
HP OpenView Extensible SNMP Agent

Administrator’s Guide

HP-UX and Solaris
Manufacturing Part Number: J1183-90003

March 2004

© Copyright 2004 Hewlett-Packard Development Company, L.P.

Legal Notices
Hewlett-Packard makes no warranty of any kind with regard to this manual, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be held liable for errors contained herein or direct, indirect, special,
incidental or consequential damages in connection with the furnishing, performance, or use of
this material.

A copy of the specific warranty terms applicable to your Hewlett-Packard product can be
obtained from your local Sales and Service Office.

Restricted Rights Legend.

Use, duplication or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause in
DFARS 252.227-7013.

Hewlett-Packard Company
United States of America

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR
52.227-19(c)(1,2).

Copyright Notices.

©Copyright 1999-2004 Hewlett-Packard Development Company, L.P.,

No part of this document may be copied, reproduced, or translated to another language
without the prior written consent of Hewlett-Packard Company. The information contained in
this material is subject to change without notice.

Trademark Notices

Java™ is a U.S. trademark of Sun Microsystems, Inc.

Microsoft® is a U.S. registered trademark of Microsoft Corporation.

Windows NT® is a U.S. registered trademark of Microsoft Corporation.

Windows® and MS Windows® are U.S. registered trademarks of Microsoft Corporation.

Netscape™ and Netscape Navigator™ are U.S. trademarks of Netscape Communications
Corporation.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City, California.

Oracle7™ is a trademark of Oracle Corporation, Redwood City, California.
2

OSF/Motif® and Open Software Foundation® are trademarks of Open Software Foundation in
the U.S. and other countries.

Pentium® is a U.S. registered trademark of Intel Corporation.

UNIX® is a registered trademark of The Open Group.
 3

4

Contents
1. Introduction and Operational Concepts
Documentation Guide and References . 11

Network Management Manuals . 11
TCP/IP and SNMP Concepts . 11

SNMPv1. 11
SNMPv2. 11
SNMPv3. 13

General Operating System Knowledge . 14
Manpages . 15

Accessing Manpages . 15
Definitions and Concepts. 16

MIBs . 16
How to Access the MIB. 19
How MIBs are Organized . 19
Traps . 21

Extensible SNMP Agent Architecture . 22
The HP OpenView Extensible SNMP Subagent . 24
Example Uses for the Extensible Subagent . 26

2. Before You Install
Installation Mechanism. 29
Hardware and Software Prerequisites . 30

Hardware. 30
Software. 30
Disk Space Requirements. 30

Processes and Files . 32
Invocation Behavior . 32
Operational Behavior . 34

Manually Stopping and Restarting the Agent Software . 36

3. Installing the HP OpenView Extensible SNMP Agent
Installing on a System with No Other HP OpenView Software Installed 39

If Errors Occurred. 40
Installing on an NFS Diskless Cluster . 41

Procedure. 41
5

Contents
If Errors Occurred. 43
Starting the Extensible Agent on an NFS Diskless System 43
Removing an NFS Diskless Cluster. 43

Installing from a Remote CD-ROM. 45
On the Source Workstation . 45
On the Target Workstation. 46
If Errors Occurred. 47
Post-Installation Steps . 47

4. Configuring the Master SNMP Agent
System Contact and Location . 51

Configuring System Contact and Location . 51
Community Name . 53

GetRequests . 53
Authentication Failure . 53
Configuring an Agent's Community Name . 54
SetRequests. 54
Manager-Agent Community Name Relationship . 54

Trap Destinations . 55
Configuring Trap Destinations . 55

5. Configuring the HP OpenView Extensible SNMP Subagent
Configuring Extensible SNMP Agents . 59

Before You Begin. 59
Step 1. Write MIB Module . 60
Step 2. Copy New MIB to the Manager System . 63
Step 3. Integrate New MIB into the Manager’s MIB . 63

Configuring Traps . 64
Before You Begin. 64
How to Define Traps . 64
How Traps Are Sent . 64
When to Use snmptrap. 64
Using snmptrap . 65
Sample Trap Solution . 65
6

Contents
6. Creating your MIB Module
Determining the Type of MIB Object to Define . 69

Using the Macro Template . 69
The DESCRIPTION Clause . 76

Using Commands to Define your MIB Object . 77
Sample MIB Solution . 77

Using Files to Define Your MIB Object . 81
Simple Objects. 82
Table Objects . 83
Filling the File with Values . 87
The FILE-COMMAND . 87
Using the FILE-COMMAND with Set Requests. 89
Using the PIPE-IN-NAME and PIPE-OUT-NAME Clauses 90
Creating Proxies Using the Extensible SNMP Agent . 93
Using Proxy for Objects that are Built into the Agent . 94

Writing Shell Commands . 95
Sample Shell Command . 99

7. Troubleshooting
Recommended Practices . 103

Logging Options . 103
Characterizing the Problem . 105

Scope: What is Affected?. 105
Is This an Agent or Manager Problem? . 105

Affected Parts of the HP OpenView SNMP Agent . 105
Is This a Master or Subagent Problem?. 105

Context: What Changed? . 106
Duration: How Long or How Often? . 106
Context: What Action Was Performed? . 106

General Product Troubleshooting Considerations . 108
When You Need More Information . 108

Troubleshooting by Component. 109
Runtime Components . 109

Agent File Permissions . 109
Startup Scripts . 109

SNMP Subsystem . 109
7

Contents
Agent MIB . 110
Troubleshooting the snmpd.extend File . 112

Locally . 112
From the Manager . 112

A. Supported MIB Objects
Standard MIB-II Objects Supported by the MIB2 Subagent 117

Objects That Agents Allow You to Change . 117
Objects That Return Null Values (Solaris only) . 118
Objects That Return noSuchName Errors (Solaris only) . 118

MIBs Supported by the HP UNIX Subagent . 120
Format of Definitions . 120

B. Platform Equivalents
File Path Names. 124

Glossary . 125

Index . 127
8

1 Introduction and Operational
Concepts

This chapter provides an introduction to the HP OpenView SNMP Extensible Agent. It
includes the following:
Chapter 1 9

Introduction and Operational Concepts
• A guide to related documentation and references.

• A list of RFCs relating to SNMPv1, SNMPv2 and SNMPv3.

• A discussion of how to access and print manpages.

• Definitions and concepts that are key to understanding how the HP OpenView SNMP
Extensible Agent operates, including discussions of:

— Manager and agent systems.

— MIBs.

— Traps.

— The Structure of Management Information (SMI) for SNMPv1 and SNMPv2.

— SNMP Agent architecture.

— Operational behavior of the HP OpenView SNMP Extensible Agent, and examples of
how it can be used.
Chapter 110

Introduction and Operational Concepts
Documentation Guide and References
Documentation Guide and References
The manuals listed in this section provide system and network management information that
supplements use of the HP OpenView Extensible SNMP Agent.

Network Management Manuals

Refer to the document set shipped with your HP OpenView product.

TCP/IP and SNMP Concepts

SNMPv1

Comer, Douglas. Internetworking With TCP/IP: Principles, Protocols, and Architecture.
Englewood Cliffs, New Jersey: Prentice-Hall, 1988. To order, reference ISBN 0-13-470154-2.

Rose, Marshall T. The Simple Book: Management of TCP/IP-based Internets. Englewood
Cliffs, New Jersey: Prentice-Hall, 1990. To order, reference ISBN 0-13-812611-9.

SNMPv2

If you are using HP OpenView Network Node Manager, these RFCs are supplied with the
product. They are located under $OV_DOC.

Table 1-1 Outside Reading

Document Description

RFC 1155: Structure and Identification
of Management Information for
TCP/IP-based Internets.

K. McCloghrie and M. T. Rose, (May 1990).
Contains MIB object definitions. (Obsoletes
RFC 1065).

RFC 1157: A Simple Network
Management Protocol.

J. D. Case, M. Fedor, M. L. Schoffstall, and C.
Davin, (May 1990). Defines SNMP.
(Obsoletes RFC 1098).

RFC 1187: Bulk Table Retrieval with the
SNMP.

K. McCloghrie, M. T. Rose, and C. Davin,
(October 1990).

RFC 1212: Concise MIB Definitions. K. McCloghrie and M. T. Rose, (March 1991).
Describes the format for creating MIB object
files.
Chapter 1 11

Introduction and Operational Concepts
Documentation Guide and References
RFC 1213: Management Information
Base Network Management of TCP/IP
based internets: MIB-II.

K. McCloghrie and M. T. Rose, eds., (March
1991). Defines MIB-II. (Obsoletes RFC 1158;
most current edition as of the printing of this
guide.)

RFC 1215: Convention for Defining
Traps for Use with the SNMP.

M. T. Rose, ed. (March 1991).

RFC 1901: Introduction to
Community-based SNMPv2.

SNMPv2 WG, J.Case, K. McCloghrie, M.T.
Rose, S. Waldbusser, (January 1996). Defines
“Community-based SNMPv2.”
(Experimental. Obsoletes RFC 1441).

RFC 1902: Structure of Management
Information for Version 2 of the Simple
Network Management Protocol
(SNMPv2).

SNMPv2 WG, J.Case, K. McCloghrie, M.T.
Rose, S. Waldbusser, (January 1996). MIB
Definition language for Managed Objects
(Draft Standard. Obsoletes RFC 1442).

RFC 1903: Textual Conventions for
Version 2 of the Simple Network
Management Protocol (SNMPv2).

SNMPv2 WG, J.Case, K. McCloghrie, M.T.
Rose, S. Waldbusser, (January 1996). MIB
Definition language for refined data types.
(Draft Standard. Obsoletes RFC 1443).

RFC 1904: Conformance Statements for
Version 2 of the Simple Network
Management Protocol (SNMPv2).

SNMPv2 WG, J.Case, K. McCloghrie, M.T.
Rose, S. Waldbusser, (January 1996). MIB
Definition language for Conformance and
Capability definitions. (Draft Standard.
Obsoletes RFC 1444).

RFC 1905: Protocol Operations for
Version 2 of the Simple Network
Management Protocol (SNMPv2).

SNMPv2 WG, J.Case, K. McCloghrie, M.T.
Rose, S. Waldbusser, (January 1996). Defines
SNMPv2 protocol. (Draft Standard. Obsoletes
RFC 1448).

RFC 1906: Transport Mappings for
Version 2 of the Simple Network
Management Protocol (SNMPv2).

SNMPv2 WG, J.Case, K. McCloghrie, M.T.
Rose, S. Waldbusser, (January 1996). Defines
SNMPv2 transport mappings for IP, IPX,
DDP. (Draft Standard. Obsoletes RFC 1449).

Table 1-1 Outside Reading (Continued)

Document Description
Chapter 112

Introduction and Operational Concepts
Documentation Guide and References
SNMPv3

The SNMPv3 Management Framework, as described in RFCs 2570, 2571, 2572, 2573, 2574,
and 2575, addresses the deficiencies in SNMPv2 relating to security and administration.
Coexistence issues relating to SNMPv1, SNMPv2, and SNMPv3 can be found in RFC 2576.

RFC 1907: Management Information
Base for Version 2 of the Simple Network
Management Protocol (SNMPv2).

SNMPv2 WG, J.Case, K. McCloghrie, M.T.
Rose, S. Waldbusser, (January 1996). Defines
MIB objects that are mandatory for SNMP
agents that support SNMPv2. (Draft
Standard. Obsoletes RFC 1450).

RFC 1908: Coexistence between Version 1
and Version 2 of the Internet-standard
Network Management Framework

SNMPv2 WG, J.Case, K. McCloghrie, M.T.
Rose, S. Waldbusser, (January 1996).
Coexistence guidelines for SNMPv1 and
SNMPv2. (Draft Standard. Obsoletes RFC
1452)

Table 1-2 Outside Reading

Document Description

RFC 3410 (Informational): Introduction
and Applicability Statements for Internet
Standard Management Framework
(December 2002).

R. Mundy D. Partain B. Stewart December
2002.

RFC 3414: User-based Security Model
(USM) for version 3 of the Simple
Network Management (SNMPv3).

U. Blumenthal B. Wijnen December 2002.
Describes the User-based Security Model
(USM) for SNMP version 3.

RFC 3415: View-based Access Control
Model (VACM) for the Simple Network
Management Protocol (SNMP).

B. Wijnen R. Presuhn K. McCloghrie
December 2002. Describes the View-based
Access Control Model (VACM) for use in the
Simple Network Management Protocol
(SNMP) architecture.

Table 1-1 Outside Reading (Continued)

Document Description
Chapter 1 13

Introduction and Operational Concepts
Documentation Guide and References
General Operating System Knowledge

In addition to understanding networking concepts, it is critical that you have a good working
knowledge of the operating system, or systems, that are present on your network. This book
does not attempt to explain any concepts of the UNIX®1 operating system (HP-UX, HP’s
UNIX operating system implementation or Solaris, Sun’s UNIX operating system
implementation). This book frequently refers to commands and functions of these operating
systems, without further explanation. Refer to the documentation that came with your
operating system for more information.

RFC 2576: Coexistence between Version
1, Version 2, and Version 3 of the
Internet-standard Network Management
Framework.

