
CML Tutorial

About the CML Tutorial
This guide shows you how to use Opsware’s Configuration Markup Language (CML) to

make an Opsware Application Configuration Template based upon the Microsoft Internet

Information Services (IIS) Web server configuration file UrlScan.ini.

While this tutorial will not teach you everything there possibly is to know about CML,

creating a CML template from UrlScan.ini will help you gain both a fundamental

understanding of CML and the process of creating an Application Configuration Template

from a real configuration file.

For more information on how to use Application Configurations in the OCC Client to

manage your applications in your managed server environment, see the Opsware® SAS

User’s Guide.

I N T H I S T U T O R I A L

This tutorial contains the following sections:

• About the CML Tutorial

• CML Fundamentals

• Creating a CML Template

• Completed url_scan_ini.tpl Template

• Using DTD Tags in CML

• Sequence Aggregation

• CML Grammar
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 1

Opsware® SAS 5 CML Tutorial
CML Fundamentals
This section contains the main terms and concepts you will need to be familiar with in

order to understand this tutorial.

• What is an Application Configuration Template?

• What is an Application Configuration?

• What is CML?

• About the CML Parser

• Anatomy of a CML Tag

• CML Tags You Should Know

What is an Application Configuration Template?

An application configuration template is a “templatized” version of an actual configuration

file whose values have been turned into variables. Using the OCC Client, a user can edit a

template’s value sets and propagate those changes to an actual configuration file on a

server.

Once the template version of the configuration file has been created and added to an

Application Configuration (inside the OCC Client user interface), system administrators

can easily define values for configuration files on servers and server groups.

A CML template is a text file that uses the TPL extension. The Application Configuration

feature accepts non-ascii characters, but all key names in your CML templates must be in

ASCII. Other fields and text can be either ASCII or non ASCII text.

What is an Application Configuration?

An Application Configuration a like a container or folder which houses Application

Configuration Templates. If an application contains several configuration files, you can

create an Application Configuration Template for each configuration file you want to

manage, and then create a single Application Configuration to contain all the templates. In

addition to housing Application Configuration Templates, an Application Configuration can

also contain Pre and Post-install scripts that can be executed before and after a

configuration push.
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

CML Tutorial
What is CML?

CML (Configuration Markup Language) is a configuration markup language that allows

system administrators to “templatize” or variablize entries in a native configuration file so

those files can be edited and managed from a single location inside the OCC Client.

CML uses special markup tags to modify an application’s configuration’s file’s content —

data such as directives, definitions, and so on — so that the configuration data becomes

transformed into variables. Once the configuration file has been templatized and added to

an Application Configuration inside the OCC Client, the end user can manage, edit, and

make changes to the native configuration files on managed servers.

About the CML Parser

The CML parser is the engine that utilizes CML configuration files to extract values from

existing template files, where they can then be edited. The parser also uses the same

CML configuration files to regenerate those configuration files, with new values. For this

tutorial, you do not need to know the technical details of the CML parser. You do need to

know that CML is used to represent the structure and format of a configuration file,

allowing editing of live configuration files on managed servers.

Anatomy of a CML Tag

The basic structure, or anatomy, of a CML tag follows this structure:

@<level><tag type><name>;<data
type>;<range>;<option1>;<option2>;(more options)@

At its most fundamental level, each CML tag starts and end with the @ symbol.

Everything else between consists of one or more of the following CML elements:

• level

• tag type

• name

• data type

• range

• options
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 3

Opsware® SAS 5 CML Tutorial
level

Levels are used to nest blocks within other blocks. (A block defines parsing rules for a

section of information inside a native configuration file.) Levels also signify whether the

block spans multiple lines or just one line. Levels under 100 span multiple lines; levels

over 100 are contained in a single line. Blocks that start at a level less than or equal to the

surrounding block close that block, so when you are nesting blocks use block levels

higher than the encompassing block.

You would want to use nested blocks to specify how levels will exist in a block of

information in the template. For example, if you had a section in a configuration file that

contained two types of data, such as ordered lines and unordered line, then you could set

two or more nested blocks (at different levels) in order to handle the information in the

section.

tag type

Indicates the type of tag, denoted by a symbol, such as: comment (#), loop: (*), loop

target (.), instruction (!), and so on.

name

Indicates where the data read by this tag is stored in namespace. Names can be either

absolute or relative. For example:

• Relative: If you defined @!namespace="/system/service/webserver/"@,

then the relative name @ListenPort@ would use namespace /system/service/

webserver/ListenPort. Subsequently, you could then us the relative name

@LogFile@ and this name would use the namespace /system/service/webserver/

LogFile.

• Absolute: For example, @/system/service/webserver/ListenPort@.

If you define an absolute namespace in the header of a template, then all relative

instances of a name will be appended to that namespace. Conversely, you can define an

absolute name any time you wish inside the template, and a new namespace will be

created.

data type

Indicates what data type the tag will handle. Basic data types can be string, int, decimal,

hostname, ordered-string-set, unordered-int-set, ordered-hostname-list, and so on.
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

CML Tutorial
range

Specifies ranges of data. For example, you could use a range specifier to specific data

range for an int type1 > 2000, or the range for a string type: “Windows”, “Linux” and so

on.

options

Options are very similar to instruction tags and serve to modify or affect the behavior of

the tag. They can also be appended to the end most tags, separated by semicolons. For

example:

;delimeter-is-comma;optional;boolean-yes-format=yes;boolean-no-

format=no;

CML Tags You Should Know

In order to create a CML template for UrlScan.ini, you should become familiar with the

following CML tags:

• Comment Tag

• Instruction Tag

• Replace Tag

• Block Tag

• Loop Tag

• Loop Target Tag

Comment Tag

The comment tag can be used to insert information about the template, the configuration

file it represents, template metadata (creator, applicable systems, etc.) or any other

human-readable information.

Syntax

@# <one line comment>EOL

Or

@## <comments spanning multiple lines> #@

The comment tag is often used at the beginning of a CML template (the header) so the

author can provide information about the template, such as the name of the template, the

configuration file the template as based upon, the purpose of the template, a description

of the template, the author, the date, and so on.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 5

Opsware® SAS 5 CML Tutorial
Instruction Tag

The instruction tag sets options that will be used at parse time. For example, defining the

namespace, whether a list is sorted, ordered, or unordered, how the parser should

interpret white space, acceptable delimiters, defining comment characters, and so on.

