra debugging information.

--banner

Suppress the display of the output banner.

--clean

Clean up all files generated as a result of a build. This removes temporary files and all

build products.

--build

Builds the ISM, creating the packages in the pkg subdirectory.

The primary purpose of the build command is to create the packages contained in the

ISM. Optionally, the build command may invoke source compilation and run pre-build and

post-build scripts.

--upgrade

Upgrade the ISM to match the currently installed version of the ISMTool.
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 4: ISMTool Commands
New releases of the ISMTool may fix bugs or modify how it operates on an extracted

ISMDIR. If the version of the currently installed ISMTool is different than the version of the

ISMTool that created the ISM, the developer may need to perform certain actions. Note

that minor and major downgrades are NOT allowed. For example, if version 2.0.0 of the

ISMTool created the ISM, then version 1.0.0 of the ISMTool cannot process the ISM.

Table 4-2 lists the developer actions if the currently installed and previous versions of

ISMTool are not the same.

--name STRING

Change the internal name of the ISM to STRING. The ISMDIR, the top level directory of

an extracted ISM, can have a different name than the internal name of the ISM. To change

both names, use the ISMTool --name command to change the internal name and a file

Table 4-2: ISMTool Upgrade Actions

ISMTOOL
VERSION

CURRENTLY
INSTALLED

ISMTOOL
VERSION

THAT
CREATED
THE ISM

DEVELOPER ACTION

1.0.1 1.0.0 PATCH increment. Developer action is not needed. This is considered

a simple automatic upgrade which is forward AND backward

compatible.

1.0.0 1.0.1 PATCH decrement. Automatic downgrade. No action needed.

1.1.0 1.0.0 MINOR increment. The developer must apply the --upgrade

command to the ISM. There may be small operational differences or

enhanced capability. Warning: This operation is not reversible. Minor

upgrades are designed to be as transparent as possible.

2.0.0 1.0.0 MAJOR increment. The developer must apply the --upgrade

command to the ISM. There may be large operational differences. The

developer will probably need to perform other actions specified in

release notes.

1.0.0 2.0.0

or 1.1.0

MAJOR or MINOR decrement. This downgrade path is not allowed.

The ISM cannot be processed with the installed version of the

ISMTool.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 47

Opsware® SAS ISM Development Kit 2.0 Guide

4

system command to change the directory name. If the STRING format is not valid for the

native packaging engine, the problem will not be found until a --build is issued and

the packaging engine throws an error.

--version STRING

Change the internal version field of the ISM. The STRING cannot contain spaces. The --

version command performs no other checks on the STRING format. If the STRING

format is not valid for the native packaging engine, the problem will not be found until a -

-build is issued and the packaging engine throws an error.

--prefix PATH

Change the install prefix of an ISM. The PATH is used by the build-from-source feature of

the ISMTool and also by the drivers for the packaging engines. During installation on a

managed server, the application files packaged in the ISM are installed in the location

relative to the PATH. In the following Unix example, the developer begins with this .tar

file:

% tar tvf ntp/bar/ntp.tar
-rw-r--r-- root/root 1808 2002-11-22 09:20:36 etc/
ntp.conf
drwxr-xr-x ntp/ntp 0 2003-07-08 16:22:38 etc/ntp/
-rw-r--r-- root/root 22 2002-11-22 09:22:08 etc/ntp/
step-tickers
-rw-r--r-- ntp/ntp 7 2003-07-08 16:22:38 etc/ntp/
drift
-rw------- root/root 266 2001-09-05 03:54:42 etc/ntp/
keys
-rwxr-xr-x root/root 252044 2001-09-05 03:54:43 usr/sbin/
ntpd
-rwxr-xr-x root/root 40460 2001-09-05 03:54:43 usr/sbin/
ntpdate
-rwxr-xr-x root/root 70284 2001-09-05 03:54:43 usr/sbin/
ntpdc
-rwxr-xr-x root/root 40908 2001-09-05 03:54:43 usr/sbin/
ntp-genkeys
-rwxr-xr-x root/root 66892 2001-09-05 03:54:43 usr/sbin/
ntpq
-rwxr-xr-x root/root 12012 2001-09-05 03:54:43 usr/sbin/
ntptime
-rwxr-xr-x root/root 40908 2001-09-05 03:54:43 usr/sbin/
ntptimeset
-rwxr-xr-x root/root 19244 2001-09-05 03:54:43 usr/sbin/
ntptrace
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 4: ISMTool Commands
-rwxr-xr-x root/root 1019 2001-09-05 03:54:39 usr/sbin/
ntp-wait

In this example, a --prefix of '/' would build an application package such that all

the files would be installed relative to the file system root.

