HP Operations Orchestration Software

Software Version: 7.10

Guide to Load-Balancing and Failover Clusters for HP OO

Document Release Date: March 2008 Software Release Date: March 2008

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial license.

Copyright Notices

© Copyright 2008 Hewlett-Packard Development Company, L.P.

Trademark Notices

All marks mentioned in this document are the property of their respective owners.

Documentation Updates

The title page of this document contains the following identifying information:

- Software Version number, which indicates the software version.
 - The number before the period identifies the major release number.
 - The first number after the period identifies the minor release number.
 - The second number after the period represents the minor-minor release number.
- Document Release Date, which changes each time the document is updated.
- Software Release Date, which indicates the release date of this version of the software."

You will also receive updated or new editions if you subscribe to the appropriate product support service. If you have additional questions, contact your HP Sales Representative.

This Guide is intended for customers, Hewlett-Packard Software Systems Engineers (SEs), and Customer Engineers (CEs) who have installed or are deploying Hewlett-Packard Software Operations Orchestration (HP OO) 7.10.

Clustering for HP OO

If you run large volumes of HP OO flows and if high availability is a requirement for your HP OO installation, you can create a cluster that provides your HP OO configuration with load-balancing and failover clustering support in any combination of the following:

- A load-balancing cluster for HP OO Central servers and any standalone JRAS and NRAS installations
 - You can use HP OO Load Balancer to create, configure, and run such a load-balancing cluster.
- Failover support for the HP OO Load Balancer
 You can use the clustering software of your choice to provide this failover support.
- Failover support of Central servers and automatic run recovery (which means if one of the cluster members fails, one of the other nodes will take over and resume the failed node's runs).
 - You can configure Central to create the failover/run recovery support for the Central servers.
- A load-balancing and/or failover cluster for the Central database servers, which
 contains the Central nodes' run histories, schedules (if you install Scheduler), and
 system configuration, such as enabling of user authentication providers.
 - You can use any clustering software to cluster the Central database servers.

Each Central node must be its own dedicated machine, and use its own repository (a hierarchical folder structure of XML files). HP OO provides flows or operations with which you can synchronize repositories and iActions between all the nodes of the application cluster.

To combine multiple-authoring with a Central cluster, install Central in a staging environment to which the authors will publish and from which they will update. This

staging instance of Central should be the only source for publishing flows, iActions, and other HP OO objects to the production environment. You can do this and maintain consistency between the nodes' repositories by one of the following:

- Publish from the staging Central server to each of the nodes in the production Central cluster.
- Run a flow that publishes from the staging Central repository to the repositories on the nodes.

Each Central node, by default, can run 100 concurrent connections either through browsers or automatically initiated runs. If your cluster is handling more requests than that, any remaining boxes should be able to handle your peak load during a flood.

Following is a schematic of what a clustered HP OO installation might look like. Note that this schematic assumes that one of the Remote Action Services (JRAS or NRAS) is installed on a standalone host.

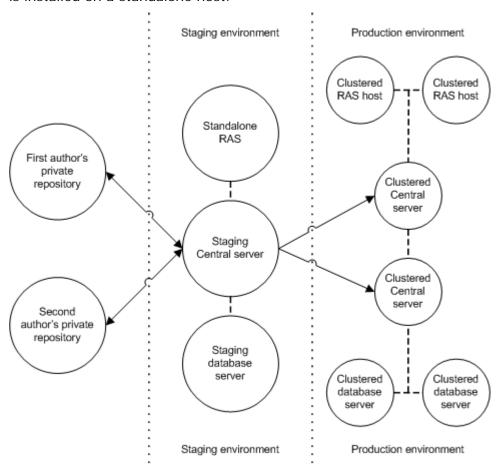


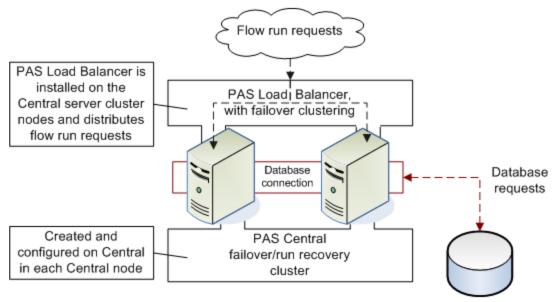
Figure 1 - HP OO Configuration with Staging Environment and Clustered Production Environment

