
Opsware® System
Intelligent Software

Module (ISM)
Development Kit 1.0.6

Guide

Corporate Headquarters

599 North Mathilda Avenue Sunnyvale, California 94085 U.S.A.
T + 1 408.744.7300 F +1 408.744.7383 www.opsware.com

Copyright © 2000-2005 Opsware Inc.

Opsware Inc. Confidential Information.

NOT for Redistribution. All Rights Reserved.

Opsware, Opsware Command Center, Model Repository, Data Access Engine, Web

Services Data Access Engine, Software Repository, Command Engine, Opsware Agent,

Multimaster Replication Engine, and Code Deployment & Rollback are trademarks and

service marks of Opsware Inc. All other marks mentioned in this document are the

property of their respective owners.

The Opsware System is protected by US and international copyrights and patents

pending.

Table of Contents

Preface vii

About this Guide . vii

Contents of this Guide. vii

Conventions in this Guide . viii

Icons in this Guide . ix

Guides in the Documentation Set and Who Should Read Them ix

Chapter 1: ISMTool Overview 1

About ISMTool . 1

ISMTool Quick Start . 2

Build Process . 3

ISM File System Structure . 5

Chapter 2: ISM Packages 9

ISM Application Package . 9

Source Transformation (UNIX only) .9

Binary Archive to Package Transform. 13

File Attribute Control (UNIX only) . 13

ISM Control Package . 15
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved. i

Intelligent Software Module (ISM) Development Kit 1.0.6 Guide
ISM Packaging Scripts . 15

Default Packaging Scripts for UNIX . 17

Default Packaging Scripts for Windows . 18

ISM Control Scripts . 19

ISM Parameter Interface. 20

Chapter 3: ISMTool Commands 25

ISMtool Argument Types . 25
ii Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved.

Informational Commands . 26

--help . 26

--env . 26

--myversion . 27

--info ISMDIR . 27

--showParams ISMDIR . 27

Creation Commands . 27

--new ISMNAME . 27

--pack ISMDIR . 28

--unpack ISMFILE . 29

Build Commands . 29

--quiet . 30

--verbose . 30

--banner . 30

--clean . 30

--build . 30

--upgrade . 31

--name STRING . 32

--version STRING . 32

--prefix PATH . 33

--ctlprefix PATH . 35

--user STRING (UNIX only) . 35

--group STRING (UNIX only) . 35

--ctluser STRING (UNIX only) . 35

--ctlgroup STRING (UNIX only). 35

--pkgengine STRING (UNIX only). 36

--ignoreAbsolutePaths BOOL (UNIX only) . 36
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved. iii

Intelligent Software Module (ISM) Development Kit 1.0.6 Guide

i

--addCurrentPlatform (UNIX only) . 36

--removeCurrentPlatform (UNIX only) . 36

--addPlatform TEXT (UNIX only) . 36

--removePlatform TEXT (UNIX only) . 36

--target STRING (UNIX only) . 37

--skipControlPkg BOOL . 37

--skipApplicationPkg BOOL . 37

--chunksize BYTES (UNIX only) . 37

--solpkgMangle BOOL (SunOS only) . 38

Opsware Interface Commands. 38

--upload . 38

--opswpath STRING . 38

--dataAccesEngine HOST[:PORT] . 39

--commandEngine HOST[:PORT] . 39

--softwareRepository HOST[:PORT] . 39

--description TEXT . 40

--addParam STRING. 40

--paramValue TEXT. 40

--paramType PARAMTYPE . 40

--paramDesc TEXT . 40

--removeParam STRING . 40

--rebootOnInstall BOOL. 41

--rebootOnUninstall BOOL . 41

--registerAppScripts BOOL (Windows only) . 41

--endOnPreIScriptFail BOOL (Windows only) . 41

--endOnPstIScriptFail BOOL (Windows only) . 41

--endOnPreUScriptFail BOOL (Windows only) . 42
v Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved.

--endOnPstUScriptFail BOOL (Windows only) . 42

Environment Variables . 42

CRYPTO_PATH . 42

ISMTOOLBINPATH . 43

ISMTOOLCE. 43

ISMTOOLCUSTOMER . 44

ISMTOOLDA. 44

ISMTOOLPASSWORD . 44

ISMTOOLSITEPATH . 44

ISMTOOLSR. 45

ISMTOOLUSERNAME. 45

Appendix A: ISMUsertool 47

Appendix B: Platform Differences 49

Solaris. 49

Windows . 50
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved. v

Intelligent Software Module (ISM) Development Kit 1.0.6 Guide

v
i Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved.

Preface

Welcome to Opsware System 4.7 — an enterprise-class software solution that enables

customers to get all the benefits of Opsware Inc.’s data center automation platform and

support services. Opsware System 4.7 provides a core foundation for automating formerly

manual tasks associated with the deployment, support, and growth of server and server

application infrastructure.

About this Guide
This guide describes how to create and upload Intelligent Software Modules (ISMs) with

the ISMTool. An ISM is a set of files and directories that include application bits and

control scripts. (An ISM is similar to a Linux RPM or Solaris package.) With the ISMTool, a

command-line utility, you create ISMs and upload them to the Opsware core. After an ISM

has been uploaded, it appears in the Opsware Command Center (OCC) as a software

node.

This guide is intended for developers and advanced Opsware administrators who will

create and upload ISMs. To understand the material in this guide, you should already be

familiar with script programming and package installation on the OS platforms that you

support.

Contents of this Guide

This guide contains the following chapters:

Chapter 1: ISMTool Overview

Chapter 2: ISM Packages

Chapter 3: ISMTool Commands

Chapter 3: ISMTool Commands

Appendix A: ISMUserTool

Appendix B: Platform Differences
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved. vii

Opsware System 4.7 User’s Guide

vi
Conventions in this Guide

This guide uses the following typographical and formatting conventions.

NOTATION DESCRIPTION

Bold Defines terms.

Italics Identifies guide titles and provides emphasis.

Courier Identifies text of displayed messages and other output from

Opsware System programs or tools.

Courier Bold Identifies user-entered text (commands or information).

Courier Italics Identifies variable user-entered text on the command line or

within example files.
ii Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved.

Icons in this Guide

Guides in the Documentation Set and Who Should Read Them

The Opsware System 4.7 Administration Guide is intended to be used by the Opsware

administrator who is responsible for performing the tasks described herein.

The Opsware System 4.7 User’s Guide is intended to be used by system administrators

who perform the day-to-day functions of managing servers, provisioning operating

systems, uploading packages, setting up software trees and node hierarchies, attaching

software applications and installing them on servers, managing patches, reconciling

servers with software, creating and executing scripts, tracking configuration, and

deploying and rolling back code and content.

The Opsware System 4.7 Installation Guide is intended to be used by system

administrators who are responsible for the installation of Opsware System 4.7 in a facility.

It documents how to run the Opsware System Installer and how to configure each of the

components.

This guide uses the following icons to indicate important information.

ICON DESCRIPTION

This icon is a note. It identifies especially important concepts that war-

rant added emphasis.

This icon is a requirement. It identifies a task that must be performed

before an action under discussion can be performed.

This icon is a tip. It identifies information that can help simplify or clar-

ify tasks.

This icon is a warning. It is used to identify significant information that

must be read before proceeding.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved. ix

Opsware System 4.7 User’s Guide
x Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved.

Chapter 1: ISMTool Overview
Chapter 1: ISMTool Overview

About ISMTool
Within a large organization, it is usually the responsibility of a small standards team to

define the installation and configuration details of software that is used within a data

center. Without access to automation, such a team usually has a difficult time

implementing the standards due to the rising number of servers in the data center

environment.

With the Opsware System, the standards team can define software packages and

configurations, which are then tested and uploaded to the Opsware core in preparation for

distribution throughout the data center. To support centralized management and to

leverage the packaging effort, the Opsware System supports package configuration

based on local conditions at installation time as well as reconfiguration at a later time. A

key element to this feature is the Intelligent Software Module (ISM), a set of directories

and files which contain the raw bits of the application as well as scripts controllable by the

Opsware System. These scripts can be run during initial configuration, reconfiguration,

application start, application stop, and application-specific actions.

The ISMtool is a command line program which manages the creation of ISMs for use with

the Opsware System. The ISMtool can support creation of ISMs from source (for example,

Apache, OpenSSH, NTP) or enterprise applications that use an application specific binary

installer. After creation of an ISM, the ISMtool supports the uploading of the ISM to the

Opsware core so that the ISM is immediately available for installation onto managed

servers.

I N T H I S C H A P T E R

This chapter contains the following topics:

• About ISMTool

• ISMTool Quick Start

• Build Process

• ISM File System Structure
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved. 1

Intelligent Software Module (ISM) Development Kit 1.0.6 Guide
The ISMtool leverages existing packaging technology (in other words, RPM, MSI, Solaris

Packages, HP-UX depot, and AIX LPP). This decision was made for two reasons. First,

developers should not have to learn yet another packaging technology. Second,

operational problems are rarely the fault of a packaging technology. Problems are usually

caused by a lack of standards or weak enforcement of those standards. An operational

standard may state, “If an operating system is installed in DC1 through DC6 then the

Network Time Protocol service should point to time servers at ntp.dc1.big.com

through ntp.dc6.big.com respectively''. Although this operational rule is simple, it

would be difficult to implement without the Opsware features that provide a way to deliver

and control NTP services throughout a distributed data center environment.

ISMTool Quick Start
In general, the ISMtool operates on the extracted form of the ISM. The extracted form is a

directory structure containing special subdirectories used by the ISMtool to manage

builds and to store built packages, temporary files, and its logs. ISMs are self-contained

units, separate from the ISMtool itself. This separation allows the ISMtool to archive the

extracted ISM directory into a portable ZIP file for transport to another location. The life-

cycle of an ISM is shown in the below ISMtool commands.