Syntax

@![{options}]@

Replace Tag

The replace tag functions to replace the tag in a CML line with the data from that location

in namespace. It is an indicator that the text in this location is data, and it also specifies

details about how that data should be stored and validated.

Syntax

@{source}[;[{type}][;[{range}[;{option}[;{option}]...]]]]@

The only required element in a replace tag is the source; everything else is optional.

Block Tag

The block tag allows you to group related configuration statements. A block defines

parsing rules for a section of information inside a native configuration file. For example,

you might have a section of a configuration file where true/false values are defined as

either 1/0. In another section in the same file true/false values are set to T/F. You could

use the use the block tag to separate the two different ways the CML parser interprets

these different ways of defining true/false.

Another example would be if in one section of a configuration file a specific number of

spaces are important, while in another section any number of spaces is acceptable, you

would use the block tag to indicate where the configuration statements differ.

Syntax

@[{level}][[;{option}[;{option}]...]]]]@ <block> <explicit
or implicit block end>

Loop Tag

The loop tag allows sequences (lists and sets) to be enumerated. The block associated

with a loop element will be processed for each incident of that block in an input file, and

will be generated in an output file for each incidence of that data in a valueset.
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

CML Tutorial
Syntax

@[{level}]*{source}[;[{type}][;[{range}[;{option}[;{option}]
...]]]]@ <block> <explicit or implicit block end>

Loop Target Tag

The loop target tag is used in a block that is encapsulated by a sequence or type other

than namespace. When encountered in a block, this tag is simply replaced with the value

of the current value with each loop iteration.

Syntax

@.@

Creating a CML Template
This section shows you how to create an Application Configuration using CML and

contains the following sections:

• Materials Needed for the Tutorial

• Completed Template Sample

• 1. Familiarize Yourself with the Native Configuration File and Its Documentation

• 2. Create CML Template File for UrlScan.ini

• 3. Create the CML Template Header

• 4. Create the CML Template Basic Setup Section

• 5. Create the Template Body

• 6. Mark Up UrlScan [Options] Section — Opening Blocks

• 7. Closing One Block by Opening a New One — Marking Up [AllowExtensions]

• 8. Mark Up [DenyExtensions] Section by Opening a New Block

• 9. Mark Up [AllowVerbs] and [DenyVerbs] Sections

• 10. Mark Up [DenyHeaders] Section

• 11. Mark Up [DenyURLSequences] Section

• 12. Mark Up [RequestLimits] Section

• 13. From Template to Application Configuration

• Completed Template Sample
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 7

Opsware® SAS 5 CML Tutorial
Materials Needed for the Tutorial

• Documentation for UrlScan.ini

• UrlScan.ini file

• A text editor

Completed Template Sample

After you finish this tutorial, you can look at the completed url_scan_ini.tpl template so you

can compare your results with a completed template. To view the completed template,

see “Completed url_scan_ini.tpl Template” on page 30.

1. Familiarize Yourself with the Native Configuration File and Its
Documentation

Once you have identified an application configuration file you want to manage with ACM,

the first thing to is to analyze the native configuration file and its documentation. Make

sure that you understand the purpose of the configuration file and all the elements

For example, the documentation for UrlScan.ini tells you that the configuration file enables

systems administrators to configure IIS to screen and analyze HTTP requests in order to

prevent Internet attacks.

UrlScan.ini consists of several sections, such as [Options], [AllowVerbs], [DenyVerbs],

[DenyHeaders], [AllowExtensions], and [DenyExtensions]. Each section allows you to set

different configurations to either allow or not allow certain kinds of HTTP requests on your

IIS Server.

Each of these sections, judging from the documenting, do not need to be arranged in any

specific order. For example, I could list the [Options] sections followed by [DenyVerbs]

instead of [AllowVerbs], and the file would still contain the same configuration information

and perform its function within IIS. In other words, the order of the main sections of the

configuration file is not important

However, the information inside each of these sections do need to be listed (ordered) in a

specific way. In other words, the [AllowVerbs] section must be followed by specific verbs

you do not want to allow to access your web site. For example, if you put the actual verbs

before the [AllowVerbs] string, then that feature of the configuration file would not work.
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

CML Tutorial
You also want to become familiar with the kinds of data the configuration file manages. In

general, UrlScan.ini works with lists of strings, such as lists of verbs and file extensions. In

addition, the file also allows the user to set several yes or no (boolean) options. This kind

of information is useful to know before you start creating an Application Configuration

Template.

2. Create CML Template File for UrlScan.ini

A CML Template begins as a simple text file that uses the TPL extension.

To create the UrlScan.ini template:

1 Using a text editor, create a new text file and save it as Url_Scan_ini.tpl. TPL is the file

extension used by Opsware for CML templates, though technically you can use any

file extension you want, or none at all. Opsware Application Configuration Template

file naming conventions typically uses the name of the native configuration file with

underscores between each section of the native configuration filename.

2 Now that you have created the CML template file, you are now ready to build the

basic structure of the template, which will consist of a Header, Basic Setup Section,

and Template Body.

3. Create the CML Template Header

The purpose of creating the CML template header is so that anyone who reads this

template will know:

• Name of the native file this template manages (file's absolute pathname)

• Operating systems that the file can work on

• Version of the template

• Author of the template (optional: author's email address)

The first CML tag you will use to create the template's header will be the Comment tag,

which allows you to write information about the template. The Comment tag uses this

syntax:

@# <one line comment>EOL

Or

@## <comments spanning multiple lines> #@
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 9

Opsware® SAS 5 CML Tutorial

1

To create the CML template header, using the CML Comment tag, create a header

section at the top of the file that contains three lines of content, the native configuration

file that the template will manage, the template version, and the author (with email

address).

For example, here’s what your template header might look like:

@###
#
\system32\inetsrv\urlscan.ini (Windows)
Version 1.0
Joe Author (joe_author@your_company.com)
#
###@

4. Create the CML Template Basic Setup Section

This basic setup section is where you list CML options that instruct the parser how to

interpret the CML file. This section can include such as namespace definition, white

space handling, list rules, line rules, and so on.

To create the CML template basic setup section:

1 Following the header of the CML template, enter the following information (or copy

and paste from here):

@!namespace=/security/@
@!filename-key="/test";filename-default="/c/UrlScan.ini"@
@!optional-whitespace@
@!boolean-yes-format="1";boolean-no-format="0"@
@!line-comment-is-semicolon@
@!unordered-lines@

This information defines important rules for the url_scan_ini.tpl template, indicating

how the CML parser is supposed to interpret and handle information in the template.

