
HP Operations Orchestration Software

Software Version: 7.10

Concepts Guide

Document Release Date: March 2008

Software Release Date: March 2008

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or
copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer
Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Copyright Notices

© Copyright 2008 Hewlett-Packard Development Company, L.P.

Trademark Notices

All marks mentioned in this document are the property of their respective owners.

 ii

Documentation Updates

The title page of this document contains the following identifying information:
• Software Version number, which indicates the software version.

• The number before the period identifies the major release number.
• The first number after the period identifies the minor release number.
• The second number after the period represents the minor-minor release number.

• Document Release Date, which changes each time the document is updated.
• Software Release Date, which indicates the release date of this version of the software."

You will also receive updated or new editions if you subscribe to the appropriate product
support service. If you have additional questions, contact your HP Sales Representative.

 iii

This Guide

This Concepts Guide is intended to introduce you to the basic components and ideas
of Operations Orchestration (HP OO).

It is organized into the following sections:

• Product concepts
• What you can do with HP OO
• HP OO Architecture and Administration

Updating documentation

Documentation enhancements are a continual project at Hewlett-Packard Software.
You can update the documentation set at any time using the following procedure
(which is also available in the HP OO readme file).

To obtain HP OO documentation

1. On The Web site https://support1.opsware.com/support/index.php, log in with
account name and password that you received when you purchased HP OO.

2. On the Support tab, click the Product Docs subtab.
3. Under Quick Jump, click Operations Orchestration (or Process Automation

System).
4. Under Operations Orchestration, click ZIP beside HP OO 7.10 Full

Documentation Set.
5. Extract the files in the .zip file to the appropriate locations on your system:

• For the tutorials to run, you must store the .swf file and the .html file in the
same directory.

• To obtain the repository that reflects the state of the flow at the start of the
tutorial, unzip the file Exportof<preceding_tutorial_name>.zip.

• To obtain the scriptlet for the tutorial that includes using scriptlets, click the
scriptlet .txt file name.

• To update your Central or Studio Help:
a. Under Help Files, click Studio Help File Bundle or Central Help File

Bundle.
b. In the File Download box appears, click either Open or Save.
c. Extract the files to the Hewlett-Packard Software\HP OO home directory,

in either the \Central\docs\help\Central or
\Studio\docs\help\Studio subdirectory, overwriting the existing files.

 iv

https://support1.opsware.com/support/index.php

 v

Support

For support information, including patches, troubleshooting aids, support contract
management, product manuals and more, visit one of the two following sites:

• https://support1.opsware.com/support/index.php
• http://www.hp.com/go/hpsoftware/DCA_support

https://support1.opsware.com/support/index.php

What HP OO is

Operations Orchestration is a system for creating and using actions in structured
sequences (Ops flows) that maintain, troubleshoot, repair, and provision your
Information Technology (IT) resources by:

• Checking the health of, diagnosing, and repairing networks, servers, services,
software applications, or individual workstations.

• Checking client, server, and virtual machines for needed software and updates
and, if needed, performing the needed installations, updates, or distributions.

• Performing repetitive tasks such as checking status on internal or external Web
site pages.

In Central, users can:

• Run flows
• Administer the system
• Extract and analyze data resulting from the flow runs
In Studio, authors can:

• Create, modify, and test flows, including flows that run automatically, as
scheduled.

• Create new operations
You can create operations within Studio and run them within Central.

You can also create operations that execute outside Central, in a remote action
service. You do so in a development environment that is appropriate to the task,
then associate the code that you have created with an operation that you create
in Studio.

• Specify which levels of users are allowed to run various parts of flows.

HP OO concepts

Ops flows

Ops flows are logically linked sequences of steps that are associated with operations.
An Ops flow can perform any task that you can program, on any computer anywhere
on an intranet, extranet, or the Internet. For example you might have flows that:

• Check to see whether a service is running, and if not, restart it.
• Triage a Web application to determine which tier is causing performance

problems.
• Find errors in configuration files and modify them to correct values.
Ops flows are stored in the Library.

A subflow is a flow that is used as a step in another flow. The flow that contains the
subflow step is the parent flow.

 1

Flow runs

A run is a single execution of an Ops flow in Central. A run can be interrupted,
resumed, or handed off to another Central user. The HP OO administrator manages
flow runs. Flow runs collect data that enables the administrator, managers, and
executives, to analyze performance of their IT system.

You can view information that is collected from all of a flows runs, or from all the
runs of more than one Ops flow. Collecting such data provides the basis for a higher-
level analysis of the state of the IT system and its components.