UNIX:

location1% ismtool --new foobar
location1% ls
foobar/
location1% ismtool [options] foobar
location1% ismtool --pack foobar
location1% ls
foobar/ foobar-1.0.0.ism

Windows:

C:\location1>ismtool --new foobar
C:\location1>dir
11/21/2003 10:17a <DIR> foobar
C:\location1>ismtool [options] foobar
C:\location1>ismtool --pack foobar
C:\location1>dir
11/21/2003 10:17a <DIR> foobar
11/21/2003 10:17a 1,927,339 foobar-1.0.0.ism
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved.

Chapter 1: ISMTool Overview
The foobar-1.0.0.ism file (which is just a ZIP archive) can be emailed or copied to

another server. At the remote location a developer could unpack the ISM and continue

working on it, as shown by the following commands.

UNIX:

location2% ls
foobar.ism
location2% ismtool --unpack foobar-1.0.0.ism
location2% ls
foobar/ foobar-1.0.0.ism

Windows:

C:\location2>dir
11/21/2003 10:17a 1,927,339 foobar-1.0.0.ism
C:\location2>ismtool --unpack foobar
C:\location2>dir
11/21/2003 10:17a <DIR> foobar
11/21/2003 10:17a 1,927,339 foobar-1.0.0.ism

Now the ISMtool can operate on the foobar ISM at the remote location, and the

developer can upload it to the local Opsware installation.

UNIX:

location2% ismtool --build foobar
location2% ismtool --upload foobar

Windows:

C:\location2>ismtool --build foobar
C:\location2>ismtool --upload foobar

Note that all changes happen to the extracted ISM directory. The only ISMtool operation

that will work against the ZIP form of an ISM is --unpack.

Build Process
The ISMtool manages the ISM creation process. The tool creates, modifies, builds,

examines, and uploads an ISM to the Opsware core. Once built, an ISM has three

components: an application package, a control package and an XML descriptor. The

application package contains the raw bits of an application, but unlike traditional

packaging systems, the application package does not contain the packaging scripts.

(Example of these scripts include pre-install, post-install, pre-uninstall.) In an ISM, a

separate control package contains the packaging scripts as well as the runtime interface
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved. 3

Intelligent Software Module (ISM) Development Kit 1.0.6 Guide
between the application package and the Opsware System. Because the ISM packaging

scripts are external to the application package, a developer could install an update to the

control package (for example, to fix a bug in a packaging script) without reinstalling a

running application. This flexibility is an important feature in 24 by 7 operational

environments that run business-critical applications. The XML descriptor in an ISM is used

by the Opsware System when the ISM is uploaded. The descriptor provides information

such as the name and default values for centrally managed configuration parameters, as

well as the application control hooks (such as configure, reconfigure, start, stop). The

application and control packages can be generated several formats, depending on the

development platform. Currently supported formats are MSI, RPM, Solaris Data Stream

and HP-UX depots, and AIX LPPs.

The ISMtool has a three-phase build process. In the first phase, which is for UNIX

platforms, is optional. The ISMtool searches the src subdirectory of the ISM for

components that need a build transformation. The most common type of transformation is

the compilation of program source code. Another example is the running of a binary

installer on a build machine to extract files necessary for packaging. As a result of the first

phase, zero or more binary archives are placed into the ISM’s binary archive (bar)

subdirectory.

In the second phase of the build process, the ISMtool creates the application package

from the archives it finds bar subdirectory. These archives may have been produced by

the first phase of the build process, or the developer may directly copy the archives into

the bar subdirectory. A developer can use this mechanism to quickly create an

application package for a simple archive such as zip, tar, cpio, or msi. The resulting

application package is placed into the ISM's package subdirectory (pkg).

In the third phase of the build process, the ISMtool creates the control package by

packaging up the files inside the ism subdirectory of the ISM. The ism subdirectory

contains the Opsware runtime interface, the ISM control scripts (such as configure, start,

stop). and the packing scripts (such as pre-install, post-install, pre-uninstall, post-

uninstall). The control package is also placed into the pkg subdirectory.

The ISMtool supports several back-end packaging engines, all of which use a package

name and version. Some engines also keep of track of the release, which is really just a

version augmentation. The ISMtool allows the version string of an ISM to be any string

that is legal for the back-end packaging engine. Internally, however, the ISMtool needs to

some way to keep track of changes to the application and control sources. The ISMtool

does this by keeping track of two release numbers, one for the application package and

the other for the control package. The ISMtool does recursive checksums of all data that
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved.

Chapter 1: ISMTool Overview
is used to create the output packages. If the tool notices any changes, it increments the

appropriate internal release number. The expression of these release numbers in the final

package depends on the packing technology. For most engines, the release number is

appended to the developer-supplied version string. RPM supports a release field, which is

used to store the appropriate release number. For example, given an ISM named ntp

with version 4.1.2, an application release number of 3, and control release number 7, the

output packages for RPM on an x86 would be named:

Applicaton Package: ntp-4.1.2-3.i386.rpm
Control Package: ntp-ism-4.1.2-7.i386.rpm

On Windows, the output MSI packages would be named:

Application Package: ntp-4.1.2-3.msi
Control Package: ntp-ism-4.1.2-7.msi

The release numbers are NOT designed to be editable by a developer. They are designed

so that when a developer makes a bug fix to the control or application sources of an ISM

the resulting packages, if changed, will have a different release. This allows a developer to

update Opsware with the patched package using the --upload command.

ISM File System Structure
When an ISM is initially created using --new, the following directory structure is created.

UNIX:

% ismtool --new ntp-4.1.2
% ls ntp-4.1.2/
tmp/ log/ doc/ src/ bar/ ism/ pkg/

Windows:

% ismtool --new foobar
% dir foobar
11/21/2003 10:17a <DIR> .
11/21/2003 10:17a <DIR> ..
11/21/2003 10:17a <DIR> bar
11/21/2003 10:17a <DIR> doc
11/21/2003 10:17a <DIR> ism
11/21/2003 10:17a <DIR> log
11/21/2003 10:17a <DIR> pkg
11/21/2003 10:17a <DIR> src
11/21/2003 10:17a <DIR> tmp
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved. 5

Intelligent Software Module (ISM) Development Kit 1.0.6 Guide
An ISM has these subdirectories:

• tmp - Used as scratch space for ISMtool operations.

• log - Holds files which keep track of the output from source transformations

(compilation or local installs), output from packaging engines such as msi, rpm,

pkgtrans, swpackage, or an Opsware upload.

• doc - A location for optional developer supplied documentation as well as

documentation generated automatically during ISM build.

• src - May optionally contain files that can control the compilation of sources into binary

archives.

• bar - Contains binary archives, the contents of which are used to create the application

package.

• ism - Contains all the files needed to create the control package of the ISM. The ism

directory is where a developer can edit the default package hooks (i.e., pre-install, post-

install, pre-uninstall, post-uninstall), as well as add ISM controls to the package.

• pgk - Contains the application and control packages, which are generated by the build.

The following listing shows the contents of the ISM subdirectories after an ISMtool build.

The output of the source build is in the binary archive directory with the generated name

__ntp-4.1.2_src_ntp.spec.cpio. The ISMtool build creates the files in the log

and tmp subdirectories, in addition to any other files with names beginning with two

underscores

ntp-4.1.2/
 src/
 ntp-4.1.2.tar.gz
 ntp.spec
 bar/
 __ntp-4.1.2_src_ntp.spec.cpio
 __ntp-4.1.2_src_ntp.spec.cpio.meta
 pkg/
 ntp-4.1.2-3.i386.rpm
 ntp-ism-4.1.2-7.i386.rpm
 log/
 __ntp_0_app__.spec.log
 __ntp_ism__.spec.log
 upload.log
 doc/
 index.html
 index/
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved.

Chapter 1: ISMTool Overview
 ntp-4.1.2-3.i386.rpm.html
 ntp-ism-4.1.2-7.i386.rpm.html
 tmp/
 macros
 __ntp_0_app__.spec
 __ntp_ism__.spec
 rpmrc
 BUILD/
 BUILDROOT/
 RPMS/
 SOURCES/
 SPECS/
 TEMP/
 ism/
 ism.conf
 bin/
 ismget
 parameters
 platform
 python
 lib/
 <ism runtime>
 env/
 ism.sh
 ism.py
 ism.pl
 build/
 ism_pre
 ism_post
 ism_clean
 pkg/
 ism_check_install
 ism_post_install
 ism_post_uninstall
 ism_pre_install
 ism_pre_uninstall
 control/
 ism_start
 ism_stop
 ism_configure
 ism_reconfigure
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved. 7

Intelligent Software Module (ISM) Development Kit 1.0.6 Guide
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved.

Chapter 2: ISM Packages
Chapter 2: ISM Packages

ISM Application Package
The ISMtool supports the creation of an application package either by scripted

construction (compile from source or use of a binary installer) or by the direct packaging

of one or more binary archives. The easiest way to use the ISMtool is to simply zip or tar

up a directory, then place it in the ISM's binary archive directory (bar) and start a build

with the --build command. More sophisticated ISMs can control the build of the

application package from the source code (for example, NTP). The result from such a

build will produce a binary archive, which is placed in the bar directory for packaging.

Source Transformation (UNIX only)

Every ISM has a source (src) subdirectory. The ISMtool recursively searches the src

subdirectory for files ending in .spec (called specfiles). If found, a specfile is compiled

into Bourne Shell and executed. Specfiles are written in a simplified derivative of the RPM

specfile language. The ISMtool's specfile-like language compiler allows a developer to

use existing RPM specfiles with minimal modifications.

