
HP Performance Agent

For the Windows® Operating System

Software Version: 4.70
Application Response Measurement 2.0 API Guide
Document Release Date: September 2007
Software Release Date: September 2007

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for technical or
editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211
and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items
are licensed to the U.S. Government under vendor's standard commercial license.

Copyright Notices

© Copyright 2007 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe® is a trademark of Adobe Systems Incorporated.

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and 64-bit configurations) on all HP 9000
computers are Open Group UNIX 95 branded products.

Intel486 is a U.S. trademark of Intel Corporation.

Java™ is a U.S. trademark of Sun Microsystems, Inc.

Microsoft® and Windows® are U.S. registered trademark of Microsoft Corporation.

Netscape™ and Netscape Navigator™ are U.S. trademarks of Netscape Communications Corporation.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City, California.

Oracle Reports™, Oracle7™, and Oracle7 Server™ are trademarks of Oracle Corporation, Redwood City, California.

OSF/Motif® and Open Software Foundation® are trademarks of Open Software Foundation in the U.S. and other countries.

Pentium® is a U.S. registered trademark of Intel Corporation.

SQL*Net® and SQL*Plus® are registered U.S. trademarks of Oracle Corporation, Redwood City, California.

UNIX® is a registered trademark of The Open Group.

All other product names are the property of their respective trademark or service mark holders and are hereby acknowledged.
2

Support

You can visit the HP Software Support web site at:

www.hp.com/go/hpsoftwaresupport

HP Software online support provides an efficient way to access interactive technical support tools. As a valued support
customer, you can benefit by using the support site to:

• Search for knowledge documents of interest

• Submit and track support cases and enhancement requests

• Download software patches

• Manage support contracts

• Look up HP support contacts

• Review information about available services

• Enter into discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a support contract.

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html
3

4

Contents
1 Application Response Measurement API .7
Application Response Measurement .7

Measuring Service Levels .7
ARMing Your Applications .8
What's New in Version 2.0 of the ARM API .9

2 Basic Tasks for Instrumenting an Application. 11
What to Instrument. .12

3 The Software Developer's Kit (SDK) .13
The Logging Agent .14
The Header File .14

4 Getting Started .15
UNIX systems .15
OS/2, Windows 2000, Windows 2003 or Windows XP systems .15
Using the Logging Agent .16
Overview of the ARM API Function Calls .16
Adding ARM Function Calls to an Application. .17
Definition of Data Type Terminology .19
Testing Your Instrumentation .19
Logging Agent Sample Output .20

5 arm_init .21

6 arm_getid .23

7 arm_start. .25

8 arm_update .27

9 arm_stop .29

10 arm_end .33

A Performance Agent Information. .35

B Examples. .43
arm.h Header File. .44
C/C++ (all platforms) Sample 1. .48
C/C++ (all platforms) Sample 2. .52
 5

6

1 Application Response Measurement API
Application Response Measurement

The applications that are used to run businesses have changed dramatically over the past few
years. In the early 1980s, large applications generally executed on large computers, and were
accessed from “dumb” terminals. Non-networked applications executing on personal
computers were just beginning to be widely used. Since then, these two application models
have moved steadily towards each other, fusing together to form distributed (networked)
applications.

The most common programming model for distributed applications is the client/server model.
In a client/server application, the application is split into two or more parts. One part is the
user or “client” part, and this part generally executes on a personal computer or workstation.
The “server” parts execute on computers that provide functions for the client part, that is,
they serve the client application. The client and server can run on the same system, but
generally they are on different systems. The client part of an application may invoke one or
more functions on one or more servers, and it may do a significant amount of processing itself
– combining, manipulating, or analyzing the data provided by the servers.

An example of a client/server application might be processing a sales order by retrieving
inventory information from one database, sales information from another database, and
pricing information from a third. The client part of the application determines if there is
sufficient inventory to accept the order, calculates the price based on current market
conditions, factors in price discounts for this particular customer, and then invokes more
server functions to complete processing of the order.

By contrast, host-centric applications contain all the application logic in one computer system,
and users connect through “dumb” terminals to use the application. Examples of the
protocols used by these applications are 3270, Telnet, and X-Windows. The response time as
seen by a user for a transaction can generally be broken down into two components: the time
to process the transaction on the host, and the time for the input message and the output
response. Processing time at the terminal is usually trivial.

Measuring Service Levels

A monitoring product running at the host is able to measure the service levels of host-centric
applications. The monitor observes the input request message that starts the transaction,
and then observes the outbound response back to the terminal. The difference between the
two times is the amount of time to process the transaction on the host. The monitor generally
also measures the time for the outbound response to be sent to the terminal and an
acknowledgment to be received, using this as an approximation of the transit time. The
combination of the host and transit times is an approximation of the service level seen by the
user.

Monitoring the performance and the availability of distributed applications has not proven
easy to do. Some of the fundamental assumptions that the host-centric methods depend on do
not hold true. Some examples:
7

• The user is typically running an application on a multitasking PC or workstation. When
the user presses a key or the mouse button, the specified transaction starts, but the user
may be able to continue doing other operations. Put another way, there is no reliable way
to correlate keyboard or mouse input operations with business transactions.

• One user transaction (which would be classified as a business transaction) may spawn
several other component transactions, some of which may execute locally and some
remotely. Any measurement agents that exist only in the network layer or in a host
(server) will not see the entire picture.

• The data may be sent through the network using various protocols, not just one, making
the task of packet decoding and correlation much more difficult.

• Client/server applications can be complex, taking different execution paths and spawning
different component transactions, depending on the results of previous component
transactions. Every permutation could take a different form when it goes across the
communication link, making it that much harder to reliably correlate network or host
(server) observations with what the user sees.

In spite of these difficulties, the need to monitor distributed applications has never been
greater. They are increasingly being used in mission-critical roles. An approach that solves
the problems listed above is to let the application itself participate in the process. A developer
knows unambiguously when transactions begin and end, both those that are visible to the
user, and the component transactions that invoke transactions on remote servers.

ARMing Your Applications

With the Application Response Measurement (ARM) API, a developer can easily mark
sections of an application to define business transactions. By invoking ARM API function
calls at the beginning and end of each transaction, you can enable your application to be
monitored by any of the measurement agents that use data generated by the ARM API.
Programs executing on client or server systems can be instrumented.

By instrumenting your application to call the ARM API, you enable your application to be
managed by any of the measurement agents that implement ARM. The advantage of this
approach is that your application customers can choose the measurement agent that best
meets their needs without your application needing to change.

System administrators will be able to answer some key questions such as:

• Is the application working correctly (available)?

• How is the application performing? What is the response time? What is the workload
throughput? You will be measuring the actual service levels experienced by your users.

• Why is an application not available or performing poorly? What operation was the
application performing when the problem occurred? If a remote server/application was
being invoked when the problem occurred, which one?

• Who is using the application, how much are they using it, and what kind of operations are
being performed? Which servers are providing the services? This information is useful for
capacity planning and for charge-back accounting.
8 Chapter 1

Figure 1 ARM in the Enterprise

Figure 1 shows how enterprise management applications, measurement agents that
implement the ARM API, and business applications that call the ARM API work together to
provide a robust way to monitor application response.

What's New in Version 2.0 of the ARM API

Several additions to the ARM API improve the ways your application can be managed.

• You can indicate that a transaction is a component of another transaction. You can do
transaction correlation within one system or across multiple systems. This permits a
better understanding of the overall transaction, how much time each part of the
transaction is taking, and where problems are occurring.

• You can provide additional information about the transaction, such as the number of bytes
or records being processed, or about the state of the application at the moment that the
transaction is being processed, such as the length of a work queue. This information
(called application-defined metrics) is useful to better understand response times, and
how the application can be tuned to perform better.

• You can use the new logging agent to do simple verification of your instrumentation. It
allows you to determine if the correct parameters are being passed on each call, but it does
not function as a measurement agent.

Version 2.0 of the ARM API is backward compatible with version 1.0. Applications
instrumented to the ARM 1.0 API can continue to function correctly with agents that
implement the additional features of the 2.0 API. ARM 2.0 instrumented applications will
function correctly with agents that implement the features of the 1.0 API.
Application Response Measurement API 9

10 Chapter 1

2 Basic Tasks for Instrumenting an Application
There are three basic tasks involved in instrumenting an application with the ARM API.

Define the key business transactions. This is the most important step. Each application
developer needs to define who needs what kind of data, and what the data will be used for. It
is common and useful for this process to be a joint collaboration between the users and
developers of an application, and system and network administrators. There are two kinds of
transactions that will generally provide the greatest benefit if they are instrumented. The
following procedure is suggested.

Start with transactions that are visible to users or that represent major business operations.
These are the building blocks for service level agreements, for workload monitoring, and for
early problem detection.

Next, focus on transactions that are dependent on external services, such as a database
operation, a Remote Procedure Call (RPC), or a remote queue operation. These generally are
components of a user/business transaction. Knowing how these types of transactions are
performing can be invaluable when analyzing problems, tuning applications, and
reconfiguring systems and networks.

