
HP Performance Agent

For the Windows® Operating System

Software Version: 4.70
Data Source Integration Guide
Document Release Date: September 2007
Software Release Date: September 2007

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent
with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and
Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard
commercial license.

Copyright Notices

© Copyright 1983-2007 Hewlett-Packard Development Company, L.P.

Trademark Notices

Microsoft® is U.S. registered trademark of Microsoft Corporation.

UNIX® is a registered trademark in the United States and other countries, licensed exclusively through X/
Open Company Limited.

Adobe® and Adobe Acrobat® are trademarks of Adobe Systems Incorporated.

Hewlett-Packard Company, United States.

All other product names are the property of their respective trademark or service mark holders and are
hereby acknowledged
2

Support

You can visit the HP Software Support web site at:

www.hp.com/go/hpsoftwaresupport

HP Software online support provides an efficient way to access interactive technical support tools. As a valued
support customer, you can benefit by using the support site to:

• Search for knowledge documents of interest

• Submit and track support cases and enhancement requests

• Download software patches

• Manage support contracts

• Look up HP support contacts

• Review information about available services

• Enter into discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a
support contract.

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html
3

4

Contents
1 Overview of Data Source Integration . 7

How DSI Works . 8
Creating the Class Specification . 8
Collecting and Logging the Data . 8
Using the Data . 9

2 DSI Configuration and Management. 11

Planning Data Collection. 12
Defining the Log File Format . 13

How Log Files Are Organized . 14
Creating the Empty Log File Set . 15

Testing the Class Specification File and the Logging Process (optional) . 15
Logging the Data to the Log File Set . 16
Setting Up the DSI Service . 17
Using the Logged Data . 18
Moving DSI Log File Sets From One Windows System to Another . 19

Safe vs. Non-safe Moves . 19
Procedure for Rebuilding to Move DSI Log File Sets . 20

3 DSI Class Specification Reference . 23

Class Specifications . 24
Class Specification Syntax . 25
CLASS Description . 26

CLASS . 26
LABEL. 27
INDEX BY, MAX INDEXES, AND ROLL BY . 27
Controlling Log File Size . 31
RECORDS PER HOUR . 32
CAPACITY . 33

METRIC Descriptions . 35
METRICS . 35
METRIC . 35
LABEL. 36
Summarization Method . 37
MAXIMUM . 38
PRECISION . 38
TYPE TEXT LENGTH . 39

4 DSI Program Reference. 43
Compiler Syntax . 43
 5

Sample Compiler Output . 44
Configuration Files . 47

Defining Alarms on DSI Metrics . 47
Alarm Processing . 48
Configuring Continuous Logging of DSI Data . 48

DSI Logging Processes. 50
How Dsilog Processes Data . 52
Testing the Logging Process with Sdlgendata . 52
Creating a Format File . 54
Changing a Class Specification . 55

Exporting DSI Data . 56
Viewing Data in Performance Manager . 57
Managing Data With Sdlutil . 58

5 Examples of Data Source Integration . 59

DSI Examples. 59
Monitoring Microsoft Exchange Data . 60

Creating a Class Specification File . 61
Compiling the Class Specification File . 62
Creating a Format File . 63
Starting the DSI Logging Process . 63
Accessing the Data . 63
Creating a Class Specification File . 64
Compiling the Class Specification File . 65
Creating a Format File . 65
Starting the DSI Logging Process . 66
Configuring Dsiconf.mwc for Collecting Ping Data . 67

6 Error Messages. 69

DSI Error Messages . 69
General Error Messages . 70
SDL Error Messages . 72
6

1 Overview of Data Source Integration
Data Source Integration (DSI) technology allows you to use HP Performance Agent to log
data, define alarms, and access metrics from new sources of data beyond the metrics logged by
the Performance Agent scopeux collector. Metrics can be acquired from data sources such as
databases, LAN monitors, and end-user applications.

The data you log using DSI can be displayed in HP Performance Manager along with the
standard performance metrics logged by the scopeux collector. DSI logged data can also be
exported, using the Performance Agent extract program, for display in spreadsheets or
similar analysis packages.

Performance Manager in this document refers to version 4.0 and beyond for UNIX and
Windows platforms. Performance Manager 3.x (PerfView) will connect to Performance Agent
4.0 and beyond for all UNIX platforms except for Performance Agent for Linux. In the future,
connectivity to Performance Manager 3.x will be discontinued.
7

How DSI Works

The following diagram shows how DSI log files are created and used to log and manage data.
DSI log files contain self-describing data that is collected outside of the Performance Agent
scopeux collector. DSI processes are described in more detail on the next page.

Figure 1 Data Source Integration Process

Using DSI to log data consists of the following tasks:

Creating the Class Specification

You first create and compile a specification for each class of data you want to log. The
specification describes the class of data as well as the individual metrics to be logged within
the class. When you compile the specification using the DSI compiler, sdlcomp, a set of empty
log files are created to accept data from the dsilog program. This process creates the log file
set that contains a root file, a description file, and one or more data files.

Collecting and Logging the Data

Then you collect the data to be logged by starting up the process of interest. You can either
pipe the output of the collection process to the dsilog program directly or from a file where
the data was stored. dsilog processes the data according to the specification and writes it to
the appropriate log file. dsilog allows you to specify the form and format of the incoming
data.
8 Chapter 1

The data that you feed into the DSI process should contain multiple data records. A record
consists of the metric values contained in a single line. If you send data to DSI one record at a
time, stop the process, and then send another record, dsilog can append but cannot
summarize the data.

Using the Data

You can use Performance Manager to display DSI log file data. Or you can use the
Performance Agent extract program to export the data for use with other analysis tools. You
can also configure alarms to occur when DSI metrics exceed defined conditions. For more
information about exporting data and configuring alarms, see the HP Performance Agent for
Windows.
Overview of Data Source Integration 9

10 Chapter 1

2 DSI Configuration and Management
This chapter is an overview of what you need to do to successfully implement data source
integration. The following topics are covered:

• Planning data collection

• Defining the log file format

• Creating the empty log file set

• Logging data to the log file set

• Setting up the DSI service

• Using the logged data
 11

Planning Data Collection

Before creating the DSI class specification files and starting the logging process, you need to
address the following topics:

• Understand your environment well enough to know what kinds of data would be useful in
managing your computing resources

• What is data available

• Where is the data

• How can you collect data

• What are the delimiters between data items. For proper processing by dsilog, metric
values in the input stream must be separated by blanks (the default) or a user-defined
delimiter.

• What is the frequency of collection

• How much space is required to maintain logs

• Which alarms do you want to be generated and under what conditions

• What options you have for logging with the class specification and the dsilog process

• What is the output of the program or process that you use to access the data
12 Chapter 2

Defining the Log File Format

Once you have a clear understanding of what kind of data you want to collect, create a class
specification to define the data to be logged and to define the log file set that will contain the
logged data. You enter the following information in the class specification.

• Data class name and ID number

• Label name (optional) that is a substitute for the class name. (For example, if a label
name is present, it can be used in Performance Manager.

• Increments by which to store new and roll old data. These specifications include how you
want the data summarized if you want to limit the number of records logged per hour. See
How Log Files Are Organized on page 14.

• Metric names and other descriptive information, such as how many decimals to allow for
metric values.

• How you want the data summarized if you want to log a limited number of records per
hour.

Here is an example of a class specification:

CLASS SYS_STATS = 10001

LABEL "STATUS data"

INDEX BY HOUR

MAX INDEXES 12

ROLL BY HOUR

RECORDS PER HOUR 120;

Here is an example of one metric description with the data class just named. Many other
metric descriptions could be included in this same file, each separated by a semi-colon:

METRICS

RUN_Q_PROCS = 106

LABEL "Procs in run q"

PRECISION 0;

BLOCKED_PROCS = 107

LABEL "Blocked Processes"

PRECISION 0 ;

You can include one class or multiple classes in a class specification file. When you have
completed the class specification file, name the file and then save it. When you run the DSI
compiler, sdlcomp, you use this file to create the log file set. For more information about the
class specification and metric description syntax, see Chapter 3, DSI Class Specification
Reference.

You set indexes to control the frequency of rolling the data, which occurs in blocks (indexes) of
data rather than in individual records. The number you assign to MAX INDEXES sets the
storage capacity for each class separately, even if you have specified that multiple classes
should be stored in a single log file set. When the storage capacity is reached, the class is
"rolled," meaning the oldest records in the class are deleted.

You can specify actions that would execute when the class is rolled. For example, you might
export the data to an archive file.
DSI Configuration and Management 13

How Log Files Are Organized

Log files are organized into classes. Each class, which represents one source of incoming data,
consists of a group of data items (metrics) that are logged together. Each record, or row, of
data in a class represents one sample of the values for that group of metrics.

The data for classes is stored on disk in log files that are part of the log file set. The log file set
contains a root file, a description file, and one or more log files. All the data from a class is
always kept in a single data file. However, when you provide a log file set name to sdlcomp,
you can store multiple classes together in a single log file set or in separate log file sets. The
figure below illustrates how two classes can be stored in a single log file set.

Since each class is treated as a circular log file, you can set the storage capacity for each class
separately, even if you have specified that multiple classes should be stored in a single log file
set. When the storage capacity is reached, the class is "rolled," which means the oldest
records in the class are deleted to make room for new data.

You can specify actions, such as exporting the old data to an archive file, to be performed
whenever the class is rolled.
14 Chapter 2

Creating the Empty Log File Set

The DSI compiler, sdlcomp, uses the class specification file to create or update an empty log
file set. The log file set is then used to receive logged data from the dsilog program.

To create the log file set, complete the following tasks:

• Run sdlcomp with the appropriate variables and options. For example,
sdlcomp [-maxclass value] specification_file
 [logfile_set [log file]] [options]

• Check the output for errors and make changes as needed.

For more information about sdlcomp, see Sdlcomp Compiler on page 43.

Testing the Class Specification File and the Logging Process (optional)

DSI uses a program, sdlgendata, that allows you test your class specification file against an
incoming source of randomly generated data. You can then examine the output of this process
to verify that DSI can log it according to your specifications.

To test your class specification file for the logging process:

1 Feed the data that is generated by sdlgendata to the dsilog program. (See Testing the
Logging Process with Sdlgendata on page 52, for details on the program options.) The
syntax is:

sdlgendata logfile_set.class -vo | dsilog logfile_set.class

2 Check the output to see if your class specification file matches the format of your data
collection process. If the sdlgendata program outputs something different from your
program, you have either made a mistake in how you have formatted the output, or you
have made a mistake in the specification file.

3 Delete all log files generated from the testing process before collecting real data.
DSI Configuration and Management 15

Logging the Data to the Log File Set

After you have created the log file set and tested it by generating data for it to store, update
Performance Agent files as needed, and then start the dsilog process to log incoming data.

1 Update the data source configuration file, datasources, to add the DSI log files as data
sources for generating alarms or to view from a central Performance Manager analysis
system. For more information about datasources, see Configuration Files on page 47.

The perflbd.mwc file is maintained as a link to the datasources file for Performance
Agent on all supported Windows operating systems, except Performance Agent on 64 bit
Windows. On 64 bit Windows, user has to use perflbd.mwc instead of datasources.

2 Modify the alarm definitions file, alarmdef.mwc, if you wan to alarm on specific DSI
metrics. For more information, see Defining Alarms on DSI Metrics on page 47.

3 Start the collection process from the Windows NT/2000 Command Prompt.

4 Pipe the data from the collection process to dsilog (or some other way to get it to stdin)
with the appropriate variables and options set. For example:

<program or process with variables>|dsilog logfile_set class

For more information about dsilog options, see DSI Logging Processes on page 50.

The dsilog program is designed to receive a continuous stream of data. Therefore, it is
important to structure scripts so that dsilog receives continuos input data. Do not write
scripts that create a new dsilog process for each new input data point. Doing so can cause
duplicate timestamps to be written to the dsilog file, which can cause problems for
Performance Manager and perfalarm when reading the file. See Chapter 5, Examples of Data
Source Integration, for examples of problematic and recommended scripts.
16 Chapter 2

Setting Up the DSI Service

Performance Agent includes a service that allows DSI processes to continually log data after
the user logs off the system. This service starts up automatically as long as your system is
running. You can set the service startup to manual or automatic in the Windows NT/2000
Control Panel. (The default setting is automatic.)

Before using the DSI service, you need to configure the DSI configuration file,
\rpmtools\data\dsiconf.mwc. This configuration involves entering information relating
to all DSI log files that you have implemented. The information you enter includes the
program or process you are using to collect the data, the name of the file where that data is
stored, and the name of the data class (as defined in the DSI class specification file)

For more information, see Configuring Continuous Logging of DSI Data on page 48.

The < rpmtools > directory name is used throughout this document and stands for the
directory in which Performance Agent is installed. The default directory is <disk
drive>:\Program Files\hp OpenView but you can specify a different installation path for
a first time installation
DSI Configuration and Management 17

Using the Logged Data

Once you have created the DSI log files, you can use the Performance Agent graphical
interface to export the data. You can also configure alarms to occur when metrics logged with
DSI exceed defined conditions.

Here are some ways to use logged DSI data:

• Export the data for use in reporting tools such as spreadsheets.

• Display exported DSI data using analysis tools such as Performance Manager.

• Monitor alarms using HP Performance Manager, Operations Manager, or Network Node
Manager.

For information about exporting data, see Chapter 4, DSI Program Reference of this manual
and Chapter 3 of the MeasureWare Agent for Windows NT/2000: User's Manual. For
information about defining alarm conditions, see Chapter 8 of the MeasureWare Agent for
Windows NT/2000: User's Manual. For details on displaying DSI data and alarms in
Performance Manager, Network Node Manager, and ITO, see Performance Manager online
Help

You cannot create extracted log files from DSI log files. You can only export the data.
18 Chapter 2

Moving DSI Log File Sets From One Windows System to Another

In the event you find it necessary to move a DSI log file set from one Windows system to
another, we recommend that you follow the following guidelines.

These guidelines describe which types of moves do not require rebuilding a DSI log file set
(safe moves) and which types of move do require rebuilding a DSI log file set (non-safe moves).
Proper rebuilding procedures for non-safe moves are included in the guidelines.