For more information about the specfile language, see the Maximum RPM document,

located at the following URL:

http://www.rpm.org/max-rpm/index.html

Here is an example of a simple ISM specifile for NTP 4.1.2 :

###

I N T H I S C H A P T E R

This chapter contains the following topics:

• ISM Application Package

• ISM Application Package

• ISM Control Scripts

• ISM Parameter Interface
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved. 9

Intelligent Software Module (ISM) Development Kit 1.0.6 Guide

1

Common Preamble
###

%define ismname %(../ism/bin/ismget name)
%define version %(../ism/bin/ismget version)
%define prefix %(../ism/bin/ismget prefix)

Name: %{ismname}
Version: %{version}

###
prep, build, install, files
###

Source: http://www.eecis.udel.edu/~ntp/ntp_spool/ntp4/ntp-
4.1.2.tar.gz

%prep

%setup -n ntp-4.1.2

%build

%ifos Solaris2.7
echo ‘‘do something Solaris2.7 specific’’
%endif

%ifos Linux
echo ‘‘do something Linux specific’’
%endif

./configure --prefix=%prefix
make

%install
/bin/rm -rf $ISM_BUILD_ROOT
make install prefix=$ISM_BUILD_ROOT/%{prefix}

%files
%defattr(-,root,root)
%prefix

Specifile Preamble

The preamble specifies information to be fetched from the ISM with the program ismget.

The following lines fetch the name, version, and prefix of the ISM.

%define ismname %(../ism/bin/ismget name)
0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved.

Chapter 2: ISM Packages
%define version %(../ism/bin/ismget version)
%define prefix %(../ism/bin/ismget prefix)

This fetched information can be useful in the set up and compilation of sources. However,

the %define commands are optional. The only required tags in the preamble are Name

and Version.

%prep

The %prep section is designed to prepare sources for compilation. This involves

uncompressing and untaring source distributions. A single source file is identified with the

Source tag. A list of sources are identified by a vector of tags: Source0, Source1,

Similarly, patches are identified by either a Patch tag or a vector of tags: Patch0,

Patch1, The ISMtool duplicates the macro functionality as documented in Maximum

RPM. The %setup macro controls how sources are unpacked. The %prep section can

also manage patching using the %patch macro.

%build

The shell script commands in the %build section will transform the sources into binaries.

Compiling from source usually involves running ./configure -prefix=%{prefix}

and make. It is possible to perform configuration switching based on the platform

(operating system). The platform tags are designed for backward compatibility to RPMs

found in real-world installations. The following platform strings are some examples that

can be used in ISMtool specfiles for platform branching:

Linux
RedHat
RedHat-Linux-7.2
RedHat-Linux-AS2.1
Solaris
Solaris2.8
Solaris-2.8
SunOS
SunOS5.7
SunOS-5.7
hpux
hpux11.00
hpux-11.00
HPUX
HPUX11.00
HPUX-11.00
aix
aix4.3
aix-4.3
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved. 11

Intelligent Software Module (ISM) Development Kit 1.0.6 Guide

1

AIX
AIX4.3
AIX-4.3

%install

The %install section specifies the copying of files from the build to a virtual install

location. For example, if the %prefix is set to /usr/local, the following line would

install NTP into /usr/local/bin:

make install prefix=$ISM_BUILD_ROOT/%{prefix}

The variable $ISM_BUILD_ROOT (or equivalently $RPM_BUILD_ROOT) is the location of

a temporary directory inside the ISM's tmp directory. This temporary directory will serve as

the virtual install root where the directives in the %files section will be applied.

The %install section also indicates where the files from a binary install could be

extracted. In a binary install, the files resulting from a binary install on a development

server can be packaged into the virtual install location. However, if that is not possible

then a binary installer could be transported to the end system and installed with an ISM

post-install hook. In this case, the developer would create a binary archive of the installer

and copy it to the ISM's bar directory.

%files

In the specifile, the output of the source transformation phase is a set of files indicated by

the directives in the %files section. These files are archived into a cpio in the ISM’s

bar directory.

The final phase of the source transformation is to select the files installed into the $ISM_

BUILD_ROOT. The directives in the %files section are a subset of the selection

mechanisms documented in Maximum RPM. These directives specify a list of files or

directories (which are recursively gathered) relative to $ISM_BUILD_ROOT. In this

example, the install is into the path $ISM_BUILD_ROOT/%{prefix}. To select these

files for packaging, the developer would simply give the %prefix as the directory to

package.

In addition to selecting files by naming files or directories, meta information can be

described. The line %defattr(-,root,root) tells the archive engine to use the

modes it finds in the file system, but to create the archive replacing the file ownerships it

finds in the file system with root,root. For full documentation of %defattr() and

%attr(), see the Maximum RPM document.
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved.

Chapter 2: ISM Packages
Binary Archive to Package Transform

After the source transformations have occurred, the ISMtool searches the internal bar

directory for binary archives to package. Binary archives can be copied by the developer

into the bin directory or they may generated as cpio archives by the directives in the

%files section of the specfile. Regardless their origin, all files inside the binary archives

in the bar directory are transformed into the ISM's application package. Warning: The

ISMtool uses certain file extensions to figure out how to process an archive. Valid archive

file extensions are shown in Table 2-1.

File Attribute Control (UNIX only)

Often, an application package should be installed using a certain UNIX user and group.

Also, the individual files in an application package may require specific ownership and

UNIX mode bit settings.

This task becomes more difficult if the developer does not have the permissions (setuid

root) to create files on a development server with the needed ownership and mode bits.

Packaging engines contain a variety of mechanisms to get around this difficulty. The

ISMTool hides the complexity of these various mechanisms by providing a common way

to specify the ownership and mode bits. The ISMTool allows the developer to control the

meta information about each file that is packaged.

In the ISMtool, a tiered approach allows increasing amount of control. First, given no other

information, the ISMtool extracts file ownership and mode bits from the binary archive

itself. Sometimes, a developer may have an archive with files owned by a user not

Table 2-1: Valid Binary Archive Types

FILE EXTENSION ARCHIVE TYPE

.cpio UNIX CPIO Archive

.msi Microsoft Installer

.rpm RPM Package Manager

.tar Tape Archive

.tar.bz2 bzip2 compressed Tape Archive

.tar.gz gzip compressed Tape Archive

.tgz gzip compressed Tape Archive

.zip Info-Zip compatible Zip
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved. 13

Intelligent Software Module (ISM) Development Kit 1.0.6 Guide

1

intended to own files on the target system. To override the ownership of all files in all

binary archives, the developer can usr the --user and --group options described

later in this document. If file-by-file control is needed, then the developer can add an

additional file to the binary archive directory with the file-specific attribute information. The

format of the attribute information is based on the specfile attribute language

documented in Maximum RPM.

The developer indicates file-specific attributes as follows. Given a binary archive named

foobar.tar.gz, the developer adds a file called foobar.tar.gz.meta to the bar

directory. The ISMtool will process the .meta file as it would the %files section of a

specfile. For example, suppose the developer begins with the follow TAR archive:

% tar tvf ntp/bar/ntp.tar
-rw-r--r-- root/root 1808 2002-11-22 09:20:36 etc/
ntp.conf
drwxr-xr-x ntp/ntp 0 2003-07-08 16:22:38 etc/ntp/
-rw-r--r-- root/root 22 2002-11-22 09:22:08 etc/ntp/
step-tickers
-rw-r--r-- ntp/ntp 7 2003-07-08 16:22:38 etc/ntp/
drift
-rw------- root/root 266 2001-09-05 03:54:42 etc/ntp/
keys
-rwxr-xr-x root/root 252044 2001-09-05 03:54:43 usr/sbin/
ntpd
-rwxr-xr-x root/root 40460 2001-09-05 03:54:43 usr/sbin/
ntpdate
-rwxr-xr-x root/root 70284 2001-09-05 03:54:43 usr/sbin/
ntpdc
-rwxr-xr-x root/root 40908 2001-09-05 03:54:43 usr/sbin/
ntp-genkeys
-rwxr-xr-x root/root 66892 2001-09-05 03:54:43 usr/sbin/
ntpq
-rwxr-xr-x root/root 12012 2001-09-05 03:54:43 usr/sbin/
ntptime
-rwxr-xr-x root/root 40908 2001-09-05 03:54:43 usr/sbin/
ntptimeset
-rwxr-xr-x root/root 19244 2001-09-05 03:54:43 usr/sbin/
ntptrace
-rwxr-xr-x root/root 1019 2001-09-05 03:54:39 usr/sbin/
ntp-wait

If the developer wants the etc/ntp directory and the files inside it to be owned by the

user and group ntp/ntp, then the following .meta file would be used:

% tar tvf ntp/bar/ntp.tar.meta
%attr(-,ntp,ntp) etc/ntp/
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved.

Chapter 2: ISM Packages
%attr(-,ntp,ntp) etc/ntp/step-tickers
%attr(-,ntp,ntp) etc/ntp/drift
%attr(-,ntp,ntp) etc/ntp/keys

ISM Control Package
The ISM control package contains the scripts that provide operational control for an

application. The default install locations of ISM control packages are as follows.

UNIX:

/var/opt/OPSWism/<name>-<version>/

Windows:

%ProgramFiles%\OPSWism\<name>-<version>\

The <name> and <version> indicate the name and version of the installed ISM. The

path to the control package can be changed using the --ctlprefix command. This

location is critical since an application package, once built, will reference files inside this

path to execute packaging scripts such as ism_post_install. Note that the ISM

control path contains the name and version of the ISM but not the release number. The

release numbers are managed by the ISMtool to control rebuilding of either the

application or control packages of an ISM. The application package would refer to the

generic path /var/opt/OPSWism/<name>-<version>/ (UNIX) or

%ProgramFiles%\OPSWism\ (Windows). For example, a control package with the

name ntp, version of 4.1.2, and release number 7 would have an RPM package name of

ntp-ism-4.1.2-7.i386.rpm or an MSI name of ntp-ism-4.1.2-7.msi.

However, the files would install into /var/opt/OPSWism/ntp-4.1.2/ or

%ProgramFiles%\OPSWism\, respectively. This separation allows the control package

to be patched without requiring a reinstall of the application package.

An ISM exposes two types of developer extensions: packaging hooks and control hooks.

The key to centralized control involves fetching control variables (ISM parameters) from a

central store (Opsware) when a control action is invoked via Opsware or the command

line. The developer interface to fetching control variables is the ISM parameters

command, discussed further in the section “ISM Parameter Interface” on page 20.