Repositories

A repository is a hierarchical structure of XML files that constitute a set Ops flows,
operations, remote action service references, IActions (if any are used), and system
accounts and other configurable objects: domain terms, scriptlets, selection lists,
system evaluators, system filters, system properties.

Authors typically work in Studio on a separate repository from the Central repository,
then publish their work to the Central repository. By a combination of publishing and
updating to and from a Central repository, authors can share their work with each
other. Flows can also be published from one Central repository to another, so that
you can test flows on a staging Central server before publishing it to the production
Central server.

HP OO Library

The Library is a directory structure in Studio and Central. In Central, the Library
shows a repository’s collection of flows. In Studio, the Library displays the entire
repository, including flows, operations, remote action services, and system accounts
and other configurable objects.

Concurrent execution: Running several threads at the same
time

Concurrent execution, also called parallel execution, means running entire runs of a
flow simultaneously or designing steps within a flow to run simultaneously with each
other, Let’s look at what this can mean for you in a few scenarios:

• To diagnose a problem, you need to run health checks against a database server,
an application server, a web server, and a router. You could find your diagnosis
much more quickly if you could run the four health checks simultaneously.

• You have a software upgrade to install on 100 servers. If you could install it on
25 servers simultaneously, you could upgrade all the servers in a quarter of the
time it would take to upgrade them all one at a time.

• One of the steps in a diagnostic flow creates a trouble ticket or creates and sends
an email. It would speed up resolution if the flow could keep running with
subsequent steps while the one step is creating the ticket or email.

HP OO provides multiple ways to achieve such parallel execution.

 2

• To run entire flows in parallel, you can do either of the following:
• On the Schedule tab in Central, schedule simultaneous runs of a flow.
• Specify parallel automatic runs of a flow by a URL.

Within a flow, you can create three kinds of parallel execution:

• Parallel split step, in which one step contains several series of steps that
execute simultaneously.
Parallel split steps are intended for performing dissimilar and separate series of
steps at once. Each series of steps is called and represented visually in the flow
diagram as a lane. The steps contained in each lane are called lane steps. The
lane’s series of lane steps are much like a subflow and you might think of them
as such, but in several respects, including movement of data into and out of
them, they are very different from a subflow or flow. For more information on
creating parallel split steps and on how they work, see Help for Studio.

In the scenario in which you want to run several different kinds of health checks
simultaneously, you could create a parallel split step with four lanes. In one lane,
you would create the lane steps necessary to run a health check on the database
server; in the next the steps necessary to run a health check on the application
server, and so forth.

• Multi-instance step, which executes simultaneously with multiple members of a
list provided for a value in an input of the step’s operation. You can throttle a
multi-instance step, which means limiting how many values it can process at
once.
In the example of upgrading many servers at once, let’s assume that you have a
step that is associated with the subflow that performs the upgrade and that this
step takes the target input that specifies which server the subflow runs against.
You could turn this step into a multi-instance step and supply it with a list of the
servers you want the subflow to upgrade. The step would then run the check
against all those servers simultaneously.

If running the subflow against too many target servers simultaneously would bog
down your infrastructure, you could throttle the multi-instance step by specifying
that it would only process, say, 25 target inputs at once.

• Nonblocking step, which allows the flow to continue with subsequent steps
while the nonblocking step is still executing.
In the case of a step that opens a trouble ticket, you could make the step a
nonblocking step, thus allowing the flow to proceed while the step creates the
ticket.

Anatomy of an Ops flow

Steps are the basic unit of an Ops flow. Each step is created from an operation.

• An Ops flow step’s operation uses input data to perform a task. From the
performance of the task and optional subsequent processing, the operation
obtains results.

• The operation has several possible responses, one of which is chosen depending
on what its results were.

 3

• Each response is connected by a transition to one of the possible next steps in
the flow.

Thus the choice of response determines which is the next step in a particular run of
the flow.

Figure 1 - Parts of a flow

Now let’s look at the flow in more detail.

Parts of an Ops flow, in detail

Operations

Operations do the work of the flow. Each operation is the template for the steps that
are created from it. For example, a step might be created from an operation that
checks a Web page to see whether it contains specific text. Another step in the same
flow might be an instance of an operation that copies a file. You could use these two
steps in combination to update a Web page.

An operation is an action and, optionally, subsequent manipulation of the data that
the action produces. An Ops flow is, technically, an operation, so a step can be
created from an Ops flow as well. This means that an Ops flow can contain another
flow as a subflow.

