
HP OpenView Internet Services
Custom Probes API Guide
Document Release Date: April 2007 
Software Release Date: April 2007 
 



Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements 
accompanying such products and services. Nothing herein should be construed as constituting an additional 
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent 
with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and 
Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard 
commercial license.

Copyright Notices

© Copyright 2001-2007 Hewlett-Packard Development Company, L.P.

Trademark Notices

Java™ is a trademark of Sun Microsystems, Inc. 
Microsoft Windows®,Windows NT®, MS Windows®, and Windows 2000® are U.S. registered trademarks of 
Microsoft Corporation. 
Netscape™ and Netscape Navigator™ are U.S, trademarks of Netscape Communications Corporation. 
UNIX® is a registered trademark of The Open Group. 
All other product names are the property of their respective trademark or service mark holders and are 
hereby acknowledged.
2



Documentation Updates

This manual’s title page contains the following identifying information:

• Software version number, which indicates the software version

• Document release date, which changes each time the document is updated

• Software release date, which indicates the release date of this version of the software

To check for recent updates, or to verify that you are using the most recent edition of a document, go to:

http://ovweb.external.hp.com/lpe/doc_serv/ 

You will also receive updated or new editions if you subscribe to the appropriate product support service. 
Contact your HP sales representative for details.
3



Support

You can visit the HP Software Support web site at:

www.hp.com/managementsoftware/services 

HP Software online support provides an efficient way to access interactive technical support tools. As a valued 
support customer, you can benefit by using the support site to:

• Search for knowledge documents of interest

• Submit and track support cases and enhancement requests

• Download software patches

• Manage support contracts

• Look up HP support contacts

• Review information about available services

• Enter into discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a 
support contract.

To find more information about access levels, go to:

www.hp.com/managementsoftware/access_level 

To register for an HP Passport ID, go to:

www.managementsoftware.hp.com/passport-registration.html 
4



Contents
1 Custom Probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
What’s Included in Custom Probes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

The Custom Probes Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
API Conventions, Libraries and Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Function-naming Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Libraries on the Management Server and Remote Probes Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Include and Lib Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Makefiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Queue Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Implementation Steps  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Implementing Custom Probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
A. Steps to implement a custom probe on MS Windows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
B. Steps to implement a custom probe on UNIX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Configuring and Deploying a Custom Probe  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Updating a Custom Probe  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Creating Reports for Custom Probes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Troubleshooting Your Custom Probes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Custom Probes API  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

The Application Programming Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
API for Command Line Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
ovis_cmdline_parse() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
ovis_cmdline_getpvalue()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
ovis_is_print(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
ovis_is_dump() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
ovis_is_trace(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

API for Initializing, Starting, Logging and Stopping Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 36
ovis_meas_init() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
ovis_meas_start() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
ovis_meas_log()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
ovis_meas_end() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

API for Getting/Setting Probe Metrics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table of Metric/Parameter Identifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
ovis_meas_set_long() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
ovis_meas_set_double() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
ovis_meas_set_string()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
 5



ovis_meas_get_long() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
ovis_meas_get_double() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
ovis_meas_get_string()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

API for Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table of Trace Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
ovis_trace_init() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
ovis_trace_set_level() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
ovis_trace() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
ovis_trace_l()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

API for Error Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table of Error Destinations: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
ovis_error_init() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
ovis_err_set_output_dst()) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
ovis_error_out()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

API for Time Keeping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
ovis_timer_start(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
ovis_timer_stop() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
ovis_timer_elapsed()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Typical Implementation Steps and the API  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Sample Probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Sample Code (Windows/UNIX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Sample Makefile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
SRP File Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6



1 Custom Probes
Introduction

The HP OpenView Internet Services Custom Probe feature is designed to allow seamless 
integration and measurement logging of user implemented custom probes into the Internet 
Services Management Server. 

The Custom Probes feature is only supported with the English language 
version of Internet Services at this time.
7



What’s Included in Custom Probes 

The Internet Services custom probe feature includes the following:

• This documentation which describes the APIs and the steps to implementing a custom 
probe

• The necessary header files and libraries

• A Custom Probes wizard for adding, updating and removing custom probe definitions into 
the Internet Services Configuration Manager.

• Two fully functional sample probe implementations, with full source code and Visual C++ 
6.0 project files and UNIX Makefiles.

It is recommended that you read this documentation before developing your custom probes. 

Requirements

The Custom Probes SDK requires the following C++ compilers:

Windows: 

Microsoft Visual Studio 6.0, Service Pack 5

Required Options:

/GR       enable RTTI

/GX       enable exception handling

/MD       Multithreaded DLL (use for release version)

/MDd     Debug Multithreaded DLL (use for debug version)

HP-UX:

HP aC++ Compiler C.03.33 (or higher)

Linux:

gcc version 2.95.4 (or higher)

Solaris:

Sun Forte 6 Update 2

Note, C++ compiler/linker are required. This is necessary since the SDK might change and/or 
include other C++ libraries. 

A thorough understanding of Internet Services and the underlying 
data-models (in the context of probes) is required to implement a 
custom probe.  Also C/C++ programming skills are required.
8 Chapter 1



The Custom Probes Architecture

Figure 1 is a block diagram of the Internet Services architecture and within it is shown how a 
custom probe integrates.

Figure 1 Custom Probes Architecture

Please refer to the Internet Services User’s Reference Guide and Online help for more 
information on architectural data flow, probes and how Internet Services works.
Custom Probes 9



API Conventions, Libraries and Files

Function-naming Conventions

The functions of the Internet Services APIs have consistent names that reflect the operation 
they perform. See Figure 2. Naming the Internet Services API Functions for an example of 
how the Internet Services API functions are named.

Figure 2 Naming the OVIS API Functions

The function names consist of the following parts:

Product Identifier:         Identifies the product. In Internet Services, this 
                                        is always 'ovis'.

OVIS Object Identifier:  Identifies the OVIS object on which the operation
                                      is to be performed. OVIS objects are shown in Table 1.

Operation Identifier:      Identifies the operation which the function
                                       performs on the OVIS object.

Note: Unless explicitly mentioned all the parameters passed to the APIs should be considered 
as input parameters. 

Libraries on the Management Server and Remote Probes Systems 

Development of custom probes on various platforms using Internet Services custom probes 
requires using platform specific libraries.

Table 1 OVIS Objects

cmdline Probe Command Line

meas OVIS Measurement

error OVIS Error Handling

trace OVIS Tracing

timer OVIS Timers
10 Chapter 1



Platform Specific Libraries include:

Include and Lib Files

Development of custom probes on various platforms requires using platform specific header 
files and libraries.

Table 2 Platform Specific Libraries

PLATFORM Library

MS Windows OvIsApi.dll

HPUX libOvIsApi.sl

Solaris libOvIsApi.so

Linux Red Hat libOvIsApi.so
Custom Probes 11



Platform Specific Include Files/Libs:

Makefiles

Sample make files are provided for development of custom probes on various platforms.

Platform Specific Makefiles:

Queue Files

Every call to the ovis_meas_log() function in the probe implementation should generate a 
queue file in the <data_dir>\datafiles\probe\queue folder(queue folder). If your probe 
makes more than one call to the ovis_meas_log() (probes with multiple transactions), check for 
multiple queue files in the queue folder. 

The queue file subsequently gets uploaded to the Management Server at regular intervals. 
This is done through a regular HTTP connection. If a proper HTTP connection doesn't exist 
between the probe machine and the Management Server, the queue files will continue to 
accrue in the <data_dir>\datafiles\probe\queue folder on the probe machine. If left in 
such a state for a long tie, this could result in enormous disk space consumption on the probe 
machine, and the probe machine might eventually run out of disk space.

The Management Server will correctly reflect the status of all of the probes and their service 
targets on the configuration manager GUI and on the dashboard, if the queue files are getting 
uploaded to the Management Server at regular intervals. 

Table 3 Platform Specific Header Files/Libs

PLATFORM Header File Lib File

MS Windows  OvIsApi.h OvIsApi.lib

HPUX OvIsApi.h      -----

Solaris OvIsApi.h      -----

Linux OvIsApi.h      -----

Table 4 Platform Specific Makefiles

PLATFORM MakeFile

MS Windows ProbeDummy.dsp

HPUX Makefile

Solaris Makefile

Linux Makefile
12 Chapter 1



2 Implementation Steps
This chapter explains the basic steps to creating and implementing a custom probe.  

Please read through these steps and the detailed descriptions of the Custom Probe API calls 
in Chapter 3 before you begin to develop your custom probe.  Also see Chapter 4 for example 
source code and sample files that can be helpful in getting started building your custom probe.
  13



Implementing Custom Probes

A. Steps to implement a custom probe on MS Windows

Step 1.

Define your probe name [type]. This name must match the probe name you enter in the 
Custom Probe wizard in step 2 below.

A note on probe naming convention:. 

ANYTCP
DHCP
DIAL
DNS
Exchange
FTP
HTTP
HTTPS
HTTP_TRANS
ICMP
IMAP4
LDAP
MAILROUNDTRIP
NNTP
NTP
ODBC
POP3
RADIUS
SAP
Script
SMS
SMTP
SOAP
STREAM_MEDIA
TCP
TFTP
UDP
WAP

This list is subject to change in the future. 

Step 2.