% ismtool --build --prefix '/' --pkgengine rpm4 ntp
.
.
.
% rpm -qlpv ntp/pkg/ntp-1.0.0-1.i386.rpm
drwxr-xr-x 2 ntp ntp 0 Jul 8 16:22 /etc/ntp
-rw-r--r-- 1 root root 1808 Nov 22 2002 /etc/ntp.conf
-rw-r--r-- 1 ntp ntp 7 Jul 8 16:22 /etc/ntp/drift
-rw------- 1 root root 266 Sep 5 2001 /etc/ntp/keys
-rw-r--r-- 1 root root 22 Nov 22 2002 /etc/ntp/step-
tickers
-rwxr-xr-x 1 root root 40908 Sep 5 2001 /usr/sbin/ntp-
genkeys
-rwxr-xr-x 1 root root 1019 Sep 5 2001 /usr/sbin/ntp-
wait
-rwxr-xr-x 1 root root 252044 Sep 5 2001 /usr/sbin/ntpd
-rwxr-xr-x 1 root root 40460 Sep 5 2001 /usr/sbin/
ntpdate
-rwxr-xr-x 1 root root 70284 Sep 5 2001 /usr/sbin/
ntpdc
-rwxr-xr-x 1 root root 66892 Sep 5 2001 /usr/sbin/ntpq
-rwxr-xr-x 1 root root 12012 Sep 5 2001 /usr/sbin/
ntptime
-rwxr-xr-x 1 root root 40908 Sep 5 2001 /usr/sbin/
ntptimeset
-rwxr-xr-x 1 root root 19244 Sep 5 2001 /usr/sbin/
ntptrace

It is easy to change the install prefix to '/usr/local':

% ismtool --build --prefix '/usr/local' ntp
.
.
.
% rpm -qlpv ntp/pkg/ntp-1.0.0-2.i386.rpm
drwxr-xr-x 2 ntp ntp 0 Jul 8 16:22 /usr/local/etc/
ntp
-rw-r--r-- 1 root root 1808 Nov 22 2002 /usr/local/
etc/ntp.conf
-rw-r--r-- 1 ntp ntp 7 Jul 8 16:22 /usr/local/etc/
ntp/drift
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 49

Opsware® SAS ISM Development Kit 2.0 Guide

5

-rw------- 1 root root 266 Sep 5 2001 /usr/local/
etc/ntp/keys
-rw-r--r-- 1 root root 22 Nov 22 2002 /usr/local/
etc/ntp/step-tickers
-rwxr-xr-x 1 root root 40908 Sep 5 2001 /usr/local/
usr/sbin/ntp-genkeys
-rwxr-xr-x 1 root root 1019 Sep 5 2001 /usr/local/
usr/sbin/ntp-wait
-rwxr-xr-x 1 root root 252044 Sep 5 2001 /usr/local/
usr/sbin/ntpd
-rwxr-xr-x 1 root root 40460 Sep 5 2001 /usr/local/
usr/sbin/ntpdate
-rwxr-xr-x 1 root root 70284 Sep 5 2001 /usr/local/
usr/sbin/ntpdc
-rwxr-xr-x 1 root root 66892 Sep 5 2001 /usr/local/
usr/sbin/ntpq
-rwxr-xr-x 1 root root 12012 Sep 5 2001 /usr/local/
usr/sbin/ntptime
-rwxr-xr-x 1 root root 40908 Sep 5 2001 /usr/local/
usr/sbin/ntptimeset
-rwxr-xr-x 1 root root 19244 Sep 5 2001 /usr/local/
usr/sbin/ntptrace

On Windows, there is no standard way to tell an MSI where to install itself. Therefore,

application packages built from MSI files found in the bar directory will ignore the --

prefix setting. However, for Windows application packages built from ZIP files, the

ISMTool will use the --prefix setting. On Windows the prefix must be in this form:

driveletter:\directoryname (for example, D:\mydir).

On Unix, the default value of PATH is /usr/local.

--ctlprefix PATH

Change the install prefix of the control files. Note that this command is not recommended

and that you should instead rely on the default values. During installation on a managed

server, the control files packaged in the ISM are installed in the location relative to the

PATH. On Windows the prefix must be in this form: driveletter:\directoryname

(for example, D:\mydir). The default value for PATH follows:

Unix:

/var/opt/OPSWism

Windows:

%ProgramFiles%\OPSWism
0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 4: ISMTool Commands
On Solaris, if you specify --ctlprefix on Solaris, you will be prompted for the name of

the shared run-time package.

--user STRING (Unix only)

Change the Unix user owner of the files in the application package to STRING. When the

files in the package are installed on the managed server, they will be owned by the

specified Unix user.

--group STRING (Unix only)

Change the Unix group owner of the files in the application package STRING.

--ctluser STRING (Unix only)

Change the Unix user owner of the files in the control package to STRING. The default

value is root. When the files in the package are installed on the managed server, they

will be owned by the specified Unix user.

--ctlgroup STRING (Unix only)

Change the Unix group owner of the files in the control package to STRING. The default

value is bin.

--pkgengine STRING (Unix only)

Change the native packaging engine. On systems that have multiple packaging engines

available, use this command to switch between them. To view the available engines, issue

the --help or --env commands.

Note that if you change the native packaging engine, no packages will be attached to the

node during the --upload operation.

--ignoreAbsolutePaths BOOL (Unix only)

Ignore the absolute paths in the archive. For example, the following is a binary archive

with absolute paths:

% tar tvf test/bar/foo.tar
-rw-r--r-- root/root 1808 2002-11-22 09:20:36 /foo/bar/
baz.conf

If the --prefix is set to /usr/local then the install path is ambiguous: Should

ISMTool install baz.conf as /foo/bar/baz.conf or /usr/local/foo/bar/

baz.conf? If the answer is /foo/bar/baz.conf, then the developer must set the --
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 51

Opsware® SAS ISM Development Kit 2.0 Guide

5

prefix of the ISM to '/'. However, if the answer is /usr/local/foo/bar/

baz.conf, then the developer must specify the --ignoreAbsolutePaths

command.