R. Frye D. Levi S. Routhier B. Wijnen March
2000, describes coexistence between version 3
(SNMPv3), version 2 (SNMPv2), and the
original Internet-standard Network
Management Framework (SNMPv1).

RFC 2570: Introduction to Version 3 of
the Internet-standard Network
Management Framework.

J. Case R. Mundy D. Partain B. Stewart April
1999, provides an overview of the third
version of the Internet-standard
Management Framework, termed the SNMP
version 3 Framework (SNMPv3).

RFC 2571: An Architecture for
Describing SNMP Management
Frameworks.

D. Harrington R. Presuhn B. Wijnen April
1999, describes an architecture for describing
SNMP Management Frameworks.

RFC 2572: Message Processing and
Dispatching for the SNMP.

J. Case D. Harrington R. Presuhn B. Wijnen
April 1999, describes the Message Processing
and Dispatching for SNMP messages within
the SNMP architecture [RFC2571]

RFC 2573: SNMP Applications. D. Levi P. Meyer B. Stewart April 1999
Describes five types of SNMP applications
which make use of an SNMP engine as
described in [RFC2571].

1. The term UNIX in this manual is referring to HP-UX and Solaris systems only.

Table 1-2 Outside Reading (Continued)

Document Description
Chapter 114

Introduction and Operational Concepts
Documentation Guide and References
Manpages

The manpages for system administration commands are contained in section (1M) on Solaris
and HP-UX systems. Throughout this guide, manpages for system administration commands
are denoted as command (1M); for example, snmpd (1M). The manpages for HP OpenView
Extensible Agent are snmpd.ea and snmpd.extend.

Accessing Manpages

On HP-UX systems, the following procedure is just one suggestion for displaying or printing
manpages. This procedure requires that you have manpages installed locally on your system.
(If your network provides manpages remotely instead (for example, from a central server),
then check with your system administrator about how to access them.)

1. Determine where on your system the manpage files are kept. Type

echo $MANPATH

You should see a list with one or more directories. Multiple directories will be separated
by colons (for example, /usr/local/man:/usr/man). It is recommended that you check
the contents of each directory to make sure it actually has manpage files in it.

2. Determine if the MANPATH list the directory /opt/OV/man. If the directory does not exist,
add the directory to the MANPATH variable and export MANPATH variable.
export MANPATH=$MANPATH:/opt/OV/man

Chapter 1 15

Introduction and Operational Concepts
Definitions and Concepts
Definitions and Concepts
This section describes definitions and concepts you need to configure and manage HP
OpenView SNMP agents.

A manageable network consists of one or more manager systems or network management
stations, and a collection of agent systems or network elements.

• A manager system executes network management operations that monitor and control
agent systems. The implementation of these network management operations is called the
manager.

• An agent system is a device, such as a host, gateway, terminal server, hub, or bridge, that
has an SNMP agent responsible for performing the network management operations
requested by the manager. The HP OpenView SNMP agent resides on a host running the
UNIX operating system and facilitates the management of the host.

A typical manageable network may have one manager system and 1000 agent systems. A
manager and agent may exist on the same system.

The Simple Network Management protocols communicate management information between
a manager and an agent. SNMP enables the following:

• A manager to retrieve (get) management information from an agent. The manager sends
requests for information to the agent, and the agent sends back replies containing the
requested information.

• A manager to alter (set) management information on an agent.

• An agent to send information to the manager without an explicit request from the
manager. Such an operation is called a trap. Traps alert the manager of changes that
occur on the agent system, such as a reboot. The agent knows which manager systems to
send traps to via a configurable trap destination table.

SNMP requests for information on an agent are accompanied by a community name; a
community name is a password that allows the manager access to that information.

MIBs

The information on the agent is known as the Management Information Base (MIB). The
MIB is not a physically distinct database; rather, it is a concept that encompasses
configuration and status values normally available on the agent system. For example, MIB-II
information that the HP OpenView SNMP agent supplies actually resides in the UNIX
Chapter 116

Introduction and Operational Concepts
Definitions and Concepts
kernel, not in a traditional database. MIB values conform to an Internet-standard structure of
management information and compose a virtual data store on the agent system. Agents
contain the “intelligence” required to access MIB values.

NOTE In this guide, MIB-II refers to standards; mib-2 refers to subtree organization.

MIBs are organized into MIB modules. A MIB module is described in a file that defines all
the MIB objects under a subtree. The foundation module is the standards-based MIB-II
module defined by RFC1213: Management Information Base of Network Management of
TCP/IP internets: MIB-II. In addition to the Internet-standard MIB-II objects defined in RFC
1213, many hardware vendors, such as Hewlett-Packard, Cisco Systems, Wellfleet, and Novell
(Excelan), have developed MIB extensions for their own products. In this guide, the MIBs
defined by hardware vendors are referred to as enterprise-specific MIBs.

MIBs are defined using an Internet-standard language called the Structure of
Management Information, or SMI. Your agent supports both the original SNMP version 1
SMI and the newer SNMP version 2 SMI. Key differences between the two SMI definitions
are noted in Table 1-3.
Chapter 1 17

Introduction and Operational Concepts
Definitions and Concepts
The MIB vendor is responsible for defining a MIB and describing its use.

See the snmp_mibs file and directory paths in Appendix B, “Platform Equivalents,” for the
exact location of the standard MIBs on your system.

Table 1-3 Comparison of SNMPv1 and SNMPv2 SMI

SNMPv1 SMI SNMPv2c SMI

Forms the basis for all existing
SNMPv1-based MIBS.

Defined in RFC 1155: Structure
and Identification of
Management Information for
TCP/IP-based Internets.

Amended in RFC 1212: Concise
MIB Definitions.

Defined as a superset of the
SNMPv1 SMI.

Extends the original SNMPv1 SMI
to support these new data types:

• Counter64--(64-bit unsigned
integers)a

• Unsigned32--(32-bit unsigned
integers)

• Bits--(allows the enumeration
of bits)

Allows custom data types to be
built by constraining the range,
size, or possible values of existing
data types. For example, a new
enumeration data type could be
constructed by defining a small set
of possible integer values. The SMI
refers to this form of definition as a
“Textual Convention.”

Defined in RFC 1902: Structure of
Management Information for
Version 2 of the Simple Network
Management Protocol (SNMPv2).

a. extsubagt does not support counter64 and some SNMPv2
SMI constructs.
Chapter 118

Introduction and Operational Concepts
Definitions and Concepts
How to Access the MIB

The manager accesses the agent’s MIB using SNMP’s get and set operations. Figure 1-1
shows a simplified diagram of the manager-agent interactions.

Figure 1-1 Manager-Agent Communication through SNMP

How MIBs are Organized

MIB objects are organized conceptually in a hierarchical tree structure. Figure 1-2
illustrates the tree structure. The numbers in parentheses are the numerical representation
of the nodes. These numbers are called “object sub-identifiers.”

Notice that SNMP messages contain only the object sub-IDs. The associated names are used
for documentation purposes only.

Retrieve (get)
management information

Alter (set)
management information

get or set
SNMPv1 or v2c Request
(with Community Name)

Manager Agent

SNMP Replies

SNMP Traps

MIB
Chapter 1 19

Introduction and Operational Concepts
Definitions and Concepts
Figure 1-2 Part of the Top of the MIB Naming Tree

Each branch of the tree consists of logical groupings used to generate unique object ID’s. The
branch is referred to as a node. A node can have both parents and children. A node that does
not have children is referred to as a leaf node. The leaf node is the actual object. Only leaf
nodes return MIB values from agents or have their MIB values altered. A subtree is used to
refer to all nodes and children under a branch of the tree.

A MIB object is named by concatenating (linking together in a series) the numerical names of
each node when traversing the MIB tree from iso(1) to the particular node. A full object ID
name contains all the nodes, including the leaf nodes. The nodes are concatenated and
separated by periods. For example, the mib-2 subtree is
iso.org.dod.internet.mgmt.mib-2, which is concisely written as 1.3.6.1.2.1. This MIB
object notation follows the standard notation defined in Abstract Syntax Notation One
(ASN.1).

iso (1)

org (3)

dod (6)

internet (1)

directory (1) mgmt (2) private (4)

mib-2 (1) enterprises (1)

system (1) interfaces (2) snmp (11)

sysDescr (1) sysObjectID (2)

cisco (9) hp(11) novell (23)
Chapter 120

Introduction and Operational Concepts
Definitions and Concepts
To avoid conflicts of object IDs, each branch of the tree must be registered, that is, defined
through a designated organization. Enterprise- specific MIB’s are registered under the
enterprises subtree. The Internet- standard MIB-II is registered under the mib-2 subtree.
The mib-2 subtree is primarily used to manage TCP/IP-based networks through SNMP.

Traps

A trap is a message sent from a remote system (as an agent) to a manager without an explicit
request from the manager. Agents send traps to managers to indicate that an error has
occurred or an event has taken place. Traps are also known as notifications.

 The SNMP agent emits five types of notifications:

• SNMPv1 trap. This is the original type of notification defined in the original SNMP
(version 1) protocol definition. The message is unconfirmed. In other words, the system
that emits the trap never receives confirmation that the trap was received. The receiving
system must support the SNMPv1 protocol.

• SNMPv2c trap. The trap serves the same function as for SNMPv1, but it has a slightly
different format. The SNMPv2 trap is unconfirmed. The receiving system must support
the SNMPv2c protocol.

• SNMPv2C inform. This message serves a similar purpose as a SNMPv2c trap, except that
the message is confirmed. The sending system receives confirmation, via the protocol
itself, that the message was indeed received. The receiving system must support the
SNMPv2c protocol.

• SNMPv3 trap. SNMPv3 TRAPs use the engineID of the local application along with
community name sending the trap rather than the engineID of the remote application.
The receiving system must support SNMPv3 protocol. Refer RFCs 2570 - 2575 for the
detailed description about the terms used in SNMPv3 trap and inform.

• SNMPv3 inform. This uses the remote engineID along with community name when
sending the message and the securityName and engineID must exist as a pair in the
remote user table. The receiving system must support SNMPv3 protocol.

The format and style of a notification can vary, depending on several factors. For more
information about notifications, see the snmptrap (1), snmpv2trap (1), or snmpinform (1)
manpages.
Chapter 1 21

Introduction and Operational Concepts
Extensible SNMP Agent Architecture
Extensible SNMP Agent Architecture
The HP OpenView Network Node Manager and the Extensible SNMP Agent software each
include a master Emanate Agent and two subagents:

• The HP-UNIX (hp_unixagt) subagent.

• The MIB-II (mib2agt) subagent.

The HP OpenView Extensible SNMP Agent product includes a third subagent: the Extensible
Agent (extsubagt) subagent.

The relationships among the master agent and the three subagents in the Extensible Agent
product are illustrated in Figure 1-3.

The master agent contains the SNMP communications stack, which facilitates communication
with the management station and the SNMP agent.

The MIB-II subagent implements the MIB-2 standard, which contains networking statistics
for the agent host. This instrumentation of the MIB-2 standard by the subagent facilitates
management of your network.

The HP-UNIX subagent provides system information such as the number of UNIX processes
currently running, or the percent of utilization of each file system. The instrumentation of
system information by the subagent facilitates management of your HP-UX or Solaris system.

The third subagent (extsubagt), which is included only in the Extensible Agent product,
enables you to rapidly develop an instrumentation to manage proprietary data without
programming.
Chapter 122

Introduction and Operational Concepts
Extensible SNMP Agent Architecture
Figure 1-3 Extensible SNMP Agent Concepts

User-supplied
snmpd.extend
config text file

(HP 9000 or Sun Spark Managed Node)

 HOST
MANAGER

Kernel
Network
Information

System
Management
Information

Scalar &
Tabular
Data

3rd-party
Application
Data

HP OpenView
Network Node
Manager or
other Extensible
SNMP Manager

HP 9000
S700/800 or
Sun Spark

SNMP v1
or v2c
get or set

SNMP
Reply or
Trap

Emanate
Master
SNMP
Agent

Standard
MIB-II
Subagent

HP-UNIX
MIB
Subagent
(HP & Sun)

Extensible
Subagent

3rd-party
Subagent
Chapter 1 23

Introduction and Operational Concepts
The HP OpenView Extensible SNMP Subagent
The HP OpenView Extensible SNMP Subagent
The HP OpenView Extensible SNMP Agent includes the Extensible Subagent
(extsubagt). The Extensible Subagent extends the functionality provided by the master
agent (snmpdm), the MIB-II subagent (mib2agt), and the HP-UNIX (hp_unixagt) subagent.

The HP OpenView Extensible SNMP subagent is used for the following:

• Adding your own objects to the agent.

• Configuring the agent to notify the manager when something is wrong on the agent.

You add your own objects by defining them in a new MIB subtree. This MIB subtree is
contained in a new MIB module that extends the MIB that already exists on the agent.

For each object that you define, you must specify either a command that you want the agent to
execute, or a file that you want the agent to read when the agent receives an SNMP request.
The extensible subagent responds to an SNMP request by executing the specified
command. When a manager sends an SNMP GetRequest or SetRequest, the agent executes
the command associated with that object and returns the results of the command in the
SNMP reply.