The next step is to define your probe’s input parameters and output metrics.  The Internet 
Services Configuration Manager on the management server needs to be updated with the new 
probe definition (this is the SRP file) based on the parameters and metrics for your probe. 

You can create the SRP file on the Management Server in two ways:

You MUST prefix your probe name with a C_ (e.g., C_PROBE_CUSTOM).  This 
will guarantee that your probe name will never conflict with any future 
changes/additions to OVIS probes.

After a new SRP file is updated and loaded, on the Management Server you 
need to run ovc -restart ovtomcatA and exit the current Dashboard 
session. 
14 Chapter 2



• Manually create an SRP file (on the Management Server) based on the parameters and 
metrics that your custom probe defines and manually load it into the Configuration 
Manager. 

On the Management Server run repload -load <SRP file name> to load the file.

See the sample SRP file in SRP File Structure on page 69 to understand the format.

• Run the Custom Probes wizard on the Management Server to step through this process 
(<install dir>\SDK\InternetServices\bin\probewizard.exe). The wizard 
essentially writes the SRP file for you and automatically imports it into the Configuration 
Manager.  The wizard can also be used to update or remove custom probe definitions that 
have previously been added. See the command to run the wizard and a screen shot below.

The following optional metric parameters cannot be added when using the Custom Probe 
wizard, the SRP file must be manually modified to include these parameters: 

LABEL - Allows setting a local dependent label for the metric.

FORMAT - Used to set the display format a metric (e.g., FORMAT: 0.000 will display a 
number with only 3 digits after the decimal). The value for FORMAT follows the Java 
formatter convention. See example with the sample SRP file in Chapter 4 

COMPOSITE_METRIC and COMPOSITE_ORDER - Used by the OVIS Dashboard to 
create a stacked bar chart. The COMPOSITE_METRIC specifies the parent metric 
(usually response time) and the COMPOSITE_ORDER specifies the position fo the metric 
within the bar chart. See example with the sample SRP file in Chapter 4.

MULTISTEP - This flag indicates whether a metric is part of a graph that shows the steps 
broken out for a specific metric.

Run the Custom Probes wizard on the Internet Services Management Server as follows:

<install dir>\SDK\InternetServices\bin\probewizard.exe

In the first dialog you can select to Add, Edit or Remove a custom probe definition.  When 
creating a new custom probe definition follow these steps:
Implementation Steps 15



• Define the new probe type's Name

• Define the new probe’s set of Parameters 

• Define the new probe’s set of Metrics

• Define the new probe’s Executable name. The probe executable should start with 
c_probe*.   

Note that once you complete implementing your probe and data is being collected, the graphs 
in the Dashboard will be available for this custom probe without requiring a special Reports 
Template.  But to get reports in the Dashboard Reports tab, you must create a Report 
Template file which requires you to use hp OpenView Reporter A.03.00 and Crystal Decisions 
Crystal Reports version 8.5 or higher (www.crystaldecisions.com).  See Creating Reports for 
Custom Probes on page 25.  

Step 3.

Create a new folder on your system to hold the source/header files for your new custom probe. 
We will refer to this folder henceforth as probeCustom in this document.

Step 4.

Make sure you have the correct versions of these files: 

OvIsApi.h, 

OvIsApi.lib  

These files are part of Internet Services Custom Probe feature.  They should be under the 
<install dir>\SDK\InternetServices\include and <install 
dir>\SDK\InternetServices\lib folders respectively.  You can check the version with 
the perfstat -v command.

Step 5.

To write a custom probe, in C/C++: 

Implement the 'main' function body of your probe in a separate C (.c) or C++ (.cpp) source file. 
This source file is referred to as mainCustom.cpp  in this document. Create this file in your 
probeCustom folder and add it to your probe project.

The OvIsApi.h file needs to be included in the mainCustom.cpp implementation file, the 
probe needs to be linked to the OvIsApi.lib file.  The most recent release of the 
OvIsApi.dll will be installed in the probe directory by the Internet Services Installer.

You can either copy these two files into your newly created probeCustom folder or add the 
<install dir>\SDK\InternetServices\include and <install 
dir>\SDK\InternetServices\lib paths to your project settings to make Developer 
Studio look for those files there.

If you are using Visual C++ 6.0:

Add the <install dir>\Sdk\InternetServices\include path in

The probe name as specified in the wizard must be the same as specified in the 
probe in Step 1.

The probe executable should start with c_probe*.

After a new SRP file is updated and loaded, on the Management Server you 
need to be sure to run ovc -restart ovtomcatA and exit the current 
Dashboard session. 
16 Chapter 2



Project->Settings->C/C++->->Preprocessor->Additional include directories

and the <install dir>\Sdk\InternetServices\lib path in

Project->Settings->Link->Input->Additional library path

Step 6.

If you decide to use the Custom Probe’s command line parsing routines, declare the options 
table, specifying your probe specific command line parameters.

[The options table is declared as an array of string pointers each on of which holds a switch 
name, that your custom probe could be passed on the command line.]

Note that the following command line switches are reserved by Internet Services and should 
not be specified in the options table.

-customer "customername"
-servicename "servicename"
-serviceid "10;10;10"
-interval 300
-timeout 30
-host "hostname"

-print
-dump
-trace l

These switches are internal to Internet Services and are automatically handled by the 
Custom Probe's command line parsing routines, when passed on the probe's command line. 
When passed on the command line, their values should be in the format shown above.

Step 7.

If your custom probe is to support tracing and error logging, decide on the probe Error 
Logging and Tracing scheme for your probe. Your custom probe can either trace and log errors 
into the default Internet Services trace and error log files, or you may choose to make the 
probe trace and log errors in your own trace and error log files.

If you decide to use your own trace and error log files, declare string literals for the names of 
your custom error and trace files. 

Step 8

The next step is to implement a timing model for the probe.  

A custom probe must implement a timing model by which it self-timouts after a certain time 
interval.  This is necessary since all Internet Services probes (including custom probes) are 
scheduled by the scheduler to run periodically.  If probes do not terminate at regular intervals, 
the probe system may eventually be rendered unstable due to stray probe processes.

The time interval for timeout is typically passed to the probe through one of the standard 
input parameters -TIMEOUT.  Use the get_ovis_parameter() function to retrieve the 
timeout passed to the probe.  Ideally the probe’s timing model should terminate the probe in a 
time interval slightly less than what was specified through the -TIMEOUT parameter.  When 
being scheduled for execution through the scheduler, if the probe does not self-timeout at the 
-TIMEOUT interval, the OVIS scheduler will force termination of the probe.  

Refer to the accompanying probeExchange sample probe’s source code, for an example of 
how to implement a timing model in a probe.

Steps 1 - 7 ensure that your custom probe now has the appropriate settings 
and declarations to use the custom probe API to write measurements to the 
Internet Services Management Server.
Implementation Steps 17



Step 9

Build your custom probe using your compiler and linker.

See the section on Configuring and Deploying a Custom Probe on page 24 for 
the final steps to a working probe.
18 Chapter 2



B. Steps to implement a custom probe on UNIX

Steps to follow to write a Custom Probe on UNIX are similar to that of Windows NT/2000:

Step 1.

Define your probe name [type]. This name must match the probe name you enter in the 
Custom Probe wizard in step 2 below.

A note on probe naming convention:

The following probe names are reserved and are currently used by standard Internet Services 
probes and MUST NOT be used to name your custom probe. 

ANYTCP
DHCP
DIAL
DNS
Exchange
FTP
HTTP
HTTPS
HTTP_TRANS
ICMP
IMAP4
LDAP
MAILROUNDTRIP
NNTP
NTP
ODBC
POP3
RADIUS
SAP
Script
SMS
SMTP
SOAP
STREAM_MEDIA
TCP
TFTP
UDP
WAP

This list is subject to change in the future. 

Step 2.

The next step is to define your probe’s input parameters and output metrics.  The Internet 
Services Configuration Manager on the management server needs to be updated with the new 
probe definition (this is the SRP file) based on the parameters, and metrics for your probe. 

You MUST prefix your probe name with a C_ (e.g., C_PROBE_CUSTOM).  This 
will guarantee that your probe name will never conflict with any future 
changes/additions to OVIS probes.

After a new SRP file is updated and loaded, on the Management Server you 
need to run ovc -restart ovtomcatA and exit the current Dashboard 
session. 
Implementation Steps 19



You can create the SRP file on the Management Server in two ways:

• Manually create an SRP file (on the Management Server) based on the parameters, and 
metrics that your probe defines and manually import it into the Configuration Manager.   

On the Management Server run repload -load <SRP file name> to load the file.

See the sample SRP file in SRP File Structure on page 69 to understand the format.

• Use the Custom Probes wizard to step through this process (<install 
dir>\SDK\InternetServices\bin\probewizard.exe).  . The wizard essentially 
writes the SRP file for you and automatically imports it into the Configuration Manager.  
The wizard can also be used to update or remove custom probe definitions that have 
previously been added. . See the command to run the wizard and a screen shot below.

The following metric parameters cannot be added when using the Custom Probe wizard, 
the SRP file must be manually modified to include these parameters: 

LABEL - Allows setting a local dependent label for the metric.

COMPOSITE_METRIC and COMPOSITE_ORDER - Used by the OVIS Dashboard to 
create a stacked bar chart. The COMPOSITE_METRIC specifies the parent metric 
(usually response time) and the COMPOSITE_ORDER specifies the position fo the metric 
within the bar chart. See examples with the sample SRP files in Chapter 4.