--addCurrentPlatform (Unix only)

Add the current platform to the ISM's supported list. Note: This command does not make

the ISM cross-platform. ISMs can be constructed on different Opsware-supported

platforms. A platform is the combination of OS type and version. Example platforms are:

Redhat-Linux-7.2, SunOS-5.9, Windows-2000. To view the currently supported platforms

for an ISM use the --info command.

--removeCurrentPlatform (Unix only)

Removes the current platform from the ISM's supported platform list.

--addPlatform TEXT (Unix only)

Add to the ISM's supported platform list the platform specified by the TEXT. Because

platform support and identification are dynamic, no error checking is done for --

addPlatform. For this reason, the recommendation is to use --

addCurrentPlatform instead of --addPlatform.

--removePlatform TEXT (Unix only)

Removes from the ISM's supported platform list the platform specified by the TEXT.

--target STRING (Unix only)

Warning: This command should only be used by experts.

Allow cross-platform packaging of the application package for the RPM packaging

engine. The --target command must be used with --skipControlPkg. The format

of the STRING is <arch-os>, for example, i686-linux or sparc-solaris2.7.

--skipControlPkg BOOL

Prevent the building of the control package. This command allows the ISMTool to support

the packaging of files that have no need for a structured application control package.
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 4: ISMTool Commands
--skipApplicationPkg BOOL

Prevent the building of the application package. This command allows the ISMTool to

support the creation of a control-only ISM package. This feature can be used to build a

controller for an application that is not installed or packaged with the ISMTool. Examples

are controllers for core operating system functions, currently running applications that

cannot be packaged, and specialized hardware.

--chunksize BYTES (Unix only)

Limits the number of bytes that will be inserted into an application package. (Heuristics

are used to compensate for compression factors.) The binary archive (bar) directory may

contain many archives from which to build the application package. If the chunksize is

exceeded, then the application archives are grouped into several bins and each bin is

turned into a-sub application package. The algorithm is a standard bin-packing heuristic.

The movable units are binary archives within the bar directory.

For example, suppose that the output package format is an RPM and has five binary

archives: a.tgz (100M), b.tgz(100M), c.tgz (200M), d.tgz (300M), and e.tgz(50M). If

the chunksize is set to 314572800 (300M) then the output application bins will be:

part1(a.tgz, b.tgz, e.tgz) == 250M
part2(c.tgz) == 200M
part3(d.tgz) == 300M

This would result in three application packages:

foobar-part0-1.0.0.i386.rpm
foobar-part1-1.0.0.i386.rpm
foobar-part2-1.0.0.i386.rpm

In general, the chunksize is not a problem unless the application package is almost a

gigabyte in size. At that point, some package engines start breaking. The default

chunksize is one gigabyte (2 ^30 bytes).

--solpkgMangle BOOL (SunOS only)

Prevent the ISMTool from changing the name of the application package to conform to

Solaris requirements. For more information, see “Solaris” on page 71.

When creating a Solaris package, ISMTool must use a package name that conforms to

the 9-character limit. However, it may be desirable to prevent ISMTool from changing

(“mangling”) the package name during the --build process. When --solpkgMangle

false is specified, ISMTool will use the ISM name when creating the application
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 53

Opsware® SAS ISM Development Kit 2.0 Guide

5

package. The control package name will continue to be mangled. Note that when --

solpkgMangle is false, the ISM name must be 9 characters or less and there cannot

be multiple application packages.

--embedPkgScripts BOOL

Embed the contents of the ISM packaging scripts (installation hooks) in the application

package. This option must be used with --skipControlPkg and --

skipRunTimePkg.

By default, the application package is built to call out to the ISM packaging scripts

installed by the control package. The --embedPkgScripts option overrides this

behavior by embedding the contents of the scripts found in the ism/pkg directory inside

the application package. These scripts are invoked during the pre and post phases of the

application package install and uninstall.

If one or more of the scripts in the ism/pkg directory are not needed, delete the scripts

before the --build process. Note that RPM and LPP packaging engines do not have a

checkinstall phase so the ism_check_install file is ignored when building

RPMs and LPPs.

--skipRuntimePkg BOOL

Specify whether to build runtime packages during subsequent --build operations.

A runtime package is built by default. If --skipRuntimePkg true is specified, the

runtime package will not be built during subsequent operations until

--skipRuntimePkg false is specified. ISM utilities such as the parameters interface

will fail if the runtime package cannot be located. Do not specify --skipRuntimePkg

true unless you are sure the runtime package already exists on the managed server on

which you’ll install the ISM.

Opsware Interface Commands
This section describes the ISMTool commands that interact with Opsware SAS.
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 4: ISMTool Commands
--upload

Upload the ISM contained in the ISMDIR to the Opsware core. During the upload process,

ISMTool creates the Opsware software node with the path specified by --opswpath. To

specify which Opsware core to connect to, use either command-line arguments (such as

--softwareRepository) or the environment variables listed in Table 4-3.

The --upload command prompts for an Opsware user name and password. Generally,

the user name and password should be those of the default Opsware administrator. To

use another Opsware user for the upload, first run ISMUsertool to register the user. For

more information, see “ISMUsertool” on page 69.