Using the extensible subagent, you can create a new MIB module that defines objects that
will help you do the following:

• Use SNMP GetRequest to retrieve client data that is not available from your current
standard agent through an SNMP GetRequest. For example, you can configure the
extensible subagent to:

— List the users logged into a remote system.

— List the size of mail queues on a remote system.

— Check the status of the printers on your network.

— Monitor critical processes on a remote system.

• Execute an application or script on a remote system through an SNMP SetRequest. For
example, in a manufacturing environment you could change the number of parts produced
per hour.

You configure the system to notify the manager when something is wrong by executing the
snmptrap command. The snmptrap command is included with the HP OpenView Extensible
SNMP Agent. Use this command to define your own enterprise-specific trap and notify the
Chapter 124

Introduction and Operational Concepts
The HP OpenView Extensible SNMP Subagent
manager of events or conditions detected by applications. For example, you can configure the
agent to notify the manager when a process on a remote system stops running. You can then
use the set capability from the manager to restart the process.

By adding your own objects and configuring traps on the agent, the HP OpenView Extensible
SNMP Agent becomes a tool that you can use to perform system management, peripheral
management, and application management. Through SNMP, it enables you to extend your
agent to get or set any MIB objects associated with a system, device, or application. The
objects you manage do not have to be network devices. As long as the agent system can
communicate with the device, the agent can be extended to manage the device.
Chapter 1 25

Introduction and Operational Concepts
Example Uses for the Extensible Subagent
Example Uses for the Extensible Subagent
The HP OpenView Extensible SNMP Agent can help you manage your network more
proactively than before. The examples in this section use the HP OpenView Network Node
Manager software as the management station.

NOTE While this guide uses the HP OpenView Network Node Manager to illustrate
examples of how to apply the functionality of the HP OpenView Extensible
SNMP Agent, you can use any SNMP management station to manage your
Extensible Agents.

After adding objects to the agent, you can:

• Load the new MIB module (that is, the file defining the new objects) into the HP
OpenView Network Node Manager MIB. Once you have loaded the new MIB module on
the management station you can manage any of the MIB objects you have defined on the
network.

• Get and set values of your new objects using a point-and-click MIB Browser.

• Without programming, build new MIB applications in a matter of minutes for your new
objects. Once you have built your MIB applications, you can monitor the objects through
the HP OpenView Network Node Manager menu bar.

• Collect historical MIB information about your new object and display collected data.

• Define event thresholds for the new objects. This helps you, for example, to find out when
a printer goes down.

• Define actions to be taken upon receipt of an SNMP trap coming from a system running
the extensible subagent.

• Manage critical software processes that are running on unattended systems in dispersed
locations.
Chapter 126

2 Before You Install

This chapter provides preinstallation information for the HP OpenView Extensible SNMP
Agent. It includes:
Chapter 2 27

Before You Install
• A brief description of the role of the HP Software Distributor (SD) in the installation of the
agent.

• Hardware and software requirements for installation.

• Descriptions of the files and processes involved both when the Extensible Agent is invoked
and when it is operational.

• A description of how to manually stop and restart the agent software.
Chapter 228

Before You Install
Installation Mechanism
Installation Mechanism
This release of the HP OpenView Extensible SNMP Agent uses HP Software Distributor (SD)
for its installation mechanism. Several components of SD are included on the CD-ROM that
you purchased. They are not installed on your system and will not affect any current
installation of SD on your system.

You use a command line interface when installing the Extensible Agent. If you know that you
already have SD installed on your system and are familiar with its use, you may use its
graphical user interface instead of the command line instructions provided in this guide.

If you choose to use the SD graphical user interface, be sure to complete the preinstallation
steps in this chapter first.
Chapter 2 29

Before You Install
Hardware and Software Prerequisites
Hardware and Software Prerequisites
You need the following hardware and software to run the HP OpenView SNMP Extensible
Agent. Consult the product data sheets for additional supported software and hardware.

Hardware

You need one of the following workstations:

• HP 9000 Series 700 or 800

• Sun SPARCstation

and

• a CD-ROM drive

Software

You need to be running one of the following operating systems:

• HP-UX version 11.X

• Solaris 2.8 or later

Disk Space Requirements

At a minimum, you need the disk space listed below to install the HP OpenView Extensible
SNMP Agent product. You will need additional space for your databases and application files.

HP-UX 11.X 10 Mbytes

Solaris 2.8 or later 10 Mbytes

On all platforms, most of this disk space should be in /usr and /lib.

To provide enough disk space on your workstation:

1. Log in as root.

2. To check your disk space, issue the following command:

HP-UX bdf

Solaris df

If the directory
Chapter 230

Before You Install
Hardware and Software Prerequisites
• Has sufficient free disk space, proceed to Chapter 3, “Installing the HP OpenView
Extensible SNMP Agent.”

• Does not have sufficient free disk space, continue with step 3.

3. Locate a file system that has sufficient free disk space, or mount a dedicated volume
under the appropriate directory.
Chapter 2 31

Before You Install
Processes and Files
Processes and Files
This section defines the processes and files used during invocation and operation of the HP
OpenView SNMP Extensible Agent. It includes explanations of the interactions and
relationships among these processes and files. Note that the interactions among processes
and files at invocation time and during regular operation are different.

Invocation Behavior

The process that runs as the HP OpenView SNMP agent is platform dependent. Network
Node Manager (NNM) contains the Emanate SNMP agent for installation on Solaris and
HP-UX.

On invocation, the SNMP agent reads the snmpd.conf file to obtain its configuration. This file
contains the agent’s trap destinations, community names, and certain MIB values.

The interactions and relationships among these processes and files at invocation time is as
follows:

Table 2-1

HP-UX 11.X and later

/sbin/rc invokes /sbin/rc2.d/S560SnmpMaster

/sbin/rc2.d/S560SnmpMaster invokes /sbin/init.d/SnmpMaster

/sbin/init.d/SnmpMaster invokes /usr/sbin/snmpdm

/usr/sbin/snmpdm reads /etc/SnmpAgent.d/snmpd.conf

/sbin/rc invokes /sbin/rc2.d/S565SnmpMib2

/sbin/rc2.d/S565SnmpMib2 invokes /sbin/init.d/SnmpMib2

/sbin/init.d/SnmpMib2 invokes /usr/sbin/mib2agt

/sbin/rc invokes /sbin/rc2.d/S565SnmpHpunix

/sbin/rc2.d/S565SnmpHpunix invokes /sbin/init.d/SnmpHpunix
Chapter 232

Before You Install
Processes and Files
/sbin/init.d/SnmpHpunix invokes /usr/sbin/hp_unixagt

/sbin/rc invokes /sbin/rc2.d/S566SnmpExtAgt

/sbin/rc2.d/S566SnmpExtAgt invokes /sbin/init.d/SnmpExtAgt

/sbin/init.d/SnmpExtAgt invokes /usr/sbin/extsubagt

/usr/sbin/extsubagt reads /etc/SnmpAgent.d/snmpd.extend

Table 2-2

Solaris

/etc/rc2 invokes /etc/rc2.d/S96SnmpMaster

/etc/rc2.d/S96SnmpMaster invokes /sbin/init.d/SnmpMaster

/sbin/init.d/SnmpMaster invokes /usr/sbin/snmpdm

/usr/sbin/snmpdm reads /etc/SnmpAgent.d/snmpd.conf

/etc/rc2 invokes /etc/rc2.d/S97SnmpMib2

/etc/rc2.d/S97SnmpMib2 invokes /sbin/init.d/SnmpMib2

/sbin/init.d/SnmpMib2 invokes /usr/sbin/mib2agt

/etc/rc2 invokes /etc/rc2.d/S97SnmpHpunix

/etc/rc2.d/S97SnmpHpunix invokes /sbin/init.d/SnmpHpunix

/sbin/init.d/SnmpHpunix invokes /usr/sbin/hp_unixagt

/etc/rc2 invokes /etc/rc2.d/S98SnmpExtAgt

Table 2-1 (Continued)

HP-UX 11.X and later
Chapter 2 33

Before You Install
Processes and Files
Operational Behavior

After the Extensible SNMP Agent is operational, the agent’s background process continues to
run. When the manager sends an SNMP request to the agent, the Extensible SNMP Agent
processes the request, takes the appropriate action, such as executing a command or reading
a file, and sends an SNMP reply to the manager.

SNMP agents send standard SNMP traps such as cold start, warm start, link down, link up,
and authentication failure traps to the manager. Optionally, you can configure the HP
OpenView Extensible SNMP Agent to execute snmptrap commands. The snmptrap command
also sends traps to the manager. Extensible SNMP Agent errors are logged to the snmpd.log
file. Figure 2-1 shows the operational interactions and relationships among these processes
and files.

/etc/rc2.d/S98SnmpExtAgt invokes /sbin/init.d/SnmpExtAgt

/sbin/init.d/SnmpExtAgt invokes /usr/sbin/extsubagt

/usr/sbin/extsubagt reads /etc/SnmpAgent.d/snmpd.extend

Table 2-2 (Continued)

Solaris
Chapter 234

Before You Install
Processes and Files
Figure 2-1 Agent Processes and Files during Operation

Agent

SNMP trapsSNMP
replies

SNMP
trapsSNMP

requests

snmpd.log

Errors

Manager

Command
execution

Command

Result of
command

extsubagt Read file
snmptrap
command
execution
Chapter 2 35

Before You Install
Manually Stopping and Restarting the Agent Software
Manually Stopping and Restarting the Agent Software
If you want to stop the agent software, you must kill the SNMP agent process. Use these
commands:

ps -ef | grep snmpdm

kill -9 <snmpdm’s process number>

kill -9 <all subagent process numbers of interest>

NOTE All shared library agents die when the master agent is killed. All separate
process subagents receive an event when the master agent dies; they may or
may not die. The subagents delivered with this product are configured to die by
default when the master agent dies.

To restart the HP OpenView SNMP Agent software, you must be root. The agent starts
automatically the next time your workstation is rebooted. You can start it manually by
executing the following startup script as root:

snmpd

Table 2-3 lists the executable command for each agent or subagent.

Table 2-3 Extensible SNMP Agent Executables

Agent or Subagent Executable

Master agent /usr/sbin/snmpdm

Mib2 subagent /usr/sbin/mib2agt

HP UNIX subagent /usr/sbin/hp_unixagt

Extensible subagent /usr/sbin/extsubagt
Chapter 236

3 Installing the HP OpenView
Extensible SNMP Agent

This chapter describes how to install the HP OpenView Extensible SNMP Agent. Three types
of installation are described:
Chapter 3 37

Installing the HP OpenView Extensible SNMP Agent
• Installing on a system that does not have any HP OpenView software installed.

• Installing on an NFS diskless system.

• Installing remotely. Use this procedure if you do not have a local CD-ROM drive to use
with the installation media that came with your product.

NOTE Remote installation is not supported on NFS diskless systems.

Before you begin installing, check the hardware and software prerequisites listed in
Chapter 2, “Before You Install.”
Chapter 338

Installing the HP OpenView Extensible SNMP Agent
Installing on a System with No Other HP OpenView Software Installed

Installing on a System with No Other HP OpenView
Software Installed

1. Log in as root to the workstation on which you want to install the HP OpenView
Extensible SNMP Agent.

2. Insert the HP OpenView Extensible SNMP Agent CD-ROM into the CD-ROM drive.

3. Determine the device filename of your CD-ROM drive.

NOTE Be sure that you choose a block drive device and not a raw drive device.

4. Mount the CD-ROM drive by typing the appropriate command, specifying the appropriate
drive device filename and the directory to which you want to mount the file system. The
directory can be any existing directory. For example:

On an HP-UX 11.X system the command syntax is:

/etc/mount device_filename directory_name

So you would type something similar to:

/etc/mount /dev/dsk/c201d3s0 /cdrom

The volume management performed by Solaris systems causes the CD-ROM to be
mounted automatically.

5. Change to the directory where you mounted the CD-ROM file system. For example:

cd /cdrom

6. Use the following command to install HP OpenView Extensible SNMP Agent.

• On HP-UX 11.00/11.11 PA_RISC system
./HPUX11.X_PA/install

• On HP-UX 11.23 IA system

./HPUX11.X_IA/install

• On Solaris system
./install

Chapter 3 39

Installing the HP OpenView Extensible SNMP Agent
Installing on a System with No Other HP OpenView Software Installed
The installation begins. The installation program goes through two phases, Analysis and
Execution. Messages reflecting which stage the installation procedure is in are written to
the screen. When installation is complete you will see a status message. It will begin with
one of the following:

• Your installation was successful

If you receive this message, go to the next step.

• Errors have been encountered in your installation.

Go to the section “If Errors Occurred.”

8. To verify that your installation was successful, check the end of the log file
/var/adm/sw/swagent.log. Messages are appended to this file. Therefore the status
messages for this installation will be the final entries in the file. Each set of status
messages includes the date and the time the installation occurred. Look for the date and
time that corresponds to the most recent installation.

If the installation program completed without fatal errors, each fileset that was installed
should have the word Configured next to it. Even though you may see the status message
ERROR, if Configured appears next to each fileset, the installation was successful.

