
HP OpenView Performance Agent

For the UNIX and Linux® Operating Systems

Software Version: 4.60
Application Response Measurement 2.0 API Guide
Document Release Date: December 2006

Software Release Date: December 2006

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Copyright Notices

© Copyright 1983-2006 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe® is a trademark of Adobe Systems Incorporated.

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and 64-bit
configurations) on all HP 9000 computers are Open Group UNIX 95 branded products.

Intel486 is a U.S. trademark of Intel Corporation.

Java™ is a U.S. trademark of Sun Microsystems, Inc.

Microsoft® is a U.S. registered trademark of Microsoft Corporation.

Netscape™ and Netscape Navigator™ are U.S. trademarks of Netscape Communications
Corporation.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City, California.

Oracle Reports™, Oracle7™, and Oracle7 Server™ are trademarks of Oracle Corporation,
Redwood City, California.

OSF/Motif® and Open Software Foundation® are trademarks of Open Software Foundation in
the U.S. and other countries.

Pentium® is a U.S. registered trademark of Intel Corporation.
2

SQL*Net® and SQL*Plus® are registered U.S. trademarks of Oracle Corporation, Redwood
City, California.

UNIX® is a registered trademark of The Open Group.

Windows NT® is a U.S. registered trademark of Microsoft Corporation.

Windows® and MS Windows® are U.S. registered trademarks of Microsoft Corporation.

All other product names are the property of their respective trademark or service mark
holders and are hereby acknowledged.
3

Support

You can visit the HP OpenView Support web site at:

www.hp.com/managementsoftware/support

HP OpenView online support provides an efficient way to access interactive technical support
tools. As a valued support customer, you can benefit by using the support site to:

• Search for knowledge documents of interest

• Submit and track support cases and enhancement requests

• Download software patches

• Manage support contracts

• Look up HP support contacts

• Review information about available services

• Enter into discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many
also require a support contract.

To find more information about access levels, go to:

www.hp.com/managementsoftware/access_level

To register for an HP Passport ID, go to:

www.managementsoftware.hp.com/passport-registration.html
4

Contents
1 Application Response Measurement API. 7

Introduction . 7
Measuring Service Levels . 9
ARMing Your Applications . 11
Additional Information . 13

2 Basic Tasks for Instrumenting an Application. 15

Introduction . 15
What to Instrument . 17

3 The Software Developer's Kit (SDK) . 19

Introduction . 19
The ARM Shared Library (libarm) . 20
The Logging Agent . 21
The Header File . 22

4 Getting Started . 23

Introduction . 23
Installation . 24

For UNIX and Linux systems. 25
For OS/2, Windows NT, or Windows 95 systems. 26

Using the Logging Agent . 27
Overview of the ARM API Function Calls . 28
Adding ARM Function Calls to an Application . 30

Definition of Data Type Terminology. 34
Testing Your Instrumentation. 35

Logging Agent Sample Output. 36
arm_init . 37
5

arm_getid . 40
arm_start . 43
arm_update . 46
arm_stop . 50
arm_end . 56

5 Advanced Topics . 59

Introduction . 59
Additional Data Passed in the ARM Function Calls . 60

Transaction Correlation . 61
Application-Defined Metrics. 64
Choosing A Data Type . 65
Format of Data Buffer in arm_getid . 68
Data Type Definitions. 70
Format of Data Buffer in arm_start, arm_update, arm_stop. 72

Three Ways to Instrument within a Transaction Instance . 78
Internationalization. 81
Introduction . 83
Format of the Correlator . 84
Introduction . 93
arm.h Header File . 94
C/C++ (all platforms) Sample 1. 100
C/C++ (all platforms) Sample 2. 105
6

1 Application Response Measurement API
Introduction

The applications that are used to run businesses have changed dramatically
over the past few years. In the early 1980s, large applications generally
executed on large computers, and were accessed from "dumb" terminals.
Non-networked applications executing on personal computers were just
beginning to be widely used. Since then, these two application models have
moved steadily towards each other, fusing together to form distributed
(networked) applications.

The most common programming model for distributed applications is the
client/server model. In a client/server application, the application is split into
two or more parts. One part is the user or client part, and this part generally
executes on a personal computer or workstation. The server parts execute on
computers that provide functions for the client part, that is, they serve the
client application. The client and server can run on the same system, but
generally they are on different systems. The client part of an application may
invoke one or more functions on one or more servers, and it may do a
significant amount of processing itself – combining, manipulating, or
analyzing the data provided by the servers.

An example of a client/server application might be processing a sales order by
retrieving inventory information from one database, sales information from
another database, and pricing information from a third. The client part of the
application determines if there is sufficient inventory to accept the order,
calculates the price based on current market conditions, factors in price
discounts for this particular customer, and then invokes more server functions
to complete processing of the order.

By contrast, host-centric applications contain all the application logic in one
computer system, and users connect through "dumb" terminals to use the
application. Examples of the protocols used by these applications are 3270,
Telnet, and X-Windows. The response time as seen by a user for a transaction
 7

can generally be broken down into two components: the time to process the
transaction on the host, and the time for the input message and the output
response. Processing time at the terminal is usually trivial.
8 Chapter 1

Measuring Service Levels

A monitoring product running at the host is able to measure the service levels
of host-centric applications. The monitor observes the input request message
that starts the transaction, and then observes the outbound response back to
the terminal. The difference between the two times is the amount of time to
process the transaction on the host. The monitor generally also measures the
time for the outbound response to be sent to the terminal and an
acknowledgment to be received, using this as an approximation of the transit
time. The combination of the host and transit times is an approximation of the
service level seen by the user.

Monitoring the performance and the availability of distributed applications
has not proven easy to do. Some of the fundamental assumptions that the
host-centric methods depend on do not hold true. Some examples:

• The user is typically running an application on a multitasking PC or
workstation. When the user presses a key or the mouse button, the
specified transaction starts, but the user may be able to continue doing
other operations. Put another way, there is no reliable way to correlate
keyboard or mouse input operations with business transactions.

• One user transaction (which would be classified as a business transaction)
may spawn several other component transactions, some of which may
execute locally and some remotely. Any measurement agents that exist
only in the network layer or in a host (server) will not see the entire
picture.

• The data may be sent through the network using various protocols, not
just one, making the task of packet decoding and correlation much more
difficult.

• Client/server applications can be complex, taking different execution
paths and spawning different component transactions, depending on the
results of previous component transactions. Every permutation could take
a different form when it goes across the communication link, making it
that much harder to reliably correlate network or host (server)
observations with what the user sees.
Application Response Measurement API 9

In spite of these difficulties, the need to monitor distributed applications has
never been greater. They are increasingly being used in mission-critical roles.
An approach that solves the problems listed above is to let the application
itself participate in the process. A developer knows unambiguously when
transactions begin and end, both those that are visible to the user, and the
component transactions that invoke transactions on remote servers.
10 Chapter 1

ARMing Your Applications

With the Application Response Measurement (ARM) API, a developer can
easily mark sections of an application to define business transactions. By
invoking ARM API function calls at the beginning and end of each
transaction, you can enable your application to be monitored by any of the
measurement agents that use data generated by the ARM API. Programs
executing on client or server systems can be instrumented.

By instrumenting your application to call the ARM API, you enable your
application to be managed by any of the measurement agents that implement
ARM. The advantage of this approach is that your application customers can
choose the measurement agent that best meets their needs without your
application needing to change.

System administrators will be able to answer some key questions such as:

• Is the application working correctly (available)?

• How is the application performing? What is the response time? What is
the workload throughput? You will be measuring the actual service levels
experienced by your users.

• Why is an application not available or performing poorly? What operation
was the application performing when the problem occurred? If a remote
server/application was being invoked when the problem occurred, which
one?

• Who is using the application, how much are they using it, and what kind
of operations are being performed? Which servers are providing the
services? This information is useful for capacity planning and for
charge-back accounting.
Application Response Measurement API 11

Figure 1 ARM in the Enterprise

Figure 1 shows how enterprise management applications, measurement
agents that implement the ARM API, and business applications that call the
ARM API work together to provide a robust way to monitor application
response.
12 Chapter 1

Additional Information

This Guide is intended for the application developers who want to know how
to instrument an application for transaction monitoring using the standard
Application Response Measurement (ARM) API function calls.

The 2.0 version of the ARM Software Developer's Kit has been developed with
the help of the ARM Working Group of the Computer Measurement Group
(CMG).

The 2.0 ARM SDK, including this documentation, is available on CD and from
the following CMG web site:

http://www.cmg.org/regions/cmgarmw

This web site also contains information on performance measurement agents
that use the data generated by the ARM API function calls and the latest
information regarding future updates or changes to the API.

A public discussion list for ARM, cmgarm is now available at:

cmgarm@cmg.org

To subscribe, send the following to majordomo@cmg.org

subscribe cmgarm
Application Response Measurement API 13

14 Chapter 1

2 Basic Tasks for Instrumenting an
Application
Introduction

There are three basic tasks involved in instrumenting an application with the
ARM API.

1 Define the key business transactions.

This is the most important step. Each application developer needs to
define who needs what kind of data, and what the data will be used for. It
is common and useful for this process to be a joint collaboration between
the users and developers of an application, and system and network
administrators.

There are two kinds of transactions that will generally provide the
greatest benefit if they are instrumented. The following procedure is
suggested:

• Start with transactions that are visible to users or that represent
major business operations. These are the building blocks for service
level agreements, for workload monitoring, and for early problem
detection.

• Next, focus on transactions that are dependent on external services,
such as a database operation, a Remote Procedure Call (RPC), or a
remote queue operation. These generally are components of a user/
business transaction. Knowing how these types of transactions are
performing can be invaluable when analyzing problems, tuning
applications, and reconfiguring systems and networks.

2 Modify the application to include calls to the ARM API.

The NULL libraries and logging agent in the ARM SDK can be used for
initial testing. The key is to decide where to place calls to the ARM API, by
doing a good job defining the key business transactions.
 15

3 Replace the NULL libraries or logging agent from the SDK with an
ARM-compliant agent and associated management applications. The
distributed applications can now be monitored in ways that previously
could only be hoped for.
16 Chapter 2

What to Instrument

The Application Response Measurement API is designed to instrument a unit
of work, such as a business transaction, that is performance sensitive. These
transactions should be something that needs to be measured, monitored, and
for which corrective action can be taken if the performance is determined to be
too slow.

This API is not designed to be a programmer profiling tool. The measurement
agents using data generated by this API are designed to give application/
system managers data to understand how their environment is performing,
and whether all services are available.

For information on measurement agents that do transaction monitoring, refer
to the web site mentioned earlier under the section Additional Information on
page 13, in Chapter 1. Links may be found on this site to commercially
available measurement agent solutions.

Some questions you may want to ask yourself when instrumenting a
transaction are:

• What unit of work does this transaction define?

• Are the transaction counts and/or response times important?

• Who will use this information?

• If performance of this transaction is too slow, is there some corrective
action that can take place (for example, off load work from the machine,
add memory, relocate remote files, etc.)?
Basic Tasks for Instrumenting an Application 17

18 Chapter 2

3 The Software Developer's Kit (SDK)
Introduction

This ARM SDK contains everything you need to prepare your application for
transaction monitoring. ARM SDK includes a default no-operation (NULL)
shared library that contains all the function calls you will need and a header
file. The NULL library allows developers to instrument and run their
applications without having one of the measurement agents installed.

Additionally, the source used to create the NULL library is part of the SDK.
This is provided so a shared library can be created for applications that exist
on platforms not currently supported by the measurement technologies. The
SDK contains NULL libraries compiled for UNIX systems (HP-UX, IBM AIX,
NCR MP-RAS, and Sun Solaris), Linux systems (Suse, Redhat, Debian, and
Turbo), and PC based systems (OS/2, Windows NT, and Windows 95). The kit
installs the correct library for the system.

A C language header file is supplied for applications written in either C or
C++.

The source code and header file for a logging agent is supplied for use in
testing your instrumentation.

Sample programs for C/C++ are provided as examples of how to instrument
applications. Examples for other programming languages from the ARM 1.0
SDK are also available on the CD and the web site.

The arm.lst file on the CD-ROM contains a detailed listing of all the files on
the CD-ROM.
 19

The ARM Shared Library (libarm)

The library specified here is a NULL shared library provided to resolve
externals in the code. If you are working with a specific vendor’s performance
measurement agent you may want to use the libarm library supplied for that
agent instead of the NULL library. The agent-specific library will return
errors that may be helpful during development, whereas the NULL library
will always return a non-error condition (0).