In the text below, a "DSI log file set" refers to the root file, class description file, and data class
files. The logfile_set parameter in sdlcomp contains the name of the DSI log file set. For
additional information about the structure of DSI log file sets, see Chapter 4, DSI Program
Reference.

Safe vs. Non-safe Moves

Movement from source System A to destination System B (same directory path)

This is a safe move, subject to drive letter constraints (see below). Move all member files of the
DSI log file set using the transfer mechanism of choice.

Movement from source System A to destination System B (different directory path)

This is a safe move, subject to drive letter constraints (see below), if the DSI log file was
originally compiled (using sdlcomp) without the use of an absolute path name for the sdlcomp
logfile_set parameter.

An example of using an absolute path name for the sdlcomp logfile_set parameter (not
safe) is:

sdlcomp spec1 \sample_sdl

An example of using a relative path name for the sdlcomp logfile_set parameter (safe) is:

sdlcomp spec1 relpath\sample_sdl

And, an example of using no path name with the sdlcomp logfile_set parameter (safe) is:

sdlcomp spec1 sample_sdl

If you do not know which syntax was used for the original compilation of the logfile_set
parameter, use the following command to determine if an absolute path name (not safe) was
used:

sdlutil sample_sdl -files

If file names are listed with absolute paths, this indicates that an absolute path name (not
safe) was used originally for compilation.

Drive letter constraints

When Performance Agent opens a DSI log file set for reading on a Windows system, it is
assumed that files reside on the default system drive (usually C:) unless both the drive letter
and full path name were specified for the logfile_set parameter when the log file set was
originally compiled. Therefore, moving a DSI log file set from System A's C: drive to System
B's D: drive typically requires rebuilding of the DSI log file set and requires compilation
syntax for the rebuilt log file set to be similar to the following:
DSI Configuration and Management 19

sdlcomp spec1 D:\full\path\name\sample_sdl

Roll Actions

If a roll action is specified for a class and the action contains any absolute path names (such as
the destination of an extracted log file), then this destination directory must exist on the
system to which the DSI log file set is being moved. If for some reason it is not desirable to
create this directory, the action statement will need to be modified. Modification of the action
statement requires rebuilding of the DSI log file set.

Here is an example of an absolute path name in an action statement:

ACTION "extract -l sample_sdl -C class1 "

"-B PT_START -E PT_ENDS -f C:\mydir\myfile, purge”

Procedure for Rebuilding to Move DSI Log File Sets

As stated previously, the majority of DSI log file sets can be safely moved by relocating the
member files of the set. The following procedure can be used to move the non-safe corner cases
described previously. This procedure preserves the data contained in the DSI log file set.

This discussion assumes the following:

• Logfile set name (SDL name) is sample_sdl.

• There are two classes, named class1 and class2.

a Export the data contents for each class using an extract Command Prompt argument.
The data for each class is written to a separate data file. Example syntax is:

extr act -l sample_sdl -C class1 DETAIL -ut -h -f class1.data,

purge -xp

extract -l sample_sdl -C class2 DETAIL -ut -f -f class2.data,

purge -xp

b Use the exact syntax as shown. The -ut switch provides the required timestamp
format for successful reloading of data. The -h switch disables header information,
which is also required for successful reloading.

c If no original specification files exist, recreate a spec file for each class using sdlutil.
Example syntax is:

sdlutil sample_sdl -decomp class1 > spec1

sdlutil sample_sdl -decomp class2 > spec2

d Move the class data and spec files to the new system at the directory path where the
DSI log file set is to be rebuilt.

e For each class, compile using the class spec file. Example syntax is:

sdlcomp spec1 sample_sdl

sdlcomp spec2 sample_sdl

If the DSI log file set will reside on a drive other than the system default drive, use the
following example syntax:

sdlcomp spec1 D:\full\path\name\sample_sdl

sdlcomp spec2 D:\full\path\name\sample_sdl
20 Chapter 2

f For each class, reload the data using the following example syntax:

dsilog sample_sdl class1 -i class1.data -timestamp

dsilog sample_sdl class2 -1 class2.data -timestamp

g Make any required changes to the Performance Agent datasources and dsiconf.mwc
files.

The rebuilt DSI log file set is now ready to use.
DSI Configuration and Management 21

22 Chapter 2

3 DSI Class Specification Reference
This chapter provides detailed information about:

• Class specifications

• Class specification syntax

• Metric descriptions in the class specifications.
 23

Class Specifications

For each source of incoming data, you must create a class specification file to describe the
format for storing incoming data. To create the file, use the class specification language
described in the next section Class Specification Syntax, to create the file. The class
specification file contains:

• a class description that groups the metrics for the data source. The class description
assigns a name and numeric ID to the incoming data set, determines how much data will
be stored, and specifies when to roll data to make room for new.

• metric descriptions for each individual data item. A metric description names and
describes each data item. It also specifies the summary level to apply to data (RECORDS
PER HOUR) if more than one record arrives in the time interval configured for the class.

To generate the class specification file, use any editor or word processor that lets you to save
the file as an ASCII text file.

You specify a name for the log file set (based on your class specification file) when you run
sdlcomp and specify the class name. When you start logging data, you must run the dsilog
process for every class you of data you want to include in the log file set. When the class
specification is compiled, it automatically creates or updates a log file set for storage of the
data.

The class specification allows you to determine how many records per hour will be stored for
the class, and to specify a summarization method to be used if more records arrive than you
want to store. For instance, if you have requested that 12 records per hour be stored and
records arrive every minute, you could have some of the data items averaged and others
totaled to maintain a running count.

The DSI compiler, sdlcomp, creates files with the following names for a log file set (named
logfile_set_name):

logfile_set_name
logfile_set_name.desc

Sdlcomp creates a file with the following default name for a class (named class_name):

logfile_set_name.class_name

Avoid the use of class specification file names that conflict with these naming conventions, or
sdlcomp will fail.
24 Chapter 3

Class Specification Syntax

The following example explains how to set up a class specification file, where you name a
group of metrics (class name) and then define the individual metrics within the group (metric
names and metric ids. You can define only one class of metrics in a class specification file.

Syntax statements shown in brackets [] are optional. Multiple statements shown in braces { }
indicate that one of the statements must be chosen. Italicized words indicate a variable name
or number you enter. Commas can be used to separate syntax statements for clarity anywhere
except directly preceding the semicolon, which marks the end of the class specification and
the end of each metric specification. Statements are not case-sensitive.

Comments start with # or //. Everything following a # or // on a line is ignored. Note the
required semicolon after the class description and after each metric description. Detailed
information about each part of the class specification and examples follow.

CLASS class_name = class_id_number
LABEL "class_label_name"

[INDEX BY { HOUR | DAY | MONTH } MAX INDEXES number
[[ROLL BY { HOUR | DAY | MONTH } [ACTION “action”]

[CAPACITY { maximum_record_number }]

[RECORD PER HOUR number]

;

METRICS

metric_name = metric_id_number
[LABEL "metric_label_name"]
[TOTALED | AVERAGED | SUMMARIZED BY metric_name]
[MAXIMUM metric_maximum_number]
[PRECISION {0 | 1 | 2 | 3 | 4 | 5}]
[TYPE TEXT LENGTH "number"]
;

The metric maximum value does not limit logged values; this setting provides Performance
Manager with an estimated maximum range for graphing the logged metric values.
DSI Class Specification Reference 25

CLASS Description

To create a class description, assign a name to a group of metrics from a specific data source,
specify the capacity of the class, and designate how data in the class will be rolled when the
capacity is reached.

You must begin the class description with the CLASS keyword. The final parameter in the
class specification must be followed by a semicolon (;).

Syntax

CLASS class_name = class_id_number
[LABEL "class_label_name"]

[INDEX BY { HOUR | DAY | MONTH } MAX INDEXES number
[[ROLL BY { HOUR | DAY | MONTH } [ACTION "action"]

[CAPACITY {maximum_record_number}]
[RECORDS PER HOUR number]
;

Default Settings

The default settings for the class description are:

LABEL class_name

INDEX BY DAY

MAX INDEXES 9

RECORDS PER HOUR 12

To use the defaults, enter only the CLASS keyword with a class_name and numeric
class_id_number.

CLASS

The class name and class ID identify a group of metrics from a specific data source.

Syntax

CLASS class_name = class_id_number

How to Use It

The class_name and class_ID_number must meet the following requirements:

• class_name is alphanumeric and can be up to 20 characters long. The name must start
with an alphabetic character and can contain underscores (but no special characters).

• class_ID_number must be numeric and can be up to six digits long.

• Neither the class_name or the class_ID_number are case-sensitive.
26 Chapter 3

• The class_name and class_id_number must each be unique among all the classes you
define and cannot be the same as any application defined in the Performance Agent
parm.mwc file. (For information about application parameters in the parm.mwc file, see
Chapter 2 of the MeasureWare Agent for Windows NT/2000: User’s Manual.

Example

CLASS SYS_STATS = 10001;

LABEL

The class label identifies the class as a whole. It is used instead of the class name in
Performance Manager.

Syntax

[LABEL "class_label_name"]

How To Use It

The class_label_name must meet the following requirements:

• It must be enclosed in double quotation marks.

• It can be up to 48 characters long.

• It cannot be the same as any of the keyword elements of the DSI class specification such
as CAPACITY or ACTION.

• If it contains a double quotation mark, precede it with a backslash (\), For example, you
would enter \"my\" data if the label is "my" data.

• If no label is specified, the class name is used as the default.

Example

CLASS SYS_STATS = 10001

LABEL "STATUS data";

INDEX BY, MAX INDEXES, AND ROLL BY

INDEX BY, MAX INDEXES, and ROLL BY settings allow you to specify how to store data and
when to delete it. With these settings you designate the blocks of data to store, the maximum
number of blocks to store. and the size of the block of data to discard when data reaches it
maximum index value.

Syntax

INDEX BY

[ROLL BY

{ HOUR | DAY | MONTH } MAX INDEXES number

{ HOUR | DAY | MONTH } [ACTION "action"]
DSI Class Specification Reference 27

How To Use It

INDEX BY settings allow blocks of data to be rolled when the class capacity is reached. The
INDEX BY and RECORDS PER HOUR options can be used to indirectly to set the capacity of the
class as described later in Controlling Log File Size on page 31.

The INDEX BY setting cannot exceed the ROLL BY setting. For example, INDEX BY DAY does
not work with ROLL BY HOUR, but INDEX BY HOUR does work with ROLL BY DAY .

If ROLL BY is not specified and the record capacity of the class is reached, each record added to
the class overwrites the oldest record. If ROLL BY is specified, when the capacity is reached, all
the records logged in the oldest roll interval are freed for reuse. This causes the roll to happen
less frequently.

Any specified ACTION is performed before the data is discarded (rolled). This optional ACTION
could be used to export the data to another location before it is deleted. See Chapter 4, DSI
Program Reference for information on exporting data.

Notes on Roll Actions

Do not specify a command in the ACTION statement that will cause a long delay, since new
data won’t be logged during the delay.

If the command is more than one line long, mark the start and end of each line with double
quotation marks. Be sure to include spaces where necessary inside the quotation marks to
ensure that the various command line options remain separated when the lines are
concatenated.

If the command contains a double quotation mark, precede it with a backslash (\). If the
action contains a directory path, use double-backslashes for the path delimiter; for example,
instead of C:\mydata\myfile, use C:\\mydata\\myfile. If you are using the DSI service,
always use full path names in your ACTION statement.

The ACTION statement is limited to 199 characters or less.

Within the ACTION statement, you can use macros to define the time window of the data to be
rolled out of the log file. These macros are expanded by dsilog. You can use PT_START to
specify the beginning of the block of data to be rolled out in UNIX time (seconds since 1/1/70
00:00:00) and PT_END to specify the end of the data in UNIX time. These are particularly
useful when combined with the Performance Agent's extract program in the Command
Prompt to export the data before it is overwritten.

If MAX INDEXES is 1 and a roll action is specified, sdlcomp sets MAX INDEXES to 2.

Examples

The following examples may help to clarify the relationship between the INDEX BY, MAX
INDEXES, and RECORDS PER HOUR clauses.

The following example indirectly sets the CAPACITY to 144 records (1 hour [index value
setting] multiplied by 12 records per hour [equals one index] multiplied by the maximum of
12 indexes equals 144 records).

CLASS SYS_STATS = 10001

LABEL "STATUS data"

INDEX BY HOUR

MAX INDEXES 12

RECORDS PER HOUR 12;
28 Chapter 3

The following example indirectly sets the CAPACITY to 1440 records (1* 12 * 120).

CLASS SYS_STATS = 10001

LABEL "STATUS data"

INDEX BY HOUR

MAX INDEXES 12

RECORDS PER HOUR 120;

The following example shows ROLL BY HOUR.

CLASS SYS_STATS = 10001

LABEL "STATUS data"

INDEX BY HOUR

MAX INDEXES 12

ROLL BY HOUR

RECORDS PER HOUR 120;

The following example causes all the data currently identified for rolling (excluding
weekends) to be exported to a file called sys.sdl before the data is overwritten. Note that the
last lines of the example are enclosed in double quotation marks to indicate that they form a
single command.

CLASS SYS_STATS = 10001

LABEL "STATUS data"

INDEX BY HOUR

MAX INDEXES 12

ROLL BY HOUR

ACTION "extract -l sdl_new -C SYS_STATS "

"-B PT_START -E PT_END -f sys.sdl, purge -we 17"

RECORDS PER HOUR 120;

Other Examples

Some suggested index settings below offer you examples for considering how much data you
want to store. The second table offers a detailed explanation of other settings with the ROLL
BY setting added

Table 1 Index Settings Examples.

Index by Maximum Indexes Amount of data stored

Hour 72 3 days

Hour 168 7 days

Hour 744 31 days

Day 365 1 year

Month 12 1 year
DSI Class Specification Reference 29

Table 2 Examples of ROLL BY Settings

INDEX BY MAX INDEXES ROLL BY MEANING

Day 9 Day Nine days of data will be stored in the log
file. Before logging day 10, day 1 is rolled
out. These are the default values for
index and max indexes.

Hour 72 Hour 72 hours (three days) of data will be
stored in the log file. Before logging hour
73, hour 1 is rolled out. Thereafter, at the
start of each succeeding hour, the "oldest"
hour is rolled out.