The following are examples of tasks that an operation can accomplish:

• Check the status of a service on a computer
• Place or retrieve a file with the ftp put or get commands
• Launch an installing program on a list of computers simultaneously.
• Query a URL for its availability (using an HTTPGet operation).
• Run a SQL query against a particular database table (using a SQL Query

operation).

 4

Inputs

Inputs give the operation the data that they need to act upon. For example, an
operation to check a Web page needs to know which page to check
(mysite.com/mypage.htm) and what text to look for (“needed text”). And the copy-
file operation needs a source location and a destination.

Inputs define the means by which operations obtain the data they need to do
their work.

Each input is mapped to a variable, whose value can be set in any of several
ways:

• In a user prompt, the value is entered by the person running the Ops flow
• The flow author can set the input’s value to a specific, unchanging value
• The value can be obtained from another step.
• One of a collection of variables (called “flow variables”) and data values that

are available to the entire flow can be assigned to the input.
Which element you add an input to can determine when the input’s value is
obtained:

• An input for a flow obtains a value before the first step runs.
When possible, it is best practice to set any inputs that the Ops flow needs
and that are not produced by processing within the flow in the Ops flow’s
properties, thus making these input values available to the Ops flow before it
begins to run.

• An input for a step obtains a value before the step’s operation runs. The
operation processes a step input’s value only during the execution of that
step. In another step that is based on the same operation, the operation
processes the second step’s value for the input of the same name.

• When you change an input for the operation in the library, all instances of the
operation that you subsequently create reflect the change that you made.

Outputs, responses, and step results

Outputs, responses, and step results are related to each other in flow authoring.

Operation and flow outputs

Outputs (which used to be also called results) are all or part of the output of an
operation.

Remember that a flow is a kind of operation. This is particularly apparent when a
step in a flow is associated with another flow Thus flows also have outputs.

The raw output is all of the operation’s return code, data output, and error string.

For example, if you execute the ping operation on a windows XP machine, you will
get the following results:

{
Code = “0”
Error String = “”

 5

Output String =
“Pinging apple.com [17.254.3.183] with 32 bytes of data:

Reply from 17.254.3.183: bytes=32 time=24ms TTL=244
Reply from 17.254.3.183: bytes=32 time=24ms TTL=244
Reply from 17.254.3.183: bytes=32 time=25ms TTL=244
Reply from 17.254.3.183: bytes=32 time=26ms TTL=244

Ping statistics for 17.254.3.183:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 24ms, Maximum = 26ms, Average = 24ms”
}

The primary and other outputs are portions of the raw output—for example, success
code, output string, error string, or failure message—that you define as the contents
of one of the operation’s fields. (You can narrow a primary or other output to a more
highly focused selection by creating one or more filters for the output.)

Responses

Responses are the outcomes of evaluations of operation outputs.

Responses are the outcomes that are connected, each response by one transition, to
a following step. Because you link a response to a subsequent step, the response is
the determination of what the flow does next. Return steps are an exception:
Return-step responses return an outcome for the entire flow.

Responses are the outcomes of operations. In a step created from an operation, each
response is the starting point from which a transition may be connected to another
step (or back to the same step). Rules that evaluate the operation’s output fields
determine which of the several available responses will be the operation’s actual
response for the current run. Thus the outcome of the evaluation of one step’s
operation outcome determines which will be the next step in the flow run.

Step results

Step results are the step’s analog to the outputs of the operation from which the
step was created. You create the step results

You can pass step results as data to other steps in the flow or to other flows. You can
create filters to extract and modify parts of the operation’s output.

For example, suppose you only want the maximum, minimum, and average round-
trip times for a ping operation to a certain server. You could extract all three pieces
of information from the ping operation’s raw results into several filtered results for
the operation by filtering the raw results into three filtered results. Then you can use
those filtered results to do the following:

• Create response rules (evaluators) that test one or more of the filtered data
results to determine the next step of the flow.

 6

• By passing the filtered data as values to flow variables, make them accessible to
operations and transitions later in the flow, and through prompts that reference
the flow variables, to the users of the flow.

• If the flow is a step in another flow (that is, a subflow of a parent flow), pass the
data in the filtered results to fields in the flow’s result, thus making the properties
available to operations, steps, and transitions in the parent flow.
For more information on filtering outputs, see Help for Studio.

You can pass the step result’s value to either:

• A local flow variable.
• A flow output field for the flow.

Responses

Responses are the possible outcomes of the operation. A “get Web page” operation
has three responses: “page not found”, “text not found”, and “success” (if we got the
page and it has the desired text). A “copy file” operation might have just “success”
and “failure” for its responses.

