HP Operations Orchestration Software

Software Version: 7.10

HP Service Desk Integration Guide

ﬁp ’
Document Release Date: March 2008

Software Release Date: March 2008 invent



Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or
copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer
Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Copyright Notices
© Copyright 2008 Hewlett-Packard Development Company, L.P.

Trademark Notices

All marks mentioned in this document are the property of their respective owners.



Documentation Updates

The title page of this document contains the following identifying information:
e Software Version number, which indicates the software version.

o The number before the period identifies the major release number.

e The first number after the period identifies the minor release number.

e The second number after the period represents the minor-minor release number.
e Document Release Date, which changes each time the document is updated.

Al

e Software Release Date, which indicates the release date of this version of the software.'

You will also receive updated or new editions if you subscribe to the appropriate product
support service. If you have additional questions, contact your HP Sales Representative.



Updating documentation

Documentation enhancements are a continual project at Hewlett-Packard Software.
You can update the documentation set at any time using the following procedure
(which is also available in the HP OO readme file).

To obtain HP OO documentation

1. On The Web site https://supportl.opsware.com/support/index.php, log in with
account name and password that you received when you purchased HP OO.

2. On the Support tab, click the Product Docs subtab.

3. Under Quick Jump, click Operations Orchestration (or Process Automation
System).

4. Under Operations Orchestration, click ZIP beside HP OO 7.10 Full
Documentation Set.

5. Extract the files in the .zip file to the appropriate locations on your system:

e For the tutorials to run, you must store the .swf file and the .html file in the
same directory.

e To obtain the repository that reflects the state of the flow at the start of the
tutorial, unzip the file Exportof<preceding_tutorial_name=>.zip.

e To obtain the scriptlet for the tutorial that includes using scriptlets, click the
scriptlet .txt file name.

e To update your Central or Studio Help:
a. Under Help Files, click Studio Help File Bundle or Central Help File
Bundle.
b. In the File Download box appears, click either Open or Save.

Extract the files to the Hewlett-Packard Software\HP OO home directory,
in either the \Central\docs\help\Central or
\Studio\docs\help\Studio subdirectory, overwriting the existing files.


https://support1.opsware.com/support/index.php

Overview

This guide walks you through the process of integrating Hewlett-Packard Operations
Orchestration (HP OO) with HP Service Desk.

Requirements for integration

Integrating HP OO with HP Service Desk requires the following software:

e HP Service Desk 4.5 client software on the JRAS
¢ HP OO Central and Studio

Background

HP Service Desk has one readily usable integration point in the form of the Java API
provided as a Java Archive (JAR) file. This will require the use of a Java compiler.
The other potential integration point is the web user interface (by default on port
8080), but because this is oftentimes rebranded and customized in production
environments, it is unlikely that any pre-built operations would work against this
integration point.

Deployment

Versions Supported

4.5, 5.0 (partial)

Deployment Requirements:

You must have the Service Desk web API installed on a machine on which a Java-
enabled Remote Action Service (RAS) is installed. In PAS 7.0, there are two kinds of
RAS installation programs: one that installs a Java-enabled RAS (JRAS) and one that
installs a .NET-enabled RAS (NRAS). The single RAS that is shipped with HP OO 7.1
is enabled for both Java and .NET.

The following files should be present in the RAS (or, for PAS 7.0 JRAS) lib folder (for
instance, RAS\Java\repository\lib):
e For version 4.5, web-api.jar

OR

For version 5.0:

e sd-webapi.jar

o Xxpl.jar

e OvObsSDK.jar

e OvObsWebApi-Client.jar

e OvObsWebApi-Common.jar



e OvObsCommon.jar

A Java compiler is required to compile these together to form a new JAR file that
works with this particular installation. The version of the Java compiler that you use
must be compatible with that of the Service Desk installation. The safest Java
compiler version to use is the last release of 1.3. Some Service Desk installations
may be running on Java 1.4, in which case it is safe to use the appropriate 1.4
compiler.

Creating a Custom web-api.jar

The web-api / sd-webapi JAR files must match the patch level and configuration of
the service desk application server. When the forms and/or schemas are changed,
Service Desk becomes incompatible with the default API jars and needs a new one to
be generated. If this JAR has already been generated on the system that you are
going to integrate, it is highly recommended to use it. If modifications have been
made to the default schema and forms but a web-api.jar or sd-webapi.jar file has not
been created, create web-api.jar or sd-webapi.jar file before attempting the
integration.

The following instructions assume that Service Desk 4.5 is installed. Service Desk 5.0
includes an Ant xml build file and some documentation on how to create jars that
work with that integration.