--noconfirm

Suppress confirmation prompts, which require a y or n reply. For example, the ISMTool

has the following confirmation prompt:

Do you wish to proceed with upload? [y/n]:

If --noconfirm is set, the prompts are suppressed and the ISMTool behaves as if the

answer is y. The --noconfirm option affects only the current invocation of the ISMTool.

--opswpath STRING

Specify the path of the Opsware node associated with the uploaded ISM. Note that the

Opsware path always contains forward slashes, even on Windows.

The ISMTool supports the construction of cross-platform ISMs. An example of such an

ISM is the Network Time Protocol (NTP) daemon, which can be built from source on a

variety of platforms. To make uploading of cross-platform ISMs easier, the ISMTool

supports variable substitution within the --opswpath STRING. These variables

represent the internal settings of the ISM. Table 4-3 lists the variables recognized by the

ISMTool.

Table 4-3: ISMTool Variables

VARIABLE EXAMPLE

${NAME} ntp

${VERSION} 4.1.2

${APPRELEASE} 3
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 55

Opsware® SAS ISM Development Kit 2.0 Guide

5

Unix example:

% ismtool --opswpath '/System Utilities/${NAME}/${VERSION}/
${PLATFORM}' ntp

Possible expansion:

'/System Utilities/ntp/4.1.2/Redhat Linux 7.2'

Windows example:

% ismtool --opswpath "/System Utilities/${NAME}/${VERSION}/
${PLATFORM}" ntp

Possible expansion:

"/System Utilities/ntp/4.1.2/Windows 2000"

--dataAccesEngine HOST[:PORT]

For the upload, use the Opsware Data Access Engine located at HOST[:PORT].

--commandEngine HOST[:PORT]

For the upload, use the Opsware Command Engine located at HOST[:PORT].

--softwareRepository HOST[:PORT]

For the upload, use the Opsware Software Repository located at HOST[:PORT].

--description TEXT

Provide descriptive text for the ISM. During the upload, this text is copied to the

description field on the Opsware node.

${CTLRELEASE} 7

${PLATFORM} Redhat Linux 7.2

${OSTYPE} Redhat Linux

${OSVERSION} 7.2

${CUSTOMER} Finance

Table 4-3: ISMTool Variables

VARIABLE EXAMPLE
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 4: ISMTool Commands
--addParam STRING

Add a parameter named STRING to the ISM. Usually, the commands --paramValue, --

paramDesc, and --paramType are also specified. For example:

% ismtool --addParam NTP_SERVER \
 --paramValue 127.0.0.1 \
 --paramType 'String' \
 --paramDesc 'NTP server, default to loopback' ntp

% ismtool --addParam NTP_CONF_TEMPLATE \
 --paramValue /some/path/ntp.conf.template \
 --paramType 'Template' \
 --paramDesc 'Template for the /etc/ntp.conf file'
ntp

--paramValue TEXT

Set the default value for the parameter. The --addParam command must also be

specified. If the parameter type is 'String' then the value is the string specified by

TEXT. If the parameter type is 'Template' then TEXT is interpreted as a PATH to a

configuration template file. The data in the template file is loaded as the default value. If

the --paramValue and --paramType are not specified, then the default value is the

empty string.

--paramType PARAMTYPE

Set the type of the parameter. The --addParam command must also be specified. The

PARAMTYPE must be either 'String' or 'Template'. The default type is 'String'.

--paramDesc TEXT

Set the descriptive text for the parameter. The --addParam command must also be

specified. The default value is an empty string.

--removeParam STRING

Remove the parameter named STRING.

--rebootOnInstall BOOL

Tag the application package with the Opsware package control flag reboot_on_

install. If --rebootOnInstall is set to true, then the managed server will be

rebooted after the package is installed. If the ISM has multiple application packages, the

last package in the list is tagged.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 57

Opsware® SAS ISM Development Kit 2.0 Guide

5

--rebootOnUninstall BOOL

Tag the application package with the Opsware package control flag reboot_on_

uninstall. If --rebootOnUninstall is set to true, then the managed server will be

rebooted after the package is uninstalled. If the ISM has multiple application packages,

the first package in the list is tagged.

--registerAppScripts BOOL (Windows only)

Register the ISM packaging scripts (installation hooks) with the application package.

By default, ISM packaging scripts are encoded in the application MSI to run at pre-

installation, post-installation, pre-uninstallation, and post-uninstallation. When --

registerAppScripts is specified, the ISM packaging scripts are instead registered as

Opsware package control scripts during the upload. The package control scripts are

registered in the Model Repository and are viewable from the Opsware Command Center.

The --registerAppScripts command is required if the ISM packaging scripts

contain actions that conflict with the application MSI installation. For example, a conflict

could occur if a post-install script contains a call to msiexec.exe. Since the Microsoft

Installer does not allow concurrent installs, a script containing a call to msiexec.exe will

not complete successfully. By registering the ISM packaging scripts as Opsware package

control scripts, the scripts are called outside of the MSI installation and uninstallation.

--endOnPreIScriptFail BOOL (Windows only)

Register to end subsequent installs with the application package.

If --endOnPreIScriptFail and --registerAppScripts are both set to true, then

the installation will abort if the ISM pre-install script returns a non-zero exit code.

--endOnPstIScriptFail BOOL (Windows only)

Register to end subsequent installs with the application package.

If --endOnPstIScriptFail and --registerAppScripts are both set to true, then

the installation will abort if the ISM post-install script returns a non-zero exit code.