MULTISTEP - This flag indicates whether a metric is part of a graph that shows the steps 
broken out for a specific metric.

Run the Custom Probes wizard on the Internet Services Management Server as follows:

<install dir>\SDK\InternetServices\bin\probewizard.exe

In the first dialog you can select to Add, Edit or Remove a custom probe definition.  In 
creating a new custom probe definition follow these steps:

• Define the new probe type's Name

• Define the new probe’s set of Parameters 
20 Chapter 2



• Define the new probe’s set of Metrics

• Define the new probe’s Executable name. The probe executable should start with 
c_probe*.   

Note that once you complete implementing your probe and data is being collected, the graphs 
in the Dashboard will be available for this custom probe without requiring a special Reports 
Template.   But to get reports in the Dashboard Reports tab, you must create a Report 
Template file which requires you to use hp OpenView Reporter A.03.00 and Crystal Decisions 
Crystal Reports version 8.5 or higher (www.crystaldecisions.com).  See Creating Reports for 
Custom Probes on page 25.  

Step 3.

Create a new folder on your system to hold the source files and header files for your new 
custom probe. We will refer to this folder henceforth as probeCustom in this document.

Step 4.

Make sure you have the correct versions of the files:

OvIsApi.h, 
libOVisApi.so    or    libOvIsApi.sl  (for Solaris)

These files are part of Custom Probes.  They should be under the opt/OV/VPIS/probes and 
opt/OV/lib folders respectively.  You can use the what command to determine the version 
and compare this to the list of files and versions in the OVIS release notes.  For example

# what libOvIsApi.sl
libOvIsApi.sl:
      libOvIsApi  A.04.00.00  1/05.01   HP-UX 11.0 - 11.20

Step 5.

To write a custom probe, in C/C++: 

Implement the main function body of your probe in a separate C (.c) or C++ (.cpp) source file. 
This source file is referred to as mainCustom.cpp in this document. Create this file in your 
probeCustom folder and add it to your probe project.

The OvIsApi.h file needs to be included in the mainCustom.cpp implementation file, the 
probe needs to be linked to the OvIsApi.so/OvIsApi.sl file.  The most recent release of 
the OvIsApi.sl/OvIsApi.sl files will be installed in the /opt/OV/lib directory by the 
Internet Services Installer.

Step 6.

If you decide to use the Custom Probe's command line parsing routines, declare the options 
table, specifying your probe specific command line parameters.

[The options table is declared as an array of string pointers each on of which holds a switch 
name, that your custom probe could be passed on the command line.]

The probe name as specified in the wizard must be the same as specified in the 
probe in Step 1.

The probe executable should start with c_probe*.

After a new SRP file is updated and loaded, on the Management Server you 
need to be sure to run ovc -restart ovtomcatA and exit the current 
Dashboard session. 
Implementation Steps 21



Note that the following command line switches are reserved by Internet Services and should 
not be specified in the options table.

-customer "customername"
-servicename "servicename"
-serviceid "10;10;10"
-interval 300
-timeout 30
-host "hostname"

-print
-dump
-trace l

These switches are internal to Internet Services and are automatically handled by the 
Custom Probe's command line parsing routines, when passed on the probe's command line. 
When passed on the command line, their values should be of the format as show above.

Step 7.

If your custom probe is to support tracing and error logging, decide on the probe Error 
Logging and Tracing scheme for your probe. Your custom probe can either trace and log errors 
into the default Internet Services trace and error log files, or you may choose to make the 
probe trace and log errors in your own trace and error log files.

If you decide to use your own trace and error log files, declare string literals for the names of 
your custom error and trace files. 

Step 8

The next step is to implement a timing model for the probe.  

A custom probe must implement a timing model by which it self-timouts after a certain time 
interval.  This is necessary since all Internet Services probes (including custom probes) are 
scheduled by the scheduler to run periodically.  If probes do not terminate at regular intervals, 
the probe system may eventually be rendered unstable due to stray probe processes.

The time interval for timeout is typically passed to the probe through one of the standard 
input parameters -TIMEOUT.  Use the get_ovis_parameter() function to retrieve the 
timeout passed to the probe.  Ideally the probe’s timing model should terminate the probe in a 
time interval slightly less than what was specified through the -TIMEOUT parameter.  When 
being scheduled for execution through the scheduler, if the probe does not self-timeout at the 
-TIMEOUT interval, the OVIS scheduler will force termination of the probe.  

Refer to the accompanying probeExchange sample probe’s source code, for an example of 
how to implement a timing model in a probe.

Step 9.

Build the Custom Probe.  The probe can be built using plain command line commands. See the 
following for an example of plain command line commands:

 #g++ -I/opt/OV/VPIS/probes -c mainDummy.cpp
 #g++ -o probeDummy mainDummy.o -Wl,-rpath -Wl,/opt/OV/lib -L/opt/OV/lib 
-lOvIsApi

Alternatively create your Makefile to build the probe.

A sample Makefile is shown below.

Steps 1 - 7 ensure that your custom probe now has the appropriate settings 
and declarations to use the custom probe API to write measurements to the 
Internet Services Management Server.
22 Chapter 2



# Sample Makefile for a dummy probe using shared custom probe api library

# for RedHat Linux 6.0 or later
#
# Usage:
# make probeDummy

OVIS_PROBE_OBJS = mainDummy.o
OVIS_CUST_LIB_N = OvIsApi
OVIS_CUST_LIB_E = .so

OVIS_SHLIB_PATH = /opt/OV/lib
OVIS_INCLU_PATH = /opt/OV/VPIS/probes

OVIS_LIBS = -l$(OVIS_CUST_LIB_N)
OVIS_LIB_LINK_SW = -Wl,-rpath -Wl,$(OVIS_SHLIB_PATH) 
-L$(OVIS_SHLIB_PATH)

OVIS_CFLAGS = -I$(OVIS_INCLU_PATH)
OVIS_CC = g++

probeDummy: $(OVIS_PROBE_OBJS) $(OVIS_SHLIB_PATH)/
lib$(OVIS_CUST_LIB_N)$(OVIS_CUST_LIB_E) Makefile
        $(OVIS_CC) -o $@ $(OVIS_PROBE_OBJS) $(OVIS_LIB_LINK_SW) 
$(OVIS_LIBS)

.SUFFIXES : .o .cpp

.cpp.o:
        $(OVIS_CC) $(OVIS_CFLAGS) -c $<

clean:

        rm $(OVIS_PROBE_OBJS)

See the section on Configuring and Deploying a Custom Probe on page 24 for 
the final steps to a working probe.
Implementation Steps 23



Configuring and Deploying a Custom Probe 

Once your custom probe is has been fully implemented and its definition added to the 
Configuration Manager, you can create probes with this probe type using the Internet 
Services Configuration Manager.  In the Configuration Manager follow the same steps as you 
would for a standard probe to configure customer, service groups, service targets, services 
level objectives, service level agreements and define the location of the probe system.   Be sure 
to save your configuration.   

Note that when you create a probe with this custom probe type you can specify Run As User in 
the Service Target Information dialog box.  This allows the probe to run as a specific user as 
opposed to the account that runs the OVIS scheduler.  

Also note that the custom probe configuration information can be automatically deployed to 
the probe system as with a standard probe. See the Internet Services User’s Reference Guide or 
the Configuration Manager online help for more information on deploying probes to UNIX 
and Windows NT/2000 systems.

After you have configured service targets for this custom probe type, you can deploy the 
custom probe implementation (source code) as follows: 

• On Windows systems (local or remote) copy your probe binary into the <install dir>/
probes folder

• On UNIX systems copy your probe binary into the /opt/OV/VPIS/probes directory.  See 
the Internet Services User’s Reference Guide for more information.

Updating a Custom Probe

Updating a custom probe involves one of the following scenarios:

1 Updating the probe implementation (source code) but keeping its input (command line) 
parameters and output metrics the same.

2 Updating the probe implementation (source code) so as to change its input parameters 
and/or metrics.

In case (1) you just need to redeploy the updated probe implementation to one or more probe 
locations.

In case (2) you need to update the probe definition using the custom probe wizard to reflect 
changes in input/output parameters and metrics and redeploy the updated probe 
implementation to one or more probe locations. 
24 Chapter 2



Creating Reports for Custom Probes

The graphs in the Dashboard will be available for this custom probe without requiring you to 
create report templates. 

If you want to create reports (viewed in the Reports workspace of the Dashboard) for your 
custom probes you need to use hp OpenView Reporter A.03.60 (or higher) and Crystal 
Decisions Crystal Reports version 10.0 (or higher) (www.crystaldecisions.com).  

Use Crystal Reports to create the custom report and hp OpenView Reporter to configure the 
report to be viewed in Internet Services.  Documentation on setting up reports to be generated 
and viewed is provided in the Reporter Concepts Guide in Step 6: Add the Report Definition to 
Reporter.  Also refer to the Reporter online help topic Add report definition for details.  

A sample report template (a_IOps_Dummy.rpt) for the Dummy Probe, can be found on the 
Management Server under the 
<install dir>\sdk\InternetServices\examples\Report Template Files/ folder.

To integrate this into OVIS do the following:

1 Copy the report template file (a_IOps_Dummy.rpt) under the <install 
dir>\data\reports\iops folder on the Management Server.

