
HP Performance Agent

For the Windows® Operating System

Software Version: 4.70
Tracking Your Transactions
Document Release Date: September 2007

Software Release Date: September 2007

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Copyright Notices

© Copyright 1983-2007 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe® is a trademark of Adobe Systems Incorporated.

Intel486 is a U.S. trademark of Intel Corporation.

Java™ is a U.S. trademark of Sun Microsystems, Inc.

Microsoft® is a U.S. registered trademark of Microsoft Corporation.

Netscape™ and Netscape Navigator™ are U.S. trademarks of Netscape Communications
Corporation.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City, California.

Oracle Reports™, Oracle7™, and Oracle7 Server™ are trademarks of Oracle Corporation,
Redwood City, California.

OSF/Motif® and Open Software Foundation® are trademarks of Open Software Foundation in
the U.S. and other countries.

Pentium® is a U.S. registered trademark of Intel Corporation.

SQL*Net® and SQL*Plus® are registered U.S. trademarks of Oracle Corporation, Redwood
City, California.
2

UNIX® is a registered trademark of The Open Group.

Windows NT® is a U.S. registered trademark of Microsoft Corporation.

Windows® and MS Windows® are U.S. registered trademarks of Microsoft Corporation.

All other product names are the property of their respective trademark or service mark
holders and are hereby acknowledged.
3

Support

You can visit the HP Software Support web site at:

www.hp.com/go/hpsoftwaresupport

HP Software online support provides an efficient way to access interactive technical support
tools. As a valued support customer, you can benefit by using the support site to:

• Search for knowledge documents of interest

• Submit and track support cases and enhancement requests

• Download software patches

• Manage support contracts

• Look up HP support contacts

• Review information about available services

• Enter into discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many
also require a support contract.

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html
4

Contents
1 What is Transaction Tracking? . 9

Improving Performance Management . 9
Benefits of Transaction Tracking . 10

Client View of Transaction Times . 10
Transaction Data . 10
Service Level Objectives . 11

A Scenario: Real Time Order Processing . 12
Requirements for Real Time Order Processing. 12
Preparing the Order Processing Application. 13

Monitoring Transaction Data . 14
Guidelines for Using ARM. 15

2 How Transaction Tracking Works . 17

Technical Overview . 17
Support of ARM 2.0 . 19

Windows Limitations . 19
Support of ARM 2.0 API Calls. 21

arm_complete_transaction Call . 21
Sample ARM Instrumented Applications. 22
Specifying Application and Transaction Names . 24
Transaction Manager Service (ttd) . 25
ARM API Call Status Returns . 26
Measurement Interface Service (midaemon) . 28
Transaction Configuration File . 29
Adding New Applications . 30

Adding New Transactions . 30
Changing SLO or Range Values. 31
5

Configuration File Keywords . 31
Configuration File Format . 33
Configuration File Examples . 35

Overhead Considerations for Using ARM . 37
Guidelines . 37
Disk I/O Overhead . 38
CPU Overhead . 38
Memory Overhead . 39

3 Getting Started . 41

Putting It All Together . 41
Setting Up Transaction Tracking . 42

Defining Service Level Objectives . 42
Modifying the Parm File. 43
Collecting Transaction Data. 43
Customizing the Configuration File (optional) . 44

Monitoring Performance Data. 46
Alarms . 47

4 Transaction Tracking Messages . 49

Transaction Tracking Messages . 49
Return Values for Failed ARM API Calls . 50

5 Transaction Metrics . 51

Global Metrics . 52
Per Transaction Metrics . 53

6 Transaction Tracking Examples. 59

Pseudocode for Real Time Order Processing . 60
Configuration Files Examples . 62

7 Advanced Features . 65

How Data Types Are Used in Performance Agent . 66
User-Defined Metrics . 68
Scopent ARM Instrumentation . 69
Special Considerations When Using a Correlator . 70
6

Overview. 71
C Compiler Option Examples . 72
Using the Java Wrappers . 73

Examples . 73
Setting Up an Application (arm_init) . 73

Setting Up a Transaction (arm_getid) . 74
Setting Up a Transaction With UDMs . 74

Setting Up a Transaction Without UDMs . 76
With Details . 76
Without Details . 76

Setting Up a Transaction Instance . 77
Starting a Transaction Instance (arm_start) . 78

Starting the Transaction Instance Using Correlators . 78
Starting the Transaction Instance Without Using Correlators 79

Updating Transaction Instance Data . 80
Updating Transaction Instance Data With UDMs . 80
Updating Transaction Instance Data Without UDMs . 80

Providing a Larger Opaque Application Private Buffer . 81
Stopping the Transaction Instance (arm_stop) . 82

Stopping the Transaction Instance With a Metric Update . 82
Stopping the Transaction Instance Without a Metric Update 82

Using Complete Transaction . 84
Using Complete Transaction With UDMs: . 84
Using Complete Transaction Without UDMs: . 85

Further Documentation. 86

Glossary . 87

Index . 91
7

8

1 What is Transaction Tracking?
Improving Performance Management

You can improve your ability to manage system performance with the
transaction tracking capabilities of HP Performance Agent.

As the number of distributed mission-critical business applications increases,
application and system managers need more information to tell them how
their distributed information technology (IT) is performing.

• Has your application stopped responding?

• Is the application response time unacceptable?

• Are your service level objectives (SLOs) being met?

The transaction tracking capabilities of Performance Agent allow IT
managers to build in end-to-end manageability of their client/server IT
environment in business transaction terms. With Performance Agent, you can
define what a business transaction is and capture transaction data that
makes sense in the context of your business.

For applications instrumented with the standardized Application Response
Measurement (ARM) API calls, Performance Agent provides extensive
transaction tracking and end-to-end management capabilities across
multi-vendor platforms.

HP Performance Manager in this document refers only to versions 4.0 and
later. The name Performance Manager 3.x is used throughout this document
to refer to the product that was formerly known as PerfView.
 9

Benefits of Transaction Tracking

• Provides a client view of elapsed time from the beginning to the end of a
transaction.

• Provides transaction data

• Helps you manage Service Level Agreements (SLA).

These topics are discussed in more detail in the remainder of this section.

Client View of Transaction Times

Transaction tracking provides you with a client view of elapsed time from the
beginning to the end of a transaction. When you use transaction tracking in
your IT environment, you see the following benefits:

• You can accurately track the number of times each transaction executes.

• You can see how long it takes for a transaction to complete, rather than
approximating the time as happens now.

• You can correlate transaction times with system resource utilization.

• You can use your own business deliverable production data in system
management applications, such as data used for capacity planning,
performance management, accounting, and charge-back.

• You can accomplish application optimization and detailed performance
troubleshooting based upon a real unit of work (your transaction), rather
than representing actual work with abstract definitions of system and
network resources.

Transaction Data

When Application Response Measurement (ARM) API calls have been
inserted in an application to mark the beginning and end of each business
transaction, you can then use the following resource and performance
monitoring tools to monitor transaction data.
10 Chapter 1

• Performance Agent provides the registration functionality needed to log,
report, and detect alarms on transaction data. Performance Agent is
required for transaction data to be viewed in PerfView,or by exporting the
data from Performance Agent log files into files that can be accessed by
spreadsheet and other reporting tools.

• PerfView graphs performance data for short-term troubleshooting and for
examining trends and long-term analysis.

• PerfView or the HP Operations Manager Message Browser allow you to
monitor alarms on service level compliance.

Individual transaction metrics are described in Chapter 5.

Service Level Objectives

Service level objectives (SLOs) are derived from the stated service levels
required by business application users. SLOs are typically based on the
development of the service level agreement (SLA). From SLOs come the
actual metrics that Information Technology resource managers need to
collect, monitor, store, and report on to determine if they are meeting the
agreed upon service levels for the business application user.

An SLO can be as simple as monitoring the response time of a simple
transaction or as complex as tracking system availability.
What is Transaction Tracking? 11

A Scenario: Real Time Order Processing

Imagine a successful television shopping channel that employs hundreds of
telephone operators who take orders from viewers for various types of
merchandise. Assume that this enterprise uses a computer program to enter
the order information, check merchandise availability, and update the stock
inventory. We can use this fictitious enterprise to illustrate how transaction
tracking can help an organization meet customer commitments and SLOs.

Based upon the critical tasks, the customer satisfaction factor, the
productivity factor, and the maximum response time, resource managers can
determine the level of service they want to provide to their customers.

Chapter 6 of this manual contains a pseudocode example of how ARM API
calls can be inserted in a sample order processing application so that
transaction data can be monitored with Performance Agent.

Requirements for Real Time Order Processing

To meet SLOs in the real time order processing example described above,
resource managers must keep track of the length of time required to complete
the following critical tasks:

• Enter order information

• Query merchandise availability

• Update stock inventory

The key customer satisfaction factor for customers is how quickly the
operators can complete their order.

The key productivity factor for the enterprise is the number of orders that
operators can complete each hour.

To meet the customer satisfaction and productivity factors, the response times
of the transactions that access the inventory database, adjust the inventory,
and write the record back must be monitored for compliance to established
SLOs. For example, resource managers may have established an SLO for this
application that 90 percent of the transactions must be completed in 5 seconds
or less.
12 Chapter 1

Preparing the Order Processing Application

ARM API calls can be inserted into the order processing application to
identify transactions for inventory response and update inventory. Note
that the ARM API calls must be inserted by application programmers prior to
compiling the application. See Chapter 6, Transaction Tracking Examples for
an example of an order processing program (written in pseudocode) that
includes ARM API calls that define various transactions.

For more information on instrumenting applications with ARM API calls, see
the Application Response Measurement 2.0 API Guide.
What is Transaction Tracking? 13

Monitoring Transaction Data

When an application that has been instrumented with ARM API calls is
installed and running on your system, you can monitor transaction data with
Performance Agent or PerfView.

... with Performance Agent

Using Performance Agent, you can collect and log data for named
transactions, monitor trends in your SLOs over time, and generate alarms
when SLOs are exceeded. Once these trends have been identified,
Information Technology costs can be allocated based on transaction volumes.
Performance Agent alarms can be configured to activate a technician’s pager,
so that problems can be investigated and resolved immediately. For more
information, see Chapter 8, “Performance Alarms,” in the HP Performance
Agent for Windows NT: User’s Guide.

Performance Agent is required for transaction data to be viewed in PerfView.

... with PerfView

PerfView receives alarms and transaction data from Performance Agent. For
example, you can configure Performance Agent so that when an order
processing application takes four seconds to check stock, PerfView receives an
alarm and sends a warning to the resource manager’s console as an alert of
potential trouble.

In PerfView, you can select TRANSACTION from the Class List window for a
data source, then graph transaction metrics for various transactions. For
more information, see PerfView online Help.
14 Chapter 1

Guidelines for Using ARM

Instrumenting applications with the ARM API requires some careful
planning. In addition, managing the environment that has ARMed
applications in it is easier if the features and limitations of ARM data
collection are understood. Here is a list of areas that could cause some
confusion if they are not fully understood.

1 In order to capture data, the OV Performance Transaction Manager
service (ttd), OV Performance collector (scopent), and OV Performance
Measurement Interface service (midaemon) must be running. (See page 25
and page 28.)