Hour 168 Day 168 hours (seven days) of data will be
stored in the log file. Before logging hour
169 (day 8),
day 1 is rolled out. Thereafter, at the
start of each succeeding day, the "oldest"
day is rolled out.

Hour 744 Month 744 hours (31 days) of data will be stored
in the log file. Before logging hour 745
(day 32),
month 1 is rolled out. Thereafter, before
logging hour 745, the "oldest" month is
rolled out.
For example: dsilog is started on April
15 and logs data through May 16 (744
hours). Before logging hour 745 (the first
hour of May 17), dsilog will roll out the
data for the month of April (April 15 - 30).
30 Chapter 3

Controlling Log File Size

You determine how much data is stored in each class and how much data to discard to make
room for new data. Class capacity is calculated from INDEX BY (hour, day, or month), RECORDS
PER HOUR, and MAX INDEXES. The following examples show the results for different settings:

In this example, the class capacity is 288 (24 indexes * 12 records per hour).

INDEX BY HOUR
MAX INDEXES 24
RECORDS BY HOUR 12

In this example, the class capacity is 504 (7 days * 24 hours per day * 3 records per hour).

INDEX BY DAY
MAX INDEXES 7
RECORDS PER HOUR 3

In this example, the class capacity is 14880 (2 months * 31 days per month * 24 hours per day
* 10 records per hour).

Day 30 Day 30 days of data will be stored in the log
file. Before logging day 31, day 1 is rolled
out. Thereafter, at the start of each
succeeding day, the "oldest" day is rolled
out.
For example: If dsilog is started on
April 1 and logs data all month, then the
April 1st data will be rolled out when
May 1st (day 31) data is to be logged.

Day 62 Month 62 days of data will be stored in the log
file. Before logging day 63, month 1 is
rolled out. Thereafter, before logging day
63 the "oldest" month is rolled out.
For example: If dsilog is started on
March 1 and logs data for the months of
March and April, there will be 61 days of
data in the log file. Once dsilog logs
May 1st data (the 62nd day), the log file
will be full. Before dsilog can log the
data for May 2nd, it will roll out the
entire month of March.

Month 2 Month Two months of data will be stored in the
log file. Before logging the third month,
month 1 is rolled out. Thereafter, at the
start of each succeeding month, the
"oldest" month is rolled out.
For example: If dsilog is started on
January 1 and logs data for the months of
January and February. Before dsilog
can log the data for March, it will roll out
the month of January.

INDEX BY MAX INDEXES ROLL BY MEANING
DSI Class Specification Reference 31

INDEX BY MONTH
MAX INDEX 2
RECORDS PER HOUR 10

If you do not specify values for INDEX BY, RECORDS PER HOUR, and MAX INDEXES, DSI uses
the defaults for the class descriptions. See Default Settings under Class Specifications on
page 24 earlier in this chapter.

The ROLL BY option lets you determine how much data to discard each time the class record
capacity is reached. The setting for ROLL BY is constrained by the INDEX BY setting in that the
ROLL BY unit (hour, day, or month) cannot be smaller than the INDEX BY unit.

The following example illustrates how rolling occurs given the sample

 INDEX BY DAY
 MAX INDEXEX 6
 ROLL BY DAY

In the above example, the class capacity is limited to six days of data by the setting:

MAX INDEXES 6.

The deletion of data is set for a day's worth by the setting:

ROLL BY DAY.

When the seventh day's worth of data arrives, the oldest day's worth of data is discarded. Note
that in the beginning of the logging process, no data is discarded. After the class fills up for
the first time at the end of 7 days, the roll takes place once a day.

RECORDS PER HOUR

The RECORDS PER HOUR setting determines how many records are written to the log file every
hour. The default number for RECORDS PER HOUR is 12 to match MeasureWare's measurement
interval of data sampling once every 5 minutes (60 minutes/12 records = logging every five
minutes).

The default number or the number you enter could require the logging process to summarize
data before it becomes part of the log file. The method used for summarizing each data item is
specified in the metric definition as described in Summarization Method on page 37 later in
this chapter.

Syntax

[RECORDS PER HOUR number]

Class_3 Example log

Day 2-21 records

Day 3-24 records

Day 4-21 records

Day 5-24 records

Day 6-21 records
32 Chapter 3

How To Use It

The logging process uses this value to summarize incoming data to produce the number of
records specified. For example, if data arrives every minute and you have set RECORDS PER
HOUR to 6 (every 10 minutes), 10 data points are summarized to write each record to the class.
See some common RECORDS PER HOUR settings below:

RECORDS PER HOUR 6 ‡ 1 record/10 minutes

RECORDS PER HOUR 12 ‡ 1 record/5 minutes

RECORDS PER HOUR 60 ‡ 1 record/minute

RECORDS PER HOUR 120 ‡ 1 record/30 seconds

Notes

RECORDS PER HOUR can be overridden by the -s seconds option in dsilog. However,
overriding the original setting could cause problems with Performance Manager graphing the
data.

If dsilog has received no metric data for a for an entire logging interval, a missing data
indicator is logged for that metric. DSI can be forced to use the last value logged with the
-asyn option in dsilog. For a description of the -asyn option, see DSI Logging Processes on
page 50.

Example

In this example, a record will be written every 10 minutes.

CLASS SYS_STATS = 10001

LABEL "STATUS data"

RECORDS PER HOUR 6;

CAPACITY

CAPACITY is the number of records to be stored in the class.

Syntax

[CAPACITY (maximum_record_number)]

How To Use It

Class capacity is derived from the settings RECORDS PER HOUR, INDEX BY, and MAX INDEXES.
The CAPACITY setting is ignored unless a capacity larger than the derived value of these other
settings is necessary. If this situation occurs, the MAX INDEXES setting is increased to provide
the specified capacity.
DSI Class Specification Reference 33

Example

INDEX BY DAY
MAX INDEXES 9
RECORDS PER HOUR 12
CAPACITY 3000

In the above example, the derived class capacity is 2,592 records (9 days * 24 hours per day *
12 records per hour).

Because 3,000 is greater than 2,592, sdlcomp increases MAX INDEXES to 11, resulting in the
class capacity of 3,168. After compilation, you can see the resulting MAX INDEXES and
CAPACITY values by running sdlutil with the -decomp option.
34 Chapter 3

METRIC Descriptions

The metric descriptions in the class specification file are used to define the individual data
items for the class. The metric description equates a metric name with a numeric identifier.
The metric description also specifies the summarization method to use when the number of
records per hour exceeds the number specified in the RECORDS PER HOUR setting.

METRICS

metric_name = metric_id_number
[LABEL "metric_label_name"]
[TOTALED | AVERAGED | SUMMARIZED BY metric_name]
[MAXIMUM metric_maximum_number]
[PRECISION { 0 | 1 | 2 | 3 | 4 | 5 }]
TYPE TEXT LENGTH "number"

METRIC

The metric name and ID number identify the metric being collected.

Syntax

METRIC

metric_name = metric_id_number

How To Use It

The metrics section must start with the METRICS keyword before the first metric definition.
Each metric must have a metric name that meets the following requirements:

• Must not exceed 20 characters

• Must begin with an alphabetic character

• Can contain only alphanumeric characters and underscores

• Is not case-sensitive.

The metric also has a metric ID number that must not be longer than 6 characters.

The metric_name and metric_id_number must each be unique among all the metrics you
define in the class. The combination class_name:metric_name must be unique for this system,
and it cannot be the same as any application_name:metric_name.

Each metric description is separated from the next by a semicolon (;).

There is a maximum limit of 100 metrics in the dsilog format file

For numeric metrics you can specify the summarization method (TOTALED, AVERAGED,
SUMMARIZED BY), a MAXIMUM, and PRECISION. For text metrics you can specify only the TYPE
TEXT LENGTH.
DSI Class Specification Reference 35

You can reuse metric names from any other class whose data is stored in the same log file set
if the definitions are identical as well (see How Log Files Are Organized on page 14). To reuse
a metric definition that has already been defined in another class in the same log file set,
specify just the metric_name without the metric_id_number or any other specifications. If any
of the options are to be set differently than the previously defined metric, the metric must be
given a unique name and number and redefined.

The order of the metric names in this section of the class specification determines the order of
the fields when you export the logged data. If the order of incoming data is different from the
order you list in this specification, or you do not want to log all the data in the incoming data
stream, see Chapter 4, DSI Program Reference for information about how to map the metrics
to the correct location.

A timestamp metric is automatically inserted as the first metric in each class. If you want the
timestamp to appear in a different position in exported data, include the short form of the
internally defined metric definition (DATE_TIME;) in the position you want it to appear. To
omit the timestamp and use a UNIX timestamp (seconds since 1/1/70 00:00:00) that is part of
the incoming data, choose the -timestamp option when starting the dsilog process.

The simplest metric description, which uses the metric name as the label and the defaults of
AVERAGED, MAXIMUM 100, and PRECISION 3 decimal places, requires the following description:

METRICS
metric_name = metric_id_number

Example

VM = 11200;

VM is an example of a metric reusing a metric definition that has already been defined in
another class in the same log file set.

LABEL

The metric label identifies the metric in graphs and exported data.

Syntax

[LABEL "metric_label_name"]

How To Use It

Specify a text string, surrounded by double quotation marks, to label the metric in graphs and
exported data. Up to 48 characters are allowed. If no label is specified, the metric name is
used to identify the metric.

You must compile each class using sdlcomp and then start logging the data for that class
using the dsilog process, regardless of whether you have reused metric names.

If the label contains a double-quotation mark, precede it with a backslash (\). For example,
you would enter \"my\" data if the label is "my" data.
The metric label cannot be the same as any of the elements of the DSI class specification
syntax such as CAPACITY or ACTION.
36 Chapter 3

Example

METRICS

RUN_Q_PROCS = 106

LABEL "Procs in run q";

Summarization Method

The summarization method determines how to summarize data if the number of records
exceed the number set in the RECORDS PER HOUR option of the CLASS section. For example, you
would want to total a count of occurrences, but you would want to average a rate. A
summarization method can apply only to numeric metrics.

Syntax

[TOTALED | AVERAGED | SUMMARIZED BY metric_name]

How To Use It

SUMMARIZED BY should be used when a metric is not being averaged over time, but over
another metric in the class. For example, assume you have defined metrics TOTAL_ORDERS and
LINES_PER_ORDER. If these metrics are given to the logging process every five minutes but
records are being written only once each hour, to correctly summarize LINES_PER_ORDER to be
(total lines / total orders), the logging process must perform the following calculation every
five minutes:

• Multiply LINES_PER_ORDER * TOTAL_ORDERS at the end of each five-minute interval and
maintain the result in an internal running count of total lines.

• Maintain the running count of TOTAL_ORDERS.

• At the end of the hour, divide total lines by TOTAL_ORDERS.

To specify this kind of calculation, you would specify LINES_PER_ORDER as SUMMARIZED BY
TOTAL_ORDERS.

If no summarization method is specified, the metric defaults to AVERAGED.

Example

METRICS

ITEM_1_3 = 11203

LABEL "TOTAL_ORDERS"

TOTALED;

ITEM_1_5 = 11205

LABEL "LINES_PER_ORDER"

SUMMARIZED BY ITEM_1_3;
DSI Class Specification Reference 37

MAXIMUM

The metric maximum value identifies how large the number might be. It is valid only for
numeric metrics and is meant to be used for estimating a maximum value range for graphing
the metric in Performance Manager.

Syntax

[MAXIMUM metric_maximum_number]

How To Use It

Specify the expected maximum value for any metric. This value does not specify the largest
acceptable number for logged data. (See the table in the following section for the largest
acceptable numbers according to precision settings.)

The MAXIMUM setting is primarily used to estimate graphing ranges in the analysis software
about the initial size of a graph containing the metric and to determine a precision if
PRECISION is not specified. The default is 100. Zero is always used as the minimum value
because the kinds of numbers expected to be logged are counts, average counts, rates, and
percentages. See the next section, PRECISION, for maximum values that can be logged.

Example

METRICS

RUN_Q_PROCS = 106

LABEL "Procs in run q"

MAXIMUM 50;

PRECISION

PRECISION identifies the number of decimal places to be used for metric values. If PRECISION
is not specified, it is calculated based on the MAXIMUM specified. If neither is specified, the
default PRECISION value is 3. This setting is valid only for numeric metrics.

Syntax

[PRECISION {0|1|2|3|4|5}]

How To Use It

The PRECISION setting determines the largest value that can be logged. Use PRECISION 0 for
whole numbers.
38 Chapter 3

Table 3 Precision Setting Values

Example

METRICS

RUN_Q_PROCS = 106

LABEL "Procs in run q"

PRECISION 1;

TYPE TEXT LENGTH

The three keywords TYPE TEXT LENGTH specify that a metric is textual rather than numeric.
This setting determines the number of characters allowed for the metric. Text is defined as
any character other than ^z,\n, or the separator, if any.

Because the default delimiter between data items for dsilog input is a blank space, you will
need to change the delimiter if the text contains embedded spaces. Use the dsilog -c char
option to specify a different separator as described in Chapter 4.

Syntax

[TYPE TEXT LENGTH number]

How To Use It

The LENGTH must be greater than zero and less than 256.