Modify the application to include calls to the ARM API. The NULL libraries and logging
agent in the ARM SDK can be used for initial testing. The key is to decide where to place calls
to the ARM API, by doing a good job defining the key business transactions.

Replace the NULL libraries or logging agent from the SDK with an ARM-compliant agent and
associated management applications. The distributed applications can now be monitored in
ways that previously could only be hoped for.
 11

What to Instrument

The Application Response Measurement API is designed to instrument a unit of work, such as
a business transaction, that is performance sensitive. These transactions should be
something that needs to be measured, monitored, and for which corrective action can be taken
if the performance is determined to be too slow.

This API is not designed to be a programmer profiling tool. The measurement agents using
data generated by this API are designed to give application/system managers data to
understand how their environment is performing, and whether all services are available.

For information on measurement agents that do transaction monitoring, refer to the web site
mentioned earlier under “For Your Information”. Links may be found on this site to
commercially available measurement agent solutions.

Some questions you may want to ask yourself when instrumenting a transaction are:

1 What unit of work does this transaction define?

2 Are the transaction counts and/or response times important?

3 Who will use this information?

4 If performance of this transaction is too slow, is there some corrective action that can take
place (for example, offload work from the machine, add memory, relocate remote files,
etc.)?
12 Chapter 2

3 The Software Developer's Kit (SDK)
This ARM SDK contains everything you need to prepare your application for transaction
monitoring. It comes with a default no-operation (NULL) shared library that contains all the
function calls you will need and a header file. The NULL library allows developers to
instrument and run their applications without having one of the measurement agents
installed.

Additionally, the source used to create the NULL library is part of the SDK. This is provided
so a shared library can be created for applications that exist on platforms not currently
supported by the measurement technologies. The SDK contains NULL libraries compiled for
UNIX systems (HP-UX, IBM AIX, NCR MP-RAS, and Sun Solaris) and PC based systems
(OS/2, Windows 2000, Windows 2003 and Windows XP). The kit installs the correct library
for the system.

A C language header file is supplied for applications written in either C or C++.

The source code and header file for a logging agent is supplied for use in testing your
instrumentation.

Sample programs for C/C++ are provided as examples of how to instrument applications.
Examples for other programming languages from the ARM 1.0 SDK are also available on the
CD and the web site.

The ARM Shared Library (libarm)

The library specified here is a NULL shared library provided to resolve externals in the code.
If you are working with a specific vendor’s performance measurement agent you may want to
use the libarm library supplied for that agent instead of the NULL library. The
agent-specific library will return errors that may be helpful during development, whereas the
NULL library will always return a non-error condition (0).

After installation libarm.* shared libraries reside in the directory where the system
libraries are installed. For example:

The arm.lst file on the CD-ROM contains a detailed listing of all the files on the CD-ROM

HP-UX 10 x/usr/lib/libarm.sl

IBM AIX /usr/lib/libarm.a

Sun Solaris /usr/lib/libarm.so

NCR MP-RAS /usr/lib/libarm.so

Windows 2000 $windir$\SYSTEM32\LIBARM32.DLL

Windows2003 $windir$\SYSTEM32\LIBARM32.DLL
 13

It is recommended that the library be used from the standard location. This is so applications
can locate the library in a standard location and be able to take advantage of a measurement
agent once it is installed on the system.

The Logging Agent

The source code for a logging agent, logagent.c, has been included for use in testing your
instrumentation. The path is:

UNIX Systems: <install directory>/lib/logagent/logagent.c

PC systems: <install directory>/ARM_SDK/LIB/logagent/logagent.c

Unlike the NULL libraries, it is only in source format so it needs to be compiled (see Using the
Logging Agent on page 16 in Chapter 4, for more information on this).

The Header File

A C language header file, arm.h, is supplied for applications written in either C or C++. If
you are using a language other than C or C++, the data structures and external references
need to be translated to the language you are using.

Windows XP $windir$\SYSTEM32\LIBARM32.DLL

OS/2 (32-bit) $os2dir$\DLL\LIBARM.DLL

HP-UX 10 x/usr/lib/libarm.sl

Not all hardware systems or compilers provide native support for 64-bit integers – nor is
there yet a standard type declaration for them. For these reasons the distributed version of
the arm.h header file does not assume native support for 64 bit integers. However, the
symbol “INT64” can be defined near the front of the file to customize the header for compilers
and systems with 64 bit integer support.
14 Chapter 3

4 Getting Started
This section gives you the information you need to begin instrumenting your application with
the ARM API function calls.

Installation

To get started, you need to install the ARM SDK files on your system. The installation
process installs the appropriate NULL shared library, the header files, the shared library
source code, logging agent source, documentation files and sample program files for your
system.

The installation utility prompts you for a directory to install the ARM source files.

UNIX systems

1 Place the CD-ROM in the drive and mount the CD-ROM device onto your system.

2 Type cd <mount directory>.

3 Type ./install (or ./INSTALL for HP-UX only) then follow the prompts in the install
process.

If a libarm.* shared library exists in the default directory, the install utility will not install
the library. This is so the installation will not overlay an installation of one of the
measurement agent’s libraries. Install will not copy the library to the default (/usr/lib)
directory if the directory is not writable by the user.

OS/2, Windows 2000, Windows 2003 or Windows XP systems

1 Place the CD-ROM in the drive.

2 Create a DOS window.

3 Change the current drive to the CD-ROM drive.

4 Type INSTALL <drive letter:\install directory>

Where <drive letter> is the letter of the drive where you want to install the ARM SDK and
<install directory> is the directory path for the location of where you want to install the
ARM SDK. The install utility will put the files into a directory called ARM_SDK under the
<install directory> specified.

The NULL libraries for ARM 1.0 and ARM 2.0 are interchangeable, so a failure to install will
have no impact. You should contact your measurement agent vendor if you need to update
your agent’s shared library to ARM 2.0.
 15

5 Copy the LIBARM*.DLL to the standard location for the platform as shown below. Do not
copy the library if the library already exists in the destination directory since you may be
overwriting a measurement agent-specific library with a NULL library.

OS/2:

• copy <install dir>\ARM_SDK\LIB\OS2\LIBARM.DLL $os2dir$\DLL\LIBARM.DLL

Windows 2000/Windows 2003/Windows XP:

• copy <install dir>\ARM_SDK\LIB\WIN95_NT\LIBARM32.DLL
windir$\SYSTEM32\LIBARM32.DLL

Using the Logging Agent

The logging agent is provided for use in testing your instrumentation. It provides more
information than the NULL library that only returns zeros but it does not function as a
measurement agent.

The logging agent is provided in source format only, so it must be compiled. The logging
agent source code file, logagent.c, can be included and compiled with an application
implemented in C or it can be compiled into a library object and linked to an application.

Statically link with the logging agent and then run your application. Programmatic calls to
the ARM API by the application result in the creation of a text file log (logfile by default) that
contains a time-stamped history of the calls and the parameter values associated with those
calls. See the section Testing Your Instrumentation on page 19 for a sample output file and
more information on using the logging agent.

Overview of the ARM API Function Calls

The ARM API is made up of a set of function calls that are contained in a shared library. All
the performance measurement agents that support the ARM API provide their own
implementation of the shared library. When you insert the ARM API function calls in your
application, it can be monitored by the agents that implement the shared library. The
advantage of this approach is that your application customers can choose any measurement
agent that best meets their needs without your application needing to change.

Measure
Agent Description

arm_init During the initialization of your application, call arm_init which names
your application and optionally the users, and initializes the ARM
environment for your application. A unique identifier is returned that
must be passed to arm_getid.

arm_getid Use arm_getid to name each transaction class you use in your
application. This is often done during the initialization of your
application. A transaction class is a description of a unit of work, such as
"Check Account Balance". In each program, each transaction class may
be executed once or many times. arm_getid returns a unique identifier
that must be passed to arm_start.
16 Chapter 4

Adding ARM Function Calls to an Application

The following steps show how to add ARM API function calls to an application. Also shown is
a very simple application that has been instrumented with the libarm calls.

Once the SDK is installed, include the header file reference (arm.h for C and C++) in your
source code and modify the compile link to reference the library.

Identify the start and the end of the application and place the calls to arm_init and arm_end.
These calls are used for initialization and cleanup of the ARM environment for your
application, and therefore should be called from the initialization and exit sections of your
application.

Determine what transaction classes you want to instrument and the names to use to uniquely
identify each transaction class. Modify the code to call arm_getid for each transaction class.
The arm_getid calls can also be made from the application initialization section.

Call arm_start just prior to the start of execution of the transaction and arm_stop just after
the transaction completes.

When distributing your application, the NULL shared library must be included in your
installation package. By doing this you will insure that your application will load and execute
correctly, even if no measurement agent is installed. If the libarm.* file already exists on
the system where your application is being installed, do not overwrite the library. The library
that exists may be the NULL library or it could be one of the measurement agent's libraries.

The API calls use the C calling conventions for UNIX systems, the PASCAL calling
conventions for OS/2 and the _std calling conventions for Windows 2000, Windows 2003, and
Windows XP.