ISM Packaging Scripts

When an ISM application package is built, the ISMTool automatically generates the

following packaging scripts. These scripts can be used as is or edited by the developer.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved. 15

Intelligent Software Module (ISM) Development Kit 1.0.6 Guide

1

UNIX:

check_install
pre_install
post_install
pre_uninstall
post_uninstall

Windows:

pre_install.cmd
post_install.cmd
pre_uninstall.cmd
post_uninstall.cmd

For listings of the default packaging scripts, see these sections:

• Default Packaging Scripts for UNIX

• Default Packaging Scripts for Windows

In our current NTP example, these scripts would be installed into the following directories:

UNIX:

/var/opt/OPSWism/ntp-4.1.2/pkg/

Windows:

%ProgramFiles%\OPSWism\ntp-4.1.2\pkg\

The post_install (post_install.cmd on Windows) script, for example, will run on

the managed server immediately after the application in the ISM has been installed. The

post_install script will call into the following control directory.

UNIX:

/var/opt/OPSWism/ntp-4.1.2/control/

Windiows:

%ProgramFiles%\OPSWism\ntp-4.1.2\control\

In the default post_install script, if the control scripts called ism_configure and

ism_start exists, they will be called. These control scripts are only operational

suggestions. A developer could modify post_install to call other scripts, if required.

Note that there are no default control scripts. Unlike the packaging scripts, the control

scripts must be provided by the developer.
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved.

Chapter 2: ISM Packages
On UNIX, the environment variable ISMDIR is defined and written to the file ism.sh

(Python, and Perl variants exists as well.) On Windows, the file is named ism.cmd. When

the packaging scripts are called, the full path of ism.sh or ism.cmd is passed as the

first argument to the packaging scripts. This allows the scripts to be written in a version-

independent way. In the current example, the value of ISMDIR on UNIX would be /var/

opt/OPSWism/ntp-4.1.2.

Some packaging engines support a check_install hook directly; others do so

implicitly via the preinstall hook. The ISMtool will map the check_install feature onto

the backend packaging engine. If the check_install script returns a non-zero return

code, the install is halted.

Default Packaging Scripts for UNIX

The default ism_pre_install script:

#!/bin/sh
#
ISM Pre Install Script
#
. ‘dirname $0‘/../env/ism.sh

The default ism_post_install script:

#!/bin/sh
#
ISM Post Install Script
#
. ‘dirname $0‘/../env/ism.sh
if [-x ${ISMDIR}/control/ism_configure]; then
${ISMDIR}/control/ism_configure
fi
if [-x ${ISMDIR}/control/ism_start]; then
${ISMDIR}/control/ism_start
fi

The default ism_pre_uninstall script:

#!/bin/sh
#
ISM Pre Uninstall Script
#
. ‘dirname $0‘/../env/ism.sh
if [-x ${ISMDIR}/control/ism_stop]; then
${ISMDIR}/control/ism_stop
fi
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved. 17

Intelligent Software Module (ISM) Development Kit 1.0.6 Guide

1

The default ism_post_unininstall. script:

#!/bin/sh
#
ISM Post Uninstall Script
#
. ‘dirname $0‘/../env/ism.sh

Default Packaging Scripts for Windows

The default ism_pre_install.cmd script:

@echo off
REM
REM ISM Pre Install Hook
REM
SETLOCAL
REM
REM %1 specifies the full path to the ISM.CMD file
REM Call ISM.CMD to define ISM environment variables
REM
call %1
ENDLOCAL

The default ism_post_install.cmd script:

@echo off
REM
REM ISM Post Install Script
REM
SETLOCAL
REM
REM %1 specifies the full path to the ISM.CMD file
REM Call ISM.CMD to define ISM environment variables
REM
call %1
REM
REM Call the ISM’s configure script
REM
IF EXIST "%ISMDIR%\control\ism_configure.cmd"
call "%ISMDIR%\control\ism_configure.cmd"
REM
REM Call the ISM’s start script
REM
IF EXIST "%ISMDIR%\control\ism_start.cmd"
call "%ISMDIR%\control\ism_start.cmd"
ENDLOCAL

The default ism_pre_uninstall.cmd script:
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved.

Chapter 2: ISM Packages
@echo off
REM
REM ISM Pre Uninstall Hook
REM
SETLOCAL
REM
REM %1 specifies the full path to the ISM.CMD file
REM Call ISM.CMD to define ISM environment variables
REM
call %1
REM
REM Call the ISM’s stop script
REM
IF EXIST "%ISMDIR%\control\ism_stop.cmd"
call "%ISMDIR%\control\ism_stop.cmd"
ENDLOCAL

The default ism_post_unininstall.cmd script:

@echo off
REM
REM ISM Post Uninstall Script
REM
SETLOCAL
REM
REM %1 specifies the full path to the ISM.CMD file
REM Call ISM.CMD to define ISM environment variables
REM
call %1

ISM Control Scripts
The packaging scripts should be brief. Most of the work should be done by the control

scripts. An ISM can have any number of control scripts. The control scripts should focus

on operationally relevant events for the application such as start, stop, configure,

reconfigure, hardstop, clearlogs, and dumpcache. The packaging scripts focus on which

of these controls should be called during packaging events such as post-install and pre-

uninstall.

During a build, the ISMtool searches the ism/control directory for files that are

executable and begin with ism_. All such files are assumed to be for control and the file

system location (inside the control package) will be available to Opsware via the ISM's

XML descriptor. This allows Opsware to expose the relevant application controls for that

ISM.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved. 19

Intelligent Software Module (ISM) Development Kit 1.0.6 Guide

2

Many application controls are independent of centralized Opsware configuration

modeling. For example a control such as ism_start or ism_stop would call the

application start and stop mechanisms in an operationally safe way (that is, isolating

unintentional file descriptor forking). Such controls could be run centrally by Opsware but

the controls simply act on the local application; they do not talk back to Opsware.

Application configuration management is another story. To centrally model configuration

and apply it to classes of similar servers, an application's configuration control needs

access to the centrally managed configuration parameter model.

ISM Parameter Interface
Opsware contains a hierarchal modeling system for organizing operation information.

Nodes in this model may represent hardware, software, or other operational information.

For example, the location of the software model of NTP 4.1.2 compiled for Redhat Linux

7.2 might be found at this Opsware node:

/System Utilities/NTP/4.1.2/Redhat Linux 7.2

The operational aspects of servers are controlled through their association with nodes

within the Opsware model. Such associations can specify which organization owns the

server, the facility where the server resides, the hardware type, the installed OS, the

installed applications, and other characteristics. An important Opsware feature of this

hierarchal model is inheritance. One type of information that can be inherited is a data

type called a custom attribute. A custom attribute is a name-value pair that holds meta

information for a server. A common use of custom attributes is to hold configuration

parameters for an application. For example, a custom attribute could designate the port

number of a particular service.

By using the --addParam command of the he ISMtool, the developer can add to an ISM

a list of configuration parameters. Each parameter is a tuple of four fields: name, type,

default value, and description. After the parameters have been added, the developer can

write an ISM control script that accesses the parameters. The supported scripting

languages are Bourne Shell, Korn Shell, Windows command shell, Python, and Perl. The

shell scripts access the parameters through environment variables. Python scripts and

Perl scripts use hash tables (dictionaries and maps, respectively).
0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved.

Chapter 2: ISM Packages
For example, the developer could write a script named ism_configure (UNIX) or ism_

configure.sh (Windows) that retrieves from Opsware the value for the custom

attribute whose name matches the parameter. If the parameter does not have a value in

Opsware for that server, then the default value, as defined by the developer, is retrieved

locally from the ism.conf file of the control package.

The ISMtool formalizes the mechanics and precedence of custom attribute retrieval. The

interface to parameter fetching is a command-line program named parameters, which

resides in the binary directory of an ISM's control package. It is important to note that

ONLY parameters defined using the --addParam command are made available via the

parameters interface. The parameters program has the following command-line help:

% ./parameters --help
parameters [options]
--scope <scope> ; server|customer|facility|software|os|
; install|default (default is all)
--scope group ; The ’group’ scope needs to use
; --groupname and --grouptype
--groupname <name> ; Group name to search
--grouptype <type> ; Group type to searc
-s/--sh ; Bourne Shell syntax
-k/--ksh ; Korn-Shell syntax
-p/--python ; Python repr’ed dictionary
-l/--perl ; PERL map
-c/--cmd ; Windows Cmd syntax
-b/--vbscript ; Windows VBScript syntax
-h/--help ; Help
-v/--version ; Version

The next example is a configuration control script written in Bourne Shell for the NTP time

service on UNIX:

#!/bin/sh
. ‘dirname $0‘/../env/ism.sh
eval ‘${ISMDIR}/bin/parameters‘
echo $NTP_CONF_TEMPLATE | \
sed "s/NTP_SERVER_TAG/$NTP_SERVER/" > /etc/ntp.conf

The following control script, written in Python, also configures NTP.

#!/usr/bin/env python
import os
import sys
import string
ismdir=os.path.split(sys.argv[0])[0]
cmd = ’%s --python’ %
(os.path.join(ismdir,’bin’,’parameters’))
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved. 21

Intelligent Software Module (ISM) Development Kit 1.0.6 Guide

2

params = eval(os.popen(cmd,’r’).read())
template = params[’NTP_CONF_TEMPLATE’]
value = params[’NTP_SERVER’]
conf = string.replace(template,’NTP_SERVER_TAG’,value)
fd=open(’/etc/ntp.conf’,’w’)
fd.write(conf)
fd.close()

In the preceding two examples, the parameters NTP CONF TEMPLATE and NTP

SERVER, have been defined for the NTP ISM. The $ISMDIR/bin/parameters

interface retrieves the two parameters, either from Opsware or from the local ism.conf

file. The output of $ISMDIR/bin/parameters is a text string which can be evaluated

to give the caller access to the parameter names and values. Depending on the

language, the result of this evaluation either inserts the parameters into the environment

or instantiates them as a hash table.

If the $ISMDIR/bin/parameters interface encounters an error while retrieving the

parameters, it returns a special parameter named _OPSW_ISMERR. The _OPSW_ISMERR

parameter contains a brief description of the error encountered.

