
HP OpenView Communications
Event Correlation Services

Administrator’s Guide

HP-UX, Solaris, Windows NT®, Windows® 2000 and Windows® XP
Manufacturing Part Number: J1095-90312

January 2003

© Copyright 2001 Hewlett-Packard Company

Legal Notices
Hewlett-Packard makes no warranty of any kind with regard to this
manual, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be held liable for errors contained herein or direct, indirect,
special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Warranty. A copy of the specific warranty terms applicable to your
Hewlett- Packard product and replacement parts can be obtained from
your local Sales and Service Office.

Restricted Rights Legend. All rights are reserved. No part of this
document may be photocopied, reproduced, or translated to another
language without the prior written consent of Hewlett-Packard
Company. The information contained in this document is subject to
change without notice.

Use, duplication or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013
for DOD agencies, and subparagraphs (c) (1) and (c) (2) of the
Commercial Computer Software Restricted Rights clause at FAR 52.227-
19 for other agencies.

HEWLETT-PACKARD COMPANY

3404 E. Harmony Road

Fort Collins, CO 80528 U.S.A.

Use of this manual and flexible disk(s), tape cartridge(s), or CD-ROM(s)
supplied for this pack is restricted to this product only. Additional copies
of the programs may be made for security and back-up purposes only.
Resale of the programs in their present form or with alterations, is
expressly prohibited.

Copyright Notices. © Copyright 1983-2001 Hewlett-Packard Company,
all rights reserved.

Reproduction, adaptation, or translation of this document without prior
written permission is prohibited, except as allowed under the copyright
laws.
2

Contains software from AirMedia, Inc.

© Copyright 1996 AirMedia, Inc.

Trademark Notices

Java™ is a U.S. trademark of Sun Microsystems, Inc.

Microsoft® is a U.S. registered trademark of Microsoft Corporation.

Windows NT® is a U.S. registered trademark of Microsoft Corporation.

Windows® 2000 is a U.S. registered trademark of Microsoft Corporation.

Windows® and MS Windows® are U.S. registered trademarks of
Microsoft Corporation.

Netscape™ and Netscape Navigator™ are U.S. trademarks of Netscape
Communications Corporation.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood
City, California.

Oracle7™ is a trademark of Oracle Corporation, Redwood City,
California.

Pentium® is a U.S. registered trademark of Intel Corporation.

UNIX® is a registered trademark of The Open Group.

Perl is a trademark of O’Reilly & Associates, Inc.

All other product names are the property of their respective trademark
or service mark holders and are hereby acknowledged.
 3

4

1. Introduction
Purpose. .10
Audience. .11

2. Getting Started
Designing Correlation Circuits .15
Event Flow and Circuits .17

Streams .17
Stream Policy. .18
Event Duplication .19

Correlation Circuits .19
Enabling Correlation Circuits on More Than One Stream.20

Event Input and Output .21
Configuring the ECS Engine. .23

Endecoder Configuration .23
ECS Engine Management (ecsmgr) .26

Engine Instance Number .26
Operating the ECS Engine .27
Monitoring the ECS Engine. .27
Troubleshooting the ECS Engine .27

Setting Up the Environment. .28
Integrating User MIBs (DM only) .32
Integrating ASCII Metadata (ASCII only). .34
ECS Engine Files. .35
ECS Engine and Correlation Circuit States .37
Ensuring Synchronized Timing .41

3. Operating the ECS Engine
Starting the ECS Engine. .45

Starting a pmd-linked ECS Engine. .45
Starting Event I/O and Annotation. .45

Resetting the ECS Engine. .46
Loading an ECS Circuit, Data Store, and Fact Store 47
Enabling an ECS Circuit. .50
Enabling Drill Logs .52
Loading Perl files .53
 5

Changing the Association Between Stores and Circuits 54
Updating the Data and Fact Stores. 56
Dumping Data and Fact Stores to Files . 59
Reloading a Correlation Circuit . 61
Disabling an ECS Circuit. 62
Managing Streams . 64
Unloading an ECS Circuit, Data Store, and Fact Store. 66
Controlling Persistence . 67

4. Monitoring the ECS Engine
Displaying ECS Engine Information. 71
Obtaining Engine Statistics. 73
Logging Events . 78
Logging Errors and Tracing Operations . 81

Setting the Postmaster Log and Trace Mask (DM and NNM) 81
Enabling the ECS Engine Log . 83
Enabling the ECS Engine Trace . 84

Saving a Snapshot of the Correlation Engine. 86

5. Troubleshooting the ECS Engine
Eliminating Common Faults . 89
Recovering from a Failure . 93
Verifying an Installation . 95

 Glossary
6

Contact Information

Contacts Please visit our HP OpenView web site at:

http://openview.hp.com/

There you will find contact information as well as details about the
products and services HP OpenView has to offer.

Support The “hp OpenView support” area of the HP OpenView web site includes:

• Downloadable documentation

• Troubleshooting information

• Patches and updates

• Problem reporting

• Training Information

• Support program information
 7

8

1 Introduction
9

Introduction
Purpose
Purpose
The HP OpenView Event Correlation Services Administrator’s Guide
explains how to manage the ECS Engine. The guide assumes that the
ECS Engine is already installed and concentrates on explaining how to
do these tasks:

• initializing the ECS Engine

• loading, reloading, and unloading correlation circuits

• loading, updating, saving, and unloading Data and Fact Stores

• starting and stopping the ECS Engine

• saving statistics, error logs, traces, and event logs to monitor the
operation of a running ECS Engine

• troubleshooting the ECS Engine
10 Chapter 1

Introduction
Audience
Audience
The reader should be experienced in the administration of UNIX-based
systems on Network Management.
Chapter 1 11

Introduction
Audience
12 Chapter 1

2 Getting Started
13

Getting Started
This chapter introduces the HP OV Event Correlation Services (ECS)
products (Designer and Engine), explains the principal concepts, and
provides an overview of managing the ECS Engine.

The chapter begins with a brief description of how circuits are designed
with the ECS Designer and run in an ECS Engine:

• “Designing Correlation Circuits” on page 15.

The next section previews how the ECS Engine fits into the event flow:

• “Event Flow and Circuits” on page 17.

This is followed by a group of chapters describing configuration and
setup tasks and issues:

• “Configuring the ECS Engine” on page 23.

• “Setting Up the Environment” on page 28.

• “Integrating User MIBs (DM only)” on page 32.

• “Ensuring Synchronized Timing” on page 41.

• “ECS Engine Files” on page 35.

The last section describes the internal states that the engine and the
circuits running on the engine can be in. Later chapters rely on an
understanding of the states described in this section:

• “ECS Engine and Correlation Circuit States” on page 37.

NOTE You may be required to install and configure an annotation server.
This server is an application that receives requests generated by the
ECS Engine, carries out some task, and returns a response. Since an
annotation server is implemented by users or third-party developers,
obtain installation and configuration procedures from the supplier. For
further details, see the HP OV Event Correlation Services Developer’s
Guide and Reference.
14 Chapter 2

Getting Started
Designing Correlation Circuits
Designing Correlation Circuits
The circuit designer uses the ECS Designer to:

• create a correlation circuit

• test and view any Data and Fact Store files

• compile the circuit

• test the circuit with events generated at the time the problem
occurred.

Figure 2-1 summarizes this process. The ECS Designer uses an
embedded ECS Engine to simulate the event flow through a circuit. This
embedded engine is controlled completely from the Designer (and is not
described in this guide).

When a correlation circuit is fully tested and debugged, the circuit
designer compiles a circuit run-time file and supplies it to you, the
administrator. The circuit designer may also supply you with Data and
Fact Store files. See Figure 2-2.

Figure 2-1 ECS Designer Main Components

The ECS Engine correlates events according to the rules embedded in

ECS Designer

Circuit
Compiled Circuit

to ECS Engine

Legacy
database,
Text

Embedded
ECS Engine

editor

Event logs

Data, Fact Stores

Build

Simulate

(ecsdes)

(*.ecs)

(*.evt)

(*.ds, *.fs)

(*.eco)

See Figure 2-2.

Capture
from

Text
editor

network,
Chapter 2 15

Getting Started
Designing Correlation Circuits
one or more compiled circuit files. It may also rely on information from
one or more data and fact store files.

Figure 2-2 ECS Engine Main Components

The ECS Engine produces a modified output event flow, together with a
number of optional output files including engine log and trace files and
event logs.

NOTE In DM or NNM, CMIP and SNMP events enter and leave the ECS engine
through the pmd.

ASCII events can enter and leave the engine through the event I/O in all
engines.

Engine log and trace output is directed to the postmaster log and trace
files.

Event I/O or pmd
Input event flow

from ECS Designer

ECS Engine
Output event flow

Engine log file (*.log0)

Engine trace file (*.trc0)

ecsmgr-enable

ECS Manager
(ecsmgr) Circuit

Engine event logs files

Data, Fact Stores

(*.eco)

(*.evt0)

(*.ds, *.fs)

See Figure 1-1

or
16 Chapter 2

Getting Started
Event Flow and Circuits
Event Flow and Circuits
The flow of events through an ECS engine is determined by the circuits
that are loaded and enabled in the configured event streams, and the
policy of the circuits and streams.

Streams

A stream is a distinct flow of events. Initially there is only one stream
called default and by default, all circuits that are loaded and enabled
are enabled on this stream. Multiple independent event streams are
supported by the ECS engine and every event that enters the engine
simultaneously flows into every stream.

The concept of a stream only has meaning when talking about the output
of a correlation circuit. The circuit itself determines which events it will
accept and therefore possibly output to a particular stream. For example,
if a circuit is enabled on a stream called ‘stream1’ then the events output
by the circuit are output to ‘stream1’.

Each stream is correlated independently, which means that the fate of an
event in one stream (whether output or discarded) will not influence the
fate of the same event in any other event stream.

Figure 2-3 Event Flow into Circuits and Streams

Circuit 1

Stream 1 output

Stream 2 output

Stream 3 output

Circuit 2

Circuit 3

Circuit 4

Circuit 5

Input
Chapter 2 17

Getting Started
Event Flow and Circuits
Stream Policy

Each stream has a configurable policy that determines:

• how circuits affect events in a stream,

• what happens to events that are not accepted by any circuit enabled
on the stream,

• what happens to events that are in a circuit when it is disabled.

The stream policy determines how those events are processed:

• A stream with an output policy outputs an event unless at least one
circuit enabled on the stream discards the event.

• A stream with a discard policy outputs an event if any circuit
enabled on the stream outputs the event.

These rules are summarized below.

For example, a circuit designed to create a special warning event when a
security violation is detected would probably be given a Discard circuit
policy, meaning that it could only be enabled on a stream with a Discard
policy. When this stream is initially created it is opaque—that is, it will
not output any events until at least one circuit is enabled. When the
security violation circuit is enabled, the only events output from the
stream are those explicitly output by the circuit, in this case when the
circuit detects a security violation. Only then is the special warning
event created and emitted.

Compare this with a circuit designed to suppress events during

Table 2-1 Summary of Stream Policy Rules

Stream
Policy

Default Action
When No
Circuit is
Loaded

Allowed Circuit
Policies

An Event is
Discarded When...

An Event is
Output When...

Output Events are
output

• Output

• Unspecified

At least one circuit in
the stream discards the
event.

The event is not
discarded by any circuit
in the stream.

Discard Events are
discarded

• Discard

• Unspecified

The event is not output
by any circuit in the
stream.

At least one circuit in
the stream outputs the
event.
18 Chapter 2

Getting Started
Event Flow and Circuits
scheduled maintenance. In this case, the circuit would have a policy of
Output and could only be enabled on an Output stream. When this
stream is enabled it is transparent—that is, it passes all events from its
input to its output. When the scheduled maintenance circuit is enabled,
the only events suppressed are those that the circuit recognizes as being
generated by equipment under scheduled maintenance; all other events
are passed through.

In practise, output stream policies are more common than discard
stream policies. In NNM, for example, the default stream has an output
policy, and this policy should not be changed.

NOTE While the policy of the default stream can be changed through ecsmgr, it
should not be changed.

Event Duplication

An event is output once, at most, on a given stream; although the same
event can be output on more than one stream. This ensures that a
stream created for a special purpose, such as for testing, does not
interfere with the production network management system.

NOTE This concept of independence does not extend quite so simply to
correlation circuits whose output forms these streams. Aspects of this
issue are discussed in “Option 2” on page 21.

Correlation Circuits

Specific correlation circuits are loaded into the particular streams after
the engine is started. Once loaded, circuits can be enabled or disabled as
a whole, or the inputs and outputs of the circuits can be enabled or
disabled separately.

A circuit with only input enabled will receive and correlate events, but
will not affect the flow of events from the engine. This is useful if a
circuit needs time to build up state before it can usefully affect the event
flow.

A circuit with only output enabled will no longer receive events from the
Chapter 2 19

Getting Started
Event Flow and Circuits
engine, but events within the circuit will still flow through and out of the
circuit and the engine. This is useful when a circuit needs time to finish
correlating its events before it is unloaded.

If a circuit (or just its output) becomes disabled while events are still
within the circuit, the engine will ignore this circuit when deciding
whether to output these events. If the stream policy is set to ‘output’, and
no other circuit is correlating these events, the disabling of the circuit
will cause these events to be immediately transmitted from the engine.

Each circuit generally has one or more input ports. Each circuit input
port may have conditions associated with it. The conditions are defined
using the ECS Designer External Tab and serve to restrict the events
that flow into the circuit through the input port.

Enabling Correlation Circuits on More Than One Stream

A correlation circuit can be enabled on more than one stream. There are
two ways to do this:

• Option 1. Load the correlation circuit once and enable it multiple
times, once for each stream.

For example:

ecsmgr -data_load myDatastore myCircuit.ds
ecsmgr -circuit_load myCircuit myCircuit.eco myDatastore
ecsmgr -enable myCircuit
ecsmgr -create_stream test output

• Option 2. Load the correlation circuit, give it a different symbolic
name, and enable it on the desired stream(s).

For example:

ecsmgr -data_load myDatastore myCircuit.ds
ecsmgr -circuit_load myCircuit myCircuit.eco myDatastore
ecsmgr -enable myCircuit
ecsmgr -circuit_load sameCircuit myCircuit.eco -myDatastore
ecsmgr -create_stream test output

Option 1 Reduces the processing requirements because the same
runtime correlation circuit is used in all streams, This is the preferred
option where possible.

NOTE Whenever the configuration of a correlation circuit is modified, there is
20 Chapter 2

Getting Started
Event Flow and Circuits
potential for adversely affecting all streams on which the circuit is
enabled. Clearly this might cause undesirable problems if you are testing
within a production environment.

Option 2 loads the circuit again and allows you use a different data
store, or fact store. Because the second instance of the circuit has a
different name to the first, you can change its configuration parameters
without affecting the first instance and any stream in which the first
instance is enable provided such changes are done though ecsmgr(1M).