/***/
/* sample.c */
/***/
#include <stdio.h>
(1) #include "arm.h"
int32 appl_id = -1; /* Unique indentifer for the application */
int32 tran_id = -1; /* Unique identifier for the transaction */
void init()
{
(2) appl_id = arm_init("ARM sample program", /* application name */
 "*", /* use default user */
 0,0,0);
 if (appl_id < 0)
 printf("ARM sample program not registered.\n");

arm_start Each time a transaction class is executed, this is a transaction instance.
arm_start signals the start of execution of a transaction instance and
returns a unique handle to be passed to arm_update and arm_stop

arm_update This is an optional function call that can be made any number of times
after arm_start and before arm_stop. arm_update gives information
about the transaction instance, such as a “heartbeat” after a group of
records has been processed

arm_stop arm_stop signals the end of the transaction instance.

arm_end At termination of the application call arm_end which cleans up the ARM
environment for your application. There should be no problem if this call
is not made, but memory may be wasted because it is allocated by the
agent even though it is no longer needed
Getting Started 17

(3) tran_id = arm_getid(appl_id, /* application id from arm_init */
 "Sample_transaction", /* transaction name */
 "First Transaction in Sample program",
 0,0,0);
 if (tran_id < 0)
 printf("Sample_transaction is not registered.\n");
} /* init */
void transaction()
{
 int32 tran_handle;
(4) tran_handle = arm_start(tran_id, /* transaction id from arm_getid */
 0,0,0);
 /***/
 /* Perform actual transaction processing here*/
 /***/
 sleep(1);
(4) arm_stop(tran_handle, /* transaction handle from arm_start */
 ARM_GOOD, /* successful completion define = 0 */
 0,0,0);
 return;
} /* transaction */
main()
{
 int continue_processing = 1;
 init();
 while (continue_processing)
 {
 transaction();
 }
(2) arm_end(appl_id, /* application id from arm_init */
 0,0,0);
 return(0);
}

Figure 2 ARM API Function Call Parameter
18 Chapter 4

Figure 2 shows which parameters are used in each of the ARM API function calls and what is
passed on from one function call to another

Definition of Data Type Terminology

The API calls use the following terminology to define each of the parameters:

The standard API calls use the following terminology to define each of the parameters:

The more advanced functions in the API use the following terminology to define each of the
parameters:

These formats are in the native format of the hardware platform. This accommodates the
difference between “Big-Endian” and “Little-Endian” systems, that is, the difference between
hardware architectures in which the most significant bit position is on the left versus the
right.

Testing Your Instrumentation

The following tasks are recommended for testing your instrumentation after you have
included the ARM API calls in your program.

1 Link to the NULL library that is part of the ARM SDK. If the link fails, it means that you
are not linking to the correct library, or you are using incorrect names or parameters in at
least one of the ARM API calls.

2 Once you can link successfully, then run your application, including the calls to the API,
and verify that your application performs correctly. No testing of the API calls is done
except for the linking parameters, because the NULL library simply returns zero every
time it is called. Running the application is useful to insure that you didn't inadvertently
alter the program in a way that affects its basic function.

3 Compile the logging agent source, logagent.c, if you haven't already .

4 Link to the logging agent generated in the previous step. Run your application, including
the calls to the ARM API and verify that your application performs correctly.

5 Manually review the log created by the logging agent to verify that the correct parameters
are passed on each call. These parameters include transaction ids to connect start calls to
the correct transaction class, start handles to connect stop calls to the correct start calls,

inc32 A signed 32-bit integer

char * A 32 bit pointer to a character string or data structure.Strings must be NULL
terminated unless specified otherwise. Strings are expected to be displayed,
put in reports, etc., so choose appropriate characters

int64 A signed 64-bit integer

unsigned32 An unsigned 32-bit integer

unsigned64 An unsigned 64-bit integer

bit8 A byte containing 8 single-bit flags. In this document, when a bit8 is
represented as eight flags using the notation abcdefgh, a is the most
significant bit, and h is the least significant bit.

unsigned16 An unsigned 16-bit integer

unsigned8 An unsigned 8-bit integer
Getting Started 19

and any of the optional parameters. Optional advanced parameters include correlators
that indicate the parent/child relationship between transactions and components, and
metrics about the transaction or application state.

Search the log for error messages (identified by “ERROR” in the text) and informative
messages (identified by “INFO” in the text) after your application has run for a
considerable period of time in a simulated production environment. Upon successful
completion of this test, you should be confident that your ARM API calls are correct. A
sample log is provided on the next page.

6 Link to a performance measurement product (if available) and run the application under
typical usage scenarios. This will test the entire system of application plus management
tools.

Logging Agent Sample Output

7:47:39.sss: arm_init: Application <Appl_0> User <User_0> = Appl_id <1>

17:47:39.sss: arm_getid: Application <Appl_0> User <User_0> Transaction
<Tran_0> Detail <This is transaction type 0>

17:47:39.sss: arm_getid: Application <Appl_0> User <User_0> Transaction
<Tran_0> = Tran_id <1>

17:47:39.sss: arm_getid: Application <Appl_0> User <User_0> Transaction
<Tran_0> Metric Field <1> Type <1> Name <This is a Counter32 user metric
>

17:47:39.sss: arm_start: Application <Appl_0> User <User_0> Transaction
<Tran_0> = Start_handle <1>

17:47:39.sss: arm_start: Application <Appl_0> User <User_0> Transaction
<Tran_0> Start_handle <1> Metric < This is a Counter32 user metric > : <0>

17:47:40.sss: arm_update: Application <Appl_0> User <User_0> Transaction
<Tran_0> Start_handle <1> Metric < This is a Counter32 user metric > : <2>

17:47:41.sss: arm_stop: Application <Appl_0> User <User_0> Transaction
<Tran_0> Start_handle <1> Status <0>

17:47:41.sss: arm_stop: Application <Appl_0> User <User_0> Transaction
<Tran_0> Start_handle <1> Metric < This is a Counter32 user metric > : <4>

17:47:41.sss: arm_end: Application <Appl_0> User <User_0> appl_id <1>
20 Chapter 4

5 arm_init
Use arm_init to define the application or a unique instance of the application and user. You
must call arm_init before any other ARM API calls. It is often called when an application
initializes. The return code is an application/user identifier that is input as a parameter on
the arm_getid to associate transactions with the application.

Each application needs to be identified by a unique name. It is your responsibility to choose a
name that is meaningful, and that won't likely duplicate the names other developers will
choose for their applications. Suggestions for names would be the product name and version
number or a project name.

There can be any number of application instances executing simultaneously that use the
same application name, or the same application and user names. A measurement agent may
assign a unique application identifier to each application instance, or it may assign an
identifier that is shared across identically named instances.

Syntax:

appl_id=arm_init(appl_name,appl_user_id,flags,data,data_size)

Parameters

Return Code

Example

my_appl_id = arm_init (“Parts Inventory Manager 1.1”,/* appl name */

 “*”,/* user id */

appl_name (char*) The name used to identify the application. The maximum
length is 128 bytes including the NULL string terminator.

appl_user_id (char*) The name of the application user. On UNIX and Windows you
can set this value to “*” to indicate the login user ID of the
person running the application. The maximum length is 128
bytes including the NULL string terminator. If you do not
provide a value for this parameter, you must specify the NULL
value (0).

flags (int32)=0 Reserved for future use. It must be set to zero.

data (char*)=0 Reserved for future use. A NULL value (0) must be used.

data_size (int32)=0 Reserved for future use. It must be set to zero.

appl_id (int32) A unique value to reference an application/user identifier. This id
must be passed to the arm_getid call.
 21

 0, 0, 0);/* reserved for future use */

Error Handling:

If the value returned in appl_id is less than zero, an error occurred in communicating with
the measurement agent. The value returned on an error can be passed to arm_getid which
will cause arm_getid to function as a NULL operation. The error should be logged so
corrective action can be taken.
22 Chapter 5

6 arm_getid
The arm_getid function call is used to assign a unique identifier to a transaction class, and
optionally to describe the format of additional data passed on arm_start, arm_update, and
arm_stop calls. This is often done during the initialization of your application. The identifier
returned by arm_init is passed as a parameter in arm_start calls to identify which class of
transaction is starting.

A transaction class is a description of a unit of work, such as "Check Account Balance". Any
number of transaction classes can be defined within each application. The transaction class
name should help a person understand what function the transaction performs. The call to
arm_getid need be made only once for each transaction class each time the application is
started. A call to arm_getid can be made with the same information as a previous call, in
which case the transaction identifier (tran_id) that is returned will be the same as the
previous calls. Four types of information are tested to see if the information is the same. If
any of these are different, a different tran_id will be returned.

• The application identifier (appl_id).

• The transaction name (tran_name).

• The data pointer (data) was NULL on previous calls and is not NULL, or it wasn't NULL
on previous calls and now it is NULL.

• If the data pointer (data) is not NULL on previous calls and this call, and the contents
and size (data_size) of the buffer pointed to by the data parameter differ.

Any number of transaction classes can be defined within each application. In each application,
each transaction class may be executed any number of times. Each time a transaction class is
executed (via arm_start), it is called a transaction instance. There can be any number of
instances of each transaction class executing simultaneously.