--endOnPreUScriptFail BOOL (Windows only)

Register to end subsequent uninstalls with the application package.

If --endOnPreUScriptFail and --registerAppScripts are both set to true, then

the uninstall will abort if the ISM pre-uninstall script returns a non-zero exit code.
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 4: ISMTool Commands
--endOnPstUScriptFail BOOL (Windows only)

Register to end uninstalls with the application package.

If --endOnPstUScriptFail and --registerAppScripts are both set to true, then

the uninstall will abort if the ISM post-uninstall script returns a non-zero exit code.

--addPassthruPkg {PathToPkg} --pkgType {PkgType} ISMNAME

Specifies that the package identified by {PathToPkg} should be treated as a passthru

package.

{PathToPkg} can be either a full or relative path to the package, but the package must

exist at the time the --addPassthruPkg option is specified. {PathToPkg} cannot

specify a package in the current ISM's directory structure. For example, the control

package, the application package, or a package in the bar directory cannot be specified

as a passthru package.

Note that by default, the upload operation does not attach to the software node a

passthru package specified by --addPassthruPkg. To attach the passthru package,

you must specify the --attachPkg option.

If you upload a Solaris passthru package, the response file is not uploaded. You must

manually upload the response file.

The supported package types and values to use for {PkgType} are as follows:

Table 4-4: Allowed Values for PkgType

PACKAGE ALLOWED VALUE FOR {PKGTYPE]

AIX LPP lpp

HP-UX Depot depot

RPM rpm

Solaris Package solpkg

Solaris Patch solpatch

Solaris Patch Cluster solcluster

Windows Hotfix hotfix

Windows MSI msi

Windows Service Pack sp
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 59

Opsware® SAS ISM Development Kit 2.0 Guide

6

The following example shows how to add a passthru package to an ISM and specify the

package for attachment to the software node:

% ismtool --addPassthruPkg /tmp/bos.rte.libs.5.1.0.50.U --
pkgType lpp ISMNAME
Inspecting specified package: ...
bos.rte.libs.5.1.0.50.U (lpp)
 bos.rte.libs-5.1.0.50 (update fileset)
 IY42527 (apar)
Done.
% ismtool --attachPkg bos.rte.libs-5.1.0.50 --attachValue true
ISMNAME

--removePassthruPkg {PassthruPkgFileName} ISMNAME

Specify that an already registered passthru package is no longer a passthru package.

ISMTool will do the following:

1 Delete {PassthruPkgFileName} from the ISMs directory structure.

2 Record in ism.conf that {PassthruPkgFileName} is no longer a passthru package.

3 During the next upload and all subsequent uploads, if the package is attached to the

--opswpath node, it will be removed.

Note that an ISM remembers all packages that have been removed as a passthru

package. If a package was attached to the ISM node via the OCC or a previous upload

operation, the attachment will be removed on the next upload operation.

--attachPkg {PkgName} --attachValue BOOLEAN ISMNAME

Specify whether a package managed by an ISM should be attached to the node

identified by --opswpath.

By default, when a control or application package is built, these packages are marked for

attachment to the node. However passthru packages and inner packages are not marked

for attachment until the --attachPkg option is specified.

Windows ZIP File zip

Table 4-4: Allowed Values for PkgType

PACKAGE ALLOWED VALUE FOR {PKGTYPE]
0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 4: ISMTool Commands
{PkgName} is the name of the package as listed by the --showPkgs command. If

--attachValue is true, a package is marked for attachment. If --attachValue is

false, a package is marked for detachment. A package is attached or detached during an

--upload operation. The following table lists the package types that can be attached to

a node.

--orderPkg {PkgName} --orderPos {OrderPos} ISMNAME

Change the install order of attached packages managed by the ISM.

Table 4-5: Package Type Properties

PACKAGE TYPE
CAN THIS PACKAGE TYPE

CONTAIN SCRIPTS

CAN THIS PACKAGE TYPE
BE ATTACHED TO A

NODE?

AIX LPP no no

AIX Base Fileset yes yes

AIX Update Fileset yes yes

AIX APAR no yes

HP-UX Depot no no

HP-UX Fileset yes yes

HP-UX Patch Fileset no no

HP-UX Product no yes

HP-UX Patch Product no yes

RPM yes yes

Solaris Package no no

Solaris Package Instance yes yes

Solaris Patch yes yes

Solaris Patch Cluster no yes

Windows Hotfix yes yes

Windows MSI yes yes

Windows Service Pack yes yes

Windows ZIP File yes yes
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 61

Opsware® SAS ISM Development Kit 2.0 Guide

6

{OrderPos} is an integer that specifies the new install order for the package identified by

{PkgName}. {OrderPos} is 1 (not 0) or the first package to be installed. To display the

install order, use the ismtool --showOrder command.

The following example shows how to display and change the install order:

% ismtool --showOrder ISMNAME
[1] test-ism-1.0.0-1.rpm
[2] test-1.0.0-1.rpm
[3] bos.rte.libs-5.1.0.50
[4] IY42527

% ismtool --orderPkg IY42527 --orderPos 1 ISMNAME
[1] IY42527
[2] test-ism-1.0.0-1.rpm
[3] test-1.0.0-1.rpm
[4] bos.rte.libs-5.1.0.50

--addPathProp {PathProp} --propValue {PropValue} ISMNAME

Specific a value for a given node meta data property.