Example

METRICS

text_1 = 16

LABEL "first text metric"

TYPE TEXT LENGTH 20;

PRECISION Number of decimal places
Largest acceptable
number MAXIMUM

0 0 2,147,483,647 > 10,000

1 1 214,748,364.7 1001 to 10,000

2 2 21,474,836.47 101 to 1,000

3 3 2,147,483.647 11 to 100

4 4 214,748.3647 2 to 10

5 5 21,474.83647 1

Summarization method, MAXIMUM, and PRECISION cannot be specified with text metrics.
Because text cannot be summarized, which means that dsilog will take the first logged
value in an interval and ignore the rest.
DSI Class Specification Reference 39

Sample Class Specification

CLASS SYS_STATS = 10001
LABEL "STATUS data"
INDEX BY HOUR
MAX INDEXES 12
ROLL BY HOUR
RECORDS PER HOUR 120;

METRICS

RUN_Q_PROCS = 106
LABEL "Procs in run q"
PRECISION 0;

BLOCKED_PROCS = 107
LABEL "Blocked Processes"
PRECISION 0;

SWAPPED_PROCS = 108
LABEL "Swapped Processes"
PRECISION 0;

AVG_VIRT_PAGES = 201
LABEL "Avg Virt Mem Pages"
PRECISION 0;

FREE_LIST_SIZE = 202
LABEL "Mem Free List Size"
PRECISION 0;

PAGE_RECLAIMS = 303
LABEL "Page Reclaims"
PRECISION 0;

ADDR_TRANS_FAULTS = 304
LABEL "Addr Trans Faults"
PRECISION 0;

PAGES_PAGED_IN = 305
LABEL "Pages Paged In"
PRECISION 0;

PAGES_PAGED_OUT = 306
LABEL "Pages Paged Out"
PRECISION 0;

PAGES_FREED = 307
LABEL "Pages Freed per Sec"
PRECISION 0;

MEM_SHORTFALL = 308
LABEL "Exp Mem Shortfall"
PRECISION 0;

CLOCKED_PAGES = 309
LABEL "Pgs Scanned per Sec"
PRECISION 0;

DEVICE_INTERRUPTS = 401
LABEL "Device Interrupts"
PRECISION 0;
40 Chapter 3

SYSTEM_CALLS = 402
LABEL "System Calls"
PRECISION 0;

CONTEXT_SWITCHES = 403
LABEL "Context Switches/Sec"
PRECISION 0;

USER_CPU = 501
LABEL "User CPU"
PRECISION 0;

SYSTEM_CPU = 502
LABEL "System CPU"
PRECISION 0;

IDLE_CPU = 503
LABEL "Idle CPU"
PRECISION 0;
DSI Class Specification Reference 41

42 Chapter 3

4 DSI Program Reference
This chapter provides detailed reference information about:

• The sdlcomp compiler

• Configuration files

• DSI logging processes

• Exporting DSI data

• The sdlutil data source management utility

Sdlcomp Compiler

The DSI compiler, sdlcomp, checks the class specification file for errors. If it finds no errors, it
adds the class and metric descriptions to the description file in the log file set you name.
Sdlcomp also sets up the pointers in the log file set's root file to the log file to be used for data
storage. If either the log file set or the log file does not exist, sdlcomp creates it.

Compiler Syntax

sdlcomp [-maxclass value] specification_file logfile_set [log_ file]
[options]

You can put DSI log files anywhere on your system by specifying a full path in the compiler
command. However, once the path has been specified, DSI log files cannot be moved to
different directories. (SDL62 is the associated error.)
 43

Sample Compiler Output

Given the following command line:

->sdlcomp status.spec sdl_new

the following code is sample output for a successful compile. Note that status.spec is the
sample specification file presented in the previous chapter.

sdlcomp
Check class specification syntax.

CLASS SYS_STATS = 10001
LABEL "STATUS data"
INDEX BY HOUR
MAX INDEXES 12
ROLL BY HOUR
RECORDS PER HOUR 120;

Variable & Option Definitions

-maxclass value allows you to specify the maximum number of classes to be
provided for when creating a new log file set. This option is
ignored if it is used with the name of an existing log file set. Each
additional class consumes about 500 bytes of disk space in
overhead, whether the class is used or not. The default is 10 if
-maxclass is not specified.

specification_file is the name of the file that contains the class specification. If it is
not in the current directory, it must be fully qualified.

logfile_set is the name of the log file set this class should be added to. If the
logfile_set does not exist, it will be created. If the logfile_set name
is not fully qualified, it is assumed to be in the current directory.
You can keep log file sets anywhere you choose.
If no log file set is named, compilation errors are written to
stderr and no log file is created. Compile without a log file set
name first to check for compilation errors before actually creating
the log file set. You can redirect stderr to a file for later viewing.
Class and metric names and numeric IDs that have been
previously used in the log file set will not cause compilation errors
until you run sdlcomp with the log file set option.

log file is the log file in the set that will contain the data for this class. If
no log file is named, a new log file is created for the class and
named according to class name. The default name is
logfile_set_name.class_name.

-verbose prints a detailed description of the compiler output to stdout.

-vers displays version information.

-? displays the syntax description.

-u allows you to log more than one record per second. Use this option
to log unsummarized data only.
44 Chapter 4

METRICS

RUN_Q_PROCS = 106
LABEL "Procs in run q"
PRECISION 0;

BLOCKED_PROCS = 107
LABEL "Blocked Processes"
PRECISION 0;

SWAPPED_PROCS = 108
LABEL "Swapped Processes"
PRECISION 0;

AVG_VIRT_PAGES = 201
LABEL "Avg Virt Mem Pages"
PRECISION 0;

FREE_LIST_SIZE = 202
LABEL "Mem Free List Size"
PRECISION 0;

PAGE_RECLAIMS = 303
LABEL "Page Reclaims"
PRECISION 0;

ADDR_TRANS_FAULTS = 304
LABEL "Addr Trans Faults"
PRECISION 0;

PAGES_PAGED_IN = 305
LABEL "Pages Paged In"
PRECISION 0;

PAGES_PAGED_OUT = 306
LABEL "Pages Paged Out"
PRECISION 0;

PAGES_FREED = 307
LABEL "Pages Freed per Sec"
PRECISION 0;

MEM_SHORTFALL = 308
LABEL "Exp Mem Shortfall"
PRECISION 0;

CLOCKED_PAGES = 309
LABEL "Pgs Scanned per Sec"
PRECISION 0;

DEVICE_INTERRUPTS = 401
LABEL "Device Interrupts"
PRECISION 0;

SYSTEM_CALLS = 402
LABEL "System Calls"
PRECISION 0;

CONTEXT_SWITCHES = 403
LABEL "Context Switches/Sec"
PRECISION 0;

USER_CPU = 501
LABEL "User CPU"
PRECISION 0;
DSI Program Reference 45

SYSTEM_CPU = 502
LABEL "System CPU"
PRECISION 0;

IDLE_CPU = 503
LABEL "Idle CPU"
PRECISION 0;
Note: Time stamp inserted as first metric by default.

 Syntax check successful.

Update SDL sdl_new.
Open SDL sdl_new
Add class SYS_STATS.
Check class SYS_STATS.

Class SYS_STATS successfully added to logfile set.

For explanations of error messages, see Chapter 6, Error Messages.
46 Chapter 4

Configuration Files

Before you start logging data, you may need to update the following three Measure Ware
Agent configuration files:

• datasources - to configure a DSI log file as a data source.

• alarmdef.mwc - to define alarm conditions on DSI metrics.

• dsiconf.mwc - to define continuous logging of DSI data.

These files are located in the \rpmtools\data\ directory, unless you specified them to be in
a different directory during installation.

See "Configuring Data Sources" in the HP Performance Agentt Installation and Configuration
Guide for Windows for detailed information about using and updating the datasources
configuration file.

Defining Alarms on DSI Metrics

You can use Performance Agent to define alarms on DSI metrics. These alarms notify you
when DSI metrics meet conditions that you have defined. To define alarms, you specify
conditions that, when met or exceeded, trigger an alert notification or action. You define
alarms for data logged through DSI the same way as for other Performance Agent metrics —
in the alarmdef.mwc file on the Performance Agent system. The alarmdef.mwc file is
located in the \rpmtools\data\ directory unless you specified a different directory during
installation).

Whenever you specify a DSI metric name, it should be fully qualified; that is, preceded by the
datasource_name, and the class_name as shown below:

datasource_name:class_name:metric_name

• datasource_name is the name you have used to configure the data source in the
datasources file. See Configuration Files on page 47 for more information.

• class_name is the name you have used to identify the class in the class specification for
the data source. You do not need to enter the class_name if the metric name is unique
(not reused) in the class specification.

• metric_name is the data item from the class specification for the data source.

If you choose not to fully qualify a metric name, you need to include the USE statement in the
alarmdef.mwc file to identify which data source to use. For more information about the USE
statement, see Chapter 8 in the MeasureWare Agent for Windows NT/2000: User's Manual.

Make sure that the manual name & chapter/section name match with the Windows
installation & configuration guide.

Stopping the repository server processes results in any current connection in Performance
Manager being lost. For example, if you are drawing a graph on a data source and try to draw
another graph, you will need to reselect the data source in Performance Manager and
re-establish the connection once the repository server is started again.

Examine the contents of the status.rep_server file to check if the repository was
activated or for error messages.
DSI Program Reference 47

Before proceeding with another task, you must activate any changes you made to the
alarmdef.mwc file.

1 Choose Start/Stop from the Agent menu on the Performance Agent main window to open
the MeasureWare Services window.

2 Select the Alarm Definitions check box.

3 Click Refresh.

4 Click Close to return to the Performance Agent main window..

For details on the alarm definition syntax, how alarms are processed, and customizing alarm
definitions, see Chapter 8 of the MeasureWare Agent for Windows NT/2000: User's Manual.

Alarm Processing

As data is logged by dsilog it is compared to the alarm definitions in the alarmdef.mwc file
to determine if a condition is met or exceeded. When this occurs, an alert notification or action
is triggered.

You can configure where you want alarm notifications sent and whether you want local
actions performed. Alarm notifications can be sent to the central Performance Manager
analysis system where you can draw graphs of metrics that characterize your system
performance. SNMP traps can be sent to HP Network Node Manager. Local actions can be
performed on the Performance Agent system. Alarm information can also be sent to
Operations Manager.

For information about configuring where you want alarm notifications sent, see Chapter 8 of
the MeasureWare Agent for Windows NT/2000: User's Manual.

Configuring Continuous Logging of DSI Data

The DSI service allows DSI to continuously log data for every data collection you have started
with DSI, even after you have logged off your system. You can set the service to automatically
start with Performance Agent by selecting Services in the Windows NT Control Panel (the
Services applet is under Administrative Tools on Windows 2000) and choosing the DSI service.

Before you start using the DSI service, you must configure the DSI configuration file,
dsiconf.mwc, to define which DSI data is to be logged. The dsiconf.mwc file is located in
your \rpmtools\data\ directory unless you specified a different directory during
installation.

When you first open the dsiconf.mwc file, you see a series of settings and comments that
help you supply all necessary information. Each line is preceded by the pound sign (#), which
you remove when you supply the values for each entry.

The format for defining a continuous DSI logging process is:

DATAFEED=ping -t nnn.nnn.nnn.nnn

LOGFILE=c:\rpmtools\data\datafiles\PINGLOG

CLASS=SYS_RESPONSE

DSIPARMS=-f c:\rpmtools\data\datafiles\ping.fmt

;

Each DSI logging process you configure to run under the DSI service must have a DATAFEED,
LOGFILE, and CLASS entry. The DSIPARMS entry is optional.
48 Chapter 4

For each DATAFEED, LOGFILE, and CLASS entry, substitute a value within the < > brackets.

Before proceeding with another task, you must activate any changes you made to the
dsiconf.mwc file.

1 Choose Start/Stop Services from the Agent menu of the Performance Agent main window to
display the MeasureWare Services window.

2 Select the Persistent DSI Collections check box.

3 Click Refresh.

4 Click Close to return to the Performance Agent main window.

You can also start and stop the DSI service and refresh (activate) the dsiconf.mwc file using
the following commands in the Windows NT/2000 Command Prompt:

• To start the DSI service, type:

OVPACMD START DSI

• To stop the DSI service, type:

OVPACMD STOP DSI

• To activate changes in the dsiconf.mwc file, type:

OVPACMD REFRESH DSI

Keywords such as DATAFEED, LOGFILE, CLASS, and DSIPARMS file must be in uppercase.
DSI Program Reference 49

DSI Logging Processes

DSI logging requires that you either devise your own program or use one already in existence
(such as ping) for gaining access to data. You can then pipe this data into dsilog, which logs
the data into the log file set. A separate logging process must be implemented for each class
you define.

Dsilog expects to receive data from stdin. To start the logging process, you could pipe the
output from the program you are using to collect data to dsilog, as shown in the example
below. A complete example of piping ping data into DSI is given in Chapter 5.

ping <system name>| dsilog logfile_set class

Note that if stream I/O C runtime functions such as fprintf() are used to produce output in
the program you are using to collect data, the piping will not be continuous due to buffering of
the data prior to piping. Although no data will be lost, it will not be processed in real time and
could therefore make the data more difficult to interpret. For example, if the last portion of
data that triggers an alarm is delayed, the alarm will not be processed (or received) until
sometime after the actual alarm condition occurred. For this reason, turn off buffering if you
use stream I/O functions or use Win32 functions when creating applications to be monitored
with DSI.

An example of turning buffering off in the data stream to be piped to dsilog is given in the
example program, eschgdsi.c, in Chapter 5.

Note that dsilog will not accept Unicode input.

Syntax

dsilog logfile_set class [options]

The dsilog parameters and options are described on the following pages.

Table 1 DSI Logging Parameters and Options

Variables &
Options Definitions

logfile_set names the log file set where the data is to be stored. If it is not in the
current directory, the name must be fully qualified.

class names the class to be logged.

-asyn specifies that the data will arrive asynchronously with the RECORDS
PER HOUR rate. If no data arrives during a logging interval, the data
for the last logging interval is repeated. However, if dsilog has
logged no data yet, the metric value logged is treated as missing
data. This causes a flat line to be drawn in a graphical display of the
data and causes data to be repeated in each record if the data is
exported.

-c char uses the specified character as a string delimiter/separator. If
embedded spaces occur in any text metrics, you must specify a
unique separator using this option. You may not use the following
characters as separators: decimal, minus sign, ^z, \n.
50 Chapter 4

-f format_file names a file that describes the data that will be input to the logging
process. If this option is not specified, dsilog derives the format of
the input from the class specification with the following
assumptions. See Creating a Format File on page 54 later in this
chapter for more information.
• Each data item in an input record corresponds to a metric that

has been defined in the class specification.
• The metrics are defined in the class specification in the order in

which they appear as data items in the input record.
• If there are more data items in an input record than there are

metric definitions, dsilog ignores all additional data items.
• If the class specification lists more metric definitions than there

are input data items, the field will show “missing” data when the
data is exported, and no data will be available for that metric
when graphing data in the analysis software.

The number of fields in the format file is limited to 100.

-i input file indicates that the input should come from the file named. Although
the most common use of dsilog is to receive live data directly, it can
also read data from a static text file.