Notice that each line is a CML instruction tag. You know this is a CML instruction tag

because the way the tag starts:

@!

with an at (@) sign and an exclamation mark (!).
0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

CML Tutorial
CML Template Basic Setup Section Explained

Table 1 explains what each section of the template basic setup section means and does.

Table 1: CML Template Basic Setup Section Explained

CML TAG DESCRIPTION

@!namespace=/security/@ Define the namespace; in other words, this

defines where in the Opsware Model

Repository values read by the CML tem-

plate will be stored.

@!filename-key="/files/

urlscan_ini";filename-

default="/c/urlscan.ini"@

filename-key

Defines the location in namespace where

the filename will stored.

filename-default

Defines the location where the native con-

figuration file will be saved on the disk. This

path can be changed by the user from the

OCC Client.

Note that the path names use only forward

slashes.

@!optional-whitespace@ Indicates that whitespace is optional

between items in the configuration file. For

example, either of the following entries

would be valid if this option is set:

Key = "value"

Key="value"

@!boolean-yes-

format="1";boolean-no-

format="0"@

Defines the allowable boolean values in

the configuration file. In this case, Yes is

indicated with the character 1, and No is

indicated with a 0. This means that is a

user tried to use the string yes, the Appli-

cation Configuration would not accept it.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 11

Opsware® SAS 5 CML Tutorial

1

5. Create the Template Body

Now that you have created both the header and basic setup portions of your CML

template, you are now ready to construct the body. The body is where all your main

instructions will be contained.

To create the template body:

1 The first thing to do is create a heading that indicates to anyone who might read this

file that this is the beginning of the body of the template. Enter the following at the

end of the basic setup section of the template:

@###
Begin data
###@

2 Save the changes to the file.

6. Mark Up UrlScan [Options] Section — Opening Blocks

Now you are ready to start marking up the template. The first section of the UrlScan.ini file

you will convert into CML is the [Options] section, which contains several options for the

configuration file.

In CML, if a section of information in a configuration file has more than one kind of data

(data that needs to be read differently by the CML parser), you can open “blocks” to

handle each section of information separately. Typically, you open a block in CML in order

to define special parser rules for a section of the CML file. In the case of the [Options]

@!line-comment-is-semicolon@ Instructs the parser not to read anything

that follows a semicolon in the configura-

tion file. This allows an end user to make

comments in the native configuration file

using the semicolon before each comment.

@!unordered-lines@ Tells the parser that the sections in the

configuration file can be in any order. If you

used ordered-lines, then the configu-

ration file would have to conform to the

order of the template.

Table 1: CML Template Basic Setup Section Explained

CML TAG DESCRIPTION
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

CML Tutorial
section, there are basically two “blocks” of information that need to be read by the CML

parser: the title of the section and all the options. Since both of these blocks belong

together, you will set them at different levels, the first block (the title of the section) at level

one, and the second block (the contents of the section) at level two. Nesting the blocks in

this manner keeps the sections within the block together when read by the parser.

To markup the UrlScan.ini [Options] section:

1 After the “begin data” section of the template, enter the following:

@1[;optional;ordered-lines@
[Options]
@2[;unordered-lines@

2 In the UrlScan.ini file the [Options] section contains a list of key value pairs. We will

use the block tag ([) set at two levels because there are two kinds of data in this

section: a heading and followed by a list of key value pairs. The first level block

handles the text string “[Options]” while the second level block will handle all of the

key value pairs in that section.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 13

Opsware® SAS 5 CML Tutorial

1

Table 2 explains how to open two block levels for the [Options] section.

Table 2: Marking Up the Start of the [Options] Section

CML TAG DESCRIPTION

@1[;optional;ordered-lines@ The number 1 sets the first level of the

multiline block.

[

CML block symbol opens a new block.

optional

Indicates that this entire block is optional

and not required to be in the configuration

file for the file to be "correct".

ordered-lines

Indicates that whatever follows this tag (the

string [Options]) has to come first in the

native UrlScan.ini configuration file. In other

words, you could not list in the native file all

the options and then the title. “[Options]”

has to come first. In CML, the option

“ordered-lines” determines this order.

[Options] The string that names the section in the

native configuration file.

@2[;unordered-lines@ The number 2 sets the second level of the

block.

[

CML block symbol opens a new block.

unordered lines

Indicates that all the lines that follow

[Options] within the block can be in any

order in the configuration file. In other

words, all the key value pairs that are con-

tained in the [Options] section can be

ordered and will be read by parser.
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

CML Tutorial
3 Next, you will markup all the options lines from the configuration file. Most of these

entries use the CML replace tag because they are simply key value pairs that allow a

user to replace a single value. Table 3 explains the CML markup of each option.

Table 3: Marked Up Key Value Pairs from UrlScan.ini [Options] Section

CML TAG DESCRIPTION

AllowDotInPath = @allow_dot_in_

path;boolean@

Note: All of the key value pair markup use

some variation of the following syntax

(unless otherwise indicated):

string literal = @source;type@

allow_dot_in_path

This string defines the namespace path to

store this value. In this example, the

namespace is relative, which means that it

will be appended to the namespace that

you defined in the header of the template

(@!namespace=/security/@) and will store

the value in that namespace location.

For example:

/security/allow_dot_in_path.

If you wanted, you could also write this tag

like this:

AllowDotInPath = @/security/

allow_dot_in_path;boolean@

boolean

Since the key value pair type is boolean,

we used the CML type: boolean. Note

that since in the header of this template we

defined an acceptable boolean yes value

as 1, when the end user modifies the tem-

plate in the OCC Client, they would need to

enter a one if they want to allow dots in the

path of IIS.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 15

Opsware® SAS 5 CML Tutorial

1

AllowHighBitCharacters =

@allow_high_bit_

characters;boolean@

Allows users to choose whether or not high

bit characters are acceptable in a URL,

flagged by a yes (1) or no (2) in the

configuration file.

AllowLateScanning = @allow_

late_scanning;boolean@

Allows users to choose whether or not late

scanning of a URL is acceptable. And,

defines a namespace location to store

value. boolean indicates this key is

accepts a yes (1) or no (2) in the

configuration file.

AlternateServerName =

@alternate_servername@

Defines a namespace where an alternate

server name can be stored when entered

by the user, or read in from a configuration

file.

EnableLogging = @enable_

logging;boolean@

Allows users to turn on logging, flagged by

a yes (1) or no (2) in the configuration file.

LoggingDirectory = @logging_

directory;dir@

Allows users to choose a directory to store

log files, if logging has been turned on.