You will need:

e HP Service Desk client application (patched to level of Service Desk server)

e Original web-api.jar (also should be patched during patches)

e Eclipse (or another IDE for compiling Java)

e Java 1.3 SDK

To perform this integration

1. Log into the console as an administrator and choose the Tools -> System...
menu option.

2. From the new window, go to File -> Generate Web API.
This does not produce a JAR but .Java files that must be compiled and
repackaged into a new JAR.

3. Compile and repackage the java files into a new JAR with .class files from the
original JAR file that was distributed with the client installation.

4. Start Eclipse and create a new project.

5. Make sure the selected compiler is Java 1.3.
Using a 1.3 compiler avoid potential marshalling problems, because the SD
server runs a 1.3 JRE by default.

6. Copy the web-api.jar from SD and add it to the Eclipse environment.

Add the web-api.jar to the project build path.

8. Add all the generated .Java files from Service Desk to the Eclipse project.

This should automatically compile it all via Eclipse's automatic compilation
system.

N

9. Open the web-api.jar file in WinZip or any other archive manager and delete
everything under com/hp/itsm/api.



10. Copy the generated .class files from the Eclipse project into the archive under
com/hp/itsm/api. You should see the following:

e The impl directory

e The interfaces directory

e ApiEntityMap.class

e ApiSDSession.class
11. Save the archive, copy it to the HP OO RAS'’s repository/lib directory.
12. Restart the RAS.

Now you can run flows that use the basic Service Desk operations.

Usage

Basic Concepts and Syntax

A number of operations allow users to specify parameters (such as "Modify Object")
to the call. These parameters allow users to use the Service Desk Java API by calling
methods by their names or by specifying a number of criteria for searching (if
applicable). You add extra parameters by adding inputs onto the operations. Note
that you cannot simply add new parameters into a flow - you must modify the
operation at the step level.

Property specifications use a simple dot object notation familiar to programmers.
Here’s a sample of a caller’'s name property from a service call.

Input Name Value

Caller.Name null / nothing

This will find the name of the caller. It will call the following equivalent Java code:

IServicecall servicecall = IServicecal lHome.open(servicecalllD);
IPerson caller = servicecall.getCaller();
String name = caller.getName();

You may not refer to object properties by their form labels:

For example, the following reference is bad — do not use this sort of reference:
User/Customer .Name

The following reference is okay.

Requester _Name

Multiple properties can be retrieved and even properties of those properties:

Input Name Value

Requestor.Location.Remark null / nothing
Caller.Name null / nothing
Caller.Birthdate null / nothing




Caller.Email null / nothing

Corresponds roughly to:

IServicecall servicecall = 1Servicecal lHome.open(servicecalllD);
IPerson requestor = servicecall.getRequestor();

ILocation location = requestor.getLocation();

String remark = location.getRemark();

IPerson caller = servicecall.getCaller();

// save name in output

String name = caller.getName();

// save caller’s birthdate in output as string representation
// Note: dates in Service Desk are stored as double

// use the Convert Date operation to convert to and from Service Desk’s
// system to the date format of your choice

Double birthdate = caller.getBirthdate();

// save caller’s e-mail in output

String email = caller.getEmail();

This specification is different when setting values in an object.

Because it is preferable not to create new objects in a set operation, we use the
“where” methods of objects to search for existing objects to use as references. More
specifically, any HP Service Desk object that will be assigned into another object
must be created prior to executing the set operation. For example, if you want to
assign a caller to a service call, the person must exist before we execute the
operation to assign that person as the caller. This may require you to use additional
Create operations prior to your flow.

To set a complex (non-Java) property, the most you can do, even as a developer, is
to find an existing object and set the property to a reference of that object. This
means that you can only set basic Java values to your objects and that you must
specify the full path to the object property each time.

Refer to the HP Service Desk Javadoc APl documentation for more information on the
properties and behaviors that are available per object. This will differ from schema to
schema (if modified under 5.0, for example), so the documentation might be invalid
for the installation. The “Get Object Properties” operation under the Utilities folder is
provided to help you retrieve the properties available to a particular object and tell
you which ones are required.

Examples

Example 1: Retrieving a Service Call

We add the following extra inputs to the “Get Servicecall” operation
Status.State.IsClosed : ""
Description - ™"

Solution :



Caller.Name: “~

Returned data looks like the following:

{

"Status.State.IsClosed" : "true",
"Description' : "Workstation go boom",
"Solution' : "Deferred",

“Caller.Name” : “Robert, Paulson”

}

Note that non-existent properties or properties that are not set are returned as blank
strings.

Example 2: Creating / modifying a Service Call:

Setting data on an object is different from retrieving it although it may look similar.
In this example, the user creates “where” objects and finds them to set them as
parameters to set (or add, in the case of some arrays) calls:

{

"Caller_Name" : "Paulson, Robert",

"Impact.Text" - "Low",

"Description™ : "My computer is on fire.",
"Workaround™ : "Don"t look at it, it will go away."
}

The first word in the text is the "set" method to call on the object, and the rest is the
“where” clause criterion.