Clustering concepts

Clustering is the grouping of computers in order to accomplish either load-balancing (evenly distributing the request load for an application between several servers), failover (if a server fails, having a second server pick up the failed server's tasks while the failed server is down), or both. You can cluster HP OO in the following ways:

Load balancing for Central, JRAS, and/or NRAS

HP OO requests can be routed to a cluster of servers to distribute the load across multiple machines, allowing HP OO to scale to as many concurrent runs as you need. HP OO includes the HP OO Load Balancer, with which you can create multiple load-balancing clusters. You may also use Load Balancers that are in your existing infrastructure.


 Active/passive failover support and automatic run recovery for Central and HP OO Load Balancer

If a server in the cluster (a *node*) fails, to enable the other nodes to pick up the failed node's load and resume the flow runs that were abandoned by its failure.

- Load balancing and/or failover support for the Central database server
 If the Central cluster is configured for failover and automatic run recovery, the
 nodes in the Central cluster all store the following data in the same database:
 - Run data
 - Scheduling data
 - Configurations made on the Administration tab of Central

Whether you cluster Central or not, Central can point to a clustered database environment. Load-balancing and failover support for database servers depends on the clustering technology that you use with your database servers.

The following diagram shows how you can provide load-balancing and failover support for a Central server cluster.

Central Database server cluster

Figure 2 - Load balancing and failover for a Central server cluster

The repository in each node of a Central cluster must be identical to the repository in each of the other nodes, so one of the tasks of maintaining the cluster is to replicate the repository across all the cluster nodes whenever the repository changes.

Creating a load-balancing cluster for Central

Creating a load-balancing and failover cluster for Central involves the following steps:

- 1. Installing the HP OO Load Balancer
- 2. Creating and configuring a Central cluster for load-balancing
- 3. Creating a failover cluster for the HP OO Load Balancer
- 4. Creating and configuring a Central cluster for failover/run recovery
- 5. Replicating the repository across the nodes of the Central cluster

If you were to install and configure load-balancing and failover clustering in a minimal fashion on two servers, the installed and configured clusters and HP OO programs might look like the following:

- Server 1
 - Windows/Linux Cluster1 in active/passive mode
 - Load Balancer 1
 - Central 1
 - JRAS 1
 - NRAS 1
- Server 2
 - Windows/Linux Cluster1 in active/passive mode
 - Load Balancer 2
 - Central 2
 - JRAS 2
 - NRAS 2

Server 1 Load Balancer would handle all HTTP requests and route them to Central 1 or Central 2, JRAS 1 or JRAS 2, NRAS 1 or NRAS 2. Server 2 Load Balancer would be inactive.

If Server 1 goes down, then Server 2 Load Balancer would become active and handle all HTTP requests, sending them to Central 2, JRAS 2, and NRAS 2, as long as Server 1 is down.

Installing the HP OO Load Balancer

The HP OO Load Balancer is a Java command-line utility whose installation varies according to whether you install it in a Windows or a Linux environment. We'll look at a Windows installation first.

To install the HP OO Load Balancer for Central on a Windows operating system

- To start the Studio Setup Wizard, navigate to and double-click PASClusterInstaller.exe.
- 2. On the Welcome page, click Next.
- On the License Agreement page, accept the terms of the license agreement, and then click Next.
- 4. On the **Select Destination Location** page, do one of the following, and then click **Next**:
 - Accept the default location.
 - Type the location where you want the HP OO cluster to be installed.
 - Click Browse, specify a different location.
- 5. In the Select Start Menu Folder page, do one of the following, and then click Next:
 - Accept the default folder.
 - Type the folder where you want the Studio files installed.
 - Click **Browse** and specify a different location.