To display the current values, use the --showPathProps command. The following table

lists the allowed values and types for the --addPathProp command.

The following example commands show how to set the description and

allowservers properties:

% ismtool --addPathProp description --propValue 'This node does
nothing' ISMNAME
% ismtool --addPathProp allowservers --propValue true ISMNAME

% ismtool --showPathProps ISMNAME
description: This node does nothing

Table 4-6: Allowed values for {PathProp}

{PATHPROP} ALLOWED
VALUE

{PROPVALUE} TYPE EXAMPLE

description TEXT ‘This does

something

important’

notes TEXT ‘And so does this’

allowservers BOOLEAN false
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 4: ISMTool Commands
notes: None
allowservers: true

--editPkg {PkgName} --addPkgProp {PkgProp} --propValue {PropValue}
ISMNAME

Specify a value for a given package meta data property.

{PkgName} identifies the package to update; it can be any of the package names listed

using the --showPkgs command. The following table lists the allowed values for

{PkgProp}.

Table 4-7: Allowed values for {PkgProp}

{PKGPROP} ALLOWED
VALUE

DESCRIPTION {PROPVALUE} TYPE

deprecated Deprecated status for

package

BOOLEAN

description Description for package TEXT

endonpreiscriptfail Reconcile ends on pre-

install script failure

BOOLEAN

endonpreuscriptfail Reconcile ends on pre-

uninstall script failure

BOOLEAN

endonpstiscriptfail Reconcile ends on post-

install script failure

BOOLEAN

endonpstuscriptfail Reconcile ends on post-

uninstall script failure

BOOLEAN

installflags Install flags for package TEXT

notes Notes for the package TEXT

rebootoninstall Package requires a reboot

after install

BOOLEAN

rebootonuninstall Package requires a reboot

after uninstall

BOOLEAN

uninstallflags Uninstall flags for package TEXT
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 63

Opsware® SAS ISM Development Kit 2.0 Guide

6

The endonXXXscriptfail values are set only if a pre/post install/uninstall script has been

defined for a package. These scripts reside in the ISMNAME/pad subdirectory.

Note that not all package types support all the {PkgProp} values listed in the preceding

table. The supported {PkgProp} values for each package type can be seen by viewing the

package property details in the OCC. In addition, the following table lists {PkgProp} values

supported by specific package types.

Table 4-8: {PkgProp} Allowed Values by Package Type

{PKGPROP} ALLOWED VALUE
PACKAGE

TYPE
DESCRIPTION {PROPVALUE}

upgradeable RPM Package is upgradeable BOOLEAN

productname Windows

MSI

MSI product name STRING

productversion Windows

MSI

MSI version number STRING

servicepacklevel Windows

OS

Service

Pack

Service Pack version

number

INTEGER

installdir Windows

ZIP

Installation directory STRING

postinstallscriptfilename Windows

ZIP

Post install script

filename

STRING

postinstallscriptfilenamefail Windows

ZIP

Reconcile ends on post

install script failure

BOOLEAN

preuninstallscriptfilename Windows

ZIP

Pre uninstall script

filename

STRING

preuninstallscriptfilenamefail Windows

ZIP

Reconcile ends on pre

uninstall script failure

BOOLEAN
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 4: ISMTool Commands
The productversion, productname, and servicepacklevel must be set

before performing an --upload operation. The productname and productversion

cannot be changed after an --upload operation. If you modify the productname or

productversion and then perform another --upload operation, the modified values

will not be applied.

The following example shows how to specify the description of a package:

% ismtool --editPkg bos.rte.libs.5.1.0.50 --addPkgProp
description --propValue 'This is a fileset' ISMNAME

Environment Variables
The ISMTool references the shell environment variables described in this section.

CRYPTO_PATH

This environment variable indicates the directory that contains the file ismtool/

token.srv.

CRYPTO_PATH and token.srv are required only if you are uploading the ISM from a

server that is not managed by Opsware SAS (that is, a server that has no Opsware agent).

To connect to the Opsware core during the upload of an ISM, the ISMTool needs the client

certificate and key that were generated during the installation of Opsware SAS. The name

of the certificate is token.srv and it is inside the opsware-cert.db that is generated

during install. Ask your Opsware Administrator for this certificate.

Keep in mind that using this certificate with the ISMTool invokes a different security

mechanism than the one used by the Opsware Command Center. As a result, you might

have increased or reduced permissions. You might have access to servers belonging to

customers that you normaly do not have access to. Also, you might be able to perform

operations that you cannot perform with the Opsware Command Center. Therefore, use

the ISMTool with caution to avoid unintended consequences caused by a possible

change in security permissions.

After you get the token.srv file, on the ISM development machine, copy the file to the

following directory:

/<some-path>/ismtool
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 65

Opsware® SAS ISM Development Kit 2.0 Guide

6

The <some-path> part of the directory path is your choice, but the subdirectory

containing token.srv must be ismtool. Next, set the CRYPTO_PATH environment

variable to <some-path>, the directory above ismtool/token.srv. For example, in

csh you might copy the file and set the environment variable as follows:

% mkdir /home/buzz/dev/ismtool
% cp token.srv /home/buzz/dev/ismtool
% setenv CRYPTO_PATH /home/buzz/dev

On Windows, you might might use these commands:

mkdir \buzz\dev\ismtool
set CRYPTO_PATH=C:\buzz\dev
copy token.srv \buzz\dev\ismtool

ISMTOOLBINPATH

This environment variable is a list of directory names, separated by colons, where the

ISMTool searches for system-level tools (such as tar and cpio). The following search

strategy is used:

1 Search the paths from the environment variable ISMTOOLBINPATH.

2 Search the complied-in binaries (if any) in /usr/local/ismtool/lib/tools/

bin.