2 To capture any newly-defined transaction names, re-read the transaction
configuration file, ttdconf.mwc. (See page 29 and page 30.)

3 Performance Agent, user applications, and the Transaction Manager
service (ttd) must be restarted to capture any new or modified transaction
ranges and service level objectives (SLOs). (See page 31)

4 Strings in user-defined metrics are ignored by Performance Agent. Six
non-string user-defined metrics are logged. (See page 68.)

5 Using dashes in the transaction name has limitations if you are specifying
an alarm condition for that transaction. (See page 47.)

6 Performance Agent will only show the first 60 characters in the
application name and transaction name. (See page 24.)

7 Limit the number of unique transaction names that are instrumented.
(See page 37.)

8 Do not allow ARM API function calls to affect the execution of an
application from an end-user perspective. (See page 26.)

9 Use shared library libarm32.lib for linking. (See the ARM Library
Information on page 41)
What is Transaction Tracking? 15

16 Chapter 1

2 How Transaction Tracking Works
Technical Overview

The following components of Performance Agent work together to help you
define and track transaction data from applications instrumented with ARM
API calls.

• The Measurement Interface service (midaemon) monitors and reports
transaction data to the MI Performance Database where the information
can be accessed and reported by Performance Agent and PerfView.

• The transaction configuration file, ttdconf.mwc, allows you to define
transactions and identify the information to monitor for each transaction.

• The Transaction Manager service (ttd) reads, registers, and synchronizes
transaction definitions from the transaction configuration file with the
Measurement Interface service (midaemon).

These components are shown in the figure on the next page and are described
in more detail in the remainder of this chapter.

For backward compatibility, you can compile and run applications that were
instrumented with Transaction Tracker API calls, which were provided with
previous releases of Performance Agent. However, all new applications must
be instrumented with ARM API calls, rather than Transaction Tracker API
calls.
 17

Figure 1 Technical Overview of Transaction Tracking
18 Chapter 2

Support of ARM 2.0

ARM 2.0 is a superset of the previous version of Application Response
Measurement. The features that ARM 2.0 provides are user-defined metrics,
transaction correlation, and a logging agent. Performance Agent supports
user-defined metrics and transaction correlation but does not support the
logging agent.

However, you may want to use the logging agent to test the instrumentation in
your application. The source code for the logging agent, logagent.c, is
included in the ARM 2.0 Software Developers Kit (SDK) that is available from
the following web site:

http://regions. cmg.org/regions/cmgarmw

For information about using the logging agent, see the Application Response
Measurement 2.0 API Guide.

Windows Limitations

If you are instrumenting applications using the ARM 2.0 API for use with
Performance Agentfor Windows, be aware of the following limitations in the
arm.h file as provided in the ARM 2.0 Software Developers Kit and shown in
the Application Response Measurement 2.0 API Guide.

When the int64 and unsigned64 structures are used to hold 64-bit integer
values, the "upper" field should hold the lower 32 bits while the "lower" field
should hold the upper 32 bits. This format is the opposite of what is defined in
the example of the arm.h file in the "Examples" section of the Application
Response Measurement 2.0 API Guide. This change is imposed for Windows
NT/2000 because the definitions of the arm.h structures, as defined by the
CMG ARM Working Group, are based on the byte order on UNIX® systems.

Windows NT/2000 handles this automatically with the use of ARM_INT64 as
shown below in the example of code provided by Performance Agent for
Windows NT/2000.

The Application Response Measurement 2.0 API Guide uses the term
“application-defined metrics” instead of “user-defined metrics.”
How Transaction Tracking Works 19

http://www.cmg.org/regions/cmgarmw

The following example of code is taken from the arm.h Header File example
in the "Appendix: Measurement Agent Information" in the Application
Response Measurement 2.0 API Guide. It shows the byte order on UNIX®
systems.

typedef struct int64 {
arm_int32_t upper;
arm_int32_t lower;
} int64 ;

typedef struct unsigned64 {
unsigned32 upper;
unsigned32 lower;
} unsigned64 ;

The following example of code is the correct code as provided by Performance
Agent for Windows NT/2000.

#define ARM_INT64_int64;

typedef ARM_INT64 arm_int64_t
typedef unsigned ARM_INT64 arm_unsigned64_t;
20 Chapter 2

Support of ARM 2.0 API Calls

The following Application Response Measurement (ARM) API calls are
supported in Performance Agent:

See your current Application Response Measurement 2.0 API Guide for
information on instrumenting applications with ARM API calls as well as
complete descriptions of the API calls and their parameters. For commercial
applications, check the product documentation to see if the application has
been instrumented with ARM API calls.

For important information about required libraries, see ARM Library
Information on page 41, in Chapter 3.

arm_complete_transaction Call

In addition to the ARM 2.0 API standard, the HP arm agent supports the
arm_complete_transaction call. This call, which is an HP-specific extension
to the ARM standard, can be used to mark the end of a transaction that has
completed when the start of the transaction could not be delimited by an
arm_start call. The arm_complete_transaction call takes as a parameter,
the response time of the completed transaction instance.

In addition to signalling the end of a transaction instance, additional
information about the transaction can be provided in the optional data buffer.

arm_init() Names and registers the application and (optionally) the user.

arm_getid() Names and registers a transaction class, provides related
transaction information. Defines the context for user-defined
metrics.

arm_start() Signals the start of a unique transaction instance.

arm_update() Updates the values of a unique transaction instance.

arm_stop() Signals the end of a unique transaction instance.

arm_end() Signals the end of the application.
How Transaction Tracking Works 21

Sample ARM Instrumented Applications

The following sample programs are included with Performance Agent:

armsample1.c uses standard ARM API calls (ARM 1.0) and does not use any
advanced functions. It executes ARMed transactions continuously in batch
mode. No user interaction is required.

armsample2.c also uses standard ARM API calls (ARM 1.0) and does not use
any advanced functions. It executes ARMed transactions interactively.

armsample3.c provides examples of how to use two of the new features,
user-defined metrics and transaction correlation, provided by version 2.0 of
the ARM API. It is a client/server program where both server and client
perform a number of transactions. The user can get correlator information for
a transaction by passing the request to the arm_start API call. The user can
also pass the user-defined metrics and correlator to a specific transaction via
the ARM API.

C source code Executable

\<InstallDir>\arm\examples\
armsample1.c

<InstallDir>\bin\armsample1.exe

\<InstallDir>\arm\examples\
armsample2.c

<InstallDir>\bin\armsample2.exe

\<InstallDir>\arm\examples\
armsample3.c

<InstallDir>\bin\armsample3.exe

\<InstallDir>\arm\examples\
armsample4.c

<InstallDir>\bin\armsample4.exe

The <InstallDir> directory name is used throughout this document and
stands for the directory in which Performance Agent is installed. The default
directory is C:\Program Files\hp OpenView, but you can specify a different
installation path for a first-time installation.
22 Chapter 2

armsample4.c provides samples of how to use one of the new features,
user-defined metrics, provided by version 2.0 of the ARM API. For each
transaction, the user can pass user-defined metrics using arm_start,
arm_update, and arm_stop API calls.
How Transaction Tracking Works 23

Specifying Application and Transaction Names

Although ARM allows a maximum of 128 characters each for application and
transaction names in the arm_init and arm_getid API calls, Performance
Agent shows only a maximum of 60 characters. All characters beyond the first
60 will not be visible.

Performance Agent applies certain limitations to how application and
transaction names are shown in extracted or exported data. These rules also
apply to viewing application and transaction names in PerfView.

The application name always takes precedence over the transaction name.
For example, if you are exporting transaction data that has a 65-character
application name and a 40-character transaction name, only the application
name is shown. However, the last five characters of the application name are
not visible.

For another example, if an application name has 29 characters and the
transaction name has 35 characters, Performance Agent shows the entire
application name but the transaction name appears truncated. A total of 60
characters are shown. Fifty-nine characters are allocated to the application
and transaction names and one character is allocated to the underscore (_)
that separates the two names. This is how the application name
“WarehouseInventoryApplication” and the transaction name
“CallFromWestCoastElectronicSupplier” would appear in Performance
Agent or PerfView:

warehouseinventoryapplication_CallFromWestCoastElectronicSup

The 60-character combination of application name and transaction name
must be unique if the data is to be viewed with PerfView.
24 Chapter 2

Transaction Manager Service (ttd)

The Transaction Manager service (ttd) reads, registers, and synchronizes
transaction definitions from the transaction configuration file, ttdconf.mwc,
with the Measurement Interface service (midaemon). Processing occurs
through ARM API calls that come from the application you are monitoring.

The Transaction Manager service (ttd) is started when you start the OV
Performance Services from the OV Performance Services window. It runs in
background mode when dispatched, and errors are written to the error file
status.ttd.

The Measurement Interface service (midaemon) must also be running to
process the transactions and to collect performance metrics associated with
these transactions. (For more information, see Measurement Interface
Service (midaemon) on page 28 in this chapter.)

Use the mwa command-line utility to start MWA processes to ensure that the
processes are started in the correct order. mwcmd stop will not shut down ttd.
If ttd must be shut down for a re-install or ant performance software, use the
command ttd -k. However, we do not recommend that you stop ttd, except
when re-installing Performance Agent.

See the HP Performance Agent for Windows NT/2000: Installation & System
Management manual for information on starting the OV Performance
services.

We strongly recommend that you do not stop the Transaction Manager service
(ttd).
If you stop the Transaction Manager service, any ARM-instrumented
applications that are running must also be stopped before you restart the
service and Performance Agent processes. The Transaction Manager service
must be running to capture all arm_init and arm_getid calls being made on
the system. If the Transaction Manager service is stopped and restarted,
transactions IDs returned by these calls will be repeated, thus invalidating
the ARM metrics.
How Transaction Tracking Works 25

ARM API Call Status Returns

The Transaction Manager service, (ttd) must always be running in order to
register transactions. If the service is not running, arm_init or arm_getid
calls will return a “failed” return code. If the Transaction Manager service is
restarted, new arm_getid calls may re-register the same transaction IDs that
are already being used by other programs, thus causing invalid data to be
recorded.

When the Transaction Manager service is terminated and subsequently
restarted, ARM-instrumented applications may start getting a return value of
-2 (TT_TTDNOTRUNNING) and an EPIPE errno error on ARM API calls. When
your application initially starts, a client connection handle is created on any
initial ARM API calls. This client handle allows your application to
communicate with the Transaction Manager process. When the Transaction
Manager service is terminated, this connection is no longer valid and the next
time your application attempts to use an ARM API call, you may get a return
value of TT_TTDNOTRUNNING. This error reflects that the previous Transaction
Manager process is no longer running even though there is another
Transaction Manager process running.

To get around this error, you must restart your ARM-instrumented
applications if the Transaction Manager service is terminated. First, stop
your ARMed applications. Next, restart the Transaction Manager service
and then restart your applications. The restart of your application causes the
creation of a new client connection handle between your application and the
Transaction Manager process.

Some ARM API calls will not return an error if the Measurement Interface
service (midaemon) has an error. For example, this would occur if the midaemon
has run out of room in its shared memory segment. The performance metric
GBL_TT_OVERFLOW_COUNT will be > 0. (Check for a midaemon error in the
status.mi file.) If an overflow condition occurs, you may want to stop all OV
Performance services as well as all ARMed applications, and then restart the
midaemon using the -smdvss option to specify more room in the shared
memory segment.