The **Ready to Install** page appears, displaying the information that you specified.

6. To proceed, click Install.

The Setup Wizard tracks progress on the **Installing** page.

7. When the installation completes, click **Finish**.

To install the HP OO Load Balancer for Central on a Linux operating system

1. On the installation CD, in the Clustering subdirectory, locate and copy the compressed tar file PASCluster-7.1.tar.gz and uncompress it (tar –xzvf PASCluster-7.1.tar.gz) to the location where you're going to perform the installation.

Note: The following instructions reproduce the information in INSTALL.txt (contained in PASCluster-7.1.tar.gz).

- 2. Run configure.sh script.
- 3. Use the config-clustering jar tool to create the cluster.
- 4. Run the PASLB.sh start command to start the service.

Creating and configuring a Central cluster for load-balancing

You both create and configure the Central load-balancing cluster with the PAS Load-Balancer.

To configure a cluster

- 1. Open a command window.
- 2. Navigate to the location where you installed the HP OO Load Balancer.
- 3. Open cluster-config.jar, using the following:

```
java -jar cluster-config.jar
```

Note: For the command help for cluster-config.jar, type **help**.

```
Enter a Command: help
Command Description
            removes a node from the cluster (eg. rm <index> )
views cluster details (eg. view <index> )
view
            saves config file and restarts apache saves config file this current view of all commands
restart
save
he l p
            lists all clusters and their index deletes a cluster (eg. del <index> ) adds node to cluster
de 1
add
            edits cluster (eg. edit 1)
edit
            creates cluster
create
             exits this tool
```

- 4. To create a cluster, type **create** and then press ENTER.
- 5. At the prompt **Enter the cluster name**, type the cluster name, and then press ENTER.
- 6. At the prompt **Enter the cluster type**, type the cluster type (HP OO [Central], JRAS, or NRAS, and then press ENTER.
- 7. At the prompt **Enter the cluster port**, type the port for the cluster (by default, this is 8443), and then press ENTER.

A message appears, reading "Cluster <clustername> successfully created!"

```
Enter a Command: create
Enter the cluster name: mycluster
Enter the cluster type (PAS, JRAS, NRAS): PAS
Enter the cluster port: 8443
Cluster mycluster successfully added!
```

- 8. To add a node to the cluster, type **add** and then press ENTER.
- 9. At the prompt **Enter the node host**, type the machine name or IP address of one of the nodes.
- 10. At the prompt **Enter the node port**, type the port that the node will use to communicate with the other nodes.

This can be the same port number as the port that you specified for the cluster.

Each time you successfully add a node, the current state of the cluster, including its nodes, is displayed.

11. To save the config file, at the prompt, type save and then press ENTER.

Creating a failover cluster for HP OO Load Balancer

Creating an active-passive failover cluster for the HP OO Load Balancer provides high availability for the Load Balancer.

To create a failover cluster for HP OO Load Balancer

- Install HP OO Load Balancer on each node of the cluster.
 For instructions on installing HP OO Load Balancer, see *Installing the HP OO Load Balancer*, above.
- 2. Create the load-balancing cluster in the HP OO Load Balancer installation on one node, as described in *Creating and configuring a Central cluster for load-balancing*.
- 3. Copy the PAS.conf file from the node on which you created the load-balancing cluster to the other nodes.
- 4. Create the failover cluster for HP OO Load Balancer, using the clustering technology of your choice.
 - See the documentation for your clustering technology for instructions on creating the cluster.

Creating a Central cluster for failover and run recovery

In the Central Central.properties file, you can define one or more clusters of Central servers, each cluster providing failover capability and automatic recovery of runs that were abandoned as a result of the failure of one of the nodes. When one of the cluster nodes fails,

Enabling automatic run-recovery involves some manual configuration of the Central properties file on each member of the Central cluster, including:

- Enabling clustering support.
- Enabling run recovery.
- Giving the failover cluster a unique name.