Syntax

tran_id=arm_getid(appl_id,tran_name,tran_detail,flags,data,
data_size)
 23

Parameters

Return Code

Example

my_tran_id = arm_getid (my_appl_id,/* application name */

“Part Number Query”,/* transaction name */

“Call to Server XYZ”, /* transaction details */

0, /* reserved for future use */

my_buffer_ptr,/* metrics data/metrics meta-data */

my_buffer_length); /* length of data buffer */

Error Handling:

If the value returned in tran_id is less than zero, an error occurred in communicating with
the measurement agent. The most likely cause is passing an invalid value for appl_id. The
value returned on an error can be passed to arm_start which will cause arm_start to
function as a NULL operation. The error should be logged so corrective action can be taken.

appl_id (int32) The unique reference to an application/user identifier returned
from the arm_init call. If the appl_id is less than zero, this
arm_getid call will be treated as a NULL operation, and a
negative tran_id returned.

tran_name (char*) The unique name of the transaction class. It is defined for each
transaction class by the application developer. It must be unique
within the application (for each arm_init call). The maximum
length is 128 bytes including the NULL string terminator.

tran_detail (char*) Transaction detail allows a developer to provide additional
information about a transaction class. It is a free-form text area
that is set once for each appl_id/tran_name pair. If the contents
of the field change on later calls using the same appl_id/
tran_name pair, the new contents are ignored. The maximum
length is 128 bytes including the NULL string terminator. If no
tran_detail is associated with this transaction, you must specify
the NULL value (0).

flags (int32)=0 Reserved for future use. It must be set to zero.

data (char*) A pointer to a buffer that describes the format of additional data
that can be passed on arm_start, arm_update, and arm_stop
calls. If no additional data is passed on these calls, this parameter
must be set to zero (0). See the section "Format of Data Buffer in
arm_getid" on page 46 for the detailed buffer format.

data_size (int32) The length in bytes of the buffer pointed to by data. If data is set
to zero (0), data_size must also be set to zero.

tran_id (int32) The unique identifier assigned for this transaction class. This ID
needs to be passed on arm_start calls.
24 Chapter 6

7 arm_start
Use arm_start to mark the beginning of execution of a transaction. Each time a transaction
executes, it is called a transaction instance. You must call arm_start in your application at
the beginning of each transaction instance you want monitored.

Additional information about the transaction can be provided in the optional data buffer. If no
additional information is provided, pass a null pointer. This information can be provided on
any or all of the arm_start, arm_update, and arm_stop calls, except correlation information
which is passed only on arm_start. See the “Advanced Topics” section for details on how to
pass this information.

Syntax

start_handle=arm_start(tran_id,flags,data,data_size)

Parameters

Return Code

Example

my_handle = arm_start (my_tran_id, /* transaction handle */

tran_id (int32) The unique identifier assigned to the transaction class. This is the id
generated by arm_getid. If the tran_id is less than zero, this
arm_start call will be treated as a NULL operation, and a negative
start_handle returned.

flags (int32)=0 Reserved for future use. It must be set to zero.

data (char*) A pointer to a buffer with additional data that can optionally be
passed. If no additional data i0s passed, this parameter must be set
to zero (0) See the section "Format of Data Buffer in arm_start,
arm_update, and arm_stop" on page 50 for the detailed buffer
format.

data_size(int32) The length in bytes of the buffer pointed to by the data parameter. If
data is set to zero (0), data_size must also be set to zero.

tran_id (int32) The unique identifier assigned to the transaction class. This is the id
generated by arm_getid. If the tran_id is less than zero, this
arm_start call will be treated as a NULL operation, and a negative
start_handle returned.

start_handle (int32) The unique transaction handle assigned to this instance of a
transaction. This handle must be passed on arm_stop and any
arm_update calls.
 25

0, /* reserved for future use */

 my_buffer_ptr, /* metrics data/correlator */

my_buffer_length); /*length of data buffer */

Error Handling

If the value returned in start_handle is less than zero, an error occurred in communicating
with the measurement agent. The most likely cause is passing an invalid value for tran_id.
The value returned on an error can be passed to arm_update and arm_stop calls, which will
cause these calls to function as NULL operations. The error should be logged so corrective
action can be taken.
26 Chapter 7

8 arm_update
Use arm_update for the following purposes. This is an optional call.

• To show the progress of a long transaction. Put the arm_update call into your application
program after arm_start and before arm_stop each time you want to send a “heartbeat”
indicating that the transaction instance is still running. This would typically be done
after a fixed interval of time (such as every minute) or after a fixed amount of work is
completed (such as 1000 records processed). There can be any number of arm_update
calls between an arm_start/arm_stop pair. This call is most useful for long-running
transactions that take minutes or hours to complete. Another way to capture data about
the steps within a long transaction is to use component transactions (see the section
“Three Ways to Instrument within a Transaction Instance” on page 55).

arm_update is also useful for updating any of the metric or string variables passed in the
buffer pointed to by the data parameter (as defined in arm_getid). This could be used to
show not only that the transaction is progressing, but also how far it has progressed. For
example, every time another 1000 records are processed, an arm_update call could be
made with an updated count in the buffer.

• To provide extra information about a transaction. Put the call into your application
program after arm_start and before arm_stop each time you want to provide special
information about a transaction instance. If there is no additional information to be
provided, pass a null pointer. There are several types of additional information that may
be useful: information about the size of the transaction (such as the number of bytes in a
print job), information about the state of the application (such as the number of threads
that are running), and diagnostic information. This type of information can be provided
via application-defined metrics on any or all of the arm_start, arm_update, and arm_stop
calls. See the section "Format of Data Buffer in arm_start, arm_update, and arm_stop"
Format 1, for the detailed buffer format.

• To provide a larger opaque application private buffer. Information that does not conform
well to application-defined metrics (for example long diagnostic messages) may be
provided via an opaque buffer containing up to 1020 bytes of data (Format 2). Except for
the four-byte Format field the content of the buffer is entirely up to the application
developer. Because the contents of the buffer containing the information is known only to
the application developer, measurement agents can’t do much with the data in this field.
A typical measurement agent might provide an option to write the buffer with the
information to a log file, but this is the most that can be expected.

Measurement agents are not required to do anything with the information in this call.

Syntax

error_status=arm_update(start_handle,flags,data,data_size)
 27

Parameters

Return Code

Example

status = arm_update (my_handle, /* transaction handle */

0, /* reserved for future use */

my_buffer_ptr, /* data description */

my_buffer_length); /* length of data description */

Error Handling

If the value returned in error_status is less than zero, an error occurred in communicating
with the measurement agent. The most likely cause is passing an invalid value for
start_handle. The error should be logged so corrective action can be taken.

start_handle (int32) The unique handle from the arm_start call that marked the
start of this transaction instance. The start_handle must be
passed in each arm_update call. Many transaction instances
may be executing at the same time from this and other
applications, so this handle is essential to identify which
transaction instance is being updated. If start_handle is less
than zero, this arm_update call will be treated as a NULL
operation, and a negative error_status returned.

data (char*) A pointer to a buffer with additional data that can optionally be
passed. If no additional data is passed, this parameter should be
set to zero (0).

flags (int32)=0 Reserved for future use. It must be set to zero.

There are two possible buffer formats:

— If the Format field contains the value 1, then
application-defined metrics as defined in arm_getid can
be passed. The correlator field is not used in the
arm_update call.

— If the Format field contains the value 2, then a status
message up to 1020 bytes in length may be passed in.

See the section "Format of Data Buffer in arm_start,
arm_update, and arm_stop" on page 50 for the detailed buffer
formats.

data_size (int32) The length in bytes of the buffer pointed to by data. If data is set
to zero (0), data_size should also be set to zero.

error_status (int32) Contains a zero if successful and a negative value if an error
occurred.
28 Chapter 8

9 arm_stop
Use arm_stop to mark the end of a transaction instance that was started with arm_start.
Call arm_stop from your application program just after each transaction instance ends.

In addition to signaling the end of the transaction instance, which allows a measurement
agent to calculate the elapsed time since the arm_start, additional information about the
transaction can be provided in the optional data buffer. This information can be provided on
any or all of the arm_start, arm_update, and arm_stop calls.