This roughly calls the Java equivalent of the following code (assuming sd_object is
"Servicecall™):

// serviceCall is reference to a specified Servicecall
IPersonHome personHome = session.getPersonHome();

IPersonWhere personWhere = personHome.createPersonWhere();
personWhere.addContainCriteriumOnName("'Paulson, Robert');
IPerson persons[] = personHome.findPerson(personWhere);
serviceCall .setCaller(persons[0]);

I ImpactHome impactHome = session.getlmpactHome();

I ImpactWhere impactWhere = impactHome.createlmpactWhere();
impactWhere.addContainCriteriumOnText(*'Low');

IImpact impacts[] = impactHome.findImpact(impactWhere);
serviceCall.setlmpact(impacts[0]);
serviceCall.setDescription(*'My computer is on fire');
serviceCall.setWorkaround(“Don"t look at it, it will go away.");
serviceCall.save();



Alternative Integration Method

If you are familiar with Java and would rather write code to integrate HP OO
operations with HP Service Desk, you can use the IAction SDK and not use any of the
provided operations. Doing so entails linking to the JAR file of the RAS SDK while
developing your operations. Using this method, you still need to create a web-api.jar
file.

If the integration you are attempting exceeds the scope of the out-of-box operations
(see “Limitations,” below) you will need to write your own Java-enabled RAS
operation. See the IAction SDK documentation for a procedure for doing so.

Lastly, if you are using Service Desk 5.0, currently the only HP OO operations that
will work are the deprecated operations, which only work for a stock configuration.
Most likely, you will need to use the alternative method.

Limitations

Get and set operations and searching are the only supported operations. HP Service
Desk has a class of operations prefixed with “unrelate” that remove references
between objects. This is the equivalent of removing a pointer from a list — the
original value is not destroyed. An “unrelated” operation is not supported and is not
planned at the moment. Therefore, if a get / set operation you use needs to unrelate
objects, then you will need to create the operation yourself via Java by writing your
own custom lAction and putting it on the RAS.

Views and templates are not supported, because in almost all scenarios, the
integration will be done with a system administrator account that has access to all
objects, thus removing the need for views.

You may encounter problems related to the handling of arrays. If you try to retrieve
an array, for example, you will not get the contents of the array but a textual (Java
class) representation of the array object.

At present, you cannot set an array of values unless an array of matching object
types can be returned by a where query for that object type / class. This can only be
truly handled by an intermediate object format like JSON or XML, but it would need
to be heavily customized and would result in a slow implementation of an ORM. This
because of HP OO’s enforcement of type checking.

The APl may be tedious while looking for:

e The mapping of SD fields to properties.
e What is and isn’t required.

The “Get Object Properties” and “List Objects” utility operations may be helpful in
overcoming this tendency.



Hidden Inputs

delimiter

A number of operations allow you to specify the delimiter in list outputs. This is
helpful if you get back serialized results that are incorrectly formatted due to the use
of the default comma.

outFormat

You can change the output date format of the Convert Date operation.
To change the output date format of the Convert Date operation

e Add the input outFormat and specify the output format.
The default output date format is “EEE MMM dd HH:mm:ss zzz yyyy”

The recommended method is to use the convert date operation in a flow.

Troubleshooting Tips
Error exception - No matching objects found for subentity "foo” or
couldn’t find a matching object under it
This may happen when there is an attempt to assign an invalid item to a property.

For example, you might try to input a ClosureCode of “Invalid” when no such code
exists in the schema.

This error can also occur on an attempt to specify an invalid property name.

Error exception — “foo” does not seem to support find operation

This error can result from an attempt to access a property or SD object that cannot
be found with a findAllIFoo method.

Error exception — HP Service Desk object “foo” not found

This can occur if you try to access a property or SD object that cannot be
instantiated (e.g., static objects, meta-data, etc.) or does not exist.



	Documentation Updates
	Overview
	Requirements for integration
	Background
	Deployment
	Versions Supported
	Deployment Requirements:

	Creating a Custom web-api.jar
	Usage
	Basic Concepts and Syntax

	Examples
	Example 1: Retrieving a Service Call
	Example 2: Creating / modifying a Service Call:

	Alternative Integration Method
	Limitations
	Hidden Inputs
	delimiter
	outFormat

	Troubleshooting Tips
	Error exception - No matching objects found for subentity ”foo” or couldn’t find a matching object under it
	Error exception – “foo” does not seem to support find operation
	Error exception – HP Service Desk object “foo” not found