Important: JGroups is the mechanism that the Central cluster manages its nodes and with which the nodes recognize each other as members of the cluster. By default, Central uses IP multicasting over UDP for communication between nodes in a cluster. In the step in which you configure the cluster using the JGroups framework, you configure the cluster nodes to communicate with each other using either IP multicasting or TCP ping. If you don't know whether your Central servers can use IP multicasting, you can use TCP ping.

To configure Central cluster nodes for failover and automatic run recovery

- 1. Locate the Central properties file in the PAS\Central home directory and open it in a text editor.
- 2. In Central.properties, locate the line dharma.cluster.support= and set it to true, as follows:

```
dharma.cluster.support=true
```

3. To enable automatic run recovery support, locate the line dharma.cluster.run_recovery= and set it to true, as follows: dharma.cluster.run recovery=true

This line allows runs to be recovered by other Central nodes in the same cluster.

Notes:

- Automatic run recovery does not require that the Central server is a member of a failover cluster. That is, you can set this line to true even if dharma.cluster.support=false.
- Only headless runs are recovered if the Central server they were running on crashes while the run was in a Running state.

Next, you'll use JGroups configuration to define the multicast address that the cluster nodes use to communicate with each other.

You configure JGroups with the dharma.jgroups.prop settings in Central.properties. Each Central cluster requires a unique pair of settings for the cluster's multicast address (mcast_addr) and the multicast port (mcast_port). The values used for the mcast_addr and mcast_port must not overlap with the IP address/port combination used for other applications that run in the environment.

In Central.properties, there is a commented-out example of dharma.jgroups.prop which shows how to use TCP pinging. The TCP(start_port=45566) identifies which port is locally used and should be connected by from other Central nodes in the cluster. This configuration requires that each Central server in the cluster know the hostname and port used by all the other Central nodes in the cluster. TCPPING(initial_hosts=......) is a comma delimited list of host[port] values which identify all the other Central nodes in the cluster and what their start_port is set to.

If the Central cluster nodes cannot use IP multicasting, the JGroups framework can use TCP pinging for communication between nodes. The advantage of IP multicasting is that it requires less maintenance than TCP ping: When you add a node to a failover Central cluster that uses TCP ping, you must add the node's entry (see TCPPING(initial_hosts= in the following step) to every other node's Central.properties file.

- 4. To configure the JGroups framework for UDP multicasting
 - a. In Central.properties, in the line that starts dharma.jgroups.prop=, locate mcast_port=45566.
 - b. Either retain the default (45566) or change it to a port number that 1) is not blocked on any of the cluster nodes and 2) is not used for other purposes iin your production environment.
 - c. Locate mcast_addr=228.10.10.10 and either retain the default (228.10.10.10) or change it to an address that the cluster should use in your production environment in order not to conflict with other applications.

OR to configure the JGroups framework for TCP ping:

- a. Comment out the line that starts dharma.jgroups.prop=
- b. Locate the commented-out group of lines that starts dharma.jgroups.prop=TCP and remove the comment-out characters.

The lines should look as follows:

thread=false):\

```
dharma.jgroups.prop=TCP(start_port=45566):\
TCPPING(initial_hosts=host1.mycompany.com[45566],host2.mycompany.com[45566];port_range=5;timeout=3000;num_initial_members=3;up_thread=true;down_thread=true):\
MERGE2(max_interval=10000;down_thread=false;min_interval=5000;up_
```

```
FD(timeout=2000;max_tries=3;down_thread=false;up_thread=false):\
 VERIFY_SUSPECT(timeout=1500;down_thread=false;up_thread=false):\
pbcast.NAKACK(max_xmit_size=60000;down_thread=false;use_mcast_xmi
t=false;qc laq=0;\
discard_delivered_msgs=true;up_thread=false;retransmit_timeout=10
0,200,300,600,1200,2400,4800):\
pbcast.STABLE(stability_delay=1000;desired_avg_gossip=50000;max b
ytes=400000;down_thread=false;up_thread=false):\
VIEW_SYNC(down_thread=false;avg_send_interval=60000;up_thread=fal
se):\
pbcast.GMS(print local addr=true; join timeout=3000; down thread=fa
lse; join retry timeout=2000;up thread=false; shun=true):\
FC(max_credits=2000000;down_thread=false;up_thread=false;min_thre
shold=0.10):\
 FRAG2(frag_size=60000;down_thread=false;up_thread=false):\
 pbcast.STATE_TRANSFER(down_thread=false;up_thread=false)
```