After installation libarm.* shared libraries reside in the directory where the
system libraries are installed. For example:

It is recommended that the library be used from the standard location. This is
so applications can locate the library in a standard location and be able to take
advantage of a measurement agent once it is installed on the system.

HP-UX 10.x /usr/lib/libarm.sl

IBM AIX /usr/lib/libarm.a

Sun Solaris /usr/lib/libarm.so

Linux /usr/lib/libarm.so
20 Chapter 3

The Logging Agent

The source code for a logging agent, logagent.c, has been included for use in
testing your instrumentation. The path is:

• UNIX and Linux systems

<install directory>/lib/logagent/logagent.c

• PC systems

<install directory>/ARM_SDK/LIB/logagent/logagent.c

Unlike the NULL libraries, it is only in source format so it needs to be
compiled. For more information, see the section Using the Logging Agent on
page 27, in Chapter 4.
The Software Developer's Kit (SDK) 21

The Header File

A C language header file, arm.h, is supplied for applications written in either
C or C++. If you are using a language other than C or C++, the data structures
and external references need to be translated to the language you are using.

Not all hardware systems or compilers provide native support for 64-bit
integers – nor is there yet a standard type declaration for them. For these
reasons the distributed version of the arm.h header file does not assume
native support for 64-bit integers. However, the symbol "INT64" can be
defined near the front of the file to customize the header for compilers and
systems with 64-bit integer support.
22 Chapter 3

4 Getting Started
Introduction

This chapter gives you the information you need to begin instrumenting your
application with the ARM API function calls.
 23

Installation

To get started, you need to install the ARM SDK files on your system. The
installation process installs the appropriate NULL shared library, the header
files, the shared library source code, logging agent source, documentation files
and sample program files for your system.

The installation utility prompts you for a directory to install the ARM source
files.

The NULL libraries for ARM 1.0 and ARM 2.0 are interchangeable, so a
failure to install will have no impact. You should contact your measurement
agent vendor if you need to update your agent’s shared library to ARM 2.0.
24 Chapter 4

For UNIX and Linux systems

1 Place the CD-ROM in the drive and mount the CD-ROM device onto your
system.

2 Type cd <mount directory>.

3 Type ./install (or ./INSTALL for HP-UX only), then follow the
prompts in the install process.

If a libarm.* shared library exists in the default directory, the install utility
will not install the library. This is so the installation will not overlay an
installation of one of the measurement agent’s libraries. Install will not copy
the library to the default (/usr/lib) directory if the directory is not writable
by the user.
Getting Started 25

For OS/2, Windows NT, or Windows 95 systems

1 Place the CD-ROM in the drive.

2 Create a DOS window.

3 Change the current drive to the CD-ROM drive.

4 Type INSTALL <drive letter:\install directory>

Where <drive letter> is the letter of the drive where you want to install the
ARM SDK and <install directory> is the directory path for the location of
where you want to install the ARM SDK. The install utility will put the
files into a directory called ARM_SDK under the <install directory>
specified.

5 Copy the LIBARM*.DLL to the standard location for the platform as shown
below. Do not copy the library if the library already exists in the
destination directory since you may be overwriting a measurement
agent-specific library with a NULL library.

• OS/2:

copy <install dir>\ARM_SDK\LIB\OS2\LIBARM.DLL
$os2dir$\DLL\LIBARM.DLL

• Windows95/Windows NT:

copy <install dir>\ARM_SDK\LIB\WIN95_NT\LIBARM32.DLL
windir$\SYSTEM32\LIBARM32.DLL
26 Chapter 4

Using the Logging Agent

The logging agent is provided for use in testing your instrumentation. It
provides more information than the NULL library that only returns zeros but
it does not function as a measurement agent.

The logging agent is provided in source format only, so it must be compiled.
The logging agent source code file, logagent.c, can be included and compiled
with an application implemented in C or it can be compiled into a library
object and linked to an application.

Statically link with the logging agent and then run your application.
Programmatic calls to the ARM API by the application result in the creation
of a text file log (log file by default) that contains a time-stamped history of
the calls and the parameter values associated with those calls. See the section
Testing Your Instrumentation on page 35 for a sample output file and more
information on using the logging agent.
Getting Started 27

Overview of the ARM API Function Calls

The ARM API is made up of a set of function calls that are contained in a
shared library. All the performance measurement agents that support the
ARM API provide their own implementation of the shared library. When you
insert the ARM API function calls in your application, it can be monitored by
the agents that implement the shared library. The advantage of this approach
is that your application customers can choose any measurement agent that
best meets their needs without your application needing to change.

Table 1 ARM API Function Calls

arm_init During the initialization of your application, call
arm_init which names your application and optionally
the users, and initializes the ARM environment for your
application. A unique identifier is returned that must be
passed to arm_getid.

arm_getid Use arm_getid to name each transaction class you use in
your application. This is often done during the
initialization of your application. A transaction class is a
description of a unit of work, such as “Check Account
Balance”. In each program, each transaction class may be
executed once or many times. The arm_getid returns a
unique identifier that must be passed to arm_start.

arm_start Each time a transaction class is executed, this is a
transaction instance. The arm_start signals the start of
execution of a transaction instance and returns a unique
handle to be passed to arm_update and arm_stop.
28 Chapter 4

arm_update This is an optional function call that can be made any
number of times after arm_start and before arm_stop.
The arm_update gives information about the transaction
instance, such as a "heartbeat" after a group of records has
been processed.

arm_stop The arm_stop signals the end of the transaction instance.

arm_end At termination of the application call arm_end which
cleans up the ARM environment for your application.
There should be no problem if this call is not made, but
memory may be wasted because it is allocated by the
agent even though it is no longer needed.

Table 1 ARM API Function Calls
Getting Started 29

Adding ARM Function Calls to an Application

The following steps show how to add ARM API function calls to an
application. Also shown is a very simple application that has been
instrumented with the libarm calls. Each numbered step below (1-4) is
highlighted in the source code for the sample application that follows.

1 Once the SDK is installed, include the header file reference (arm.h for C
and C++) in your source code and modify the compile link to reference the
library.

2 Identify the start and the end of the application and place the calls to
arm_init and arm_end. These calls are used for initialization and cleanup
of the ARM environment for your application, and therefore should be
called from the initialization and exit sections of your application.

3 Determine what transaction classes you want to instrument and the
names to use to uniquely identify each transaction class. Modify the code
to call arm_getid for each transaction class. The arm_getid calls can also
be made from the application initialization section.

4 Call arm_start just prior to the start of execution of the transaction and
arm_stop just after the transaction completes.

When distributing your application, the NULL shared library must be
included in your installation package. By doing this you will insure that your
application will load and execute correctly, even if no measurement agent is
installed. If the libarm.* file already exists on the system where your
application is being installed, do not overwrite the library. The library that
exists may be the NULL library or it could be one of the measurement agent's
libraries.

The API calls use the C calling conventions for UNIX and Linux systems, the
PASCAL calling conventions for OS/2 and the _std calling conventions for
Windows NT and Windows 95.
30 Chapter 4

/**/
/* sample.c */
/**/

#include <stdio.h>

(1) #include "arm.h"
arm_int32_t appl_id = -1; /*Unique identifier for the
application */
arm_int32_t tran_id = -1; /*Unique identifier for the
transaction */
void init()
{

(2) appl_id = arm_init("ARM sample program", /*
application name */
 "*", /* use default
user */
 0,0,0);
if (appl_id < 0)
 printf("ARM sample program not registered.\n");

(3) tran_id = arm_getid(appl_id, /*application id from
arm_init */
 "Sample_transaction", /* transaction
name */
 "First Transaction in Sample program",
 0,0,0);

 if (tran_id < 0)
 printf("Sample_transaction is not registered.\n");
} /* init */
void transaction()
{

 arm_int32_t tran_handle;
Getting Started 31

(4) tran_handle = arm_start(tran_id, /* transaction id from
arm_getid */
 0,0,0);
 /**/
 /* Perform actual transaction processing here */
 /**/
 sleep(1);

(4) arm_stop(tran_handle, /* transaction handle from
arm_start */
 ARM_GOOD, /* successful completion define
= 0 */
 0,0,0);
 return;
} /* transaction */
main()
{
 int continue_processing = 1;
 init();
 while (continue_processing)
 {

transaction();

 }

(2) arm_end(appl_id, /* application id from arm_init
*/
 0,0,0);
 return(0);
}

32 Chapter 4

Figure 2 ARM API Function Call Parameters

Figure 2 shows which parameters are used in each of the ARM API function
calls and what is passed on from one function call to another.
Getting Started 33

Definition of Data Type Terminology

The API calls use the following terminology to define each of the parameters.

The standard API calls use the following terminology to define each of the
parameters:

The more advanced functions in the API use the following terminology to
define each of the parameters:

These formats are in the native format of the hardware platform. This
accommodates the difference between "Big-Endian" and "Little-Endian"
systems, that is, the difference between hardware architectures in which the
most significant bit position is on the left versus the right.

arm_int32_t A signed 32-bit integer.

char* A 32-bit pointer to a character string or data structure.
Strings must be NULL terminated unless specified otherwise.
Strings are expected to be displayed, put in reports, etc., so
choose appropriate characters.

int64 A signed 64-bit integer.

unsigned32 An unsigned 32-bit integer.

unsigned64 An unsigned 64-bit integer.

bit8 A byte containing 8 single-bit flags. In this document,
when a bit8 is represented as eight flags using the
notation abcdefgh, a is the most significant bit, and h is
the least significant bit.

unsigned16 An unsigned 16-bit integer.

unsigned8 An unsigned 8-bit integer.
34 Chapter 4

Testing Your Instrumentation

The following tasks are recommended for testing your instrumentation after
you have included the ARM API calls in your program.

1 Link to the NULL library that is part of the ARM SDK. If the link fails, it
means that you are not linking to the correct library, or you are using
incorrect names or parameters in at least one of the ARM API calls.

2 Once you can link successfully, then run your application, including the
calls to the API, and verify that your application performs correctly. No
testing of the API calls is done except for the linking parameters, because
the NULL library simply returns zero every time it is called. Running the
application is useful to insure that you did not inadvertently alter the
program in a way that affects its basic function.

3 Compile the logging agent source, logagent.c, if you have not already.

4 Link to the logging agent generated in the previous step. Run your
application, including the calls to the ARM API and verify that your
application performs correctly.

5 Manually review the log created by the logging agent to verify that the
correct parameters are passed on each call. These parameters include
transaction ids to connect start calls to the correct transaction class, start
handles to connect stop calls to the correct start calls, and any of the
optional parameters. Optional advanced parameters include correlators
that indicate the parent/child relationship between transactions and
components, and metrics about the transaction or application state.

Search the log for error messages (identified by “ERROR” in the text) and
informative messages (identified by “INFO” in the text) after your
application has run for a considerable period of time in a simulated
production environment. Upon successful completion of this test, you
should be confident that your ARM API calls are correct. A sample log is
provided on the next page.

6 Link to a performance measurement product (if available) and run the
application under typical usage scenarios. This will test the entire system
of application plus management tools.
Getting Started 35

Logging Agent Sample Output

7:47:39.sss: arm_init: Application <Appl_0> User <User_0> =
Appl_id <1>

17:47:39.sss: arm_getid: Application <Appl_0> User <User_0>
Transaction <Tran_0> Detail <This is transaction type 0>

17:47:39.sss: arm_getid: Application <Appl_0> User <User_0>
Transaction <Tran_0> = Tran_id <1>

17:47:39.sss: arm_getid: Application <Appl_0> User <User_0>
Transaction <Tran_0> Metric Field <1> Type <1> Name <This is a
Counter32 user metric >

17:47:39.sss: arm_start: Application <Appl_0> User <User_0>
Transaction <Tran_0> = Start_handle <1>

17:47:39.sss: arm_start: Application <Appl_0> User <User_0>
Transaction <Tran_0> Start_handle <1> Metric < This is a
Counter32 user metric > : <0>

17:47:40.sss: arm_update: Application <Appl_0> User <User_0>
Transaction <Tran_0> Start_handle <1> Metric < This is a
Counter32 user metric > : <2>

17:47:41.sss: arm_stop: Application <Appl_0> User <User_0>
Transaction <Tran_0> Start_handle <1> Status <0>

17:47:41.sss: arm_stop: Application <Appl_0> User <User_0>
Transaction <Tran_0> Start_handle <1> Metric < This is a
Counter32 user metric > : <4>

17:47:41.sss: arm_end: Application <Appl_0> User <User_0>
appl_id <1>
36 Chapter 4

arm_init

Use arm_init to define the application or a unique instance of the application
and user. You must call arm_init before any other ARM API calls. It is often
called when an application initializes. The return code is an application/user
identifier that is input as a parameter on the arm_getid to associate
transactions with the application.