Notice that for the type, the CML tag uses

the element dir - an acceptable CML

data type.

LogLongURLs = @log_long_

urls;boolean@

Allows user to choose whether or not to log

URLs that access the server, a yes (1) or no

(2) in the configuration file.

NormalizeUrlBeforeScan =

@normalize_url_before_

scan;boolean@

Allows users to choose whether or not to

normalize the URL before it is read by the

server, flagged by a yes (1) or no (2) in the

configuration file.

PerDayLogging = @per_day_

logging;boolean@

Allows users to choose to turn on per day

logging, flagged by a yes (1) or no (2) in

the configuration file.

Table 3: Marked Up Key Value Pairs from UrlScan.ini [Options] Section

CML TAG DESCRIPTION
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

CML Tutorial
PerProcessLogging = @per_

process_logging;boolean@

Allows users to turn on or off per process

logging, flagged by a yes (1) or no (2) in

the configuration file.

RejectResponseUrl =

@reject_response_

url;string;r'(HTTP_URLSCAN_

STATUS_HEADER)|(HTTP_URLSCAN_

ORIGINAL_VERB)|(HTTP_URLSCAN_

ORIGINAL_URL)';optional@

Syntax

string literal =

@source;type;r'regular

expression';option@

reject response

String literal that defines the path where

the strings will be stored in namespace.

string

Indicates that the data type for the reject

URL request is a string.

r’

A string range specifier that introduces a

regular expression. In this case, a range of

string literals.

(HTTP_URLSCAN_STATUS_

HEADER)|(HTTP_URLSCAN_

ORIGINAL_VERB)|(HTTP_URLSCAN_

ORIGINAL_URL)'

The string literals (rejected URL responses)

to be read by the parser: the status header,

original verb, and original URL.

optional

Indicates that this value is optional. That is,

if left blank, the parser can still read the

CML.

Table 3: Marked Up Key Value Pairs from UrlScan.ini [Options] Section

CML TAG DESCRIPTION
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 17

Opsware® SAS 5 CML Tutorial

1

RemoveServerHeader = @remove_

server_header;boolean@

Allows users to turn on or off the

RemoveServerHeading feature. When acti-

vated (set to 1), the reject response sent to

the client will removing the server header in

the message. This setting is flagged by a

yes (1) or no (2) in the configuration file.

UseAllowVerbs = @use_allow_

verbs;boolean@

Allows users to turn on or off the UseAllow-

Verbs feature. When activated (set to 1),

the server will reject any request to the

server that contain an HTTP verb that is not

explicitly listed in the AllowVerbs section of

the UrlScan.ini file. Flagged by a yes (1) or

no (2) in the configuration file.

UseAllowExtensions = @use_

allow_extensions;boolean@

Allows users to turn on or off the UseAl-

lowExtension feature. When activated (set

to 1), the server will reject any request to

the server that contain a file extension that

it not explicitly listed in the AllowExtension

section of the UrlScan.ini file. Flagged by a

yes (1) or no (2) in the configuration file.

UseFastPathReject = @use_fast_

path_reject;boolean@

Allows users to turn on or off the UseFast-

PathReject feature. When activated (set to

1), the server ignores the RejectRespon-

seUrl option and returns a short 404

response to the client when a URL is

rejected. Flagged by a yes (1) or no (2) in

the configuration file.

VerifyNormalization = @verify_

normalization;boolean@

Allows user to turn on or off normalization

of all URLs scanned by UrlScan.ini. When

activated (set to 1), the URL is normalized

before being scanned. Flagged by a yes (1)

or no (2) in the configuration file.

Table 3: Marked Up Key Value Pairs from UrlScan.ini [Options] Section

CML TAG DESCRIPTION
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

CML Tutorial
7. Closing One Block by Opening a New One — Marking Up
[AllowExtensions]

Now that you have marked up all of the options in the [Options] section of the UrlScan.ini

file, you are ready to start marking up the next section, [AllowExtensions]. Remember that

to start the [Options] section you had to open a two level block to account for two levels

of information — the title of the [Options] section and its contents.

Before you can start marking up the [AllowExtensions], you need to close the previous

section by closing the CML block. With CML, you can close a block by opening a new

block at a higher (lower number) or equal to level. In this task, you will open the new block

for the [AllowExtensions] the same way you opened a block for the [Options] section, by

starting a new first level block.

To open a new block and mark up the [AllowExtensions] section:

1 After the last line of the [Options] section, enter the following text to open the new

block for the [AllowExtensions] section:

@1[;optional;ordered-lines@
[AllowExtensions]
@2[;unordered-lines@
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 19

Opsware® SAS 5 CML Tutorial

2

Table 4 explains how opening a new two level block closes the previous block.

Table 4: Starting a New Block for the [AllowExtensions] Section

CML TAG DESCRIPTION

@1[;optional;ordered-lines@ The number 1 opens a new level one

block. Because it is a number 1 level block,

which is at a higher level than the previous

block (a level two block for the key value

pairs in the [Options] section) and equal to

the level 1 block before that, it will close the

two blocks that came before it.

Note that you could also close a block by

using the close block command. For exam-

ple:

@2]@

[

CML block symbol that opens a new block.

optional

Indicates that this entire block is optional

and not required to be in the configuration

file for the file to be "correct".

ordered-lines

Indicates that whatever follows this tag (the

string [AllowExtensions] has to come first in

the native UrlScan.ini configuration file. In

other words, you could not list all the

options in the native file and then the title.

[AllowExtensions] has to come first. In

CML, the ordered-line element determines

this order.

[Options] The literal string that names the section in

the native configuration file.
0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

CML Tutorial
2 Next, because the [AllowExtensions] section of the UrlScan.ini file can contain any list

of file extensions entered by the user, you will use a CML loop and loop target tag to

instruct the parser will read the information in this section one line at a time, then

repeat by reading the next line, and so on.

Directly after the last @2[;unordered-lines@ text from the last step, enter the

following text:

@*allow_extension;unordered-string-set@
.@.@

@2[;unordered-lines@ The number 2 sets the second level of the

block.

[

CML block symbol that opens a new block.

unordered lines

Indicates that all the lines that follow

[AllowExtensions] within the block can be

in any order in the configuration file. In

other words, all the key value pairs that are

contained in the [AllowExtensions] section

can be ordered in any order you wish.