c. Within the lines, locate

TCPPING(initial_hosts=host1.mycompany.com[45566],

host2.mycompany.com[45566]... and substitute your cluster nodes' names or IP addresses and, within the square brackets, the port that they will use, separating the node entries with a comma and with the semicolon following the last entry.

For instance, suppose your nodes are:

- edgar.mydomain.ad (IP address of 224.0.10.159), using port 888
- richardii. mydomain.ad (IP address of 224.0.10.260), using port 777
- rosalind. mydomain.ad (IP address of 224.0.10.361), using port 555
- fool. mydomain.ad (IP address of 224.0.10.462), using port 444

then if you added the nodes using their domain names, the line would look like the following:

```
TCPPING(initial_hosts=edgar.mydomain.ad[888],richardii.mydomain.ad[777],rosalind.mydomain.ad[555],fool.mydomain.ad[444];
```

If you added the nodes using their IP addresses, the line would look like the following:

```
TCPPING(initial_hosts=224.0.10.159[888],224.0.10.260[777],224.0.1 0.361[555],224.0.10.462[444];
```

Important: Make sure that the port number that you specify in these entries is 1) not blocked on any of the cluster nodes and 2) not used for other purposes in your production environment.

The node addresses can be any Class D address (in the range 224.0.0.0 to 239.255.255.255) that is unique within your network environment.

5. To give the Central cluster a unique name, in Central.properties, find the following line:

```
dharma.central_cluster_name=
and add =<your_Central_cluster_name>
```

If, for example, you name the cluster **STAGING**, you would change the line to read,

```
dharma.central cluster name=STAGING
```

6. Save and close Central properties.

To verify that the Central failover cluster setup is correct

Review the Central\logs\wrapper.log for messages such as the following, ,which
indicate the successful formation and configuration of the cluster:

```
l ivm 1
                  | 2007/08/09 19:26:57 |
[WrapperSimpleAppMain] (19:26:57,309)
com.iconclude.dharma.commons.cluster.JGroupsClusterService - Now
coordinator of cluster group MYCLUSTER_CENTRAL
                | 2007/08/09 19:26:57 |
       jvm 1
[WrapperSimpleAppMain] (19:26:57,309)
com.iconclude.dharma.services.cluster.CentralClusterService -
Elected cluster master - starting master services
       jvm 1
                 | 2007/08/09 19:26:57 | INFO
[WrapperSimpleAppMain] (19:26:57,309)
com.iconclude.dharma.commons.cluster.JGroupsClusterService - Node
10.255.147.110:45566 added to cluster group MYCLUSTER CENTRAL
                 | 2007/08/09 19:28:50 | INFO [UpHandler (TCPPING)]
INFO
       jvm 1
(19:28:50,373)
com.iconclude.dharma.commons.cluster.JGroupsClusterService - Node
10.255.147.111:45566 added to cluster group MYCLUSTER_CENTRAL
OR
```

To verify the cluster status, use the Get Cluster Servers flow . This flow queries a node in the cluster to retrieve the entire state of the cluster, the master node and all the slave nodes that have been discovered. (To locate the Get Cluster Servers flow, use **Search** in Central.)

Replicating the repository across the nodes of the cluster

Each of the nodes in a cluster has its own repository, and all of their repositories must be identical to each other. Thus, after you have created the cluster, you must replicate the repository from the master node to the slave nodes.