Each application needs to be identified by a unique name. It is your
responsibility to choose a name that is meaningful, and that will not likely
duplicate the names other developers will choose for their applications.
Suggestions for names would be the product name and version number or a
project name.

There can be any number of application instances executing simultaneously
that use the same application name, or the same application and user names.
A measurement agent may assign a unique application identifier to each
application instance, or it may assign an identifier that is shared across
identically named instances.

Syntax:

appl_id=arm_init(appl_name,appl_user_id,flags,data,\
data_size)
Getting Started 37

Parameters:

Return Code:

Example:

 my_appl_id = arm_init (“Parts Inventory Manager 1.1”, /
* appl name */
 “*”,

/* user id */
 0, 0, 0); /*
reserved for future use */

appl_name (char*) The name used to identify the application. The
maximum length is 128 bytes including the
NULL string terminator.

appl_user_id (char*) The name of the application user. On UNIX,
Linux and Windows you can set this value to *
to indicate the login user ID of the person
running the application. The maximum length
is 128 bytes including the NULL string
terminator. If you do not provide a value for this
parameter, you must specify the NULL value
(0).

flags (arm_int32_t)=0 Reserved for future use. It must be set to zero.

data (char*)=0 Reserved for future use. A NULL value (0) must
be used.

data_size
(arm_int32_t)=0

Reserved for future use. It must be set to zero.

appl_id (arm_int32_t) A unique value to reference an application/user
identifier. This ID must be passed to the
arm_getid call.
38 Chapter 4

Error Handling:

If the value returned in appl_id is less than zero, an error occurred in
communicating with the measurement agent. The value returned on an error
can be passed to arm_getid which will cause arm_getid to function as a
NULL operation. The error should be logged so corrective action can be taken.
Getting Started 39

arm_getid

The arm_getid function call is used to assign a unique identifier to a
transaction class, and optionally to describe the format of additional data
passed on arm_start, arm_update, and arm_stop calls. This is often done
during the initialization of your application. The identifier returned by
arm_init is passed as a parameter in arm_start calls to identify which class
of transaction is starting.

A transaction class is a description of a unit of work, such as “Check Account
Balance”. Any number of transaction classes can be defined within each
application. The transaction class name should help a person understand
what function the transaction performs. The call to arm_getid need be made
only once for each transaction class each time the application is started. A call
to arm_getid can be made with the same information as a previous call, in
which case the transaction identifier (tran_id) that is returned will be the
same as the previous calls. Four types of information are tested to see if the
information is the same. If any of these are different, a different tran_id will
be returned.

• The application identifier (appl_id).

• The transaction name (tran_name).

• The data pointer (data) was NULL on previous calls and is not NULL, or
it was not NULL on previous calls and now it is NULL.

• If the data pointer (data) is not NULL on previous calls and this call, and
the contents and size (data_size) of the buffer pointed to by the data
parameter differ.

Any number of transaction classes can be defined within each application. In
each application, each transaction class may be executed any number of times.
Each time a transaction class is executed (through arm_start), it is called a
transaction instance. There can be any number of instances of each
transaction class executing simultaneously.

Syntax:

tran_id=arm_getid(appl_id,tran_name,tran_detail,flags,\
data,data_size)
40 Chapter 4

Parameters:

appl_id (arm_int32_t) The unique reference to an application/user
identifier returned from the arm_init call. If
the appl_id is less than zero, this arm_getid
call will be treated as a NULL operation, and a
negative tran_id returned.

tran_name (char*) The unique name of the transaction class. It is
defined for each transaction class by the
application developer. It must be unique within
the application (for each arm_init call). The
maximum length is 128 bytes including the
NULL string terminator.

tran_detail (char*) Transaction detail allows a developer to provide
additional information about a transaction class.
It is a free-form text area that is set once for
each appl_id/tran_name pair. If the contents of
the field change on later calls using the same
appl_id/tran_name pair, the new contents are
ignored. The maximum length is 128 bytes
including the NULL string terminator. If no
tran_detail is associated with this transaction,
you must specify the NULL value (0).

flags (arm_int32_t)=0 Reserved for future use. It must be set to zero.

data (char*) A pointer to a buffer that describes the format of
additional data that can be passed on
arm_start, arm_update, and arm_stop calls. If
no additional data is passed on these calls, this
parameter must be set to zero (0). See the
section Format of Data Buffer in arm_getid in
Chapter 5 for the detailed buffer format.

data_size (arm_int32_t) The length in bytes of the buffer pointed to by
data. If data is set to zero (0), data_size must
also be set to zero.
Getting Started 41

Return Code:

Example:

 my_tran_id = arm_getid (my_appl_id, /* application name
*/
 “Part Number Query”, /* transaction name
*/
 “Call to Server XYZ”, /* transaction
details */
 0, /* reserved for
future use */
 my_buffer_ptr, /* metrics data/
metrics meta-data */
 my_buffer_length); /* length of data
buffer */

Error Handling:

If the value returned in tran_id is less than zero, an error occurred in
communicating with the measurement agent. The most likely cause is passing
an invalid value for appl_id. The value returned on an error can be passed to
arm_start which will cause arm_start to function as a NULL operation. The
error should be logged so corrective action can be taken.

tran_id (arm_int32_t) The unique identifier assigned for this transaction
class. This ID needs to be passed on arm_start
calls.
42 Chapter 4

arm_start

Use arm_start to mark the beginning of execution of a transaction. Each time
a transaction executes, it is called a transaction instance. You must call
arm_start in your application at the beginning of each transaction instance
you want monitored.

Additional information about the transaction can be provided in the optional
data buffer. If no additional information is provided, pass a null pointer. This
information can be provided on any or all of the arm_start, arm_update, and
arm_stop calls, except correlation information which is passed only on
arm_start. Chapter 5, Advanced Topics for details on how to pass this
information.

Syntax:

start_handle=arm_start(tran_id,flags,data,data_size)
Getting Started 43

Parameters:

Return Code:

Example:

 my_handle = arm_start (my_tran_id, /* transaction
handle */
 0, /* reserved
for future use */
 my_buffer_ptr, /* metrics
data/correlator */
 my_buffer_length); /* length of
data buffer */

tran_id (arm_int32_t) The unique identifier assigned to the transaction
class. This is the ID generated by arm_getid. If
the tran_id is less than zero, this arm_start call
will be treated as a NULL operation, and a
negative start_handle returned.

flags (arm_int32_t)=0 Reserved for future use. It must be set to zero.

data (char*) A pointer to a buffer with additional data that can
optionally be passed. If no additional data is
passed, this parameter must be set to zero (0). See
the section Format of Data Buffer in arm_start,
arm_update, arm_stop on page 72, in Chapter 5
for the detailed buffer format.

data_size
(arm_int32_t)

The length in bytes of the buffer pointed to by the
data parameter. If data is set to zero (0),
data_size must also be set to zero.

start_handle

(arm_int32_t)

The unique transaction handle assigned to this
instance of a transaction. This handle must be
passed on arm_stop and any arm_update calls.
44 Chapter 4

Error Handling:

If the value returned in start_handle is less than zero, an error occurred in
communicating with the measurement agent. The most likely cause is passing
an invalid value for tran_id. The value returned on an error can be passed to
arm_update and arm_stop calls, which will cause these calls to function as
NULL operations. The error should be logged so corrective action can be
taken.
Getting Started 45

arm_update

Use arm_update for the following purposes. This is an optional call.

• To show the progress of a long transaction.

Put the arm_update call into your application program after arm_start
and before arm_stop each time you want to send a "heartbeat" indicating
that the transaction instance is still running. This would typically be done
after a fixed interval of time (such as every minute) or after a fixed
amount of work is completed (such as 1000 records processed). There can
be any number of arm_update calls between an arm_start/arm_stop
pair. This call is most useful for long-running transactions that take
minutes or hours to complete. Another way to capture data about the steps
within a long transaction is to use component transactions. For more
information, see the sectionThree Ways to Instrument within a
Transaction Instance on page 78 in Chapter 5.

The arm_update is also useful for updating any of the metric or string
variables passed in the buffer pointed to by the data parameter (as
defined in arm_getid). This could be used to show not only that the
transaction is progressing, but also how far it has progressed. For
example, every time another 1000 records are processed, an arm_update
call could be made with an updated count in the buffer.

• To provide extra information about a transaction.

Put the call into your application program after arm_start and before
arm_stop each time you want to provide special information about a
transaction instance. If there is no additional information to be provided,
pass a null pointer. There are several types of additional information that
may be useful: information about the size of the transaction (such as the
number of bytes in a print job), information about the state of the
application (such as the number of threads that are running), and
diagnostic information. This type of information can be provided via
application-defined metrics on any or all of the arm_start, arm_update,
and arm_stop calls. See Table 3 on page 73, in Chapter 5 for the detailed
buffer format.
46 Chapter 4

• To provide a larger opaque application private buffer.

Information that does not conform well to application-defined metrics (for
example long diagnostic messages) may be provided via an opaque buffer
containing up to 1020 bytes of data (Format 2). Except for the four-byte
Format field the content of the buffer is entirely up to the application
developer. Because the contents of the buffer containing the information is
known only to the application developer, measurement agents cannot do
much with the data in this field. A typical measurement agent might
provide an option to write the buffer with the information to a log file, but
this is the most that can be expected.

Measurement agents are not required to do anything with the information
in this call.

Syntax:

error_status=arm_update(start_handle,flags,data,data_size
)

Getting Started 47

Parameters:

start_handle (arm_int32_t) The unique handle from the arm_start call
that marked the start of this transaction
instance. The start_handle must be
passed in each arm_update call. Many
transaction instances may be executing at
the same time from this and other
applications, so this handle is essential to
identify which transaction instance is being
updated. If start_handle is less than zero,
this arm_update call will be treated as a
NULL operation, and a negative
error_status returned.

flags (arm_int32_t)=0 Reserved for future use. It must be set to
zero.

data (char*) A pointer to a buffer with additional data
that can optionally be passed. If no
additional data is passed, this parameter
should be set to zero (0).
There are two possible buffer formats:
If the Format field contains the value 1,
then application-defined metrics as defined
in arm_getid can be passed. The
Correlator field is not used in the
arm_update call.
If the Format field contains the value 2,
then a status message up to 1020 bytes in
length may be passed in.
See the section Format of Data Buffer in
arm_start, arm_update, arm_stop on
page 72, in Chapter 5 for the detailed buffer
formats.

data_size (arm_int32_t) The length in bytes of the buffer pointed to
by data. If data is set to zero (0), data_size
should also be set to zero.
48 Chapter 4

Return Code:

Example:

 status = arm_update (my_handle, /* transaction
handle */
 0, /* reserved for
future use */
 my_buffer_ptr, /* data
description */
 my_buffer_length); /*length of
data description */

Error Handling:

If the value returned in error_status is less than zero, an error occurred in
communicating with the measurement agent. The most likely cause is passing
an invalid value for start_handle. The error should be logged so corrective
action can be taken.

error_status (arm_int32_t) Contains a zero if successful and a
negative value if an error occurred.
Getting Started 49

arm_stop

Use arm_stop to mark the end of a transaction instance that was started with
arm_start. Call arm_stop from your application program just after each
transaction instance ends.

In addition to signaling the end of the transaction instance, which allows a
measurement agent to calculate the elapsed time since the arm_start,
additional information about the transaction can be provided in the optional
data buffer. This information can be provided on any or all of the arm_start,
arm_update, and arm_stop calls.