The following example shows a configuration control script for Windows. In this example,

%ISMDIR%binparameters.cmd retrieves the parameters from Opsware or from the

local ism.conf file. Each parameter is output as a name-value pair in the form of

name=value (one per line). The script then uses the Windows FOR command to set each

parameter as an environment variable. Finally, the parameters are passed to an NTP

configuration script named WindowsNTPConfigureScript.cmd.

@echo off
SETLOCAL
for /f "delims== tokens=1,2" %%i in
(’""%ISMDIR%\bin\parameters.cmd""’)
do set %%i=%%j
WindowsNTPConfigureScript.cmd %NTP_CONF_TEMPLATE% %NTP_
SERVER%
ENDLOCAL

In summary, the Opsware system contains hierarchies of software nodes. Most nodes can

have custom attributes attached. When an ISM is uploaded to the Opsware core with the

--upload command of the ISMTool, a node is created with the characteristics defined

by the ISM. The path to the node is specified via the --opswpath command. For
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved.

Chapter 2: ISM Packages
example, the path could be set to /System Utilities/ntp/4.1.2/Redhat

Linux 7.2. The ISMtool would attach to this node the application package, the control

package, the default control parameters, and the ISM XML descriptor.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved. 23

Intelligent Software Module (ISM) Development Kit 1.0.6 Guide

2
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved.

Chapter 3: ISMTool Commands
Chapter 3: ISMTool Commands

ISMtool Argument Types
Table 3-2defines the argument types that are used in the ISMTool commands defined in

the rest of this chapter. The ISMNAME argument type, for example, is specified by the

syntax of the ISMTool --new command.

I N T H I S C H A P T E R

This chapter contains the following topics:

• ISMtool Argument Types

• Informational Commands

• Creation Commands

• Build Commands

• Opsware Interface Commands

• Environment Variables

Table 3-2: ISMTool Argument Types

ARGUMENT
TYPE

DESCRIPTION EXAMPLE

PATH Absolute file system path. /foo/bar

STRING Text string with no spaces. foobar

TEXT Arbitrary quoted text. 'This is some text'

BOOL Boolean. true or false

0 or 1

ISMFILE Path to a valid .ism file in the file

system. This file would unpack into an

ISMDIR.

/foo/bar/name.ism
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved. 25

Intelligent Software Module (ISM) Development Kit 1.0.6 Guide

2

Informational Commands

--help

Display the ISMtool command-line help.

--env

Display the locations of system-level tools found in the environment. This command is

helpful for investigating build problem and for verifying that the environment variable

ISMTOOLBINPATH is set correctly. For example, on a UNIX system --env might display

the following:

ISMDIR Path to a valid extracted ISMFILE or to

a newly created ISM.

xyz

/home/sam/xyz

ISMNAME Name for a newly-created ISM. The

ISMNAME can have the format STRING

or STRING-VERSION.

ntp

ntp-4.1.2

VERSION A STRING that represents the version of

the ISM. The VERSION cannot contain

spaces and must be a legal version

string for the back-end packaging

engine.

1.2.3

4.13

0.9.7b

HOST[:PORT] Host and optional port. www.foo.com

www.foo.com:8000

192.168.1.2:8000

BYTES Integer number of bytes. 42

SECONDS Integer number of seconds. 300

PARAMTYPE Expected type of the parameter data.

The only allowed values are the

constants ‘String’ and

‘Template’.

‘String’

‘Template’

Table 3-2: ISMTool Argument Types

ARGUMENT
TYPE

DESCRIPTION EXAMPLE
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved.

Chapter 3: ISMTool Commands
% ismtool --env
bzip2: /usr/local/ismtool/lib/tools/bin/bzip2
cpio: /usr/local/ismtool/lib/tools/bin/cpio
gzip: /usr/local/ismtool/lib/tools/bin/gzip
install: /usr/local/ismtool/lib/tools/bin/install
17
patch: /usr/local/ismtool/lib/tools/bin/patch
python: /usr/local/ismtool/lib/tools/bin/python
pythonlib: /usr/local/ismtool/lib/tools/lib/python1.5
rpm2cpio: /usr/bin/rpm2cpio
rpm: /bin/rpm
rpmbuild: /usr/bin/rpmbuild
tar: /usr/local/ismtool/lib/tools/bin/tar
unzip: /usr/local/ismtool/lib/tools/bin/unzip
wget: /usr/local/ismtool/lib/tools/bin/wget
zip: /usr/local/ismtool/lib/tools/bin/zip
zipinfo: /usr/local/ismtool/lib/tools/bin/zipinfo
pkgengines: [’rpm4’]

--myversion

Display the version of the ISMtool.

--info ISMDIR

Display an overview of the internal information about the ISM contained in the directory

ISMDIR. After the build is completed, more detailed information is available, which can be

viewed in browser at this URL:

<ISMDIR>/doc/index/index.html

--showParams ISMDIR

Displays the name, default value, type, and description for each control parameter.

Creation Commands

--new ISMNAME

Create a new ISM, which consists of directory that contains subdirectories and files. The

value of ISMNAME specifies the name of the newly-created ISM directory. The internal

ISM name varies with the format of ISNAME.

For example, the following command creates an ISM directory called foobar. The

internal name of the ISM is foobar and the initial version of the ISM defaults to 1.0.0.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved. 27

Intelligent Software Module (ISM) Development Kit 1.0.6 Guide

2

% ismtool --new foobar

The next command creates an ISM directory called ntp-4.1.2. The internal name of the

ISM is ntp and the initial version of the ISM is 4.1.2. Note that the internal name of the

ISM does not include -VERSION.

% ismtool --new ntp-4.1.2

The name of the ISM directory is independent of the internal ISM name. For example, if

the developer renames the ntp-4.1.2 directory to myntp, the internal name of the ISM

is still ntp and the version of the ISM remains 4.1.2.

--pack ISMDIR

Creates a ZIP archive of the ISM contained in ISMDIR. The name of the archive will be

<ismname-version>.ism. For example.

UNIX:

% ismtool --new tick
% ismtool --version 3.14 tick
18
% ls
tick/
% mv tick spooon
% ls
spooon/
% ismtool --pack spooon
% ls
spooon/ tick-3.14.ism

Windows:

% ismtool --new tick
% ismtool --version 3.14 tick
% dir
11/21/2003 10:17a <DIR> tick
% move tick spoon
% dir
11/21/2003 10:17a <DIR> spoon
% ismtool --pack spoon
% dir
11/21/2003 10:17a <DIR> spoon
11/21/2003 10:17a 1,927,339 tick-3.14.ism
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved.

Chapter 3: ISMTool Commands
--unpack ISMFILE

Unpacks the ISM contained in the ZIP file named ISMFILE. The ISM is unpacked into the

ISMDIR that was specified when the ISMFILE was created with the --pack command.

The following example uses the ISMFILE created in the --pack example:

UNIX:

% ls
spooon/ tick-3.14.ism
% rm -rf spooon
% ls
tick-3.14.ism
% ismtool --unpack tick-3.14.ism
% ls
spooon/ tick-3.14.ism

Windows:

% dir
11/21/2003 10:17a <DIR> spoon
11/21/2003 10:17a 1,927,339 tick-3.14.ism
% rmdir /s /q spoon
% dir
11/21/2003 10:17a 1,927,339 tick-3.14.ism
% ismtool --unpack tick-3.14.ism
% dir
11/21/2003 10:17a <DIR> spoon
11/21/2003 10:17a 1,927,339 tick-3.14.ism

Build Commands
All of the build commands apply to an extracted ISMDIR:

% ismtool <build commands> ISMDIR

Most of the build commands make persistent configuration changes to an ISM, which are

recorded in the ISM's ism.conf file. However, a few commands change only the current

command execution (for example, --verbose, --quiet).

Multiple command actions can be specified on the same command-line. In the following

UNIX example, the command changes the package engine to rpm3, the version to

2.0.47b, the default install user to root, and the default install group to root for the

ISMDIR named apache.

% ismtool --pkgengine rpm3 --version 2.0.47b --user root --
group root apache
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved. 29

Intelligent Software Module (ISM) Development Kit 1.0.6 Guide

3

The next sequence of commands is equivalent:

% ismtool --pkgengine rpm3 apache
% ismtool --version 2.0.47b apache
% ismtool --user root apache
% ismtool --group root apache

The ISMtool sorts command actions into the proper logical order for execution. The

following command, for example, will change the version of apache to 3.0 BEFORE the

build is executed.

% ismtool --build --version 3.0 apache

--quiet

Suppress the display of the ascii throbber eye-candy.

--verbose

Display extra debugging information.

--banner

Suppress the display of the output banner.

--clean

Clean up all files generated as a result of a build. This removes temporary files and all

build products.

--build

Start a build of the ISM. Building an ISM is a multi-step process:

1 Check for platform compatibility.

2 Perform a pre-build clean by removing all side-effect build products. However, this

step will leave any cpio archives generated during a previous build as a form of

build cache. The build cache can be cleaned using the --clean command.

3 Run user-extensible cleanhook <name>/ism/build/ism_clean.

4 Verify the ISM runtime version. Upgrade or downgrade the runtime as needed.

5 Run a checksum on the application sources and increment the application release

number if the current checksum does not match the previous checksum.
0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved.

Chapter 3: ISMTool Commands
6 Run a checksum on the control sources (the contents of the ism directory) and

increment the control release number if the current checksum does not match the

previous checksum.

7 Run the user-extensible pre-build hook <name>/ism/build/ism_pre.

8 Run the source build (UNIX only). Recursively search for .spec files in the <name>/

src directory, compiling and executing each.

9 Generate a script to transform the binary archives into the application package.

10 Generate a script to transform the ism directory into the control package.

11 Generate the control package.

12 Generate the application package.

13 Run a checksum on the generated packages.

14 Save the build meta data to the ism.conf file.

15 Generate the automatic HTML document <ISMDIR>/doc/index/index.html.

--upgrade

Upgrade the ISM to match the currently installed version of the ISMtool.