Transitions

Our read Web page operation may need to respond differently if the Web page can’t
be found, if the page is there but the text isn’t present, or if the page is there and
the desired text is present. A transition leads from an operation response to one of
the possible next steps, so that the operation’s response determines what the next
step.

Flow variables
Flow variables are variables that store data obtained by operations or their scriptlets
for use in other flows or other steps within a flow.

• Global flow variables are available for all flows (both parent flows and
subflows) within the current run. When a step in a subflow stores a value in a
global flow variable, the variable’s value becomes available to the parent flow and
any other subflows.

• Local flow variables are available only to the current flow, whether it is a
parent flow or subflow.

Checkpoints
A checkpoint in a flow step gathers the state of the flow at that step and saves it to
the Central database. The flow's state comprises all the data necessary to completely
reconstruct the run in case of a system crash. If you have configured a failover/run
recovery cluster for Central and the Central server running a flow fails, other nodes
in the cluster resume the flow runs that were taking place on the failed Central
server. If a flow has no checkpoints, the run is resumed at the start of the flow. But
if there are checkpointed steps in the flow, the run is resumed from the last
checkpoint that was reached when the server failed.

 7

A little deeper dive on steps and operations

Now that you’re familiar with the basic parts of an Ops flow, let’s look at Ops flow
steps and operations in more detail.

What happens when a step is executed

When a step is carried out, the following sequence of actions is executed:
1. Input values are obtained from the data sources that have been defined for the

inputs and are made available to the step’s operation.
2. The step’s operation is carried out.

For details on how information is obtained by, flows through, and can be modified
within an operation, see the preceding section .

3. If the operation has a scriptlet, the operation’s scriptlet is executed.
The operation’s scriptlet can do the following:

a. Select the operation response.
b. Set the operation’s primary result.

The primary result is the result that supplies a value to an input whose
assignment is Previous Step’s Result.

c. Make changes to local and global flow variables.
4. If the operation’s scriptlet has not already set the operation’s primary result, the

operation’s primary result is set now.
5. If the operation’s scriptlet has not already selected the operation’s response, the

response is selected now, using the operation’s evaluation rules for selecting a
response.

6. Step results are extracted.
7. If the step has a scriptlet, that step scriptlet is executed.

The step scriptlet can do the following:

a. Select the operation response.
b. Make changes to local and global flow variables.
Note: The step scriptlet can not set the step’s primary result.

8. The transition that is associated with the selected response is selected.
9. The next step is executed, using this same sequence.

Steps and operations, compared

Steps are the building blocks of Ops flows. Each step in a flow is created from an
operation, which the step is an instance of.

Because the step is an instance of the operation:

• The step inherits the inputs, flow variables, and properties of the operation.

 8

• Changing a step’s input or local variable changes the input for the operation or
subflow when that step runs. The operation itself remains unchanged. Thus you
can specify different inputs in different steps created from a single operation.

• If you change the operation, you are modifying the template that is the basis for
all the steps associated with that operation. The steps that have been created
from that operation are either changed also or broken, depending on what you
have changed. In turn, all the flows that contain those steps may be broken due
to the operation’s having changed.

For more information on what the relationship between steps and operations means
when you are creating an Ops flow, see Help for Studio, in the section on Ops flow
architecture and concepts.

Operations: The models for steps

In addition to its responses, an operation is made up of the following:

• Command: This dictates most of what the operation actually does. (The
operation may also contain a scriptlet, which processes data.) The command may
be any of several types of commands, including command-line, an http operation,
or a script to run. For example, an operation might get a directory listing, check
to see if a service is running, execute a Web service, or run a UNIX vmstat
command.

• Results: When a command runs, it returns data, called results. For example, the
results returned by a dir command include a file list. A ps command results are a
list of processes. Most commands have more than one result, returning data such
as a return code, standard output (stdout), and error output (stderr). Our get
http page operation needs results for the http return code (200, 302, 404, etc)
and the data on the page.
Some commands can return a lot of data that we may want to use later on in our
flow. Using a single command, an operation to get memory statistics on Linux
can tell us how much memory is free, how much total memory is available, how
much swap memory is being used and much more.

• Filters: Figuring out what response to take based on the data that a command
returns may require filtering a key piece of data out of a result or creating a
scriptlet that manipulates the data.

• Rules: Rules evaluate the operation’s results to determine which operation
response to take when the step runs. Rules can evaluate any of the results fields,
the data strings, return codes, or error codes.
A given response for an operation is selected when the conditions described in
the response’s rule match the data that you have specified in or extracted from
the one of the results fields. The rules that you create are comparisons or
matches between a string of text that you describe in the rule and the results
field that you select for the rule.