Syntax:

error_status=arm_stop(start_handle,tran_status,flags,data
,\ data_size)
50 Chapter 4

Parameters:
Getting Started 51

start_handle (arm_int32_t) The unique handle from the
arm_start call that marked the start
of this transaction instance. The
start_handle must be passed in each
arm_stop call. Many transaction
instances may be executing at the
same time from this and other
applications, so this handle is
essential for the measurement agent
to use to identify which transaction
instance is stopping. If start_handle
is less than zero, this arm_stop call
will be treated as a NULL operation,
and a negative error_status
returned.
52 Chapter 4

tran_status (arm_int32_t) The completion code of the
transaction, as determined by the
application.
0 = Transaction successful (defined as
ARM_GOOD in arm.h). Use this value
when the operation completed
normally and as expected.
1 = Transaction aborted (defined as
ARM_ABORT in arm.h). Use this value
when there was a fundamental failure
in the system.
For example, a timeout from a
communications protocol stack, or an
error when doing a database
operation.
2 = Transaction failed (defined as
ARM_FAILED in arm.h). Use this value
in applications where the transaction
worked properly, but no result was
generated. For example, when making
an airline reservation, a server
indicates no seats are available on the
requested flight. Since no reservation
was made, the transaction was not
successful; but since the reservation
system is operating correctly, it is not
an aborted transaction either. In this
case, you might want to record the
transaction as a failed transaction.
Getting Started 53

Return Code:

Example:

 status = arm_stop (my_handle, /* transaction handle
*/
 ARM_GOOD, /* transaction
status */
 0, /* reserved for
future use */
 buffer_ptr, /* data
description */
 buffer_length); /* length of data
description */

flags (arm_int32_t)=0 Reserved for future use. It must be set
to zero.

data (char*) A pointer to a buffer with additional
data that can optionally be passed. If
no additional data is passed, this
parameter should be set to zero (0).
The format is identical to the
arm_start call, except the
Correlator field is not used in the
arm_stop call.
See the section Format of Data Buffer
in arm_start, arm_update, arm_stop
on page 72, in Chapter 5 for the
detailed buffer format.

data_size (arm_int32_t) The length in bytes of the buffer
pointed to by the data parameter. If
data is set to zero (0), data_size
should also be set to zero.

error_status (arm_int32_t) Contains a zero if successful and a negative
value if an error occurred.
54 Chapter 4

Error Handling:

If the value returned in error_status is less than zero, an error occurred in
communicating with the measurement agent. The most likely cause is passing
an invalid value for start_handle. The error should be logged so corrective
action can be taken.
Getting Started 55

arm_end

Use arm_end when you are finished initiating new activity using the ARM
API. It is typically called when an application/user instance is terminating.
Each arm_end is paired with one arm_init to mark the end of an application.

An arm_end is a signal from the application that it does not intend to issue
any more arm_getid calls using this appl_id, or any arm_start calls using
any tran_id defined using this appl_id. After arm_end, the measurement
agent may ignore any arm_getid or arm_start calls. It is acceptable to call
arm_update or arm_stop for any incomplete transaction instances started
with arm_start.

Syntax:

error_status=arm_end(appl_id,flags,data,data_size)

Parameters:

Return Code:

appl_id (arm_int32_t) A unique reference to an application/user
identifier returned from the arm_init call. If
appl_id is less than zero, this arm_end call
will be treated as a NULL operation, and a
negative error_status returned.

flags (arm_int32_t)=0 Reserved for future use. It must be set to
zero.

data (char*)=0 Reserved for future use. A NULL pointer (0)
must be used.

data_size (arm_int32_t)=0 Reserved for future use. It must be set to
zero.

error_status Contains a zero if successful and a negative value if an
error occurred.
56 Chapter 4

Example:

 status = arm_end (my_appl_id, /* transaction handle
*/
 0,0,0); /* reserved
for future use */

Error Handling:

If the value returned in error_status is less than zero, an error occurred in
communicating with the measurement agent. The most likely cause is passing
an invalid value for appl_id. The error should be logged so corrective action
can be taken.
Getting Started 57

58 Chapter 4

5 Advanced Topics
Introduction

The following topics provide information on more advanced implementations
using the ARM 2.0 API.
 59

Additional Data Passed in the ARM Function Calls

The following two types of additional data can now be provided via the ARM
2.0 API.

• Transaction correlation data

You can indicate that a transaction is a component of another transaction.
You can do transaction correlation within one system or across multiple
systems. This permits a better understanding of the overall transaction,
how much time each part of the transaction is taking, and where problems
are occurring.

• Application-defined metrics

Application-defined metrics provide additional information about the
transaction, such as the number of bytes or records being processed, or
about the state of the application at the moment that the transaction is
being processed, such as the length of a work queue. This information is
useful to better understand response times, and how the application can
be tuned to perform better.
60 Chapter 5

Transaction Correlation

Many client/server transactions consist of one transaction visible to the user,
and any number of nested component transactions that are invoked by the one
visible transaction. These component transactions are the children of the
parent transaction (or the child of another child component transaction). It is
very useful to know how much each component transaction contributes to the
total response time of the visible transaction. Similarly, a failure in one of the
component transactions will often lead to a failure in the visible transaction,
and this information is also very useful.

There are two facilities that the application developer can use to provide this
information to measurement agents that implement the ARM 2.0 API.

1 On the same arm_start, the application can request that the
measurement agent assign and return a correlator for this instance of the
transaction (that is a parent correlator). Note that the agent has the
option of not providing the correlator, because it may not support the
capability (ARM Version 1.0 agents do not support correlators), or because
it is operating under a policy to suppress generating them.

2 When indicating the start of a child transaction with an arm_start, the
application can provide a correlator provided from a parent transaction.
This allows the measurement agent to know the parent/child relationship.
Advanced Topics 61

Figure 3 Transaction Response Time Correlation

Figure 3 shows the concept for a simple model. The principle can be extended
to a model of arbitrary complexity.

• Client A starts transaction T1, requesting a correlator via arm_start, and
is assigned C1.

• Client A sends a request (T1) to Server B, and includes C1 in the request.

• Server B starts transaction T2, passing C1 as the parent. At the same
time it requests a correlator and is assigned C2.

• Server B sends a request (T2) to Server C, and includes C2 in the request.

• Server C starts transaction T3, passing C2 as the parent.

• T3 stops, T2 stops, and T1 stops.
62 Chapter 5

If the correlation application collects all the data about these transactions, it
can put together the total picture, knowing that T1 is the parent of T2 (via
C1), and T2 is the parent of T3 (via C2). The parent/child relationship could be
from a client to a server, or within one program.

An application using the ARM API need not be concerned with the format of
the correlators. Measurement agents generate correlators.

Changes Needed in the Applications for Transaction Correlation

Each application responsible for a component of the overall transaction (client
and server) will require some modifications. Applications have three
responsibilities:

• request correlators for transactions with one or more child transactions
(via arm_start) by getting the appropriate flag.

• send the assigned correlators to the child transaction(s) along with the
data needed to invoke the child transaction(s) itself. This is done by first
checking that the agent assigned a correlator, and then sending the
number of bytes in the correlator. The length is stored by the agent in the
Correlator Length field.

• pass correlators received from parent transactions to the measurement
agents (via arm_start) by storing the correlator in the optional buffer and
setting the appropriate flag.

To enable a correlation application to analyze the correlators coming from
different systems, measurement agents follow conventions when creating
correlators. Included within the correlator is information identifying the
system, the transaction class (from arm_getid), the transaction instance
(from arm_start), and some flags. The format is flexible and extendible so
more conventions can be added as the need arises. See Appendix A,
Measurement Agent Information for information on the correlator format.

Correlators are passed in the arm_start calls by utilizing the data buffer.
This same data buffer is used to pass application-defined metrics, as
described in the section Format of Data Buffer in arm_start, arm_update,
arm_stop on page 72. Correlators are ignored in arm_update and arm_stop
calls.
Advanced Topics 63

If a correlator is being requested, the data buffer should be 256 bytes, to allow
for a variable size correlator. If a correlator is being passed to the
measurement agent, and none is requested, the length may be truncated
based on the correlator length.

If you only wanted to do transaction correlation in your application and not
provide application-defined metrics, you can zero out the metrics (set the
Flags Second Byte to zero and fill with zeros 80 bytes for the metrics
descriptions).

Application-Defined Metrics

Application-defined metrics can tell you more about the transaction or about
the state of the application at the moment that the transaction is being
processed. Three likely uses are envisioned as described below:

1 Specify characteristics of the transaction that will affect the response
time, or that are useful for workload planning.

Examples are the number of bytes in a file transfer or print job, or the
number of records being processed. A file transfer of 100 megabytes would
certainly be expected to take longer than a transfer of 100 kilobytes.

2 Specify information about the current state of the application.

Examples would be the length of a workload queue, the amount of memory
allocated, or the number of threads being used. This information is useful
for adjusting workloads by shifting work between systems, or tuning the
application. If a comparison of response times versus threads shows that
congestion builds and response times increase dramatically if, for
example, eight threads are used instead of twelve, the application can be
recompiled or instructed to use more threads, which may result in a
dramatic improvement in performance.

3 Specify information that can be used in diagnosing problems.

Examples are error codes returned from services invoked by the
application, or information about the transaction itself such as the part
number being processed.

Other than the length, the correlator format need not be understood by the
application developer, as it is opaque.
64 Chapter 5

In setting up application-defined metrics, arm_getid is used to define the
context (or “meta-data”) for a buffer of values that can be passed at
arm_start, arm_update or arm_stop. Actual values are passed in arm_start,
arm_update and arm_stop. The length of the buffer is specified in the
data_size parameter.

Choosing A Data Type

The additional data provided in the data buffer uses metric and/or string
fields (see later sections for information on the format of the data buffer). Four
general data types can be specified for each field (counter, gauge, numeric ID
and string). This section provides some suggestions about which data type to
use.

Counter

A counter should be used when it makes sense to sum up the values over an
interval. Examples are bytes printed and records written. The values can also
be averaged, maximums and minimums (per transaction) can be calculated,
and other kinds of statistical calculations can be performed.

If a counter is used, its initial value must be set in the arm_start call. The
difference between the value in the arm_start and the arm_stop (or the value
in the last arm_update call if no metric value is passed in arm_stop), equals
the amount attributed to this transaction. Similarly, the difference between
successive arm_update calls, or from the arm_start to the first arm_update
call, or from the last arm_update to the arm_stop call, equals the value for the
time period between the calls.

Here are three examples of how a counter would probably be used:

• The counter is set to zero at arm_start and to some value at arm_stop (or
the last arm_update call). In this case, the application probably measured
the value for this transaction and provided that value in the arm_stop
call. The application always sets the value to zero in the arm_start call so
the value at arm_stop reflects both the difference from the arm_start
value and the absolute value.

• The counter is x1 at arm_start, x2 at its arm_stop, x2 at the next
arm_start, and x3 at its arm_stop. In this case, the application is
probably keeping a rolling counter. Perhaps this is a server application
that counts the total workload. The application simply takes a snapshot of
Advanced Topics 65

the counter at the start of a transaction and another snapshot at the end
of the transaction. The agent determines the difference attributed to this
transaction.

• The counter is x1 at arm_start, x2 at arm_stop, x3 (not equal to x2) at the
next arm_start, and x4 at arm_stop. In this case, the application is
probably keeping a rolling counter as in the previous example. But in this
case the measurement represents a value affected by other users or
transaction classes, so the value often changes from one arm_stop to the
next arm_start for the same transaction class.

Gauge

A gauge should be used instead of a counter when it is not meaningful to sum
up the values over an interval. An example is the amount of memory used. If
you were measuring the amount of memory used over 20 transactions in an
interval and the average usage for each of these transactions was 15 MB, it
does not make sense to say that 20*15=300 MB of memory used over the
interval. It would make sense to say that the average was 15 MB, that the
median was 12 MB, and that the standard deviation was 8 MB. These are the
kinds of operations that an agent will typically apply to gauges. The values
can also be averaged, maximums and minimums per transaction calculated,
and other kinds of statistical calculations performed.

Gauges can be provided on arm_start, arm_update, and arm_stop calls. This
creates the potential for different interpretations. If several values are
provided for a transaction (one on an arm_start, one on arm_update(s), and
one on an arm_stop), which one(s) should be used? In order to have consistent
interpretation, the following conventions apply. Measurement agents are free
to process the data in any way within these guidelines.

• The maximum value for a transaction will be the largest valid value
passed at any time during the transaction.

• The minimum value for a transaction will be the smallest valid value
passed at any time during the transaction.

• The mean value for a transaction will be the mean of all valid values
passed at any time during the transaction. All values will be weighted
equally.

• The median value for a transaction will be the median of all valid values
passed at any time during the transaction. All values will be weighted
equally.
66 Chapter 5

• The last value for a transaction will be the last valid value passed at any
time during the transaction.