2 Edit the repload_C_DUMMY_PROBE.SRP file, which can be found under the <install 
dir>\sdk\InternetServices\examples\SRP Files folder to add the following 
section. Make sure you match the PROBENAME with the REPORT name prefixed by 
IOPS_. 

REPORT:      IOPS_C_DUMMY_PROBE
        CATEGORY:       190 Internet Services
        ALL_TEMPLATE:   reports\IOps\a_iops_DUMMY.rpt
        DESCRIPTION:    DUMMY - Dummy Service
        MAXTIME:        10
        FAMILY:         "Internet Services"
        END_REPORT:

GROUPREPORT:  IOPS_C_DUMMY_PROBE
        GROUP:          ALL
        END_GROUPREPORT:

3 Reload the SRP file into the OVIS Configuration Manager by running the following:
repload -load repload_C_DUMMY_PROBE.SRP

4 Let the dummy probe run overnight.  Next day the nightly report for the dummy probe 
should show up under the Reports tab of the Internet Services Dashboard.  

To integrate a report for your custom probe do the following:

1 To integrate a custom report template for your custom probe, create an appropriate report 
template file using Crystal Reports, (similar to a_IOps_Dummy.rpt), and put it in the 
<install dir>/data/reports/iops/ folder. 

2 Use hp OpenView Reporter to add your custom report.  Be sure to set the following:
REPORT = IOPS_<probe name>
CATEGORY = 190 Internet Services

After a new SRP file is updated and loaded, on the Management Server you 
need to be sure to run ovc -restart ovtomcatA and exit the current 
Dashboard session. 
Implementation Steps 25



HTML_DIRECTORY = webpages\<a_custom report_1>
Where <a_custom report_1> is the report name in the webpages relative directory.  
Refer to the Reporter documentation for how to do this.

3 Let your custom probe run overnight.  Next day the nightly report for your custom probe 
should show up under the Reports workspace of the Internet Services Dashboard.  
26 Chapter 2



Troubleshooting Your Custom Probes

How do I verify that measurements have been written by the probe? 

Every call to the ovis_meas_log() function in the probe implementation should 
generate a queue file in the <data_dir>\datafiles\probe\queue folder (queue 
folder). If your probe makes more than one call to the ovis_meas_log() (probes with 
multiple transactions), check for multiple queue files in the queue folder. 

The queue file subsequently gets uploaded to the Management Server at regular 
intervals. This is done through a regular HTTP/S connection. If a proper HTTP/S 
connection doesn't exist between the probe system and the Management Server, the queue 
files will continue to accrue in the \<data_dir>\datafiles\probe\queue folder on 
the probe system. If left in such a state for a long time, this could result in enormous disk 
space consumption on the probe system, and the probe system might eventually run out of 
disk space.

The Management Server will correctly reflect the status of all of the probes and their 
service targets in the Configuration Manager status display and in the Dashboard, if the 
queue files are getting uploaded to the Management Server at regular intervals. 
Implementation Steps 27



28 Chapter 2



3 Custom Probes API
The Application Programming Interface

Internet Services comes with a set of Application Programming Interfaces (APIs) that support 
development of Custom Probes to probe user specific services and forward measurements 
back to the Internet Services Management Server. 

This chapter describes the Internet Services custom probes API data structures and the API 
calls.  The APIs primarily provide functionality for the following:

• command line parsing

• probe measurement (initializing, starting, logging, stopping the probe measurement 
process, and getting/setting probe metrics)

• probe tracing

• error logging and data logging to the OVIS Management Server.   

Chapter 2 describes the steps to implementing a custom probe.  Chapter 4 gives you examples 
of the makefile, SRP file and sample code.

The documentation assumes you have a good understanding and working knowledge of OVIS 
and C/C++ programming.  

Please read the documentation on all the API calls before using them to develop a custom 
probe.

API for Command Line Parsing

An Internet Services probe is typically invoked with a set of command line switches and 
corresponding values. These command line switches and associated values are the primary 
input to the probe. The command line parsing APIs provide an easy to use set of functions to 
parse the command line passed to the probe and later retrieve values of the individual 
switches, as needed.

For proper functioning of these routines, the command line switches and values passed to the 
probe must be separated by one or more blank spaces.  For example: probeDummy -host 
"xyz.com" -availability "80" -print

The command line routines differentiate between command line switches and command line 
values in the following way.

A command line switch must be prefixed by a "-".  Strings passed on the command line 
without this prefix are interpreted as command line values.  It is recommended that command 
line values be enclosed in quotes.  From the following example, you can see which are 
command line switches and which are command line values in the table below.
  29



 >robeDummy -host "xyz.com" -availability "80" -print

It is recommended that you use these command line parsing routines in your probe code to 
parse the command line.  Doing so has several advantages, and it also simplifies your probe 
code substantially.  However if your probe requires command line parsing capabilities that are 
beyond the scope of these routines, you can implement your own command line parsing code 
in the probe.

Data Structures

Opaque List structure to hold command line parameter values:

A generic list structure is used to hold command line parameter values. This structure is an 
opaque structure, exported through the ovis_cmdoptions void pointer in OvIsApi.h. Use 
the Custom Probes  APIs to set and retrieve values from it.

OVIS_API void * OVIS_CMDOPTIONS

Opaque Data structure to hold probe metrics:

An opaque data structure is used to hold probe metrics. Use the Custom Probes APIs to set 
and retrieve values from this structure.

OVIS_API void * OVIS_PARAMETRICS

Command Line Switch Command Line Value

 -host  "xyz.com"

 -availability
 -print

 "80"
30 Chapter 3



ovis_cmdline_parse()

Syntax:

int ovis_cmdline_parse(int argc, char* argv[], 
                                     int optc, char* optv[],
                                  OVIS_CMDOPTIONS cmdoptions)

Description: 

Use this function to parse the command line. The function parses the command line, looks for 
the command line parameters supported by the probe and stores their respective values into 
the list pointed by the cmdoptions parameter, for later use. Values for individual parameters 
can later be retrieved by calling the ovis_cmdline_getpvalue() function, and passing it 
the cmdoptions list that was populated by the ovis_cmdline_parse() function.

Parameters:
[Input]
argc: Specifies the count of the arguments passed on the command line
argv[]: Array of string pointers wherein each element points to a parameter passed on the 
command line.

optc: Specifies the count of the switches supported by the probe.

optv[]: List of string pointers wherein each element points to a switch supported by the probe.

[Output] 
cmdoptions: Pointer to a  structure of type OVIS_CMDOPTIONS.
Return Value: 

An Integer indicating whether the initialization was successful or not. Non-zero if successful, 
zero if failed.
Custom Probes API 31



ovis_cmdline_getpvalue()

Syntax:

char* ovis_cmdline_getpvalue(OVIS_CMDOPTIONS cmdoptions, const char* param)

Description: 

This function should always be called after a call to the ovis_cmdline_parse() is made. 
Use this function to retrieve parameter values for different command line parameter that 
your probe supports. 

Parameters:

cmdoptions: Pointer to the list of type ovis_list that holds the command line parameters. 
This list is populated by a call to the ovis_cmdline_parse() function.

param: Specifies the name of the parameter whose value is to be returned.

Return Value: 

A string pointer pointing to the value of the parameter requested. NULL if the parameter was 
not passed to the probe.
32 Chapter 3



ovis_is_print()

Description: 

This function is used to check if the probe was invoked with a -print command line option. 
If yes, the probe should handle the switch and print out its output on the stdout.

Parameters:

None.

Return Value: 

Non-zero if the probe was invoked with the -print command line option, else zero.
Custom Probes API 33



ovis_is_dump()

Description: 

This function is used to check if the probe was invoked with a -dump command line option. If 
yes, the probe should handle the switch and dump out its output in a dump file.  The 
recommended dump file format is hostname.PROTOCOL.  

For example:

 >probeX -host "xyz.com" -availability "80" -dump

should generate a dump file named xyz.com.X.  This follows the recommended dump file 
format of hostname.PROTOCOL that all OVIS probes follow. 

Parameters:

None.

Return Value: 

Non-zero if the probe was invoked with the -dump command line option, else zero.
34 Chapter 3



ovis_is_trace()

Description: 

This function is used to check if the probe was invoked with a -trace command line option. If 
yes, the probe should use the Custom Probes trace supporting APIs for tracing in the trace 
file. 

Parameters:

None.

Return Value: 

Non-zero if the probe was invoked with the -trace l command line option, else zero.
Custom Probes API 35



API for Initializing, Starting, Logging and Stopping Measurements

These APIs provide a set of functions that are used to log probe metrics to the Internet 
Services Management Server. 

An Internet Services probe gathers measurement metrics by probing the appropriate host/
web service and then logs the measurements to the Internet Services Management Server.  

Data logging has to be first initialized and then finally ended.  In between the initialization 
and end, a probe logs data one or multiple times based on whether it is a single transaction 
probe or a multiple transaction probe.  

The API can be used to implement either a single transaction probe in which only one set of 
metrics are written to the Internet Services Management Server at a time, or multiple 
transaction probe, where a probe writes more than one set of metrics to the Internet Services 
Management Server during a single run.

In a single transaction probe the process of logging probe metrics logically involves starting 
the logging process, logging the data, and stopping the logging process.  A multiple 
transaction probe iterates this logical sequence multiple times.