New releases of the ISMtool may fix bugs or modify how it operates on an extracted

ISMDIR. If the version of the currently installed ISMtool is different than the version of the

ISMTool that created the ISM, the developer may need to perform certain actions. Note

that minor and major downgrades are NOT allowed. For example, if version 2.0.0 of the

ISMtool created the ISM, then version 1.0.0 of the ISMtool cannot process the ISM.

Table 3-3 lists the developer actions if the currently installed and previous versions of

ISMtool are not the same.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved. 31

Intelligent Software Module (ISM) Development Kit 1.0.6 Guide

3

--name STRING

Change the internal name of the ISM to STRING. The ISMDIR, the top level directory of

an extracted ISM, can have a different name than the internal name of the ISM. To change

both names, use the ISMtool --name command to change the internal name and a file

system command to change the directory name.

--version STRING

Change the internal version field of the ISM. The STRING cannot contain spaces. The --

version command performs no other checks on the STRING format. If the STRING

format is not valid for the back-end packaging engine, the problem will not be found until

a --build is issued and the packaging engine throws an error.

Table 3-3: ISMtool Upgrade Actions

ISMTOOL
VERSION

CURRENTLY
INSTALLED

ISMTOOL
VERSION

THAT
CREATED
THE ISM

DEVELOPER ACTION

1.0.1 1.0.0 PATCH increment. Developer action is not needed. This is considered

a simple automatic upgrade which is forward AND backward

compatible.

1.0.0 1.0.1 PATCH decrement. Automatic downgrade. No action needed.

1.1.0 1.0.0 MINOR increment. The developer must apply the --upgrade

command to the ISM. There may be small operational differences or

enhanced capability. Warning: This operation is not reversible. Minor

upgrades are designed to be as transparent as possible.

2.0.0 1.0.0 MAJOR increment. The developer must apply the --upgrade

command to the ISM. There may be large operational differences. The

developer will probably need to perform other actions specified in

release notes.

1.0.0 2.0.0

or 1.1.0

MAJOR or MINOR decrement. This downgrade path is not allowed.

The ISM cannot be processed with the installed version of the

ISMtool.
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved.

Chapter 3: ISMTool Commands
--prefix PATH

Change the install prefix of an ISM. The PATH is used by the build-from-source feature of

the ISMtool and also by the drivers for the packaging engines. During installation on a

managed server, the application files packaged in the ISM are installed in the location

relative to the PATH. In the following UNIX example, the developer begins with this .tar

file:

% tar tvf ntp/bar/ntp.tar
-rw-r--r-- root/root 1808 2002-11-22 09:20:36 etc/
ntp.conf
drwxr-xr-x ntp/ntp 0 2003-07-08 16:22:38 etc/ntp/
-rw-r--r-- root/root 22 2002-11-22 09:22:08 etc/ntp/
step-tickers
-rw-r--r-- ntp/ntp 7 2003-07-08 16:22:38 etc/ntp/
drift
-rw------- root/root 266 2001-09-05 03:54:42 etc/ntp/
keys
-rwxr-xr-x root/root 252044 2001-09-05 03:54:43 usr/sbin/
ntpd
-rwxr-xr-x root/root 40460 2001-09-05 03:54:43 usr/sbin/
ntpdate
-rwxr-xr-x root/root 70284 2001-09-05 03:54:43 usr/sbin/
ntpdc
-rwxr-xr-x root/root 40908 2001-09-05 03:54:43 usr/sbin/
ntp-genkeys
-rwxr-xr-x root/root 66892 2001-09-05 03:54:43 usr/sbin/
ntpq
-rwxr-xr-x root/root 12012 2001-09-05 03:54:43 usr/sbin/
ntptime
-rwxr-xr-x root/root 40908 2001-09-05 03:54:43 usr/sbin/
ntptimeset
-rwxr-xr-x root/root 19244 2001-09-05 03:54:43 usr/sbin/
ntptrace
-rwxr-xr-x root/root 1019 2001-09-05 03:54:39 usr/sbin/
ntp-wait

In this example, a --prefix of '/' would build an application package such that all

the files would be installed relative to the file system root.

% ismtool --build --prefix '/' --pkgengine rpm4 ntp
.
.
.
% rpm -qlpv ntp/pkg/ntp-1.0.0-1.i386.rpm
drwxr-xr-x 2 ntp ntp 0 Jul 8 16:22 /etc/ntp
-rw-r--r-- 1 root root 1808 Nov 22 2002 /etc/ntp.conf
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved. 33

Intelligent Software Module (ISM) Development Kit 1.0.6 Guide

3

-rw-r--r-- 1 ntp ntp 7 Jul 8 16:22 /etc/ntp/drift
-rw------- 1 root root 266 Sep 5 2001 /etc/ntp/keys
-rw-r--r-- 1 root root 22 Nov 22 2002 /etc/ntp/step-
tickers
-rwxr-xr-x 1 root root 40908 Sep 5 2001 /usr/sbin/ntp-
genkeys
-rwxr-xr-x 1 root root 1019 Sep 5 2001 /usr/sbin/ntp-
wait
-rwxr-xr-x 1 root root 252044 Sep 5 2001 /usr/sbin/ntpd
-rwxr-xr-x 1 root root 40460 Sep 5 2001 /usr/sbin/
ntpdate
-rwxr-xr-x 1 root root 70284 Sep 5 2001 /usr/sbin/
ntpdc
-rwxr-xr-x 1 root root 66892 Sep 5 2001 /usr/sbin/ntpq
-rwxr-xr-x 1 root root 12012 Sep 5 2001 /usr/sbin/
ntptime
-rwxr-xr-x 1 root root 40908 Sep 5 2001 /usr/sbin/
ntptimeset
-rwxr-xr-x 1 root root 19244 Sep 5 2001 /usr/sbin/
ntptrace

It is easy to change the install prefix to '/usr/local':

% ismtool --build --prefix '/usr/local' ntp
.
.
.
% rpm -qlpv ntp/pkg/ntp-1.0.0-2.i386.rpm
drwxr-xr-x 2 ntp ntp 0 Jul 8 16:22 /usr/local/etc/
ntp
-rw-r--r-- 1 root root 1808 Nov 22 2002 /usr/local/
etc/ntp.conf
-rw-r--r-- 1 ntp ntp 7 Jul 8 16:22 /usr/local/etc/
ntp/drift
-rw------- 1 root root 266 Sep 5 2001 /usr/local/
etc/ntp/keys
-rw-r--r-- 1 root root 22 Nov 22 2002 /usr/local/
etc/ntp/step-tickers
-rwxr-xr-x 1 root root 40908 Sep 5 2001 /usr/local/
usr/sbin/ntp-genkeys
-rwxr-xr-x 1 root root 1019 Sep 5 2001 /usr/local/
usr/sbin/ntp-wait
-rwxr-xr-x 1 root root 252044 Sep 5 2001 /usr/local/
usr/sbin/ntpd
-rwxr-xr-x 1 root root 40460 Sep 5 2001 /usr/local/
usr/sbin/ntpdate
-rwxr-xr-x 1 root root 70284 Sep 5 2001 /usr/local/
usr/sbin/ntpdc
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved.

Chapter 3: ISMTool Commands
-rwxr-xr-x 1 root root 66892 Sep 5 2001 /usr/local/
usr/sbin/ntpq
-rwxr-xr-x 1 root root 12012 Sep 5 2001 /usr/local/
usr/sbin/ntptime
-rwxr-xr-x 1 root root 40908 Sep 5 2001 /usr/local/
usr/sbin/ntptimeset
-rwxr-xr-x 1 root root 19244 Sep 5 2001 /usr/local/
usr/sbin/ntptrace

On Windows, there is no standard way to tell an MSI where to install itself. Therefore,

application packages built from MSI files found in the bar directory will ignore the --

prefix setting. However, for Windows application packages built from ZIP files, the

ISMtool will use the --prefix setting. On Windows the prefix must be in this form:

driveletter:\directoryname (for example, D:\mydir).

On UNIX, the default value of PATH is /usr/local.

--ctlprefix PATH

Change the install prefix of the control files. Note that this command is not recommended

and that you should instead rely on the default values. During installation on a managed

server, the control files packaged in the ISM are installed in the location relative to the

PATH. On UNIX, the default is /var/opt/OPSWism. Windows the prefix must be in this

form: driveletter:\directoryname (for example, D:\mydir).

--user STRING (UNIX only)

When creating the application package, change the user owner to STRING.

--group STRING (UNIX only)

When creating the application package, change the group owner to STRING.

--ctluser STRING (UNIX only)

When creating the control package, change the user owner to STRING. The default value

is root.

--ctlgroup STRING (UNIX only)

When creating the control package, change the group owner to STRING. The default

value is bin.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved. 35

Intelligent Software Module (ISM) Development Kit 1.0.6 Guide

3

--pkgengine STRING (UNIX only)

Change the backend packaging engine. On systems that have multiple packaging

engines available, use this command to switch between them. To view the available

engines, issue the --help or --env commands.

--ignoreAbsolutePaths BOOL (UNIX only)

Ignore the absolute paths in the archive. For example, the following is a binary archive

with absolute paths:

% tar tvf test/bar/foo.tar
-rw-r--r-- root/root 1808 2002-11-22 09:20:36 /foo/bar/
baz.conf

If the --prefix is set to /usr/local then the install path is ambiguous: Should

ISMtool install baz.conf as /foo/bar/baz.conf or /usr/local/foo/bar/

baz.conf? If the answer is /foo/bar/baz.conf, then the developer must set the --

prefix of the ISM to '/'. However, if the answer is /usr/local/foo/bar/

baz.conf, then the developer must specify the --ignoreAbsolutePaths

command.

--addCurrentPlatform (UNIX only)

Add the current platform to the ISM's supported list. Note: This command does not make

the ISM cross-platform. ISMs can be constructed on different Opsware-supported

platforms. A platform is the combination of OS type and version. Example platforms are:

Redhat-Linux-7.2, SunOS-5.9, Windows-2000. To view the currently supported platforms

for an ISM use the --info command.