Syntax

error_status=arm_stop(start_handle,tran_status,flags,data,data_size)
 29

Parameters

Return Code

Example

status = arm_stop (my_handle,/* transaction handle */

ARM_GOOD,/* transaction status */

0,/* reserved for future use */

buffer_ptr,/* data description */

start_handle (int32) The unique handle from the arm_start call that marked the start
of this transaction instance. start_handle, must be passed in
each arm_stop call. Many transaction instances may be
executing at the same time from this and other applications, so
this handle is essential for the measurement agent to use to
identify which transaction instance is stopping. If start_handle
is less than zero, this arm_stop call will be treated as a NULL
operation, and a negative error_status returned.

tran_status (int32) The completion code of the transaction, as determined by the
application.
0 = Transaction successful (defined as ARM_GOOD in arm.h). Use
this value when the operation completed normally and as
expected.
1 = Transaction aborted (defined as ARM_ABORT in arm.h). Use
this value when there was a fundamental failure in the system.
For example, a timeout from a communications protocol stack, or
an error when doing a database operation.
2 = Transaction failed (defined as ARM_FAILED in arm.h). Use this
value in applications where the transaction worked properly, but
no result was generated. For example, when makingtracking an
airline reservation, a server indicates no seats arecall comes in
and the travel agent sees available on the requested flight. Since
no reservation was made, recordthe transaction wasn't successful;
but since the reservation system is operating correctly, it isn't an
aborted transaction either. In this case, you might want to record
the transaction as a failed transaction.

flags (int32)=0 Reserved for future use. It must be set to zero.

data (char*) A pointer to a buffer with additional data that can optionally be
passed. If no additional data is passed, this parameter should be
set to zero (0). The format is identical to the arm_start call,
except the Correlator field is not used in the arm_stop call.
See the section "Format of Data Buffer in arm_start, arm_update,
and arm_stop" on page 50 for the detailed buffer format.

data_size (int32) The length in bytes of the buffer pointed to by the data parameter.
If data is set to zero (0), data_size should also be set to zero.

error_status (int32) Contains a zero if successful and a negative value if an error
occurred.
30 Chapter 9

buffer_length); /* length of data description*/

Error Handling:

If the value returned in error_status is less than zero, an error occurred in communicating
with the measurement agent. The error should be logged so corrective action can be taken.
arm_stop 31

32 Chapter 9

10 arm_end
Use arm_end when you are finished initiating new activity using the ARM API. It is typically
called when an application/user instance is terminating. Each arm_end is paired with one
arm_init to mark the end of an application.

An arm_end is a signal from the application that it does not intend to issue any more
arm_getid calls using this appl_id, or any arm_start calls using any tran_id defined using
this appl_id. After arm_end, the measurement agent may ignore any arm_getid or
arm_start calls. It is acceptable to call arm_update or arm_stop for any incomplete
transaction instances started with arm_start.

Syntax

error_status=arm_end(appl_id,flags,data,data_size)

Parameters

Return Code

Example

status = arm_end (my_appl_id, /* transaction handle */

0,0,0); /* reserved for future use */

Error Handling

If the value returned in error_status is less than zero, an error occurred in communicating
with the measurement agent. The most likely cause is passing an invalid value for appl_id.
The error should be logged so corrective action can be taken.

appl_id (int32) A unique reference to an application/user identifier returned from
the arm_init call. If appl_id is less than zero, this arm_end call
will be treated as a NULL operation, and a negative error_status
returned.

flags (int32)=0 Reserved for future use. It must be set to zero.

data (char*)=0 Reserved for future use. A NULL pointer (0) must be used.

data_size (int32)=0 Reserved for future use. It must be set to zero.

error_status Contains a zero if successful and a negative value if an error occurred.
 33

34 Chapter 10

A Performance Agent Information
This appendix contains information provided for measurement agent implementers as
opposed to ARM application instrumenters. For instrumenters it is provided as reference
only, the correlator is “opaque” from an application instrumenter’s perspective.

The agents provide the correlators, and within the correlator they provide information to
uniquely identify agents. To enable an enterprise management solution (correlation
application) to analyze the correlators coming from different systems in a heterogeneous
environment, agents need to follow some conventions when creating correlators.

The following section documents a set of semantics for measurement agents to use in
formatting the correlator and agent identifiers.

The correlator passed on arm_start calls is sent across systems, so it is always in network
byte order. Network byte order is a standard described as follows:

Format of the Correlator

Correlators provided by agents and passed on the arm_start commands have the following:

Command
Format Description

2 bytes Length of the Correlator (unsigned16)
If this value is zero, it means that the measurement agent is not
returning a correlator, and therefore there isn’t any reason to pass this
correlator on to other parts of the application (or servers that it calls).
A zero length provides another safeguard for agents. If an application
passes a null correlator anyway, when any agent receives this
correlator as the parent correlator for another transaction, the agent
can see that the data in the correlator is invalid and ignore it,
regardless of whether the “parent correlator” bit (Flags First Byte a)
is set in the arm_start buffer.

1 byte Correlator format (unsigned8)=1
Only one format is defined at this point, but others could be added in
the future.
 35

1 byte Flags
First Byte (bit8)
ab000000, where a and b are bit flags:
a = 1 if a trace of this transaction and any nested component
transactions is requested by the agent.
b = 1 if a trace of this transaction and any nested component
transactions is requested by the application. The application requests
this by setting the “d” bit (in abcdefgh notation) in the first flag byte
in the buffer passed on arm_start. The agent will decide whether to
set this bit, based on its capabilities and how it is configured.
The “trace this correlator” flag is a way to cause agents to trace and/or
monitor a transaction and all component transactions associated with
the transaction without having to trace or monitor all transactions on
a system, or without requiring a complicated infrastructure to control
tracing and monitoring. (Note that this does not preclude other ways
to control agents, nor is this intended to be a final and comprehensive
solution. It is intended that this will be used in addition to other
approaches).
When an agent builds a correlator, it is free to turn on these flags. The
agent might do this if an application has been experiencing
unsatisfactory response times. Any agents that receive this correlator
as the parent correlator for a component transaction will also see the
flag, and they in turn could turn on the flag in any correlators they
generate. This process could repeat, resulting in the passing of the
trace flag through all the transactions of interest. All the agents
might be configured to trace only the few transactions with this flag
on, and this would both capture the information needed to diagnose
the transaction problem, and avoid overloading the agents and their
systems with attempts to trace all transactions.
The reason there are separate flags for traces requested by an agent
and an application is to provide additional flexibility in how policies
for monitoring and tracing are implemented. It might be common for
an installation to trace transactions only when requested by agents
(based on how the administrator has configured the agents), because
then the administrator would control all tracing. On the other hand,
permitting the application to highlight when a transaction is special
has advantages.

Command
Format Description
36 Chapter A

2 bytes Format of the Address field (unsigned16)
The following formats are defined:
0 = reserved
1 = IPv4
2 = IPV4+port number
3 = IPv6
4 = IPv6+port number
5 = SNA
6 = X.25
7:32767 = reserved
This list will be expanded as new requirements arise. The intent is to
provide a value for any common addressing format as soon as the need
is identified.
32768-65535 = undefined and available for agent implementers to use.
There are no semantics associated with the address format. It will be
an unusual situation where a new format is needed, but this provides
a solution if this is needed. The preferred approach is to get a new
format defined that is in the 0-32767 range. There is a risk that two
different agent developers will choose the same id, but this risk is
small.

Command
Format Description
37

2 bytes Vendor ID (unsigned16)
The vendor ID is a way to identify who built the agent. Combining
this information with the Agent Version field will provide a way for a
management application to know what kind of agent generated a
correlator. A management application may contain specialized
functions or logic that only works with the agents from a particular
vendor and/or supporting particular functions or interfaces. By
putting these two fields in the correlator, a management application
has a way to know whether the agent that generated the correlator
has some of these specialized capabilities. For example:
The management application wants to contact the agent to know the
name of the application, user, and transaction class running this
transaction instance. Although the address of the agent is known
from the Address field, the protocol that one uses to interface to the
agent could be anything. The management application may know how
to access several different agents, and could use these values to
determine if the correlator came from an agent that it knows how to
access.
Alternately an agent has a special capability. For example, maybe
version 3.3 of a vendor’s agent analyzes data in a particular way, but
previous versions do not. The management application could use this
field to see what are the agent’s capabilities.
In order to minimize the possibility of two vendors using the same
vendor ID, the value should be taken from the list of enterprise
identifiers from the Internet Assigned Numbers Authority (IANA).
This list was created for vendors who have SNMP agents. Although
the ARM API specification does not require or endorse SNMP, it's
likely that most or all the organizations that will create an ARM agent
will have at least one enterprise ID assigned. The list of enterprise
IDs can be found at:

ftp://ftp.isi.edu/in-notes/iana/assignments/
enterprise-numbers

For organizations that don't have an enterprise identifier assigned by
the IANA, the values between 32768-65535 are free for agent
developers to use. There are no semantics associated with these ids.
It is expected that most or all agent developers will have a formally
assigned vendor id, and it will be an unusual situation where another
id is needed, but this provides a solution if this is needed. There is a
risk that two different agent developers will choose the same id, but
this risk is very small

Command
Format Description
38 Chapter A

2 bytes Agent Version (unsigned16)
The Agent Version is used to distinguish between different versions of
an agent, and will be most useful when the capabilities and/or
interfaces of an agent change from one release to another. It will also
be useful to distinguish between different agents from the same
vendor. Each vendor is responsible for avoiding having multiple
agents with different capabilities using the same Agent Version value.
Refer to the explanation in the Vendor ID field above to understand
how to use this field.