We recommend that your applications be written so that they continue to
execute even if ARM errors occur. ARM status should not affect program
execution.
26 Chapter 2

The number of active client processes that can register transactions with ttd
through the arm_getid call is limited to 512 open files by default. each client
registration request results in ttd opening a socket (an open file) for the RPC
connection. The socket is closed when the client application terminates.
Therefore, this limit affects only a number of active clients that have
registered a transaction through the arm_getid call. After this limit is
reached, ttd returns TT_TTDNOTRUNNING to a client’s arm_getid request. The
maximum number of open files can be increased to 2048 by using the
_setmaxstdio() option.
How Transaction Tracking Works 27

Measurement Interface Service (midaemon)

The Measurement Interface service (midaemon) is a low-overhead process that
continuously collects system performance information, including transaction
data. The Measurement Interface service must be running for Performance
Agent to collect transaction data. The Measurement Interface service is
started by the OV Performance Collector service, scopent, when you start the
OV Performance services from the OV Performance Services window.

The Measurement Interface service must be started after the Transaction
Manager service (ttd) has been started. In general, use the OV Performance
Services window, not the Windows NT/2000 Services window, to start and stop
OV Performance services to ensure that the processes are started in the
correct order.

See the HP Performance Agent for Windows : Installation and System
Management Guide for information on starting the OV Performance services.
28 Chapter 2

Transaction Configuration File

The transaction configuration file, ttdconf.mwc, allows you to configure the
following entries:

• the transaction name

• performance distribution ranges

• service level objectives to be met for each transaction

• application name if application-specific transactions are used

The Transaction Manager service (ttd) reads ttdconf.mwc to determine how
to register each transaction.

A typical ttdconf.mwc entry looks like this:

tran=Personnel range=0.0005, 0.010, 0.015 slo=0.10

where tran defines the transaction name, range defines the performance
distribution ranges, and slo defines the service level objective.

Customization of ttdconf.mwc is optional. The default configuration file
that ships with Performance Agent causes all transactions instrumented in
the application to be monitored.

If you are using a commercial application and don’t know which transactions
have been instrumented in the application, collect some data using the default
configuration file. Then look at the data to see which transactions are
available. You can then customize the transaction data collection for that
application by modifying ttdconf.mwc.

The order of the entries in the ttdconf.mwc file is not relevant. Exact
matches are sought first. If none are found, the longest match with a trailing
asterisk (*) is used.
How Transaction Tracking Works 29

Adding New Applications

If you are adding new ARMed applications to your system that use the default
slo and range values from the tran=* line in the ttdconf.mwc file, you do
not have to do anything to incorporate the new transactions. (See the section,
Configuration File Keywords on page 31 for descriptions of tran, range, and
slo.) The new transactions will be picked up automatically. The slo and
range values from the tran=* line in the ttdconf.mwc file will be applied to
the new transactions.

Adding New Transactions

If you need to add new transactions to ttdconf.mwc, you must do the
following:

1 Stop all ARMed applications that are currently running, including HP
OpenView Service Reporter.

2 To add the new transactions to ttdconf.mwc, choose Transactions from
the Configure menu in the Performance Agent main window.

After you have added the new transactions to the ttdconf.mwc file, you must
do the following steps to activate the additions you made.

1 Choose Stop/Start from the Agent menu in the Performance Agent main
Window.

2 Select the Transactions checkbox

3 Click the Refresh button. This action stops and then restarts the scopent
collector. It then causes ttdconf.mwc to be re-read and registers the new
transactions, along with their slo and range values, with the Transaction
Manager service (ttd) and the Measurement Interface service (midaemon).
The re-read will not change the slo or range values for transactions that
were in the ttdconf.mwc file prior to the addition of the new transactions

4 Click the Close button.

5 Restart your ARMed applications.
30 Chapter 2

Changing SLO or Range Values

If you need to change the slo or range values of existing transactions in the
ttdconf.mwc file, you must do the following:

1 Stop all ARMed applications including HP OpenView View Service
Reporter.

2 Stop the scopent collector by choosing OV Performance from the
Windows NT/2000 Control Panel to display the OV Performance Services
window, then click Stop Services.

3 Stop the Transaction Manager service (ttd) by choosing Services from the
Windows NT Control Panel (the Services applet is under Administrative
Tools in the Windows 2000 Control Panel). In the Services window, select
OV Performance Transaction Manager service and click Stop.

4 Change the slo or range values in the ttdconf.mwc file as necessary by
choosing Transactions from the Configure menu in the Performance Agent
main window.

5 Restart the scopent collector by choosing OV Performance from the
Windows NT/2000 Control Panel to display the OV Performance Services
window, and click Start Services. This action also restarts the Transaction
Manager service (ttd).

6 Restart your ARMed applications.

Configuration File Keywords

The transaction configuration file, ttdconf.mwc, associates transaction
names with transaction attributes that are defined by the following keywords.

Table 1 Configuration File Keywords

Keyword Syntax Usage

tran tran=transaction_n
ame

Required

range range=sec
[,sec,...]

Optional

slo slo=sec Optional
How Transaction Tracking Works 31

These keywords are described in more detail below.

tran

Use tran to define your transaction name. This name must correspond to a
transaction that is defined in the arm_getid API call in your instrumented
application. You must use the tran keyword before you can specify the
optional attributes range or slo. tran is the only required keyword in the
ttdconf.mwc file. A trailing asterisk (*) in the transaction name causes a
wild card pattern match to be performed when registration requests are made
against this entry. Dashes can be used in a transaction name. However,
spaces cannot be used in a transaction name.

The transaction name can contain a maximum of 128 characters. However,
only the first 60 characters are visible in Performance Agent. (See Specifying
Application and Transaction Names on page 24.)

The default ttdconf.mwc file contains several entries. The first entries
define transactions used by the scopent data collector, which is instrumented
with ARM API calls. The file also contains the single entry tran=*, which
registers all transactions in applications instrumented with ARM API calls.

range

Use range to specify the transaction performance distribution ranges.
Performance distribution ranges allow you to distinguish between
transactions that take different lengths of time to complete and to see how
many successful transactions of each length occurred.

Each value entered for sec represents the upper limit in seconds for the
transaction time for the range. The value may be an integer or real number
with a maximum of six digits to the right of the decimal point. On the
Windows platform, however, the precision is 10 milliseconds (0.01 seconds), so
only the first two digits to the right of the decimal point are recognized.

A maximum of 10 ranges are supported for each transaction you define.
You can specify up to nine ranges. One range is reserved for an overflow
range, which collects data for transactions that take longer than the largest
user-defined range. If you specify more than nine ranges, the first nine
ranges are used and the others are ignored.
32 Chapter 2

If you specify fewer than nine ranges, the first unspecified range becomes the
overflow range. Any remaining unspecified ranges are not used. The
unspecified range metrics are reported as 0.000. The first corresponding
unspecified count metric becomes the overflow count. Remaining unspecified
count metrics are always zero (0).

Ranges must be defined in ascending order (see examples later on in this
chapter).

slo

Use slo to specify the service level objective (SLO) in seconds that you want to
use to monitor your performance service level agreement (SLA).

As with the range keyword, the slo value can be an integer or real number,
with a maximum of six digits to the right of the decimal point. On the
Windows platform, this allows for a precision of ten milliseconds (0.01
seconds) so only the first two digits to the right of the decimal point are
recognized.

Configuration File Format

The ttdconf.mwc file can contain two types of entries: general transactions
and application-specific transactions.

General transactions are defined at the beginning of ttdconf.mwc before
any application is defined. These transactions will be associated with all the
applications that are created.

The default ttdconf.mwc file contains one general transaction entry and
entries for the scopent collector that is instrumented with ARM API calls.

tran=* range=0.5,1,2,3,5,10,30,120,300 slo=5.0

If you want to restrict management to specific applications and transactions
specified in the ttdconf.mwc file, remove the above entry.

Optionally, each application can have its own set of transaction names. These
transactions will be associated only with that application. The application
name you specify must correspond to an application name defined in the
arm_init API call in your instrumented application. Each group of
application-specific entries must begin with the name of the application
enclosed in brackets. For example:
How Transaction Tracking Works 33

[AccountRec]
tran=acctOne range=0.01, 0.03, 0.05

The application name can contain a maximum of 128 characters. However,
only the first 60 characters are visible in Performance Agent.

If there are application-specific transactions that have the same name as a
“general” transaction, the transaction listed under the application will be
used.

For example:

tran=abc range=0.01, 0.03, 0.05 slo=0.10
tran=xyz range=0.02, 0.04, 0.06 slo=0.08
tran=t* range=0.01, 0.02, 0.03

[AccountRec]
tran=acctOne range=0.04, 0.06, 0.08
tran=acctTwo range=0.1, 0.2
tran=t* range=0.3, 0.5

[AccountPay]

[GenLedg]
tran=genLedgOne range=0.01

In the above example, the first three transactions apply to all of the three
applications specified.

The application [AccountRec] has the following transactions: acctOne,
acctTwo,abc, xyz, and t*. One of the entries in the general transaction
set also has a wild card transaction named “t*”. In this case, the “t*”
transaction name for the AccountRec application will be used; the one in the
general transaction set is ignored.

The application [AccountPay] uses only transactions from the general
transactions set.

The application [GenLedg] has transactions genLedgOne, abc, xyz, and t*.

The ordering of transaction names makes no difference within the application.

For additional information about transaction and application names, see
Specifying Application and Transaction Names on page 24, earlier in this
chapter.
34 Chapter 2

Configuration File Examples

Example 1

tran=* range=0.5,1,2,3,5,10,30,12,30 slo=5.0

The “*” entry is used as the default if none of the entries match a registered
transaction name. These defaults can be changed on each system by
modifying the “*” entry. If the “*” entry is missing, a default set of registration
parameters are used that match the initial parameters assigned to the “*”
entry.

Example 2

[MANufactr]
tran=MFG01 range=1,2,3,4,5,10 slo=3.0
tran=MFG02 range=1,2.2,3.3,4.0,5.5,10 slo=4.5
tran=MFG03
tran=MFG04 range=1,2.2,3.3,4.0,5.5,10

Transactions for the MANufctr application, MFG01, MFG0, and MFG04, each use
their own unique parameters. The MFG03 transaction does not need to track
time distributions or service level objectives so it does not specify these
parameters.

Example 3

[Financial]
tran=FIN01
tran=FIN02 range=0.1,0.5,1,2,3,4,5,10,20 slo=1.0
tran=FIN03 range=0.1,0.5,1,2,3,4,5,10,20 slo=2.0

Transactions for the for the Financial application, FIN02 and FIN03, each
use their own unique parameters. The FIN01 transaction does not need to
track time distributions or service level objectives so it does not specify these
parameters.
How Transaction Tracking Works 35

Example 4

[PERSONL]
tran=PERS* range=0.1,0.5,1,2,3,4,5,10,20 slo=1.0
tran=PERS03 range=0.1,0.2,0.5,1,2,3,4,5,10,20 slo=0.8

The PERS03 transaction for the PERSONL application uses its own unique
parameters while the remainder of the transactions use a default set of
parameters unique to the PERSONL application.