Numeric ID

A numeric ID is simply a numeric value that is used as an identifier, and not
as a measurement value. Examples are message numbers and error codes. It
is not meaningful to sum, average, or manipulate these values in any
arithmetic way. By using numeric ID instead of a gauge or counter, the
application indicates this to the measurement agent. An agent could create
statistical summaries based on these values, such as generating a frequency
histogram by error code, but this is done by counting the numbers, not by
summing them or performing any other arithmetic operation.

String

A measurement agent should process a string in the same way as a numeric
ID. As with numeric ids it is not meaningful to do arithmetic operations on a
string value.
Advanced Topics 67

Format of Data Buffer in arm_getid

Table 2 Format of Data Buffer in arm_getid

Format 4 bytes 101 (arm_int32_t) (identifies “meta-data” format)

Flags
The flags indicate
which metric and
string
descriptions are
included in the
buffer.

4 bytes First Byte (bit8) = 0
Second Byte (bit8)
abcdefg0, where a through g each denote the value of a bit
flag:
a = 1 if there is a description for Metric #1,
otherwise a = 0
b = 1 if there is a description for Metric #2,
otherwise b = 0
c = 1 if there is a description for Metric #3,
otherwise c = 0
d = 1 if there is a description for Metric #4,
otherwise d = 0
e = 1 if there is a description for Metric #5,
otherwise e = 0
f = 1 if there is a description for Metric #6,
otherwise f = 0
g = 1 if there is a description for String #1,
otherwise g = 0

Third Byte (bit8) = 0
Fourth Byte (bit8) = 0
68 Chapter 5

Metric #1
Description

48 bytes The first 4 bytes (arm_int32_t) define the type of data that
will be passed in the 8 byte field. See the description below
this table for an explanation of the different data types.
1 = ARM_Counter32
2 = ARM_Counter64
3 = ARM_CntrDivr32
4 = ARM_Gauge32
5 = ARM_Gauge64
6 = ARM_GaugeDivr32
7 = ARM_NumericID32
8 = ARM_NumericID64
9 = ARM_String8

The last 44 bytes (char*) are the name of the metric. This
is a NULL terminated character string. A possible use of
this name is to display it along with the current value,
either on a user interface or in a report.

Metric #2
Description

48 bytes Same as Metric Description #1.

Metric #3
Description

48 bytes Same as Metric Description #1.

Metric #4
Description

48 bytes Same as Metric Description #1.

Metric #5
Description

48 bytes Same as Metric Description #1.

Metric #6
Description

48 bytes Same as Metric Description #1.

String #1
Description

48 bytes The first 4 bytes (arm_int32_t) define the type of data that
will be in the field. Only one data type is valid in this field.
10 = ARM_String32

The last 44 bytes (char*) are the name of the String #1
field. It is a NULL terminated character string. A possible
use of this name is to display it along with the current
value, either on a user interface or in a report.

Table 2 Format of Data Buffer in arm_getid
Advanced Topics 69

Data Type Definitions

ARM_Counter32 An unsigned32 value that increases up to
the maximum value that the counter can
hold, at which point it resets to zero and
continues counting up from zero. Except for
the reset back to zero, the value can never
decrease. The counter is in the first four
bytes, and the second four bytes are unused.

ARM_Counter64 An unsigned
64 counter (see ARM_Counter32, except it is
64 bits long).

ARM_CntrDivr32 A combination of two unsigned32 integers,
with ARM_Counter32 in the first four bytes,
and an unsigned32 divisor in the second four
bytes. The total value is ARM_CntrDivr32.
The purpose of this format is to be able to
represent decimal values without using
floating point formats.

ARM_Gauge32 An arm_int32_t (signed) value that can
increase or decrease. The gauge is in the first
four bytes, and the second four bytes are
unused.

ARM_Gauge64 An int64 (signed) gauge (see ARM_Gauge32,
except it is 64 bits long).

ARM_GaugeDivr32 A combination of two integers, one an
arm_int32_t (signed) and one an
unsigned32. ARM_Gauge32 is in the first four
bytes, and an unsigned32 divisor in the
second four bytes. The total value is
ARM_GaugeDivr32. The purpose of this
format is to be able to represent decimal
values without using floating point formats.
70 Chapter 5

ARM_NumericID32 An unsigned32 value that should not be used
in arithmetic operations because it is used as
an identifier, not as a measurement. For
example, a message number or error code.
The numeric ID is in the first four bytes, and
the second four bytes are unused.

ARM_NumericID64 An unsigned64 value that should not be used
in arithmetic operations because it is used as
an identifier, not as a measurement. An
example is a message number or error code.

ARM_String8, An 8 byte string that is not NULL
terminated. If the string is less than eight
bytes long, it must be padded with blanks.
The character set is ASCII or EBCDIC,
depending on whatever is standard for that
platform. Unlike the NULL terminated
character strings passed in various places in
the API, these strings cannot be reliably
converted to other code pages, so it is
suggested you use only the common
characters in the first 128 characters of the
Latin code pages. See the section
Internationalization on page 81 for more
information.

ARM_String32, A 32 byte string that is not NULL
terminated. If the string is less than 32 bytes
long, it must be padded with blanks. The
character set is ASCII or EBCDIC, depending
on whatever is standard on that platform.
Unlike the NULL terminated character
strings passed in various places in the API,
these strings cannot be reliably converted to
other code pages, so it is suggested you use
only the common characters in the first 128
characters of the Latin code pages. See the
section Internationalization on page 81 for
more information.
Advanced Topics 71

Format of Data Buffer in arm_start, arm_update, arm_stop
72 Chapter 5

Table 3 Format of Data Buffer in arm_start, arm_update, arm_stop

Format 4 bytes 1 (arm_int32_t)
(2 is a special format for arm_update, see
Table 4).

Flags

The flags
indicate which
fields are
included in
the buffer.

4 bytes First Byte (bit8) (Only valid for arm_start.
Ignored on arm_update and arm_stop.)
abcd0000, where a, b, c, d each denote the
value of a bit flag. a, b, d are set by the
application. c is set by the measurement
agent.
a = 1 if the application is passing the
correlator from a parent transaction in the
Correlator field; otherwise a = 0.
b = 1 if the application is requesting that the
agent generate a correlator for the
transaction (the one indicated by this
arm_start command); otherwise b = 0. If a
correlator is being requested, the data buffer
should be 256 bytes, to allow for a variable
size correlator.c = 1 if the agent is returning
a correlator in the Correlator field. When
set, the value in the Correlator field
overlays any previous value. This flag will
only be set when three conditions are met,
otherwise c = 0:
The application has set bit b = 1.
The agent supports this function (agents that
only support version 1.0 of the ARM API do
not).
The agent is running in a mode where the
generation of correlators is enabled (that is,
there might be an installation policy to
disable the generation of correlators, either
temporarily or permanently).
If this bit is not set to 1, there is no correlator,
and therefore the application should not
forward the contents of the Correlator field.
Advanced Topics 73

d = 1 if the application is requesting that the
agent trace this transaction. This might be
done when a dummy test transaction is being
executed, or when an error has occurred. Each
agent can choose how and if it should honor
the request, and administrators who
configure the agent may establish the policy.
Second Byte (bit8)
abcdefg0, where a through g each denote the
value of a bit flag:
a = 1 if a value is passed in Metric #1,
otherwise a = 0
b = 1 if a value is passed in Metric #2,
otherwise b = 0
c = 1 if a value is passed in Metric #3,
otherwise c = 0
d = 1 if a value is passed in Metric #4,
otherwise d = 0
e = 1 if a value is passed in Metric #5,
otherwise e = 0
f = 1 if a value is passed in Metric #6,
otherwise f = 0
g = 1 if a value is passed in String #1,
otherwise g = 0
It is perfectly permissible for an application to
pass none or some of the metrics on each call,
and to change which metrics are passed from
call to call. This holds true for arm_start,
arm_update, and arm_stop calls.The one
requirement that must be adhered to is that
the meaning and position of the field must
have been defined with the arm_getid call.
For more information, see the section Format
of Data Buffer in arm_getid.
Third Byte (bit8)=0
Fourth Byte (bit8)=0

Table 3 Format of Data Buffer in arm_start, arm_update, arm_stop
74 Chapter 5

Metric#1 8 bytes The metric fields are used by the application
to pass useful information about the
transaction or the state of the application to
the measurement agent. The field contains
one or two integers, or a string variable. The
use of the field and the format of the field are
determined by the buffer passed on the
arm_getid call. For more information, see the
sectionFormat of Data Buffer in arm_getid.
See the sections Choosing A Data Type,
andData Type Definitions for more
information.

Metric#2 8 bytes Same as Metric #1.

Metric#3 8 bytes Same as Metric #1.

Metric#4 8 bytes Same as Metric #1.

Metric#5 8 bytes Same as Metric #1.

Metric#6 8 bytes Same as Metric #1.

Table 3 Format of Data Buffer in arm_start, arm_update, arm_stop
Advanced Topics 75

String#1 32 bytes A string variable of up to 32 characters. The
string is not NULL terminated, and is padded
with blanks if it is less than 32 characters.
Any information can be included in the string.
Examples would be a part number being
processed, or an error code.

Correlator The field has two different uses depending on
whether it is passed on the call from the
application to the measurement agent, or if it
is passed in the return from the agent:
The application can pass in the correlator
from a parent transaction to the agent. This
allows the agent to correlate the parent
transaction to the component transaction
being started with this arm_start call.
The agent can return a correlator for the
transaction being started by this arm_start
call. The application could then pass this
correlator to applications that it invokes, and
they in turn could pass it as the parent
correlator in arm_start calls that they make.
If the correlator returned bit is set (Flags
First Byte c = 1), the application can either
pass the entire 168 byte correlator. Or if you
want to optimize, the application can choose
to read the correlator length field and only
pass the number of bytes containing data,
starting with the 2 bytes of the correlator
length.
See the section Transaction Correlation for
more information on correlating transactions.
See Appendix A, Measurement Agent
Information for more information on the
content of the correlator.

Table 3 Format of Data Buffer in arm_start, arm_update, arm_stop
76 Chapter 5

In the arm_update calls with a Format field containing the value 2, the buffer
may have the following format:

Length 2
bytes
Data 0-166
bytes

The Correlator length field (unsigned 16)
specifies the length of a correlator (including
this field) generated by a measurement agent
(when bit c is set in the first Flags byte).
If this value is zero, it means that the agent is
not returning a correlator, and therefore there
is not any reason to pass this correlator on to
other parts of the application (or servers that
it calls).
This field is considered a part of the correlator
and must be included in the forwarded
correlator data.
The Correlator data field is used to show
the parent/child relationship between
transactions. Note that the application
instrumenter need not understand the
correlator format as it is “opaque”.

Table 3 Format of Data Buffer in arm_start, arm_update, arm_stop
Advanced Topics 77

Three Ways to Instrument within a Transaction Instance

There are three methodologies for instrumenting within a transaction
instance. The first two are useful when the transaction is within one
application; the last one is useful when the transaction is distributed across
applications or systems.

1 Instrument a transaction using arm_update as a “heartbeat”, when it is
an operation that takes a long time to complete (several minutes or hours)
and you want to show the overall progress of the transaction in numeric
form.

If these transactions have different steps associated with processing each
record, you may want to instrument these steps with component
transactions (as described below), or use repeated calls to arm_update to

Table 4 Format 2

Format 4 bytes 2 (arm_int32_t)

Data 1020 bytes
(maximum)

Contains the data. The length of the buffer is
determined by the data_size parameter. The
format of the data is not defined, but it is
suggested that the data be formatted as
plain-text characters so it can be understood
without requiring a special formatting program.
The agent cannot summarize the data over an
interval, it must be treated as trace data. One
suggestion is to format all information as
plain-text characters so it can be read by a
person without a special formatting program.
Note that because the data in an opaque buffer
cannot be summarized, and processing by the
agent may consist of logging the data to a trace
file, many calls at a high frequency could result
in a loss of data or a slowing down of the system,
most likely due to an excessive amount of file I/
O. Therefore it is recommended that the call be
used only in special situations. NULL
termination is not required.
78 Chapter 5

show the overall progress of the transaction. For example, the transaction
may process a million records. A call to arm_update could be made for
every 1000 records or every minute of processing. This could show the
progress of the transaction based on the number of times arm_update was
called or with one or more application-defined metrics.

2 Instrument a transaction using component transactions when it is a long
transaction that has many steps. A transaction can be defined for the
overall transaction and then nested transactions can be defined for each of
the steps. A step might represent a single discrete operation, or it could
represent a large number of operations, such as copying 1000 files. This
allows for the monitoring of each of the steps as well as the overall
transaction.