-s seconds is the number of seconds by which to summarize the data. Zero turns
off summarization, which means that all incoming data is logged. If
this option is omitted, the summarization rate defaults to the
RECORDS PER HOUR rate in the class specification. If present, this
option overrides the value of RECORDS PER HOUR.
A zero (0) turns off summarization, which means that all incoming
data is logged. Caution should be used with the -s 0 option because
dsilog will timestamp the log ata at the time the point arrived. This
can cause problems for Performance Manager and perfalarm, which
work best with timestamps at regular intervals. If the log file will be
accessed by Performance Manager or the OV Performance perfalarm
program, use of the -s 0 option is discouradged.

-t prints everything that is logged to stdout in ASCII format.

-timestamp indicates that the logging process should not provide the timestamp,
but use the one already provided in the input data. The timestamp
in the incoming data must be in UNIX timestamp format (seconds
since 1/1/70 00:00:00) and represent the local time.

-vi filters the input through dsilog and writes errors to stdout
instead of the log file. It does not write the actual data logged to
stdout (see the -vo option below). This can be used to check the
validity of the input.

Table 1 DSI Logging Parameters and Options

Variables &
Options Definitions
DSI Program Reference 51

How Dsilog Processes Data

The dsilog program scans each input data string, parsing delimited fields into individual
numeric or text metrics.

A key rule for predicting how the data will be processed is the validity of the input string. A
valid input string requires that a delimiter be present between any specified metric types
(numeric or text). A blank space is the default delimiter, but a different delimiter can be
specified with the dsilog -c char command line option.

You must include a new line character at the end of any record fed to DSI in order for DSI to
interpret it correctly.

Testing the Logging Process with Sdlgendata

Before you begin logging data, you can test the compiled log file set and the logging process
using the sdlgendata program that is included with Performance Agent. Sdlgendata
discovers metrics for a class (as described in the class specification) and creates data for each
metric in a class.

Syntax

sdlgendata logfile_set class [options]

Sdlgendata parameters and options are explained below.

-vo filters the input through dsilog and writes the actual data logged
and errors to stdout instead of the log file. This can be used to
check the validity of the data summarization.

-vers displays version information.

-? displays the syntax description.

Table 1 DSI Logging Parameters and Options

Variables &
Options Definitions

Variable & Options Definitions

logfile_set is the name of the log file set to generate data for

class is the data class to generate data for.

-timestamp
[number]

provides a timestamp with the data. If a negative number or no
number is supplied, the current time is used for the timestamp. If a
positive number is used, the time starts at 0 and is incremented by
number for each new data record.

-wait number causes a wait of number seconds between records generated.

-cycle number recycles data after number cycles.

-vers displays version information.

-? displays the syntax description.
52 Chapter 4

By piping sdlgendata output to the dsilog process with either the -vi or -vo options, you
can verify the input (vi) and verify the output (vo) before you begin logging with your own
process or program.

Use the following command to pipe data from sdlgendata to the logging process. Data and
errors are written to stdout. Press Ctrl+C or other interrupt control character to stop data
generation.

sdlgendata logfile_set class -wait 5 | dsilog logfile_set class -s 10
-vi

The previous command displays data created by sdlgendata and looks like this:

dsilog

I: 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000

I: 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000

I: 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000

I: 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 10.0000

I: 5.0000 6.0000 7.0000 8.0000 9.0000 10.0000 11.0000

I: 6.0000 7.0000 8.0000 9.0000 10.0000 11.0000 12.0000

I: 7.0000 8.0000 9.0000 10.000 11.000 12.0000 13.0000

I: 8.0000 9.0000 10.0000 11.0000 12.0000 13.0000 14.0000

You can also use the -vo option of dsilog to examine input and summarized output for your
real data without actually logging it. The following command outputs ping data every second
until interrupted, then pipes it to dsilog where it is summarized to five seconds. See Chapter
5, Examples of Data Source Integration for a complete example of piping ping data into DSI.

ping -t system name | dsilog logfile_set class -f ping.fmt -s 5 -vo

Note that a format file was used for directing how the final output should appear. This format
file (ping.fmt) deletes specified columns so that in this case only the time-stamp, the
IP-address, and the summarized output appear next to the "L:" after the "interval marker"
line.

Sample output from this example dsilog -vo command is shown below:

I: 866017245 Reply-44109.2813 from-44110.3984 15.8.155.224:-44111.5195 32
10

I: 866017246 Reply-44109.2813 from-44110.3984 15.8.155.224:-44111.5195 32
12

I: 866017247 Reply-44109.2813 from-44110.3984 15.8.155.224:-44111.5195 32
15

I: 866017248 Reply-44109.2813 from-44110.3984 15.8.155.224:-44111.5195 32
18

I: 866017249 Reply-44109.2813 from-44110.3984 15.8.155.224:-44111.5195 32
20

interval marker

L: 866017245 15.8.155.224: 15

After you are finished testing, delete all log files created from the test. Otherwise, these files
remain as part of the log file set
DSI Program Reference 53

I: 866017250 Reply-44109.2813 from-44110.3984 15.8.155.224:-44111.5195 32
10

I: 866017251 Reply-44109.2813 from-44110.3984 15.8.155.224:-44111.5195 32
10

I: 866017252 Reply-44109.2813 from-44110.3984 15.8.155.224:-44111.5195 32
18

I: 866017253 Reply-44109.2813 from-44110.3984 15.8.155.224:-44111.5195 32
18

I: 866017254 Reply-44109.2813 from-44110.3984 15.8.155.224:-44111.5195 32
14

interval marker

L: 866017250 15.8.155.224: 14

You can also use the dsilog -vo option to use a file of old data for testing, as long as the data
contains its own UNIX timestamp (seconds since 1/1/70 00:00:00). To use a file of old data,
enter a command like this:

dsilog -timestamp -vo < oldfile >

Creating a Format File

Create a format file to map the data input to the class specification if:

• the data input contains data that is not included in the class specification.

• incoming data has metrics in a different order than you have specified in the class
specification.

A format file is an ASCII text file that you can create with Notepad or any text editor. Use the
-f option in dsilog to specify the fully qualified name of the format file.

Because the logging process works by searching for the first valid character after a delimiter
(either a space by default or user-defined with the -c option to the dsilog process) to start
the next metric, the format file simply tells the logging process which fields to skip and which
metric names to associate with fields not skipped.

$numeric tells the logging process to skip one numeric metric field and go to the next. $any
tells the logging process to skip one text metric field and go to the next. Note that the format
file is limited to 100 fields.

For example, if the incoming data stream contains this information:

ABC 987 654 123 456

and you want to log only the first numeric field into a metric named metric_1, the format file
would look like this:

$any metric_1

This tells the logging process to log only the information in the first numeric field and discard
the rest of the data. To log only the information in the third numeric field, the format file
would look like this:

$any $numeric $numeric metric_1

To log all four numeric data items, in reverse order, the format file would look like this:
54 Chapter 4

$any metric_4 metric_3 metric_2 metric_1

If the incoming data stream contains the following information:

/users 15.9 3295 56.79% xdisk1 /dev/dsk/c0d0s*

and you want to log only the first text metric and the first two numeric fields into metric fields
you name text_1, num_1, and num_2, respectively, the format file would look like this:

text_1 num_1 num_2

This tells the logging process to log only the information in the first three fields and discard
the rest of the data.

To log all of the data, but discard the "%" following the third metric, the format file would look
like this:

text_1 num_1 num_2 num_3 $any text_2 text_3

Because you are logging text fields and the "%" is considered to be a text field, you need to skip
it to correctly log the text field that follows it.

To log the data items in a different order the format file would look like this:

text_3 num_2 num_1 num_3 $any text_2 text_1

Note that this will result in only the first six characters of text_3 being logged if text_1 is
declared to be six characters long in the class specification. To log all of text_3 as the first
value, change the class specification and alter the data stream to allow extra space.

Another example of a format file is given in the DSI ping example in Chapter 5.

Changing a Class Specification

To change a class specification file, you must recreate the whole log file set as follows:

1 Stop the dsilog process.

2 Export the data from the existing log file using the UNIX time stamp option if you want to
save it or integrate the old data with the new data you will be logging. For more
information, see the next section, Exporting DSI Data .

3 Run sdlutil to remove the log file set. For more information, see Managing Data With
Sdlutil on page 58 later in this chapter.

4 Update the class specification file.

5 Run sdlcomp to recompile the class specification.

6 Optionally, use the -1 option in dsilog to integrate in the old data you exported in step
2.. You may need to manipulate the data to line up with the new data using the -f
format_file option.

7 Run dsilog to start logging based on the new class specification.

8 Set up the DSI service to continue to log data, even after you have logged off your system.
For more information, see Configuring Continuous Logging of DSI Data on page 48 earlier
in this chapter. (You can start or stop all Performance Agent services from the Agent
menu in the Performance Agent main window.)

As long as you have not changed the log file set name or location, you do not need to update
the datasources file.
DSI Program Reference 55

Exporting DSI Data

You can export data from a DSI log file using the export command from the Logfiles menu on
the Performance Agent main window. For detailed instructions for exporting data, see online
Help or the "Exporting Log File Data" section in Chapter 3 of the MeasureWare Agent for
Windows NT/2000: User's Manual.

You can also export DSI log file data with the export command in Performance Agent's
extract program in the Windows NT/2000 Command Prompt. For more information, see the
export command description in extract online Help or the "Overview of the Export
Function" section in Chapter 6 and the export command description in Chapter 7 of your
MeasureWare Agent for Windows NT/2000: User's Manual.

There are several ways to find out which classes and metrics can be exported from a DSI log
file. You can use sdlutil to list this information as described in Managing Data With Sdlutil
on page 58 later in this chapter. Or you can use guided mode in Performance Agent's
extract program in the Windows NT/2000 Command Prompt. Guided mode assists you in
creating an export template file that lists the classes and metrics in the DSI log file. You can
then use Notepad or WordPad to edit, name, and save the file. For more information, see the
guide command description in extract online Help or the guide command description in
Chapter 7 of your MeasureWare Agent for Windows NT/2000: User's Manual.
56 Chapter 4

Viewing Data in Performance Manager

In order to display data from a DSI log file in Performance Manager, you need to configure the
DSI log file as a Performance Agent data source. To configure the data source, add it to the
datasources file on the Performance Agent system. See Configuration Files on page 47 for
more information.

You can centrally view, monitor, analyze, compare, and forecast trends in DSI data using
Performance Manager. Performance Manager helps you automatically identify current and
potential problems. It provides the information you need to resolve problems before user
productivity is affected.

For information about using Performance Manager, see Performance Manager online Help.
DSI Program Reference 57

Managing Data With Sdlutil

To manage the data from a DSI log file, use the sdlutil program to do the following:

• List currently defined class and metric information.

• List complete statistics for classes.

• Show metric descriptions for all metrics listed.

• List the files in a log file set.

• Remove classes and data from a log file set.

• Recreate a class specification from the information in the log file set.

• Display version information.

Syntax

sdlutil logfile_set [options]

Table 2 Sdlutil Parameters and Options

Variables &
Options Definitions

logfile_set is the name of the log file set created by compiling a class
specification.

-classes
classlist

provides a class desccription of all classes listed. If none are listed, all
are provided. Separate the items in the classlist with spaces.

-state classlist provides complete statistics for all classes listed. If none are listed,
all are provided. Separate the items in the classlist with spaces.

-metrics metricslist provides metric descriptions for all metrics in the log file set. If none
are listed, all are provided. Separate the items in the metricslist with
spaces.

-files lists all the files in the log file set.

-rm all removes all classes and data as well as their data and shared memory
ID from the log file.

-decomp classlist recreates a class specification from the information in the log file set.
The results are written to stdout and should be redirected to a file if
you plan to make changes to the file and reuse it. Separate the items
in the classlist with spaces.

-vers displays version information.

-? displays the syntax description.
58 Chapter 4

5 Examples of Data Source Integration
DSI Examples

Data source integration is a powerful and flexible technology. Implementation of DSI can
range from simple and straightforward to very complex. This chapter contains examples of
using DSI with the following tasks:

• Monitoring Microsoft Exchange performance data

• Monitoring network response time using the ping command
 59

Monitoring Microsoft Exchange Data

This example shows how to pull Microsoft Exchange performance data into DSI using a
custom feeder program. You could also use the Extended Collection Builder for a simpler
method of obtaining the data, but this example is meant to show you how you can access
application data. This feeder program accesses the Windows NT/2000 system registry and can
be modified to pull other data from the registry. The C source code for the program exchgdsi
is shown below:

// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,
// EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES
// OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE.
// Copyright 1997 Hewlett-Packard Corporation. All Rights Reserved.
// PROGRAM: exchgdsi.c
// PURPOSE: Harvest several Microsoft Exchange performance metrics and output // them in a
format suitable for input to Dsilog.
// PLATFORMS: Windows NT 4.0, Windows 2000
#ifdef UNICODE
#ifndef _UNICODE
#define _UNICODE 1
#endif
#define tmain wmain
#else
#define tmain main
#endif

#define WIN32_LEAN_AND_MEAN 1

#include <windows.h>
#include <winperf.h>
#include <malloc.h>
#include <stdio.h>
#include <conio.h>
#include <tchar.h>
#include <pdh.h>

#define DELIVERED_RATE_PRIVATE _T("\\MSExchangeIS Private\\Messages Delivered/min")
#define SENT_RATE_PRIVATE _T("\\MSExchangeIS Private\\Messages Sent/min")
#define SUBMITTED_RATE_PRIVATE _T("\\MSExchangeIS Private\\Messages Submitted/min")
#define DELIVERED_RATE_PUBLIC _T("\\MSExchangeIS Public\\Messages Delivered/min")
#define SENT_RATE_PUBLIC _T("\\MSExchangeIS Public\\Messages Sent/min")
continued
#define SUBMITTED_RATE_PUBLIC _T("\\MSExchangeIS Public\\Messages Submitted/min")
#define NUM_COUNTERS 6

typedef struct _COUNTER_INFO
{
 HCOUNTER hCounter;
 PDH_FMT_COUNTERVALUE Value;
} COUNTER_INFO, *PCOUNTER_INFO;

int tmain()
{
 PCOUNTER_INFO pCounterInfo;
 HQUERY hQuery;
 int i;

 // this must be done before using the output stream
 // to prevent buffering of the output
 setvbuf(stdout, NULL, _IONBF, 0);

 pCounterInfo = (PCOUNTER_INFO) malloc(NUM_COUNTERS * sizeof(COUNTER_INFO));
 PdhOpenQuery(NULL, 0, &hQuery);
 PdhAddCounter(hQuery, DELIVERED_RATE_PRIVATE, 0, &(pCounterInfo[0].hCounter));
60 Chapter 5

 PdhAddCounter(hQuery, SENT_RATE_PRIVATE, 0, &(pCounterInfo[1].hCounter));
 PdhAddCounter(hQuery, SUBMITTED_RATE_PRIVATE, 0, &(pCounterInfo[2].hCounter));
 PdhAddCounter(hQuery, DELIVERED_RATE_PUBLIC, 0, &(pCounterInfo[3].hCounter));
 PdhAddCounter(hQuery, SENT_RATE_PUBLIC, 0, &(pCounterInfo[4].hCounter));
 PdhAddCounter(hQuery, SUBMITTED_RATE_PUBLIC, 0, &(pCounterInfo[5].hCounter));

 PdhCollectQueryData(hQuery);
 while (!_kbhit() {
 Sleep(60000);
 PdhCollectQueryData(hQuery);
 for (i = 0; i < NUM_COUNTERS; i++ {
 PdhGetFormattedCounterValue(pCounterInfo[i].hCounter,
 PDH_FMT_LONG,
 NULL,
 &pCounterInfo[i].Value);
 _tprintf(_T("%ld "), pCounterInfo[i].Value.longValue);
 }
 _tprintf(_T("\n"));
 }
 _getch();
 PdhCloseQuery(hQuery);
 free(pCounterInfo);
 return 0;
}

This program uses the Performance Data Helper interface that is part of the Win32 SDK.