All streams on which a correlation circuit is enabled must have a policy
compatible with the correlation circuit policy.

Event Input and Output

The ECS Engine has the following event I/O mechanisms:

• In ITO, event input and output is handled internally and cannot be
controlled.

• In DM and in NNM, event I/O is normally through the postmaster
(pmd (1M)), but may be through the ECS Event I/O API.

This is summarized in the following table.

NNM If option 2 is implemented using the NNM
Configuration GUI, then you must have a new physical
copy of the correlation circuit, the data store and the fact
store. A further requirement of managing circuits and
streams through the NNM Configuration GUI is that the
fact store and data store must have the same name as the
correlation circuit (but with different extensions).

Table 2-2 ECS Event IO

SNMP CMIP ASCII OpcMsg

ITO no no no ITO

DM pmd pmd EIO no

NNM pmd no EIO no
Chapter 2 21

Getting Started
Event Flow and Circuits
Where:

pmd Events can be input and output via the postmaster

EIO Events can be input and output via the ECS Event I/O
API

ITO Events are input and output via ITO

no Events cannot be input or output

In addition, there are restrictions on how streams are handled in some
environments:

• For ECS in DM, CMIP and SNMP events output from the default
stream only are sent to the pmd. CMIP and SNMP events output
from other streams are discarded.

• In ECS for NNM, SNMP events from all streams are sent to the pmd.
(CMIP events are not relevant in NNM).

• ASCII events are output through the ECS Event I/O API to any
application that has registered to receive the stream carrying the
ASCII events.

• ASCII events cannot be output through the pmd.
22 Chapter 2

Getting Started
Configuring the ECS Engine
Configuring the ECS Engine
The ECS Engine must be running before you can load correlation circuits
and Data and Fact Stores.

For DM and NNM, the ECS Engine is built into the postmaster (pmd)
and is started with the postmaster (through the ovstart and ovstop
commands). In the remainder of this manual, these two engines are
known generically as a pmd-linked ECS Engine.

You may also need to run other customer-supplied (or third-party)
processes such as:

• An application to feed events to and from the ECS Engine through
the ECS Event I/O API. This is a mandatory part of the open engine
but can also be present with the ECS Engine for HP OpenView DM if
it is necessary to correlate ASCII events.

• An annotation server process that supplies externally defined data
(from a database, for example) to a circuit in the ECS Engine.

See also • HP OV Event Correlation Services Developer’s Guide and Reference
for details about the Event I/O and annotation server APIs.

• “Starting the ECS Engine” on page 45

Endecoder Configuration

The activation of endecoders in the ECS Engine and the ECS Designer is
controlled through the configuration file $OV_CONF/ecs/ed/ed.conf.

DM and NNM The ECS Engine is dynamically linked to the HP
OpenView postmaster daemon (pmd) as an intermediate
stack. (The postmaster is configured to route events
through the ECS Engine with the
$OV_LRF/pmd.ecs.lrf local registration file).

Uncorrelated events arrive at the ECS Engine through
the postmaster. The engine returns the correlated events
to the postmaster for distribution. The pmd-linked ECS
Engine can also accept ASCII events through the Event
I/O API.
Chapter 2 23

Getting Started
Configuring the ECS Engine
The default configuration (set during installation) may not be
appropriate. Installation of DM-linked product configures CMIP and
SNMP only.

If you need to support other event types you must change the default
configuration. For example, if you require SNMP event support for the
open engine, or if you want to support ASCII events in a DM-linked
engine then you must edit the configuration file.

The configuration file is a very simple text file containing a line for each
supported endecoder module. For example, to support just ASCII events
the configuration file should contain just one line:

MDL

Alternatively, to support both ASCII and SNMP endecoders:

MDL

SNMP

The keywords you can use in the configuration file are listed in Table 2-3:

NOTE Changes made to the configuration file take effect when the ECS Engine
(or ECS Designer) is next started. For the pmd-linked ECS Engine,
changes are read when the pmd is started with the ovstart command.

Specifying
metadata files

The endecoders rely on the presence of metadata files for detailed
information about the structure of specific events. Default metadata files
are supplied but, particularly in the case of ASCII events, you will need
to recompile them to contain the appropriate event definitions (see
“Integrating User MIBs (DM only)” on page 32 and “Integrating ASCII
Metadata (ASCII only)” on page 34). The default metadata files used by
the endecoders are:

Table 2-3 Configuration File Keywords

Keyword Comments

MDL ASCII events

SNMP ber-encoded SNMP v1 MIB-II Traps.

CMIP ber-encoded CMIP event reports and SNMP Traps.
24 Chapter 2

Getting Started
Configuring the ECS Engine
ASCII $OV_CONF/ecs/md/mdl/mdl.md

SNMP and CMIP $OV_CONF/ecs/md/ber/ecs.md

If you need to explicitly specify a metadata file you can do so by setting
the appropriate environment variable(s), as follows:

ASCII ECS_MDL_MD

SNMP and CMIP ECS_BER_MD

These environment variables are useful when experimental metadata
files are used, and you wish to preserve the originals. This commonly
arises when multiple ECS Engines or ECS Designers, with different
metadata requirements, are in use on the same machine at the same
time.
Chapter 2 25

Getting Started
ECS Engine Management (ecsmgr)
ECS Engine Management (ecsmgr)
The ECS Engine is managed with a command line program called
ecsmgr. You use this program to:

• Operate the ECS Engine

• Monitor the ECS Engine

• Troubleshoot the ECS Engine

NOTE You must be superuser to use ecsmgr.

The ecsmgr -h command summarizes the usage of ecsmgr. You can give
only one command at a time. The ecsmgr command ignores all
commands except the first.

See also ecsmgr(1m) manpage.

Engine Instance Number

The instance number uniquely identifies an ECS Engine instance
running on a machine. Multiple engine instances can be useful to
correlate independent event streams, or when you need to connect the
output of one circuit to the input of another. Generally, you can run any
number of ECS Engines concurrently on a machine.

DM and NNM Only one ECS Engine for HP OpenView DM or ECS
Engine for HP OpenView NNM can be started on any
one machine and the instance number is always 1 (one).

OVO The OVO Server linked correlation engine is always
instance 11.

The OVO Agent linked correlation engine is always
instance 12.
26 Chapter 2

Getting Started
ECS Engine Management (ecsmgr)
Operating the ECS Engine

The basic operational tasks control the engine as a whole, individual
circuits in the engine and the engine’s environment (Fact and Data
Stores). These tasks include:

• Managing streams

• Loading circuits, fact files and data files into the engine

• Enabling and disabling circuits

• Updating Fact and Data Stores

• Dumping Fact and Data Stores to file

• Reloading a circuit

• Saving and restoring the Engine configuration

These tasks are described in detail in Chapter 3 , “Operating the ECS
Engine,” on page 43.

Monitoring the ECS Engine

You can check the state of the engine as a whole, as well as the state of
individual circuits, and produce event logs, error logs and trace files. This
information is useful when you need to verify the correct operation of an
engine, provide feedback to a circuit designer, developer, or support staff.

For more detailed information, see Chapter 4 , “Monitoring the ECS
Engine,” on page 69.

Troubleshooting the ECS Engine

If the ECS Engine fails to operate as expected you should check the
installation, and you may need to restart the engine.

For more information, see Chapter 5 , “Troubleshooting the ECS
Engine,” on page 87.
Chapter 2 27

Getting Started
Setting Up the Environment
Setting Up the Environment
Installation includes an optional procedure to set up environment
variables for directory paths common to HP OpenView applications.
These environment variables ensure that scripts work across different
operating systems and make it easier to maintain them over new
releases.

The HP OV Event Correlation Services Installation Guide provides
instructions for running the ov.envvars script to set up environment
variables. Use env(1) to check if environment variables have been set.

The environment variables required by the ECS Engine and referred to
in this book are displayed in Table 2-4.

NOTE The Windows universal pathnames are relative to the directory into
which ECS has been installed. The pathnames shown in Table 2-4 use
the environment variable %OV_MAIN% which defaults to C:\OpenView
but this can be over-ridden during installation.

There is no change in the universal pathnames for all Windows
platforms that ECS supports namely Windows NT, Windows 2000 and
Windows XP.

Table 2-4 Common Universal Pathnames for the ECS Engine

Universal Name HP-UX 10.X, 11.X Solaris 2.X Windows

$APP_DEFS /usr/lib/X11/
app-defaults

/usr/openwin/
lib/app-defaults

%OV_MAIN%\doc\
app-defaults

$NCS_BIN /usr/sbin/ncs /opt/ncs/
install/bin

–

$NCS_CONF /etc/ncs /var/ncs –

$NCS_DB /var/ncs /var/ncs –

$NETFMT /usr/sbin/netfmt /opt/OV/bin/
netfmt

–

28 Chapter 2

Getting Started
Setting Up the Environment
$NETFMT_LOG_FILE /var/adm/
nettl.LOG00

/var/opt/OV/log/
nettl.LOG00

–

$OV_BACKGROUNDS /etc/opt/OV/
share/
backgrounds

/etc/opt/OV/
share/
backgrounds

%OV_MAIN%\
backgrounds

$OV_BIN /opt/OV/bin /opt/OV/bin %OV_MAIN%\bin

$OV_BITMAPS /etc/opt/OV/
share/bitmaps

/etc/opt/OV/
share/bitmaps

%OV_MAIN%\
bitmaps

$OV_CONF /etc/opt/OV/
share/conf

/etc/opt/OV/
share/conf

%OV_MAIN%\conf

$OV_CONTRIB /opt/OV/contrib /opt/OV/contrib %OV_MAIN%\
contrib

$OV_DB /var/opt/OV/
share/databases

/var/opt/OV/
share/databases

%OV_MAIN%\
databases

$OV_DOC /opt/OV/doc /opt/OV/doc %OV_MAIN%\doc

$OV_FIELDS /etc/opt/OV/
share/fields

/etc/opt/OV/
share/fields

%OV_MAIN%\
fields

$OV_GDMO_MIBS /opt/OV/
gdmo_mibs

/opt/OV/
gdmo_mibs

–

$OV_HEADER /opt/OV/include /opt/OV/include %OV_MAIN%\
include

$OV_HELP /etc/opt/OV/
share/help

/etc/opt/OV/
share/help

%OV_MAIN%\
help

$OV_HPSMI_MIBS /opt/OV/
hpsmi_mibs

/opt/OV/
hpsmi_mibs

%OV_MAIN%\
hpsmi_mibs

$OV_INSTALL /opt/OV/install /opt/OV/install –

$OV_LIB /opt/OV/lib /opt/OV/lib %OV_MAIN%\lib

Table 2-4 Common Universal Pathnames for the ECS Engine

Universal Name HP-UX 10.X, 11.X Solaris 2.X Windows
Chapter 2 29

Getting Started
Setting Up the Environment
$OV_LOG /var/opt/OV/
share/log

/var/opt/OV/
share/log

%OV_MAIN%\log

$OV_LRF /etc/opt/OV/
share/lrf

/etc/opt/OV/
share/lrf

%OV_MAIN%\lrf

$OV_MAN /opt/OV/man /opt/OV/man %OV_MAIN%\
help\C

$OV_MAIN_PATH /opt/OV /opt/OV SRCTARGETDIR

$OV_NEW_CONF /opt/OV/
newconfig

/opt/OV/
newconfig

–

$OV_NLS /opt/OV/lib/nls /opt/OV/lib/nls %OV_MAIN%\
lib\nls

$OV_NODELOCK /var/opt/ifor /opt/netls/conf %OV_MAIN%\
ifor\ls\conf

$OV_PIDS /var/opt/OV/pids /var/opt/OV/pids –

$OV_PRIV_CONF /etc/opt/OV/conf /etc/opt/OV/conf %OV_MAIN%\
conf

$OV_PRIV_LOG /var/opt/OV/
share/log

/var/opt/OV/
share/log

%OV_MAIN%\log

$OV_PRODUCTS /opt/OV/products /opt/OV/products –

$OV_PROG_SAMPLES /opt/OV/
prg_samples

/opt/OV/
prg_samples

%OV_MAIN%\
prg_samples

$OV_REGISTRATION /etc/opt/OV/
share/
registration

/etc/opt/OV/
share/
registration

%OV_MAIN%\
registration

$OV_RELNOTES /opt/OV/
ReleaseNotes

/opt/OV/
ReleaseNotes

%OV_MAIN%\
ReleaseNotes

$OV_SHARE_LOG /var/opt/OV/
share/log

/var/opt/OV/
share/log

%OV_MAIN%\log

Table 2-4 Common Universal Pathnames for the ECS Engine

Universal Name HP-UX 10.X, 11.X Solaris 2.X Windows
30 Chapter 2

Getting Started
Setting Up the Environment
See also • ovenvvars(1)

$OV_SNMP_MIBS /etc/opt/OV/
share/snmp_mibs

/etc/opt/OV/
share/snmp_mibs

%OV_MAIN%\
snmp_mibs

$OV_SOCKETS /var/opt/OV/
sockets

/var/opt/OV/
sockets

–

$OV_STACKS /etc/opt/OV/
stacks

/ect/opt/OV/
stacks

%OV_MAIN%\
stacks

$OV_SYMBOLS /etc/opt/OV/
share/symbols

/etc/opt/OV/
share/symbols

%OV_MAIN%\
symbols

$OV_TMP /var/opt/OV/tmp /var/opt/OV/
share/tmp

%OV_MAIN%\tmp

$OV_TOOLS /opt/OV/tools /opt/OV/tools –

$OV_WWW /opt/OV/www /opt/OV/www %OV_MAIN%\www

Table 2-4 Common Universal Pathnames for the ECS Engine

Universal Name HP-UX 10.X, 11.X Solaris 2.X Windows
Chapter 2 31

Getting Started
Integrating User MIBs (DM only)
Integrating User MIBs (DM only)
The Management Information Base (MIB) is relevant to the ECS Engine
for HP OpenView DM. This discussion assumes that you are familiar
with the DM MIB.

The installation process installs default event metadata for CMIP and
SNMP events derived from the following MIB file:

$OV_GDMO_MIBS/ems.mib

The following procedure shows you how to augment the event metadata.
Augmenting metadata is relevant for both the ECS Designer and the
ECS Engine product components.

The metadata is read by the ECS Designer and the ECS Engine once, on
start-up. If you change the metadata you must restart these programs
for changes to take effect.

Task 1. Place the MIB files defining the events to be correlated in the
$OV_GDMO_MIBS/ directory.

2. Log in as superuser.

3. Type:

ecsber UNIX

ecsber.bat Windows NT

The ecsber script (or batch file) takes as input all MIB files in the
$OV_GDMO_MIBS/ directory and creates the metadata files
ecsova.per or ecs.def, ecs.per, and ecs.md in the
$OV_CONF/ecs/md/ber/ directory.