For example, step 1 takes about 20 minutes, step 2 takes about 40
minutes, and step 3 takes about 10 minutes. Each step can have a defined
transaction as well as the overall transaction. So you would define 3
component transactions monitoring each step, plus one transaction that
monitors the overall transaction.
Advanced Topics 79

3 Instrument using transaction correlation when the transaction has
components that span several applications or systems. This approach is
more complex than the previous two as it requires changes to all the
applications involved in processing components of the transaction, but it is
the most accurate way to track transaction response time spanning
systems.
80 Chapter 5

Internationalization

The ARM API is designed to enable applications to use native code pages and
languages, and for measurement agents to be able to support many different
languages. Users of agents should contact the providers to see if the agent
supports the needed code pages and languages.

The ARM API supports any code page as long as no characters are encoded
with binary zero bytes (octets). This is because most strings are passed as
NULL terminated strings, and the NULL terminator character is a binary
zero byte. If a binary zero byte is encountered before the end of the string, the
agent would interpret the zero byte as the NULL terminator and truncate the
string. Most code pages meet this requirement.

These are code pages that contain binary zero bytes, but there are alternate
ways to encode the characters. A well-known example is the Unicode
standard. In its native format using 16 bit characters (UTC-2), there are
binary zero bytes. However, the UTF-8 encoding of the same Unicode
characters does not contain binary zero bytes, and this format is entirely
compatible with the ARM API.

Agents that support native languages will often use the following technique.
When the application links to the agent it links to a part of the agent that
executes in the same process space as the application. Typically this small
part of the agent communicates with the main part of the agent across an
inter-process communications (IPC) channel. The small part of the agent that
executes in the same process as the application can issue an operating system
call to find out what code page and language the process is using. It can then
pass this information to the main part of the agent, and the main part of the
agent can convert from the native code page as necessary.

There are the following three restrictions on the use of native languages.

1 The strings can contain no binary zero bytes except for the NULL
terminator character (as was mentioned above).

2 All the strings should be encoded using the same code page and language
information as the process that executes the arm_init call. This also
implies that the code page and language information should not change
after the arm_init call.
Advanced Topics 81

3 This technique does not apply to any string data passed within the
optional buffers on arm_start, arm_update, and arm_stop. This is
because these strings are not null terminated. Note that it does apply to
the metric descriptions passed within the optional buffer on arm_getid.
Further, these strings are often about things that are external to the
program, such as a part number or an error code, so the requirement to
use the same code page and language information as the process is
unacceptable. The application developer is strongly recommended to
restrict these strings to the first 128 bytes of the standard Latin code
pages for ASCII and EBCDIC (depending on the platform).
82 Chapter 5

A Measurement Agent Information
Introduction

This appendix contains information provided for measurement agent
implementers as opposed to ARM application instrumenters. For
instrumenters it is provided as reference only, the correlator is “opaque” from
an application instrumenter’s perspective.

The agents provide the correlators, and within the correlator they provide
information to uniquely identify agents. To enable an enterprise management
solution (correlation application) to analyze the correlators coming from
different systems in a heterogeneous environment, agents need to follow some
conventions when creating correlators.

The following section documents a set of semantics for measurement agents to
use in formatting the correlator and agent identifiers.

The correlator passed on arm_start calls is sent across systems, so it is
always in network byte order. Network byte order is a standard described as
follows:

Figure 4 Buffer word/byte/bit Format

byte 0 byte 1 byte 2 byte 3

0 7 88 15 16 22 23 31

msb lsb
 83

Format of the Correlator

Correlators provided by agents and passed on the arm_start commands have
the following format.

Table 5

2 bytes Length of the Correlator (unsigned16)
If this value is zero, it means that the measurement agent is
not returning a correlator, and therefore there is not any
reason to pass this correlator on to other parts of the
application (or servers that it calls).
A zero length provides another safeguard for agents. If an
application passes a null correlator anyway, when any agent
receives this correlator as the parent correlator for another
transaction, the agent can see that the data in the correlator
is invalid and ignore it, regardless of whether the “parent
correlator” bit (Flags First Byte a) is set in the arm_start
buffer.

1 byte Correlator format (unsigned8)=1
Only one format is defined at this point, but others could be
added in the future.

1 byte Flags

First Byte (bit8)
ab000000, where a and b are bit flags:
a = 1 if a trace of this transaction and any nested component
transactions is requested by the agent.
b = 1 if a trace of this transaction and any nested component
transactions is requested by the application. The application
requests this by setting the d bit (in abcdefgh notation) in the
first flag byte in the buffer passed on arm_start. The agent
will decide whether to set this bit, based on its capabilities
and how it is configured.
84 Appendix A

The “trace this correlator” flag is a way to cause agents to
trace and/or monitor a transaction and all component
transactions associated with the transaction without having
to trace or monitor all transactions on a system, or without
requiring a complicated infrastructure to control tracing and
monitoring. Note that this does not preclude other ways to
control agents, nor is this intended to be a final and
comprehensive solution. It is intended that this will be used in
addition to other approaches.
When an agent builds a correlator, it is free to turn on these
flags. The agent might do this if an application has been
experiencing unsatisfactory response times. Any agents that
receive this correlator as the parent correlator for a
component transaction will also see the flag, and they in turn
could turn on the flag in any correlators they generate. This
process could repeat, resulting in the passing of the trace flag
through all the transactions of interest.
All the agents might be configured to trace only the few
transactions with this flag on, and this would both capture the
information needed to diagnose the transaction problem, and
avoid overloading the agents and their systems with attempts
to trace all transactions.
The reason there are separate flags for traces requested by an
agent and an application is to provide additional flexibility in
how policies for monitoring and tracing are implemented. It
might be common for an installation to trace transactions only
when requested by agents (based on how the administrator
has configured the agents), because then the administrator
would control all tracing. On the other hand, permitting the
application to highlight when a transaction is special has
advantages.

Table 5
Measurement Agent Information 85

2 bytes Format of the Address field (unsigned16)
The following formats are defined:
0 = reserved
1 = IPv4
2 = IPv4+port number
3 = IPv6
4 = IPv6+port number
5 = SNA
6 = X.25
7:32767 = reserved
This list will be expanded as new requirements arise. The
intent is to provide a value for any common addressing format
as soon as the need is identified.
32768-65535 = undefined and available for agent
implementers to use. There are no semantics associated with
the address format. It will be an unusual situation where a
new format is needed, but this provides a solution if this is
needed. The preferred approach is to get a new format defined
that is in the 0-32767 range. There is a risk that two different
agent developers will choose the same ID, but this risk is
small.

2 bytes Vendor ID (unsigned16)
The vendor ID is a way to identify who built the agent.
Combining this information with the Agent Version field
will provide a way for a management application to know
what kind of agent generated a correlator. A management
application may contain specialized functions or logic that
only works with the agents from a particular vendor and/or
supporting particular functions or interfaces. By putting these
two fields in the correlator, a management application has a
way to know whether the agent that generated the correlator
has some of these specialized capabilities. For example:

Table 5
86 Appendix A

The management application wants to contact the agent to
know the name of the application, user, and transaction class
running this transaction instance. Although the address of
the agent is known from the Address field, the protocol that
one uses to interface to the agent could be anything. The
management application may know how to access several
different agents, and could use these values to determine if
the correlator came from an agent that it knows how to access.
Alternately an agent has a special capability. For example,
maybe version 3.3 of a vendor’s agent analyzes data in a
particular way, but previous versions do not. The
management application could use this field to see what are
the agent’s capabilities.
In order to minimize the possibility of two vendors using the
same vendor ID, the value should be taken from the list of
enterprise identifiers from the Internet Assigned Numbers
Authority (IANA). This list was created for vendors who have
SNMP agents. Although the ARM API specification does not
require or endorse SNMP, it is likely that most or all the
organizations that will create an ARM agent will have at least
one enterprise ID assigned. The list of enterprise IDs can be
found at: ftp://ftp.isi.edu/in-notes/iana/
assignments \ /enterprise-numbers

For organizations that do not have an enterprise identifier
assigned by the IANA, the values between 32768-65535 are
free for agent developers to use. There are no semantics
associated with these IDs. It is expected that most or all agent
developers will have a formally assigned vendor ID, and it
will be an unusual situation where another ID is needed, but
this provides a solution if this is needed. There is a risk that
two different agent developers will choose the same ID, but
this risk is very small.

Table 5
Measurement Agent Information 87

2 bytes Agent Version (unsigned16)
The Agent Version is used to distinguish between different
versions of an agent, and will be most useful when the
capabilities and/or interfaces of an agent change from one
release to another. It will also be useful to distinguish
between different agents from the same vendor. Each vendor
is responsible for avoiding having multiple agents with
different capabilities using the same Agent Version value.
Refer to the explanation in the Vendor ID field above to
understand how to use this field.

2 bytes Agent Instance (unsigned16)
Each agent assigns transaction IDs and start handles.
Typically there will be one agent on each system, and this one
agent is responsible for making sure that there are not any
duplicate IDs or handles. From one system to another,
however, duplicate IDs and handles will be common, i.e., an
ID/handle combination assigned on system X will also be
assigned on system Y.
One of the main purposes of the Address, Vendor ID, and
Agent Version fields is to tell a management application how
to contact an agent in order to translate the transaction ID
and start handle into the names of the application, user, and
transaction class, and the instance of the transaction. As long
as there is only one set of IDs and handles stored at that
address, all the required information is there.
However, if the address is not the address of an individual
agent, but rather is the address of a directory that contains
information about multiple agents, there is not sufficient
information, because the ID/handle combinations can be
duplicated.
The purpose of the Agent Instance field is to provide a way
to identify which agent generated a correlator, even if the
correlation data from multiple agents is available at the
address specified in the Address field.

4 bytes Transaction instance (start_handle returned from an
arm_start)

Table 5
88 Appendix A

4 bytes Transaction class ID (tran_id returned from an arm_getid)

Table 5
Measurement Agent Information 89

2 bytes Length of the Address field (unsigned16)

Maximum
146 bytes

Address

This field is the address of the agent. More precisely, it is the
address that a management application can contact in order
to have the Transaction class ID mapped to the names of an
application, user, and transaction class, and to get
information about the transaction instance, or aggregated
data about the transaction class (or any other data).
The maximum length of this field is determined by an overall
limit of 168 bytes for the correlator. In the correlator format
described here, the maximum address length is 146 bytes. In
actual practice, it is expected to be no more than 20 bytes for
most implementations. If new correlator formats are added in
the future, the maximum size of this field could change. The
maximum correlator size of 168 bytes will not change.
Correlators are passed on arm_start calls as part of the
buffer pointed to by the data pointer. The maximum size of
the buffer is 256 bytes, of which 88 bytes are used for other
fields, leaving 168 bytes for the correlator.
An application should allocate space for the full 256 bytes
when making the arm_start call, but can then use the
Correlator Length field to determine how long the
correlator really is, and only forward that much data to other
cooperating applications.
Following are the formats that have been defined so far. The
data is stored in network standard byte order, in which
integers are sent most significant byte first, unless otherwise
indicated. This list is not intended to be exhaustive, and will
be extended whenever a new agent implementation requires a
new format.