Table 4: Starting a New Block for the [AllowExtensions] Section

CML TAG DESCRIPTION
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 21

Opsware® SAS 5 CML Tutorial

2

Table 5 explains the how the loop and loop target CML tags work:

3 Save the file.

8. Mark Up [DenyExtensions] Section by Opening a New Block

In this task, you will markup the [DenyExtensions] section of the UrlScan.ini file the exact

same way you marked up the [AllowExtensions] section. You will be opening a new level

one block, which closes the previously opened block from the [AllowExtensions] section.

Table 5: Loop and Loop Target CML Tags

CML TAG DESCRIPTION

@*allow_extension;unordered-

string-set@

Syntax

@<level><tag type><name>;<data

type>;<options>@

The loop tag (*) will “loop” or read over

the unordered string set listed in the

[AllowExtensions] section.

allow_extension

String that defines the path where the

strings will be stored in namespace.

unordered-string-set

Indicates that the list of strings do not have

to be listed in any specific order.

.@.@ First (.)

In this section, this unordered string set

that the parser reads is a list of file exten-

sions listed in the [AllowExtensions] section

that start with a (.) character.

@.@

Loop target tag (.) instructs the parser to

read everything in this list that starts with a

period character.
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

CML Tutorial
Then, you will open a level two block from which you will instruct the parser to read an

unordered list of all file extensions beginning with a (.) that you wish to block using

UrlScan.ini.

The CML markup for the [AllowExtensions] section looks like this:

@1[;optional;ordered-lines@
[DenyExtensions]
@2[;unordered-lines@
@*deny_extension;unordered-string-set@
.@.@

9. Mark Up [AllowVerbs] and [DenyVerbs] Sections

The next two sections of the UrlScan.ini file will follow the exact same CML markup as you

used for [DenyExtensions] in the previous sections. You will open a first level block to

close the previous block, which will also parse the following text as an ordered line.

Then, you will open a second level block that reads the following list of as an unordered

strings — in other words, a list of verbs. In these two sections, the string you will instruct

CML to read will be a list of verbs you wish to allow into your web site and a list of verbs

you wish to deny access to your web site.

The CML markup for both of these sections is as follows:

@1[;optional;ordered-lines@
[AllowVerbs]
@2[;unordered-lines@
@*allow_verb;unordered-string-set@
@.@

@1[;optional;ordered-lines@
[DenyVerbs]
@2[;unordered-lines@
@*deny_verb;unordered-string-set@
@.@

10. Mark Up [DenyHeaders] Section

In this next task, you will mark up the [DenyHeaders] section of the UrlScan.ini file, which

allows you to configure IIS to deny specific HTTP request headers.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 23

Opsware® SAS 5 CML Tutorial

2

This section will be marked up in CML similarly to the previous sections in that you will

open two blocks that will be read for strings. However, you will be separating the list of

HTTP headers listed in the UrlScan.ini file by a colon, using a CML sequence delimiter.

Since HTTP request headers contain a colon (:), you need to use a sequence delimiter

to tell the parser to read each line in the section so when it encounters a colon (:), it will

move on to the next entry.

For example, the list of HTTP headers to be denied listed in the UrlScan.ini file might read

something like this:

Translate:

If:

Lock-Token:

Because each header request listed in the configuration file ends with a (:), we need to

instruct the parser to recognize the (:) as the end of an entry.

To markup the [DenyHeaders] section:

1 After the last line of the [DenyVerbs] section, enter the following text to open the new

block for the [DenyHeaders] section:

@1[;optional;ordered-lines@
[DenyHeaders]
@2[;unordered-lines@

As you have done in previous sections, with these tags you are opening a level one

block to be read as an ordered line, then opening a second level block to be read as

unordered lines.

2 Next, type the following CML loop and loop target tags to instruct the parser to read

through the list of header requests:

@*deny_header;unordered-string-set;;sequence-delimiter=":"@
@.@:
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

CML Tutorial
Loop and Loop Target Tags for the [DenyHeaders] SectionTable 6 describes the

syntax of these two tags.

Table 6: Loop and Loop Target Tags for the [DenyHeaders] Section

CML TAG DESCRIPTION

@*deny_header;unordered-

string-set;;sequence-

delimiter=":"@

*

Indicates a loop CML tag that will read

through the list of strings.

deny_header

String literal that defines the path where

the strings will be stored in namespace.

unordered-string-set

Indicates that the list of strings can be

listed in any order.

;

The first semicolon separates the two sec-

tions of the tag.

;

The second semicolon allows you to enter

the following colon (:) sequence delimeter

without it being interpreted as a range.

sequence-delimiter=":"

Instructs the parser to read a colon (:) as

part of the string and the point at which to

move on to the next entry.

@.@ Loop target tag instructs the parser to store

these values into the deny_header

namespace. E.g., /security/deny_extension

: Final colon (:) tells the parser that each

item in this list is going to be followed by a

colon. In other words, this character will be

included and stored as a part of the entry

for a denied header.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 25

Opsware® SAS 5 CML Tutorial

2

3 Save the file.

11. Mark Up [DenyURLSequences] Section

Marking up the [DenyUrlSequence] is very similar to the way in which you marked up the

[DenyHeader] section: you will open two blocks that will be read for order and unordered

strings. However, for this section you will be separating the list of URL sequences in the

template with a field delimiter. The field delimiter used here will be an end of line element

(eol) which instructs the parser stop reading an entry when it encounters the end of a line.

To markup the [DenyUrlSequence] section:

1 After the last line of the [DenyUrlSequence] section, enter the following text to open

the new block for the [DenyUrlSequence] section:

@1[;optional;ordered-lines@
[DenyUrlSequence]
@2[;unordered-lines@

As you have done in previous sections, with these tags you are opening a level one

block to be read as an ordered line, then opening a second level block to be read as

unordered lines.

2 Next, type the following CML loop and loop target tags to instruct the parser to read

through the list of URL sequences to be denied:

@*deny_url_sequence;unordered-string-set;;field-delimiter-
is-eol@
@.@
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

CML Tutorial
Table 7 describes the syntax of these tags

3 Save the file.

Table 7: Loop and Loop Target Tags for the [DenyUrlSequence] Section

CML TAG DESCRIPTION

@*deny_url_sequence;unordered-

string-set;;field-delimiter-

is-eol@

*

Indicates a loop CML tag that will read

through the list of strings.

deny_url_sequence

String literal that defines the path where

the string will be stored in namespace.

unordered-string-set

Indicates that the list of strings can be

listed in any order.

;

The first semicolon separates the two sec-

tions of the tag.