You may also want to scan the NOTE and WARNING sections to see if there are any other
steps you might need to take.

If Errors Occurred

If errors occurred during installation, look at the end of the log file
/var/adm/sw/swagent.log. Each set of status messages includes the date and the time the
installation occurred. Look for the date and time that corresponds to the most recent
installation.

There are several kinds of errors that could have occurred. Some filesets may have been
installed but not configured. These filesets are noted in the log file with the word ERROR
instead of the word Configured next to them.

7. Answer the questions that appear on the screen. The questions are the following:

• Do you want to install the manpages?

Enter Y or N.

If you choose not to install the manpages now, may install them at a later time.

• Do you want to continue with the installation?

A list appears showing what will be installed.

Enter Y to continue or N to cancel the installation.
Chapter 340

Installing the HP OpenView Extensible SNMP Agent
Installing on an NFS Diskless Cluster
Installing on an NFS Diskless Cluster
This section describes how to install the HP OpenView Extensible SNMP Agent on an NFS
diskless cluster. It also includes procedures for:

• Starting the Extensible Agent on an NFS diskless system.

• Removing an NFS diskless cluster.

HP OpenView Extensible SNMP Agent supports installation of NFS diskless clusters on HP
Series 700/800 systems with HP-UX 11.X. Remote installation of NFS diskless clusters is not
supported.

Before installing on an NFS diskless cluster, you must configure the diskless cluster according
to the instructions in your operating system manual.

NOTE Before you begin this procedure, please consult the Release Notes that were
shipped with your product for any possible modifications to these steps.

Procedure

After the diskless cluster is configured, follow these steps on the NFS diskless server:

1. Log in to the NFS diskless server as root.

2. Insert the CD-ROM for HP OpenView Extensible SNMP Agent into the CD-ROM drive.

3. Determine the device filename of your CD-ROM drive.

4. Mount the CD-ROM drive by typing the appropriate command, specifying the appropriate
drive device filename and the directory to which you want to mount the file system. The
directory can be any existing directory.

On an HP-UX system the command syntax is:

mount /dev/rmt device_filename directory_name

So you would type something similar to:

mount /dev/rmt/0m /cdrom

5. Start HP SAM. This is usually done by typing sam &.

6. Double-click on the Software Management icon.

7. Double-click on the Install Software to Cluster icon.
Chapter 3 41

Installing the HP OpenView Extensible SNMP Agent
Installing on an NFS Diskless Cluster
8. In the Select Alternate Root Path dialog box, use the default that is in the entry field.
It should look similar to:

/export/shared_roots/OS_700 -> /

9. In the Specify Source dialog box, specify the following:

In the Source Host Name field, enter the name of the host where the software depot is
located. This should be the local server hostname

In the Source Depot Path field, enter the path to CD-ROM file system and the depot
name. For example:

/cdrom/OVDEPOT

In the Change Software View field, select the default of All
Bundles.

10. In the Software Selection dialog box, highlight the bundles that you want to install.
You can select more than one at a time by holding down the CTRL key while clicking on the
bundle names with the mouse.

11. When you have selected all the bundles you want to install, select Action:Mark for
Install.

You may receive an error message stating that difficulties were encountered while
marking some items that your selections depends on. The installation procedure has a
dependency on some filesets that should already be installed on your system as part of the
HP-UX 11.X operating system.

Click [OK] to close this error dialog box. The installation continues. Later in the
installation process, your system will be checked again.

12. After marking the items for installation, select Action:Install.The installation process
begins.

13. When the Analysis phase of installation is complete, click [OK] to continue the
installation.

14. You will be asked if you want to continue the installation. Click [Yes] to continue or [No]
to cancel.

The installation dialog box closes, and installation messages are written to the screen of
the window from which you started HP SAM. The software will be installed and
configured on the server, and configured on each node in the cluster.
Chapter 342

Installing the HP OpenView Extensible SNMP Agent
Installing on an NFS Diskless Cluster
15. To verify the installation, look at the end of the log file /var/adm/sw/swagent.log.
Messages are appended to this file. Therefore, go to the end of the file to see the status
messages for this installation. Each set of status messages includes the date and the time
the installation occurred. Look for the date and time that corresponds to the most recent
installation.

If the installation program completed without errors, each fileset that was installed
should have the word Configured next to it. Even though you may see the status message
ERROR, if Configured appears next to each fileset, the installation was successful.You may
also want to scan the NOTE and WARNING sections to see if there are any other steps you
might need to take.

If Errors Occurred

If errors occurred during installation, look at the end of the log file
/var/adm/sw/swagent.log. Each set of status messages includes the date and the time the
installation occurred. Look for the date and time that corresponds to the most recent
installation.

Several kinds of errors may have occurred. Some filesets may have been installed but not
configured. These are noted in the log file with the word ERROR instead of the word
Configured next to them.

After fixing the errors, reinstall the product.

Starting the Extensible Agent on an NFS Diskless System

To start the Extensible Agent on a diskless system, follow these instructions:

1. On the NFS diskless server only, run ovstart.

2. On the NFS diskless server only, run ovstatus.

If any of the processes listed reports an error or a status of NOT_RUNNING, refer to the
troubleshooting chapter of the Managing Your Network with HP OpenView Network Node
Manager book.

3. On either the NFS diskless server or the NFS diskless client, run ovw.

Removing an NFS Diskless Cluster

1. Log in to the NFS server as root.

2. Start HP SAM. This is usually done by typing sam &.

3. Double-click on the Software Management icon.
Chapter 3 43

Installing the HP OpenView Extensible SNMP Agent
Installing on an NFS Diskless Cluster
4. Double-click on the Remove Cluster Software icon.

5. In the Select Alternate Root Path dialog box, click on [OK] to use the default that is
in the entry field. It should look similar to:

/export/shared_roots/OS_700 -> /

6. In the SD Remove-Software Selection dialog box, highlight the bundles that you want
to remove. To select more than one at a time, hold down the CTRL key while clicking on the
bundle names with the mouse.

7. When you have selected all the bundles you want to remove, select Action:Mark for
Remove.

8. After marking the items for installation, select Action:Remove. The removal process
begins.

9. When the Analysis phase of removal is complete, click [OK] to continue the removal.

10. You will be asked if you want to continue the removal process. Click [Yes] to continue or
[No] to cancel.
Chapter 344

Installing the HP OpenView Extensible SNMP Agent
Installing from a Remote CD-ROM
Installing from a Remote CD-ROM
If you do not have a local CD-ROM drive to use with the installation media that came with
your product, you may install the HP OpenView Extensible SNMP Agent from a remote drive.

This section contains the procedure for installing the Extensible SNMP Agent product
remotely.

NOTE Remote installation is not supported on NFS diskless systems.

The workstation with the CD-ROM drive (source workstation) can be an HP-UX or Solaris
system. The workstation where you want to install HP OpenView Extensible SNMP Agent
(target workstation) can be any of the supported workstations mentioned in Chapter 2,
“Before You Install.”

On the Source Workstation

On the workstation where the CD-ROM drive is located:

1. Log in as root.

2. Insert the HP OpenView Network Node Manager CD-ROM into the CD-ROM drive.

3. Determine the device filename of your CD-ROM drive.

NOTE Be sure that you choose a block drive device and not a raw drive device.

4. Mount the CD-ROM drive by typing the appropriate command, specifying the appropriate
drive device filename and the directory to which you want to mount the file system. The
directory can be any existing directory. For example:

On an HP-UX system the command syntax is:

/etc/mount device_filename directory_name

So you would type something similar to:

/etc/mount /dev/dsk/c201d3s0 /cdrom

5. Export the CD-ROM file system so that the target workstation can NFS mount it.

In these examples, marvin is the name of the target workstation and marion is the name
of the source workstation where the CD-ROM is physically mounted.
Chapter 3 45

Installing the HP OpenView Extensible SNMP Agent
Installing from a Remote CD-ROM

On a HP-UX 11.X Source Workstation

a. Add the following line to the file /etc/exports:

/cdrom -ro,root=marvin

b. Export the file system with the following command:

HP-UX 11.X /usr/sbin/exportfs -a

On a Solaris 2.X Source Workstation

a. Add the following line to the file /etc/dfs/dfstab:

share -F nfs -o ro,root=marvin

b. Check to see if the NFS daemon nfsd is running. For example:

ps -ef | grep nfsd

c. If the nfsd daemon is running, execute:

/usr/sbin/shareall

d. If the nfsd daemon is not running, execute:

/etc/init.d/nfs.server start

On the Target Workstation

On the workstation where you want to install the HP OpenView Extensible SNMP Agent
product:

1. NFS mount the CD-ROM file system (at /cdrom, for example). Type:

mkdir /cdrom

mount marion:/cdrom /cdrom

2. Change to the directory where you mounted the CD-ROM file system. For example:

cd /cdrom

3. Install the product with the following command:

• On HP-UX 11.00/11.11 PA_RISC system
./HPUX11.X_PA/install

• On HP-UX 11.23 IA system

./HPUX11.X_IA/install

• On Solaris system

./install

Chapter 346

Installing the HP OpenView Extensible SNMP Agent
Installing from a Remote CD-ROM
If the installation program completed without errors, each fileset that was installed
should have the word Configured next to it. Even though you may see the status message
ERROR, if Configured appears next to each fileset, the installation was successful.

You may also want to scan the NOTE and WARNING sections to see if there are any other
steps you might need to take.

If Errors Occurred

If errors occurred during installation, look at the end of the log file
/var/adm/sw/swagent.log on the target workstation. Each set of status messages includes
the date and the time the installation occurred. Look for the date and time that corresponds to
the most recent installation.

Several kinds of errors may have occurred. Some filesets may have been installed but not
configured. These filesets are noted in the log file with the word ERROR instead of the word
Configured next to them.

After fixing the errors, reinstall the product.

Post-Installation Steps

After installation has completed, you can clean up as follows. Before you start these steps, be
sure that you are not in (or beneath) the mounted directory on the either target or the source
workstation:

On the source workstation:

1. Remove the line you added to /etc/exports on HP-UX 11.X and to /etc/dfs/dfstab on
Solaris 2.X.

2. Unexport the directory. Type:

HP-UX 11.X /usr/sbin/exportfs -u /cdrom

Solaris 2.X unshare /cdrom

3. Unmount the CD-ROM drive. Type:

umount /cdrom

4. To verify your installation, check the end of the log file /var/adm/sw/swagent.log.
 Messages are appended to this log file. Therefore the status messages for this installation
 will be the final entries in the file. Each set of status messages includes the date and the
 time the installation occurred. Look for the date and time that corresponds to the most
 recent installation.
Chapter 3 47

Installing the HP OpenView Extensible SNMP Agent
Installing from a Remote CD-ROM

:

On the target workstation, complete this step:

1. Unmount the CD-ROM drive. Type:

umount /cdrom
Chapter 348

4 Configuring the Master SNMP Agent

The information describing the configuration of the HP OpenView Extensible SNMP Agent
has been divided into two chapters. This chapter describes the configuration of three optional
values in the Master portion of the Extensible SNMP Agent. These values are:
Chapter 4 49

Configuring the Master SNMP Agent
• System contact and location.

• Community name.

• Trap destinations.

If you do not wish to configure any of these values, you may proceed to Chapter 5,
“Configuring the HP OpenView Extensible SNMP Subagent.”

Configuration information for an SNMP agent can exist in the snmpd.conf configuration file,
on the agent command line, or in both places.

When configuring the agent on the command line, the command line options should be placed
in the appropriate startup script or startup configuration file for the particular platform. The
configuration files for the startup scripts are as follows:

Master /etc/rc.config.d/SnmpMaster

MIB2SubAgt /etc/rc.config.d/SnmpMib2

HPUnix /etc/rc.config.d/SnmpHpunix

ExtSubAgt /etc/rc.config.d/SnmpExtAgt

Most of the platform dependency complexity can be avoided by configuring snmpd.conf when
possible. The procedure is described on the next page.
Chapter 450

Configuring the Master SNMP Agent
System Contact and Location
System Contact and Location
The system contact consists of the name of the system’s administrative contact and
information on how to contact this person. The system location is a description of the
physical location of the system.

The agent software operates correctly without any configuration. Optionally, you may want to
set the agent’s system contact and system location so that the manager can request these
values remotely.

The system and SNMP MIB2 groups are implemented by the master agent rather than the
MIB2 subagent. This is because the SNMP protocol stack, which contains the SNMP group
statistics, resides in the Master Agent. When the Master Agent reads snmpd.conf, it
configures the stack and the system group.

Configuring System Contact and Location

You can set the system contact and system location for the HP OpenView SNMP agent
software in one of two ways:

• The first way is the recommended method. Set the system contact and system location by
editing the snmpd.conf file. Use the following procedure:

1. At the end of the snmpd.conf file, find these two lines.

location:#enter location of agent
contact:#enter contact person and how to contact this person

2. Delete the comments (preceded by the # sign).

3. After the location: label, add the system’s physical location. The maximum length of
the ASCII system location string is 256 characters.

4. After the contact: label, add the name of the system’s administrative contact and
information on how to contact that person. The maximum length of the ASCII system
contact string is 256 characters.