Table 5
90 Appendix A

0 = reserved
1 = IPv4
 Bytes 0:3 4 byte IP address
2 = IPV4+port number
 Bytes 0:3 4 byte IP address
 Bytes 4:5 2 byte IP port number
3 = IPv6
 Bytes 0:15 16 byte IP address
4 = IPv6+port number
 Bytes 0:15 16 byte IP address
 Bytes 16:17 2 byte IP port number
5 = SNA
 Bytes 0:7 EBCDIC-encoded network ID
 Bytes 8:15 EBCDIC-encoded network
 accessible unit (control point or LU)
6 = X.25
 Bytes 0:15 The X.25 network address
 (also referred to as an X.121 address).
 This is up to 16 ASCII character digits ranging
 from 0-9. The length is known from the
 Length of the Address field. An agent
 running over an X.25 link with the IP
 configured may choose to use this format or
 the IP format. This format must be used when
 IP is not configured above an X.25 link. 7:32767=reserved
32768-65535=undefined and available for agent implementers
to use

Table 5
Measurement Agent Information 91

92 Appendix A

B Examples
Introduction

These examples are shown for their simplicity. There are more elegant ways to
program the same tasks, but the examples demonstrate the ARM API
function calls. These sample programs and sample programs for languages
other than C are also available on the ARM API CD-ROM and the ARM Web
Site mentioned earlier in this book under the section Additional Information
on page 13, in Chapter 1.
 93

arm.h Header File

#ifndef ARM_H_INCLUDED
#define ARM_H_INCLUDED

/***/
/* arm.h - ARM API Definitions */
/***/

#include <sys/types.h> /* C types definitions */

/* Type definitions for various field sizes */

/* 64-bit integer compiler support */
/* */
/* If a type declaration supporting 64 bit integer arithmetic is defined */
/* for the target platform and compiler, the "INT64" #define should be */
/* set to that type declaration. E.g., */
/* */
/* #define INT64 long long */
/* */
/* If 64 bit arithmetic is not supported on the target platform or compiler,*/
/* remove (or comment out) the "INT64" #define and structures of two 32 bit */
/* values will be defined for the 64 bit fields. */

/*
#define INT64 long long
*/

typedef unsigned char bit8 ;
typedef short int16 ;
typedef long arm_int32_t ;
typedef unsigned char unsigned8 ;
typedef unsigned short unsigned16 ;
typedef unsigned long unsigned32 ;

#ifdef INT64
typedef INT64 int64 ;
typedef unsigned INT64 unsigned64 ;
#else
typedef struct int64 {
 int3 upper;
 arm_int32_t lower;
} int64 ;
94 Appendix B

typedef struct unsigned64 {
 unsigned32 upper;
 unsigned32 lower;
} unsigned64 ;
#endif

/*** Symbol definitions ***/

/* Enumeration of transaction status completion codes */

enum arm_tran_status_e { ARM_GOOD = 0, ARM_ABORT, ARM_FAILED };

/* Enumeration of user data formats */

enum arm_userdata_e { ARM_Format1 = 1, ARM_Format2, ARM_Format101 = 101 };

/* Enumeration of metric types */

typedef enum arm_metric_type_e {
 ARM_Counter32 = 1, ARM_Counter64, ARM_CntrDivr32,
 ARM_Gauge32, ARM_Gauge64, ARM_GaugeDivr32, ARM_NumericID32,
 ARM_NumericID64, ARM_String8, ARM_String32,
 ARM_MetricTypeLast
} arm_metric_type_e;

/*** Data definitions ***/

/* User metric structures */

typedef struct arm_cntrdivr32_t { /* Counter32 + Divisor32 */
 unsigned32 count;
 unsigned32 divisor;
} arm_cntrdivr32_t;

typedef struct arm_gaugedivr32_t { /* Gauge32 + Divisor32 */
 arm_int32_t gauge;
 unsigned32 divisor;
} arm_gaugedivr32_t;

/* Union of user ARM_Format1 metric types */

typedef union arm_user_metric1_u {
 unsigned32 counter32; /* Counter32 */
 unsigned64 counter64; /* Counter64 */
 arm_cntrdivr32_t cntrdivr32; /* Counter32 + Divisor32 */
 arm_int32_t gauge32; /* Gauge32 */
 int64 gauge64; /* Gauge64 */
 arm_gaugedivr32_t gaugedivr32; /* Gauge32 + Divisor32 */
 unsigned32 numericid32; /* NumericID32 */
Examples 95

 unsigned64 numeric64; /* NumericID64 */
 char string8[8]; /* String8 */
} arm_user_metric1_u;

/* Application view of correlator */

typedef struct arm_app_correlator_t {
 int16 length; /* Length of the correlator */
 char agent_data[166]; /* Agent specific data fields */
} arm_app_correlator_t;

/* User metrics ARM_Format1 structure definition */

typedef struct arm_user_data1_t {
 arm_int32_t format; /* Version/format id (userdata_e)
*/
 bit8 flags[4]; /* Flags for metrics' presence */
 arm_user_metric1_u metric[6]; /* User metrics */
 char string32[32]; /* 32 byte non-terminated string */
 arm_app_correlator_t correlator; /* Correlator */
} arm_user_data1_t;

/* User metrics ARM_Format2 structure definition */

typedef struct arm_user_data2_t {
 arm_int32_t format; /* Version/format id (userdata_e)
*/
 char string1020[1020]; /* 1020 byte opaque blob */
} arm_user_data2_t;

/* User metric meta-data for ARM_Format101 structure */

typedef struct arm_user_meta101_t {
 arm_int32_t type; /* Type of metric
(arm_user_metric_e)*/
 char name[44]; /* NULL-terminated string <= 44 char */
} arm_user_meta101_t;

/* User meta-data ARM_Format101 structure definition */

typedef struct arm_user_data101_t {
 arm_int32_t format; /* Version/format id (userdata_e)
*/
 bit8 flags[4]; /* Flags for which fields are present*/
 arm_user_meta101_t meta[7]; /* User metrics meta-data */
} arm_user_data101_t;

/* Flag bit definitions (within bit8 fields) */

/* flags[0] in arm_user_data1_t passed in arm_start */
96 Appendix B

#define ARM_CorrPar_f 0x80 /* Correlator from parent */
#define ARM_CorrReq_f 0x40 /* Request correlator generation */
#define ARM_CorrGen_f 0x20 /* New correlator generated in data*/
#define ARM_TraceReq_f 0x10 /* User trace request */

/* flags[1] in arm_user_data101_t passed in arm_get_id and */
/* flags[1] in arm_user_data1_t passed in arm_start, arm_update and arm_end
*/
#define ARM_Metric1_f 0x80 /* Metric 1 present */
#define ARM_Metric2_f 0x40 /* Metric 2 present */
#define ARM_Metric3_f 0x20 /* Metric 3 present */
#define ARM_Metric4_f 0x10 /* Metric 4 present */
#define ARM_Metric5_f 0x08 /* Metric 5 present */
#define ARM_Metric6_f 0x04 /* Metric 6 present */
#define ARM_AllMetrics_f 0xfc /* Metrics 1 - 6 present */
#define ARM_String1_f 0x02 /* String 1 present */

#if defined _WIN32
 #include <windows.h>
 #define ARM_API WINAPI
#elif defined __OS2__
 #define ARM_API _Pascal
#elif defined _OS216
 #define arm_data_t char _far
 #define arm_ptr_t char _far
 #define ARM_API _far _pascal
#elif defined _WIN16 || _WINDOWS
 #include <windows.h>
 typedef BOOL (FAR PASCAL _export * FPSTRCB) (LPSTR, LPVOID);
 #define arm_data_t char FAR
 #define arm_ptr_t char FAR
 #define ARM_API WINAPI
#else /* unix */
#define ARM_API
#endif

#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */

#ifdef _PROTOTYPES

/*** Function prototypes ***/

extern arm_int32_t ARM_API arm_init(
 char* appl_name, /* application name */
 char* appl_user_id, /* Name of the application user */
 arm_int32_t flags, /* Reserved = 0 */
 char* data, /* Reserved = NULL */
 arm_int32_t data_size); /* Reserved = 0 */
Examples 97

extern arm_int32_t ARM_API arm_getid(
 arm_int32_t appl_id, /* application handle */
 char* tran_name, /* transaction name */
 char* tran_detail , /* transaction additional info */
 arm_int32_t flags, /* Reserved = 0 */
 char* data, /* format definition of user metrics */
 arm_int32_t data_size); /* length of data buffer */

extern arm_int32_t ARM_API arm_start(
 arm_int32_t tran_id, /* transaction name identifier */
 arm_int32_t flags, /* Reserved = 0 */
 char* data, /* user metrics data */
 arm_int32_t data_size); /* length of data buffer */

extern arm_int32_t ARM_API arm_update(
 arm_int32_t start_handle, /* unique transaction handle */
 arm_int32_t flags, /* Reserved = 0 */
 char* data, /* user metrics data */
 arm_int32_t data_size); /* length of data buffer */

extern arm_int32_t ARM_API arm_stop(
 arm_int32_t start_handle, /* unique transaction handle */
 arm_int32_t tran_status, /* Good=0, Abort=1, Failed=2 */
 arm_int32_t flags, /* Reserved = 0 */
 char* data, /* user metrics data */
 arm_int32_t data_size); /* length of data buffer */

extern arm_int32_t ARM_API arm_end(
 arm_int32_t appl_id, /* application id */
 arm_int32_t flags, /* Reserved = 0 */
 char* data, /* Reserved = NULL */
 arm_int32_t data_size); /* Reserved = 0 */

#else /* _PROTOTYPES */

extern arm_int32_t ARM_API arm_init();
extern arm_int32_t ARM_API arm_getid();
extern arm_int32_t ARM_API arm_start();
extern arm_int32_t ARM_API arm_update();
extern arm_int32_t ARM_API arm_stop();
extern arm_int32_t ARM_API arm_end();

#endif /* _PROTOTYPES */

#ifdef __cplusplus
}
#endif /* __cplusplus */

/* Type definitions for compatibility with version 1.0 of the ARM API */
98 Appendix B

typedef arm_int32_t arm_appl_id_t;

typedef arm_int32_t arm_tran_id_t;

typedef arm_int32_t arm_start_handle_t;

typedef unsigned32 arm_flag_t;

typedef char arm_data_t;

typedef arm_int32_t arm_data_sz_t;

typedef char arm_ptr_t;

typedef arm_int32_t arm_ret_stat_t;

typedef arm_int32_t arm_status_t;

#endif /* ARM_H_INCLUDED */
Examples 99

C/C++ (all platforms) Sample 1

Sample 1 uses standard ARM API calls, not advanced functions.

/***/
/* sample1.c */
/* */
/* This program provides examples of how to use the features provided by */
/* version 1.0 and 2.0 of the ARM API. */
/* */
/***/

#include <stdio.h>
#include "arm.h"

arm_int32_t appl_id = -1; /* Define an indentifer for the application
id */

arm_int32_t simple_tran_id = -1; /* Define a unique identifier for each
*/
arm_int32_t long_tran_id_1 = -1; /* TRANSACTION */
arm_int32_t long_tran_id_2 = -1;
arm_int32_t sub_tran_id_1 = -1;
arm_int32_t sub_tran_id_2 = -1;

/**/
/* init */
/**/

void init()
{
 appl_id=arm_init("ARM sample program", /* application name */
 "*", /* use default user */
 0,0,0);
 simple_tran_id = arm_getid(appl_id,
 "Simple_transaction_1",/* transaction name */
 "First Transaction in Sample program",
 0,0,0);

 if (simple_tran_id < 0)
 printf("Simple_transaction_1 is not registered.\n");

 long_tran_id_1 = arm_getid(appl_id,
 "Long_transaction_1", /* transaction name */
100 Appendix B

 "A long transaction using arm_update",
 0,0,0);

 if (long_tran_id_1 < 0)
 printf("Long_transaction_1 is not registered.\n");

 long_tran_id_2 = arm_getid(appl_id,
 "Long_transaction_2", /* transaction name */
 "A long transaction using sub transactions",
 0,0,0);

 if (long_tran_id_2 < 0)
 printf("Long_transaction_2 is not registered.\n");

 sub_tran_id_1 = arm_getid(appl_id,
 "Sub_tran1_of_long_tran_2", /* transaction name */
 "Subtransaction 1 of Long_trans2",
 0,0,0);

 if (sub_tran_id_1 < 0)
 printf("Sub_tran_of_long_tran_2 is not registered.\n");

 sub_tran_id_2 = arm_getid(appl_id,
 "Sub_tran2_of_long_tran_2", /* transaction name */
 "Subtransaction 2 of Long_trans2",
 0,0,0);

 if (sub_tran_id_2 < 0)
 printf("Sub_tran_of_long_tran_2 is not registered.\n");

} /* init */

/***/
/*simple_trans */
/***/

void simple_trans1()
{
 arm_int32_t tran_handle;

 tran_handle = arm_start(simple_tran_id, /* transaction id from arm_getid */
 0,0,0);

 /**/
 /* Perform actual transaction processing here */
 /**/
Examples 101

 arm_stop(tran_handle, /* transaction handle from arm_start */
 ARM_GOOD, /* successful completion define = 0 */
 0,0,0);

 return;
} /* simple_trans1 */

/**/
/* long_trans_using_update */
/* */
/* arm_update can show the progress of an iterative process */
/**/

void long_trans_using_update()
{

#define MAX_COUNT 1000000
#define UPDATE_COUNT 100000 /* call update every 100,000 iterations */

 arm_int32_t tran_handle;
 int i;

 tran_handle = arm_start(long_tran_id_1, /* transaction id from arm_getid */
 0,0,0);

 for (i=1;i<=MAX_COUNT;i++)
 {
 /* your processing goes here */

 if (i%UPDATE_COUNT == 0)
 arm_update(tran_handle, /* update based on UPDATE_COUNT */
 0,0,0);