2 bytes Agent Instance (unsigned16)
Each agent assigns transaction ids and start handles. Typically there
will be one agent on each system, and this one agent is responsible for
making sure that there aren’t any duplicate ids or handles. From one
system to another, however, duplicate ids and handles will be
common, i.e., an id/handle combination assigned on system X will also
be assigned on system Y.
One of the main purposes of the Address, Vendor ID, and Agent
Version fields is to tell a management application how to contact an
agent in order to translate the transaction id and start handle into the
names of the application, user, and transaction class, and the instance
of the transaction. As long as there is only one set of ids and handles
stored at that address, all the required information is there. However,
if the address is not the address of an individual agent, but rather is
the address of a directory that contains information about multiple
agents, there isn’t sufficient information, because the id/handle
combinations can be duplicated.
The purpose of the Agent Instance field is to provide a way to identify
which agent generated a correlator, even if the correlation data from
multiple agents is available at the address specified in the Address
field

4 bytes Transaction instance (start_handle returned from an arm_start)

4 bytes Transaction class ID (tran_id returned from an arm_getid

2 bytes Length of the address field (unsigned16)

Command
Format Description
39

Maximum 146
bytes

Address:
This field is the address of the agent. More precisely, it is the address
that a management application can contact in order to have the
Transaction class ID mapped to the names of an application, user, and
transaction class, and to get information about the transaction
instance, or aggregated data about the transaction class (or any other
data).
The maximum length of this field is determined by an overall limit of
168 bytes for the correlator. In the correlator format described here,
the maximum address length is 146 bytes. In actual practice, it is
expected to be no more than 20 bytes for most implementations. If
new correlator formats are added in the future, the maximum size of
this field could change. The maximum correlator size of 168 bytes will
not change.
Correlators are passed on arm_start calls as part of the buffer pointed
to by the data pointer. The maximum size of the buffer is 256 bytes, of
which 88 bytes are used for other fields, leaving 168 bytes for the
correlator. An application should allocate space for the full 256 bytes
when making the arm_start call, but can then use the Correlator
Length field to determine how long the correlator really is, and only
forward that much data to other cooperating applications.
Following are the formats that have been defined so far. The data is
stored in network standard byte order, in which integers are sent most
significant byte first, unless otherwise indicated. This list is not
intended to be exhaustive, and will be extended whenever a new agent
implementation requires a new format.

Command
Format Description
40 Chapter A

0 = reserved
1 = IPv4

Bytes 0:3 4 byte IP address

2 = IPV4+port number

Bytes 0:3 4 byte IP address

Bytes 4:5 2 byte IP port number

3 = IPv6

Bytes 0:15 16 byte IP address

4 = IPv6+port number

Bytes 0:15 16 byte IP address

Bytes 16:17 2 byte IP port number

5 = SNA

Bytes 0:7 EBCDIC-encoded network ID

Bytes 8:15 EBCDIC-encoded network accessible unit (control
point or LU)

6 = X.25

Bytes 0:15 = The X.25 network address (also referred to as an
X.121 address). This is up to 16 ASCII character digits ranging
from 0-9. The length is known from the "Length of the address
field". An agent running over an X.25 link with the IP configured
may choose to use this format or the IP format. This format must
be used when IP is not configured above an X.25 link.

7:32767 = reserved
32768-65535 = undefined and available for agent implementers to
use

Command
Format Description
41

42 Chapter A

B Examples
These examples are shown for their simplicity. There are more elegant ways to program the
same tasks, but the examples demonstrate the ARM API function calls. These sample
programs and sample programs for languages other than C are also available on the ARM
API CD-ROM and the ARM Web Site mentioned earlier in this book under “For Your
Information” on page iv.
 43

arm.h Header File

#ifndef ARM_H_INCLUDED
#define ARM_H_INCLUDED

/**/
/* arm.h - ARM API Definitions */
/**/

#include <sys/types.h> /* C types definitions */

/* Type definitions for various field sizes */

/* 64-bit integer compiler support */
/* */
/* If a type declaration supporting 64 bit integer arithmatic is defined */
/* for the target platform and compiler, the "INT64" #define should be set */
/* to that type declaration. E.g., */
/* */
/* #define INT64 long long */
/* */
/* If 64 bit arithmatic is not supported on the target platform or */
/* compiler, remove (or comment out) the "INT64" #define and structures */
/* of two 32 bit values will be defined for the 64 bit fields. */

/*
#define INT64 long long
*/

typedef unsigned char bit8 ;
typedef short int16 ;
typedef long int32 ;
typedef unsigned char unsigned8 ;
typedef unsigned short unsigned16 ;
typedef unsigned long unsigned32 ;

#ifdef INT64
typedef INT64 int64 ;
typedef unsigned INT64 unsigned64 ;
#else
typedef struct int64 {
 int32 upper;
 int32 lower;
} int64 ;

typedef struct unsigned64 {
 unsigned32 upper;
 unsigned32 lower;
} unsigned64 ;
#endif

/*** Symbol definitions ***/

/* Enumeration of transaction status completion codes */

enum arm_tran_status_e { ARM_GOOD = 0, ARM_ABORT, ARM_FAILED };

/* Enumeration of user data formats */

enum arm_userdata_e { ARM_Format1 = 1, ARM_Format2, ARM_Format101 = 101 };

/* Enumeration of metric types */

typedef enum arm_metric_type_e {
44 Appendix B

 ARM_Counter32 = 1, ARM_Counter64, ARM_CntrDivr32,
 ARM_Gauge32, ARM_Gauge64, ARM_GaugeDivr32, ARM_NumericID32,
 ARM_NumericID64, ARM_String8, ARM_String32,
 ARM_MetricTypeLast
} arm_metric_type_e;

/***Data definitions ***/

/* User metric structures */

typedef struct arm_cntrdivr32_t {/* Counter32 + Divisor32 */
 unsigned32 count;
 unsigned32 divisor;
} arm_cntrdivr32_t;

typedef struct arm_gaugedivr32_t {/* Gauge32 + Divisor32 */
 int32 gauge;
 unsigned32 divisor;
} arm_gaugedivr32_t;

/* Union of user ARM_Format1 metric types */

typedef union arm_user_metric1_u {
 unsigned32 counter32; /* Counter32 */
 unsigned64 counter64; /* Counter64 */
 arm_cntrdivr32_t cntrdivr32; /* Counter32 + Divisor32 */
 int32gauge32; /* Gauge32 */
 int64gauge64; /* Gauge64 */
 arm_gaugedivr32_t gaugedivr32; /* Gauge32 + Divisor32 */
 unsigned32 numericid32; /* NumericID32 */
 unsigned64 numericid64; /* NumericID64 */
 char string8[8]; /* String8 */
} arm_user_metric1_u;

/* Application view of correlator */

typedef struct arm_app_correlator_t {
 int16length;/* Length of the correlator */
 charagent_data[166];/* Agent-specific data fields */
} arm_app_correlator_t;

/* User metrics ARM_Format1 structure definition */

typedef struct arm_user_data1_t {
 int32 format;/* Version/format id (userdata_e) */
 bit8 flags[4];/* Flags for metrics' presence */
 arm_user_metric1_u metric[6];/* User metrics */
 char string32[32];/* 32 byte non-terminated string */
 arm_app_correlator_t correlator;/* Correlator */
} arm_user_data1_t;

/* User metrics ARM_Format2 structure definition */

typedef struct arm_user_data2_t {
 int32 format;/* Version/format id (userdata_e) */
 char string1020[1020];/* 1020 byte opaque blob */
} arm_user_data2_t;

/* User metric meta-data for ARM_Format101 structure */

typedef struct arm_user_meta101_t {
 int32 type;/* Type of metric (arm_user_metric_e) */
 char name[44];/* NULL-terminated string <= 44 char */
} arm_user_meta101_t;

/* User meta-data ARM_Format101 structure definition */
Examples 45

typedef struct arm_user_data101_t {
 int32 format;/* Version/format id (userdata_e) */
 bit8 flags[4];/* Flags for which fields are present */
 arm_user_meta101_t meta[7];/* User metrics meta-data */
} arm_user_data101_t;

/* Flag bit definitions (within bit8 fields) */

/* flags[0] in arm_user_data1_t passed in arm_start */
#define ARM_CorrPar_f0x80/* Correlator from parent */
#define ARM_CorrReq_f0x40/* Request correlator generation */
#define ARM_CorrGen_f0x20/* New correlator generated in data */
#define ARM_TraceReq_f0x10/* User trace request */

/* flags[1] in arm_user_data101_t passed in arm_get_id and */
/* flags[1] in arm_user_data1_t passed in arm_start, arm_update and arm_end */
#define ARM_Metric1_f 0x80/* Metric 1 present */
#define ARM_Metric2_f 0x40/* Metric 2 present */
#define ARM_Metric3_f 0x20/* Metric 3 present */
#define ARM_Metric4_f 0x10/* Metric 4 present */
#define ARM_Metric5_f 0x08/* Metric 5 present */
#define ARM_Metric6_f 0x04/* Metric 6 present */
#define ARM_AllMetrics_f 0xfc/* Metrics 1 - 6 present */
#define ARM_String1_f 0x02/* String 1 present */

#if defined _WIN32
 #include <windows.h>
 #define ARM_API WINAPI
#elif defined __OS2__
 #define ARM_API _Pascal
#elif defined _OS216
 #define arm_data_t char _far
 #define arm_ptr_t char _far
 #define ARM_API _far _pascal
#elif defined _WIN16 || _WINDOWS
 #include <windows.h>
 typedef BOOL (FAR PASCAL _export * FPSTRCB) (LPSTR, LPVOID);
 #define arm_data_t char FAR
 #define arm_ptr_t char FAR
 #define ARM_API WINAPI
#else /* unix */
#define ARM_API
#endif