;

The second semicolon allows you to enter

the following colon (:) sequence delimeter

without it being interpreted as a range.

sequence-delimiter=":"

Instructs the parser to read a colon (:) as

part of the string and the point at which to

move on to the next entry.

@.@ Loop target tag instructs the parser to store

these values into the deny_url_

sequence namespace. E.g., /security/

deny_url_sequence.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 27

Opsware® SAS 5 CML Tutorial

2

12. Mark Up [RequestLimits] Section

Marking up the [RequestsLimits] is very similar to the way in which you marked up the

[DenyUrlSequence] section: you will open two blocks that will be read for order and

unordered strings. But for this section, after you open both blocks, you will be using the

CML replace tag to mark up three key value pairs.

To markup the [RequestsLimits] section:

1 After the last line of the [RequestsLimits] section, enter the following text to open the

new block for the [RequestsLimits] section:

@1[;optional;ordered-lines@
[RequestsLimits]
@2[;unordered-lines@

As you have done in previous sections, with these tags you are opening a level one

block to be read as an ordered line, then opening a second level block to be read as

unordered lines. Recall that by starting the new first level block, you are closing the

previous second level block from the {DenyUrlSequence] section.

2 Next, type the following CML replace tags to mark up the three kay value pairs found

in the [RequestLimits] section:

MaxAllowedContentLength = @max_allowed_content_length;int@
MaxUrl = @max_url;int@
MaxQueryString = @max_query_string;int@
@1]@
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

CML Tutorial
Table 8 describes the syntax of these tags.

Table 8: Loop and Loop Target Tags for the [DenyUrlSequence] Section

CML TAG DESCRIPTION

MaxAllowedContentLength = @max_

allowed_content_length;int@

MaxAllowedContentLength

Request limit parameter string from the

configuration file.

max_allowed_content_length

String literal that defines the path where

the value will be stored in namespace.

int

Indicates that the value to be stored is an

integer.

MaxUrl = @max_url;int@ MaxUrl

Request limit parameter string from the

configuration file.

max_url

String literal that defines the path where

the value will be stored in namespace.

int

Indicates that the value to be stored is an

integer.

MaxQueryString = @max_query_

string;int@

MaxQueryString

Request limit parameter string from the

configuration file.

max_query_string

String literal that defines the path where

the value will be stored in namespace.

int

Indicates that the value to be stored is an

integer.

@1]@ This level one block tag closes the block.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 29

Opsware® SAS 5 CML Tutorial

3

3 Save the File

13. From Template to Application Configuration

Once you have completed creating the CML template for UrlScan.ini (saved as url_scan_

ini.tpl), you are now ready to do the following tasks:

• Import the template into the OCC Client

• Add the template to an Application Configuration

• Validate the CML syntax

• Attach the Application Configuration to a server

• Test by making changes and pushing changes to the server

For information on how to create an Application Configuration, add a template to it,

validate its CML syntax, and attach it to a server, and push changes, see the online help

for Application Configuration in the OCC Client.

Completed url_scan_ini.tpl Template
We have includes a sample of a completed url_Scan_ini.tpl template so you can compare

you work with a finished template.

@###
#
\system32\inetsrv\urlscan.ini (Windows)
Version 1.0
Joe Author (joe_author@your_company.com)
#
###@

@!namespace=/security/@
@!filename-key="/test";filename-default="/c/UrlScan.ini"@
@!optional-whitespace@
@!boolean-yes-format="1";boolean-no-format="0"@
@!line-comment-is-semicolon@
@!unordered-lines@

@###
Begin data
###@
0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

CML Tutorial
@1[;optional;ordered-lines@
[Options]
@2[;unordered-lines@

AllowDotInPath = @allow_dot_in_path;boolean@

AllowHighBitCharacters = @allow_high_bit_characters;boolean@

AllowLateScanning = @allow_late_scanning;boolean@

AlternateServerName = @alternate_servername@

EnableLogging = @enable_logging;boolean@

LoggingDirectory = @logging_directory;dir@

LogLongURLs = @log_long_urls;boolean@

NormalizeUrlBeforeScan = @normalize_url_before_scan;boolean@

PerDayLogging = @per_day_logging;boolean@

PerProcessLogging = @per_process_logging;boolean@

RejectResponseUrl =
@reject_response_url;string;r'(HTTP_URLSCAN_STATUS_
HEADER)|(HTTP_URLSCAN
_ORIGINAL_VERB)|(HTTP_URLSCAN_ORIGINAL_URL)';optional@

RemoveServerHeader = @remove_server_header;boolean@

UseAllowVerbs = @use_allow_verbs;boolean@

UseAllowExtensions = @use_allow_extensions;boolean@

UseFastPathReject = @use_fast_path_reject;boolean@

VerifyNormalization = @verify_normalization;boolean@

@1[;optional;ordered-lines@
[AllowExtensions]
@2[;unordered-lines@

@*allow_extension;unordered-string-set@
.@.@
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 31

Opsware® SAS 5 CML Tutorial

3

@1[;optional;ordered-lines@
[DenyExtensions]
@2[;unordered-lines@

@*deny_extension;unordered-string-set@
.@.@

@1[;optional;ordered-lines@
[AllowVerbs]
@2[;unordered-lines@

@*allow_verb;unordered-string-set@
@.@

@1[;optional;ordered-lines@
[DenyVerbs]
@2[;unordered-lines@

@*deny_verb;unordered-string-set@
@.@

@1[;optional;ordered-lines@
[DenyHeaders]
@2[;unordered-lines@

@*deny_header;unordered-string-set;;sequence-delimiter=":"@
@.@:

@1[;optional;ordered-lines@
[DenyURLSequences]
@2[;unordered-lines@

@*deny_url_sequence;unordered-string-set;;field-delimiter-is-
eol@
@.@

@1[;optional;ordered-lines@
[RequestLimits]
@2[;unordered-lines@

MaxAllowedContentLength = @max_allowed_content_length;int@

MaxUrl = @max_url;int@

MaxQueryString = @max_query_string;int@
@1]@
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

CML Tutorial
Using DTD Tags in CML
CML supports Document Type Definition (DTD) tags that can be used to pre-define

attributes for a CML tag. Using a DTD tag in CML allows you to change some aspects of

how the template is displayed in the OCC Client. The DTD definition generally goes in the

beginning of a file and the tag gets shortened to just a name and a tag type.