DM You must restart DM itself (using ovstop/opstart)
for changes to the metadata to take effect.
32 Chapter 2

Getting Started
Integrating User MIBs (DM only)
4. Check that the ecsber script executed successfully. The last message
the ecsber script writes to the terminal should be:

Created ecsova.per in $OV_CONF/ecs/md/ber

or

Created ecs.per, ecs.def and ecs.md in $OV_CONF/ecs/md/ber/

5. Examine the output for error messages. If necessary, use the
ovgdmoparse and ovmdt tools to identify other problems.

The ecsber script fails to execute when there are problems with MIB
definitions. A common problem is symbols in the default MIB file,
ems.mib, being duplicated in the user’s MIB, especially duplicate
definitions of top. Comment out unwanted duplicates.

See also • ovagen(1m), ovgdmoparse(1), ovmdprep(1m), ovmdt(1m), for
information about the utilities called by ecsber

• $OV_BIN/ecsber (script)

• HP OpenView DM Agent Platform Administrator’s Reference
Chapter 2 33

Getting Started
Integrating ASCII Metadata (ASCII only)
Integrating ASCII Metadata (ASCII only)
To encode and decode ASCII events you will require the HP OV Event
Correlation Services ASCII Module. This module allows you to compile
Message Description Language (MDL) source files into a metadata form
that can be loaded by the ECS Designer and the ECS Engine.

The ASCII module is supplied with ECS in NNM.

To compile MDL source:

1. Locate all the MDL source files that you want to encode and decode.
The default directory for MDL source files is $OV_CONF/ecs/ed/mdl/.

2. Make a backup copy of the existing MDL metadata file. For example,
rename it:

cd $OV_CONF/ecs/md/mdl/

mv mdl.md mdl.md.old

The default metadata file is $OV_CONF/ecs/md/mdl/mdl.md, but this
can be overridden so check the environment variable ECS_MDL_MD for
an alternative file.

3. Type the following command to compile all the MDL source files into
a single metadata file:

$OV_BIN/ecsmdt -o $OV_CONF/ecs/md/mdl/mdl.md file1.mdl
file2.mdl...

where -o specifies the location of the metadata output file, and
file1.mdl, file2.mdl, etc. is a list of all the MDL source files. All
the source files are combined into the specified output file.

All the event descriptions that you want to support must be compiled
into one metadata file. Usually it is convenient to keep all the MDL event
descriptions in a single source file. However, separate source files can be
used if desired, and compiled into a single metadata file as described.

See also • HP OV Event Correlation Services ASCII Module Guide
34 Chapter 2

Getting Started
ECS Engine Files
ECS Engine Files
The ECS Engine does not require particular filename suffixes. However,
because the ECS Designer requires most files to have suffixes indicating
the file type, use those recommended in Table 2-5.

In addition to the standard file types identified by their extension, there
is the default ECS Engine persistence file,
$OV_CONF/ece/<instance>/config and the event log files shown in
Table 2-6.

There are also files you use for specific optional tasks, such as logging or

Table 2-5 ECS File Types

File Extension File Type

*.eco Compiled correlation circuits

*.ds Data store files, including updates or dumps from the ECS
Engine

*.fs Fact store files, including updates or dumps from the ECS
Engine

Table 2-6 Other Standard ECS Files

File Description

ecsin.evt[0|1] ECS Engine input event log file

<stream>_sout.evt[0|1] Stream output default event log

<stream>_sdis.evt[0|1] Stream discarded event log

<circuit>_cout.evt[0|1] Circuit output event log

<circuit>_sdis.evt[0|1] Circuit discarded event log

<stream>_pout.evt[0|1] Policy output event log

<stream>_pdis.evt[0|1] Policy discarded event log
Chapter 2 35

Getting Started
ECS Engine Files
tracing engine activity. The files are as shown in Table 2-7.

The files listed in Table 2-6 are located in the $OV_LOG/ecs/instance
universal path and directory where instance is the ECS Engine
instance number. For more information about universal pathnames, see
“Setting Up the Environment” on page 28.

See also • ecsmgr(1m)

Table 2-7 Files for ECS Engine in DM

File Description

pmd.log[0|1] Log file for the pmd-linked ECS Engine

pmd.trc[0|1] Trace file for the pmd-linked ECS Engine
36 Chapter 2

Getting Started
ECS Engine and Correlation Circuit States
ECS Engine and Correlation Circuit States

Engine States A key part of ECS Engine administration is knowing what state the
engine and circuit(s) are in, and which command(s) you need to use to
effect a change of state.

The ECS Engine has just two states, as shown in Table 2-8. However,
there can be many circuits on the same engine and each circuit also has
its own state. Issuing a command that changes the circuit state can also
change the state of the ECS Engine.

For example, enabling the first correlation circuit moves the ECS Engine
into the Running state, and disabling the last circuit moves the engine
back to the Idle state, as shown in Table 2-8.

Figure 2-4 shows the ecsmgr commands that cause a transition between
states of the ECS Engine.

Table 2-8 States of the ECS Engine

State Characteristics

Idle The ECS Engine enters this state when it is started, after a
-reset is issued, or when the last circuit is disabled.

Running The ECS Engine enters this state when a circuit is enabled,
and leaves it when the last circuit is disabled.

pmd Issuing an ecsmgr -reset command to a pmd-linked
ECS Engine may cause the pmd memory image to grow.
Avoid repeated use of this command. If repeated use is
necessary, stop and restart pmd occasionally.
Chapter 2 37

Getting Started
ECS Engine and Correlation Circuit States

Figure 2-4 Management Commands and Engine States

Circuit States The valid correlation circuit states are shown in Table 2-9 and the
transitions between states are illustrated in Figure 2-5.

Start

Idle

Running

when last circuit
is disabled

when first circuit
is enabled

ecsmgr-reset

Table 2-9 States of Correlation Circuits

State Characteristics

Disabled This is the initial state of a circuit when loaded. No event
correlation is occurring within this circuit. If all loaded
circuits are Disabled, the ECS Engine state is Idle. If any
circuit is enabled, the ECS Engine state is Running. Set a
circuit’s state to disabled when you want it to have no effect
on the event flow.

Input Enabled The circuit is accepting and correlating events but not
contributing to the engine’s output. In other words, the ECS
engine ignores this circuit when deciding whether or not to
output an event. The ECS Engine state is Running. Enable
input when you want to prime the circuit with events. For
example, Table nodes may need to be exposed to input
events for a period before the circuit operation stabilizes.
38 Chapter 2

Getting Started
ECS Engine and Correlation Circuit States
Output Enabled The circuit is correlating events and generating output but
not accepting any new events. The ECS Engine state is
Running. Enable output only when you want the circuit to
run down after normal operation. For example, Unless
nodes may need time to pass on stored events.

Enabled The circuit is accepting and correlating events, and
generating output. The ECS Engine state is Running.
Enable this state when you want the circuit to correlate
events normally.

Table 2-9 States of Correlation Circuits

State Characteristics
Chapter 2 39

Getting Started
ECS Engine and Correlation Circuit States
Figure 2-5 Management Commands and Circuit States

(Fully)
Enabled

Input
Enabled

Output
Enabled

Disabled

ecsmgr
-disable
<cname>

ecsmgr
-disable
<cname>

ecsmgr
-enable
<cname>
output

ecsmgr
-disable
<cname>

ecsmgr
-enable
<cname>
input

ecsmgr
-enable
<cname>

ecsmgr
-enable
<cname>

ecsmgr
-disable
<cname>
input

ecsmgr
-enable
<cname>

ecsmgr
-disable
<cname>
output
40 Chapter 2

Getting Started
Ensuring Synchronized Timing
Ensuring Synchronized Timing
Most correlation circuits make assumptions about the time at which
events are created. For the circuit to work correctly, the assumptions
embedded in its design must be realistic. In some cases this means that
all devices that generate events must have their clocks synchronized.

NOTE When the clocks of event-generating agents or devices are not closely
synchronized, the circuit may fail to correlate events as the circuit
designer intended.

The ECS Engine operates on UTC (Universal Coordinated Time). The
manner in which event creation times are determined is dependent on a
number of factors. You should ask the circuit designer and/or the
developer that integrated the ECS Engine event I/O system if they have
any special requirements for time synchronization and if so, what they
are.

Generally, the only requirement is that the real time clock on the
machine be accurately set to the correct UTC for where the ECS Engine
is located relative to the Greenwich meridian.
Chapter 2 41

Getting Started
Ensuring Synchronized Timing
42 Chapter 2

3 Operating the ECS Engine
43

Operating the ECS Engine
This chapter describes the main tasks associated with operating the ECS
Engine. See the next chapter for details on monitoring the engine state.

The chapter begins with:

• “Starting the ECS Engine” on page 45.

• “Resetting the ECS Engine” on page 46.

Then the operation of the ECS Engine is covered in these tasks:

• “Loading an ECS Circuit, Data Store, and Fact Store” on page 47.

• “Enabling an ECS Circuit” on page 50.

• “Enabling Drill Logs” on page 52

• “Updating the Data and Fact Stores” on page 56.

• “Dumping Data and Fact Stores to Files” on page 59.

• “Reloading a Correlation Circuit” on page 61.

• “Disabling an ECS Circuit” on page 62.

• “Managing Streams” on page 64.

• “Unloading an ECS Circuit, Data Store, and Fact Store” on page 66.

• “Controlling Persistence” on page 67

The ECS Engine supports multiple event streams. However, most
commands in this chapter are shown without streams. If a particular
stream is not specified then the “default” stream is assumed.

If you need to create and deploy multiple streams, see “Managing
Streams” on page 64.

The explanations in this chapter assume that you are familiar with the
ECS Engine states described in “ECS Engine and Correlation Circuit
States” on page 37.
44 Chapter 3

Operating the ECS Engine
Starting the ECS Engine
Starting the ECS Engine

Starting a pmd-linked ECS Engine

These ECS Engines are loaded and initialized when the pmd is started.
All control of the engine is through the ecsmgr program.

Starting Event I/O and Annotation

Once the ECS Engine has been started you can start annotation server
and event I/O processes. The circuit designer and/or the developer of
these processes should provide you with details about how and when to
start these programs.

NOTE Do not enable ECS circuits that require specific event I/O or annotation
server processes until those processes have been started.
Chapter 3 45

Operating the ECS Engine
Resetting the ECS Engine
Resetting the ECS Engine
An ECS Engine can be reset at any time. Resetting an engine places it in
the same state it was in when the engine was first started. All ECS
circuits, Data Stores and Fact Stores are discarded when the engine is
reset.

When you initialize the ECS Engine, event logs are rolled over which
means *.evt1 files are deleted and *.evt0 files are renamed with
*.evt1 suffixes. If you need to keep any *.evt1 files you should move or
rename them before initializing the engine.

If events have been previously logged, the following event log files may
be present in $OV_LOG/ecs/instance/:

• ecsin.evt0 and ecsin.evt1

State transition The ECS Engine can be in any state.

This task changes the engine state to Idle.

Reset the engine To reset the Open ECS Engine, type:

ecsmgr -reset

To reset an pmd-linked ECS Engine, delete the file
$OV_CONF/ecs/instance/config before executing ovstart.
46 Chapter 3

Operating the ECS Engine
Loading an ECS Circuit, Data Store, and Fact Store
Loading an ECS Circuit, Data Store, and Fact
Store
The ECS Engine must be loaded with one or more ECS circuits plus,
optionally, Data Stores and Fact Stores before correlation can be enabled.
You assign a symbolic name to ECS circuits, Data Stores and Fact Stores
when they are loaded. The symbolic name identifies this circuit in any
subsequent commands.

If an ECS circuit uses a Data or Fact Stores, you must load the store(s)
before loading the circuit. Then, when the circuit is loaded there are four
options:

• correlation circuit alone

• correlation circuit and Data Store

• correlation circuit and Fact Store

• correlation circuit, Data Store, and Fact Store.

You can load any number of correlation circuits and Data and Fact Stores
in each ECS Engine. Only one Data Store and one Fact Store can be
associated with each circuit. However, stores can be shared by setting
several circuits to reference the same Data and Fact Stores.

After a circuit has been loaded it must be enabled, as described in
“Enabling an ECS Circuit” on page 50, for event correlation to occur.

Symbolic and file
names

You assign symbolic names to correlation circuits, Data Stores, and Fact
Stores as they are loaded. These names need not have any relationship to
the name of the file from which they were loaded. Since there is no
facility in ECS to discover the name of the file from which a circuit or
store was loaded, it is recommended that you use names that are easily
associated with the original files (the most obvious solution is to base the
symbolic name on the file name).

NOTE When you have loaded a correlation circuit and associated Fact and/or
Data store, you cannot delete the stores without first unloading the
correlation circuit.
Chapter 3 47

Operating the ECS Engine
Loading an ECS Circuit, Data Store, and Fact Store
You can update a loaded circuit by executing the ecsmgr -reload
command. This command simply reloads the same circuit file from the
same location, activating any changes made to that file. See “Reloading a
Correlation Circuit” on page 61 for details.

State transition The ECS Engine may be Idle or Running.

The ECS Engine state is not changed. The circuit itself is placed in the
Disabled state.

Load a circuit only To load only a correlation circuit (no associated Data or Fact Stores) type:

ecsmgr -circuit_load cname cfile.eco

where cname is the name of the loaded circuit and cfile.eco is the
name of the circuit file from which it was loaded.

Circuit and data
store

To load a correlation circuit and associated Data Store, you must load the
Data Store first, then load the circuit and specify the name of the Data
Store:

ecsmgr -data_load dsname dfile.ds

ecsmgr -circuit_load cname cfile.eco dsname

where dfile.ds is the name of the Data Store file.

Circuit and fact
store

To load a correlation circuit and associated Fact Store, you must load the
Fact Store first, then load the circuit and specify the name of the Fact
Store, type:

ecsmgr -fact_load fsname ffile.fs

ecsmgr -circuit_load cname cfile.eco 0 fsname

where fsname is a name you assign to the loaded Fact Store and
ffile.fs is the name of the file from which the Fact Store is loaded. The
0 (zero) indicates that no Data Store file has been specified.

Circuit, data and
fact stores

To load a correlation circuit and associated Data and Fact Stores, type:

ecsmgr -data_load dsname dfile.ds

ecsmgr -fact_load fsname ffile.fs

ecsmgr -circuit_load cname cfile.eco dsname fsname

where dfile.ds and ffile.fs are the names of the Data and Fact Store
files, and cfile.eco is the name of the correlation circuit file.
48 Chapter 3

Operating the ECS Engine
Loading an ECS Circuit, Data Store, and Fact Store
Shared data/fact
store

You can associate more than one circuit with the same Data and Fact
Store. To do this:

1. Load the Data and Fact stores (using the -data_load and
-fact_load commands.

2. Load the first correlation circuit (using the -circuit_load
command) and specify the Data and Fact Store names you supplied in
the previous step.