Each data log results in the creation of a temporary queue file on the probe system, which is 
later uploaded at a scheduled time to the local/remote Internet Services Management Server.

Appropriate memory allocations are done by ovis_meas_init() function.  Default values 
are then assigned to the probe metrics at the start of the log process by the 
ovis_meas_start() function.  The ovis_set_long(), ovis_set_double(), and 
ovis_set_string() functions are later used to actually set the proper values to the probe 
metrics.  The ovis_log_data() then logs data into the temporary queue file and completes 
the logging process.  The ovis_meas_end() function deallocates memory allocations done by 
the ovis_meas_init() function.
36 Chapter 3



ovis_meas_init()

Syntax:

int ovis_meas_init(const char* probename, OVIS_PARAMETRICS *meas)

Description: 

Call this function once to initialize the probe, and the Internet Services data structure prior to 
calling the ovis_meas_start() function.

Parameters:

[Input] 

probename: Specifies the name [type] of the probe.

[Output]

meas: Pointer to a pointer to the opaque OVIS_PARAMETRICS data structure.  

Return Value: 

An Integer indicating whether the initialization was successful or not. Non-zero if successful, 
zero if failed.
Custom Probes API 37



ovis_meas_start()

Syntax:

int ovis_meas_start(OVIS_PARAMETRICS meas)

Description: 

This function initializes the probe metrics with default values. The function should be called 
each time before making a call to any of the Custom Probe timer APIs and the 
ovis_meas_log() function to log the probe metrics.

Parameters:

[Output]

meas: Pointer to the OVIS_PARAMETRICS opaque structure to hold measurement metrics.

Return Value: 

An Integer indicating whether the function was successful or not. Non-zero if successful, zero 
if failed.
38 Chapter 3



ovis_meas_log()

Syntax:

int ovis_meas_log(OVIS_PARAMETRICS meas)

Description: 

This function logs measurement data contained in the OVIS_PARAMETRICS data structure 
(pointed to by the parameter meas) to the Internet Services Management Server. The function 
should be called after each successful completion of an ovis_meas_set*() function where 
the measurement metrics are stored into the OVIS_PARAMETRICS data structure.

The ovis_meas_log() call results in the creation of a temporary queue file on the probe 
system which is then uploaded to the Management Server at a scheduled time.

This call should be followed either by a call to the ovis_meas_end() function to indicate the 
end of data logging, or another call to the ovis_meas_start() function to restart another 
iteration of the logging function for multiple transaction probes.

Parameters:

meas: Pointer to the OVIS_PARAMETRICS opaque structure that holds measurement 
metrics.

Return Value: 

An Integer indicating whether the function was successful or not. Non-zero if successful, zero 
if failed.
Custom Probes API 39



ovis_meas_end()

Syntax:

int ovis_meas_end(OVIS_PARAMETRICS meas)

Description: 

This function is called to indicate the end of the probe  session. The function should be called 
only once to end the process of measuring/logging of the probe metrics. The function also stops 
all active metric measurement timers, frees and  resets them to zero. 

WARNING: No further OVIS API function calls should be made. The result of calling any of 
the Custom Probe API functions after making a call to ovis_meas_end() is undefined and 
will cause unspecified results.

Parameters:

meas: Pointer to the OVIS_PARAMETRICS opaque structure that holds measurement 
metrics.

Return Value: 

An Integer indicating whether the function was successful or not. Non-zero if successful, zero 
if failed.
40 Chapter 3



API for Getting/Setting Probe Metrics

These APIs provide a set of functions that can be used to individually get or set probe metrics.

Internet Services incorporates support for a standard set of well-defined default performance 
metrics and up to 8 user-defined metrics (typically set by the probe developer). These metrics 
are listed in the table below. 

Listed in Table 5 below, are the performance metrics (standard and user defined) that should 
typically be set by the probe developer. 

Note: All the OVIS_METRIC_* metrics need to be explicitly set. If you use the command line 
parsing API ovis_cmdline_parse() to parse the probe's command line, all of the 
OVIS_PARA_*  metrics in the table will be automatically set by the API. If you don't use the 
command line parsing API to parse the probe's command line, it is your responsibility to set 
all of the OVIS_PARA_*/OVIS_METRIC_* metrics explicitly. 

A call to the ovis_meas_start() function assigns default values to all of these metrics if 
values haven't  been set for one or more of them. See Table 5 for default values.

Note: For most services, the metric OVIS_METRIC_TARGET and the parameter 
OVIS_PARA_HOST remain the same, however for some services the 
OVIS_METRIC_TARGET may be required to be different from the OVIS_PARA_HOST. 

The metric OVIS_METRIC_TARGET is assigned the same value as the HOST by default 
through the call to the ovis_meas_start() function. The value assigned is the one that was 
passed on the command line. You can later call the ovis_meas_set_string() API with the 
OVIS_METRIC_TARGET or OVIS_PARA_HOST id to set the HOST or TARGET to a 
different value. In some cases, you might explicitly decide to set the HOST to some other value 
(by calling ovis_meas_set_string() API) after a call to ovis_meas_start(). It is then 
up to you to also update the TARGET accordingly.

Table of Metric/Parameter Identifier.

Table 5 Measurement Metric Identifiers

Metric/Parameter Identifier Data Type Description
Default
Value

OVIS_PARA_CUSTOMER String customer name "Unspecified"

OVIS_PARA_SERVICENAME String service name "Unspecified"

OVIS_PARA_HOST  String target host name 
(see the note above)

"Unspecified"

OVIS_PARA_INTERVAL    Long interval in seconds 300

OVIS_METRIC_AVAILABILITY Long availability could be 
0 (for unavailable) 
or 1 (for available)

0

Custom Probes API 41



OVIS_METRIC_SETUPTIME double DNS + network 
connection 
setuptime in 
seconds. This time 
represents the time 
it took to establish 
connection with the 
server before 
sending the first 
protocol request. 

0

OVIS_METRIC_RESPONSETIME double total response time 
in seconds 

0

OVIS_METRIC_TRANSFERTPUT double transfertput 
KBytes/Second

0

OVIS_METRIC_1 double user defined metric 
1

0

OVIS_METRIC_2 double user defined metric 
2

0

OVIS_METRIC_3 double user defined metric 
3

0

OVIS_METRIC_4              double user defined metric 
4

0

OVIS_METRIC_5               double user defined metric 
5

0

OVIS_METRIC_6 double user defined metric 
6

0

OVIS_METRIC_7            double user defined metric 
7

0

OVIS_METRIC_8            double user defined metric 
8

0

OVIS_METRIC_TIME Long Time at 
measurement 
instance

0

OVIS_METRIC_TIMEZONE Long Timezone of the 
probe system

0

OVIS_METRIC_PROBESYSTEM String Probe system name "Unknown"

OVIS_METRIC_PROBENAME String Probe Name "Unknown"

Table 5 Measurement Metric Identifiers
42 Chapter 3



OVIS_METRIC_TRANSID long transaction id 
should be -1 for 
single transaction 
probe and indicates 
the transaction 
number for a 
multiple 
transaction probe.

-1

OVIS_METRIC_IPADDR string Target IP address "Unresolved"

OVIS_METRIC_TARGET string Probe target (see 
the Note above)

"Unspecified"

OVIS_PARA_SERVICEID  string serviceid - format 
serviceId;serviceTar
getId;probeId;

0;0;0

Table 5 Measurement Metric Identifiers
Custom Probes API 43



ovis_meas_set_long()

Syntax:

int ovis_meas_set_long(OVIS_PARAMETRICS meas, 
                                        int meas_parametric_id, 
                                        long value)

Description: 

This function is called to set the value of a metric/parameter (long type) as specified by the 
meas_parametric_id parameter.  For example: 

ovis_meas_set_long(parametrics, OVIS_METRIC_AVAILABILITY, 
1Availability);

Parameters:

meas:  Pointer to the OVIS_PARAMETRICS opaque structure.

meas_parametric_id:  Parameter/metric ID (see the metric identifier in table 5).

value: Value (long) of the parameter to be set as specified by the meas_parametric_id.

Return Value: 

An Integer indicating whether the function was successful or not.  Non-zero if successful, zero 
if failed.
44 Chapter 3



ovis_meas_set_double()

Syntax:

int ovis_meas_set_double(OVIS_PARAMETRICS meas, 
                                             int meas_parametric_id, 
                                             double value)

Description: 

This function is called to set the value of a metric/parameter (double type) as specified by the 
meas_parametric_id parameter. For example:

ovis_meas_set_double(parametrics, OVIS_METRIC_SETUPTIME, fSetupTime);

Parameters:

meas:  Pointer to the OVIS_PARAMETRICS opaque structure.

meas_parametric_id:  Parameter/metric ID (see the metric identifier in table 5).

value: Value of the parameter to be set as specified by the meas_para_id.

Return Value: 

An Integer indicating whether the function was successful or not.  Non-zero if successful, zero 
if failed.
Custom Probes API 45



ovis_meas_set_string()

Syntax:

int ovis_meas_set_string(OVIS_PARAMETRICS meas, 
                                            int meas_parametric_id,  
                                            char *value)

Description: 

This function is called to set the value for a metric (string type) as specified by the 
meas_parametric_id parameter. For example:

ovis_meas_set_string(parametrics, OVIS_METRIC_TARGET, szTarget);

Parameters:

meas:  Pointer to the OVIS_PARAMETRICS opaque structure.

meas_parametric_id:  Parameter/metric ID (see the metric identifier in table 5).

value: Value of the parameter to be set as specified by the meas_para_id.