3 Search within the user's path.

ISMTOOLCE

This environment variable is the HOST[:PORT] of the Opsware Command Engine used

by the ISMTool.

ISMTOOLCUSTOMER

This environment variable is a STRING that specifies the Opsware customer during an

ISMTool upload.

ISMTOOLDA

This environment variable is the HOST[:PORT] of the Opsware Data Access Engine

used by the ISMTool.
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Chapter 4: ISMTool Commands
ISMTOOLPASSWORD

This environment variable is a STRING that specifies the Opsware password during an

ISMTool upload.

ISMTOOLSITEPATH

This environment variable is a PATH for a “site” directory.

The ISMTool contains certain default scripts and attribute values (for example, the install

prefix) which are referenced when a new ISM is created. A developer can override the

default scripts and a selected set of attribute values by using a site directory.

The defaults.conf File

Within the site directory, a developer can create the defaults.conf file, which contains

overrides for attribute values. A line in defaults.conf has the format:

<tag>:<value>. A line starting with the # character is a comment. The following

example shows the values that can be set in defaults.conf:

Unix:

prefix: /usr/local
ctlprefix: /var/opt/OPSWism
opswpath: /System Utilities/${NAME}/${VERSION}/${PLATFORM}
version: 1.0.0
ctluser: root
ctlgroup: bin

Windows:

prefix: ???
ctlprefix: ???
opswpath: /System Utilities/${NAME}/${VERSION}/${PLATFORM}
version: 1.0.0

The templates Subdirectory

Developers can override the files in the /usr/local/ismtool/lib/ismtoollib/

templates directory by placing their own copies in a templates subdirectory located

within the ISMTOOLSITEPATH. For example, developers can override the files that are

the default packaging hooks for Windows or Unix.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 67

Opsware® SAS ISM Development Kit 2.0 Guide

6

The control Subdirectory

Sometimes, developers need to install a common set of tools into an ISM's control

directory. The ISMTool supports this requirement by copying all files from a control

subdirectory of the ISMTOOLSITEPATH to the ISM's control directory. If a file already

exists in the ISM's control directory, it will not be overwritten.

ISMTOOLSR

This environment variable is the HOST[:PORT] of the Opsware Software Repository

used by the ISMTool.

ISMTOOLUSERNAME

This environment variable is a STRING that specifies the Opsware user name during an

ISMTool upload.
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Appendix A: ISMUsertool

The --upload command of the ISMTool prompts for an Opsware user name. To enable

Opsware users to perform an upload, run the ISMUsertool.

To list the users that have upload privileges:

% ismusertool --showUsers

To grant a user users upload privileges:

% ismusertool --addUser johndoe

To revoke upload privileges:

% ismusertool --removeUser johndoe

ISMUsertool allows you to specify multiple options on a single command line. For more

information, specify the --help option:

% ismusertool --help

By default, the Opsware admin user has upload privileges, which cannot be revoked.

The --upload command of ISMTool also prompts for the Opsware customer. For users

that are granted upload privileges using ISMUsertool, the only Opsware customer allowed

is Customer Independent. The admin user can specify any customer defined in the

Opsware Command Center.

I N T H I S A P P E N D I X

This appendix provides a brief overview of the ISMUsertool.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 69

Opsware® SAS ISM Development Kit 2.0 Guide

7
0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

Appendix B: Platform Differences

Solaris
Solaris package names have a 9 character limit. By convention, the format is a set of

capital letters, followed by a set of lower case letters that identify the application.

Optionally, the final character may have a special meaning. Note that this format is a

convention, not a requirement. Here are some examples of Solaris package names:

SPROcc
SPROcmpl
SPROcodmg
SUNWgssx
SUNWgzip
SUNWhea
SUNWhiu8x
SUNWhmd
SUNWhmdu
SUNWhmdx

When the ISMTool creates a Solaris package, it must use a package name that is no

more than 9 characters in length. The package name constructed by ISMTool begins with

ISM, followed by the five first characters of the ISM's name, followed by the letter c for the

control package or a digit 0 for the first part of an application package, 1 for the second

part, and so forth. For example, if the ISM name is foobar, the package names would be

the following:

ISMfooba0
ISMfoobac

I N T H I S A P P E N D I X

This appendix discusses the IDK differences for the following platforms:

• Solaris

• Windows
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 71

Opsware® SAS ISM Development Kit 2.0 Guide

7

If truncation occurs, ISMTool generates a warning so that the developer can rename the

ISM to avoid naming conflicts. To view the package names, use the Solaris pkginfo

command.

If you upload a Solaris passthru package, the response file is not uploaded. You must

manually upload the response file.