3. Load the next correlation circuit and specify the same Data and Fact
Store names.

Continue until you have loaded all the required correlation circuits.

Stream Loading a circuit, data store and fact store is not specific to a stream. You
load these components first, then enable the circuit in one or more
streams.
Chapter 3 49

Operating the ECS Engine
Enabling an ECS Circuit
Enabling an ECS Circuit
Once an ECS circuit has been loaded it must be enabled before it starts
to correlate events. A circuit’s input can be enabled or disabled
separately from its output. Enabling a circuit places it in one of three
states:

• Input enabled—the circuit receives events but it does not affect the
engine’s determination of which events to output. Table nodes and
other event storage is primed with events from the input.

• Output enabled—the circuit can output events but cannot receive
new events. The circuit may output events that were stored in the
circuit while the input was enabled, and the output events that are
generated by the circuit itself.

• Enabled—the circuit can both receive and output events. This is the
normal condition of an active ECS circuit.

State transition If the ECS Engine is in the Idle state it is moved to the Running state
when a circuit is successfully enabled. If the ECS Engine is already
Running, then there is no change to the state of the engine.

Enable a circuit To enable both the input and output ports of a loaded correlation circuit,
type:

ecsmgr -enable cname

where cname is the name of a loaded correlation circuit.

You can enable a circuit’s input and output independently. The
correlation circuit starts to affect the flow of events only when both input
and output ports are active. This can be useful in a production
environment when a circuit needs to be run up or run down. For
example, if a circuit contains a Table node that must be primed with
events before the correlation works correctly, you can enable the input,
wait until the node is primed, then enable the output.

Enable input only To enable only the ECS circuit’s input ports, type:

ecsmgr -enable cname input

Enable output only To enable only the ECS circuit’s output ports, type:
50 Chapter 3

Operating the ECS Engine
Enabling an ECS Circuit
ecsmgr -enable cname output

Once a circuit has been partially enabled using one of these commands,
you fully enable the circuit in the usual way:

ecsmgr -enable cname

Streams If a stream is not specified then the correlation circuit is enabled on the
default stream. To specify a different stream, use the -stream <stream>
option. For example, to fully enable myCircuit.eco on the stream
myStream:

ecsmgr -stream myStream -enable myCircuit.eco

The stream myStream must have been previously created. For details, see
“Managing Streams” on page 64.
Chapter 3 51

Operating the ECS Engine
Enabling Drill Logs
Enabling Drill Logs
Every stream has associated with it two files

• drill information log

• drill event log

The engine also has it’s own correlation info and drill event logs.

The drill logging can be enabled or disabled with the help of the ecsmgr
commands as below. For information on Drill Down and Custom logging
refer to Chapter 5, “Drill Down,” on page 95 in the HP OV ECS
Developer’s Guide and Reference.

Enable default drill
logging

To enable default drill logs type

ecsmgr -log_drill_info on

ecsmgr -log_drill_event on

Enable drill
logging on new
stream

To enable drill logging on a specific stream type

ecsmgr -log_drill_info stream stream_name on

ecsmgr -log_drill_event stream stream_name on

Register drill log
files on new
stream

To register the drill log files on a specific stream type

ecsmgr -stream stream_name -drill_info_log <path>

ecsmgr -stream stream_name -drill_event log <path>

Register drill log
files for default
logging

To register drill log files for default logging type

ecsmgr -log_drill_info stream on

ecsmgr -log_drill_event stream on
52 Chapter 3

Operating the ECS Engine
Loading Perl files
Loading Perl files
Data external to ECS can be processed using user provided Perl scripts.
These Perl files have to be loaded into the ECS engine for further
processing. For more information on the format of the Perl file refer to
HP OV ECS Designer’s Reference Guide.

Perl files associated with the circuit must be loaded before the circuit is
loaded into the ECS engine. To load the Perl file into the engine

ecsmgr -i <instance_number> -load_perl -f <user_supplied
Perl file>
Chapter 3 53

Operating the ECS Engine
Changing the Association Between Stores and Circuits
Changing the Association Between Stores and
Circuits
The Data Store and Fact Store associated with a circuit can be changed
while the ECS Engine is running, but the circuits that reference the
Data and Fact Stores must be temporarily disabled. If you want to avoid
disabling the ECS circuit, you may prefer to update the Data and Fact
Stores that have already been loaded. See “Updating the Data and Fact
Stores” on page 56 for details.

State transition The ECS Engine may be Idle or Running. Loaded correlation circuits can
be in any state.

If this command unloads the last circuit, the ECS Engine drops back to
the Idle state while the circuit is disabled. If the ECS Engine was Idle to
start with, this task changes the engine state to Running when the
correlation circuit is enabled.

Change data/fact
stores

To change the Data and Fact Stores associated with a correlation circuit:

1. Load the new Data and Fact Stores:

ecsmgr -data_load dsname dfile.ds

ecsmgr -fact_load fsname ffile.fs

where dsname is the name of the data store loaded from the data store
file called dfile.ds, and fsname is the name of the fact store loaded
from the fact store file called ffile.fs. You must make sure that the
symbolic names you give to the stores is different from any existing
names.

2. Disable each correlation circuit whose association you want to

 change:

ecsmgr -disable cname

where cname is the name of the circuit being disabled.

3. Unload each correlation circuit whose association you want to change:

ecsmgr -circuit_unload cname

Repeat each of the above two steps for each circuit whose Data and/or
Fact Store you want to change. You can then proceed to reload the
54 Chapter 3

Operating the ECS Engine
Changing the Association Between Stores and Circuits
circuits as described in the next two steps:

4. Load each correlation circuit again and nominate the new Data and
Fact Stores:

ecsmgr -circuit_load cname cfile.eco dsname fsname

where cfile.eco is the name of the circuit file to be reloaded, and
dsname and fsname are the names of the new Data and Fact Stores,
as specified in the first step.

5. Enable each correlation circuit:

ecsmgr -enable cname

6. If necessary, unload the old (no longer used) Data and Fact Stores:

ecsmgr -data_unload dsname

ecsmgr -fact_unload fsname

where dsname is the name of the old data store, and fsname is the
name of the old fact store. Note that you should only do this if there
are no other circuits using these stores.

Streams Data stores and fact stores are not specific to a stream but correlation
circuits are. If a correlation circuit is enabled on a stream other than the
default stream then you must specify the stream using the -stream
<stream> option. See “Enabling an ECS Circuit” on page 50.
Chapter 3 55

Operating the ECS Engine
Updating the Data and Fact Stores
Updating the Data and Fact Stores
The Data Store and Fact Store can each be updated while the ECS
Engine is in the Running state, and while the circuits that use the stores
are fully Enabled. If you update an ECS Engine in the Running state
there may be some disruption for one or more of the following reasons:

• Some events are correlated by the contents of the old Data and Fact
Stores and some by the contents of the updated stores.

• Statically evaluated parameters that depend on Data and Fact Store
contents are not updated until forced explicitly to be re-evaluated (by
issuing the ecsmgr -circuit_reload command).

• When there are dependencies between a Data and a Fact Store,
correlation may be carried out using the data from a new Data Store
and relationships from an old Fact Store, and vice-versa. You can
eliminate this problem if both Data and Fact Store entries are
combined in single file and loaded with the ecsmgr -update
command—see below.

To minimize the disruption to correlation:

• perform the update when network traffic is low

• combine Data and Fact Store update entries in a single file

• only update a few entries at a time.

The last solution may be useful to avoid stressing the DM postmaster,
but has the effect of increasing the chances of using old and new entries
together. However, several smaller disruptions may be better than one
big one.

See also See the HP OpenView Communications Event Correlation Services
Designer’s Reference for an explanation of static and dynamic evaluation.

State transition The ECS Engine may be Idle or Running. Loaded correlation circuits can
be in any state.

This task does not cause a change of state.

pmd-linked The postmaster may become stressed if it is heavily loaded and the update
contains too many entries.
56 Chapter 3

Operating the ECS Engine
Updating the Data and Fact Stores
Before you begin If necessary, use a text editor to make changes to the data or fact store
files.

Before you begin, ask the circuit designer:

• if any statically evaluated parameters need to be re-evaluated

• if there are any dependencies between the Data and Fact Store
updates

• whether large Data and Fact Store files can be split into a number of
smaller files

• whether Data and Fact Store entries can be combined in a single
update file.

Update all stores To update Data and Fact Stores from a single update file, type:

ecsmgr -update cname file

where cname is the name of the circuit associated with the Data and Fact
Store to be updated, and file is the name of the file containing the store
updates. Both data store and Fact store updates can be combined into
one file. When the update occurs, the ECS Engine applies the Data and
Fact Store updates to the correct store.

Update data store
only

To update only the Data Store, type:

 ecsmgr -data_update dsname dfile

where dsname is the name of the Data Store to be updated, and dfile is
the name of the file containing the store updates.

Update fact store
only

To update only the Fact Store, type:

 ecsmgr -fact_update fsname ffile

 where fsname is the name of the Fact Store to be updated, and ffile is
the name of the file containing the store updates.
Chapter 3 57

Operating the ECS Engine
Updating the Data and Fact Stores
Reload affected
circuits

After the Data and/or Fact Stores have been updated you may want to
force the re-evaluation of statically evaluated parameters. Statically
evaluated parameters are evaluated only when a circuit is loaded or
reloaded. To ensure that references to Data or Fact Store entries in
statically evaluated parameters are updated you must complete the
following steps for each circuit affected by the update:

1. Disable the circuit:

ecsmgr -disable cname

2. Reload the circuit from the circuit file:

ecsmgr -circuit_reload cname

This causes statically evaluated parameters to be re-evaluated and
updated Data and Fact Store values to be used.

3. Enable the circuit again to restart correlation:

ecsmgr -enable cname

If necessary you can independently enable the circuit’s input and
output.

After an update, the Data and Fact Stores may consist of a mixture of
entries—some from the files you originally loaded and others from the
update files. If you have run many updates you may even have lost track
of the files loaded. You can save the current Data and Fact Store to files
— see “Dumping Data and Fact Stores to Files” on page 59.

You should also preserve all data and fact store files, so that you can
recover the ECS Engine to a known configuration by resetting the
engine, loading the original data and fact stores, and then applying all
the updates in the same sequence as before.

See the HP OpenView Communications Event Correlation Services
Designer’s Reference for details on how stores are updated.

Streams Data stores and fact stores are not specific to a stream but correlation
circuits are. If a correlation circuit is enabled on a stream other than the
default stream then you must specify the stream using the -stream
<stream> option. See “Enabling an ECS Circuit” on page 50.
58 Chapter 3

Operating the ECS Engine
Dumping Data and Fact Stores to Files
Dumping Data and Fact Stores to Files
After you have updated a Data or Fact Store, the contents of the stores in
the ECS Engine correspond to the original data and fact store files, plus
the net effect of all the updates (deleted, new, and changed entries). You
can dump the current state of the store to a file in the same format as the
original files. This makes it easy to reconfigure the same or other engine
to the same state, and to diagnose problems associated with the state of
the Data and Fact Stores.

State transition The ECS Engine must be in the Idle or Running state. Loaded
correlation circuits can be in any state.

This task does not cause a change of state.

Dump the data
store

To dump the Data Store to file, type:

ecsmgr -data_dump dsname file.ds

where dsname is the name of the Data Store to be dumped, and file.ds
is the name of the file to which the store will be dumped.

Dump the fact
store

To dump the Fact Store, type:

ecsmgr -fact_dump fsname file.fs

 where fsname is the name of the Data Store to be dumped, and file is
the name of the file to which the store will be dumped.

Using stores with
the Designer

If you want to load a dumped file into the ECS Designer in Simulate
Mode, you must give the filename the correct file extension (.fs for Fact
Stores or .ds for Data Stores).

Although the dumped Data and Fact Store files have the same format as
the files originally loaded, they do not have any of the comments that
may have been in the original files. The headers of the dump files have
the creation times set to the time of dumping, and the version number
set to zero.

Also NNM data and fact store files have a section marked “Do not edit
below this line” which contains current settings made using the NNM
Correlation Services GUI.

Also, data and fact store files dumped from an ECS Engine have an offset
Chapter 3 59

Operating the ECS Engine
Dumping Data and Fact Stores to Files
time for each entry. The oldest version has a relative time of zero.
Updates to stores have an offset which is the duration since the oldest
version.
60 Chapter 3

Operating the ECS Engine
Reloading a Correlation Circuit
Reloading a Correlation Circuit
Reloading a Correlation circuit is done by reference to its symbolic name,
causing the circuit to be re-read from the (updated) file. A circuit cannot
be reloaded if its input or output is enabled in any other stream.

You use this command when the circuit designer changes a circuit file
and then supplies a new file (with the same name) for reloading. You also
use this command after updating the Data or Fact Store, to force
statically evaluated parameters to use the new values.

Data and Fact Stores are unaffected by this procedure; only the named
correlation circuit is reloaded.

NOTE A correlation circuit file must be available with the same pathname and
filename as the currently loaded circuit. For example, if the loaded
correlation circuit was originally loaded from the file mycircuit.eco,
then a file called mycircuit.eco must exist in the same directory
location. If the file cannot be reloaded then the reload fails.

State transition The ECS Engine may be in the Idle or Running state, and the correlation
circuit to be reloaded must be Disabled. If you try to reload a circuit that
is Enabled the reload will fail.

This task does not cause a change of engine state. The circuit is in the
disabled state before and after being reloaded.

Reload a circuit To reload a correlation circuit on the default stream, type:

ecsmgr -circuit_reload cname

where cname is the name of the correlation circuit currently loaded.

Streams The circuit must have been previously disabled from all streams.
Chapter 3 61

Operating the ECS Engine
Disabling an ECS Circuit
Disabling an ECS Circuit
ECS circuits running on an ECS Engine are in one of four states:
Enabled, Input Enabled, Output Enabled or Disabled (see “ECS Engine
and Correlation Circuit States” on page 37). Only circuits in a disabled
state can be unloaded or reloaded. This section describes how to fully
disable, or selectively disable just the circuit’s input or output.

State transition The ECS Engine must be Running. The correlation circuit you are
disabling must be Enabled, Input Enabled or Output Enabled.

If there is only one circuit enabled, and you completely disable it, the
ECS Engine state drops back to Idle. If there are other enabled circuits,
the state of these circuits and the ECS Engine remain unchanged.

Disable a circuit To disable both the input and output of the loaded correlation circuit,
type:

ecsmgr -disable cname

where cname is the name of the correlation circuit being disabled.