The main advantage of using DTD tags in CML is the ability to define 'printable' and

'description' values, which are reflected in the OCC client, improving usability. DTD

definitions can be used to define any tag that has a name; for example loop tags, loop

target tags, replace tags, and so on, but not tags like instruction tags or block tags. DTD

tags in CML are also inherently multi-line tags.

DTD Tags Example

Here we will take a tag and create a DTD version of that tag. A DTD tag in CML isn't much

different than a regular CML tag; it contains all the elements of a tag minus the “tag type”.

For example, in the CML tag below:

@*deny_header;unordered-string-set;;sequence-
delimiter=":";optional@

this is an instance representing the following format in CML:

@<tag type><name>;<data type>;;<option1>;<option2>@

The DTD version of this takes the existing elements and reorders them as follows:

<start code block>
@~<name>
type = <data type>
description = <description>
printable = <printable>
<option1>
<option2>
...
@
@<tag type><name>@
<end code block>

As you can see, this usage also allows for the addition of two new elements: “description”

and “printable”. Defining “printable” will define the main text for this tag in the OCC Client.

Defining “description” will create a description for this value in the OCC Client that is

viewable when the user mouses over the field in the Value Set Editor in the OCC Client.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 33

Opsware® SAS 5 CML Tutorial

3

Here is the same tag in full DTD format:

<start code block>
@~deny_header
type = unordered-string-set
printable = Headers to Deny
description = This is a list of headers that IIS should deny
sequence-delimiter = ":"
optional
@
@*deny_header@
<end code block>

There are a couple things to notice in the example above. In defining a value for

“description,” the value can span multiple lines, as long as the lines following the first line

have whitespace as the first character.

Options go on a line by themselves, where you have <option>=<value> you need to

insert spaces before and after the "=" sign.

Now, where ever you use the tag @*deny_header@, the parser will use the predefined

DTD for all that tags' information.

Redefining a DTD defined tag, @*deny_header@, by using a line like @*deny_

header;unordered-string-set@ will cause the CML template to become invalid.

Note also that DTD style CML is not currently required, but is most obvious when viewing

the Application Configuration the OCC Client. If you don't use DTD tags you will not see

the 'printable' and 'description' fields, instead you will only see the underlying variable

name.

Sequence Aggregation
Because Application Configuration values can be set across many different levels in the

Application Configuration inheritance hierarchy (also referred to as the inheritance scope),

it is important that you be able control the way multiple sequence values are merged

together when you push an Application Configuration on to a server.
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

CML Tutorial
ACM allows you to control the way sequence values are merged across inheritance

scopes. This means that you can, for example, add some values to a sequence in the

Customer scope, Group scope, and the Server scope, and all the values will be merged

together to form the final sequence.

The manner in which sequence values are merged is controlled by special tags in the

CML template, using three different sequence merge modes:

• Sequence Replace: Sequence values from more specific scopes completely

replace those from less specific scopes. This occurs for both sequences of sets and

lists.

• Sequence Append: For lists, values at more general scopes are appended (placed

after) to those at more specific scopes. Duplicates, if present, are not removed. For

sets, the behavior is the same, except duplicates are merged. For lists, duplicates are

identified according to child elements marked with the primary-key tag, and then

merged. For scalars, this is done by simply removing duplicate values, leaving only

the value from the most specific scope (the last occurrence is the merged

sequence). This is the default mode, and will be used if nothing else is specified.

• Sequence Prepend: Works the same as append, but values at more general scopes

are preprended (placed before) to those at more specific scopes.

For example, with these two sets:

• “a, b” — At a more specific (inner) level of the inheritance scope, for example, server

instance level.

• “c, d” — At a more general (outer) of the inheritance scope, for example, the server

group level.

When the application configuration template is pushed onto the server, the merging

results would be:

• Sequence replace: “a, b”

• Sequence append: “a, b, c, d”

• Sequence prepend: “c, d, a, b”

Sequence aggregation occurs not only between scopes, but also within a scope itself.

This is evident if there are duplicate values within a sequence of namespaces.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 35

Opsware® SAS 5 CML Tutorial

3

Sequence Replace

In the Replace merge mode (CML tag “sequence-replace”), the contents of a

sequence defined at a particular scope replace those of less specific scopes, and no

merging is performed on the individual elements of the sequence.

For example, if the sequence-replace tag has been set for a list in an Application

Configuration Template CML source, then values set for that list at the server instance

level will override, or replace, those set at the group level and at the Application

Configuration default values level.

For example, if a list in an etc/hosts file was defined at the group level (outer) as the

following:

/system/dns/host/1/ip 127.0.0.1
/system/dns/host/1/hostnames/1 localhost
/system/dns/host/1/hostnames/2 mymachine
/system/dns/host/2/ip 10.10.10.10
/system/dns/host/2/hostnames/1 loghost

And the same list was defined at the device scope (inner), as the following:

/system/dns/host/1/ip 127.0.0.1
/system/dns/host/1/hostnames/1 localhost
/system/dns/host/1/hostnames/2 mymachine.mydomain.net
/system/dns/host/2/ip 10.10.10.100
/system/dns/host/2/hostnames/1 mailserver

If template had defined the /system/dns/host element with the sequence-

replace tag, the final results of the configuration file on the server after the push would

be:

127.0.0.1 localhost mymachine.mydomain.net
10.10.10.100 mailserver

Sequence Append

When the append list merge mode (CML tag “sequence-append”) is used for

sequences, the values at more general scopes are appended (placed after) those of

more specific scopes. Sequence append mode is the default mode for merging list

values. If nothing is specified in the CML of the template, the sequence append will be

used.

If a list in an etc/hosts file was defined at the group level (outer) as the following:

/system/dns/host/1/ip 127.0.0.1
/system/dns/host/1/hostnames/1 localhost
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

CML Tutorial
/system/dns/host/1/hostnames/2 mymachine
/system/dns/host/2/ip 10.10.10.10
/system/dns/host/2/hostnames/1 loghost

And the same list was defined at the device scope (inner), as the following:

/system/dns/host/1/ip 127.0.0.1
/system/dns/host/1/hostnames/1 localhost
/system/dns/host/1/hostnames/2 mymachine.mydomain.net
/system/dns/host/2/ip 10.10.10.100
/system/dns/host/2/hostnames/1 mailserver

Using the value sets from the above example, if the /system/dns/host element was

a list with the sequence-append tag set in the Application Configuration Template, the

final results of the configuration file on the server after the push would be:

127.0.0.1 localhost mymachine.mydomain.net
10.10.10.100 mailserver
127.0.0.1 localhost mymachine
10.10.10.10 loghost

But since it is not allowable for a hosts file to contain duplicate entries, the/system/

dns/host element will have to be flagged in the Application Configuration Template as a

set rather than a list, because sets do not allow duplicates. To avoid duplication of the list

values in the example, the Application Configuration Template author would use the

Primary Key option.