Creating a Class Specification File

The class specification file is an ASCII text file that you create to describe the "class" or set of
incoming data, as well as each individual number you intend to log as a metric within the
class. The file can be created with Notepad or any text editor or word processor that can save
the file as ASCII text.

The following example is a class specification file (named exchange.spec) for use with the
exchgdsi program shown in the previous section. The output of exchgdsi is the numeric
values of six selected Microsoft Exchange performance counters, followed by a carriage return.

CLASS EXCHANGE_STATS = 10000
LABEL "MS Exchange Counters"
INDEX BY HOUR
MAX INDEXES 168
ROLL BY DAY
RECORDS PER HOUR 12
;

METRICS

Msgs_Delivered_Priv = 100
LABEL "Delivered/Min - priv"
PRECISION 0
;

Msgs_Sent_Priv = 101
LABEL "Sent/Min - priv"
PRECISION 0
;

Msgs_Submitted_Priv = 102
LABEL "Submitted/Min - priv"
PRECISION 0
;

Msgs_Delivered_Pub = 200
Examples of Data Source Integration 61

LABEL "Delivered/Min - pub"
PRECISION 0
;

Msgs_Sent_Pub = 201
LABEL "Sent/Min - pub"
PRECISION 0
;

Msgs_Submitted_Pub = 202
LABEL "Submitted/Min - pub"
PRECISION 0;

Compiling the Class Specification File

After creating the DSI class specification file as described in the previous section, you need to
compile the class specification file to create a set of log files to hold the data for the class. If
syntax errors are detected, they are reported and the log file set is not created.

Use the file name you gave the class specification file in the previous step, and choose a name
for logfile_set that makes it easy to remember what kind of data the log file contains. In the
following example of command and compiler output, exchange.spec is the class
specification file name and EXCHLOG is the log file set to be created.

-> sdlcomp exchange.spec EXCHLOG

sdlcomp

Check class specification syntax.

CLASS EXCHANGE_STATS = 10000;

METRICS

Msgs_Delivered_Priv = 100;

Msgs_Sent_Priv = 101;

Msgs_Submitted_Priv = 102;

Msgs_Delivered_Pub = 200;

Msgs_Sent_Pub = 201;

Msgs_Submitted_Pub = 202;

NOTE: Time stamp inserted as first metric by default.

Syntax check successful.

Update SDL EXCHLOG.
62 Chapter 5

Class EXCHANGE_STATS successfully added to logfile set.

This example creates a log file set called EXCHLOG in the current directory. The log file set
includes a root file and description file in addition to the data file.

Creating a Format File

No format file is required for this example because the output of the exchgdsi program is
already in the format expected by the DSI log file set created for this example.

Starting the DSI Logging Process

You can now begin logging data with the dsilog process by typing the following command at
the Windows NT/2000 Command Prompt:

exchgdsi | dsilog EXCHLOG EXCHANGE_STATS

This command runs the example feeder program exchgdsi and pipes the output into
dsilog. Dsilog then logs the Microsoft Exchange performance counters into the
EXCHANGE_STATS class in the EXCHLOG log file set. The exchgdsi program delivers data for
the six Microsoft Exchange performance counters every minute. dsilog summarizes these
values and logs the data once every five minutes.

Accessing the Data

You can use the sdlutil program to report on the contents of the class by typing the
following command at the Windows NT/2000 Command Prompt:

sdlutil EXCHLOG -stats EXCHANGE_STATS

Exporting the Data

The data in the DSI log file EXCHLOG could be exported using the Performance Agent main
window.

Briefly, here is how you would do the export:

1 Select Export from the Logfile menu in the Performance Agent main window.

2 Click the Select Logfile button and locate EXCHLOG,which, by default, is in the
\rpmtools\data\datafiles directory.

3 Click Open.

4 Click the Make Quick Template button and choose the metrics to include in the template. (If
you had already configured a template, could use it.)

5 Click the Export Data button.

A window appears that shows information about the exported data , including a list of the
exported records and the amount of space the data occupies in the file.

To collect data continuously, even after you have logged off, you need to configure the
dsiconf.mwc file that is read by the DSI service. For example, the above feeder program,
exchgdsi, would be included in this file. For details on how to configure the file, see
Configuring the DSI Service.
Examples of Data Source Integration 63

Exporting Data From the Command Prompt

You also can use the following command line arguments in the Windows NT/2000 Command
Prompt window to export data from the class.

extract -xp -l EXCHLOG -C EXCHANGE_STATS DETAIL -f output.txt

Monitoring Network Response Time

This example uses the ping command to show how to pipe data into DSI. The ping command
sends a packet to a remote host on the network and requests that the remote host send a
packet back. The output of the ping command is the round-trip time of the packet traveling
between the two hosts as shown in the following example:

Reply from 15.8.155.224: bytes=32 time<10ms TTL=128

As this example shows, 10 milliseconds is the smallest round-trip time reported by ping.

Creating a Class Specification File

The class specification file is an ASCII text file that you create to describe the class, or set of
incoming data, as well as each individual number to be logged as a metric within the class.
The file can be created with Notepad or any text editor or word processor that allows you to
save the file as a text file.

The following example is a class specification file (named ping.spec) for use with the ping
command described above. The class specification file specifies 2 metrics—the IP address of
the system that was pinged and the network response time.

CLASS SYS_RESPONSE = 20000

LABEL "System Response Data"

INDEX BY HOUR

MAX INDEXES 12

RECORDS PER HOUR 60

ROLL BY HOUR

;

METRICS

System_IP = 1001

LABEL "System IP"

TYPE TEXT LENGTH 20

;

Response_Time = 1002

LABEL "Response Time"

AVERAGED

PRECISION 0;
64 Chapter 5

Compiling the Class Specification File

After creating the DSI class specification file, compile it with sdlcomp to create a set of log
files to hold the data for the class. If syntax errors are detected, they are reported and the log
file set is not created.

Use the file name you gave the class specification file in the previous step, and specify a name
for logfile_set that makes it easy to remember what kind of data the log file contains. In the
example of command and compiler output below, ping.spec is the class specification file
name and PINGLOG is the log file set to be created.

-> sdlcomp ping.spec PINGLOG

sdlcomp

Check class specification syntax.

CLASS SYS_RESPONSE = 20000;

METRICS

System_IP = 1001;

Response_Time = 1002;

NOTE: Time stamp inserted as first metric by default.

Syntax check successful.

Update SDL PINGLOG.

Class SYS_RESPONSE successfully added to logfile set.

This example created the log file set called PINGLOG in the current directory. The log file set
includes a root file and description file in addition to the data file.

Creating a Format File

The ping example requires a format file to work properly because the output of ping (shown
below) includes more than just the two numeric values specified in the DSI class specification
above.

Reply from 15.8.155.224: bytes=32 time<10ms TTL=128

Using the default input separator of a space, the output of ping would be seen as six items by
DSI. The following format file, called ping.fmt, allows DSI to collect just the IP address and
the response time from the ping output stream:
Examples of Data Source Integration 65

$any $any System_IP $numeric Response_Time

The format file works as follows on the output from ping:

Note that when the input for a numeric field is a mixture of alpha characters and numbers
(bytes=32 and time<10ms in the above example), the alpha characters are automatically
ignored. The last item, TTL=128, is also ignored because dsilog will not look any further in
the input stream once the two expected metrics (System_IP and Response_Time) have been
collected.

A DSI format file is an ASCII text file that you can create with Notepad or any text editor or
word processor that saves the file as a text file. The use of a format file is specified with the -f
option to the dsilog command.

For more information, see Creating a Format File on page 54.

Starting the DSI Logging Process

You can now begin logging data with the dsilog process using the following command:

ping -t <system name> | dsilog PINGLOG SYS_RESPONSE -f ping.fmt

This command runs ping continuously (-t option) and pipes the output into dsilog, using
the format file ping.fmt. The two metrics are logged into the SYS_RESPONSE class in the
PINGLOG log file set. The ping command outputs data every second until interrupted.
Dsilog summarizes these values and logs the data once per minute.

You can use either the host name or the IP address to identify the destination for the ping
command. Use Ctrl+C to stop pinging.

Note that the following message will be generated at the start of the logging process:

Metric null has invalid data

Ignore to end of line, metric value exceeds maximum

This message is a result of the header line in the ping output that dsilog cannot log.
Although the message appears on the screen, dsilog continues to run and begins logging
data with the first valid input line.

Accessing the Data

You can use the sdlutil program to report on the contents of the class by typing:

sdlutil PINGLOG -stats SYS_RESPONSE

You can use the Performance Agent graphical interface to export data from the class. You can
also export DSI data using command line arguments in the Windows NT/2000 Command
Prompt as shown in the example below.

extract -xp -l PINGLOG -C SYS_RESPONSE DETAIL -f stdout

Here is an example of output that results from using these command line arguments.

Reply from 15.8.155.22
4:

bytes=32 time<10ms TTL=128

$any $any System_IP numeric Response_Time

(skip) (skip) (log metric) (skip) log metric)
66 Chapter 5

DATE & Response

TIME System IP Time

06/11/97 08:40:00 15.19.200.10: 611

06/11/97 08:41:00 15.19.200.10: 571

06/11/97 08:42:00 15.19.200.10: 481

06/11/97 08:43:00 15.19.200.10: 491

06/11/97 08:44:00 15.19.200.10: 210

06/11/97 08:45:00 15.19.200.10: 181

06/11/97 08:46:00 15.19.200.10: 190

06/11/97 08:47:00 15.19.200.10: 271

A value of 10 for the Response_Time metric means 10 milliseconds or less, since 10
milliseconds is the minimum value reported by ping.

Configuring Dsiconf.mwc for Collecting Ping Data

As a final task, you would add entries to the dsiconf.mwc file so that the DSI service would
allow the continuous logging of DSI data, regardless of whether or not you were logged on.

To allow the DSI service to continuously collect data from the ping command, the
dsiconf.mwc file would require the following entries:

DATAFEED=ping -t <system name>
LOGFILE=c:\hp openview\data\datafiles\PINGLOG
CLASS=SYS_RESPONSE
DSIPARMS=-f c:\rpmtools\data\ping.fmt

Note that the DATAFEED line requires the name of the pinged system and it is assumed that
the correct paths are entered in the LOGFILE and DSIPARMS lines.

This file would be saved as \hp openview\data\dsiconf.mwc .
Examples of Data Source Integration 67

68 Chapter 5

6 Error Messages
DSI Error Messages

DSI error messages fall into three groups: class specification, dsilog logging process, and
general.

• Class specification error messages have the prefix SDL and the message number following
the message text.

• The messages generated by the dsilog logging process have the prefix DSILOG and the
message number following the message text.

• General error messages can be generated by either of the above as well as other tasks.
These messages have a minus sign (-) prefix and the message number.

These error messages are listed in this chapter. SDL and DSILOG error messages are listed in
numeric order, along with the actions you take to recover from the error condition. General
error messages are self-explanatory so no recovery actions are given.

DSI messages regarding the DSI service are logged to the status.dsi file.
 69

General Error Messages

Table 1 General Error Messages

Error Explanation

-3 Attempt was made to add more classes than allowed by max-class.

-5 Could not open file containing class data.

-6 Could not read file.

-7 Could not write to file.

-9 Attempt was made to write to log file when write access was not requested.

-11 Could not find the pointer to the class.

-13 File or data structure not initialized.

-14 Class description file could not be read.

-15 Class description file could not be written to.

-16 Not all metrics needed to define a class were found in the metric description
class.

-17 The path name of a file in the log file set is more than 1024 characters long.

-18 Class name is more than 20 characters long.

-19 File is not log file set root file.

-20 File is not part of a log file set.

-21 The current software cannot access the log file set.

-22 Could not get shared memory segment or id. Not applicable on Windows NT/
2000.

-23 Could not attach to shared memory segment. Not applicable on Windows NT/
2000.

-24 Unable to open log file set.

-25 Could not determine current working directory.

-26 Could not read class header from class data file.

-27 Open of file in log file set failed.

-28 Could not open data class.

-29 lseek failed.

-30 Could not read from log file.

-31 Could not write on log file.

-32 remove failed.
70 Chapter 6

-33 shmctl (REM_ID) failed.

-34 Logfile set is incomplete; root or description file is missing.

-35 The target log file for adding a class is not in the current log file set.

Table 1 General Error Messages
Error Messages 71

SDL Error Messages

Message SDL1

ERROR: Expected equal sign, "=".

Probable cause: An "=" was expected here.

Corrective action: See Class Specification Syntax on page 25 for more information.

Message SDL2

ERROR: Expected semi-colon, ";".

Probable cause: A semi-colon (;) marks the end of the class specification and the end of each
metric specification. You may also see this message if an incorrect or misspelled word is found
where a semi-colon should have been.