Disable input only To disable only the circuit input, type:

ecsmgr -disable cname input

Disable output
only

To disable only the circuit output, type:

ecsmgr -disable cname output

Preserving events
on Output Streams

To ensure that no events are lost when you disable a correlation circuit in
a stream with an output policy, all events that exist within that circuit
are flushed out of the Event I/O API (or postmaster in the case of the
pmd-linked ECS Engines). You may wish to disable the input to allow the
circuit to run down before disabling it.

The flushed events include all detained events but may also include:

• events the correlation circuit has already discarded

• events created but not yet transmitted

• multiple modified copies of original events.

Streams If the correlation circuit is enabled on a stream other than the default
62 Chapter 3

Operating the ECS Engine
Disabling an ECS Circuit
stream then you must use the -stream option. For example:

ecsmgr -stream test -disable cname
Chapter 3 63

Operating the ECS Engine
Managing Streams
Managing Streams
There is a default stream called default. This stream has a policy of
output. The default stream is always present. You cannot remove it.

Examples of when to create additional streams are:

• When you need run correlation circuits that require a discard policy.

• When you have an application that subscribes to a stream other than
the default stream.

• If you want to create different streams for different applications.

• If you want to create a different stream for test purposes.

Streams are created and removed using the -create_stream and
-remove_stream options for ecsmgr. Many ecsmgr commands are
stream oriented (for example: -enable_circuit, -disable_circuit,
-policy). If you want to omit the stream when using these commands,
the command is applied to the default stream. If you want the command
to apply to any other stream then you must use the -stream <stream>
option to specify the name of the stream to which the command should be
applied.

To create a stream:

ecsmgr -create_stream <stream> [output|discard]

If you do not specify output or discard then the stream policy defaults
to output. Each stream must have a unique name (‘default’ is a reserved
name).

State transition The ECS Engine can be in any state. Creating a stream will change the
existing state of the engine.

To change the policy of a created stream:

ecsmgr -stream <stream> output|discard

The stream policy can be changed only if there are no correlation circuits
enabled on it.

To enable a correlation circuit on a stream, first load the correlation
circuit and then:

ecsmgr -stream <stream> -enable
64 Chapter 3

Operating the ECS Engine
Managing Streams
To log events output by a specified stream:

ecsmgr -log_events stream <stream> on

For other stream related event logging and tracing options, see Chapter
4 , “Monitoring the ECS Engine,” on page 69.

To remove a stream, first disable all correlation circuits on that stream
and then:

ecsmgr -remove_stream <stream>
Chapter 3 65

Operating the ECS Engine
Unloading an ECS Circuit, Data Store, and Fact Store
Unloading an ECS Circuit, Data Store, and
Fact Store
When an ECS circuit is no longer required to correlate a stream of events
it can be unloaded from the ECS Engine, along with its associated Data
and Fact Stores (if no other circuit is using them). This frees resources.

If you have made updates to the Data and/or Fact Store, dump the stores
to file before you unload them. See “Dumping Data and Fact Stores to
Files” on page 59.

State transition The correlation circuit you want to unload must be Disabled.

This task does not cause a change of state.

Unload a circuit To unload a correlation circuit from the ECS Engine:

ecsmgr -circuit_unload cname

where cname is the name of the circuit to be unloaded.

Unload stores To unload the associated fact store:

ecsmgr -fact_unload fsname

To unload the associated data store:

ecsmgr -data_unload dsname

Streams Unloading circuits or stores is not a stream-oriented command because
correlation circuits are associated with a stream only while they are
enabled.
66 Chapter 3

Operating the ECS Engine
Controlling Persistence
Controlling Persistence
An ECS Engine can be configured so that its streams, correlation
circuits, data stores and fact stores are restored after a system failure.

Configuration information can be saved to a configuration file and each
instance of an ECS Engine can have its own configuration settings.

State transition The state of the correlation engine(s) will not change from what it was
before system failure occurred.

Save the default
configuration

To save the current configuration of an ECS Engine to the default
configuration file:

ecsmgr -save_config

Save to a specific
configuration file

To save the current configuration to a configuration file called myConfig:

ecsmgr -save_config myConfig

Automatic
persistence

The ECS Engine can be configured to automatically saves its current
state to the default configuration file whenever any change is made. This
configuration file is read whenever the ECS Engine is started. To control
automatic saving of configuration information, use:

ecsmgr -auto_save on|off

Using -auto_save causes the state to be saved, thus making this
command persistent.

On UNIX, this file is:

$OV_CONF/ecs/<instance>/config

and on Windows NT the file is:

%OV_MAIN%\ecs\<instance\config

Restoring a
specific
configuration

You can restore a previously saved configuration called (for example)
myConfig with the command:

ecsmgr -restore_config myConfig

If the configuration file is not specified then the configuration is restored
from the default configuration file.
Chapter 3 67

Operating the ECS Engine
Controlling Persistence
68 Chapter 3

4 Monitoring the ECS Engine
69

Monitoring the ECS Engine
Part of the administrator’s responsibilities include monitoring the state
of the ECS Engine. This information is needed to determine the detailed
state of the engine and each of the circuits, and may also be important to
other people, such as circuit designers, who frequently need detailed logs
and other information to analyze the effectiveness of circuits. Error logs,
trace files and state snapshots can also be requested by support staff
when diagnosing operational problems.

This chapter describes the ecsmgr options that you use to obtain data
about an ECS Engine, correlation circuits, and the Data and Fact Stores.

The first section describes the -info option that you will probably use
more frequently than any other command ecsmgr command. Use it
whenever you need to check the state of the ECS Engine and the
currently loaded circuits:

• “Displaying ECS Engine Information” on page 71

The ability to log events is central to ECS circuit development and
troubleshooting and is described in:

• “Logging Events” on page 78

The other monitoring commands provide more detailed information on
the engine state and statistics:

• “Obtaining Engine Statistics” on page 73

• “Logging Errors and Tracing Operations” on page 81.

For a summary of the options described in this chapter, see ecsmgr(1m).
70 Chapter 4

Monitoring the ECS Engine
Displaying ECS Engine Information
Displaying ECS Engine Information
The ecsmgr -info command displays the state of the ECS Engine and
any loaded correlation circuits, data stores and fact stores. You will
frequently use it to verify engine and circuit states before issuing other
commands.

State transition The ECS Engine can be Idle or Running. Loaded correlation circuits can
be in any state.

This task does not cause a change of state.

Display engine
state

To display the current ECS Engine state, type:

ecsmgr -info

The information below will change

Example This example output from the ecsmgr -info command is typical of when
the ECS Engine is in the Running state.

#ecsmgr -info

engine environment - Full NNM Engine

engine instance - 1

engine version - ECS 3.2 (A.03.20)

time last started - Wed Oct 16 22:23:20 2002

engine trace mask - 0x10000

engine log mask - 0x7

maximum engine log size - 512 KBytes

maximum event log size - 512 KBytes

input event logging - off

default drill info logging - off

default drill event logging - off

automatic configuration saving - on

stream name - default
Chapter 4 71

Monitoring the ECS Engine
Displaying ECS Engine Information
stream policy - output (unless discarded by a circuit)

stream event logging - off

stream policy event logging - off

stream drill info logging - off

stream drill event logging - off

circuits enabled in stream - <none>

circuit name - sced1

circuit date - Wed Oct 16 21:49:35 2002

circuit version - 0

circuit unique identifier - 11043977

time circuit load - Wed Oct 16 22:23:49 2002

circuit event logging - off

circuit state - disabled

data store name - sced

data store date - Wed Oct 16 14:08:25 2002

data store version - 1

time data store load - Wed Oct 16 22:23:49 2002
72 Chapter 4

Monitoring the ECS Engine
Obtaining Engine Statistics
Obtaining Engine Statistics
The engine statistics includes details about every node in every
correlation circuit in the ECS Engine. You can examine the statistics in
conjunction with the event logs and the ECS circuit itself to determine if
the ECS Engine is operating as expected.

State transition The ECS Engine can be Idle or Running. Loaded correlation circuits can
be in any state.

This task does not cause a change of state.

NOTE Because this command returns a large amount of information, you may
want to redirect the output to a file.

Display engine
stats

To display engine statistics, type:

ecsmgr -stats

The amount and usefulness of the output varies depending on the state
of the ECS Engine and loaded correlation circuits. The most useful
statistics are obtained when the engine is Running and at least one
circuit is Enabled.

The display verbose statistics, type:

ecsmgr -stats verbose

The verbose option may be useful if you want to obtain statistics about
the internal operation of circuits during the design phase. The command
prints statistics for every circuit node.

Example Following is an example of the statistics returned by the ecsmgr –stats
verbose command for a very simple correlation circuit containing a
Source node and a Sink node, connected by a single Filter node with the
fully qualified name
passthru_module.tmpcompound.tmpnode.filter_1_ .
Chapter 4 73

Monitoring the ECS Engine
Obtaining Engine Statistics
ecsmgr -stats verbose
Engine Statistics -

input.inputFilters = [((), (), 2.9.3.2.10.4), ((), (), ““),
 ((), (), ())]

engineInstance = 36
currentTime = 19980407073924.000000Z
enginelog.errors = 0
enginelog.warnings = 0
enginelog.info = 0

Stream Statistics -

Stream “default” -

default.in.input = 1
default.in.new = 0
default.out.output = 1
default.out.discarded = 0
default.out.undecided = 0
default.out.errors = 0
default.original.output = 1
default.policy.num = 1

Circuit Statistics -

Circuit “circuit1” -

circuit1.in.input = 0
circuit1.in.new = 0
circuit1.out.output = 0
circuit1.out.discarded = 0
circuit1.out.undecided = 0
circuit1.out.errors = 0
circuit1.original.output = 0

Circuit Node Statistics -

Circuit “circuit1” -

extraction_module.tmpcompound.external_port_output_ecmip.
 input_numin = 0

extraction_module.tmpcompound.tmpnode.count_passthru.
74 Chapter 4

Monitoring the ECS Engine
Obtaining Engine Statistics
 increment_input_numin = 0
extraction_module.tmpcompound.external_port_output_passthru.

 input_maxTD = 596523h14m7s
extraction_module.tmpcompound.tmpnode.modify_cmip_site.

 input_minTD = --596523h-14m-8s
extraction_module.tmpcompound.tmpnode.filter_snmp_site.

 input_minTD = --596523h-14m-8s
extraction_module.tmpcompound.tmpnode.modify_snmp_site.

 input_minTD = --596523h-14m-8s
extraction_module.tmpcompound.tmpnode.filter_snmp_site.

 error_output_maxTD = 596523h14m7s
...

These statistics refer to the overall inputs and outputs of the ECS
Engine as described in Table 4-1 and Table 4-2.

Although every event that enters the engine will enter every stream, the
in.input value is kept on a per stream basis. This is because a new
stream may be created after the engine has already received events and
other stream-based statistics are more meaningful when compared with
the number of events that have actually entered that stream.

The default stream (which is always present) shows the total number of
events that have entered the engine.

Table 4-1 Engine Statistics

Statistic Description

currentTime The current engine time.

input.inputFilters A description of which events will be received
by a circuit within the engine (used by ITO).

enginelog.errors The number of errors created for the engine log
(regardless of the current engine log mask).

enginelog.warnings The number or warnings created for the engine
log (regardless of the current engine log mask).

enginelog.info The number of information messages created
for the engine log (regardless of the current
engine log mask).
Chapter 4 75

Monitoring the ECS Engine
Obtaining Engine Statistics
NOTE These statistics never count temporary or composite events, and they do
not count created events until the events are output from the engine.

The number of events seen by a stream is the number of events input
into the stream plus the number of events created within the stream.
Therefore the total number of events = (1) + (2).

Every event in a stream will either be output on the stream (3),
discarded in the stream (4), discarded by error (6), or currently
undecided (5). Therefore, at any point in time (1) + (2) = (3) + (4) + (5) +
(6).

Table 4-2 Stream and Circuit Statistics

Num Statistic Formerly Description

1 in.input input.numEvents The total number of events that have entered
each stream.

2 in.new - The number of new events in each stream (for
example, created or modified events).

3 out.output - The total number of events output on each
stream.

4 out.discarded - The number of events discarded in each
stream either by circuits or by the stream
policy (that is, ref.count = 0 and not output).

5 out.undecided - The number of events currently undecided
within each stream (that is, ref. count > 0 and
not output.

6 out.errors output.discards The number of events discarded because of
error (due to either endecode errors on input,
or errors on output).

7 policy.num - The number of events that did not enter any
circuit within the stream.

8 original.output - The number of original events output on each
stream (that is, total - created or modified)
76 Chapter 4

Monitoring the ECS Engine
Obtaining Engine Statistics
The overall effectiveness of a stream on reducing the event flow is
calculated with (3) / (1).

The proportion of the original event flow preserved by a stream is
calculated with (8) / (1).

The proportion of events that are accepted by a circuit is calculated with
[(1) - (7)] / (1). This is like “coverage” for events.

Table 4-3 Node Statistics

Statistic Type Description

portname_numin integer The number of events that have
arrived at this input port since node
creation. (portname is input,
reset_input, etc.)

portname_minTD duration Minimum transit delay of events
arriving at this input port.

portname_maxTD duration Maximum transit delay of events
arriving on this input port.

portname_numout integer The number of events that have
exited through this output port
since node creation.

portname_minTD duration Minimum transit delay of events
exiting from this output port.

portname_maxTD duration Maximum transit delay of events
exiting from this output port.
Chapter 4 77

Monitoring the ECS Engine
Logging Events
Logging Events
The ECS Engine can log events as they arrive at the engine, as they
leave in a specific stream, or as they leave a specific correlation circuit. It
can also log events that fail to enter any circuit within a stream and
which are therefore handled according to the stream’s policy.

Each event log file contains ASCII representations of the logged events
in a form can be displayed and edited using conventional text editing
tools. See the HP OpenView Event Correlation Services Designer’s
Reference for details about the event log file format.

Log file roll over The event log files with *.evt0 suffixes grow until they reach the
maximum log size, then they are renamed with *.evt1 suffixes, and
logging continues with new *.evt0 files. The previous *.evt1 log files
are overwritten. You may want to move or rename existing *.evt1 log
files.

The maximum log size is set to 512K bytes by default. To set the
maximum event log size to some other figure, type:

ecsmgr -max_log_size event kbytes

where kbytes is the new maximum log size in Kilobytes.

CAUTION Event logging can affect performance and should only be used for testing
during correlation circuit design and commissioning, or troubleshooting
during operation

State transition The ECS Engine must be in the Idle or Running state. However, circuit
log commands do not take effect until the circuit is enabled.

This task does not cause a change of state.

Input event
logging

Input events enter every configured stream, so input event logging is not
stream specific. To enable|disable the logging of all events that arrive at
the engine, type:

ecsmgr -log_events input on|off

The input events log is written to ecsin.evt0.
78 Chapter 4

Monitoring the ECS Engine
Logging Events
This file contains events received into correlation circuits and also events
discarded by the filters at the external input ports of circuits.