 }

 arm_stop(tran_handle, /* transaction handle from arm_start */
 ARM_GOOD, /* successful completion define = 0 */
 0,0,0);

 return;

} /* long_trans_using_update */

/**/
/* long_trans_using_sub_trans */
/* */
/* Sub-transactions can show the progress of the steps */
102 Appendix B

/* of a long transaction. */
/**/

void long_trans_using_sub_trans()
{
 arm_int32_t tran_handle;
 arm_int32_t sub_tran_handle1;
 arm_int32_t sub_tran_handle2;

 /* record the overall transaction processing (optional) */
 tran_handle = arm_start(long_tran_id_2, /* transaction id from arm_getid */
 0,0,0);

 /* start recording the first step of the long transaction */
 sub_tran_handle1 = arm_start(sub_tran_id_1,
 0,0,0);

 /**************************************/
 /* Process step 1 on this transaction */
 /**************************************/

 /* record the completion of the first step */
 arm_stop(sub_tran_handle1, /*transaction handle from arm_start */
 ARM_GOOD, /*successful completion define= 0 */
 0,0,0);

 /*start recording the second step of the long transaction */
 sub_tran_handle2 = arm_start(sub_tran_id_2,
 0,0,0);

 /**************************************/
 /* Process step 2 on this transaction */
 /**************************************/

 /* record the completion of the second step */
 arm_stop(sub_tran_handle2, /* transaction handle from arm_start */
 ARM_GOOD, /* successful completion define = 0 */
 0,0,0);

 /* record the completion of the overall transaction */
 arm_stop(tran_handle, /* transaction handle from arm_start */
 ARM_GOOD, /* successful completion define = 0 */
 0,0,0);

 return;
} /* long_trans_using_sub_trans */
Examples 103

/***/
/* main */
/***/

main()
{

 int continue_processing = 1;

 init();

 while (continue_processing)
 {
 simple_trans1();
 long_trans_using_update();
 long_trans_using_sub_trans();

 continue_processing = 0;
}
 arm_end(appl_id, /* application id from arm_init */
 0,0,0);

 return(0);
}

104 Appendix B

C/C++ (all platforms) Sample 2

Sample 2 uses the advanced functions of application-defined metrics and
transaction correlation.

/**/
/* Sample2.c */
/* */
/* This program provides examples of how to use two of the new features */
/* provided by version 2.0 of the ARM API, user defined metrics and */
/* correlation. For simplicity, this sample program does not perform */
/* any error checking. */
/**/

#include <stdio.h>
#include "arm.h"

arm_int32_t client_appl_id = -1; /* application id */
arm_int32_t client_tran_id = -1; /* transaction id */

arm_int32_t metric_appl_id = -1; /* application id */
arm_int32_t metric_tran_id = -1; /* transaction id */

/***/
/* server_application */
/* */
/* This routine is included here to simplify this example. In a real */
/* life situation, this piece of code would likely be running on a */
/* separate system. */
/***/

void server_application(arm_app_correlator_t client_correlator)

{

 arm_int32_t server_appl_id = -1; /* unique application id */
 arm_int32_t server_tran_id = -1; /* unique transaction id */
 arm_int32_t server_tran_handle = -1; /* transaction instance */

 arm_user_data1_t *buf_ptr, buf = {
 1, /* header */
 {ARM_CorrPar_f, 0, 0, 0}, /* flags */
Examples 105

 };

 arm_int32_t buf_sz;

 int i, data_len;

 server_appl_id = arm_init("Server_Application", /* application name */
 "*", /* use default user */
 0,0,0); /* reserved */

 server_tran_id = arm_getid(server_appl_id, /* appl_id from arm_init
*/
 "Server_transaction", /* transaction name */
 "First Transaction in Server program",
 0, /* data buffer */
 0,0); /* buffer pointer & size */

 /* Pass the parent correlator received from the client application to */
 /* the ARM agent using the arm_start call. */

 buf_ptr = &buf;
 buf_ptr->flags[0] = ARM_CorrPar_f;

 buf_ptr->correlator.length = client_correlator.length;
 data_len = (client_correlator.length - sizeof(client_correlator.length));
 for (i = 0; i < data_len; i++)
 buf_ptr->correlator.agent_data[i] = client_correlator.agent_data[i];

 buf_sz = (sizeof(buf)-sizeof(client_correlator) +
client_correlator.length);

 server_tran_handle = arm_start(server_tran_id, /* tran_id from arm_getid
*/
 0, /* reserved */
 (char *)buf_ptr,
 buf_sz);

 /**/
 /* Perform actual transaction processing here */
 /**/

 arm_stop(server_tran_handle, /* transaction handle from arm_start */
 ARM_GOOD, /* successful completion define = 0 */
 0, /* reserved for future use */
 0,0); /* buffer pointer & buffer size */

 arm_end(server_appl_id, /* application id from arm_init */
106 Appendix B

 0,0,0); /* reserved for future use */

 return;

} /* server_application() */

/**/
/* client_transaction */
/**/

void client_transaction()

{

 arm_int32_t client_tran_handle = -1; /* transaction start handle */

 arm_user_data1_t *buf_ptr, buf = {
 1, /* Header */
 };

 arm_int32_t buf_sz;

 arm_app_correlator_t correlator = {
 0, /* correlator length */
 0, /* agent data */
 };

 int i, data_len;

 buf_ptr = &buf;
 buf_sz = sizeof(buf);

 /* The client application requests a correlator from the ARM Agent */

 buf_ptr->flags[0] = ARM_CorrReq_f;
 client_tran_handle = arm_start(client_tran_id, /* tran_id from arm_getid
*/
 0, /* reserved for future use*/
 (char *)buf_ptr,/* metrics buf ptr */
 buf_sz); /* user metric buffer size*/

 /* If the ARM Agent returns a correlator, determine the size of the */
 /* agent specific data in the correlator and pass the data, along with */
 /* the correlator length, to the server application. */

 if ((buf_ptr->flags[0] & ARM_CorrGen_f) == ARM_CorrGen_f) {
 correlator.length = buf_ptr->correlator.length;
 data_len = (correlator.length - sizeof(buf_ptr->correlator.length));
Examples 107

 for (i = 0; i < data_len; i++)
 correlator.agent_data[i] = buf_ptr->correlator.agent_data[i];
}

server_application(correlator);

 arm_stop(client_tran_handle, /* transaction handle from arm_start */
 ARM_GOOD, /* successful completion define = 0 */
 0, /* reserved for future use */
 0,0); /* buffer pointer & buffer size */

 return;

} /* client_transaction() */

/***/
/* init_client_application */
/***/

void init_client_application()

{

 client_appl_id = arm_init("Client_Application", /* application name */
 "*", /* use default user */
 0,0,0); /*reserved for future user*/
 client_tran_id = arm_getid(client_appl_id, /* appl_id from arm_init
*/
 "Client_transaction", /* transaction name */
 "First transaction in Client application",
 0, /* reserved */
 0,0); /* buffer pointer & size */

 return;

} /* init_client_application */

/***/
/* metric_transaction */
/***/

void metric_transaction()

{
 arm_int32_t metric_tran_handle = -1; /*transaction start handle */
108 Appendix B

 arm_user_data1_t *buf_ptr, buf = {
 1, /* Header */
 {0, ARM_AllMetrics_f | ARM_String1_f, 0, 0}, /* Flags */
 };

 arm_int32_t buf_sz;

 buf_ptr = &buf;
 buf_sz = sizeof(buf);

 buf_ptr->metric[0].counter32 = 0x32;
 buf_ptr->metric[1].gauge32 = 0x32;
 buf_ptr->metric[2].counter64.upper = 0x01234567;
 buf_ptr->metric[2].counter64.lower = 0x76543210;
 strcpy(buf_ptr->metric[3].string8, "String 8");
 buf_ptr->metric[4].cntrdivr32.count = 0x32;
 buf_ptr->metric[4].cntrdivr32.divisor = 0x32;
 buf_ptr->metric[5].numericid64.upper = 0x01234567;
 buf_ptr->metric[5].numericid64.lower = 0x76543210;
 strcpy(buf_ptr->string32,"This is a 32 character string ");

 metric_tran_handle = arm_start(metric_tran_id, /*tran_id from arm_getid
*/
 0, /* reserved */
 (char *)buf_ptr, /* metrics buf ptr*/
 buf_sz); /*user metric buffer size*/

 /********************************/
 /* Perform some processing here */
 /********************************/

 arm_update(metric_tran_handle, /* transaction handle from arm_start */
 0, /* reserved for future use */
 (char *)buf_ptr, /* user metrics buffer pointer */
 buf_sz); /* user metric buffer size */

 /*************************************/
 /* Perform some more processing here */
 /*************************************/

 arm_stop(metric_tran_handle, /* transaction handle from arm_start */
 ARM_GOOD, /* successful completion define = 0 */
 0, /* reserved for future use */
 (char *)buf_ptr, /* user metrics buffer pointer */
 buf_sz); /* user metric buffer size */

 return;
Examples 109

} /* metric_transaction() */

/***/
/* init_metric_application */
/***/

void init_metric_application()

{

 arm_user_data101_t *buf_ptr, buf = {
 101,
 {0, ARM_AllMetrics_f | ARM_String1_f, 0, 0},
 {{1, "Metric #1 - Type 1 is a COUNTER32 "},
 {4, "Metric #2 - Type 4 is a GAUGE32 "},
 {2, "Metric #3 - Type 2 is a COUNTER64 "},
 {9, "Metric #4 - Type 9 is a STRING8 "},
 {3, "Metric #5 - Type 3 is a COUNTER32/DIVISOR32"}
 {8, "Metric #6 - Type 8 is a NUMERICID64 "},
 {10, "The last field is always a STRING32 "}
 }};

 arm_int32_t buf_sz;

 buf_ptr = &buf;
 buf_sz = sizeof(buf);

 metric_appl_id=arm_init("Metric_Application", /* application name */
 "*", /* use default user */
 0,0,0); /* reserved */

 metric_tran_id = arm_getid(metric_appl_id, /* appl_id from arm_init
*/
 "Metric_transaction", /* transaction name */
 "First transaction in Metric application",
 0, /* reserved */
 (char *)buf_ptr, /* buffer */
 buf_sz); /* buffer size */

 return;

} /* init_metric_application */

/**/
/* Main */
/**/
110 Appendix B

main()

{

 int continue_processing = 1;

 init_client_application();

 init_metric_application();

 while (continue_processing)

 {
 client_transaction();
 metric_transaction();
 continue_processing = 0;

 }

 arm_end(client_appl_id, /* application id from arm_init */
 0,0,0); /* reserved for future use */

 arm_end(metric_appl_id, /* application id from arm_init */
 0,0,0); /* reserved for future use */

 return(0);
}

Examples 111

112 Appendix B

	Application Response Measurement 2.0 API Guide
	Contents
	1 Application Response Measurement API
	Introduction
	Measuring Service Levels
	ARMing Your Applications
	Additional Information

	2 Basic Tasks for Instrumenting an Application
	Introduction
	What to Instrument

	3 The Software Developer's Kit (SDK)
	Introduction
	The ARM Shared Library (libarm)
	The Logging Agent
	The Header File

	4 Getting Started
	Introduction
	Installation
	For UNIX and Linux systems
	For OS/2, Windows NT, or Windows 95 systems

	Using the Logging Agent
	Overview of the ARM API Function Calls
	Adding ARM Function Calls to an Application
	Definition of Data Type Terminology

	Testing Your Instrumentation
	Logging Agent Sample Output

	arm_init
	arm_getid
	arm_start
	arm_update
	arm_stop
	arm_end

	5 Advanced Topics
	Introduction
	Additional Data Passed in the ARM Function Calls
	Transaction Correlation
	Application-Defined Metrics
	Choosing A Data Type
	Format of Data Buffer in arm_getid
	Data Type Definitions
	Format of Data Buffer in arm_start, arm_update, arm_stop

	Three Ways to Instrument within a Transaction Instance
	Internationalization
	A Measurement Agent Information
	Introduction
	Format of the Correlator

	B Examples
	Introduction
	arm.h Header File
	C/C++ (all platforms) Sample 1
	C/C++ (all platforms) Sample 2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /JPXEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG2000
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /JPXEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG2000
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings when submitting to HP. These settings require font embedding.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