EXAMPLE:

location: 1st floor, south of post P2
contact: Bob Jones (Phone: Ext. 2815, Mail: jones@host2)

• The second method is to use the command line.

1. Add the following command line option to the appropriate startup script configuration
file:
Chapter 4 51

Configuring the Master SNMP Agent
System Contact and Location
-C "contact" -L "location"

2. Reconfigure the SNMP agent using the -C or -L options. For example, on HP-UX
10.01 and later or Solaris, edit /etc/rc.config.d/SnmpMaster and add

SNMP_MASTER_OPTIONS="-c contact -l location"

NOTE The system contact and system location values set through the
command line take precedence over the system contact and system
location values in the snmpd.conf file. That is, if the values are set both
ways, the system uses the values specified in the command-line
invocation instead of those specified in the snmpd.conf file.
Chapter 452

Configuring the Master SNMP Agent
Community Name
Community Name
A community name is a password that enables SNMPv1 and SNMPv2c access to MIB
values on an agent. Community names are not highly secure; they go unencrypted across the
network. Currently accessible MIB values are not normally considered sensitive information.

The HP OpenView SNMP agent’s community name implementation has the following
characteristics:

• You configure the community name in the agent’s snmpd.conf file.

• The community name is associated with all of the agent’s MIB values, not with subsets of
MIB values.

• You can enter multiple community names for GetRequests and SetRequests.

GetRequests

By default, the agent only responds to configured community names.

• If it is not present at installation time, the community string, public, is added to the
snmpd.conf file.

• If you configure a different community name, the SNMP agent responds only to that
community name.

• If no community name is configured, the agent does not respond.

You can configure the agent to respond to more than one get-community- name. The
associated line from the file is

get-community-name:#enter community name

Authentication Failure

An authentication failure results when a manager system sends an incorrect or an invalid
community name to an agent. When an agent receives an invalid community name, it can
send an authentication failure trap to the manager system.

By default, the HP OpenView SNMP agent sends authentication failure traps. To prevent the
sending of authentication failure traps, start the agent with the -a option.
Chapter 4 53

Configuring the Master SNMP Agent
Community Name
Configuring an Agent's Community Name

If you change the default community name configuration, HP recommends that you use the
same community name on all agents. To enter an HP OpenView SNMP agent’s community
name, edit the snmpd.conf file on the agent system.

NOTE No duplicate community strings are allowed in the snmpd.conf file. Entering
one results in an error message in the log file. Also, the set community string is
valid for both get and set operations. There is no need to configure a get
community string separately.

1. Near the end of the file, find the line:

get-community-name:#enter community name

2. Delete the comment (it is preceded by the # sign).

3. After the get-community-name: label, add the agent’s community name. For example:

get-community-name: private

get-community-name: mark

4. Restart the agent.

NOTE Authentication failure traps can be inhibited by starting the agent with the -a
command line option (see the manpage for snmpd (1M)).

SetRequests

By default, the agent does not respond to SetRequests. To enable managers to set MIB values
you must configure the agent to respond to SNMP SetRequests. To do so, enter a community
name in the snmpd.conf file. You can configure the agent to respond to more than one
set-community- name. The associated line from the file is

set-community-name:#enter community name

Managers can only set MIB values using the set-community-name entered.

Manager-Agent Community Name Relationship

To learn about the interaction between manager and agent, see your manager documentation.
If you are using Network Node Manager as your manager, see the snmpconf (4) manpage.
Chapter 454

Configuring the Master SNMP Agent
Trap Destinations
Trap Destinations
Trap destinations exist on agents to tell the agents where to send their SNMP traps. A trap
destination identifies a manager system that will receive the agent’s traps. An agent may
have multiple trap destinations if multiple managers are managing the agent.

Configuring Trap Destinations

If you want an HP OpenView SNMP agent to send traps to a manager system, you must
manually set the agent’s trap destination. To do so, edit the snmpd.conf file on the agent
system as follows:

1. Near the end of the file, find the line:

trap-dest: #enter the IP Address of the system where traps will be
sent

2. Delete the comment (preceded by the "#" sign).

3. After the trap-dest: label, add the host name or IP address of the management system
that you want the agent to send its traps to. For example:

trap-dest: 15.2.113.223

4. To specify more trap destinations, add more trap-dest: lines to the file.

5. Restart the agent.
Chapter 4 55

Configuring the Master SNMP Agent
Trap Destinations
Chapter 456

5 Configuring the HP OpenView
Extensible SNMP Subagent

This chapter describes how to configure the HP OpenView Extensible SNMP Subagent. It
includes procedures for:
Chapter 5 57

Configuring the HP OpenView Extensible SNMP Subagent
• Configuring the HP OpenView Extensible SNMP Subagent to support new objects.

• Configuring HP OpenView Extensible SNMP Subagents to execute the snmptrap
command.

To configure the optional values of system contact and location, community name, and trap
destinations, see Chapter 4, “Configuring the Master SNMP Agent.”
Chapter 558

Configuring the HP OpenView Extensible SNMP Subagent
Configuring Extensible SNMP Agents
Configuring Extensible SNMP Agents
Configuring the Extensible SNMP Agent so that the management station can manage the
new objects you add to the extensible agent is a three step process.

1. Write a MIB module, snmpd.extend, that extends the HP OpenView Extensible SNMP
Agent to support new MIB objects. See “Step 1. Write MIB Module.”

2. Copy the MIB module to the manager system. See “Step 2. Copy New MIB to the Manager
System.”

3. Integrate the new MIB objects into the manager’s MIB. See “Step 3. Integrate New MIB
into the Manager’s MIB.”

Figure 5-1 illustrates the configuration process.

Figure 5-1 Extensible SNMP Agent Configuration

Before You Begin

To write a MIB module, you need to understand what a MIB is and how MIBs are organized.
For the manager to access the MIB objects you define on an agent, the MIB module you write
must follow the conventions specified by RFC 1155: Structure and Identification of
Management Information for TCP/IP-based Internets and RFC 1212: Concise MIB
Definitions. If you are not familiar with these concepts, see

Agent Manager

snmpd.extend

snmpd.conf

snmp_mibs/rfc1213-MIB-II

snmp_mibs/hp-unix

snmp_mibs/myCompany

1. Write MIB module
 (snmpd.extend)
 to extend the agent MIB.

2. Copy new MIB
 to manager
 system.

3. Integrate new MIB
 into the Manager’s
 MIB.

MIB MIB
Chapter 5 59

Configuring the HP OpenView Extensible SNMP Subagent
Configuring Extensible SNMP Agents
• The Request for Comments (RFC) documents. For a listing, see Chapter 1, “Introduction
and Operational Concepts.”

• The sections “MIBs” and “How MIBs are Organized” in Chapter 1, “Introduction and
Operational Concepts.”

• The “Sample MIB Solution” section in Chapter 6, “Creating your MIB Module.”

Step 1. Write MIB Module

To write a MIB module that extends the MIB on the HP OpenView Extensible SNMP Agent to
support new objects, follow these steps:

1. Define your MIB objects.

You can define one or more MIB objects, and you can group and define the MIB objects in
one or more subtrees. The size of a subtree is limited to 200 nodes.

To define your MIB objects, follow these steps:

a. List all the objects that you want to add to the agent.

b. Determine if objects can be grouped together into subtrees.

Organize your MIB objects into logical groups. For example, the following MIB-II
objects are all members of the systems group: sysDescr, sysObjectID, sysUpTime,
sysContact, sysName, sysLocation, and sysServices. For a list of supported MIB
objects, see Appendix A, Supported MIB Objects, or the MIB modules in the
snmp_mibs directory.

c. Define all the nodes in each subtree.

Keep in mind that nodes can be children of other nodes.

When defining the node, follow these rules defined by ASN.1:

• Use an arbitrary number of letters, digits, and hyphens.

• Begin with a lowercase letter.

• Do not end with a hyphen.

• Do not follow a hyphen with another hyphen.

• Do not use underscores.

You may also want to follow these conventions

• End counter names with letters.

• Give each node a unique name, although the name is not required to be unique.
Chapter 560

Configuring the HP OpenView Extensible SNMP Subagent
Configuring Extensible SNMP Agents
d. Define the actual objects, that is, the leaf nodes in the subtree.

When you define the actual object, determine a unique name for the MIB objects.

Common conventions when defining the object names are to:

• Start all object names in a group with a prefix that can be derived from the group
name. For example, the objects in the systems group all begin with the prefix sys.
See the listing in step b.

• Capitalize the word after the prefix. For example, Contact is capitalized in the
object name sysContact.

e. Determine where to place the object in the MIB tree.

To ensure that your object IDs are unique, add your MIBs under your own company
(enterprise) name in the enterprises subtree. See Figure 1-2 on page 30 for an
illustration of a MIB tree.

If you do not have an enterprise ID assignment, access the following web site for
information about registering your enterprise:

http://www.iana.org

The benefit of registering your enterprise with the Internet Assigned Numbers
Authority (IANA) is that you can control your own MIB subtree and avoid conflict
with other MIBs.

2. Log on as root user to the agent system.

3. Create the MIB module, snmpd.extend.

Note that an example snmpd.extend file is provided with the HP OpenView Extensible
SNMP Agent product in the prg_samples/eagent directory.

The snmpd.extend file is the MIB module that extends the MIB on the agent to include
the objects you define. The snmpd.extend file is designed to use the macro template
defined in RFC 1212: Concise MIB Definitions. Therefore, when you create the
snmpd.extend file, follow the Abstract Syntax Notation One (ASN.1) format described in
RFC 1212. Use the Hewlett-Packard enterprise-specific MIB or the Internet- standard
MIB-II as a model. The Hewlett-Packard MIB is documented in Appendix A, “Supported
MIB Objects.” MIB-II is documented in RFC 1213. You can also access these MIBs online.
The respective files are snmp_mibs/hp-unix and snmp_mibs/rfc1213-MIB-II. After you
create the snmpd.extend file, move it to the /etc/snmpAgent.d directory.

Refer to Chapter 6, “Creating your MIB Module,” for detailed information about defining
MIB objects for the MIB module.

4. Reconfigure the HP OpenView Extensible SNMP Agent by killing extsubagt and then
restarting it.
Chapter 5 61

Configuring the HP OpenView Extensible SNMP Subagent
Configuring Extensible SNMP Agents
When you reconfigure the agent, the system checks the syntax and the structure of the
snmpd.extend file and logs any errors or success to snmpd.log. To see the errors on
standard error, kill extsubagt and restart it.

5. From the manager, verify that the agent responds to the objects you have added.

To verify that the agent responds, use any of the SNMP commands provided with your
SNMP manager product.

If you use HP OpenView Network Node Manager, the SNMP commands are snmpget,
snmpnext, snmpset, and snmpwalk. For information about the SNMP commands, see the
manpages for snmpget, snmpnext, snmpset, and snmpwalk. After loading the MIB
(snmpd.extend), you can also use MIB operations such as the MIB Browser. As an
example of how to use an SNMP command, here is the syntax of the snmpget command

snmpget hostname .objectID

Note that when you specify the object ID in an SNMP command, the object ID must start
with a dot (.).

To troubleshoot any problems, see Chapter 7, “Troubleshooting.”

6. Configure all of your HP OpenView Extensible SNMP Agent systems.

To configure additional HP OpenView Extensible SNMP Agent systems, do one of the
following:

• Copy the snmpd.extend file to all of your HP OpenView Extensible SNMP Agent
systems.

When you copy the snmpd.extend file to all your agents, all your agents are the same.

After you copy the snmpd.extend file, you must reconfigure the agent by killing and
then restarting extsubagt.

• Create separate snmpd.extend files for each agent.

If you want to manage different objects on the different agents, you can create
separate /etc/SnmpAgent.d/snmpd.extend files for each agent. If you do this, make
sure that the object IDs you use are unique. That is, each object ID should have the
same description associated with it across all agents. To create separate
snmpd.extend files for each agent, repeat steps 1 through 5 on each agent.

After you have configured all of your HP OpenView Extensible SNMP Agent systems, you are
ready to configure the manager. See the next section “Step 2. Copy New MIB to the Manager
System.”
Chapter 562

Configuring the HP OpenView Extensible SNMP Subagent
Configuring Extensible SNMP Agents
Step 2. Copy New MIB to the Manager System

Before the manager can access the new MIB objects you add to the agent, you need to copy the
MIB module, snmpd.extend, to the manager system.

You can copy the snmpd.extend file into any directory on the manager system. However, to
make it easier to keep track of the MIB module files, you may want to copy your MIB module
file to the default MIB module directory. If you use HP OpenView Network Node Manager, the
default directory is snmp_mibs.

Copy the snmpd.extend file from the agent to snmp_mibs/myCompany where myCompany is a
name that uniquely identifies your MIB.

If you create separate MIB object files for different agents, name your MIB module files
myCompanyAgent1, myCompanyAgent2, and so forth.

Step 3. Integrate New MIB into the Manager’s MIB

Once you have copied the MIB module to the manager system, integrate the new objects into
the manager’s MIB.