#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */

#ifdef _PROTOTYPES

/*** Function prototypes ***/

extern int32 ARM_API arm_init(
 char* appl_name,/* application name */
 char* appl_user_id,/* Name of the application user */
 int32 flags,/* Reserved = 0 */
 char* data,/* Reserved = NULL */
 int32 data_size);/* Reserved = 0 */

extern int32 ARM_API arm_getid(
 int32 appl_id,/* application handle */
 char* tran_name,/* transaction name */
 char* tran_detail,/* transaction additional info */
 int32 flags,/* Reserved = 0 */
 char* data,/* format definition of user metrics */
46 Appendix B

 int32 data_size);/* length of data buffer */

extern int32 ARM_API arm_start(
 int32 tran_id, /* transaction name identifier */
 int32 flags, /* Reserved = 0 */
 char* data, /* user metrics data */
 int32 data_size); /* length of data buffer */

extern int32 ARM_API arm_update(
 int32 start_handle,/* unique transaction handle */
 int32 flags,/* Reserved = 0 */
 char* data,/* user metrics data */
 int32 data_size);/* length of data buffer */

extern int32 ARM_API arm_stop(
 int32 start_handle,/* unique transaction handle */
 int32 tran_status,/* Good=0, Abort=1, Failed=2 */
 int32 flags,/* Reserved = 0 */
 char* data,/* user metrics data */
 int32 data_size);/* length of data buffer */

extern int32 ARM_API arm_end(
 int32 appl_id,/* application id */
 int32 flags,/* Reserved = 0 */
 char* data,/* Reserved = NULL */
 int32 data_size);/* Reserved = 0 */

#else /* _PROTOTYPES */

extern int32 ARM_API arm_init();
extern int32 ARM_API arm_getid();
extern int32 ARM_API arm_start();
extern int32 ARM_API arm_update();
extern int32 ARM_API arm_stop();
extern int32 ARM_API arm_end();

#endif /* _PROTOTYPES */

#ifdef __cplusplus
}
#endif /* __cplusplus */

/* Type definitions for compatibility with version 1.0 of the ARM API */

typedef int32 arm_appl_id_t;

typedef int32 arm_tran_id_t;

typedef int32 arm_start_handle_t;

typedef unsigned32 arm_flag_t;

typedef char arm_data_t;

typedef int32 arm_data_sz_t;

typedef char arm_ptr_t;

typedef int32 arm_ret_stat_t;

typedef int32 arm_status_t;

#endif /* ARM_H_INCLUDED */
Examples 47

C/C++ (all platforms) Sample 1

Sample 1 uses standard ARM API calls, not advanced functions.

/***/
/* sample1.c */
/* */
/* This program provides examples of how to use the features provided by */
/* version 1.0 and 2.0 of the ARM API. */
/* */
/***/

#include <stdio.h>
#include "arm.h"

int32 appl_id = -1; /* Define an indentifer for the application id */

int32 simple_tran_id = -1; /* Define a unique identifier for each */
int32 long_tran_id_1 = -1; /* TRANSACTION */
int32 long_tran_id_2 = -1;
int32 sub_tran_id_1 = -1;
int32 sub_tran_id_2 = -1;

/***/
/* init */
/***/

void init()
{
 appl_id=arm_init("ARM sample program", /* application name */
 "*", /* use default user */
 0,0,0);

 simple_tran_id = arm_getid(appl_id,
 "Simple_transaction_1", /* transaction name */
 "First Transaction in Sample program",
 0,0,0);
 if (simple_tran_id < 0)
 printf("Simple_transaction_1 is not registered.\n");

 long_tran_id_1 = arm_getid(appl_id,
 "Long_transaction_1", /* transaction name */
 "A long transaction using arm_update",
 0,0,0);
 if (long_tran_id_1 < 0)
 printf("Long_transaction_1 is not registered.\n");

 long_tran_id_2 = arm_getid(appl_id,
 "Long_transaction_2", /* transaction name */
 "A long transaction using sub transactions",
 0,0,0);
 if (long_tran_id_2 < 0)
 printf("Long_transaction_2 is not registered.\n");

 sub_tran_id_1 = arm_getid(appl_id,
 "Sub_tran1_of_long_tran_2", /* transaction name */
 "Subtransaction 1 of Long_trans2",
 0,0,0);
 if (sub_tran_id_1 < 0)
 printf("Sub_tran_of_long_tran_2 is not registered.\n");

 sub_tran_id_2 = arm_getid(appl_id,
 "Sub_tran2_of_long_tran_2", /* transaction name */
 "Subtransaction 2 of Long_trans2",
 0,0,0);
48 Appendix B

 if (sub_tran_id_2 < 0)
 printf("Sub_tran_of_long_tran_2 is not registered.\n");

} /* init */

/***/
/* simple_trans1 */
/***/

void simple_trans1()
{
 int32 tran_handle;

 tran_handle = arm_start(simple_tran_id, /* transaction id from arm_getid */
 0,0,0);

 /***/
 /* Perform actual transaction processing here*/
 /***/

 arm_stop(tran_handle, /* transaction handle from arm_start */
 ARM_GOOD, /* successful completion define = 0 */
 0,0,0);
 return;
} /* simple_trans1 */

/***/
/* long_trans_using_update */
/* */
/* arm_update can show the progress of an iterative process */
/***/

void long_trans_using_update()
{

#define MAX_COUNT 1000000
#define UPDATE_COUNT 100000 /* call update every 100,000 iterations */

 int32 tran_handle;
 int i;

 tran_handle = arm_start(long_tran_id_1, /* transaction id from arm_getid */
 0,0,0);

 for (i=1;i<=MAX_COUNT;i++)
 {
 /* your processing goes here */

 if (i%UPDATE_COUNT == 0)
 arm_update(tran_handle, /* update based on UPDATE_COUNT */
 0,0,0);
 }

 arm_stop(tran_handle, /* transaction handle from arm_start */
 ARM_GOOD, /* successful completion define = 0 */
 0,0,0);
 return;

} /* long_trans_using_update */

/***/
/* long_trans_using_sub_trans */
/* */
/* Sub-transactions can show the progress of the steps of a long transaction.*/
/***/
Examples 49

void long_trans_using_sub_trans()
{
 int32 tran_handle;
 int32 sub_tran_handle1;
 int32 sub_tran_handle2;

 /* record the overall transaction processing (optional) */

 tran_handle = arm_start(long_tran_id_2, /* transaction id from arm_getid */
 0,0,0);

 /* start recording the first step of the long transaction */
 sub_tran_handle1 = arm_start(sub_tran_id_1,
 0,0,0);

 /**************************************/
 /* Process step 1 on this transaction */
 /**************************************/

 /* record the completion of the first step */
 arm_stop(sub_tran_handle1, /* transaction handle from arm_start */
 ARM_GOOD, /* successful completion define = 0 */
 0,0,0);

 /* start recording the second step of the long transaction */
 sub_tran_handle2 = arm_start(sub_tran_id_2,
 0,0,0);

 /**************************************/
 /* Process step 2 on this transaction */
 /**************************************/

 /* record the completion of the second step */
 arm_stop(sub_tran_handle2, /* transaction handle from arm_start */
 ARM_GOOD, /* successful completion define = 0 */
 0,0,0);

 /* record the completion of the overall transaction */
 arm_stop(tran_handle, /* transaction handle from arm_start */
 ARM_GOOD, /* successful completion define = 0 */
 0,0,0);
 return;
} /* long_trans_using_sub_trans */

/***/
/* main */
/***/

main()
{

 int continue_processing = 1;

 init();

 while (continue_processing)
 {
 simple_trans1();
 long_trans_using_update();
 long_trans_using_sub_trans();

 continue_processing = 0;
 }

 arm_end(appl_id, /* application id from arm_init */
50 Appendix B

 0,0,0);

 return(0);

}

Examples 51

C/C++ (all platforms) Sample 2

Sample 2 uses the advanced functions of application-defined metrics and transaction
correlation.