If the correlation circuit contains Annotate nodes to which an annotation
server responds, then these responses are logged to ecsin.evt0 also.

Stream event
logging

Output events can be logged on a per-stream basis.When event logging is
enabled, events output by a stream are written to
streamname_sout.evt0 and events discarded by the stream are written
to streamname_sdis.evt0.

To enable|disable the logging of events leaving via a particular stream,
type:

ecsmgr -log_events stream[streamname] on|off

If the stream name is omitted then the default stream is assumed, and
events are logged to default_sout.evt0 and default_sdis.evt0.

Circuit event
logging

Output event logging can be on a per-circuit basis. When circuit event
logging is enabled, events output by the circuit are logged to
circuitname_cout.evt0 and events discarded by the circuit are logged
to circuitname_cdis.evt0 and events discarded by the circuit are
logged to circuitname_cdis.evt0.

To enable|disable logging events leaving a particular circuit:

ecsmgr -log_events circuit circuitname on|off

NOTE Unlike the engine input and output log files, circuit log files do not roll
over from circuitname.evt0 to circuitname.evt1 when the ecsmgr
-reset command is issued (although they do roll over when the
maximum log size is reached).

Annotate requests are logged to the circuit output logs. Annotate
responses are logged to the engine input logs.

Policy event
logging

Events that do not enter any circuit within a stream are handled
according to the policy of the stream. When policy event logging is
enabled, those events output by the stream’s policy are written to
streamname_pout.evt0 and those events discarded by the stream’s
policy are written to streamname_pdis.evt0.

To enable|disable policy event logging, type:
Chapter 4 79

Monitoring the ECS Engine
Logging Events
ecsmgr -log_events policy[streamname] on|off

If the correlation circuit contains Annotate nodes that send requests to
an annotation server, then these annotation requests are also logged to
ecsout.evt0. Annotation responses are logged to the input events log
which is written to ecsin.evt0.

You can begin logging both input and output events simultaneously by
executing ecsmgr -log_events on. You can end all logging by executing
ecsmgr -log_events off no matter which command you entered to
start event logging.
80 Chapter 4

Monitoring the ECS Engine
Logging Errors and Tracing Operations
Logging Errors and Tracing Operations
You can log error messages from the ECS Engine to the log file, and trace
the internal operations of the ECS Engine to the trace file. In each case
the level of detail written to the file is controlled by a bitmask.

CAUTION Tracing should only be used during testing or troubleshooting. Tracing
records every action of the ECS Engine, both normal and abnormal, and
can affect performance. Avoid activating tracing during normal
operations. On the other hand, error logging is only activated when a
problem occurs and does not impact performance during normal
operations. Error logging can and should be enabled during normal
operation.

Setting the Postmaster Log and Trace Mask (DM and
NNM)

The ECS Engine and postmaster log settings must be aligned. The ECS
Engine log and trace settings are controlled by two separate bit masks
that control the level of detail in the log and trace. When the ECS Engine
is linked to the postmaster, log and trace information is output to the
pmd.log0 and pmd.trc0 files. The postmaster has its own mask to
control log and trace information. Only log and trace information that
conforms with both settings is output to the pmd.log0 and pmd.trc0
files.

Postmaster log and trace settings are configured with the postmaster’s
pmdmgr command. ECS Engine log and trace settings are configured with
the ecsmgr command. This task shows how to set the postmaster’s
logging and tracing mask. Once the postmaster has been set you can
control logging and tracing in the ECS Engine.

The postmaster’s mask is set to the default value of 0x00400007 in the

DM and NNM Logging and tracing require you to align Logging and
Tracing Masks for the DM and NNM postmaster with
those for the ECS Engine, as explained in the following
section.
Chapter 4 81

Monitoring the ECS Engine
Logging Errors and Tracing Operations
$OV_LRF/pmd.ecs.lrf file. In this default mask:

• the value 0x00000007 enables the logging of disaster, error, and
warning messages

• the value 0x00400000 enables tracing.

You can change the postmaster’s mask value while the postmaster and
the ECS Engine are running.

Determine what level of logging you require from Table 4-4, then sum
(OR) the individual hex values to obtain the value of mask. The value of
mask can be expressed in decimal or hexadecimal format.

For example, to enable logging of disasters, errors and informative
messages only (and not warnings) you sum 0x00000001 + 0x00000002 +
0x00000008 = 0x0000000b. The ECS Engine should have the same the
log mask, or a subset of it. To continue the example, if the engine’s log
mask is set to 0x00000004, allowing only warning messages, then no
messages are logged because none of the bits in the two masks match up.

CAUTION The postmaster’s mask affects both logging and tracing, so when
changing the logging level be careful not to change the tracing level
inadvertently, and vice-versa. If all bits of the postmaster’s mask for the
ECS Engine’s stack are set (0xffffffff), a pm_xxx_timer message
appends to the pmd.trc0 file once per second, degrading the performance
of the postmaster.

Table 4-4 Postmaster ECS Stack Mask Values

Postmaster Message Type Mask Value ECS Message Type

DISASTERS 0x00000001 ETL_LOGDISASTER

ERRORS 0x00000002 ETL_LOGERROR

WARNINGS 0x00000004 ETL_LOGWARNING

INFORM 0x00000008 ETL_LOGINFORM

– 0x00400000 ETL_TRACE
82 Chapter 4

Monitoring the ECS Engine
Logging Errors and Tracing Operations

Set postmaster
log/trace mask

To set the postmaster log and trace mask, type:

pmdmgr -SECSS\;T mask

where Tmask is the postmaster log and trace mask.

Continue with “Enabling the ECS Engine Log” on page 83 or “Enabling
the ECS Engine Trace” on page 84, if required.

See also • pmdmgr(1m)

Enabling the ECS Engine Log

Consider activating the engine log at all times. The engine log does not
affect the performance of a running ECS Engine since logging only
occurs when errors are generated, and this is exactly when you need the
additional information.

State transition The ECS Engine may be Idle or Running. Loaded correlation circuits can
be in any state.

This task does not cause a change of state.

Log engine errors To set the level of engine logging, type:

ecsmgr –log mask

Any ecsmgr command errors and ECS Engine error messages are now
append to the log file.

NOTE By default the mask is set to ecsmgr -log 0x00000007 to log
ETL_LOGDISASTER, ETL_LOGERROR, and ETL_LOGWARNING messages.

See also • ecsmgr(1m)

DM and NNM The postmaster’s logging and tracing mask for the ECS
Engine’s stack must have been set to allow the required
level of logging for the engine log — see “Setting the
Postmaster Log and Trace Mask (DM and NNM)” on
page 81.
Chapter 4 83

Monitoring the ECS Engine
Logging Errors and Tracing Operations
Enabling the ECS Engine Trace

When engine tracing is enabled, the ECS Engine appends messages to
the engine trace file $OV_LOG/pmd.trc0 for the postmaster. These
messages document both normal operations and errors, and can include
messages sent to the engine log, plus trace messages for internal
operations.

CAUTION Tracing can affect performance. Avoid activating tracing during normal
operations. The main value of the engine trace is during design,
commissioning, and troubleshooting of correlation circuits.

Determine what level of tracing you require, from Table 4-5, then sum
(OR) the individual values to obtain the value of mask. The mask can be
expressed in decimal or hexadecimal format.

Table 4-5 ECS Engine Trace Mask Values

Type of Message Mask Value (hex)

ETL_EVENTRANSFER 0x00000001

ETL_EVENTDISCARD 0x00000002

ETL_EVENTCREATE 0x00000004

ETL_DEBUGGER 0x00000008

ETL_CREATEDELETE 0x00000010

ETL_INITIALISE 0x00000020

ETL_ENTRYEXIT 0x00000040

ETL_LOOKUP 0x00000080

ETL_MEMORY 0x00000100

ETL_PROCESSINGINFO 0x00000200

ETL_CIRCUITLOAD 0x00000400

ETL_INVARIANTFAIL 0x00000800

ETL_INTERP 0x00001000
84 Chapter 4

Monitoring the ECS Engine
Logging Errors and Tracing Operations

State transition The ECS Engine may be Idle or Running. Loaded correlation circuits can
be in any state.

This task does not cause a change of state.

ETL_INTERP_DETAIL 0x00002000

ETL_EVENTDELETE 0x00004000

ETL_MANAGEMENT 0x00008000

ETL_SYSTEM_TRACE 0x00010000

Table 4-5 ECS Engine Trace Mask Values

Type of Message Mask Value (hex)

DM and NNM The postmaster’s logging and tracing mask for the ECS
Engine’s stack must have been set to enable tracing for
the correlation — see “Setting the Postmaster Log and
Trace Mask (DM and NNM)” on page 81.
Chapter 4 85

Monitoring the ECS Engine
Saving a Snapshot of the Correlation Engine
Saving a Snapshot of the Correlation Engine
Complete information about the correlation engine and the installed
ECS circuit can help in determining if the correlation engine is
correlating as intended. This task shows you how to save a snapshot of a
running engine to a file.

State transition The correlation engine should be in the Running state.

CAUTION This command saves a very large quantity of information and can take
some time to complete. Events may be lost or the correlation may be
adversely affected, so only use this command when diagnosing problems.

Procedure In the following procedure, the snapshot file is assumed to be saved in
the present working directory with the name of myCircuit.ss.

• Type:

ecsmgr -snapshot myCircuit.ss

The resulting snapshot file myCircuit.ss contains information about
the state of the correlation engine at the time of the snapshot,
including events at various nodes in the ECS circuit. Some of this
information can also be obtained by ecsmgr –info and ecsmgr
–stats .
86 Chapter 4

5 Troubleshooting the ECS
Engine
87

Troubleshooting the ECS Engine
This chapter begins with common problems you should check before
attempting to diagnose a problem with the ECS Engine:

• “Eliminating Common Faults” on page 89.

It continues with a description of the ecsmgr options used to diagnose
failures and restore operations:

• “Recovering from a Failure” on page 93

• “Verifying an Installation” on page 95.

See also • ecsmgr(1m)
88 Chapter 5

Troubleshooting the ECS Engine
Eliminating Common Faults
Eliminating Common Faults

Useful information The following sources of information may describe late changes in the
product and assist in troubleshooting:

• release notes in $OV_RELNOTES

• ecsmgr(1m) manpage

NOTE When errors occur, the ECS Engine attempts to send an error message to
the engine log file. Always run the ECS Engine with error logging
enabled—see “Logging Errors and Tracing Operations” on page 81.

Checklist of faults Before attempting to diagnose a problem, you might consider whether
one of the following situations may be the cause.

The ECS Engine does not run.

❏ Is a license available (check the pmd.log0 files)?

— Is the ECS Engine able to access the license server?

You might not be able to start an ECS Engine if the license server
is inaccessible owing to network faults.

— Are there more ECS Engines attempting to run than there are
licenses?

You must purchase more licenses or reduce the number of running
engines.

— Has a demonstration or evaluation license expired?

You must purchase a license to continue to use ECS.

See the HP OpenView Event Correlation Services Installation Guide
for additional information about licenses.

❏ Are manpages unavailable?

— Make sure $OV_MAN/ is included in your $MANPATH variable.

In some operating systems, the man command does not search the
default directories when the $MANPATH variable is defined
Chapter 5 89

Troubleshooting the ECS Engine
Eliminating Common Faults
explicitly—see man(1). In these cases you should also include the
default man paths in your $MANPATH variable.

❏ Is on-line help unavailable?

— Make sure %OV_MAIN%/ is included in your PATH.

For example, PATH =%OV_MAIN%;%PATH%

❏ Is the ECS Engine (and/or DM (or NNM)) running?

— Check the ECS Engine with the ecsmgr -info command.

See also “Recovering from a Failure” on page 93 for a detailed
diagnostic procedure. The procedures in Chapter 4 , “Monitoring the
ECS Engine,” on page 69, describe how to capture other data useful
in diagnosis.

A correlation circuit cannot be loaded or enabled.

❏ Is the ECS Engine continually saying Failed to reload circuit or
Failed to start engine when you execute an ecsmgr command?

The ecsmgr -reload command attempts to reload a correlation
circuit from the original filename and path. If the file is moved or
renamed, the ECS Engine unloads the circuit but is unable to reload
it. You must reset the ECS Engine and load all circuits, data stores,
and fact stores again.

Also check that you are using the right instance number. If you do not
specify an instance then it defaults to 1 (one).

❏ Do the files have the correct read and write permissions?

Change file read, write and ownership permissions as required.

The correlation circuit is overloaded, or correlating inefficiently
or incorrectly.

❏ Is there sufficient memory in the host machine?

Although you may have the recommended amount of memory, some
correlation circuits may require more. Discuss with the circuit
designer whether:

— the correlation circuit contains errors in logic

— the correlation circuit is too large or complex

— too many events are being stored in the correlation circuit
90 Chapter 5

Troubleshooting the ECS Engine
Eliminating Common Faults
— too many events are being combined or created

— the Data and Fact Stores are too large.

❏ Are events failing to reach other applications in time?

— Are you logging events to event log files?

— Is the engine trace enabled?

Both event logging and engine trace consume considerable system
resources, so that the ECS Engine may be unable to keep up with the
event stream. Turn off logging and tracing unless diagnosing
correlation circuits and the correlation process.

It is recommended that the engine error log be enabled at all times as
no performance penalty is incurred until an error occurs.

❏ Are the file permissions set to allow ECS circuit, Data Store, and Fact
Store files to be loaded?

Change file read, write and ownership permissions as required.

Considering the
problem

If the preceding factors are not the cause of the problem, consider the list
of aspects below. Consider how diagnostic information can help isolate
the problem—see Chapter 4 , “Monitoring the ECS Engine,” on page 69,
for possible troubleshooting options.

• What is the scope of the problem?

What functionality is affected? What functionality is not affected?

• Has the context changed?

Has any software been updated or reconfigured: operating system,
HP OpenView Distributed Management products, ECS Engine, DM
or NNM, correlation circuits, and Data and Fact Store files?

Has the file system been changed: any reorganization, renaming,
altered permissions, changed mounts, and so on?

• What is the time of occurrence, the duration, and the frequency of the
problem?

Does the problem occur at the same time of day, or on a particular day
of the week?

Does it always last about the same length of time?

Does it recur often or infrequently?
Chapter 5 91

Troubleshooting the ECS Engine
Eliminating Common Faults
What other activities occur with the same pattern of incidence that
could be causing the problem?

• Can the problem be reproduced?

While reproducing the problem, collect as much data as you can to
pinpoint the problem.
92 Chapter 5

Troubleshooting the ECS Engine
Recovering from a Failure
Recovering from a Failure
You may need to determine whether the ECS Engine or the postmaster is
the possible cause of a problem, and how to restore operations.