If you use HP OpenView Network Node Manager to manage the agent, the steps to integrate
the new MIB into the manager's MIB are as follows:

1. Run HP OpenView Network Node Manager.

2. Load the new MIB, myCompany, into the manager’s MIB.

For HP OpenView Network Node Manager to access your new MIB objects, the MIB
module defining those objects must be loaded into the manager’s MIB. Use the
Load/Unload MIBs operation to do so.

You are now ready to manage your HP OpenView Extensible SNMP Agents. For example, if
you use the HP OpenView Network Node Manager you can use the Browse MIB, MIB Data
Collection, MIB Application Builder, and the applications built by the MIB Application
Builder to manage the new objects.
Chapter 5 63

Configuring the HP OpenView Extensible SNMP Subagent
Configuring Traps
Configuring Traps
This section explains how to use the snmptrap command to send SNMP traps from agents to
managers. It discusses the following:

• How to define traps.

• How traps are sent.

• When to use snmptrap.

• How to use the snmptrap command.

• Sample solution.

Before You Begin

To configure your agent to send traps, you need to understand what traps are. If you are not
familiar with traps, see:

• The “Traps” section in Chapter 1, “Introduction and Operational Concepts.”

• RFC 1157: A Simple Network Management Protocol (SNMP).

• The manpage for snmptrap.

How to Define Traps

To define your own trap, you need to uniquely identify your trap. You do so by combining the
generic Enterprise Specific trap 6 with your own specific trap number. The maximum specific
trap number is 232-1.This combination tells the manager what kind of trap it is. For example,
in the sample trap solution shown at the end of this section, the trap is a combination of 6 and
the specific trap 2.

Optionally, you can pass along data.

How Traps Are Sent

The agent sends the traps using the snmptrap command. For example, you can configure your
agent to send traps by executing the snmptrap command from a shell script.

When to Use snmptrap

As a manager, you have two alternatives when monitoring the status of an agent. You can:
Chapter 564

Configuring the HP OpenView Extensible SNMP Subagent
Configuring Traps
• Continuously poll the agent from the manager to get information.

• Send a trap from the agent to the manager.

Polling creates a lot of traffic on the network and, if an event occurs shortly after polling has
taken place, the manager may not find out about an event for an extended period of time. The
key benefits of using the snmptrap command are that you can decrease the amount of SNMP
traffic on the network and that you can find out about an event sooner.

If you have HP OpenView Network Node Manager, you can customize your environment by
using the snmptrap command in conjunction with the Event Configuration operation. For
example, assume that you have written a script on an agent that executes the snmptrap
command when a particular process on the agent goes down. You can then use the Event
Configuration operation from the HP OpenView Network Node Manager station to take an
action when the manager receives that particular trap from the agent.

Using snmptrap

The snmptrap command is documented in the manpage for snmptrap.

Sample Trap Solution

Assume that you are responsible for managing the printers on your network. Your goal is to
write a script that executes the snmptrap command when the printer scheduler goes down.
Here is an example script for an HP-UX system.

#! /bin/sh
#
#
This script checks to see if the printer scheduler (lpsched) is
running. This check is performed every hour. If the scheduler is not
running, the agent sends an SNMP trap to the management station.

#
If a management station receives a trap from a system with enterprise
equal to .1.3.6.1.4.1.4242, generic-trap equal to 6, and the specific
trap equal to 2, the management station knows that the printer
scheduler for that agent-addr is down.
#
The agent sends how many hours the lp scheduler has been down with
the trap.
#
#
AGENT_ADDRESS=15.6.71.223

MGMT_STATION=flcndmak

hours=0
Chapter 5 65

Configuring the HP OpenView Extensible SNMP Subagent
Configuring Traps
while true
do
 sleep 3600
 pid=`ps -ef | grep lpsched| grep -v grep | wc -l`
 if [$pid -eq 0]
 then
 hours=`expr $hours + 1`
 snmptrap $MGMT_STATION .1.3.6.1.4.1.4242 $AGENT_ADDRESS 6 2 0 \
 1.3.6.1.4.1.4242.4.2.0 integer $hours
 else
 hours=0
 fi
done
Chapter 566

6 Creating your MIB Module

This chapter describes how to do the following:

• Determine the type of MIB object you want to define.
Chapter 6 67

Creating your MIB Module
• Define MIB objects using commands.

• Define MIB objects using files. This includes simple objects and table objects.

This information provides the detailed instructions needed to complete the high-level
procedure for writing a MIB module that was mentioned in Chapter 5, “Configuring the HP
OpenView Extensible SNMP Subagent.”
Chapter 668

Creating your MIB Module
Determining the Type of MIB Object to Define
Determining the Type of MIB Object to Define
The MIB objects that you define may be of two types. The objects may be associated with
commands or they may be associated with a file. If the object is associated with a command
and the agent receives an SNMP request for that object, the command is executed and the
output of the command is returned in the SNMP reply. If the object is associated with a file
and the agent receives an SNMP request for that object, the file is read and the contents of the
file are returned in the SNMP reply.

When choosing whether to define objects as command objects or file objects you may want to
ask the following questions:

Is a command required to obtain the object’s value? If so, you may want to define the object
associated with a command. If the value of the object does not require a command to be
executed every time the object’s value is retrieved, you may want to define the object
associated with a file.

Are the objects arranged in a table (that is, do the objects have rows and columns)? If so, you
must define the objects associated with a file.

Are you concerned with the performance of executing a command each time the object is
retrieved? If so, you may want to avoid executing a command and define the objects associated
with a file.

Once you have determined how to define your MIB object, use the macro template described
in the next section to help you define the MIB object.

Using the Macro Template

Here is an illustration of the macro template you will use. Use this template to define both
command and file MIB objects. You must fill in the fields shown in italics.

Note that the snmpd.extend file differs from the RFCs in the following areas:

• The IMPORTS and EXPORTS clauses are not required in the snmpd.extend file and will be
ignored if added.

• The DESCRIPTION clause is required. Use this field to define the commands you want to
execute.

 moduleName DEFINITIONS ::= BEGIN

 -- dashes indicate a comment

 enterpriseName OBJECT IDENTIFIER ::= { objectID }
Chapter 6 69

Creating your MIB Module
Determining the Type of MIB Object to Define
 nodeName OBJECT IDENTIFIER ::= { objectID }

 Object OBJECT-TYPE
 SYNTAX Value
 ACCESS Value
 STATUS Value
 DESCRIPTION
 "Add a textual description of your object here along with:
 READ-COMMAND: read_command
 READ-COMMAND-TIMEOUT: timeout_in_seconds
 WRITE-COMMAND: write_command
 WRITE-COMMAND-TIMEOUT: timeout_in_seconds
 FILE-COMMAND: file_command
 FILE-COMMAND-FREQUENCY: file_command_seconds
 PIPE-IN-NAME: pipe_in_name
 PIPE-OUT-NAME: pipe_out_name
 PIPE-FREQUENCY: pipe_seconds
 APPEND-COMMUNITY-NAME: true | false
 FILE-NAME: file_name"

 ::= { parent_node subidentifier }
 END

Here is an explanation of each command in the snmpd.extend file. For an example, see the
section “Sample MIB Solution” later in this chapter.

Table 6-1

moduleName The name of your MIB module.

insert two dashes
(--)

Adds documentation in front of your comments.

enterpriseName The enterprise ID you have registered with the Internet Assigned
Numbers Authority. For example, Hewlett-Packard’s enterprise ID is
hp and the corresponding objectID is { enterprises 11 }.

nodeName The name of the node under which you want to organize your MIB
objects. You can have multiple node name entries and a node can be
a child of another node.

Object The textual label of your object.
Chapter 670

Creating your MIB Module
Determining the Type of MIB Object to Define
SYNTAX Defines the data structure corresponding to the object type. The HP
OpenView Extensible SNMP Agent supports the following values:

INTEGER A simple type consisting of positive and negative
whole numbers, including zero. Do not use the
value zero as an enumerated type.

OCTET STRING A simple type taking zero or more octets, each octet
being an ordered sequence of eight bits.

OBJECT IDENTIFIER

A type denoting an authoritatively named object.
An example is 1.3.6.1.2.1.1.

NULL A simple type consisting of a single value, also
called null. This type can only be used with
defining an object associated with a command.

NetworkAddress A type representing an IP address.

IpAddress A type representing an IP address.

Counter A type representing a non-negative integer which
calculates change and increases until it reaches a
maximum value. When it reaches the maximum
value, it wraps around and starts increasing again
from zero.

Gauge A type representing a non-negative integer which
may increase or decrease, but which latches at a
maximum value.

TimeTicks A type representing a numeric value which counts
the time since an event.

Opaque A type representing an arbitrary encoding.

DisplayString A type representing textual information taken
from the NVT ASCII character set.

PhysAddress A type representing a media address. For many
types of media, this will be a binary
representation. For example, an ethernet address
is represented as a string of six octets.

Table 6-1 (Continued)
Chapter 6 71

Creating your MIB Module
Determining the Type of MIB Object to Define
Table 6-2

SYNTAX SEQUENCE OF A type representing a table. This type represents
objects that have rows and columns. This type can
only be used when defining objects associated with
a file.

SEQUENCE A type representing the entry of a table. This type
is a child of an object with type SEQUENCE OF. This
type may optionally have an INDEX clause. The
INDEX clause identifies the column that uniquely
defines the row. The default INDEX clause is the
first column of the table. This type can only be used
when defining objects associated with a file.

The maximum value for INTEGER, Counter, Gauge, and TimeTicks is
232-1 (4294967295 decimal).

ACCESS Defines the level of access allowed. Valid values are

read-only Means you can perform GetRequests but not
SetRequests on the object.

read-write Means you can perform both GetRequests and
SetRequests on the object.

STATUS Defines the implementation support required. Valid values for
STATUS are mandatory, optional, obsolete, and deprecated. It is
recommended that you use mandatory.
Chapter 672

Creating your MIB Module
Determining the Type of MIB Object to Define
DESCRIPTION Describes your object. This is also where you define the commands or
files associated with the object.

If your object is associated with a command, enter the following fields
after the textual description:

READ-COMMAND If your ACCESS Value is read-only or read-write,
you must enter the READ-COMMAND. When the agent
receives an SNMP GetRequest or a
GetNextRequest, the agent executes the
read_command and returns the results of that
command in the SNMP reply. The output can be
either standard out or standard error.

READ-COMMAND-TIMEOUT Specifies the time in seconds you want the
agent to wait for the read_command to finish. The
maximum value is 90 seconds. The
READ-COMMAND-TIMEOUT is optional. If you do not
specify a timeout_in_seconds value, the agent
will wait three seconds.

WRITE-COMMAND If your ACCESS Value is read-write, you must
enter the WRITE-COMMAND. The agent executes the
write_command when it receives an SNMP
SetRequest. The write_command should not
generate output to standard out or standard error.

WRITE-COMMAND-TIMEOUT Specifies the time in seconds you want the
agent to wait for the write_command to finish. The
maximum value is 90 seconds. The
WRITE-COMMAND-TIMEOUT is optional. If you do not
specify a timeout_in_seconds value, the agent
will wait three seconds. If you specify a
timeout_in_seconds value of -1, the
write_command is executed and the agent responds
without waiting for the command to finish.

If the commands do not finish before the timeout_in_seconds, the
agent kills the commands and returns an error. extsubagt processes
one command at a time and waits for an answer before processing the
next command.

Table 6-2 (Continued)
Chapter 6 73

Creating your MIB Module
Determining the Type of MIB Object to Define
DESCRIPTION The DESCRIPTION clause may contain the READ-COMMAND,
READ-TIMEOUT, WRITE-COMMAND, and WRITE-TIMEOUT fields if the
SYNTAX is one of the following: INTEGER, OCTET STRING, OBJECT
IDENTIFIER, NULL, NetworkAddress, IpAddress, Counter, Gauge,
TimeTicks, Opaque, DisplayString, or PhysAddress. Refer to the
next section for the syntax of the DESCRIPTION clause.

If your object is associated with a file, enter the following fields after
the textual description:

FILE-COMMAND When the agent receives an SNMP GetRequest,
GetNextRequest, or SetRequest, the agent executes
the file_command before either reading or creating
the file_name. When the agent receives an SNMP
SetRequest, the agent also executes the
file_command after the file_name has been
created. The file_command must complete within
10 seconds.

FILE-COMMAND-FREQUENCY When the agent receives an SNMP
GetRequest or GetNextRequest, the agent executes
the file_command if the agent last executed the
file_command more than file_command_seconds
ago. By default, the file_command will get
executed at most every 10 seconds. The agent
executes the file_command both before and after
the file has been created for every SNMP
SetRequest regardless of when it was last executed.

PIPE-IN-NAME After the agent writes to the pipe_out_name, the
agent reads the pipe_in_name waiting for a
message. If the agent reads a 0, the agent continues
processing and either reads or creates a file_name.
If the agent reads something other that 0, or if the
agent does not receive a message within
DEFAULT_PIPE_TIMEOUT (20 seconds), the agent
returns an error. The PIPE-IN-NAME is required if
the PIPE-OUT-NAME is present. Both the
pipe_in_name and pipe_out_name can be created
using the mkfifo command.