Example 5

[ACCOUNTS]
tran=ACCT_* slo=1.0
tran=ACCT_REC range=0.5,1,2,3,4,5,10,20 slo=2.0
tran=ACCT_PAY range=0.5,1,2,3,4,5,10,20 slo=2.0

Transactions for the ACCOUNTS application, ACCT_REC and ACCT_PAY, each use
their own unique parameters while the remainder of the transactions use a
default set of parameters unique to the ACCOUNTS application. Only the
accounts receivable and payable transactions need to track time
distributions. The order of transaction names makes no difference within the
application.

For more configuration file examples, see Chapter 6, Transaction Tracking
Examples.
36 Chapter 2

Overhead Considerations for Using ARM

The current version of Performance Agent contains modifications to its
measurement interface that supports additional data required for ARM 2.0.
These modifications can result in increased overhead for performance
management. You should be aware of overhead considerations when planning
ARM instrumentation for your applications.

Guidelines

Here are some guidelines to follow when instrumenting your applications with
the ARM API:

• The total number of separate transaction IDs should be limited to not
more than 4,000. Generally, it is cheaper to have multiple instances of the
same transaction than it is to have single instances of different
transactions. Register only those transactions that will be actively
monitored.

• Although the overhead for the arm_start and arm_stop API calls is very
small, it can increase when there is a large volume of transaction
instances. More than a few hundred arm_start and arm_stop calls per
second on most systems can significantly impact overall performance.

• Request ARM correlators only when using ARM 2.0 functionality. (For
more information about ARM correlators, see the “Advanced Topics”
section in the Application Response Measurement 2.0 API Guide.) The
overhead for producing, moving, and monitoring correlator information is
significantly higher than for monitoring transactions that are not
instrumented to use the ARM 2.0 correlator functionality.

• Larger string sizes (applications registering lengthy transaction names,
application names, and user-defined string metrics) will impose
additional overhead.
How Transaction Tracking Works 37

Disk I/O Overhead

The performance management software does not impose a large disk overhead
on the system. Performance Agent’s collector, scopent, generates disk log
files, but their size is not significantly impacted
by ARM 2.0.

The scopent logtran log file is used to store ARM data. For more
information, see Chapter 2, “Managing Data Collection,” in the HP
Performance Agent for Windows NT/2000: User’s Manual.

CPU Overhead

A program instrumented with ARM calls will generally not run slower
because of the ARM calls. This assumes that the rate of arm_getid calls is
lower than one call per second, and the rate of arm_start and arm_stop calls
is lower than a few thousand per second. More frequent calls to the ARM API
should be avoided.

Most of the additional CPU overhead for supporting ARM is incurred inside of
the performance tool programs and services themselves. Measurement
Interface service (midaemon) CPU overhead rises slightly but not more than
two percent more than it was with ARM 1.0. In addition, scopent CPU
overhead will be slightly higher on a system with applications instrumented
with ARM 2.0 calls. Only those applications that are instrumented with ARM
2.0 calls that make extensive use of correlators and/or user-defined metrics
will have a significant performance impact on the Measurement Interface
service and scopent.

A midaemon overflow condition can occur when usage exceeds the available
default shared memory. This results in:

• No return codes from the ARM calls once the overflow condition occurs.

• Display of incorrect metrics, including blank process names.

• Errors being logged in status.mi (for example, “out of space”).
38 Chapter 2

Memory Overhead

Programs that are making ARM API calls will not have a significant impact in
their memory virtual set size, except for the space used to pass ARM 2.0
correlator and user-defined metric information. These buffers, which are
explained in the Application Response Measurement 2.0 API Guide, should not
be a significant portion of a process’s memory requirements.

There is additional virtual set size overhead in the performance tools to
support ARM 2.0. The Measurement Interface service (midaemon) creates a
shared memory segment where ARM data is kept internally for use by
Performance Agent. The size of this shared memory segment has grown,
relative to the size on releases with ARM 1.0, to accommodate the potential for
use by ARM 2.0. By default on most systems, this shared memory segment is
approximately two megabytes in size. This segment is not all resident in
physical memory unless it is required. Therefore, this should not be a
significant impact on most systems that are not already memory-constrained.
The memory overhead of the Measurement Interface service can be tuned
using special Performance Agent startup parameters.
How Transaction Tracking Works 39

40 Chapter 2

3 Getting Started
Putting It All Together

This chapter gives you the information you need to begin tracking
transactions and monitoring your service level objectives. For detailed
reference information, see Chapter 2, How Transaction Tracking Works. For
an example of how an application can be instrumented with ARM API calls
and examples of how the transaction configuration file, ttdconf.mwc, can be
customized, see Chapter 6, Transaction Tracking Examples.

ARM Library Information

Performance Agent installs the ARM shared library, libarm32.dll, into the
\%windir%\system32\ directory. The following additional libraries are
installed into the \InstallDir\lib\ directory:

libarm32.lib ARM import library used to compile with applications
being instrumented with ARM API calls.

libarm32d.dll Debug version of the ARM library.

libarm32d.lib Debug version of the ARM import library.

libarmnop.dll No-operation (NOP) ARM library.
When running an application instrumented with ARM
API calls on a system where Performance Agent is not
present, copy this library to the
\%windir%\system32\ directory and rename it as
libarm32.dll.

libarm32.dll Backup copy of the ARM shared library.
 41

Setting Up Transaction Tracking

Follow the procedures below to set up transaction tracking for your
application. These steps are described in more detail in the remainder of this
section.

1 Define SLOs by determining what key transactions you want to monitor
and the response level you expect (optional).

2 To monitor transactions in Performance Agent and PerfView, make sure
that the Performance Agent parm.mwc file has transaction logging turned
on. Then start or restart Performance Agent to read the updated parm file

3 Run the application that has been instrumented with ARM API calls,
which are described in the Application Response Measurement 2.0 API
Guide.

4 Use Performance Agent or PerfView to look at the collected transaction
data. If the data isn’t visible in PerfView, close the data source and then
reconnect to it.

5 Customize the ttdconf.mwc file to modify the way transaction data for
the application is collected (optional).

6 If you need to add transactions to ttdconf.mwc, see Adding New
Applications on page 30. If you need to change the slo or range values of
existing transactions in ttdconf.mwc, see the Changing SLO or Range
Values on page 31.

Defining Service Level Objectives

Your first step in implementing transaction tracking is to determine the key
transactions that are required to meet customer expectations and what level
of transaction responsiveness is required. The level of responsiveness that is
required becomes your service level objective (SLO). You define the service
level objective in the transaction configuration file, ttdconf.mwc.

Defining service level objectives can be as simple as reviewing your
Information Technology department’s service level agreement (SLA) to see
which transactions you need to monitor to meet your SLA. If you don’t have
an SLA, you may want to implement one. However, creating an SLA is not
required in order to track transactions.
42 Chapter 3

Modifying the Parm File

If necessary, modify the parm.mwc file to add transactions to the list of items
to be logged for use by Performance Agent and PerfView. Include the
transaction option as shown in the following example:

log global application process transaction device=disk

The default for the log transaction parameter is no resource and no
correlator. To turn on resource data collection or correlator data collection,
specify log transaction=correlator or log transaction=resource. Both
can be logged by specifying log transaction=resource, correlator

Before you can collect transaction data, the modified parm.mwc file must be
activated as follows:

1 Open the OV Performance Services window from the Windows Control
Panel or the Performance Agent program.

2 Select the Data Collection check box.

3 Click the Refresh button.

If the Performance Agent is stopped, you must click Start Services button.

Collecting Transaction Data

Start up your application. Transaction data for your application is collected
and synchronized as the application runs. The data is stored in the MI
Performance Database where it can be used by Performance Agent and
PerfView. See Monitoring Performance Data on page 46 for information on
using each of these tools to view transaction data for your application.

Error Handling

Due to performance considerations, not all problematic ARM API calls return
errors in real time. Some examples of when errors are not returned as
expected are:

• calling arm_start with a bad id parameter such as an uninitialized
variable

• calling arm_stop without a previously successful arm_start call
Getting Started 43

To debug these situations when instrumenting applications with ARM
API calls, run the application long enough to generate and collect a
sufficient amount of transaction data. Then export data from the file by
choosing the Export command from the Logfiles menu in the Performance
Agent main window. Examine the data to see if all transactions were
logged as expected. (For more information about exporting data, see
Performance Agent online Help or Chapter 3 in your HP Performance
Agent for Windows User’s Manual.)

Limits on Unique Transactions

Depending on your particular system resources, a limit may exist on the
number of unique transactions allowed in your application. This limit is
normally several thousand unique arm_getid calls.

This situation arises when the Measurement Performance Database used by
the Measurement Interface service (midaemon) is full. If this happens, data
for subsequent new transactions won’t be logged and an appropriate warning
message is written to the status.scope file. Transactions that have already
been registered will continue to be logged and reported.

The GBL_TT_OVERFLOW_COUNT metric reports the number of new transactions
that could not be measured.

This situation can be remedied by stopping and restarting the midaemon
process in the Windows Command Prompt by using the –smdvss option to
specify a larger shared memory segment size. The current shared memory
segment size can be checked using the midaemon –sizes option.

Customizing the Configuration File (optional)

After viewing the transaction data from your application, you may want to
customize the Transaction configuration file, ttdconf.mwc, to change the
way transaction data for the application is collected. This is optional because
the default configuration file works with all transactions defined in the
application. If you do decide to customize ttdconf.mwc, complete this task
on the same systems where you run your application. See the Transaction
Configuration File on page 29 for information on the configuration file
keywords – tran, range, and slo. Some examples of how each keyword is
used are shown below:
44 Chapter 3

Customize ttdconf.mwc to include all of your transactions and each
associated attribute. Note that the use of the range or slo keyword must be
preceded by the tran keyword. An example of a ttdconf.mwc file is shown
below:

tran=*
tran=my_first_transaction slo=5.5

[answerid]

tran=answerid range=2.5,4.2,5.0,8.0 slo=4.2

[orderid]

tran=orderid range=1.0,1.5,2.0,2.5,3.0,3.5,4.0

To add transactions to ttdconf.mwc, see the Adding New Transactions on
page 30.

To change slo or range values to ttdconf.mwc, see the Changing SLO or
Range Values on page 31.

tran= Example: tran=answerid
 tran=answerid*
 tran*

range= Example: range=2.5,4.2,5.0,10.009

slo= Example: slo=4.2
Getting Started 45

Monitoring Performance Data

You can use Performance Agent and PerfView to monitor transaction data.

... with Performance Agent

By collecting and logging data for long periods of time, Performance Agent
gives you the ability to analyze your system’s performance over time and to
perform detailed trend analysis. Data from Performance Agent can be viewed
with PerfView or exported for use with a variety of other performance
monitoring, accounting, modeling, and planning tools.

You can export transaction data for use with spreadsheets and analysis
programs using the Export command from the Logfiles menu in the
Performance Agent main window. For more information about exporting data,
see the Performance Agent online Help or Chapter 3 of the HP Performance
Agent for Windows User’s Manual.

... with PerfView

PerfView imports Performance Agent data and gives you the ability to
translate that data into a customized graphical or numerical format. Using
PerfView, you can perform analysis of historical trends of transaction data and
you can perform more accurate forecasting.