1. Check the status of the ECS Engine by typing:

ecsmgr -info

The ecsmgr -info command returns the current state of the ECS
Engine, or times out. Did this command return the current state?

• Yes: Go to the procedure in Chapter 3 , “Operating the ECS
Engine,” on page 43 that is appropriate to the current state of the
ECS Engine.

• No: The ECS Engine may be heavily loaded, otherwise there is no
engine running with the specified instance number. If this
command times out or returns a message such as Failed to
obtain engine status. Go to Step 2.

NOTE If Connection to engine failed appears, this means that there is no
engine running with a matching instance number.

2. To check the status of the postmaster, type:

ovstatus pmd

This command returns object manager name: pmd plus other
information about the postmaster. Is the postmaster running?

• Yes: The ECS Engine may have failed or be in an indeterminate
state. Go to Step 1

• No: Examine the postmaster log and trace files
$OV_LOG/pmd.log0 and $OV_LOG/pmd.trc0 for clues to the
failure, then take corrective action.

Go to “Verifying an Installation” on page 95 if you suspect that the
ECS Engine files may be corrupted.

Preservation of
events

When you execute the ecsmgr -reset command while the ECS Engine
is running, the current correlation circuits are automatically unloaded.
Chapter 5 93

Troubleshooting the ECS Engine
Recovering from a Failure
Events that are currently in a circuit may be output or not, depending on
the policy of individual streams. See “Managing Streams” on page 64.

See also • ecsmgr(1m), ovaddobj(1m), ovdelobj(1m), ovstart(1m), ovstatus(1m),
ovstop(1m)

• HP OpenView Distributed Management Agent Platform
Administrator’s Reference
94 Chapter 5

Troubleshooting the ECS Engine
Verifying an Installation
Verifying an Installation
To verify the installation process, you can run a confidence test at any
time after the installation. The confidence test runs for approximately
two minutes and reports on the status of the ECS installation.To run the
test, execute the following:

$OV_BIN/ecsconftest

NOTE You must be logged in as root (or have superuser access) to run the
ecsconftest command.

For information about the options you can use with this command, see
the ecsconftest(1m) reference page.

The confidence test attempts to start the postmaster (ovstart) if it is not
already running. DM or NNM is left running after the confidence test
has completed.

All modules must be correctly installed, configured and licensed for the
confidence test to run.
Chapter 5 95

Troubleshooting the ECS Engine
Verifying an Installation
96 Chapter 5

Glossary
Abstract Syntax Notation 1
(ASN.1) An OSI standard related
to the Presentation Layer where
the abstract representation of the
data is independent of its physical
encoding. It is specified in ISO/IEC
8824, X.208.

agent A program or process
running on a remote device or
computer system that responds to
management requests, performs
management operations, and/or
sends event notifications.

annotation API A set of
application program interface
functions and data structures that
supports the transfer of data
between an external annotation
server and one or more Annotate
nodes in an ECS circuit.

annotation server A user
supplied server that receives a
request from an Annotation node
within a correlation circuit,
performs some action, and returns
a response to the Annotate node.
The action performed by the
annotation server may involve
information extracted from events
in the circuit, and the information
returned is typically obtained
external to the ECS Engine and
the annotation server.

arrival time The time an event
arrives at the ECS engine in
Universal Coordinated Time
(UTC).

ASCII American Standard Code
for Information Interchange. A
standard used by computers for
interpreting binary numbers as
characters.

ASN.1 Abstract Syntax Notation
1.

attribute An object characteristic
or property that describes the
current state of the object and
which has a unique identifier by
which it is accessed. In ECS, for
example, the “eventTime”
attribute of a CMIP event, or the
“Rate” attribute of a Rate node.
See event attribute; identifier;
correlation node attribute.

attribute-value pair The
combination of an attribute
identifier and the value of that
attribute for a specific object. In
ECS, attribute-value pairs are
represented as key-value pairs in
an ECDL dictionary. See also
key-value pair; dictionary.

Basic Encoding Rules (BER)

Defines how ASN.1 data types are
97

encoded for transport on the network.

breakpoint A point in a program at which execution is halted so that the program’s status,
contents of variables and other factors can be examined. In the ECS Designer, in simulation
mode, breakpoints are locations in a correlation circuit where event processing is halted to
allow for manual intervention.

canvas The working area of the ECS Designer screen. This is where you place, connect, and
configure correlation nodes to create your correlation circuit.

CCITT The International Telegraph and Telephone Consultative Committee, an
international organization concerned with proposing recommendations for international
communications. Replaced by the International Telecommunications Union,
Telecommunications (ITU-T) in 1992. See International Telecommunications Union,
Telecommunications (ITU-T).

circuit See correlation circuit.

CMIP See Common Management Information Protocol (CMIP).

Common Management Information Protocol (CMIP) A protocol for exchanging network
management information in an OSI environment (ISO/ITU-T X.710). CMIP communicates
management information between a manager and an agent. CMIP allows a manager to
retrieve (get) management information from, or to alter (set) management information on an
agent. CMIP also allows the manager to create and delete instances of an object managed by
the agent, or perform an action on an object. An agent can also emit unsolicited messages,
called notifications, to alert managers of noteworthy local conditions.

component event An event that is combined with other events to create a new event. In
ECS, a composite event is composed of two or more component events. See composite event.

composite event In ECS, a composite event consists of a structured aggregation of
addressible component events each of which may be a primitive event, a temporary event, or a
composite event. A composite event may only exist within a correlation circuit. See also
component event; primitive event; temporary event.

compound node A graphical element that represents a container of lower level components.
The lower level components will be displayed when the user opens the compound node. In
ECS, a correlation circuit fragment may be encapsulated in a compound node, hence creating
a new user-defined correlation node. Compound nodes may be added to libraries and re-used
by reference or by copy. Compare with primitive node.
98

condition (parameter) In ECS, a condition is an ECDL expression specified for a
correlation node parameter, usually involving attribute from an event, that returns a value
used to modify the behavior of the correlation node.

correlation A procedure for evaluating the relationship between sets of data or objects to
determine the degree to which changes in one are accompanied by changes in the other. In
ECS, correlation is a process of analyzing a stream of events by filtering and detecting
patterns and replacing groups of events with single events that have (possibly) higher
information content.

correlation circuit In ECS, a collection of interconnected primitive nodes and compound
nodes, configured to perform a filtering or correlation activity. Each correlation node is
configured appropriately to the correlation requirement. The configuration includes the
specification of the event types, and the allowed transit delays for those events, to be accepted
from the external event stream. A correlation circuit can be loaded into an ECS Engine.

correlation circuit port The logical connections between a correlation circuit and the
containing infrastructure where events enter and leave the circuit. These ports may be
configured to select a subset of events in the input event stream, based upon event encoding
type and event syntax. A single port may be connected to multiple Source/Sink nodes, and a
single Source/Sink node may be connected to multiple circuit ports.

correlation engine The ECS runtime component that reads an input event stream, decodes
the input events, performs the event correlation, encodes the output events and returns the
output events to the event stream. The event correlation is as specified by the one or more
correlation circuits loaded into the correlation engine.

correlation node A processing element in a correlation circuit. See also compound node;
primitive node.

correlation node attribute A property of a correlation node that can be read from another
correlation node. The Count, Rate, and Table nodes have attributes (which may be exported
by a containing compound node as attributes of the compound node). Attributes are addressed
using a dot notation: “node_name.attribute_name”.

correlation node parameter In the ECS Designer, a correlation node parameter is an
ECDL expression used to configure a correlation node.

correlation node port One of possibly many connection points of a correlation node used to
interconnect correlation nodes. Events enter a correlation node through a port and leave a
correlation node through a port. Port types include input, output, control, reset, and error
ports. In the ECS Designer, ports visually indicate the sense of the associated event flow.
 99

Optional ports are not displayed by default.

creation time The time an event was created. Inside the ECS Engine creation time is
represented in Universal Coordinated Time (UTC).

daemon A process that “serves” clients. Sometimes referred to as a server.

data store In ECS, a component of the ECS Engine which holds user-specified named data
items of an ECDL data type. The entries in the data store may be referenced from the ECDL
expressions configured into the correlation nodes. A correlation circuit may be associated with
one of the possibly many data stores loaded into the correlation engine.

data type A particular kind of data; for example integer, alphanumeric, boolean, date. In
ECS, data types are ECDL data types which define the type and range of values to which an
identifier may be assigned. Every value in ECDL has a data type, but the type need not be
explicitly stated. The types range from simple types such as integers, to compound types such
as dictionaries and lists, and special types such as functions and events.

dictionary (data type) In ECS, a dictionary is an ECDL data type comprised of an
unordered list of key-value pairs. Any value is accessed via reference to the key. Within ECS,
an event is treated as a dictionary with attribute names being the dictionary keys which
provide access to the attribute values.

Distributed Management Platform (DM) HP OpenView Communications Distributed
Management Platform, the platform which provides the infrastructure for implementing
OSI-based management solutions.

DM See Distributed Management Platform (DM)

duration data type In ECS, a duration is an ECDL data type used to represent relative or
elapsed time values. Compare with time data type.

dynamic parameter A parameter whose value is determined during program execution. In
ECS, an ECDL expression configured for a correlation node parameter which is evaluated
each time an event enters the correlation node. Typically, the value returned by a dynamic
parameter changes for each event processed.

ECDL See Event Correlation Description Language (ECDL).

ECS See Event Correlation Services (ECS).

ECS circuit See correlation circuit.
100

ECS Designer The ECS Designer is the ECS component which you use to create and test
correlation circuits. The ECS Designer works in two modes: build mode where you create
correlation circuits, and simulate mode where you test the circuits.

ECS Engine See correlation engine.

ecsmgr The command line program used to administer a running ECS Engine.

endecode In ECS, a term used to refer to a combined encoding or decoding function or
capability. An endecode module is an architectural entity which provides encoding and
decoding for a specific type of event.

evaluation license A license granted for a specific period of time for the purpose of
evaluating ECS.

event An event is an unsolicited notification such as an SNMP trap, a CMIP notification, or a
TL1 event, generated by an agent process in a managed object or by a user action. Events
usually indicate a change in the state of a managed object or cause an action to occur. In ECS,
an event is encoded as a primitive, compound, or temporary event. ECS events contain header
attributes added to the input events to assist the processing of the events while they are in
the ECS correlation circuit. The header attributes are stripped before the events are
transmitted from the ECS circuit.

event attribute A characteristic property of an event. In ECS, event attributes are either
part of the internally created event header common to all event types, or part of the event
body that contains the input event.

Event Correlation Description Language (ECDL) The language used to specify
correlation circuits (node relationships, parameter expressions, data and fact store values) for
the ECS Engine.

Event Correlation Services (ECS) The HP OpenView Communications Event Correlation
Services product.

event encoding type The first and highest level in the three-tiered ECS event classification
system. An event’s encoding type determines the endecode module that will be used to
translate the event to and from its native format. For example, CMIP notifications and SNMP
traps both use the BER encoding type. ASCII events use the MDL encoding type, and ITO
messages use the ITO encoding type. See also event syntax; event type

event flow An ECS circuit represented graphically as a circuit schematic consisting of
correlation nodes interconnected by lines (connections). See also correlation circuit.
 101

event body The body of an event depends on the event class. The body of a primitive event is
the original message, trap or event; the body of a temporary event may be empty; and the
body of a composite event consists of other events.

event header Inside ECS and event is augmented with additional information such as the
event encoding type, event syntax, event type, and event class. This information is carried in a
header that is attached to the event body. See also event body.

event I/O API A set of application program interface functions and data structures that
supports the input and output of events to and from the ECS Engine.

event syntax The rules governing the structure and content of an event. In ECS, the event
syntax is the second level in the three-tiered ECS event classification system. An event’s
syntax determines how the event’s attributes are read and written. For example, SNMP traps
have an event syntax of Trap-PDU and CMIP notifications have an event syntax that
evaluates to an OID identifying the GDMO notification. ASCII events have a syntax
determined by the MDL definition used to read and write them. See also event encoding type;
event type.

event type A classification of an event into a particular category that further defines the
nature of the event. In ECS, the event type is the third and lowest level in the three-tiered
event classification system. The event type is represented by the ECS header attribute
“event_type”. For SNMP traps the event type is the generic trap number (1-6). The CMIP
event type is the OID of the notification. ASCII events have an event type determined by the
MDL definition used to read and write them. See also event encoding type; event syntax.

expiry time Annotation requests are valid for a limited time, determined by the Annotate
node’s Time Limit parameter. The expiry time is the time at which the annotation request was
generated plus the Time Limit. In other words, it is the time at which the request expires.

expression In general, a set of reserved words, symbols, variables, and functions that is
evaluated to provide a result. In ECS, an expression is any collection of valid ECDL
statements. Note that ECDL is a functional language that has no concept of variables.

fact store A component of the ECS Engine which stores relationships between objects. Any
two objects which may be any ECDL data type, may be related using any user-defined
relationship. The facts may be accessed at runtime by the ECDL expressions configured into
the correlation node parameters.

FLEXlm A Licensing technology used in stand-alone and DM-integrated ECS products.

floating license A license where there is a single license server for all licensing clients on the
102

network. Any licensing client on the network can access the license server to check out a
license.

function A general term for a portion of a program that performs a specific task. In ECS, an
ECDL function is one of the built-in functions or operators, or a user defined function. ECDL
functions can be named or anonymous, but must return an ECDL value.

GDMO See Guidelines for the Definition of Managed Objects (GDMO).

Greenwich Mean Time Standard time used throughout the world based on the mean solar
time of the meridian of Greenwich. See Universal Coordinated Time (UTC).

Guidelines for the Definition of Managed Objects (GDMO) Describes a formal method
for describing the important characteristics and operations of an object class. Specified in ISO
10165-4, X.722.

HP OpenView A family of network and system management products, and an architecture
for those products. HP OpenView includes development environments and a wide variety of
management applications.

identifier A name that within a given scope uniquely identifies the object with which it is
associated.

IEC International Electrotechnical Commission.

IEEE Institute of Electronic and Electrical Engineers.

International Telecommunications Union, Telecommunications (ITU-T) The ITU is a
world-wide organization within which governments and industry coordinate the
establishment and operation of telecommunications networks and services. It is responsible
for the regulation, standardization, coordination and development of international
telecommunications as well as the harmonization of national policies. The ITU is an agency of
the United Nations. In 1992 it took over the functions of the CCITT.

ISO International Standards Organization.

ITO See IT/Operations (ITO).

IT/Operations (ITO) HP OpenView IT/Operations, a distributed client/server software
solution that helps system administrators detect, solve, and prevent problems occurring in
networks, systems, and applications.
 103

ITU-T International Telecommunications Union, Telecommunications.

key-value pair A data storage item consisting of a search key paired with a value. In ECDL,
a key-value pair is written as “key => value”. See also dictionary.

library In ECS, a repository for compound nodes. Compound nodes in the library may be
referenced from a circuit, or copied from the library and modified.

license The legal right to use a feature in a software program.

license server The server processes that manage access to ECS features by licensed users.

list data type a variable-length ordered set of values all of the same data type. In ECDL, a
list data type may contain a set of values of any other ECDL data type including complex
types such as lists and tuples.