Windows
On Windows, when ISMTool creates the application and control Windows Installer (MSI)

packages, it encodes the ProductName and ProductVersion as follows:

ProductName: <name>-<version>
ProductVersion: 0.0.<app|ctl release>

The <name>, <version>, and <release> correspond to an ISM's internal information,

which can be viewed with the ISMTool’s --info command. This encoding scheme is by

design and is required for the reconcile process to work correctly.
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

	Opsware® SAS ISM Development Kit 2.0 Guide
	Table of Contents
	Preface
	About this Guide
	Contents of this Guide
	Conventions in this Guide
	Icons in this Guide

	Chapter 1: Overview
	Introducing the IDK and ISMs
	Benefits of the IDK
	IDK Tools and Environment
	Supported Package Types

	What’s New in This Release
	Shared Runtime Packages
	Passthru Packages
	Meta Data Update

	Installing the IDK
	Installing the IDK for the Visual Packager
	Installing the IDK for Command-Line Package Development
	Installing the IDK on Opsware SAS 4.x

	IDK Quickstart
	Creating, Building, and Uploading a Simple ISM
	Examining the Node and Packages in the Opsware Command Center

	Chapter 2: ISM Build Environment
	ISM File System Structure
	Build Process
	When to Invoke the --build Command
	Multiple Command-Line Options
	Actions Performed by the --build Command
	Packages Created by the --build Command

	Specifying the Application Files of an ISM
	Placing Archives in the bar Subdirectory
	Specifying Passthru Packages
	Compiling Source (Unix Only)

	ISM Name, Version Number, and Release Number
	Initial Values for the ISM Name, Version, and Release
	ISM Version and Release Numbers Compared
	Upgrading the ISM Version

	Chapter 3: ISM Scripts
	Overview of ISM Scripts
	Installation Hooks
	Creating Installation Hooks
	Invocation of Installation Hooks
	Installation Hook Functions
	Scripts for Control-Only ISMs
	Location of Installation Hooks on Managed Servers
	Default Installation Hooks for Unix
	Default Installation Hooks for Windows

	Control Scripts
	Creating Control Scripts
	Control Script Functions
	Location of Control Scripts on Managed Servers

	Dynamic Configuration with ISM Parameters
	Development Process for ISM Parameters
	Adding, Viewing, and Removing ISM Parameters
	Accessing Parameters in Scripts
	The ISM parameters Utility
	Example Scripts
	Search Order for Custom Attributes

	Installation Scripts
	Differences Between Installation Scripts and Hooks
	Creating Installation Scripts
	Invocation of Installation Scripts and Hooks

	Chapter 4: ISMTool Commands
	ISMTool Argument Types
	Informational Commands
	--help
	--env
	--myversion
	--info ISMDIR
	--showParams ISMDIR
	--showPkgs ISMNAME
	--showOrder ISMNAME
	--showPathProps ISMNAME

	Creation Commands
	--new ISMNAME
	--pack ISMDIR
	--unpack ISMFILE

	Build Commands
	--verbose
	--banner
	--clean
	--build
	--upgrade
	--name STRING
	--version STRING
	--prefix PATH
	--ctlprefix PATH
	--user STRING (Unix only)
	--group STRING (Unix only)
	--ctluser STRING (Unix only)
	--ctlgroup STRING (Unix only)
	--pkgengine STRING (Unix only)
	--ignoreAbsolutePaths BOOL (Unix only)
	--addCurrentPlatform (Unix only)
	--removeCurrentPlatform (Unix only)
	--addPlatform TEXT (Unix only)
	--removePlatform TEXT (Unix only)
	--target STRING (Unix only)
	--skipControlPkg BOOL
	--skipApplicationPkg BOOL
	--chunksize BYTES (Unix only)
	--solpkgMangle BOOL (SunOS only)
	--embedPkgScripts BOOL
	--skipRuntimePkg BOOL

	Opsware Interface Commands
	--upload
	--noconfirm
	--opswpath STRING
	--dataAccesEngine HOST[:PORT]
	--commandEngine HOST[:PORT]
	--softwareRepository HOST[:PORT]
	--description TEXT
	--addParam STRING
	--paramValue TEXT
	--paramType PARAMTYPE
	--paramDesc TEXT
	--removeParam STRING
	--rebootOnInstall BOOL
	--rebootOnUninstall BOOL
	--registerAppScripts BOOL (Windows only)
	--endOnPreIScriptFail BOOL (Windows only)
	--endOnPstIScriptFail BOOL (Windows only)
	--endOnPreUScriptFail BOOL (Windows only)
	--endOnPstUScriptFail BOOL (Windows only)
	--addPassthruPkg {PathToPkg} --pkgType {PkgType} ISMNAME
	--removePassthruPkg {PassthruPkgFileName} ISMNAME
	--attachPkg {PkgName} --attachValue BOOLEAN ISMNAME
	--orderPkg {PkgName} --orderPos {OrderPos} ISMNAME
	--addPathProp {PathProp} --propValue {PropValue} ISMNAME
	--editPkg {PkgName} --addPkgProp {PkgProp} --propValue {PropValue} ISMNAME

	Environment Variables
	CRYPTO_PATH
	ISMTOOLBINPATH
	ISMTOOLCE
	ISMTOOLCUSTOMER
	ISMTOOLDA
	ISMTOOLPASSWORD
	ISMTOOLSITEPATH
	ISMTOOLSR
	ISMTOOLUSERNAME

	Appendix A: ISMUsertool
	Appendix B: Platform Differences
	Solaris
	Windows