You can select TRANSACTION from the Class List window for a data source in
PerfView, then graph transaction metrics for various transactions. For more
information, see PerfView online Help, which is accessible from the PerfView
Help menu. If you don’t see the transactions you expect in PerfView, close the
current data source and then reconnect to it.
46 Chapter 3

Alarms

You can detect alarms in transaction data with Performance Agent and
PerfView.

... with Performance Agent

In order to detect alarms with Performance Agent, you must define alarm
conditions in its alarm definition file alarmdef.mwc. You can set up
Performance Agent to notify you of an alarm condition in various ways, such
as sending mail or initiating a call to your pager.

To pass a syntax check for the alarmdef.mwc file, you must have data logged
for that application name and transaction name in the log files, or have the
names registered in the transaction configuration file, ttdconf.mwc.

There is a limitation when you define an alarm condition on a transaction
name that has a dash (-) in its name. To get around this limitation, use the
ALIAS statement in the alarmdef.mwc file to redefine the transaction name.

For more information about alarms, see Performance Agent Online Help or
Chapter 8 in the HP Performance Agent for Windows User’s Manual.

... with PerfView

The PerfView Monitor option displays alarms generated by Performance
Agent. You can view alarm information from all monitored systems and see
graphs of metrics that characterize the performance of your systems or
applications. Because PerfView is designed for multivendor installations, you
can receive alarms from a variety of computer systems. When you receive an
alarm, you can analyze the details surrounding it by using the color graphs
and the tabular backup data provided by PerfView. For more information, see
PerfView Online Help.
Getting Started 47

48 Chapter 3

4 Transaction Tracking Messages
Transaction Tracking Messages

When an application instrumented with ARM API calls is running, any error
messages you see will probably be from the Transaction Manager service (ttd)
When a ttd error message occurs, see the status.ttd file for more
information.

If a Measurement Interface service (midaemon) error message occurs, see
either the midaemon.err or status.mi file for more information.

The error values returned from failed ARM API calls are given on the next
page and can be utilized by an application developer when instrumenting an
application with ARM API calls.
 49

Return Values for Failed ARM API Calls

The following values are returned from failed ARM API calls:

* The return values are defined in c:\<InstallDir>\include\arm.h

Table 2 Return Values for Failed ARM API Calls

ARM API call Return value * Meaning

arm_init() ARM_APPNAMETOOLONG Application name is longer
than ARM_MAXNAMELEN

ARM_USERNAMETOOLONG User name is longer than
ARM_MAXNAMELEN

ARM_NOMEMAVAIL Insufficient memory available
to complete the operation

arm_getid() ARM_INVID Invalid argument

ARM_TTDNOTRUNNING The Transaction Manager
service (ttd) is not running, or
the client application cannot
connect to ttd

ARM_NAMENOTFOUND Transaction name not found or
matched using the wild card
facility in the transaction
configuration file

ARM_BADOSVERS ARM library is not compatible
with the operating system

arm_start() < 0 An error occurred

arm_stop() < 0 An error occurred

arm_end() < 0 An error occurred
50 Chapter 4

5 Transaction Metrics
This chapter describes all of the transaction metrics that are available if you
are running applications that have been instrumented with ARM 2.0 API
calls.

A subset of transaction metrics will have values if transaction correlation is
turned off in Performance Agent.
 51

Global Metrics

GBL_TT_OVERFLOW_COUNT

The number of new transactions that could not be measured because the
Measurement Processing Daemon's (midaemon) Measurement Performance
Database is full. If this happens, the default Measurement Performance
Database size is not large enough to hold all of the registered transactions on
this system. This can be remedied by stopping and restarting the midaemon
process using the -smdvss option to specify a larger Measurement
Performance Database size. The current Measurement Performance
Database size can be checked using the midaemon -sizes option.
52 Chapter 5

Per Transaction Metrics

TT_ABORT

The number of aborted transactions during the last interval.

TT_ABORT_WALL_TIME_PER_TRAN

The average transaction time in seconds for aborted transactions during the
last interval.

TT_APP_NAME

The registered ARM application name. The maximum length of the
application name is 128 characters. However, only the first 60 characters are
visible in Performance Agent. For an explanation, see Specifying Application
and Transaction Names on page 24.

TT_APP_TRAN_NAME

The combined ARM application name and transaction name. The maximum
length of the combined names is 128 characters. Only 60 characters are
visible in Performance Agent. The application name always takes precedence
over the transaction name. For an explanation , see Specifying Application
and Transaction Names on page 24.

TT_CLIENT_ADDRESS

In a client/server environment, this is the IP address of the client system.
This client system has requested work be done by the server on its behalf.
Note that in some instances, the client process may be on the same system as
the server process.

TT_CLIENT_ADDRESS_FORMAT

The format of the IP address described by metric TT_CLIENT_ADDRESS. The
formats are defined in the Application Response Measurement 2.0 API Guide.
Transaction Metrics 53

TT_CLIENT_TRAN_ID

In a client/server environment, this is the transaction ID that will be found on
the client system. This transaction ID corresponds to the transaction that
requested work be done on the server on its behalf. This helps trace a specific
transaction that may involve several systems.

TT_COUNT

The number of transactions that completed during the last interval for this
transaction name.

TT_FAILED

The number of failed transactions during the last interval for this transaction
name.

TT_INFO

The registered ARM transaction information for this transaction.

INTERVAL

The number of seconds between data collection points for this transaction.

TT_NAME

The registered transaction name. The maximum length of the transaction
name is 128 characters. However, only the first 60 characters are visible. For
an explanation, see Specifying Application and Transaction Names on
page 24.

TT_NUM_BINS

The number of distribution ranges (also called bins).
54 Chapter 5

TT_SLO_COUNT

The number of completed transactions that violated the defined SLO by
exceeding the SLO threshold time during the interval.

TT_SLO_PERCENT

The percentage of transactions that violate service level objectives.

TT_SLO_THRESHOLD

The upper range (transaction time) of the SLO threshold value. This value is
used to count the number of transactions that exceed this user-supplied
transaction time value.

TT_TERM_TRAN_1_HR_RATE

The number of transactions completed per hour.

TT_TRAN_1_MIN_RATE

The number of transactions completed per minute.

TT_TRAN_ID

The registered ARM Transaction ID for this transaction as returned by
arm_getid. A unique transaction id is returned for a unique application
(returned by arm_init), transaction name, and meta data buffer contents.

TT_UNAME

The registered ARM Transaction User Name for this transaction name.

TT_USER_MEASUREMENT_NAME(_6)

The name of the user-defined transactional measurement.
Transaction Metrics 55

TT_USER_MEASUREMENT_MIN(_6)

If the measurement type is a counter, this metric returns the lowest measured
counter value over the life of the transaction. The counter value is the
difference observed from a counter between the start and the stop (or last
update) of a transaction.

If the measurement type is a numeric or a gauge, this metric returns the
lowest value passed on any ARM call over the life of the transaction.

TT_USER_MEASUREMENT_MAX(_6)

If the measurement type is a counter, this metric returns the highest
measured counter value over the life of the transaction. The counter value is
the difference observed from a counter between the start and stop (or last
update) of a transaction.

If the measurement type is a numeric or a gauge, this metric returns the
highest value passed on any ARM call over the life of the transaction.

TT_USER_MEASUREMENT_AVG(_6)

If the measurement type is a counter, this metric returns the average
user-defined metric counter differences of the transaction during the last
interval. The counter value is the difference observed from a counter between
the start and the stop (or last update) of a transaction.

If the measurement type is a numeric or a gauge, this metric returns the
average of the values passed on any ARM call for the transaction during the
last interval.

TT_USER_MEASUREMENT_COUNT(_6)

This returns the total number of times the associated user-defined metric
(UDM) was sampled during the last interval.

TT_WALL_TIME_PER_TRAN

The average transaction time in seconds for this transaction during the last
interval.
56 Chapter 5

TTBIN_TRANS_COUNT_1 ... 10

These metrics log the number of completed transactions in this distribution
range during the last interval.

TTBIN_UPPER_RANGE_1 ... 10

The upper range (transaction time) for this bin.
Transaction Metrics 57

58 Chapter 5

6 Transaction Tracking Examples
This chapter contains a pseudocode example of how an application might be
directly instrumented with ARM API calls, so that the transactions defined in
the application can be monitored with Performance Agent. This pseudocode
example corresponds with the real time order processing scenario described in
Chapter 1.

Several examples of transaction configuration files are also included in this
chapter, including one that corresponds with the real time order processing
scenario.

See the next chapter, Advanced Features and your current Application
Response Measurement 2.0 API Guide for information on instrumenting
applications with ARM advanced functions. These functions include
user-defined metrics (which are called application-defined metrics in ARM)
and transaction correlation.
 59

Pseudocode for Real Time Order Processing

This pseudocode example includes the ARM API calls used to define
transactions for the real time order processing scenario introduced in
Chapter 1. This routine would be processed each time an operator answered
the phone to handle a customer order. The lines containing the ARM API calls
are highlighted with bold text in this example.

routine answer calls()
{

•Register the transactions if first time in *

if (transactions not registered)
 {
appl_id = arm_init(“Order Processing Application”,”*”, 0,0,0)
answer_phone_id = arm_getid(appl_id,”answer_phone”,”1st tran”,0,0,0)
if (answer_phone_id < 0)
REGISTER OF ANSWER_PHONE FAILED - TAKE APPROPRIATE ACTION
order_id = arm_getid(appl_id,”order”,”2nd tran”,0,0,0)
if (order_id < 0)
REGISTER OF ORDER FAILED - TAKE APPROPRIATE ACTION
check_id = arm_getid(appl_id,”check_db”,”3rd tran”,0,0,0)
if (check_id < 0)
REGISTER OF CHECK DB FAILED - TAKE APPROPRIATE ACTION
update_id = arm_getid(appl_id,”update”,”4th tran”,0,0,0)
if (update_id < 0)
REGISTER OF UPDATE FAILED - TAKE APPROPRIATE ACTION
} if transactions not registered

•Main transaction processing loop

while (answering calls)
{
if (answer_phone_handle = arm_start(answer_phone_id,0,0,0) < -1)
TRANSACTION START FOR ANSWER_PHONE NOT REGISTERED
**

•At this point the answer_phone transaction has *
•started. If the customer does not want to order, *
•end the call; otherwise, proceed with order. *
**
if (don’t want to order)
arm_stop(answer_phone_handle,ARM_FAILED,0,0,0)
GOOD-BYE - call complete
else
 {

60 Chapter 6

•They want to place an order - start an order now *

if (order_handle = arm_start(order_id,0,0,0) < -1)
TRANSACTION START FOR ORDER FAILED
take order information: name, address, item, etc.
**
•Order is complete - end the order transaction *
**
if (arm_stop(order_handle,ARM_GOOD,0,0,0) < -1)
TRANSACTION END FOR ORDER FAILED
**
•order taken - query database for availability *
**
if (query_handle = arm_start(query_id,0,0,0) < -1)
TRANSACTION QUERY DB FOR ORDER NOT REGISTERED
query the database for availability
**
•database query complete - end query transaction *
**
if (arm_stop(query_handle,ARM_GOOD,0,0,0) < -1)
TRANSACTION END FOR QUERY DB FAILED
**
•If the item is in stock, process order, and *
•update inventory. *
**
if (item in stock)
if (update_handle = arm_start(update_id,0,0,0) < -1)
TRANSACTION START FOR UPDATE NOT REGISTERED
update stock
**
•update complete - end the update transaction *
**
if (arm_stop(update_handle,ARM_GOOD,0,0,0) < -1)
TRANSACTION END FOR ORDER FAILED
**
•Order complete - end the call transaction *
**
if (arm_stop(answer_phone_handle,ARM_GOOD,0,0,0) < -1)
TRANSACTION END FOR ANSWER_PHONE FAILED
} placing the order
GOOD-BYE - call complete
sleep(“waiting for next phone call...zzz...”)
} while answering calls
arm_end(appl_id, 0,0,0)
} routine answer calls
Transaction Tracking Examples 61

Configuration Files Examples

This section contains some examples of ttdconf.mwc files. For more
information on ttdconf.mwc and configuration file keywords, see the
Transaction Configuration File on page 29.