For example, if you enter

class xxxxx = 10

 label "this is a test"

 metric 1000;

instead of

class xxxxx = 10

 label "this is a test"

 capacity 1000;

you would see this error message and it would point to the word "metric."

Corrective action: See Class Specification Syntax on page 25 for more information.

Message SDL3

ERROR: Precision must be one of {0, 1, 2, 3, 4, 5}.

Probable cause: Precision determines the number of decimal places used when converting
numbers internally to integers and back to numeric representations of the metric value.

Corrective action: See PRECISION on page 38 for more information.

Message SDL4

ERROR: Expected quoted string.

Probable cause: A string of text was expected.

Corrective action: See Class Specification Syntax on page 25 for more information.

Message SDL5

ERROR: Unterminated string.

Probable cause: The string must end in double quotes.

Corrective action: See Class Specification Syntax on page 25 for more information.
72 Chapter 6

Message SDL6

NOTE: Time stamp inserted as first metric by default.

Probable cause: A time stamp metric is automatically inserted as the first metric in each
class.

Corrective action: See Class Specification Syntax on page 25 for more information.

Message SDL7

ERROR: Expected metric declarations.

Probable cause: The metrics section must start with the METRICS keyword before the first
metric definition.

Corrective action: See Class Specification Syntax on page 25 for more information.

Message SDL8

ERROR: Expected data class specification.

Probable cause: The class section of the class specification must start with the CLASS
keyword.

Corrective action: See Class Specification Syntax on page 25 for more formation.

Message SDL9

ERROR: Expected identifier.

Probable cause: An identifier for either the metric or class was expected. The identifier
must start with an alphabetic character, can contain alphanumeric characters or underscores,
and is not case-sensitive.

Corrective action: See Class Specification Syntax on page 25 for more information.

Message SDL10

ERROR: Expected positive integer.

Probably cause: Number form incorrect.

Corrective action: Enter numbers as positive integers only.

Message SDL13

ERROR: Expected specification for maximum number of indexes.

Probable cause: The maximum number of indexes is required to calculate class capacity.

Corrective action: See Class Specification Syntax on page 25 for more information.

Message SDL14

ERROR: Syntax Error.

Probable cause: The syntax you entered is incorrect.

Corrective action: See Class Specification Syntax on page 25 for more information.

Message SDL15

ERROR: Expected metric description.
Error Messages 73

Probable cause: Metric description is missing.

Corrective action: Enter a metric description to define the individual data items for the
class. See METRIC Descriptions on page 35 for more information.

Message SDL16

ERROR: Expected metric type.

Probable cause: Each metric must have a metric_name and a numeric metric_id.

Corrective action: See METRIC Descriptions on page 35 for more information.

Message SDL17

ERROR: Time stamp metric attributes may not be changed.

Probable cause: A time stamp metric is automatically inserted as the first metric in each
class. You can change the position of the time stamp, or eliminate it and use a UNIX time
stamp.

Corrective action: See METRIC Descriptions on page 35 for more information.

Message SDL18

ERROR: Roll action limited to 199 characters.

Probable cause: The entry for upper limit for ROLL BY action exceeded 199 characters.

Corrective action: See INDEX BY, MAX INDEXES, AND ROLL BY on page 27 for more
information about the ROLL BY entry.

Message SDL19

ERROR: Could not open specification file (file).

Probable cause: In the command line sdlcomp specification_file, the specification file could
not be opened. The error follows in the next line as in:

$/usr/perf/bin/sdlcomp /xxx

ERROR: Could not open specification file /xxx.

Probable cause: File either does not exist or is not readable.

Corrective action: Verify the name of the file and that you are correctly entering it.

Message SDL20

ERROR: Metric declarations not found.

Probable cause: Metric description incorrectly formatted.

Corrective action: Start the metrics section with the METRICS keyword. See METRIC
Descriptions on page 35 for more information.

Message SDL21

ERROR: Expected metric name to begin metric description.

Probable cause: Metric description incorrectly formatted.

Corrective action: Start metric descriptions with a metric_name. See METRIC Descriptions
on page 35 for more information.
74 Chapter 6

Message SDL24

ERROR: Expected MAX INDEXES specification.

Probable cause: A MAX INDEXES value is required when you specify INDEX BY.

Corrective action: Enter the required value. See INDEX BY, MAX INDEXES, AND ROLL
BY on page 27 for more information.

Message SDL25

ERROR: Expected index SPAN specification.

Probable cause: Missing value for INDEX BY

Corrective action: Enter a qualifier when you specify INDEX BY. See INDEX BY, MAX
INDEXES, AND ROLL BY on page 27 for more information.

Message SDL26

ERROR: Minimum must be zero.

Probable cause: The number must be zero or greater.

Message SDL27

ERROR: Expected positive integer.

Probable cause: Missing positive value.

Corrective action: Enter numbers as positive integers only.

Message SDL29

ERROR: Summarization metric does not exist.

Probable cause: You used SUMMARIZED BY for the summarization method, but did not
specify a metric_name.

Corrective action: See METRIC Descriptions on page 35 for more information.

Message SDL30

ERROR: Expected 'HOUR', 'DAY', or 'MONTH'.

Probable cause: Missing qualifier for the entry.

Corrective action: You must enter one of these qualifiers. See INDEX BY, MAX INDEXES,
AND ROLL BY on page 27 for more information.

Message SDL33

ERROR: Class id number must be between 1 and 999999.

Probable cause: The class_id must be numeric and can contain up to 6 digits.

Corrective action: Enter a class ID number for the class that does not exceed the 6-digit
maximum. See Class Specification Syntax on page 25 for more information.

Message SDL35

ERROR: Found more than one index/capacity statement.

Probable cause: You can have only one INDEX BY or CAPACITY statement per CLASS section.
Error Messages 75

Corrective action: Complete the entries according to the formatting restrictions in Class
Specification Syntax on page 25.

Message SDL36

ERROR: Found more than one metric type statement.

Probable cause: You can have only one METRICS keyword for each metric definition.

Correction action: See METRIC Descriptions on page 35 for formatting information.

Message SDL37

ERROR: Found more than one metric maximum statement.

Probable cause: You can have only one MAXIMUM statement for each metric definition.

Correction action: See METRIC Descriptions on page 35 for formatting information.

Message SDL39

ERROR: Found more than one metric summarization specification.

Probable cause: You can have only one summarization method (TOTALED, AVERAGED, or
SUMMARIZED BY) for each metric definition.

Corrective action: See Summarization Method on page 37 for more information.

Message SDL40

ERROR: Found more than one label statement.

Probable cause: You can have only one LABEL for each metric or class definition.

Corrective action: See Class Specification Syntax on page 25 for more formation.

Message SDL42

ERROR: Found more than one metric precision statement.

Probable cause: The PRECISION statement limit was exceeded, which allows only one per
metric definition.

Corrective action: See PRECISION on page 38 for more information.

Message SDL44

ERROR: SCALE, MINIMUM, MAXIMUM, (summarization) are inconsistent with text
metrics

Probable cause: These elements of the class specification syntax are valid only for numeric
metrics.

Corrective action: See Class Specification Syntax on page 25 for more information.

Message SDL46

ERROR: Inappropriate summarization metric (!).

Probable cause: You cannot summarize by the timestamp metric.

Corrective action: See Class Specification Syntax on page 25 for more information.
76 Chapter 6

Message SDL47

ERROR: Expected metric name.

Probable cause: Each METRICS statement must include a metric_name.

Corrective action: See METRIC Descriptions on page 35 for more information.

Message SDL48

ERROR: Expected positive integer.

Probable cause: The CAPACITY statement requires a positive integer.

Corrective action: See CAPACITY on page 33 for more information.

Message SDL49

ERROR: Expected metric specification statement.

Probable cause: The METRICS keyword must precede the first metric definition.

Corrective action: See METRIC Descriptions on page 35 for more information.

Message SDL50

ERROR: Object name too long.

Probable cause: The metric_name or class_name can only have up to 20 characters.

Corrective action: See Class Specification Syntax on page 25 for more information.

Message SDL51

ERROR: Label too long (max 20 chars).

Probable cause: The class_label or metric_label can only have up to 20 characters.

Corrective action: See Class Specification Syntax on page 25 for more information.

Message SDL53

ERROR: Metric must be between 1 and 999999.

Probable cause: The metric_id can have only 6 digits.

Corrective action: See METRIC Descriptions on page 35 in Chapter 3 for more information.

Message SDL54

ERROR: Found more than one collection rate statement.

Probable cause: You can have only one RECORDS PER HOUR statement.

Corrective action: See RECORDS PER HOUR on page 32 for more information.

Message SDL55

ERROR: Found more than one roll action statement.

Probable cause: You can have only one ROLL BY statement for each class specification.

Corrective action: See INDEX BY, MAX INDEXES, AND ROLL BY on page 27 for more
information.
Error Messages 77

Message SDL56

ERROR: ROLL BY option cannot be specified without INDEX BY option.

Probable cause: The ROLL BY statement must be preceded by an INDEX BY statement.

Corrective action: See INDEX BY, MAX INDEXES, AND ROLL BY on page 27 for more
information.

Message SDL57

ERROR: ROLL BY must specify time equal to or greater than INDEX BY.

Probable cause: Because the roll interval depends on the index interval to identify the data
to discard, the ROLL BY time must be greater than or equal to the INDEX BY time.

Corrective action: See INDEX BY, MAX INDEXES, AND ROLL BY on page 27 for more
information.

Message SDL58

ERROR: Metric cannot be used to summarize itself.

Probable cause: The SUMMARIZED BY metric cannot be the same as the metric-name.

Corrective action: See Class Specification Syntax on page 25 for more information.

Message SDL62

ERROR: Could not open SDL (name).

Probable cause: Explanatory messages will follow this error. It could be a file system error
as in:

$/usr/perf/bin/sdlutil xxxxx -classes

ERROR: Could not open SDL xxxxx.

ERROR: Could not open logfile set.

or it could be an internal error as in:

$/usr/perf/bin/sdlutil xxxxx -classes

ERROR: Could not open SDL xxxxx.

ERROR: File is not SDL root file or the

description file is not accessible.

Probable cause: You may also see this error if the log file has been moved. Because the
pathname information is stored in the DSI log files, the log files cannot be moved to different
directories.

Corrective action: If the above description or the follow-up messages do not point to some
obvious problem, use sdlutil to remove the log file set and rebuild it.

Message SDL63

ERROR: Some files in logfile set (name) are missing.

Probable cause: The list of files that make up the log file set was checked and one or more
files needed for successful operation were not found.

Corrective action: Unless you know precisely what happened, the best action is to use
sdlutil to remove the log file set and start over.
78 Chapter 6

Message SDL66

ERROR: Could not open class (name).

Probable cause: An explanatory message will follow.

Corrective action: Unless it is obvious what the problem is, use sdlutil to remove the log
file set and start over.

Message SDL67

ERROR: Add class failure.

Probable cause: The compiler could not add the new class to the log file set. Explanatory
messages will follow.

Corrective action: If all the correct classes in the log file set are accessible, specify a new or
different log file set. If they are not, use sdlutil to remove the log file set and start over.

Message SDL72

ERROR: Could not open export files (name).

Probable cause: The file to which the exported data was supposed to be written could not be
opened.

Corrective action: Check to see if the export file path exists and what permissions it has.

Message SDL73

ERROR: Could not remove shared memory ID (name).

Not applicable on Windows NT/2000.

Message SDL74

ERROR: Not all files could be removed.

Probable cause: All the files in the log file set could not be removed.

Corrective action: Explanatory messages should follow. Delete the files using the Windows
NT/2000 Command Prompt by entering:

sdlutil (logfile set) -files

or delete the files by selecting them and using Windows NT/2000 Explorer.

Message SDL80

ERROR: Summarization metric (metric) not found in class.

Probable cause: The SUMMARIZED BY metric was not previously defined in the METRIC
section.

Corrective action: See METRIC Descriptions on page 35 for more information.

Message SDL81

ERROR: Metric id (id) already defined in SDL.

Probable cause: The metric_id only needs to be defined once. To reuse a metric definition
that has already been defined in another class, specify just the metric_name without the
metric_id or any other specifications.

Corrective action: See METRIC Descriptions on page 35 for more information.
Error Messages 79

Message SDL82

ERROR: Metric name (name) already defined in SDL.

Probable cause: The metric_name only needs to be defined once. To reuse a metric definition
that has already been defined in another class, specify just the metric_name without the
metric_id or any other specifications.

Corrective action: See METRIC Descriptions on page 35 for more information.

Message SDL83

ERROR: Class id (id) already defined in SDL.

Probable cause: The class_id only needs to be defined once. Check the spelling to be sure
you have entered it correctly.

Corrective action: See Class Specification Syntax on page 25 for more information.

Message SDL84

ERROR: Class name (name) already defined in SDL.

Probable cause: The class_name only needs to be defined once. Check the spelling to be sure
you have entered it correctly.

Corrective action: See Class Specification Syntax on page 25 for more information.

Message SDL85

ERROR: Must specify class to de-compile.

Probable cause: You must specify a class list when you use -decomp.

Corrective action: See Managing Data With Sdlutil on page 58 for more information.

Message SDL87

ERROR: You must specify maximum number of classes with -maxclass.

Probable cause: When you use the -maxclass option, you must specify the maximum
number of classes to be provided for when creating a new log file set.

Corrective action: See Sdlcomp Compiler on page 43 for more information.

Message SDL88

ERROR: Option \"!\" is not valid.

Probable cause: The command line entry is not valid.

Corrective action: Check what you have entered to ensure that it follows the correct syntax.

Message SDL89

ERROR: Maximum number of classes (!) for -maxclass is not valid.

Probable cause: The -maxclass number must be greater than zero.

Corrective action: See Sdlcomp Compiler on page 43 for more information.

Message SDL90

ERROR: -f option but no result file specified.
80 Chapter 6

Probable cause: You must specify a format file when using the -f option.

Corrective action: See DSI Logging Processes on page 50 for more information.

Message SDL91

ERROR: No specification file named.

Probable cause: No name assigned to class specification file.

Corrective action: You must enter a specification_file when using sdlcomp. See Sdlcomp
Compiler on page 43 for more information.

Message SDL92

ERROR: No logfile set named.