Return Value: 

An Integer indicating whether the function was successful or not.  Non-zero if successful, zero 
if failed.
46 Chapter 3



ovis_meas_get_long()

Syntax:

long ovis_meas_get_long(OVIS_PARAMETRICS meas, int meas_parametric_id)

Description: 

This function is called to get the value of a metric as specified by the meas_parametric_id 
parameter.   For example:

ovis_meas_get_long(meas, OVIS_METRIC_AVAILABILITY);

Parameters:

meas:  Pointer to the OVIS_PARAMETRICS opaque structure.

meas_parametric_id:  Parameter/metric ID (see the metric identifier in table 5).

Return Value: 

A long type metric as specified by the meas_parametric_id.  NULL if no value has been 
previously set.
Custom Probes API 47



ovis_meas_get_double() 

Syntax:

double ovis_meas_get_double(OVIS_PARAMETRICS meas, int meas_parametric_id)

Description: 

This function is called to get the value of a metric as specified by the meas_parametric_id 
parameter. For example:

ovis_meas_get_double(meas, OVIS_METRIC_SETUPTIME);

Parameters:

meas:  Pointer to the OVIS_PARAMETRICS opaque structure.

meas_parametric_id:  Parameter/metric ID (see the metric identifier in table 5)..

Return Value: 

A double value of the parameter as specified by the meas_parametric_id.  NULL if no value 
has been previously set.
48 Chapter 3



ovis_meas_get_string()

Syntax:

char *ovis_meas_get_string(OVIS_PARAMETRICS meas, int meas_parametric_id)

Description: 

This function is called to get the value of a metric as specified by the meas_parametric_id 
parameter.  For example:

ovis_meas_get_string(meas, OVIS_METRIC_TARGET);

Parameters:

meas:  Pointer to the OVIS_PARAMETRICS opaque structure.

meas_parametric_id:  Parameter/metric ID (see the metric identifier in table 5).

Return Value: 

A pointer (char *) to the value of the parameter as specified by the meas_parametric_id.  
NULL if no value has been previously set. 
Custom Probes API 49



API for Tracing

The tracing APIs provide a set of functions that can be used to trace various probe conditions 
into a trace file.  A typical OVIS probe writes trace statements into a trace file indicating the 
various states that it goes through while being executed.  Trace logs are extremely helpful in 
troubleshooting and debugging probe executions.

The degree of importance and detail of a trace statement is determined by a trace level.  
Certain trace statements with fine granular details about probe execution may not be 
necessary at all times and can unneccessarily clutter the trace file.

The trace level is determined by a setting on the Internet Services Management Server.  Each 
trace statement is traced by the probe with a specific trace level in mind.  For example, a 
setting of trace level 5 on the Management Server makes the probe trace only those 
statements that have a level 5 or lower.  The higher the trace level, the more granular and 
detailed the trace information. Table 6 lists the various trace levels.  Based on the information 
you need, you can decide on the appropriate trace statements and level.

Table of Trace Levels

Table 6 Trace Levels

OVIS_TRACE_LEVEL_OFF      trace level 0 OFF

OVIS_TRACE_LEVEL_1            trace level 1 Minimum

OVIS_TRACE_LEVEL_2            trace level 2

OVIS_TRACE_LEVEL_3            trace level 3

OVIS_TRACE_LEVEL_4            trace level 4

OVIS_TRACE_LEVEL_5            trace level 5 High

OVIS_TRACE_LEVEL_6            trace level 6

OVIS_TRACE_LEVEL_7            trace level 7

OVIS_TRACE_LEVEL_8            trace level 8

OVIS_TRACE_LEVEL_9            trace level 9 Maximum
50 Chapter 3



ovis_trace_init()

Syntax:

int ovis_trace_init(int trace_level, 
                               const char* prog_name, 
                                char* trace_file)

Description: 

This function initializes tracing with a default trace level (5) and a default trace file 
(trace.log). Internet Services needs to be initialized before calling any of the tracing APIs that 
can be used to trace various probe conditions to the Internet Services trace file. 

Parameters: 

Itrace_level:  Specifies the initial trace level. The trace level can be changed using the 
ovis_trace_set_level() API.

prog_name: Specifies the name of the executable module that is using the Trace engine. 
Typically it is the probe executable name.

trace_file: Specifies the trace file name.  Should be set to NULL to use the default trace file.  
The default trace file is located under the <data_dir>\log\trace.log folder.  If the 
trace_file parameter passed to ovis_trace_init() is not NULL, it should contain the fully 
qualified path of the custom trace file.

Return Value: 

An integer indicating whether the initialization succeeded or not. Non-zero if initialization 
succeeded, zero  if failed.
Custom Probes API 51



ovis_trace_set_level()

Syntax:

int ovis_trace_set_level(int trace_level)

Description: 

This function sets the existing trace level to a new value.

Parameters: 

Itrace_level:  Specifies the new trace level.

Return Value: 

This API function returns the previous trace level.
52 Chapter 3



ovis_trace()

Syntax:

int ovis_trace(const char* format, ...)

Description: 

This function logs a trace statement into the Internet Services trace file. The format of the 
trace statement can be specified by the user through the format string. The API takes a 
variable number of parameters based on the format string. 

If the number of parameters don't match with the format statement, the API fails to log the 
statement into the trace file and returns a zero.

Parameters: 

format:  Format of the trace statement.

One or more trace parameters.

Return Value: 

An integer indicating whether the trace was written to the trace file or not. Non-zero if 
successful, zero if failed.
Custom Probes API 53



ovis_trace_l()

Syntax:

int ovis_trace_l(int trace_level, const char* format, ...)

Description: 

This function logs a trace statement into the trace file. Just as the ovis_trace() function, 
the format of the trace statement can be specified by the user through the format string. In 
addition  ovis_trace_l() takes one more parameter, namely the trace_level. The function 
only logs the trace statement if the current trace level happens to be greater than or equal to 
the trace level as specified by the trace_level parameter.

Use this function to conditionally log traces in the trace file.

Parameters: 

trace_level: Minimum Trace Level at which the trace statement should be written.

format:  Format of the trace statement.

Return Value: 

An integer indicating whether the trace was written to the trace file or not. Non-zero if 
successful, zero if failed.
54 Chapter 3



API for Error Reporting

The error reporting API provides a set of functions that can be used to log various error 
conditions into an error log file.  A typical probe writes error logs into a log file indicating 
error conditions encountered while executing.  Error logs are extremely helpful in 
troubleshooting and debugging probe executions.

The error logs can be either written into the standard OVIS error log file, or a custom log file, 
or simply printed on stdout.  The destination of an error log is determined by a flag passed to 
the error logging API.  

Table 7 lists the various possible error destinations.

Table of Error Destinations:

Table 7 Error Destinations

Destination ID Destination

OVIS_ERR_DST_OVISLOG               log errors to OVIS error log file 

OVIS_ERR_DST_CUSTOMLOG       log error to user defined error log file

OVIS_ERR_DST_STDERR                 log error to stderr
Custom Probes API 55



ovis_error_init()

Syntax:

int ovis_error_init(int dst, const char* prog_name, char* error_file)

Description: 

This function initializes the error handling. This is necessary before making calls to the 
subsequent error logging APIs that can be used to log various probe error conditions to the 
OVIS error log file (<data_dir>\log\probe\error.log).

The dst parameter can be used to specify more than one destination by using a combination of 
one or more of the three predefined flags. For example:  specifying the dst as 
ovis_error_init( OVIS_ERR_DST_OVISLOG | OVIS_ERR_DST_STDERR, 
"program_name")

Will make Internet Services log errors at two places (OVIS Error log file and stderr) 
simultaneously. 

Parameters: 

dst:  Specifies the destination for error messages. Error messages can be sent to one or more of 
three different destinations, as  specified by this parameter.

1 OVIS Error log file.

2 Stderr

3 User specified error log file.

prog_name: Specifies the name of the probe that reported the error.

error_file: Specifies the user specified error log file. Ignored if  Dst does not contain 
OVIS_ERR_DST_CUSTOMLOG.

Return Value: 

An integer indicating whether the initialization succeeded or not. Non-zero if initialization 
succeeded, zero if failed.
56 Chapter 3



ovis_err_set_output_dst())

Syntax:

int ovis_err_set_output_dst(int dst)

Description: 

This function sets a new destination for error message logs. Error messages can be directed to 
any of one or more (by using logical OR conditions) of the three destinations, as specified by 
the Dst flag.

Parameters: 

dst: Specifies the new destination for error messages. 
Error messages can be sent to one or more of three different destinations, as  specified by this 
parameter.

1 OVIS Error log file.

2 Stderr.

3 User specified error log file.

Return Value: 

An integer returns the previous error destination.
Custom Probes API 57



ovis_error_out()

Syntax:

int ovis_error_out(int error_code, 
                                char severity,
                                int sys_errno, 
                                const char* source_file, 
                                int line_no, 
                                const char* format, 
                                    ...)

Description: 

This function outputs an error message indicating the error code, severity of the error, the 
source file name and the source line number, as to where the error occurred. Additionally a 
custom error message can be outputted through the format  parameter.