Table 6-2 (Continued)
Chapter 674

Creating your MIB Module
Determining the Type of MIB Object to Define
Table 6-3

DESCRIPTION PIPE-OUT-NAME When the agent receives an SNMP GetRequest,
GetNextRequest, or SetRequest, the agent writes to the
pipe_out_name. The pipe_out_name must be a FIFO
(named pipe). The management station’s IP address,
the community name used in the request, the OBJECT
IDENTIFIER used in the request, the SYNTAX of the
object, the request issued by the management station,
and the instance are written to the pipe. Each value is
separated by white space and the message ends with
the \0 character. When the agent receives an SNMP
SetRequest, the agent also writes to pipe_out_name
after the file_name has been created.

PIPE-FREQUENCY When the agent receives an SNMP GetRequest or
GetNextRequest, the agent writes to the
pipe_out_name if the agent last wrote to the
pipe_out_name more than pipe_seconds ago. By
default, the pipe_out_name will get written to at most
every 10 seconds. The agent writes to the
pipe_out_name both before and after the file has been
created for every SNMP SetRequest, regardless of
when it was last written to.

APPEND-COMMUNITY-NAME If APPEND-COMMUNITY-NAME is true, the agent
reads or creates file_name.comm, where comm is the
community name sent in the request. If
file_name.comm is not present, the agent returns an
error. The value for APPEND-COMMUNITY-NAME must be
either true or false.

FILE-NAME When the agent receives an SNMP GetRequest or
GetNextRequest, the agent reads the file_name and
returns the contents of that file in the SNMP Reply.
When the agent receives an SNMP SetRequest, the
agent creates file_name containing the value that the
object is set to. The file_name will no longer contain
comments after the agent creates it.

extsubagt processes one command at a time and waits for an answer
before processing the next command.

Note that the read and write access values do not have anything to do
with the read and write file permissions.
Chapter 6 75

Creating your MIB Module
Determining the Type of MIB Object to Define
The DESCRIPTION Clause

Valid syntax and ordering for Extensible SNMP Agent commands in DESCRIPTION clause are:

Simple Objects

READ-COMMAND: command-line
[READ-COMMAND-TIMEOUT: seconds-to-timeout]
WRITE-COMMAND: command-line
[WRITE-COMMAND-TIMEOUT: seconds-to-timeout]

EXAMPLE:

READ-COMMAND: /usr/bin/users
READ-COMMAND-TIMEOUT: 10

Simple Objects and Table Objects

[FILE-COMMAND: command-line [FILE-COMMAND-FREQUENCY: seconds]]
[PIPE-IN-NAME: pipe-name
PIPE-OUT-NAME: pipe-name
[PIPE-FREQUENCY: seconds]]
[APPEND-COMMUNITY-NAME: true | false]
FILE-NAME: filename

EXAMPLE:

FILE-COMMAND: /usr/bin/filecmd
FILE-COMMAND-FREQUENCY: 30
APPEND-COMMUNITY-NAME: false
FILE-NAME: /tmp/myfile

Ordering is important. For example, FILE-COMMAND must be before FILE-NAME.

DESCRIPTION The FILE-COMMAND, FILE-COMMAND-FREQUENCY, PIPE-IN-NAME,
PIPE-OUT-NAME, PIPE-FREQUENCY, and APPEND-COMMUNITY-NAME clauses
are optional. The DESCRIPTION clause may contain the FILE-NAME field if
the SYNTAX is one of the following: INTEGER, OCTET STRING, OBJECT
IDENTIFIER, NetworkAddress, IpAddress, Counter, Gauge, TimeTicks,
Opaque, DisplayString, PhysAddress, SEQUENCE, or SEQUENCE OF.
Refer to the next section for the syntax of the DESCRIPTION clause.

parent_node Name of the node you have already identified. subidentifier is the
number that is appended to the parent node to make the object unique.

Table 6-3 (Continued)
Chapter 676

Creating your MIB Module
Determining the Type of MIB Object to Define
Using Commands to Define your MIB Object

If you use commands to define your MIB object, the command can be either an existing UNIX
command, or a command that you have written. If you write your own commands, see
“Writing Shell Commands” later in this section.

• You specify these commands in the DESCRIPTION clause in the snmpd.extend file.

• The maximum command size is 5120 characters.

• A command can span multiple lines. Optionally, end each line with a backslash (\).

Sample MIB Solution

To illustrate how you can configure your HP OpenView Extensible SNMP Agent to support
any object you define, this section has a step-by-step sample solution.

Assume you work for the Flintstones Company. Your goal is to write MIB objects which will:

• List users who are using a system.

• Manage mail queues.

• Manage the number of widgets produced per hour on an unattended system.

• Keep track of the LP scheduler.

Your agent system is flintagent with the default community name public. The set
community name is secret.

The manager system is running the HP OpenView Network Node Manager software.

Here are the steps.

1. Define your MIB objects.

To ensure that your object IDs are unique, you decide to define your MIB objects in the
flintstones (4242) subtree. The MIB tree hierarchy is:

internet OBJECT IDENTIFIER ::= { iso(1) org(3) dod(6) internet(1) }
enterprises OBJECT IDENTIFIER ::= { internet private (4) 1 }
flintstones OBJECT IDENTIFIER ::= { enterprises 4242 }
fsys OBJECT IDENTIFIER ::= { flintstones 1 }
fmail OBJECT IDENTIFIER ::= { flintstones 2 }
fwidgets OBJECT IDENTIFIER ::= { flintstones 3 }
fprinters OBJECT IDENTIFIER ::= { flintstones 4 }
fdisk OBJECT IDENTIFIER ::= { flintstones 5 }
fprocess OBJECT IDENTIFIER ::= { flintstones 6 }
fconfig OBJECT IDENTIFIER ::= { flintstones 7 }

The MIB objects are defined and organized into the logical groups shown in Figure 6-1.
Chapter 6 77

Creating your MIB Module
Determining the Type of MIB Object to Define
Figure 6-1 MIB Tree Structure for Sample MIB Solution

The object identifiers for the leaf nodes (the MIB objects) are shown in Table 6-4:

Note that the suffix 0 indicates that this is a leaf node (instance 0).

2. Log on as root user to the flintagent system.

3. Create the MIB module, snmpd.extend.

You may decide to use the example snmpd.extend file provided with the HP OpenView
Extensible SNMP Agent as a model. To do so, copy prg_samples/eagent/snmpd.extend
to snmpd.extend. This is the example snmpd.extend file.

FLINTSTONES DEFINITIONS ::= BEGIN

-- This MIB module, snmpd.extend, defines the MIB objects for the
-- Flintstones Company.

internet OBJECT IDENTIFIER ::= { iso(1) org(3) dod(6) internet(1) }
enterprises OBJECT IDENTIFIER ::= { internet private(4) 1 }

Table 6-4 Leaf Node Object Identifiers

Leaf Node Object Identifier

fsysUsers 1.3.6.1.4.1.4242.1.1.0

fmailNumMsgs 1.3.6.1.4.1.4242.2.1.0

fmailListMsgs 1.3.6.1.4.1.4242.2.2.0

fwidgetsPerHour 1.3.6.1.4.1.4242.3.1.0

fprintersStatus 1.3.6.1.4.1.4242.4.1.0
Chapter 678

Creating your MIB Module
Determining the Type of MIB Object to Define
flintstones OBJECT IDENTIFIER ::= { enterprises 4242 }
fsys OBJECT IDENTIFIER ::= { flintstones 1 }
fmail OBJECT IDENTIFIER ::= { flintstones 2 }
fwidgets OBJECT IDENTIFIER ::= { flintstones 3 }
fprinters OBJECT IDENTIFIER ::= { flintstones 4 }
fdisk OBJECT IDENTIFIER ::= { flintstones 5 }
fprocess OBJECT IDENTIFIER ::= { flintstones 6 }
fconfig OBJECT IDENTIFIER ::= { flintstones 7 }

-- The fsys Group

fsysUsers OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only
 STATUSmandatory
 DESCRIPTION
 "List of users on the flintstones machine.
 READ-COMMAND: /usr/bin/users; exit 0
 READ-COMMAND-TIMEOUT: 5"
 ::= { fsys 1 }

-- The fmail Group

fmailNumMsgs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "Message count on the mail queue.
 READ-COMMAND: /usr/bin/mailq -bp | fgrep -v Mail | wc -l"
 ::= { fmail 1 }

fmailListMsgs OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "List of mail messages on the mail queue.
 READ-COMMAND: /usr/bin/mailq
 READ-COMMAND-TIMEOUT: 10"
 ::= { fmail 2 }

-- The fwidgets Group

fwidgetsPerHour OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-write
 STATUS mandatory
Chapter 6 79

Creating your MIB Module
Determining the Type of MIB Object to Define
 DESCRIPTION
 "Number of widgets produced per hour.
 READ-COMMAND: prg_samples/eagent/num_widgets $i $c $o $s
 READ-COMMAND-TIMEOUT: 2
 WRITE-COMMAND: prg_samples/eagent/change_num_widgets $*
 WRITE-COMMAND-TIMEOUT: 10"
 ::= { fwidgets 1 }

-- The fprinters Group

fprintersStatus OBJECT-TYPE
 SYNTAX Integer {
 up(1),
 down(2)
 }
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "Status of the printer scheduler.
 READ-COMMAND: ps -ef | grep lpsched | grep -v grep | wc |
 awk '{ if ($1 == 0) print 2; else print 1 }' "
 ::= { fprinters 1 }

END

Note the following:

• The commands you are executing are defined in the DESCRIPTION clause in the
snmpd.extend file. One benefit of adding the commands to the DESCRIPTION clause is
that you can see what commands you are executing when you ask for description from
the manager.

• The READ-COMMAND-TIMEOUT and the WRITE-COMMAND-TIMEOUT lines are optional. It
indicates the time in seconds the agent will wait for a response. If a timeout is not
specified, the agent by default waits three seconds for a response. If the command
does not finish before the timeout, the agent kills the command and returns an error.

4. Reconfigure the HP OpenView Extensible SNMP Agent (extsubagt) by killing it and
restarting it.

When you reconfigure the agent, the system checks the syntax and the structure of the
snmpd.extend file and logs any errors or success to snmpd.log. To see the errors on
standard error, kill extsubagt and restart it.

5. From the manager, verify that flintagent responds to the objects you have added.

Use any of the SNMP commands or use the MIB operations in HP OpenView Network
Node Manger such as the MIB Browser. For information about the SNMP commands, see
the manpages for snmpget, snmpnext, snmpset, and snmpwalk.
Chapter 680

Creating your MIB Module
Determining the Type of MIB Object to Define
For example, to verify that the fsysUsers object returns a list of users with the snmpget
command, type:

snmpget flintagent .1.3.6.1.4.1.4242.1.1.0

Note that when you specify the object ID in an SNMP command, the object ID must start
with a dot (.).

The snmpget command executes the /usr/bin/ucb/users command and returns a list of
users logged into the flintagent system.

To change the fwidgetsPerHour object to produce 15 widgets per hour with the snmpset
command, type:

 snmpset -c secret flintagent .1.3.6.1.4.1.4242.3.1.0 Gauge 15

Your sample configuration is done.

Refer to the “Writing Shell Commands” section later in this chapter if you need information
on writing shell commands.

Using Files to Define Your MIB Object

Both simple objects and tables can be added to the MIB module. The file based method
requires a new set of keywords in the DESCRIPTION clause of the OBJECT-TYPE macro
definition. The agent recognizes the FILE-NAME: field in the DESCRIPTION clause. The file
associated with the FILE-NAME: field is read to retrieve the values of the object and created to
modify the values associated with the object.

The following objects can be added using the file based technique:

INTEGER

OCTET STRING

OBJECT IDENTIFIER

NetworkAddress

IpAddress

Counter

Gauge

TimeTicks

Opaque

DisplayString

PhysAddress
Chapter 6 81

Creating your MIB Module
Determining the Type of MIB Object to Define
SEQUENCE

SEQUENCE OF

These objects can have ACCESS of read-write or read-only.

Simple Objects

These are objects that have one value. For example, most systems have only one CPU model
number. This object would be a simple object. If a system had several CPUs, a table of CPU
model numbers would be required. Tables are discussed later.

If the SYNTAX of the object is OCTET STRING, Opaque, or DisplayString, the agent reads the
entire file for the value. The maximum size of the file contents is 4096 (4K). If the string is
prefixed with 0x, the value of the string is converted to hexadecimal. For example, if the file
contained 0x0800093519D0, the agent would return the hexadecimal representation of this
value rather than the ASCII representation.

Other objects defined are read from the file looking for the first value separated by white
space. You can use the # character in the first column for comments.

EXAMPLE:

You want the agent to respond with the system's default printer. The default printer is stored
in /usr/spool/lp/default. You also want to modify the default printer, so you want to
update /usr/spool/lp/default remotely using SNMP.