Management Information Base (MIB) A logical collection of configuration and status
values that can be accessed via a network management protocol.

MDL See Message Description Language.

message description Detailed information about an event or message. In ECS, a description
of the attributes and formatting of a text-based event (message), that allows the MDL
endecode module to decode and encode events consistent with that syntax. Message
descriptions which are written in Message Description Language (MDL) are translated into
metadata before being used by the ECS engine endecode module. See metadata.

Message Description Language A language used to describe a text event’s attributes and
formatting. Each text event syntax has its own message definition written in MDL. See also
message definition; event syntax.

metadata Data about data. In ECS, message descriptions are translated into metadata
which is a form which maximizes access performance by the MDL endecode module. See
message description. CMIP and SNMP metadata is derived from MIBs.

MIB Management Information Base (MIB).

Network Node Manager (NNM) Definition to come from OVSD.

NNM See Network Node Manager (NNM).

node 1. A computer system or device (e.g., a printer, router, bridge) in a network. 2. A
104

graphical element in a drawing that acts as a junction or connection point for other graphical
elements. 3. In ECS, see correlation node.

nodelock license A license where the license server and license clients must be on the same
machine, meaning that the licensed application is “locked” to running on the node that is the
license server.

object identifier (OID) A unique sequence of numbers or string of characters used for
specifying the identity of an object, that is obtained from an authorized registration authority
or an algorithm designed to generate universally unique values.

OID See object identifier (IOD).

oid data type In ECS, an oid is an ECDL data type which contains an Object Identifier in
dot-separated notation (e.g., 1.2.3.4.5). Where the data item is dynamically interpreted, at
least three elements (2 dots) are required to avoid interpretation as a real data type.

Open Systems Interconnection (OSI) A standardization model in which a manager
process is responsible for executing specific management functions requested by the user
through interactions with an agent process. The agent process represents the management
services offered by the managed objects.

OSI See Open Systems Interconnection (OSI).

parameter In ECS, see correlation node parameter.

pmd HP OpenView postmaster daemon.

port 1. A location for passing information into and out of a network device. 2. In ECS, a
location for passing events into and out of a correlation node or a correlation circuit. See
correlation node port; correlation circuit port.

primitive event An ECS internal event which encapsulates an input event. Several header
attributes are added as a header for correlation and control purposes, which are stripped
before the primitive event leaves the ECS engine. See also event; temporary event; composite
event.

reserved word Words that have special meaning in ECS and cannot be used for any other
identifier.

Simple Network Management Protocol (SNMP) The ARPA network management
protocol running above TCP/IP used to communicate network management information
 105

between a manager and an agent. SNMPv2 has extended functionality over the original
protocol.

simulate See simulation.

simulation In general, the imitation by a program of a process or set of conditions affecting
one or more objects such that the results of the program reflect the impact of the process or
changes in conditions. In ECS, a simulation is the process of feeding events from an event log
file through the correlation circuit to observe the behavior of the correlation circuit using aids
such as breakpoints, tracing, and stepping.

SNMP See Simple Network Management Protocol (SNMP).

SNMP trap An unconfirmed event, generated by an SNMP agent in response to some
internal state change or fault condition, which conforms to the protocol specified in RFC-1155.
See event.

socket stack An interface that supports interprocess communication based on the use of file
handles. In ECS a socket stack is used to communicate with the ECS Engine for command, i/o
and annotation purposes.

Software Distributor (SD) HP OpenView multi-platform software installation product.

static parameters In general, parameters whose values are determined prior to program
execution. In ECS, a statically evaluated parameter is a correlation node parameter where the
value is defined when the correlation circuit is loaded. The value does not change when an
event enters the associated node/port. See dynamic parameters.

syntax In general, the rules governing the structure and content of a language or the
description of an object. In ECS, see event syntax.

Telecommunications Management Network (TMN) The term used to identify a
homogeneous approach to the management of heterogeneous networks. It is defined in the
international standards referred to as ITU-TSS M3100. TMN recommendations incorporate
OSI NM concepts, principles, protocols and application services.

temporary event In ECS, an event that is created transparently by particular correlation
nodes, and which may exist only within a correlation circuit. Temporary events may consist
only of header attributes created by the correlation engine, or they may additionally contain
user data. Temporary events cannot be transmitted outside the correlation engine. See also
event; primitive event; composite event.
106

time data type An ECDL data type that includes time and date.

TL1 Transaction Language One was developed by Bellcore and is a management system
protocol that uses structured text messages to pass information about networks and network
element states.

TMN See Telecommunications Management Network (TMN).

transit delay The difference between an event’s arrival time and its creation time. Transit
delays can be caused by external network delays or by deliberately introduced delays in an
ECS circuit.

trap See SNMP trap; event.

tuple data type An ECDL data type. A data structure consisting of a fixed collection of
elements, where each element is a simple ECDL type or a complex ECDL data type.

Universal Coordinated Time (UTC) Standard time used throughout the world based on
the mean solar time of the meridian of Greenwich. Formerly known as Greenwich Mean Time
(GMT).

universal pathname A set of environment variables that describe standard pathnames.
Universal pathnames hide variations between pathnames on different versions of Unix.

UTC See Universal Coordinated Time (UTC).

X/Open Management Protocol (XMP) An API specified by the X/Open standards body
that provides a common access mechanism to both CMIS and SNMP management protocol
services.

XMP See X/Open Management Protocol (XMP).

Zulu See Universal Coordinated Time (UTC).
 107

108

Symbols
*.ss file suffix, 86

A
annotation, 23, 45
ASCII events, 34
association between circuits and stores, 54

C
changing data and fact stores, 54
circuit designer

ECS circuit design overview, 15
updating data and fact stores, 57

circuit event logging, 79
-circuit_load, 48, 55
-circuit_reload, 56, 61
-circuit_unload, 54, 66
clock synchronization, 41
combining data/fact store entries, 56
comments lost from store files, 59
confidence test, 95
correlation engine

checking if running, 90
logging events, 78
recovering from a failure, 93
resetting, 93
saving a snapshot, 86
software version, 71
states, 37
tracing engine operations, 84
updating data and fact stores, 56

cout.evt, 35
create_time, 41
currentTime, 75

D
data stores

backup and version control, 58
changing, 54
combining with fact store entries, 56
comments lost, 59
deleting stores, 47
dumping to a file, 59
file permissions, 91
loading, 47
 109

unloading, 66
-data_dump, 59
-data_load, 48, 54, 55
-data_update, 57
default stream

policy, 64
dependencies between store updates, 57
-disable, 54, 62
discard policy, 18
DM

configuration, 23
instance number, 26
log and trace masks, 81
logging and tracing, 85
MIBs, 32
starting the engine, 45
stressed by updates, 56

DM configuration, 24
*.ds, 35

file permissions, 91
dumping correlation engine snapshots, 86
dumping Data and Fact Stores to files, 59

E
*.eco, 35

file permissions, 91
ECS and NNM, 21
ECS circuit

design process, 15
disabling, 62
enabling tracing of operations, 84
event logging, 78
file permissions, 91
insufficient resources for, 90
loading, 47
multiple circuits, 19
node details included in engine snapshot, 86
resetting, 93
states, 38
unloading, 66
updating, 61

ecs.def, 32
ecs.md, 32
ecs.per, 32
ECS_BER_MD, 25
ECS_MDL_MD, 25, 34
110

ecsber, 32
ecsconftest, 95
ecsd, 95
ecsin.evt, 35, 46
ecsmdt, 34
ecsmgr

circuit states, 38, 71
correlation engine state, 71
disabling a circuit, 62
dumping data and fact stores, 59
enabling event logging, 80
input event logging, 78
loading circuit, data and fact stores, 48
obtaining correlation engine statistics, 73
only one option permitted, 26
reloading a circuit, 61
resetting correlation engine, 46
saving snapshot of correlation engine, 86
summary of commands, 26
superuser permission, 26
unloading circuits, data and fact stores, 66
updating data and fact stores, 57

-enable, 50, 55
enabling correlation engine

tracing, 84
enabling ECS circuits, 50
engine log files

contain clues to engine failure, 93
engine logging

default mask values, 83
overview, 81
permanent activation recommended, 83, 89

engine monitoring, 70
engine states overview, 37
engine trace files

contain clues to engine failure, 93
contents of, 84

engine tracing
overview, 81

enginelog.errors, 75
enginelog.info, 75
enginelog.warnings, 75
environment variables

metadata location, 25, 34
setting up, 28

event I/O API, 45
 111

event log files
maximum size, 78

event logging
permanent activation discouraged, 78

events
ASCII representation included in

engine snapshot, 86
flushed by -disable command, 62
saving to event log files, 78

*.evt, 46, 78
external filter settings, 20

F
fact stores

backup and version control, 58
changing, 54
combining with data store entries, 56
comments lost, 59
deleting stores, 47
dumping to a file, 59
file permissions, 91
loading, 47
unloading, 66

-fact_dump, 59
-fact_load, 48
-fact_update, 57
files

*.ss (correlation engine snapshot), 86
and symbolic names, 47
data and fact stores, 57
event logs, 46
MIB files, 32
permissions of, 90
standard suffixes, 35

*.fs, 35
file permissions, 91

H
-h, 26
help command, 26

I
idle state, 37
in.input, 75, 76
in.new, 76
112

-info, 71
input enabled, 50, 62
input event logging, 78
input ports, 50
input.inputFilters, 75
installation

verifying, 95
instance numbers

engine management, 26
log and trace files, 36

integrating user MIBs, 32

L
licenses, problems with, 89
*.log, 83, 93
-log, 83
-log_events, 78
-log_events_out, 80
logging

events handled by stream policy, 79
events leaving circuits, 79
input events, 78
stream output, 79

logging correlation engine error messages, 81
logging events to event log files, 78
logging mask

correlation engine’s default value, 83
meaning of bits, 83
postmaster’s default, 81

M
-max_log_size, 78
maximum log size, 78
MDL metadata, 34
metadata

ASCII and MDL, 34
DM, 32

MIBs
default files, 32
integrating user MIBs, 32
problems with files, 33

monitoring the engine, 70
multiple circuits, 19
multiple designers, 25
multiple engines, 25
 113

N
NNM

configuration, 23
instance number, 26
log and trace masks, 81
logging and tracing, 85
stressed by updates, 56

O
OpenView DM. See DM
original.output, 76
out.discarded, 76
out.errors, 76
out.output, 76
out.undecided, 76
output enabled, 50, 62
output policy, 18
output ports, 50

P
parameter evaluation, 56
pdis.evt, 35
pmd linked, stressed by updates, 56
pmd, memory problem, 37
pmd.ecs.lrf, 23
pmd.log, 36, 83, 93
pmd.trc, 36, 93
policy event logging, 79
policy.num, 76
portname_maxTD, 77
portname_minTD, 77
portname_numin, 77
portname_numout, 77
postmaster

events flushed when engine disabled, 62
log and trace masks, 81
memory image grows, 37
recovering from a failure, 93
stress casused by updates, 56

pout.evt, 35
priming a circuit, 50

R
recovering from a failure, 93
-reload, 48
114

reloading an ECS circuit, 61
-reset, 46, 93
resetting an ECS engine, 46
running state, 37

S
saving

a snapshot of the correlation engine, 86
Data and Fact Stores to files, 59
events to event log files, 78

sdis.evt, 35
sharing data and fact stores, 49
-snapshot, 86
sout.evt, 35
starting

correlation engine tracing, 84
DM-linked engine, 45

states
ECS circuit, 38
enabling event logging, 78
engine states, 37
obtaining engine statistics, 73

statically evaluated parameters, 56, 58
statistic

currentTime, 75
enginelog.errors, 75
enginelog.info, 75
enginelog.warnings, 75
in.input, 75, 76
in.new, 76
input.inputFilters, 75
original.output, 76
out.discarded, 76
out.errors, 76
out.output, 76
out.undecided, 76
policy.num, 76
portname_maxTD, 77
portname_minTD, 77
portname_numin, 77
portname_numout, 77

statistics, 73
-stats, 73
stream event logging, 79
stream policy, default stream, 64
symbolic names, 47, 61
 115

synchronization of clocks, 41

T
tracing mask

meaning of bits, 85
postmaster’s default, 81

*.trc, 93
troubleshooting

$PATH and $MANPATH problems, 89
common causes of problems, 89
insufficient host resources, 90
licensing problems, 89
postmaster or correlation engine not running, 90
problem-solving strategy, 91
recovering from a failure, 93

U
universal pathnames

setting up, 28
subset required by ECS Engine/DM, 28

unloading a circuit, 54, 66
-update, 56, 57
updating data and fact stores, 56
UTC, 41

V
verifying installation, 95
version of engine, 71
116

	HP OpenView Communications Event Correlation Services Administrator’s Guide
	1� Introduction
	Purpose
	Audience

	2� Getting Started
	Designing Correlation Circuits
	Event Flow and Circuits
	Streams
	Correlation Circuits
	Event Input and Output

	Configuring the ECS Engine
	Endecoder Configuration

	ECS Engine Management (ecsmgr)
	Engine Instance Number
	Operating the ECS Engine
	Monitoring the ECS Engine
	Troubleshooting the ECS Engine

	Setting Up the Environment
	Integrating User MIBs (DM only)
	Integrating ASCII Metadata (ASCII only)
	ECS Engine Files
	ECS Engine and Correlation Circuit States
	Ensuring Synchronized Timing

	3� Operating the ECS Engine
	Starting the ECS Engine
	Starting a pmd-linked ECS Engine
	Starting Event I/O and Annotation

	Resetting the ECS Engine
	Loading an ECS Circuit, Data Store, and Fact Store
	Enabling an ECS Circuit
	Enabling Drill Logs
	Loading Perl files
	Changing the Association Between Stores and Circuits
	Updating the Data and Fact Stores
	Dumping Data and Fact Stores to Files
	Reloading a Correlation Circuit
	Disabling an ECS Circuit
	Managing Streams
	Unloading an ECS Circuit, Data Store, and Fact Store
	Controlling Persistence

	4� Monitoring the ECS Engine
	Displaying ECS Engine Information
	Obtaining Engine Statistics
	Logging Events
	Logging Errors and Tracing Operations
	Setting the Postmaster Log and Trace Mask (DM and NNM)
	Enabling the ECS Engine Log
	Enabling the ECS Engine Trace

	Saving a Snapshot of the Correlation Engine

	5� Troubleshooting the ECS Engine
	Eliminating Common Faults
	Recovering from a Failure
	Verifying an Installation

	Glossary