The following procedure assumes that, per best practices, you have a Central server that is not in the production environment (and so is not a member of the production Central cluster), but rather is designated as a staging Central server. You can, however, run the Publish Staging to Production Cluster flow from one of the (target) cluster members or even from a server that is neither the staging server nor a member of the cluster.

Note: The user account that runs the Publish Staging to Production Cluster flow must have sufficient capabilities and permissions on the relevant Central servers (the source server, the target servers, and the server from which the flow is run).

To copy the Central repository across the nodes of the cluster

- 1. When you are ready to distribute new work to the Central cluster in your production environment, publish the repository to the staging Central server.
- 2. Run the flow Publish Staging to Production Cluster, providing the URL of the staging server and the URL of one of the Central servers in the cluster.

Tip: To find the Publish Staging to Production Cluster flow, use **Search** in Central.

Here is an example of server URLs that you might supply to the flow inputs:

- If the Staging Central server is named "staging.domain1.ad", its URL would be https://staging.domain1.ad:8443
- If Production Central server cluster members are prod1.domain2.ad, prod2.domain2.ad, and prod3.domain2.ad, you could use any of the following URLs for the serverURL input: https://prod2.domain2.ad:8443, or https://prod2.domain2.ad:8443

Configuring Linux Virtual Server load balancer to use HP OO

To provide load balancing for Central on a Linux Virtual Server

- Install a Linux Virtual Server and configure it for load balancing.
 For more information on setting up and configuring a Linux Virtual Server for load balancing, see http://www.linuxvirtualserver.org/.
- 2. When configuring the load balancer, be sure to configure two ports in the following fashion:

With IP affinity for browser connections

Set the NLB timeout to 31 minutes. This sets the limit before timing out to 31 minutes for any browser, which is a minute longer than the Central session timeout. This prevents a Central user's session from timing out and ensures that the user is directed to same node throughout his or her session (unless of course, the node fails). The affinity is handled through IP. After the timeout, on subsequent requests, the user may or may not be directed to the same node as their last session.

Without IP affinity for automatic connections

This is a useful setting for invoking flows automatically through the use of another tool. To ensure proper load-balancing for a flood of requests from a single machine, requests for automatic connections should not have IP affinity on, and should be requested on a different port than for browser connections.

For example, if IP affinity is turned on for all requests coming from https://virtualmachine:8443/OpsForce and IP affinity is turned off for all requests coming from https://virtualmachine:443/OpsForce, both requests would be mapped, via the LVS to hit https://nodeX:8443/PAS.

- 3. When all your configurations are complete for the Linux Virtual Server, add each Central node behind the HP OO Load-Balancing cluster.
- 4. To test the cluster by:
 - a. Make requests from different machines via a browser.

- The requests should be routed correctly to each node, and automatic requests should also be routed correctly.
- b. Take down each node in succession, then bring them back up to make sure they rejoin the cluster.

Administering a Central server cluster

Administering an HP OO Load Balancer cluster involves:

 Adding nodes to and removing them from the cluster. For information on how to start the Load Balancer for configuriing, see the HP OO Installation Guide (OO_InstallGuide.pdf).

Administering a Central failover/run recovery cluster involves:

- Adding nodes to and removing them from the cluster.
 For information on adding a node to a Central failover cluster (whether the cluster uses IP multicasting or TCP ping for internal communication), see the HP OO Installation Guide.
 - **Important:** When you add a node to a cluster whose nodes use TCP ping to communicate, you must add the node in the JGroups list in each node's Central.properties file (see the HP OO Installation Guide [OO_InstallGuide.pdf]).
- Maintaining the consistency of the repository across the cluster.
 You can use the Publish Staging to Production Clusters flow to replicate a repository across a cluster. You must provide the flow with the URL for the staging server and the URL for one of the cluster nodes. With just one cluster node URI supplied, the flow discovers the rest of the nodes in the cluster and iterates through them, publishing the repository to each one.
 - Although best practice is to have a staging Central server and publish the repository from there to the Central cluster in the production environment, you can run the flow from one of the nodes in the cluster.