Probable cause: No name entered for the log file set.

Corrective action: You must enter a logfile_set when using sdlcomp. See Sdlcomp Compiler
on page 43 for more information.

Message SDL93

ERROR: Metric ID already defined in class.

Probable cause: The metric_id needs to be defined only once.

Corrective action: To reuse a metric definition that has already been defined in another
class, specify just the metric_name without the metric_id or any other specifications. See
METRIC Descriptions on page 35 for more information.

Message SDL94

ERROR: Metric name already defined in class.

Probable cause: The metric_name needs to be defined only once.

Corrective action: To reuse a metric definition that has already been defined in another
class, specify just the metric_name without the metric_id or any other specifications. See
METRIC Descriptions on page 35 for more information.

Message SDL95

ERROR: Text found after complete class specification.

Probable cause: The sdlcomp compiler found text it did not recognize as part of the class
specification.

Corrective action: Reenter the specification and try again.

Message SDL96

ERROR: Collection rate statement not valid.

Probable cause: The proper format is RECORDS PER HOUR (number). The keywords must be
present in this order and cannot be abbreviated.

Corrective action: Use the required format to correct the keyword.

Message SDL97

ERROR: Expecting integer between 1 and 2,147,483,647.

Probable cause: You must use a number in this range.
Error Messages 81

Corrective action: Enter a number that falls within the range.

Message SDL98

ERROR: Action requires preceding ROLL BY statement.

Probable cause: Entry out of order or missing in class specification file.

Corrective action: The action specifies what will happen when the log file rolls. It is
important to first know when it should roll. ROLL BY must precede ACTION.

For example:

class xxxxx = 10

 index by month max indexes 12

 action "ll *";

should have been:

class xxxxx = 10

 index by month max indexes 12

 roll by month

 action "ll *";

Message SDL99

ERROR: MAX INDEXES must be preceded by INDEX BY statement.

Probable cause: Entry out of order or missing in class specification file.

Corrective Action: To specify a maximum number of indexes, the program needs to know
where you are doing an indexing by. The INDEX BY statement must precede MAX INDEXES.

For example:

class xxxxx = 10

 max indexes 12

 label "this is a test";

should have been:

class xxxxx = 10

 index by month

 max indexes 12

 label "this is a test";

Message SDL100

WARNING: CAPACITY UNLIMITED not implemented, derived value used. (SDL-100)

Message SDL101

ERROR: Derived capacity too large. (SDL-101)

Message SDL102

ERROR: Text Length should not exceed 4096.
82 Chapter 6

The maximum allowed length for the text metric is 4096.

Message SDL103

ERROR: RECORDS PER HOUR should not be greater than 3600 for logging summarized
data.

Corrective Action: The RECORDS PER HOUR can be greater than 3600 only for
unsummarized data. Use the -u option to compile.

DSILOG Error Messages

Message DSILOG1

ERROR: Self describing log file not specified.

Probable cause: The log file name must be the first parameter passed to dsilog.

Corrective Action: Correct the command line and try again.

Message DSILOG2.

ERROR: Data class name not specified.

Probable cause: The data class must be the second parameter passed to dsilog.

Corrective Action: Correct the command line and try again.

Message DSILOG3

ERROR: Could not open data input file (name).

Probable cause: The file specified in the command line could not be opened.

Message DSILOG4

ERROR: OpenClass (\"name\") failed.

Probable cause: The class specified could not be opened. It may not be in the log file set
specified, or its data file is not accessible.

Corrective Action: Explanatory messages will follow giving either an internal error
description or a file system error.

Message DSILOG5

ERROR: Open of root log file (name) failed.

Probable cause: The log file set root file could not be opened. The reason is shown in the
explanatory messages.

Message DSILOG6

ERROR: Time stamp not defined in data class.

Probable cause: The class was built and no time stamp was included.

Correction Action: Use sdlutil to remove the log file set and start over.
Error Messages 83

Message DSILOG7

ERROR: (Internal error) AddPoint () failed.

Probable cause: dsilog tried to write a record to the data file and could not.

Correction Action: Explanatory messages will follow.

Message DSILOG8

ERROR: Invalid command line parameter(name).

Probable cause: The parameter shown was either not recognized as a valid command line
option, or it was out of place in the command line.

Corrective Action: Correct the command line and try again.

Message DSILOG9

ERROR: Could not open format file(name).

Probable cause: The file directing the match of incoming metrics to those in the data class
could not be found or was inaccessible.

Corrective Action: Check the class specification file to verify that it is present.

Message DSILOG10

ERROR: Illegal metric name (name).

Probable cause: The format file contained a metric name that was longer than the
maximum metric name size, or the metric name did not look like a metric name.

Corrective Action: Make the correction and try again.

Message DSILOG11

ERROR: Too many input metrics defined. Max 100.

Probable cause: Only 100 metrics can be specified in the format file.

Corrective Action: The input should be reformatted externally to dsilog, or the data
source should be split into two or more data sources.

Message DSILOG12

ERROR: Could not find metric (name)in class.

Probable cause: The metric name found in the format file could not be found in the data
class.

Corrective action: Make corrections and try again.

Message DSILOG13

ERROR: Required time stamp not found in input specification.

Probable cause: The -timestamp command line option was used, but the format file did not
specify where the time stamp could be found in the incoming data.

Corrective Action: Specify where the time stamp can be found.

Message DSILOG14

ERROR: (number) errors, collection aborted.
84 Chapter 6

Probable cause: Serious errors were detected when setting up for collection.

Corrective Action: Correct the errors and retry. The -vi and -vo options can also be used to
verify the data as it comes in and as it would be logged.

Message DSILOG15

ERROR: Self describing log file and data class not specified.

Probable cause: The command line must specify the log file set and the data class to log data
to.

Corrective action: Make corrections to the command line and try again.

Message DSILOG16

ERROR: Self describing logfile set root file (name) could not be accessed.
error=(number).

Probable cause: Could not open the log file set root file.

Corrective action: Check the explanatory messages that follow the error text for the
problem.

Message (unnumbered)

Metric null has invalid data

Ignore to end of line, metric value exceeds maximum

Probable cause: This warning message occurs when dsilog does not log any data for a
particular line of input. This situation occurs when the input does not fit the format expected
by the DSI log files, such as when blank or header lines are present in the input or when a
metric value exceeds the specified precision. In this case, the offending lines will be skipped
(not logged). dsilog will resume logging data for the next valid input line.

Corrective action: None; message is informational.

Message DSILOG17

ERROR: Logfile set is created to log unsummarized data, could not log
summarized data.

Corrective action: If the set of log files are created using the -u option during compilation,
use -s 0 option to log using dsilog. Using the option indicates that the data logged is
unsummarized.
Error Messages 85

86 Chapter 6

Index
Symbols
$any format option, 54

$numeric format option, 54

A
accessing DSI data, 57, 63, 66

action, 48

alarmdef, 48

alarmdef changes, 48

alarm generator, 48

alarm processing, 48

alarms, defining, 47

alert, 48

any format option, 54

archiving data, 14

As, 48

B
buffering data to dsilog, 50, 61

C
capacity, as specified in class specification file, 26

capacity statement for class, 33

changing, class specifications, 55

changing the alarmdef file, 48

class
capacity, 31, 33
definitions, 24
description, 14
ID requirements, 26
index interval, 27
label, 27
label, default, 27
label, requirements, 27
listing with sdlutil, 58
maximum number, 43
name requirements, 26
records per hour, 32
rolling, 32
roll interval, 28
statement, 26
statement, defaults, 26
syntax, 26

class description, 26

class specification, 24
changing, 55
compiling, 43, 62
creating, 61, 64
error messages, 72
metrics definition, 35
recreating, 58
syntax, 25
testing, 52

compiler output, sample, 44

compiler syntax, 43

compiling class specification, 43, 62

configuration files, 48

configure sending alarm information, 48

creating
class specification file, 61, 64
format file, 65
log files, 14, 62
 87

D
data

accessing, 57, 63, 66
archiving, 14
managing, 58
summarizing, 24

data source integration
error messages, 69
examples, 59
implementing, 59
testing, 52

decimal places, metrics, 38

defaults
class label, 27
class statement, 26
delimiter, 39, 52
maxclass, 43
maximum metric value, 38
metrics, 36
records per hour, 32
separator, 39, 52
summarization level, 32, 50
summarization method, 37

define alarms, 47

deleting logfile sets, 58

delimiter, 39, 52

disk space for log files, 14

displaying data in PerfView, 57

DSI configuration file
activating changes to, using the command line,

49

dsilog
error messages, 83
input to, 50, 63, 66
logging process, 50, 63, 66
syntax, 50

DSI metrics in alarm definitions, 47

DSI See data source integration

DSI service
starting from the command line, 49
stopping from the command line, 49

E
error messages, 69

class specification, 72
dsilog, 83
general, 70
SDL, 72

escape characters, 28

examples of DSI, 59

Exchange counters, 60

excluding data from logging, 54

exporting logged data, 64, 66

extract program, 64, 66

F
format file, 50, 54, 65

G
general error messages, 70

I
index interval, class, 27

input to dsilog, 50, 63, 66

IT/Operations, 48

L
label

class, 27
metrics, 36

length text metrics, 39

log file
cannot be moved, 43
organization, 14
size, controlling, 31

log file sets
defining, 14
storage capacity, 14

logfile sets
deleting, 58
listing with sdlutil, 58
rolling, 31, 32

logging process, 50, 63, 66
testing, 52

M
managing DSI data, 58

mapping incoming data to specification, 54

maxclass default, 43

maximum number of classes, 43

maximum value, metrics, 38
88

metric
defaults, 36
definition, 24, 35
label, 36
label requirements, 36
listing with sdlutil, 58
order, 36
precision, 38
reusing name, 36
summarization method, 37
text, 39

metrics
description, 14

metrics in alarm definitions, 47

Microsoft Exchange counters, 60

minimum value, metrics, 38

modify class specification file, 55

N
numeric format option, 54

numeric metrics, format file, 54, 66

O
order of metrics, changing, 54

P
performance counters, monitoring, 60

PerfView
displaying DSI data, 57

ping example for DSI, 64

piping data to dsilog, 50

precision, metrics, 38

processing alarms, 48

R
records, rolling from logs, 28

records per hour, 32, 50
default, 32

removing logfile sets, 58

reusing metric name, 36

roll
actions, 28
example of action, 29
interval, 28

rolling classes, 14, 32

S
sample compiler output, 44

sdlcomp
compiler, 43, 62
syntax, 43

SDL error messages, 72

sdlgendata, 52

sdlutil, 63, 66
syntax, 58
utility, 58

sending alarm information, 48

separator, 39, 52

service
configuration file, 48
configuring the DSI, 17
messages regarding, 69

SNMP traps, 48

starting logging process, 50

statistics, listing with sdlutil, 58

summarization level, 50
default, 32

summarization method, 37
default, 37

summarized by option, 37

summarizing data, 24

syntax
class specification, 25
dsilog, 50
sdlcomp, 43
sdlutil, 58

T
testing

class specification, 52
logging process, 52

text metrics
example, 64
format file, 54
specifying, 39

timestamp, 36
suppressing, 50

troubleshooting, sdlcomp, 46

U
UNIX timestamp, 36

utilities, sdlutil, 58
89

V
version information, displaying, 58

W
Windows NT registry, 60
90

	Data Source Integration Guide
	Contents
	1 Overview of Data Source Integration
	How DSI Works
	Creating the Class Specification
	Collecting and Logging the Data
	Using the Data

	2 DSI Configuration and Management
	Planning Data Collection
	Defining the Log File Format
	How Log Files Are Organized

	Creating the Empty Log File Set
	Testing the Class Specification File and the Logging Process (optional)

	Logging the Data to the Log File Set
	Setting Up the DSI Service
	Using the Logged Data
	Moving DSI Log File Sets From One Windows System to Another
	Safe vs. Non-safe Moves
	Movement from source System A to destination System B (same directory path)
	Movement from source System A to destination System B (different directory path)
	Drive letter constraints
	Roll Actions

	Procedure for Rebuilding to Move DSI Log File Sets

	3 DSI Class Specification Reference
	Class Specifications
	Class Specification Syntax
	CLASS Description
	Syntax
	Default Settings
	CLASS
	Syntax
	How to Use It
	Example

	LABEL
	Syntax
	How To Use It
	Example

	INDEX BY, MAX INDEXES, AND ROLL BY
	Syntax
	How To Use It
	Notes on Roll Actions
	Examples
	Other Examples

	Controlling Log File Size
	RECORDS PER HOUR
	Syntax
	How To Use It
	Notes
	Example

	CAPACITY
	Syntax
	How To Use It
	Example

	METRIC Descriptions
	METRICS
	METRIC
	Syntax
	How To Use It
	Example

	LABEL
	Syntax
	How To Use It
	Example

	Summarization Method
	Syntax
	How To Use It
	Example

	MAXIMUM
	Syntax
	How To Use It
	Example

	PRECISION
	Syntax
	How To Use It
	Example

	TYPE TEXT LENGTH
	Syntax
	How To Use It
	Example

	Sample Class Specification

	4 DSI Program Reference
	Sdlcomp Compiler
	Compiler Syntax
	Sample Compiler Output

	Configuration Files
	Defining Alarms on DSI Metrics
	Alarm Processing
	Configuring Continuous Logging of DSI Data

	DSI Logging Processes
	Syntax
	How Dsilog Processes Data
	Testing the Logging Process with Sdlgendata
	Syntax

	Creating a Format File
	Changing a Class Specification

	Exporting DSI Data
	Viewing Data in Performance Manager
	Managing Data With Sdlutil
	Syntax

	5 Examples of Data Source Integration
	DSI Examples
	Monitoring Microsoft Exchange Data
	Creating a Class Specification File
	Compiling the Class Specification File
	Creating a Format File
	Starting the DSI Logging Process
	Accessing the Data
	Exporting the Data
	Exporting Data From the Command Prompt

	Monitoring Network Response Time
	Creating a Class Specification File
	Compiling the Class Specification File
	Creating a Format File
	Starting the DSI Logging Process
	Accessing the Data

	Configuring Dsiconf.mwc for Collecting Ping Data

	6 Error Messages
	DSI Error Messages
	General Error Messages
	SDL Error Messages
	DSILOG Error Messages

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