Primary Key Option in Sequence Merging

When operating in append mode on sets, new values in more specific scopes are

appended to those of less specific ones, and duplicate values are merged with the

resulting value placed in the resulting sequence according to its position in the more

specific scope.

How this affects merged sequence values depends on what kind of data is contained in

the sequence:

• For elements in a sequence which are scalars, the value from the most specific

scope is used. In other words, values at the server instance level would replace the

values at the group level.

• For elements which are namespace sequences, the value is obtained by applying

the merge mode specified for that element (in this example, append) based upon

matching up the primary fields.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 37

Opsware® SAS 5 CML Tutorial

3

To avoid the duplication of the /system/dns/host/.ip value, the Application

Configuration Template author would use the CML primary-key option. With this

option set, ACM will treat entries with the same value for /system/dns/host/.ip as

the same and merge their contents.

In the example above, the final results of the configuration file on the server after the push

would be:

127.0.0.1 localhost mymachine.mydomain.net mymachine
10.10.10.100 mailserver
10.10.10.10 loghost

Since it is possible to have a set without primary keys, if there are scalars in the

sequence, then an aggregation of all scalar values will be used as the primary key. If there

are no scalars, then the aggregation of all values in the first sequence will be used as the

primary key. Although this is an estimate, in most cases the values will be merged

effectively. To ensure that the correct values are used as primary keys, we recommend

that you always explicitly set the primary key in a sequence.

Sequence Prepend

When the append list merge mode (CML tag “sequence-prepend”) is used for

sequences, the values at more general scopes are prepended (placed before) those

those of more specific scopes.

For example, if a sequence in an etc/hosts file was defined at the group level (outer)

as the following:

/system/dns/host/1/ip 127.0.0.1
/system/dns/host/1/hostnames/1 localhost
/system/dns/host/1/hostnames/2 mymachine
/system/dns/host/2/ip 10.10.10.10
/system/dns/host/2/hostnames/1 loghost

And the same sequence was defined at the device scope (inner), as the following:

/system/dns/host/1/ip 127.0.0.1
/system/dns/host/1/hostnames/1 localhost
/system/dns/host/1/hostnames/2 mymachine.mydomain.net
/system/dns/host/2/ip 10.10.10.100
/system/dns/host/2/hostnames/1 mailserver
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

CML Tutorial
If the /system/dns/host element was a set with the sequence-prepend tag set

in the Application Configuration Template, the final results of the configuration file on the

server after the push would be:

10.10.10.10 loghost
127.0.0.1 mymachine localhost mymachine.mydomain.net
10.10.10.100 mailserver

CML Grammar
Table 9 describes CML grammar.

Some elements list in the grammar are not covered in the tutorial.

Table 9: CML Grammar

CML TAG/ELEMENT DESCRIPTION

replace-tag "@" source [";" [type] [";" [range]

*option]] "@"

data-definition-tag "@~" source CRLF *def-line "@"

conditional-tag "@" [group-level] "?" source [";" [

type] [";" [range] *option]] "@"

loop-tag “@" [group-level] "*" source [";" [

type] [";" [range] *option]] "@"

loop-target-tag "@.@"

block-tag "@" [group-level] "[" *option "@"

block-termination-

tag

"@" [group-level] "]@"

line-continuation-

tag

"@\"

instruction-tag "@!" *option "@"

single-line-comment "@#" string CRLF
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 39

Opsware® SAS 5 CML Tutorial

4

multi-line-comment "@##" *[string / CRLF] "#@"

def-line type-line / range-line / option-line /

printable-line / desc-line

type-line "type" WSP "=" WSP type-elem CRLF

range-line "range" WSP "=" WSP range CRLF

option-line option-elem CRLF

printable-line "printable" WSP "=" WSP string CRLF

desc-line "description" WSP "=" *[WSP string CRLF

]

group-level int

source absolute-path / relative-path / local-

path

absolute-path "/" path-component* name

relative-path [path-component*] name

path-component (name / sequence-id) "/"

sequence-id int

local-path "." name

name string

type sequence / type-elem

sequence [order "-"] type-elem "-" sequence-elem

sequence-elem "set" / "list"

type-elem "int" / "string" / "ip" / "port" / "file"

/ etc...

order ordered" / "unordered"

range and-range *["," and-range]

and-range range-elem *["&" range-elem]

range-elem numeric-range / string range

Table 9: CML Grammar

CML TAG/ELEMENT DESCRIPTION
0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved.

CML Tutorial
numeric-range gt-range / ge-range / lt-range / le-range

/ eq-range

string range string-literal / regular-exp

gr-range int ">"

ge-range int ">="

lt-range ">" int

le-range ">=" int

eq-range "=" int

string-literal <"> string <">

regular-exp "r" <"> string <">

option ";" option-elem

option-elem option-name / option-nv

option-nv option-nv

option-name string

option-value string

Table 9: CML Grammar

CML TAG/ELEMENT DESCRIPTION
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2006 Opsware Inc. All Rights Reserved. 41

	CML Tutorial
	About the CML Tutorial
	CML Fundamentals
	What is an Application Configuration Template?
	What is an Application Configuration?
	What is CML?
	About the CML Parser
	Anatomy of a CML Tag
	CML Tags You Should Know

	Creating a CML Template
	Materials Needed for the Tutorial
	Completed Template Sample
	1. Familiarize Yourself with the Native Configuration File and Its Documentation
	2. Create CML Template File for UrlScan.ini
	3. Create the CML Template Header
	4. Create the CML Template Basic Setup Section
	5. Create the Template Body
	6. Mark Up UrlScan [Options] Section - Opening Blocks
	7. Closing One Block by Opening a New One - Marking Up [AllowExtensions]
	8. Mark Up [DenyExtensions] Section by Opening a New Block
	9. Mark Up [AllowVerbs] and [DenyVerbs] Sections
	10. Mark Up [DenyHeaders] Section
	11. Mark Up [DenyURLSequences] Section
	12. Mark Up [RequestLimits] Section
	13. From Template to Application Configuration

	Completed url_scan_ini.tpl Template
	Using DTD Tags in CML
	DTD Tags Example

	Sequence Aggregation
	Sequence Replace
	Sequence Append
	Sequence Prepend

	CML Grammar