--removeCurrentPlatform (UNIX only)

Removes the current platform from the ISM's supported platform list.

--addPlatform TEXT (UNIX only)

Add to the ISM's supported platform list the platform specified by the TEXT. Because

platform support and identification are dynamic, no error checking is done for --

addPlatform. For this reason, the recommendation is to use --

addCurrentPlatform instead of --addPlatform.

--removePlatform TEXT (UNIX only)

Removes from the ISM's supported platform list the platform specified by the TEXT.
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved.

Chapter 3: ISMTool Commands
--target STRING (UNIX only)

Warning: This command should only be used by experts.

Allow cross-platform packaging of the application package for the RPM packaging

engine. The --target command must be used with --skipControlPkg. The format

of the STRING is <arch-os>, for example, i686-linux or sparc-solaris2.7.

--skipControlPkg BOOL

Prevent the building of the control package. This command allows the ISMtool to support

the packaging of files that have no need for a structured application control package.

--skipApplicationPkg BOOL

Prevent the building of the application package. This command allows the ISMtool to

support the creation of a control-only ISM package. This feature can be used to build a

controller for an application which is not installed or packaged with the ISMtool. Examples

are controllers for core operating system functions, currently running applications that

cannot be packaged, and specialized hardware.

--chunksize BYTES (UNIX only)

Limits the number of bytes that will be inserted into an application package. (Heuristics

are used to compensate for compression factors.) The binary archive (bar) directory may

contain many archives from which to build the application package. If the chunksize is

exceeded, then the application archives are grouped into several bins and each bin is

turned into a-sub application package. The algorithm is a standard bin-packing heuristic.

The movable units are binary archives within the bar directory.

For example, suppose that the output package format is an RPM and has five binary

archives: a.tgz (100M), b.tgz(100M), c.tgz (200M), d.tgz (300M), and e.tgz(50M). If

the chunksize is set to 314572800 (300M) then the output application bins will be:

part1(a.tgz, b.tgz, e.tgz) == 250M
part2(c.tgz) == 200M
part3(d.tgz) == 300M

This would result in three application packages:

foobar-part0-1.0.0.i386.rpm
foobar-part1-1.0.0.i386.rpm
foobar-part2-1.0.0.i386.rpm
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved. 37

Intelligent Software Module (ISM) Development Kit 1.0.6 Guide

3

In general, the chunksize is not a problem unless the application package is almost a

gigabyte in size. At that point, some package engines start breaking. The default

chunksize is one gigabyte (2 ^30 bytes).

--solpkgMangle BOOL (SunOS only)

Prevent the ISMtool from changing the name of the application package to conform to

Solaris requirements. For more information, see “Solaris” on page 49.

When creating a Solaris package, ISMtool must use a package name that conforms to the

9-character limit. However, it may be desirable to prevent ISMtool from changing

(“mangling”) the package name during the --build process. When --solpkgMangle

false is specified, ISMtool will use the ISM name when creating the application

package. The control package name will continue to be mangled. Note that when --

solpkgMangle is false, the ISM name must be 9 characters or less and there cannot

be multiple application packages.

Opsware Interface Commands

--upload

Upload the ISM contained in the ISMDIR to the Opsware core. During the upload process,

ISMtool creates the Opsware software node with the path specified by --opswpath. To

specify which Opsware core to connect to, use either command-line arguments (such as

--softwareRepository) or the environment variables listed in Table 3-4.

The --upload command prompts for an Opsware user name and password. Generally,

the user name and password should be those of the default Opsware administrator. To

use another Opsware user for the upload, first run ISMusertool to register the user. For

more information, see “ISMUsertool” on page 47.

--opswpath STRING

Specify the path of the Opsware node associated with the uploaded ISM. Note that the

Opsware path always contains forward slashes, even on Windows.

The ISMtool supports the construction of cross-platform ISMs. An example of such an ISM

is the Network Time Protocol (NTP) daemon, which can be built from source on a variety

of platforms. To make uploading of cross-platform ISMs easier, the ISMtool supports

variable substitution within the --opswpath STRING. These variables represent the

internal settings of the ISM. Table 3-4 lists the variables recognized by the ISMtool.
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved.

Chapter 3: ISMTool Commands
UNIX example:

% ismtool --opswpath '/System Utilities/${NAME}/${VERSION}/
${PLATFORM}' ntp

Possible expansion:

'/System Utilities/ntp/4.1.2/Redhat Linux 7.2'

Windows example:

% ismtool --opswpath "/System Utilities/${NAME}/${VERSION}/
${PLATFORM}" ntp

Possible expansion:

"/System Utilities/ntp/4.1.2/Windows 2000"

--dataAccesEngine HOST[:PORT]

For the upload, use the Opsware Data Access Engine located at HOST[:PORT].

--commandEngine HOST[:PORT]

For the upload, use the Opsware Command Engine located at HOST[:PORT].

--softwareRepository HOST[:PORT]

For the upload, use the Opsware Software Repository located at HOST[:PORT].

Table 3-4: ISMtool Variables

VARIABLE EXAMPLE

${NAME} ntp

${VERSION} 4.1.2

${APPRELEASE} 3

${CTLRELEASE} 7

${PLATFORM} Redhat Linux 7.2

${OSTYPE} Redhat Linux

${OSVERSION} 7.2

${CUSTOMER} Finance
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved. 39

Intelligent Software Module (ISM) Development Kit 1.0.6 Guide

4

--description TEXT

Provide descriptive text for the ISM. During the upload, this text is copied to the

description field on the Opsware node.

--addParam STRING

Add a parameter named STRING to the ISM. Usually, the commands --paramValue, --

paramDesc, and --paramType are also specified. For example:

% ismtool --addParam NTP_SERVER \
 --paramValue 127.0.0.1 \
 --paramType 'String' \
 --paramDesc 'NTP server, default to loopback' ntp

% ismtool --addParam NTP_CONF_TEMPLATE \
 --paramValue /some/path/ntp.conf.template \
 --paramType 'Template' \
 --paramDesc 'Template for the /etc/ntp.conf file'
ntp

--paramValue TEXT

Set the default value for the parameter. The --addParam command must also be

specified. If the parameter type is 'String' then the value is the string specified by

TEXT. If the parameter type is 'Template' then TEXT is interpreted as a PATH to a

configuration template file. The data in the template file is loaded as the default value. If

the --paramValue and --paramType are not specified, then the default value is the

empty string.

--paramType PARAMTYPE

Set the type of the parameter. The --addParam command must also be specified. The

PARAMTYPE must be either 'String' or 'Template'. The default type is 'String'.

--paramDesc TEXT

Set the descriptive text for the parameter. The --addParam command must also be

specified. The default value is an empty string.

--removeParam STRING

Remove the parameter named STRING.
0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved.

Chapter 3: ISMTool Commands
--rebootOnInstall BOOL

Tag the application package with the Opsware package control flag reboot_on_

install. If --rebootOnInstall is set to true, then the managed server will be

rebooted after the package is installed. If the ISM has multiple application packages, the

last package in the list is tagged.

--rebootOnUninstall BOOL

Tag the application package with the Opsware package control flag reboot_on_

uninstall. If --rebootOnUninstall is set to true, then the managed server will be

rebooted after the package is uninstalled. If the ISM has multiple application packages,

the last package in the list is tagged.

--registerAppScripts BOOL (Windows only)

Register the ISM packaging scripts with the application package.

By default, ISM packaging scripts are encoded in the application MSI to run at pre-

installation, post-installation, pre-uninstallation, and post-uninstallation. When --

registerAppScripts is specified, the ISM packaging scripts are instead registered as

Opsware package control scripts during the upload. The package control scripts are

registered in the Model Repository and are viewable from the Opsware Command Center.

The --registerAppScripts command is required if the ISM packaging scripts

contain actions that conflict with the application MSI installation. For example, a conflict

could occur if a post-install script contains a call to msiexec.exe. Since the Microsoft

Installer does not allow concurrent installs, a script containing a call to msiexec.exe will

not complete successfully. By registering the ISM packaging scripts as Opsware package

control scripts, the scripts are called outside of the MSI installation and uninstallation.

--endOnPreIScriptFail BOOL (Windows only)

Register to end subsequent installs with the application package.

If --endOnPreIScriptFail and --registerAppScripts are both set to true, then

the installation will abort if the ISM pre-install script returns a non-zero exit code.

--endOnPstIScriptFail BOOL (Windows only)

Register to end subsequent installs with the application package.

If --endOnPstIScriptFail and --registerAppScripts are both set to true, then

the installation will abort if the ISM post-install script returns a non-zero exit code.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved. 41

Intelligent Software Module (ISM) Development Kit 1.0.6 Guide

4

--endOnPreUScriptFail BOOL (Windows only)

Register to end subsequent uninstalls with the application package.

If --endOnPreUScriptFail and --registerAppScripts are both set to true, then

the uninstall will abort if the ISM pre-uninstall script returns a non-zero exit code.

--endOnPstUScriptFail BOOL (Windows only)

Register to end uninstalls with the application package.

If --endOnPstUScriptFail and --registerAppScripts are both set to true, then

the uninstall will abort if the ISM post-uninstall script returns a non-zero exit code.

Environment Variables
The ISMtool references the following shell environment variables:

• CRYPTO_PATH

• ISMTOOLBINPATH

• ISMTOOLCUSTOMER

• ISMTOOLDA

• ISMTOOLPASSWORD

• ISMTOOLSITEPATH

• ISMTOOLSR

• ISMTOOLUSERNAME

CRYPTO_PATH

This environment variable indicates the PATH of the crypto directory that contains the

file ismtool/token.srv.

To connect to the Opsware core during the upload of an ISM, the ISMtool needs the client

certificate and key that were generated during the installation of the Opsware System. The

name of the certificate is token.srv and it is inside the opsware-cert.db

generated during install. Ask your Opsware Administrator for this certificate.

Once you have obtained the token.srv and are ready to work with the ISMtool, please

keep in mind that using this certificate with the ISMtool invokes a different security

mechanism than the one used by the Opsware Command Center. As a result, you may
2 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved.