Parameters: 

error_code:  Specifies the error code.  Error codes are user defined.

severity: Specifies the severity of the error as follows: 
OVIS_ERR_SEV_WARNING     for warning.
OVIS_ERR_SEV_ERROR            for error.    

sys_errno: Use this to pass any error code that the might have been returned by the system as 
a result of a system call failure. This will   provide for additional diagnostics and help in 
troubleshooting the probe.

source_file: Specifies the source file name in which the error occurred.

line_no:  Specifies the exact source code line number within the source file.

format: Format of error message string.

Return Value: 

An integer indicating whether the error message was logged successfully or not. Non-zero 
indicates success, zero indicates failure. 

API for Time Keeping

The time keeping APIs provide a set of functions to perform various timing measurements.  
Most Internet Services probes report one or more timing metric.  Having a set of time keeping 
APIs makes it easier to make timing measurements in probes. 

Timers are initialized by the ovis_timer_start() function,  A unique timer ID is returned 
by this function.  This ID can be later used to stop the timer at a desired instance of time and 
later to retrieve the measured time interval. 

The time keeping APIs allow for the initialization of up to 256 concurrent timers.  The 
accuracy and resolution of the timers are OS dependent and are the same as the OS’s own 
time accuracy and resolution.
58 Chapter 3



ovis_timer_start()

Description: 

This function initializes a new Timer. The timer acts like a stopwatch that can be used to 
measure timing related probe metrics.

Parameters:

None

Return Value: 

A non-zero integer if the function is successful, zero if failed.

The return value is the ID of the newly initialized timer.
Custom Probes API 59



ovis_timer_stop()

Syntax:

int ovis_timer_stop(int timer_id)

Description: 

This function stops an existing timer. Each timer has a unique TimerID associated with it. 
The Time Keeping APIs can be used to initialize concurrent timers for the purpose of 
measuring timing metrics.

Parameters:

timer_id:  ID of the timer that is to be stopped.

Return Value: 

An integer, non-zero if Timer stop succeeded, else zero.
60 Chapter 3



ovis_timer_elapsed()

Syntax:

int ovis_timer_elapsed(int timer_id)

Description: 

This function returns the elapsed time for an existing timer, since it was started. Each timer 
has a unique timer_id associated with it (returned by  ovis_timer_start()). The 
ovis_timer_elapsed() function should be passed the appropriate timer_id.

Parameters:

timer_id:  ID of the timer that’s elapsed time is to be returned.

Return Value: 

Elapsed time in milliseconds. An integer, non-zero if successful, -1 if failed.
Custom Probes API 61



Typical Implementation Steps and the API

Coding for a typical custom probe follows the following logical sequence:

1 Parse the Command Line

2 Probe the intended Service

3 Make performance measurements

4 Log measurements to the Internet Services Management Server

5 Quit

These logical steps can be implemented using the Custom Probe API as follows

Parse the Command Line

ovis_parse_cmdline()

Make performance measurements

ovis_meas_init()
ovis_meas_start()
ovis_timer_start()
ovis_timer_stop()
ovis_timer_elapsed()

Log measurements to the Internet Services Management Server/print measurements out to stdout

ovis_meas_get_long()
ovis_meas_get_double()
ovis_meas_get_string()
ovis_meas_set_long()
ovis_meas_set_double()
ovis_meas_set_string()
ovis_meas_log()

Quit

ovis_meas_end()

In addition, the following APIs can be used for error handling and tracing.

ovis_error_init()
ovis_error_set_output_dst()
ovis_error_out()
ovis_trace_init()
ovis_trace_set_level()
ovis_trace()
ovis_trace_l()

Chapter 2 provides detailed implementation steps.  Chapter 4 provides a working sample 
custom probe implemented using the custom probe API.
62 Chapter 3



4 Examples
This chapter includes the following examples:

• Sample Probes

• Sample Code

• Sample Makefile

• Typical SRP File
  63



Sample Probes

Two fully functional sample probe implementations are provided with the Custom Probes, 
with full source code and Visual C++ 6.0 project files/UNIX Makefiles. The sample code in the 
next section is based on the Dummy probe.

1 Dummy probe

a ProbeDummy.dsp -  on the Management Server under the <install 
dir>\Sdk\InternetServices\examples\probeDummy folder 

b UNIX Makefiles - on the Management Server under the <install 
dir>\Sdk\InternetServices\examples\probeDummy folder

2 Exchange probe 

a ProbeExchange.dsp - on the Management Server under the <install 
dir>\Sdk\InternetServices\examples\probeExchange folder

b Not Available on UNIX.

To build the probes, on Windows, simply load the project files (probeDummy.dsp and 
probeExchange.dsp) into MS Visual Studio 6.0 (or higher) and build the projects. 

For UNIX, copy the files in the <install 
dir>\Sdk\InternetServices\examples\probeDummy folder and the <install 
dir>\Sdk\InternetServices\include\OvisApi.h file to a UNIX system and run make 
-f Makefile.<platform>.

Once built, to integrate the sample probes into an existing install of Internet Services, please 
refer to the readme.txt files under each of the sample folders.
64 Chapter 4



Sample Code (Windows/UNIX)

This section shows a skeletal C++ sample probe implementation using the Custom Probe 
APIs.  The sample code is based on the Dummy probe provided with the custom probes 
feature.

/* mainCustom.cpp */

#include "OvIsApi.h"

#define probe_name "C_CUSTOM_PROBE"

/* Options table for command line parsing */
const char *optv[] = {
"parameter1",
"parameter2",
"parameter3"
}; 

int main(int argc, char* argv[])

{

   /* Structure to hold probe metrics */
   OVIS_PARAMETRICS parametrics;  

   /* List to hold command line parameters */
   OVIS_CMDOPTIONS cmdoptions;  

   int i_TraceLevel = 0;

   int Timer_SetupTime, Timer_ResponseTime = 0; /* Timer ids */
   long lElapsedTime = 0;
   int i = 0;

   long lAvailability = 0;
   double fSetupTime = 0;
   double fResponseTime = 0;
   double fTransferTput = 0;
   double dwSleepTime = 0;
   int optc = sizeof( optv ) / sizeof( optv[0] );   

   /* Parse the command line */
   ovis_parse_cmdline(argc, argv, optc, optv, cmdoptions);

   /* Error and trace initialization */
   ovis_error_init(OVIS_ERR_DST_OVISLOG, "probeCustom", 0);

   if(ovis_is_trace())

   {
      if(ovis_get_paramvalue("trace", cmdoptions))
         i_TraceLevel = atoi(ovis_get_paramvalue("trace", cmdoptions));

       ovis_trace_init(i_TraceLevel, "probeCustom", TraceFile);

   }

   /* Initialize measurement structure */
   ovis_meas_init(probe_name, &parametrics);

   /* Start the measurement process */
   ovis_meas_start(parametrics);
Examples 65



   Timer_SetupTime = ovis_timer_start();
   Timer_ResponseTime = ovis_timer_start();

     /* Setup code here */

 ……

 …….

 …….

      ovis_timer_stop(Timer_SetupTime);

     /* Probe transaction code here */

 ……

 ……

 ……

   ovis_timer_stop(Timer_ResponseTime);

   

   /* Compute metric Values */
   /* Set lAvailability */
  /* Set  fSetupTime */
  /* Set fResponsTime */   

   ovis_meas_set_long(parametrics, OVIS_METRIC_AVAILABILITY,  lAvailability);
   ovis_meas_set_double(parametrics, OVIS_METRIC_SETUPTIME,  fSetupTime);
   ovis_meas_set_double(parametrics, OVIS_METRIC_RESPONSETIME,  fResponseTime);
   ovis_meas_set_double(parametrics, OVIS_METRIC_TRANSFERTPUT,  fTransferTput); 

   /* Log Metrics to the Management Server */
   ovis_meas_log(parametrics);  

   /* Re-Start data logging */
   ovis_meas_start(parametrics);

   Timer_SetupTime = ovis_timer_start();
   Timer_ResponseTime = ovis_timer_start();   

  /* Setup code here */

 ……

 …….

 …….

      ovis_timer_stop(Timer_SetupTime);

     /* Probe transaction code here */

 ……

 ……

 ……

   ovis_timer_stop(Timer_ResponseTime);
66 Chapter 4



   

   /* Re-compute metric Values */
   /* Set lAvailability */
   /* Set  fSetupTime */
   /* Set fResponsTime */ 

   ovis_meas_set_long(parametrics, OVIS_METRIC_AVAILABILITY,  lAvailability);
   ovis_meas_set_double(parametrics, OVIS_METRIC_SETUPTIME,  fSetupTime);
   ovis_meas_set_double(parametrics, OVIS_METRIC_RESPONSETIME,  fResponseTime);
   ovis_meas_set_double(parametrics, OVIS_METRIC_TRANSFERTPUT,  fTransferTput); 

   /* Log Metrics to the Management Server */
   ovis_meas_log(parametircs); 

   /* End of probe measurements */
   ovis_meas_end(parametrics);

   return 0;

}

Examples 67



Sample Makefile

A sample Makefile is shown below.