Example 1 (for Order Processing Pseudocode Example)

The “*” entry below is used as the default if none of the
entries match a registered transaction name.

tran=* range=0.5,1,1.5,2,3,4,5,6,7 slo=1

tran=answer_phone* range=0.5,1,1.5,2,3,4,5,6,7 slo=5

tran=order* range=0.5,1,1.5,2,3,4,5,6,7 slo=5

tran=query_db* range=0.5,1,1.5,2,3,4,5,6,7 slo=5

Example 2

The “*” entry below is used as the default if none of the

entries match a registered transaction name.

tran=* range=1,2,3,4,5,6,7,8 slo=5

The entry below is for the only transaction being tracked in

this application. The “*” has been inserted at the end of
the

tran name to catch any possible numbered transactions. For

example “First_Transaction1”, “First_Transaction2”, etc.

tran=First_Transaction* range=1,2.2,3.3,4.0,5.5,10 slo=5.5

Example 3

The “*” entry below is used as the default if none of the

entries match a registered transaction name.

tran=*
62 Chapter 6

tran=Transaction_One range=1,10,20,30,40,50,60 slo=30

Example 4

tran=FactoryStor* range=0,0.10,0.15,slo=3

The entries below show the use of an application name.
Transactions are grouped under the application name. This
example also shows the use of less than 10 ranges and
optional
use of “slo.”

[Inventory]
tran=In_Stock range=0.01,0.04,0.08
tran=Out_Stock range=0.01,0.05
tran=Returns range=0.1,0.3,0.7

{Pers]

tran=Acct range=0.5,0.10,slo=5

tran=Time_Cards range=0.010,0.020
Transaction Tracking Examples 63

64 Chapter 6

7 Advanced Features
This chapter describes how Performance Agent uses the following ARM 2.0
features:

• data types

• user-defined metrics

• scopent ARM instrumentation

• correlators
 65

How Data Types Are Used in Performance Agent

The following table describes how data types are used in Performance Agent.
It is a supplement to “Data Type Definitions” in the “Advanced Topics” section
of the Application Response Measurement 2.0 API Guide.

Performance Agent does not log string data. Because Performance Agent logs
data every five minutes, and what is logged is the summary of the activity for
that interval, it cannot summarize the strings provided by the application.

Performance Agent logs the Minimum, Maximum, and Average for the first
six usable user-defined metrics.

For example, if your ARM-instrumented application passes a Counter32,
String8, NumericID32, Gauge32, Gauge64, Counter64, NumericID64,
String32, and GaugeDivr32, Performance Agent logs the Min, Max, and
Average over the five-minute interval for the Counter32, NumericID32,
Gauge32, Gauge64, Counter64 and NumericID64 as 32-bit integers. The

ARM_Counter32 Data is logged as a 32-bit integer.

ARM_Counter64 Data is logged as a 32-bit integer with type
casting.

ARM_CntrDivr32 Makes the calculation and logs the result as a
32-bit integer.

ARM_Gauge32 Data is logged as a 32-bit integer.

ARM_Gauge64 Data is logged as a 32-bit integer with type
casting.

ARM_GaugeDivr32 Makes the calculation and logs the result as a
32-bit integer.

ARM_NumericID32 Data is logged as a 32-bit integer.

ARM_NumericID64 Data is logged as a 32 bit integer with type
casting.

ARM_String8 Ignored.

ARM_String32 Ignored.
66 Chapter 7

String8 and String32 are ignored because strings cannot be summarized in
Performance Agent. The GaugeDivr32 is also ignored because only the first
six usable user-defined metrics are logged. (For more examples, see the next
section, User-Defined Metrics).
Advanced Features 67

User-Defined Metrics

This section is a supplement to “Application-Defined Metrics” under
“Advanced Topics” in the Application Response Measurement 2.0 API Guide.
It contains some examples about how Performance Agent handles
user-defined metrics (referred to as application-defined metrics in ARM). The
examples show what will be logged if your program passes the following data
types.

Note that no strings are logged because Performance Agent cannot summarize
strings.

In example 1, the counter, gauge and counter divisor are logged; the string is
not logged.

In example 2, the string is not logged so only the numerics are logged.

In example 3, only the numerics and gauges are logged.

In example 4, nothing is logged.

In example 5, because only the first six user-defined metrics are logged,
NumericID64 is not logged.

Table 3 Examples of User Defined Metrics

What your program passes in… What will be logged

1) String8 Counter32 Gauge32
CntrDivr32

Counter32 Gauge32
CntrDivr32

2) String32 NumericID32
NumericID64

NumericID32 NumericID64

3) NumericID32 String8 NumericID64
Gauge32 String32 GaugeDivr64

NumericID32 NumericID64
Gauge64 GaugeDivr64

4) String8 String32 (nothing)

5) Counter32 Counter64 CntrDivr32
Gauge32 Gauge64 NumericID32
NumericID64

Counter32 Counter64
CntrDivr32 Gauge32 Gauge64
NumericID32
68 Chapter 7

Scopent ARM Instrumentation

The scopent data collector has been instrumented with ARM API calls.
When Performance Agent starts, scopent automatically starts logging three
transactions, Scope_Get_Process_Metrics, Scope_Get_Global_Metrics,
and Scope_Log_Headers. All three transactions are in the HP Performance
Tools application.

scopent transactions are logged by default. The default parm.mwc file
contains a commented entry, scopetransactions=off. If you do not want
Scope_Get_Process_Metrics and Scope_Get_Global_Metrics to be logged,
uncomment the entry scopetransactions=off.

Transaction data is logged every five minutes so you will find that five
Scope_Get_Process_Metrics transactions (one transaction per minute) have
completed during each interval. This transaction is instrumented around the
processing of process data. If there are 200 processes on your system, the
transaction should take longer than if there are only 30 processes on your
system.

The Scope_Get_Global_Metrics transaction is instrumented around the
gathering of all five-minute data, including global data. This includes global,
application, disk, transaction, and other data types, so you should see one
completed transaction with this name during each five-minute interval..

The Scope_Log_Headers transaction will always be logged. It is not affected
by the scopetransactions=off entry in the parm.mwc file.

To stop the logging of processes and global transactions data, remove or
comment out the entries for the scopent transactions in the ttd.conf file.
Advanced Features 69

Special Considerations When Using a Correlator

The correlator is always in network byte order (see the "Advanced Topics"
section of the Application Response Measurement 2.0 API Guide). This means
that when you want to copy the correlator from one buffer to another, or any
other time that you reference the correlator's length field, you must convert
that length field to host byte order. You can use the network-to-host library
call to do this. The following code from the armsample3.c sample application
is an example of how to make the conversion.

buf_ptr–>correlator.length = client_correlator.length;
data_len = (ntohs (client_correlator.length) -
 sizeof(client_correlator.length));
for (i = 0; i < data_len; i++)
 buf_ptr–>correlator.agent_data[i] =
client_correlator.agent_data[i];
70 Chapter 7

A Appendix
Overview

This appendix discusses:

• C compiler option examples by platform

• using Java wrappers
 71

C Compiler Option Examples

The arm.h include file is located in /<InstallDir>/include/. The
following example shows a compile command for a C program using the ARM
API.

c1.exe .\armsample1.c /Fe. \armsample1.exe /I

\<InstallDir>\include /link\<InstallDir>\lib\libarm32.lib

c1.exe .\armsample2.c /Fe. \armsample2.exe /I

\<InstallDir>\include /link\<InstallDir>\lib\libarm32.lib

c1.exe .\armsample3.c /Fe. \armsample3.exe /I

\<InstallDir>\include /link\<InstallDir>\lib\libarm32.lib

c1.exe .\armsample4.c /Fe. \armsample4.exe /I

\<InstallDir>\include /link\<InstallDir>\lib\libarm32.lib
72 Chapter A

Using the Java Wrappers

The Java Native Interface (JNI) wrappers are functions created for your
convenience to allow the Java applications to call the ARM API. These
wrappers (armapi.jar and armjava.dll) are included with the ARM sample
programs located in the \<InstallDir>\examples\arm\ directory.
InstallDir is the directory in which Performance Agent is installed.

Examples

Examples of the Java wrappers are located in the
\<InstallDir>examples\arm\ directory. This location also contains a
README file, which explains the function of each wrapper.

Setting Up an Application (arm_init)

To set up a new application, make a new instance of ARMApplication and pass
the name and the description for this API. Each application needs to be
identified by a unique name. The ARMApplication class uses the C – function
arm_init.

Syntax:

ARMApplication myApplication =
new ARMApplication(“name”,”description”);
73

Setting Up a Transaction (arm_getid)

To set up a new transaction, you can choose whether or not you want to use
user-defined metrics (UDMs). The Java wrappers use the C – function
arm_getid.

Setting Up a Transaction With UDMs

If you want to use UDMs, you must first define a new ARMTranDescription.
ARMTranDescription builds the Data Buffer for arm_getid. (See also the
jprimeudm.java example.)

Syntax:

ARMTranDescription myDescription =
new ARMTranDescription(“transactionName”,”details”);

If you do not want to use details, you can use another constructor:

Syntax:

ARMTranDescription myDescription =
new ARMTranDescription(“transactionName”);

Adding the Metrics

Metric 1-6:

Syntax:

myDescription.addMetric(metricPosition, metricType,
metricDescription);

Parameters:

metricPosition: 1-6
74 Chapter A

metricType: ARMConstants.ARM_Counter32
ARMConstants.ARM_Counter64 ARMConstants.ARM_CntrDivr32
ARMConstants.ARM_Gauge32 ARMConstants.ARM_Gauge64
ARMConstants.ARM_GaugeDivr32 ARMConstants.ARM_NumericID32
ARMConstants.ARM_NumericID64 ARMConstants.ARM_String8s

Metric 7:

Syntax:

myDescription.addStringMetric(“description”);

Then you can create the Transaction:

Syntax:

myApplication.createTransaction(myDescription);

Setting the Metric Data

Metric 1-6:

Syntax:

myTransaction.setMetricData(metricPosition, metric);

Examples for “Metric”

ARMGauge32Metric metric = new ARMGauge32Metric(start);
ARMCounter32Metric metric = new ARMCounter32Metric(start);
ARMCntrDivr32Metric metric = new ARMCntrDivr32Metric(start,
1000);

Metric 7:

Syntax:

myTransaction.setStringMetricData(text);
75

Setting Up a Transaction Without UDMs

When you set up a transaction without UDMs, you can immediately create the
new transaction. You can choose whether or not to specify details.