Chapter 3: ISMTool Commands
have increased or reduced privileges and you may be able to perform operations on

servers belonging to customers that you may not normally have access to, and you may

be able to perform operations that you may not normally be able to perform from within

the Opsware Command Center. Consequently, use caution with the ISMtool to avoid any

unintended consequences that could arise with this increased level of permissions.

After you get the token.srv file, create a directory on the development machine. The

last two components of the directory must be crypto/ismtool. Here’s a UNIX

example:

% mkdir -p /some/random/absolute/path/crypto/ismtool

Copy the token.srv file into this directory:

% cp token.srv /some/random/absolute/path/crypto/ismtool

Finally, set the CRYPTO_PATH environment variable as follows:

% setenv CRYPTO_PATH /some/random/absolute/path/crypto

Note: Although the token.srv file is in the ismtool subdirectory, the value of

CRYPTO_PATH does not include ismtool.

On Windows, the equivalent commands are:

mkdir %SomeRandomAbsolutePath%\crypto\ismtool\
copy token.srv %SomeRandomAbsolutePath%\crypto\ismtool\
set CRYPTO_PATH=%SomeRandomAbsolutePath%\crypto\

ISMTOOLBINPATH

This environment variable is a list of directory names, separated by colons, where the

ISMtool searches for system-level tools (such as tar and cpio). The following search

strategy is used:

1 Search the paths from the environment variable ISMTOOLBINPATH.

2 Search the complied-in binaries (if any) in /usr/local/ismtool/lib/tools/

bin.

3 Search within the user's path.

ISMTOOLCE

This environment variable is the HOST[:PORT] of the Opsware Command Engine used

by the ISMTool.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved. 43

Intelligent Software Module (ISM) Development Kit 1.0.6 Guide

4

ISMTOOLCUSTOMER

This environment variable is a STRING that specifies the Opsware customer during an

ISMTool upload.

ISMTOOLDA

This environment variable is the HOST[:PORT] of the Opsware Data Access Engine

used by the ISMTool.

ISMTOOLPASSWORD

This environment variable is a STRING that specifies the Opsware password during an

ISMTool upload.

ISMTOOLSITEPATH

This environment variable is a PATH for a “site” directory.

The ISMtool contains certain default scripts and attribute values (for example, the install

prefix) which are referenced when a new ISM is created. A developer can override the

default scripts and a selected set of attribute values by using a site directory.

The defaults.conf File

Within the site directory, a developer can create the defaults.conf file, which contains

overrides for attribute values. A line in defaults.conf has the format:

<tag>:<value>. A line starting with the # character is a comment. The following

example shows the values that can be set in defaults.conf:

UNIX:

prefix: /usr/local
ctlprefix: /var/opt/OPSWism
opswpath: /System Utilities/${NAME}/${VERSION}/${PLATFORM}
version: 1.0.0
ctluser: root
ctlgroup: bin

Windows:

prefix: ???
ctlprefix: ???
opswpath: /System Utilities/${NAME}/${VERSION}/${PLATFORM}
version: 1.0.0
4 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved.

Chapter 3: ISMTool Commands
The templates Subdirectory

Developers can override the files in the /usr/local/ismtool/lib/ismtoollib/

templates directory by placing their own copies in a templates subdirectory located

within the ISMTOOLSITEPATH. For example, developers can override the files that are

the default packaging hooks for Windows or UNIX.

The control Subdirectory

Sometimes, developers need to install a common set of tools into an ISM's control

directory. The ISMtool supports this requirement by copying all files from a control

subdirectory of the ISMTOOLSITEPATH to the ISM's control directory. If a file already

exists in the ISM's control directory, it will not be overwritten.

ISMTOOLSR

This environment variable is the HOST[:PORT] of the Opsware Software Repository

used by the ISMTool.

ISMTOOLUSERNAME

This environment variable is a STRING that specifies the Opsware user name during an

ISMTool upload.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved. 45

Intelligent Software Module (ISM) Development Kit 1.0.6 Guide

4
6 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved.

Appendix A: ISMUsertool
Appendix A: ISMUsertool

The --upload command of the ISMtool prompts for an Opsware user name. By default,

this user name is the Opsware Administrator that is specified when the Opsware System

is installed. To enable other Opsware users to perform an upload, run the ISMusertool.

To list the users that have upload privileges:

% ismusertool --showUsers

To grant a user or multiple users upload privileges:

% ismusertool --addUser johndoe
% ismusertool --addUser janedoe --addUser jackdoe --
showUsers

ISMusertool allows you to add or remove multiple users on the same command line, as

well as show the list of users. To revoke upload privileges:

% ismusertool --removeUser johndoe --showUsers
% ismusertool --removeUser janedoe --removeUser jackdoe --
showUsers

You cannot use ISMusertool to revoke the upload privileges of the default Opsware

Administrator user.

The --upload command of ISMtool also prompts for the Opsware customer. For users

that where granted upload privileges using ISMusertool, the only Opsware customer

allowed is Customer Independent. The default Administrator user can specify any

customer defined in the Opsware Command Center.

I N T H I S A P P E N D I X

This appendix provides a brief overview of the ISMUsertool.
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved. 47

Intelligent Software Module (ISM) Development Kit 1.0.6 Guide

4
8 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved.

Appendix B: Platform Differences
Appendix B: Platform Differences

Solaris
Solaris package names have a 9 character limit. By convention, the format is a set of

capital letters, followed by a set of lower case letters that identify the application.

Optionally, the final character may have a special meaning. Note that this format is a

convention, not a requirement. Here are some examples of Solaris package names:

SPROcc
SPROcmpl
SPROcodmg
SUNWgssx
SUNWgzip
SUNWhea
SUNWhiu8x
SUNWhmd
SUNWhmdu
SUNWhmdx

When the ISMtool creates a Solaris package, it must use a package name that is no more

than 9 characters in length. The package name constructed by ISMtool begins with ISM,

followed by the five first characters of the ISM's name, followed by the letter c for the

control package or a digit 0 for the first part of an application package, 1 for the second

part, and so forth. For example, if the ISM name is foobar, the package names would be

the following:

ISMfooba0
ISMfoobac

I N T H I S A P P E N D I X

This appendix discusses the IDK differences for the following platforms:

• “Solaris”

• “Windows”
Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved. 49

Intelligent Software Module (ISM) Development Kit 1.0.6 Guide

5

If truncation occurs, ISMtool generates a warning so that the developer can rename the

ISM to avoid naming conflicts. To view the package names, use the Solaris pkginfo

command.

Windows
On Windows, when ISMtool creates the application and control Windows Installer (MSI)

packages, it encodes the ProductName and ProductVersion as follows:

ProductName: <name>-<version>
ProductVersion: 0.0.<app|ctl release>

The <name>, <version>, and <release> correspond to an ISM's internal information,

which can be viewed with the ISMtool’s --info command. This encoding scheme is by

design and is required for the reconcile process to work correctly.
0 Opsware Inc. Confidential Information: Not for Redistribution. Copyright © 2000-2005 Opsware Inc. All Rights Reserved.

	Opsware® System Intelligent Software Module (ISM) Development Kit 1.0.6 Guide
	Table of Contents
	Preface
	About this Guide
	Contents of this Guide
	Conventions in this Guide
	Icons in this Guide
	Guides in the Documentation Set and Who Should Read Them

	Chapter 1: ISMTool Overview
	About ISMTool
	ISMTool Quick Start
	Build Process
	ISM File System Structure

	Chapter 2: ISM Packages
	ISM Application Package
	Source Transformation (UNIX only)
	Binary Archive to Package Transform
	File Attribute Control (UNIX only)

	ISM Control Package
	ISM Packaging Scripts
	Default Packaging Scripts for UNIX
	Default Packaging Scripts for Windows

	ISM Control Scripts
	ISM Parameter Interface

	Chapter 3: ISMTool Commands
	ISMtool Argument Types
	Informational Commands
	--help
	--env
	--myversion
	--info ISMDIR
	--showParams ISMDIR

	Creation Commands
	--new ISMNAME
	--pack ISMDIR
	--unpack ISMFILE

	Build Commands
	--quiet
	--verbose
	--banner
	--clean
	--build
	--upgrade
	--name STRING
	--version STRING
	--prefix PATH
	--ctlprefix PATH
	--user STRING (UNIX only)
	--group STRING (UNIX only)
	--ctluser STRING (UNIX only)
	--ctlgroup STRING (UNIX only)
	--pkgengine STRING (UNIX only)
	--ignoreAbsolutePaths BOOL (UNIX only)
	--addCurrentPlatform (UNIX only)
	--removeCurrentPlatform (UNIX only)
	--addPlatform TEXT (UNIX only)
	--removePlatform TEXT (UNIX only)
	--target STRING (UNIX only)
	--skipControlPkg BOOL
	--skipApplicationPkg BOOL
	--chunksize BYTES (UNIX only)
	--solpkgMangle BOOL (SunOS only)

	Opsware Interface Commands
	--upload
	--opswpath STRING
	--dataAccesEngine HOST[:PORT]
	--commandEngine HOST[:PORT]
	--softwareRepository HOST[:PORT]
	--description TEXT
	--addParam STRING
	--paramValue TEXT
	--paramType PARAMTYPE
	--paramDesc TEXT
	--removeParam STRING
	--rebootOnInstall BOOL
	--rebootOnUninstall BOOL
	--registerAppScripts BOOL (Windows only)
	--endOnPreIScriptFail BOOL (Windows only)
	--endOnPstIScriptFail BOOL (Windows only)
	--endOnPreUScriptFail BOOL (Windows only)
	--endOnPstUScriptFail BOOL (Windows only)

	Environment Variables
	CRYPTO_PATH
	ISMTOOLBINPATH
	ISMTOOLCE
	ISMTOOLCUSTOMER
	ISMTOOLDA
	ISMTOOLPASSWORD
	ISMTOOLSITEPATH
	ISMTOOLSR
	ISMTOOLUSERNAME

	Solaris
	Windows