# Sample Makefile for a dummy probe using shared custom probe API library

# for RedHat Linux 6.0 or later
#
# Usage:
# make probeDummy

OVIS_PROBE_OBJS = mainDummy.o
OVIS_CUST_LIB_N = OvIsApi
OVIS_CUST_LIB_E = .so

OVIS_SHLIB_PATH = /opt/OV/lib
OVIS_INCLU_PATH = /opt/OV/VPIS/probes

OVIS_LIBS = -l$(OVIS_CUST_LIB_N)
OVIS_LIB_LINK_SW = -Wl,-rpath -Wl,$(OVIS_SHLIB_PATH) -L$(OVIS_SHLIB_PATH)

OVIS_CFLAGS = -I$(OVIS_INCLU_PATH)
OVIS_CC = g++

probeDummy: $(OVIS_PROBE_OBJS) $(OVIS_SHLIB_PATH)/
lib$(OVIS_CUST_LIB_N)$(OVIS_CUST_LIB_E) Makefile
        $(OVIS_CC) -o $@ $(OVIS_PROBE_OBJS) $(OVIS_LIB_LINK_SW) $(OVIS_LIBS)

.SUFFIXES : .o .cpp

.cpp.o:
        $(OVIS_CC) $(OVIS_CFLAGS) -c $<

clean:
        rm $(OVIS_PROBE_OBJS)
68 Chapter 4



SRP File Structure

A typical SRP file has the following structure. 

Note that the Probe Metrics parameters LABEL, COMPOSITE_METRIC, 
COMPOSITE_ORDER, MULTISTEP are optional and are not included in the SRP file 
generated with the Custom Probe wizard. They can only be added manually into the SRP file 
directly.

LABEL - Allows setting a locale dependent label for the metric.

FORMAT - Used to set the display format a metric (e.g., FORMAT: 0.000 will display a 
number with only 3 digits after the decimal). The value for FORMAT follows the Java 
formatter convention. 

COMPOSITE_METRIC and COMPOSITE_ORDER - Used by the OVIS Dashboard to 
create a stacked bar chart. The COMPOSITE_METRIC specifies the parent metric 
(usually response time) and the COMPOSITE_ORDER specifies the position fo the metric 
within the bar chart. 

MULTISTEP - This flag indicates whether a metric is part of a graph that shows the steps 
broken out for a specific metric.

 On the Management Server run repload -load <SRP file name> to load the SRP file 
you updated or created.

PROBENAME: C_PROBE_CUSTOM
    DESCRIPTION: CUSTOM - Custom Probe
    PROBEMETRICLIST: IOPS_CUSTOM
    IDENTIFIER: URL
    INSTANCEID: URL
    DEFAULT_TARGET: /
    DEFAULT_PORT: 80
    PROBE:               probeCustom
    TRANSPORT:HTTP
    PARAMETER1: username
    PARAMETER2: password
    END_PROBENAME:

PROBEMETRICS: IOPS_CUSTOM

    METRIC: AVAILABILITY
    LABEL:  Availability
    UNITS:  Percent
    FORMAT: ###,0,100
    DEFAULT_CONDITION: >
    DEFAULT_SERVICE_LEVEL:90.000
    DEFAULT_WARNING: 90.000
    DEFAULT_BASELINE: 80.000
    DEFAULT_DURATION: 600
    DEFAULT_MESSAGE: CUSTOM Service for <TARGET> is unavailable

    METRIC: RESPONSE_TIME
    LABEL: Response Time 
    UNITS: Seconds

After a new SRP file is updated and loaded, on the Management Server you 
need to run ovc -restart ovtomcatA and exit the current Dashboard 
session. 
Examples 69



    DEFAULT_CONDITION: <
    DEFAULT_SERVICE_LEVEL:2.0
    DEFAULT_WARNING:2.0
    DEFAULT_MINOR:4.0
    DEFAULT_MAJOR:6.0
    DEFAULT_CRITICAL:10.0
    DEFAULT_BASELINE:80.000
    DEFAULT_DURATION: 600
    DEFAULT_MESSAGE: CUSTOM Service RESPONSE_TIME is slow (<VALUE> vs 
<THRESHOLD>) on <TARGET>

    METRIC: SETUP_TIME
    LABEL: Setup Time
    UNITS: Seconds
    DEFAULT_CONDITION: <
    DEFAULT_WARNING: 3.000
    DEFAULT_BASELINE: 80.000
    DEFAULT_DURATION: 600
    DEFAULT_MESSAGE: CUSTOM Service SETUP_TIME is slow  (<VALUE> vs 
<THRESHOLD>) on <TARGET>

    METRIC:     DNS_SETUP_TIME
    LABEL: DNS Setup Time
    STDMETRIC:  M1
    UNITS:  Seconds
    COMPOSITE_METRIC: RESPONSE_TIME
    COMPOSITE_ORDER: 1

    METRIC:     CONNECT_TIME
    LABEL: Connect Time
    FORMAT: 0.000
    STDMETRIC:  M2
    UNITS:  Seconds
    COMPOSITE_METRIC: RESPONSE_TIME
    COMPOSITE_ORDER: 2

    METRIC:     SERVER_RESP_TIME
    LABEL: Server Response Time
    STDMETRIC:  M3
    UNITS:  Seconds
    COMPOSITE_METRIC: RESPONSE_TIME
    COMPOSITE_ORDER: 3

    METRIC:     TRANSFER_TIME
    LABEL: Transfer Time
    STDMETRIC:  M4
    UNITS:  Seconds
    COMPOSITE_METRIC: RESPONSE_TIME
    COMPOSITE_ORDER: 4

    END_PROBEMETRICS:

METRICLIST: IOPS_PROBE_DATA
    SOURCE:     IOPS
    CLASS:     IOPS_PROBE_DATA
    RETAINDAYS:     30
    END_METRICLIST:
70 Chapter 4



METRICS: IOPS_PROBE_DATA
    METRIC: CUSTOMER_NAME
    METRIC: SERVICE_NAME
    METRIC: AVAILABILITY
    METRIC: SETUP_TIME
    METRIC: RESPONSE_TIME
    END_METRICS:

REPORT: IOPS_C_PROBE_CUSTOM
    CATEGORY: 190 Internet Services
    ALL_TEMPLATE: reports\IOps\a_IOps_Custom.rpt
    HTML_DIRECTORY: webpages\a_iops_custom
    DESCRIPTION: CUSTOM Report
    MAXTIME: 10
    FAMILY: "Internet Services"
    END_REPORT:

GROUPREPORT:  IOPS_C_PROBE_CUSTOM
    GROUP: ALL
    END_GROUPREPORT:

The above definition would create a stacked bar chart for RESPONSE_TIME with the 
following metrics broken out: DNS_SETUP_TIME, CONNECT_TIME, 
SERVER_RESP_TIME, TRANSFER_TIME.

In the above definition, the AVAILABILITY metric is always formatted as 3 digits and with a 
max range of 0-100 (###,0,100). The CONNECT_TIME metric is formatted with 3 digits after 
the dot (e.g., 10.123).

The MULTISTEP flag indicates whether a metric is part of a graph that shows the steps 
broken out for a specific metric.
Examples 71



72 Chapter 4


	Custom Probes API Guide
	Contents
	1 Custom Probes
	Introduction
	What’s Included in Custom Probes
	Requirements

	The Custom Probes Architecture
	API Conventions, Libraries and Files
	Function-naming Conventions
	Libraries on the Management Server and Remote Probes Systems
	Include and Lib Files
	Makefiles
	Queue Files


	2 Implementation Steps
	Implementing Custom Probes
	A. Steps to implement a custom probe on MS Windows
	B. Steps to implement a custom probe on UNIX

	Configuring and Deploying a Custom Probe
	Updating a Custom Probe

	Creating Reports for Custom Probes
	Troubleshooting Your Custom Probes

	3 Custom Probes API
	The Application Programming Interface
	API for Command Line Parsing
	Data Structures
	ovis_cmdline_parse()
	ovis_cmdline_getpvalue()
	ovis_is_print()
	ovis_is_dump()
	ovis_is_trace()

	API for Initializing, Starting, Logging and Stopping Measurements
	ovis_meas_init()
	ovis_meas_start()
	ovis_meas_log()
	ovis_meas_end()

	API for Getting/Setting Probe Metrics
	Table of Metric/Parameter Identifier.
	ovis_meas_set_long()
	ovis_meas_set_double()
	ovis_meas_set_string()
	ovis_meas_get_long()
	ovis_meas_get_double()
	ovis_meas_get_string()

	API for Tracing
	Table of Trace Levels
	ovis_trace_init()
	ovis_trace_set_level()
	ovis_trace()
	ovis_trace_l()

	API for Error Reporting
	Table of Error Destinations:
	ovis_error_init()
	ovis_err_set_output_dst())
	ovis_error_out()

	API for Time Keeping
	ovis_timer_start()
	ovis_timer_stop()
	ovis_timer_elapsed()

	Typical Implementation Steps and the API


	4 Examples
	Sample Probes
	Sample Code (Windows/UNIX)
	Sample Makefile
	SRP File Structure




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue true
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /Futura-Bold
    /Futura-Book
    /Futura-BookItalic
    /Futura-Heavy
    /Futura-Light
    /Futura-Medium
    /Futura-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Narrow
    /Helvetica-Narrow-Bold
    /Helvetica-Narrow-BoldOblique
    /Helvetica-Narrow-Oblique
    /Helvetica-Oblique
    /NewCenturySchlbk-Bold
    /NewCenturySchlbk-BoldItalic
    /NewCenturySchlbk-Italic
    /NewCenturySchlbk-Roman
    /Symbol
    /SymbolMT
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfDingbats
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