With Details

Syntax:

ARMTransaction myTransaction =
myApplication.createTransaction(“Transactionname”,”detail
s”;

Without Details

Syntax:

ARMTransaction myTransaction =
myApplication.createTransaction(“Transactionname”);
76 Chapter A

Setting Up a Transaction Instance

To set up a new transaction instance, make a new instance of
ARMTransactionInstance with the method createTransactionInstance()
of ARMTransaction.

Syntax:

ARMTransactionInstance myTranInstance =
myTransaction.createTransactionInstance();
77

Starting a Transaction Instance (arm_start)

To start a transaction instance, you can choose whether or not to use
correlators. The following methods call the C – function arm_start with the
relevant parameters.

Starting the Transaction Instance Using Correlators

When you use correlators, you must distinguish between getting and
delivering a correlator. If your transaction instance wants to request a
correlator, the call is as follows (see also the jcorrelators.java example):

Syntax:

int status = myTranInstance.startTranWithCorrelator();

If you already have a correlator from a previous transaction and you want to
deliver it to your transaction, the syntax is as follows:

Syntax:

int status =
myTranInstance.startTranWithCorrelator(parent);

Parameter:

parent is the delivered correlator. In the previous transaction, you can get the
transaction instance correlator with the method getCorrelator().

Syntax

int status = startTran(parent);

Parameter

parent is the delivered correlator. In the previous transaction, you can get the
transaction instance correlator with the method getCorrelator().
78 Chapter A

Syntax:

ARMTranCorrelator parent =
myTranInstance.getCorrelator();

Starting the Transaction Instance Without Using Correlators

When you do not use correlators, you can start your transaction instance as
follows:

Syntax:

int status = myTranInstance.startTran();

startTran returns a unique handle to status, which is used for the update
and stop.
79

Updating Transaction Instance Data

You can update the UDMs of your transaction instance any number of times
between the start and stop. This part of the wrappers calls the C – function
arm_update with the relevant parameters.

Updating Transaction Instance Data With UDMs

When you update the data of your transaction instance with UDMs, first, you
must set the new data for the metric. For example,

metric.setData(value) for ARM_Counter32 ARM_Counter64,
ARM_Gauge32, ARM_Gauge64, ARM_NumericID32, ARM_NumericID64

metric.setData(value,value) for ARM_CntrDivr32 and ,
ARM_GaugeDivr32

metric.setData(string) for ARM_String8 and ARM_String32

Then you can set the metric data to new (like the examples in the section
Setting the Metric Data on page 75) and call the update:

Syntax:

myTranInstance.updateTranInstance();

Updating Transaction Instance Data Without UDMs

When you update the data of your transaction instance without UDMs, you
just call the update. This sends a “heartbeat” indicating that the transaction
instance is still running.

Syntax:

myTranInstance.updateTranInstance();
80 Chapter A

Providing a Larger Opaque Application Private Buffer

If you want to use the second buffer format, you must pass the byte array to
the update method. (See the Application Response Measurement 2.0 API
Guide.)

Syntax:

myTranInstance.updateTranInstance(byteArray);
81

Stopping the Transaction Instance (arm_stop)

To stop the transaction instance, you can choose whether or not to stop it with
or without a metric update.

Stopping the Transaction Instance With a Metric Update

To stop the transaction instance with a metric update, call the method
stopTranInstanceWithMetricUpdate.

Syntax:

myTranInstance.stopTranInstanceWithMetricUpdate
(transactionCompletionCode);

Parameter:

The transaction Completion Code can be:

These methods use the C – function arm_stop with the requested parameters.

Stopping the Transaction Instance Without a Metric Update

To stop the transaction instance without a metric update, you can use the
method stopTranInstance.

ARMConstants. ARM_GOOD. Use this value when the operation ran
normally and as expected.

ARMConstants.ARM_ABORT. Use this value when there is a
fundamental failure in the system.

ARMConstants.ARM_FAILED. Use this value in applications where the
transaction worked properly, but no
result was generated.
82 Chapter A

Syntax:

myTranInstance.stopTranInstance(transactionCompletionCode
);
83

Using Complete Transaction

The Java wrappers can use the arm_complete_transaction call. This call
can be used to mark the end of a transaction that has lasted for a specified
number of nanoseconds. This enables the real time integration of transaction
response times measured outside of the ARM agent.

In addition to signaling the end of a transaction instance, additional
information about the transaction (UDMs) can be provided in the optional
data buffer.

(See also the jcomplete.java example.)

Using Complete Transaction With UDMs:

Syntax:

myTranInstance.completeTranWithUserData(status,responseTi
me;

Parameters:

status • ARMConstants. ARM_GOOD
Use this value when the operation ran normally and
as expected.

• ARMConstants.ARM_ABORT
Use this value when there was a fundamental failure
in the system.

• ARMConstants.ARM_FAILED
Use this value in applications where the transaction
worked properly, but no result was generated.

responseTime This is the response time of the transaction in
nanoseconds.
84 Chapter A

Using Complete Transaction Without UDMs:

Syntax:

myTranInstance.completeTran(status,responseTime);
85

Further Documentation

For further information about the Java classes, see the doc folder in the
\<InstallDir>\examples\arm\ directory, which includes
html-documentation for every Java class. Start with index.htm.
86 Chapter A

Glossary
alarm

A signal that an alarm event has occurred. The signal can be either a
notification or an automatically triggered action. The event can be a
pre-defined condition that has been met or was exceeded.

client

A system that requests service from a server. In the context of diskless
clusters, a client uses the server’s disks and has none of its own. In the context
of NFS, a client mounts file systems that physically reside on another system
(the Network File System Server).

export

A Performance Agent function that copies log file data from the performance
application to an external file format for use by other programs (such as
spreadsheets and word processors).

extract

A Performance Agent program that lets you extract data from raw or
extracted log files, summarizes it, and writes the data to extracted log files. It
also lets you export data for use in spreadsheets and analysis programs.

interval

Specific time periods during which performance data is gathered.

log files

Performance Agent performance measurement data files that are either raw
or extracted. Raw log files contain summarized measurements of system data.
Extracted log files contain a user-defined subset of data that was extracted
from a raw log file.
 87

measurement interface

A set of proprietary library calls used by the performance applications to
obtain performance data.

Measurement Interface service (midaemon)

The service that monitors system and application performance and creates
counters from event traces that are read and displayed by performance
applications.

metric

A specific system measurement that helps you characterize performance.

MI shared memory segment

The interface between the kernel and the performance collectors. The
Measurement Interface service (midaemon) translates trace data into this
shared memory segment where it can be accessed by Performance Agent and
PerfView. (Also known as the MI Performance Database.)

performance distribution range

An amount of time that you define with the range= keyword in the
transaction configuration file, ttdconf.mwc.

resource manager

A company’s Information Technology (IT) manager who monitors service
levels between IT and other business sections of a company.

scopent

The Performance Agent program that collects performance data and writes
(logs) the raw measurement data to log files for later analysis or archiving.

service level agreement (SLA)

A document prepared for each mission- and business-critical application that
explicitly defines the service levels that IT is expected to deliver to users. It
specifies what the user group can expect from the IT community in terms of
system response, quantities of work, and system availability.
88

service level objective (SLO)

Objectives that identify what the IT staff must do to support the terms of the
SLA, how it will monitor the provisions, and what it will do when an exception
occurs. SLAs are not required for a company to implement SLOs.

transaction

Some amount of work performed by a computer system on behalf of a user.
The boundaries of this work are defined by the user.

transaction configuration file (ttdconf.mwc)

The configuration file in which you define the attributes of a transaction,
including transaction name, performance distribution ranges, and service
level objectives. See also Transaction Manager service (ttd).

Transaction Manager service (ttd)

The service that reads, registers, and synchronizes transaction definitions
from the transaction configuration file, ttdconf.mwc, with the Measurement
Interface service (midaemon).
89

90

Index
A
adding new ARMed applications to your

system, 30

alarms
detecting in MeasureWare Agent, 47
detecting in PerfView, 47

analyzing data
with MeasureWare Agent, 46
with PerfView, 46

application names, 24, 32, 33

Application Response Measurement
2.0 Software Developers Kit (SDK), 19
benefits of, 10
guidelines for using, 37
libraries, 41
overhead considerations, 37
sample programs, 22
support of 2.0, 19

applications
defined in ttdconf.mwc file, 33
example, 12

application-specific transactions, 33

arm.h file, 19

arm_end API call, 21, 50

arm_getid API call, 21, 25, 50

arm_init API call, 21, 50

arm_start API call, 21, 50

arm_stop API call, 21, 50

arm_update API call, 21

ARM API
call status returns, 26
error messages from, 49, 50
function calls, 13
instrumenting applications, 15
libraries, 41
return values from, 49, 50
sample programs, 22
scopeNT instrumentation, 69
transaction tracking and, 17

ARM API calls
arm_end, 21, 50
arm_getid, 21, 25, 50
arm_getid call, 74
arm_init, 21, 50
arm_init call, 73
arm_start, 21, 50
arm_start call, 78
arm_stop, 21, 50
arm_update, 21

C
call status returns, ARM API, 26

C function
arm_stop, 82

changing
range values, 31
service level objectives, 31

collecting data with MeasureWare Agent, 46
91

collection parameters fileSee parm.mwc file,
43

components of transaction tracking, 17

correlators, 37, 38, 70

CPU overhead, 38

customizing the transaction configuration
file, 44

D
data types, 66

default transaction configuration file
(ttdconf.mwc), 29, 33

defining
measurement ranges, 44
service level objectives, 42, 44

deploying an application, 43

distribution ranges, 32

E
error handling considerations, 43

error messages, 44
from ARM API, 49

errors
Measurement Interface service

(midaemon), 26

error values from ARM API, 50

examining trends, 11

examples
C programs for transaction tracking, 22
transaction configuration file, 35, 62

executing an application, 43

exporting transaction data, 44

F
failed ARM API calls, 49, 50

G
general transactions, 33

guidelines for using ARM, 37

I
instrumenting an application with ARM API

calls, 13

J
Java wrappers, 73

documentation, 86
examples, 73
setting up an application, 73
setting up a transaction, 74
starting a transaction instance, 78
stopping a transaction instance, 82
updating transaction instance data, 80
using complete transaction, 84

K
keywords, 31

range, 32, 45
slo, 33, 45
tran, 32

L
libarm, 41

limitations, application and transaction
names, 24

limitations imposed by Windows NT, 19

limits on unique transactions, 44

logging transaction data, 14

long-term analysis, 11

M
managing SLOs, 11
92

measurement, defining ranges, 44

Measurement Interface service (midaemon),
15, 17, 25, 43
errors, 26
memory overhead, 39
shared memory segment, 26