Consider the get Web page operation in our example:

• The “page not found” response would be selected if the http return code were
404.

• The “text not found” response would be selected if text to check were not
contained in the data on the page.

 9

• Scriptlets: Scriptlets (written in JavaScript or Perl) are optional parts of an
operation that you can use to manipulate data from either the operation’s inputs
or results for use in other parts of the operation or flow.

The following diagram shows how operations can get values from flow, step, and
their own operation inputs, and how data in operation results can be passed to flow
variables, thus becoming available to other parts of the Ops flow.

Apply this diagram to a flow that runs the Windows command-line dir command on a
directory:

10. Flow inputs could provide two needed pieces of data: the host computer and the
name of the directory to run the dir command against

11. These two input data items could be stored in flow variables named “host” and
“directory,” respectively.

12. The operation inputs could obtain the values from the flow variables.
13. After the operation performs its task based on the inputs, the step could assign

the operation results to another flow variable, which another operation could use
in another step in the flow.

When you create a step from an operation, each of the operation’s responses must
be the starting point for a transition to another step. Thus during a particular run of
the Ops flow, the rules that evaluate the operation’s results determine the response
of the operation, which determines the transition that is followed and therefore the
path that the run follows through the steps.

Note: You can also set the operation’s result to supply values in fields to the result
of a step created from that operation, then in turn set that step result to supply
those values in fields to the Ops flow’s result. You can use the Ops flow result to pass
the values to other flows.

 10

Operations: architecture and information flow

An operation is a defined sequence of actions associated with a step in an Ops flow.
When we consider a step that has a flow associated with it as a subflow, we say that
the subflow is a type of operation. However, the following description is limited to a
single operation.

The parts of an operation are:

• Core functionality (called the core), which encapsulates the business logic of the
operation
For Web operations, the core functionality is the IAction interface execute method
and the method’s parameters, which provide data to and influence the behavior
of the execute method.

All input values are copied to the local or global context before execution of the
operation. Input values can also be bound to the local or global context.

The core might map input onto raw results.

• Further processing of raw results by a scriptlet (optional)
• Determination of a response
The context is a container that is independent of the step and holds various values
that can be exchanged with the step at various points (see the following diagram).
There are two kinds of context: global and local. Local context exists for the duration
of the step; global context exists for the duration of the Ops flow. You can pass
values to and from the local or global context.

In information flow through an operation, as shown in the following diagram, these
parts of an operation play roles:

• Raw results
If the IAction interface is part of the core functionality, the raw results are the
data and state.

• Scriptlet
An optional interpretive program that may be executed at the end of a step. The
scriptlet often evaluates the raw results of the operation and produces the output
data of the operation.

• Output data
The data produced by the operation, if any.

• Response
The evaluation of the operation’s output and the resulting determination of the
transition from among the possible transitions for the operation’s step.

 11

Figure 2 - Information flow through an operation

Note: Operations that are provided in the iConclude folder are sealed—that is. you
cannot modify them other than to supply fixed, specific values for inputs.

HP OO architecture and administration

HP OO includes the following components:

• Central
Central is the Web-based application in which you execute flows and review the
information that the Ops flows have extracted on the health of the IT resources
against which the flows have run.

• Studio
Studio is the standalone application in which you create Ops flows or import them
(in “Accelerator Packs”).

• A database, which stores data related to results from running Ops flows.

 12

 13

• Accelerator Packs and Ops flow content, which are ready-to-use Ops flows and
operations with which you can build more Ops flows. Each Accelerator Pack is
specific to a platform or software application, such as Oracle, Red Hat, etc.

• Remote action services
Remote action services (RASs), which are services that are installed with HP OO,
are the media by which HP OO operations that are carried out outside HP OO.
Running outside of HP OO includes one or more of the following:

• Running remotely or automatically
• Interacting with platforms, environments, or applications that are not directly

accessible from HP OO
Once you have installed a RAS, then in Studio you can configure a reference to
the RAS. Operations that use the RAS to run remotely access the RAS through
the reference that you create in Studio.

	Documentation Updates
	This Guide
	Support
	What HP OO is
	HP OO concepts
	Ops flows
	Flow runs
	Repositories
	HP OO Library
	Concurrent execution: Running several threads at the same time

	Anatomy of an Ops flow
	Parts of an Ops flow, in detail
	Operations
	Inputs
	Outputs, responses, and step results
	Operation and flow outputs

	A little deeper dive on steps and operations
	What happens when a step is executed
	Steps and operations, compared
	Operations: The models for steps
	Operations: architecture and information flow

	HP OO architecture and administration