/***/
/* Sample2.c */
/* */
/* This program provides examples of how to use two of the new features */
/* provided by version 2.0 of the ARM API, user defined metrics and */
/* correlation. For simplicity, this sample program does not perform any */
/* error checking. */
/***/

#include <stdio.h>
#include "arm.h"

int32 client_appl_id = -1; /* application id */
int32 client_tran_id = -1; /* transaction id */

int32 metric_appl_id = -1; /* application id */
int32 metric_tran_id = -1; /* transaction id */

/***/
/* server_application */
/* */
/* This routine is included here to simplify this example. In a real life */
/* situation, this piece of code would likely be running on a separate */
/* system. */
/***/

void server_application(arm_app_correlator_t client_correlator)

{
 int32 server_appl_id = -1; /* unique application id */
 int32 server_tran_id = -1; /* unique transacation id */
 int32 server_tran_handle = -1; /* transaction instance */

 arm_user_data1_t *buf_ptr, buf = {
 1, /* header */
 {ARM_CorrPar_f, 0, 0, 0}, /* flags */
 };

 int32 buf_sz;

 int i, data_len;

 server_appl_id=arm_init("Server_Application", /* application name */
 "*", /* use default user */
 0,0,0); /* reserved */

 server_tran_id = arm_getid(server_appl_id, /* appl_id from arm_init */
 "Server_transaction", /* transaction name */
 "First Transaction in Server program",
 0, /* data buffer */
 0,0); /* buffer pointer & size */

 /* Pass the parent correlator received from the client application to */
 /* the ARM agent using the arm_start call. */

 buf_ptr = &buf;
 buf_ptr->flags[0] = ARM_CorrPar_f;

 buf_ptr->correlator.length = client_correlator.length;
52 Appendix B

 data_len = (client_correlator.length - sizeof(client_correlator.length));
 for (i = 0; i < data_len; i++)
 buf_ptr->correlator.agent_data[i] = client_correlator.agent_data[i];

 buf_sz = (sizeof(buf)-sizeof(client_correlator) + client_correlator.length);

 server_tran_handle = arm_start(server_tran_id, /* tran_id from arm_getid */
 0, /* reserved */
 (char *)buf_ptr,
 buf_sz);

 /**/
 /* Perform actual transaction processing here */
 /**/

 arm_stop(server_tran_handle, /* transaction handle from arm_start */
 ARM_GOOD, /* successful completion define = 0 */
 0, /* reserved for future use */
 0,0); /* buffer pointer & buffer size */

 arm_end(server_appl_id, /* application id from arm_init */
 0,0,0); /* reserved for future use */

 return;

} /* server_application() */

/***/
/* client_transaction */
/***/

void client_transaction()

{
 int32 client_tran_handle = -1;/* transaction start handle */

 arm_user_data1_t *buf_ptr, buf = {
 1, /* Header */
 };

 int32 buf_sz;

 arm_app_correlator_t correlator = {
 0, /* correlator length */
 0, /* agent data */
 };

 int i, data_len;

 buf_ptr = &buf;
 buf_sz = sizeof(buf);

 /* The client appliation requests a correlator from the ARM Agent */

 buf_ptr->flags[0] = ARM_CorrReq_f;
 client_tran_handle = arm_start(client_tran_id, /* tran_id from arm_getid */
 0, /* reserved for future use */
 (char *)buf_ptr, /* metrics buf ptr */
 buf_sz); /* user metric buffer size */

 /* If the ARM Agent returns a correlator, determine the size of the */
 /* agent specific data in the correlator and pass the data, along with */
 /* the correlator length, to the server application. */

 if ((buf_ptr->flags[0] & ARM_CorrGen_f) == ARM_CorrGen_f) {
Examples 53

 correlator.length = buf_ptr->correlator.length;
 data_len = (correlator.length - sizeof(buf_ptr->correlator.length));
 for (i = 0; i < data_len; i++)
 correlator.agent_data[i] = buf_ptr->correlator.agent_data[i];
 }

 server_application(correlator);

 arm_stop(client_tran_handle, /* transaction handle from arm_start */
 ARM_GOOD, /* successful completion define = 0 */
 0, /* reserved for future use */
 0,0); /* buffer pointer & buffer size */

 return;

} /* client_transaction() */

/***/
/* init_client_application */
/***/

void init_client_application()

{

 client_appl_id=arm_init("Client_Application", /* application name */
 "*", /* use default user */
 0,0,0); /* reserved for future use */

 client_tran_id = arm_getid(client_appl_id, /* appl_id from arm_init */
 "Client_transaction", /* transaction name */
 "First transaction in Client application",
 0, /* reserved */
 0,0); /* buffer pointer & size */

 return;

} /* init_client_application */

/***/
/* metric_transaction */
/***/

void metric_transaction()

{
 int32 metric_tran_handle = -1;/* transaction start handle */

 arm_user_data1_t *buf_ptr, buf = {
 1, /* Header */
 {0, ARM_AllMetrics_f | ARM_String1_f, 0, 0}, /* Flags */
 };

 int32 buf_sz;

 buf_ptr = &buf;
 buf_sz = sizeof(buf);

 buf_ptr->metric[0].counter32 = 0x32;
 buf_ptr->metric[1].gauge32 = 0x32;
 buf_ptr->metric[2].counter64.upper = 0x01234567;
 buf_ptr->metric[2].counter64.lower = 0x76543210;
 strcpy(buf_ptr->metric[3].string8, "String 8");
 buf_ptr->metric[4].cntrdivr32.count = 0x32;
 buf_ptr->metric[4].cntrdivr32.divisor = 0x32;
 buf_ptr->metric[5].numericid64.upper = 0x01234567;
54 Appendix B

 buf_ptr->metric[5].numericid64.lower = 0x76543210;
 strcpy(buf_ptr->string32,"This is a 32 character string ");

 metric_tran_handle = arm_start(metric_tran_id, /* tran_id from arm_getid */
 0, /* reserved */
 (char *)buf_ptr, /* metrics buf ptr */
 buf_sz); /* user metric buffer size */

 /********************************/
 /* Perform some processing here */
 /********************************/

 arm_update(metric_tran_handle, /* transaction handle from arm_start */
 0, /* reserved for future use */
 (char *)buf_ptr, /* user metrics buffer pointer */
 buf_sz); /* user metric buffer size */

 /*************************************/
 /* Perform some more processing here */
 /*************************************/

 arm_stop(metric_tran_handle, /* transaction handle from arm_start */
 ARM_GOOD, /* successful completion define = 0 */
 0, /* reserved for future use */
 (char *)buf_ptr, /* user metrics buffer pointer */
 buf_sz); /* user metric buffer size */

 return;

} /* metric_transaction() */

/***/
/* init_metric_application */
/***/

void init_metric_application()

{
 arm_user_data101_t *buf_ptr, buf = {
 101,
 {0, ARM_AllMetrics_f | ARM_String1_f, 0, 0},
 {{1, "Metric #1 - Type 1 is a COUNTER32 "},
 {4, "Metric #2 - Type 4 is a GAUGE32 "},
 {2, "Metric #3 - Type 2 is a COUNTER64 "},
 {9, "Metric #4 - Type 9 is a STRING8 "},
 {3, "Metric #5 - Type 3 is a COUNTER32/DIVISOR32"},
 {8, "Metric #6 - Type 8 is a NUMERICID64 "},
 {10, "The last field is always a STRING32 "}
 }};

 int32 buf_sz;

 buf_ptr = &buf;
 buf_sz = sizeof(buf);

 metric_appl_id=arm_init("Metric_Application", /* application name */
 "*", /* use default user */
 0,0,0); /* reserved */

 metric_tran_id = arm_getid(metric_appl_id, /* appl_id from arm_init */
 "Metric_transaction", /* transaction name */
 "First transaction in Metric application",
 0, /* reserved */
 (char *)buf_ptr, /* buffer */
 buf_sz); /* buffer size */
Examples 55

 return;

} /* init_metric_application */

/***/
/* Main */
/***/

main()
{

 int continue_processing = 1;

 init_client_application();

 init_metric_application();

 while (continue_processing)
 {
 client_transaction();
 metric_transaction();
 continue_processing = 0;
 }

 arm_end(client_appl_id, /* application id from arm_init */
 0,0,0); /* reserved for future use */

 arm_end(metric_appl_id, /* application id from arm_init */
 0,0,0); /* reserved for future use */

 return(0);
}

56 Appendix B

	Application Response Measurement 2.0 API Guide
	Contents
	1 Application Response Measurement API
	Application Response Measurement
	Measuring Service Levels
	ARMing Your Applications
	What's New in Version 2.0 of the ARM API

	2 Basic Tasks for Instrumenting an Application
	What to Instrument

	3 The Software Developer's Kit (SDK)
	The ARM Shared Library (libarm)
	The Logging Agent
	The Header File

	4 Getting Started
	Installation
	UNIX systems
	OS/2, Windows 2000, Windows 2003 or Windows XP systems
	OS/2:
	Windows 2000/Windows 2003/Windows XP:

	Using the Logging Agent
	Overview of the ARM API Function Calls
	Adding ARM Function Calls to an Application
	Definition of Data Type Terminology
	Testing Your Instrumentation
	Logging Agent Sample Output

	5 arm_init
	Syntax:
	Parameters
	Return Code
	Example
	Error Handling:

	6 arm_getid
	Syntax
	Parameters
	Return Code
	Example
	Error Handling:

	7 arm_start
	Syntax
	Parameters
	Return Code
	Example
	Error Handling

	8 arm_update
	Syntax
	Parameters
	Return Code
	Example
	Error Handling

	9 arm_stop
	Syntax
	Parameters
	Return Code
	Example
	Error Handling:

	10 arm_end
	Syntax
	Parameters
	Return Code
	Example
	Error Handling

	A Performance Agent Information
	Format of the Correlator

	B Examples
	arm.h Header File
	C/C++ (all platforms) Sample 1
	C/C++ (all platforms) Sample 2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