MeasureWare Agent
alarms in transaction data, 47
application names, 24
ARM libraries supplied with, 41
collecting and logging data, 46
modifying data collection parameters, 43
support of ARM API calls, 21
transaction metrics available in, 51
transactions

names, 24
viewing transaction data, 14

MeasureWare Collector serviceSee scopeNT,
28

memory overhead, 39

metrics, 51

midaemonSee Measurement Interface
service (midaemon), 15

MI Performance Database, 43

modifying the parm.mwc file, 43

monitoring transaction performance data, 14

N
naming

applications, 32, 33
transactions, 33, 44

O
order processing scenario, 12

overflow conditions, 44

overhead
considerations for using ARM, 37
CPU, 38
disk, 38
memory, 39

overview of transaction tracking, 17

P
parm.mwc file

modifying, 43
scopetransactions flag, 69

PerfView
alarms in transaction data, 47
analyzing transaction data, 46
transaction metrics available in, 51
viewing transaction data, 14

R
range keyword, 32

range values
changing, 31

return values from ARM API, 49, 50

running
an application, 43
Transaction Manager service, 25

S
sample programs for transaction tracking,

22, 70

scanning transaction data with
MeasureWare Agent, 46

scopeNT, 15, 28
ARM API instrumentation, 69

scopetransactions flag, parm.mwc file, 69
93

service level objectives, 33
changing, 31
defining, 42
managing, 11

services
Measurement Interface, 15, 17
MeasureWare Collector, 28
Transaction Manager, 15, 17

shared memory segment, Measurement
Interface service, 26

slo keyword, 33

SLOsSee service level objectives, 11

special considerations when using
correlators, 70

starting Transaction Manager service, 25

stopping Transaction Manager service, 25

T
tddSee Transaction Manager service (tdd),

15

tran keyword, 32

transaction
correlation, 19
metrics, 51
names, 24
times, 32

transaction configuration file (ttdconf.mwc),
17, 29
customizing, 44
default, 29, 33
examples, 35, 62
format, 33
keywords, 31

transaction correlation, 22, 70

Transaction Manager service (ttd), 15, 17
restarting, 26
running, 25
starting, 25
stopping, 25

transaction names, 33

transactions
adding to ttdconf.mwc file, 30
data, 10
elapsed time, 10
naming, 44

transaction tracking, 9
benefits of, 10
components of, 17
error handling, 43
examples of, 59
instrumenting an application, 13
limits on unique transactions, 44
missing data, 44
overview, 11
setting up an application, 42
startup, 25
technical reference, 17
viewing data, 14

ttdconf.mwc file, 29
adding new transactions, 30
changing range values, 31
changing slo values, 31
customizing, 44
default, 29, 33
examples, 62
format, 33
keywords, 31

ttdSee Transaction Manager service (ttd), 17

U
user-defined metrics, 22
94

V
viewing transaction data

with MeasureWare Agent, 14, 46
with PerfView, 14, 46
95

96

	Tracking Your Transactions
	Contents
	1 What is Transaction Tracking?
	Improving Performance Management
	Benefits of Transaction Tracking
	Client View of Transaction Times
	Transaction Data
	Service Level Objectives

	A Scenario: Real Time Order Processing
	Requirements for Real Time Order Processing
	Preparing the Order Processing Application

	Monitoring Transaction Data
	... with Performance Agent
	... with PerfView

	Guidelines for Using ARM

	2 How Transaction Tracking Works
	Technical Overview
	Support of ARM 2.0
	Windows Limitations

	Support of ARM 2.0 API Calls
	arm_complete_transaction Call

	Sample ARM Instrumented Applications
	Specifying Application and Transaction Names
	Transaction Manager Service (ttd)
	ARM API Call Status Returns
	Measurement Interface Service (midaemon)
	Transaction Configuration File
	Adding New Applications
	Adding New Transactions
	Changing SLO or Range Values
	Configuration File Keywords
	tran
	range
	slo

	Configuration File Format
	Configuration File Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Overhead Considerations for Using ARM
	Guidelines
	Disk I/O Overhead
	CPU Overhead
	Memory Overhead

	3 Getting Started
	Putting It All Together
	ARM Library Information

	Setting Up Transaction Tracking
	Defining Service Level Objectives
	Modifying the Parm File
	Collecting Transaction Data
	Error Handling
	Limits on Unique Transactions

	Customizing the Configuration File (optional)

	Monitoring Performance Data
	... with Performance Agent
	... with PerfView

	Alarms
	... with Performance Agent
	... with PerfView

	4 Transaction Tracking Messages
	Transaction Tracking Messages
	Return Values for Failed ARM API Calls

	5 Transaction Metrics
	Global Metrics
	GBL_TT_OVERFLOW_COUNT

	Per Transaction Metrics
	TT_ABORT
	TT_ABORT_WALL_TIME_PER_TRAN
	TT_APP_NAME
	TT_APP_TRAN_NAME
	TT_CLIENT_ADDRESS
	TT_CLIENT_ADDRESS_FORMAT
	TT_CLIENT_TRAN_ID
	TT_COUNT
	TT_FAILED
	TT_INFO
	INTERVAL
	TT_NAME
	TT_NUM_BINS
	TT_SLO_COUNT
	TT_SLO_PERCENT
	TT_SLO_THRESHOLD
	TT_TERM_TRAN_1_HR_RATE
	TT_TRAN_1_MIN_RATE
	TT_TRAN_ID
	TT_UNAME
	TT_USER_MEASUREMENT_NAME(_6)
	TT_USER_MEASUREMENT_MIN(_6)
	TT_USER_MEASUREMENT_MAX(_6)
	TT_USER_MEASUREMENT_AVG(_6)
	TT_USER_MEASUREMENT_COUNT(_6)
	TT_WALL_TIME_PER_TRAN
	TTBIN_TRANS_COUNT_1 ... 10
	TTBIN_UPPER_RANGE_1 ... 10

	6 Transaction Tracking Examples
	Pseudocode for Real Time Order Processing
	routine answer calls()
	{

	. Register the transactions if first time in *

	if (transactions not registered)
	{
	appl_id = arm_init(“Order Processing Application”,”*”, 0,0,0)
	answer_phone_id = arm_getid(appl_id,”answer_phone”,”1st tran”,0,0,0)
	if (answer_phone_id < 0)
	REGISTER OF ANSWER_PHONE FAILED - TAKE APPROPRIATE ACTION
	order_id = arm_getid(appl_id,”order”,”2nd tran”,0,0,0)
	if (order_id < 0)
	REGISTER OF ORDER FAILED - TAKE APPROPRIATE ACTION
	check_id = arm_getid(appl_id,”check_db”,”3rd tran”,0,0,0)
	if (check_id < 0)
	REGISTER OF CHECK DB FAILED - TAKE APPROPRIATE ACTION
	update_id = arm_getid(appl_id,”update”,”4th tran”,0,0,0)
	if (update_id < 0)
	REGISTER OF UPDATE FAILED - TAKE APPROPRIATE ACTION
	} if transactions not registered

	. Main transaction processing loop

	while (answering calls)
	{
	if (answer_phone_handle = arm_start(answer_phone_id,0,0,0) < -1)
	TRANSACTION START FOR ANSWER_PHONE NOT REGISTERED
	**
	. At this point the answer_phone transaction has *
	. started. If the customer does not want to order, *
	. end the call; otherwise, proceed with order. *
	**
	if (don’t want to order)
	arm_stop(answer_phone_handle,ARM_FAILED,0,0,0)
	GOOD-BYE - call complete
	else
	{

	. They want to place an order - start an order now *

	if (order_handle = arm_start(order_id,0,0,0) < -1)
	TRANSACTION START FOR ORDER FAILED
	take order information: name, address, item, etc.
	**
	. Order is complete - end the order transaction *
	**
	if (arm_stop(order_handle,ARM_GOOD,0,0,0) < -1)
	TRANSACTION END FOR ORDER FAILED
	**
	. order taken - query database for availability *
	**
	if (query_handle = arm_start(query_id,0,0,0) < -1)
	TRANSACTION QUERY DB FOR ORDER NOT REGISTERED
	query the database for availability
	**
	. database query complete - end query transaction *
	**
	if (arm_stop(query_handle,ARM_GOOD,0,0,0) < -1)
	TRANSACTION END FOR QUERY DB FAILED
	**
	. If the item is in stock, process order, and *
	. update inventory. *
	**
	if (item in stock)
	if (update_handle = arm_start(update_id,0,0,0) < -1)
	TRANSACTION START FOR UPDATE NOT REGISTERED
	update stock
	**
	. update complete - end the update transaction *
	**
	if (arm_stop(update_handle,ARM_GOOD,0,0,0) < -1)
	TRANSACTION END FOR ORDER FAILED
	**
	. Order complete - end the call transaction *
	**
	if (arm_stop(answer_phone_handle,ARM_GOOD,0,0,0) < -1)
	TRANSACTION END FOR ANSWER_PHONE FAILED
	} placing the order
	GOOD-BYE - call complete
	sleep(“waiting for next phone call...zzz...”)
	} while answering calls
	arm_end(appl_id, 0,0,0)
	} routine answer calls

	Configuration Files Examples
	Example 1 (for Order Processing Pseudocode Example)
	Example 2
	Example 3
	Example 4

	7 Advanced Features
	How Data Types Are Used in Performance Agent
	User-Defined Metrics
	Scopent ARM Instrumentation
	Special Considerations When Using a Correlator

	A Appendix
	Overview
	C Compiler Option Examples
	Using the Java Wrappers
	Examples
	Setting Up an Application (arm_init)
	Syntax:

	Setting Up a Transaction (arm_getid)
	Setting Up a Transaction With UDMs
	Syntax:
	Syntax:
	Adding the Metrics
	Metric 1-6:
	Syntax:
	Parameters:
	Metric 7:
	Syntax:
	Syntax:

	Setting the Metric Data
	Metric 1-6:
	Syntax:
	Examples for “Metric”
	Metric 7:
	Syntax:

	Setting Up a Transaction Without UDMs
	With Details
	Syntax:

	Without Details
	Syntax:

	Setting Up a Transaction Instance
	Syntax:

	Starting a Transaction Instance (arm_start)
	Starting the Transaction Instance Using Correlators
	Syntax:
	Syntax:
	Parameter:
	Syntax
	Parameter
	Syntax:

	Starting the Transaction Instance Without Using Correlators
	Syntax:

	Updating Transaction Instance Data
	Updating Transaction Instance Data With UDMs
	Syntax:

	Updating Transaction Instance Data Without UDMs
	Syntax:

	Providing a Larger Opaque Application Private Buffer
	Syntax:

	Stopping the Transaction Instance (arm_stop)
	Stopping the Transaction Instance With a Metric Update
	Syntax:
	Parameter:

	Stopping the Transaction Instance Without a Metric Update
	Syntax:

	Using Complete Transaction
	Using Complete Transaction With UDMs:
	Syntax:
	Parameters:

	Using Complete Transaction Without UDMs:
	Syntax:

	Further Documentation

	Glossary
	alarm
	client
	export
	extract
	interval
	log files
	measurement interface
	Measurement Interface service (midaemon)
	metric
	MI shared memory segment
	performance distribution range
	resource manager
	scopent
	service level agreement (SLA)
	service level objective (SLO)
	transaction
	transaction configuration file (ttdconf.mwc)
	Transaction Manager service (ttd)

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /JPXEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG2000
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /JPXEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG2000
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings when submitting to HP. These settings require font embedding.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