The following entries are entered into snmpd.extend to add this object to the agent.

internet OBJECT IDENTIFIER ::= { iso(1) org(3) dod(6) internet(1) }
enterprises OBJECT IDENTIFIER ::= { internet private(4) 1 }
flintstones OBJECT IDENTIFIER ::= { enterprises 4242 }
fprinters OBJECT IDENTIFIER ::= { flintstones 4 }

fdefaultPrinter OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "Default printer
 FILE-NAME: /usr/spool/lp/default"
 ::= { fprinters 2 }

Note that this object is a string and has read-write access.

If the file /usr/spool/lp/default contains ljetp4 and the agent receives an SNMP
GetRequest for flintstones.fprinters.fdefaultPrinter.0, the extsubagt
reads/usr/spool/lp/default and returns ljetp4 to the management station.
Chapter 682

Creating your MIB Module
Determining the Type of MIB Object to Define
The agent caches this value in memory for future possible requests. If the file contents do not
change (the modification time of the file does not change) and the agent receives another
SNMP GetRequest for flintstones.fprinters.fdefaultPrinter.0, the agent returns
ljetp4 from its cache rather than re-read the file contents.

The same procedures are used for GetNextRequests. If the agent receives an SNMP
GetNextRequest for flintstones.fprinters.fdefaultPrinter the agent reads
/usr/spool/lp/default and returns ljetp4 for the object
flintstones.fprinters.fdefaultPrinter.0 to the management station.

If the agent receives a SNMP SetRequest for flintstones.fprinters.fdefaultPrinter.0
with value laserjet-l4 the agent will create /usr/spool/lp/default with the contents
laserjet-l4. The contents of the file before the SetRequest are gone. If the agent cannot
write the file, a genError is returned and the error is logged to /usr/adm/snmpd.log.

Table Objects

Table objects are useful for objects that have several values. An example of table objects found
in MIB-II are the TCP connection table and the interface table.

EXAMPLE:

You want to retrieve the list of users on a remote machine, their user id, the disk space
associated with the user, and the e-mail address of the user. The data on the remote machine
is located in a file prg_samples/eagent/user_disk_space. The contents of the file look like
the following:

100 zach 120 zach@server1
201 alice 65 alice@server2
320 john 2 john@server3
119 craig 500 root@server1
217 steve 75 steve@server1
83 bob 111 bob@harrumph

This table has four columns and six rows. Every table defined using the Extensible SNMP
Agent must have a column or a set of columns that uniquely define the row. In some models,
this column would be called a key. In this example, the first column is unique. The User ID is
unique on this system. If the User Names are unique, the second column could be used as the
key.

To configure the agent to respond to these objects, you need to make the following entries into
the agent configuration file snmpd.extend.

internet OBJECT IDENTIFIER ::= { iso(1) org(3) dod(6) internet(1) }
enterprises OBJECT IDENTIFIER ::= { internet private(4) 1 }
flintstones OBJECT IDENTIFIER ::= { enterprises 4242 }
fdisk OBJECT IDENTIFIER ::= { flintstones 5 }
Chapter 6 83

Creating your MIB Module
Determining the Type of MIB Object to Define
UserDiskTable OBJECT-TYPE
 SYNTAX SEQUENCE OF FUserDiskEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "List of users and the number of kilobytes in their home directory.
 FILE-NAME: prg_samples/eagent/user_disk_space"
 ::= { fdisk 1 }

fUserDiskEntry OBJECT-TYPE
 SYNTAX FUserDiskEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "This macro documents the column that uniquely describes each row."
 INDEX { fUID }
 ::= { fUserDiskTable 1 }

FUserDiskEntry ::=
 SEQUENCE {
 fUID INTEGER,
 fUserName DisplayString,
 fUserDiskSpace INTEGER,
 fUserEmailAddress DisplayString
 }

fUID OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "User's unique ID"
 ::= { fUserDiskEntry 1 }

fUserName OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "User login name"
 ::= { fUserDiskEntry 2 }

fUserDiskSpace OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "Amount of disk space (in kilobytes) used by the user."
 ::= { fUserDiskEntry 3 }
Chapter 684

Creating your MIB Module
Determining the Type of MIB Object to Define
fUserEmailAddress OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "Email address for the user."
 ::= { fUserDiskEntry 4 }

The first OBJECT-TYPE macro, fUserDiskTable, describes the file name associated with the
object. The second OBJECT-TYPE macro, fUserDiskEntry, describes the column that uniquely
identifies a row. The next entry, FUserDiskEntry, is for documentation purposes. This entry
lists the columns in the table. This entry is optional. The last four OBJECT-TYPE macros, fUID,
fUserName, fUserDiskSpace, and fUserEmailAddress define the columns in the table.

If the agent receives a GetNextRequest for fUserDiskTable.fUserDiskEntry.fUID, the
agent will read the entire file prg_samples/eagent/user_disk_space. The agent then sorts
the table based on the object specified in the INDEX clause. The sorted table will then look like
this:

83 bob 111 bob@harrumph
100 zach 120 zach@server1
119 craig 500 root@server1
201 alice 65 alice@server2
217 steve 75 steve@server1
320 john 2 john@server3

The file contents have not been changed, the cached values in the agent are sorted.

The agent would then return the first value in the table. This value would be the first column
of the first row. The management station would receive the value 83 for the MIB object
flintstones.fdisk.fUserDiskTable.fUserDiskEntry.fUID.83. The fUID has 83
appended to the object identifier.

The user ID 83 uniquely identifies the value in the row.

If the agent receives an SNMP GetNextRequest for
flintstones.fdisk.fUserDiskTable.fUserDiskEntry.fUID.83, the agent would check to
see if the file has been modified. If the file has been modified, the agent would re-read
prg_samples/eagent/user_disk_space. It would then return the next user ID after the
user ID for bob. It would return the value 100 for
flintstones.fdisk.fUserDiskTable.fUserDiskEntry.fUID.100.

If the agent receives an SNMP GetNextRequest for
flintstones.fdisk.fUserDiskTable.fUID.320, which is the user ID for john, the agent
would then notice that there are not any more user names and it would return the first value
in the second column. It would return the value bob for MIB object
fUserDiskEntry.fUserName.83.
Chapter 6 85

Creating your MIB Module
Determining the Type of MIB Object to Define
If the agent receives an SNMP GetRequest for fUserDiskEntry.fUserEmailAddress.217
the agent would look for an e-mail address associated with the row 217. 217 is the key for
steve, so the agent would return the value steve@server1 for the MIB object
fUserDiskEntry.fUserEmailAddress.217.

If the user would like to print the entire table, the user would issue an SNMP
GetNextRequest for fUserDiskTable.fUserDiskEntry.fUID,
fUserDiskTable.fUserDiskEntry.fUserName,
fUserDiskTable.fUserDiskEntry.fUserDiskSpace, and
fUserDiskTable.fUserDiskEntry.fUserEmailAddress.

The agent would return the first row back to you. The agent would return the following MIB
objects value pairs:

fUserDiskTable.fUserDiskEntry.fUID.83, 83
fUserDiskTable.fUserDiskEntry.fUserName.83, "bob"
fUserDiskTable.fUserDiskEntry.fUserDiskSpace.83, 111
fUserDiskTable.fUserDiskEntry.fUserEmailAddress.83, "bob@harrumph"

The user would then issue another SNMP GetNextRequest for

fUserDiskTable.fUserDiskEntry.fUID.83
fUserDiskTable.fUserDiskEntry.fUserName.83
fUserDiskTable.fUserDiskEntry.fUserDiskSpace.83
fUserDiskTable.fUserDiskEntry.fUserEmailAddress.83

The agent would reply with the next row in the table. The following MIB object, value pairs
would be returned.

fUserDiskTable.fUserDiskEntry.fUID.100, 100
fUserDiskTable.fUserDiskEntry.fUserName.100, "zach"
fUserDiskTable.fUserDiskEntry.fUserDiskSpace.100, 120
fUserDiskTable.fUserDiskEntry.fUserEmailAddress.100, "zach@server1"

This would continue until the last row was retrieved.

If you would want to modify the e-mail address for "alice", the user would issue an SNMP
SetRequest for MIB object fUserDiskTable.fUserDiskEntry.fUserEmailAddress.201 with
value "alice@mailer". The agent would write this value, along with all the other entries in
the table to prg_samples/eagent/user_disk_space. The file would then contain:

100 "zach" 120 "zach@server1"
201 "alice" 65 "alice@mailer"
320 "john" 2 "john@server3"
119 "craig" 500 "root@server1"
217 "steve" 75 "steve@server1"
83 "bob" 111 "bob@harrumph"

The following rules apply to creating the file that contains a table:
Chapter 686

Creating your MIB Module
Determining the Type of MIB Object to Define
• Each row of the table ends in a new-line. A row can continue over a new- line by adding
the character \ at the end of the line. For example, if the file contains

Column1 "Column # 2" \
"Column 3" Column4 Column5

The agent would consider this as one row with five columns.

• Each column is separated by white space. A column may be enclosed in double quotes. The
second column of the above example is enclosed in double quotes and is equal to Column #
2. The agent converts \" to ", and \\" to \".

For example, if the file contains

"This is an \"example\" of a column with \\" style quotes"

The agent would return the following to the management station.

This is an "example" of a column with \" style quotes

• A column’s value may not extend over a new-line.

Filling the File with Values

The file contents can be updated using the usual conventions available with UNIX. For
example, you can enter static configuration information using an editor. For information that
changes every five minutes, you can execute a cron command to update the file’s contents.
For example, a UNIX script could be run every night that creates
prg_samples/eagent/user_disk_space containing the disk space for every user.

A UNIX process may elect to update the file with up-to-date data. If you want a UNIX
command to be executed before the file is read, you can optionally enter the field
FILE-COMMAND in the description clause found in snmpd.extend.

If you want a UNIX process to receive a message before the file is read, you can optionally
enter the filed PIPE-IN-NAME and PIPE-OUT-NAME in the DESCRIPTION clause found in
snmpd.extend.

The FILE-COMMAND

The file_command specified after the FILE-COMMAND keyword is executed before the agent
reads the data file. The command may update the contents of the file.

For example, if you want to remotely retrieve the list of processes that are owned by root, you
would define the following MIB:

internet OBJECT IDENTIFIER ::= { iso(1) org(3) dod(6) internet(1) }
enterprises OBJECT IDENTIFIER ::= { internet private(4) 1 }
flintstones OBJECT IDENTIFIER ::= { enterprises 4242 }
fprocess OBJECT IDENTIFIER ::= { flintstones 6 }
Chapter 6 87

Creating your MIB Module
Determining the Type of MIB Object to Define
fUserRootProcessTable OBJECT-TYPE
 SYNTAX SEQUENCE OF FUserRootProcessEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "List of root processes.
 FILE-COMMAND: prg_samples/eagent/get_processes
 FILE-NAME: prg_samples/eagent/root_processes"
 ::= { fprocess 1 }

fUserRootProcessEntry OBJECT-TYPE
 SYNTAX FUserRootProcessEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "This macro documents the column that uniquely describes each row."
 INDEX { fProcessID }
 ::= { fUserRootProcessTable 1 }

FUserRootProcessEntry ::=
 SEQUENCE {
 fProcessID INTEGER,
 fProcessName DisplayString
 }

fProcessID OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "Process ID"
 ::= { fUserRootProcessEntry 1 }

fProcessName OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "Name of process"
 ::= { fUserRootProcessEntry 2 }

If the agent receives an SNMP GetNextRequest for

fprocess.fUserRootProcessTable.fUserRootProcessEntry.fProcessID
fprocess.fUserRootProcessTable.fUserRootProcessEntry.fProcessName

the agent would execute the following command

prg_samples/eagent/get_processes

This command creates the file
Chapter 688

Creating your MIB Module
Determining the Type of MIB Object to Define
prg_samples/eagent/root_processes

which contains the process ids and process names run by root.

The agent then reads prg_samples/eagent/root_processes, sorts the contents, and
returns the first row to the management station.

By default, the command is run at most once every 10 seconds. For example, if the agent
receives another SNMP GetNextRequest for

fprocess.fUserRootProcessTable.fUserRootProcessEntry.fProcessID
fprocess.fUserRootProcessTable.fUserRootProcessEntry.fProcessName

the agent would only execute the following command if it had been more than 10 seconds
since the agent last executed the command.

prg_samples/eagent/get_processes

If you only want the command to be run at most every hour, you can change the default
frequency by entering the following in the DESCRIPTION clause:

FILE-COMMAND-FREQUENCY: 3600

The command must exit with value 0, or a noSuchName error is returned to the management
station. The agent will kill the command if it does not return in 10 seconds.

Using the FILE-COMMAND with Set Requests

The file_command is executed before and after a set request happens. This occurs every time
a set operation is requested regardless of when the command was last executed.

For example, if you want to be able to update the configuration file for inetd the following
object would be defined.

internet OBJECT IDENTIFIER ::= { iso(1) org(3) dod(6) internet(1) }
enterprises OBJECT IDENTIFIER ::= { internet private(4) 1 }
flintstones OBJECT IDENTIFIER ::= { enterprises 4242 }
fconfig OBJECT IDENTIFIER ::= { flintstones 7 }

fInetdConf OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "The configuration file for inetd
 FILE-COMMAND: prg_samples/eagent/update_inetd $r
 FILE-COMMAND-FREQUENCY: 7200
 FILE-NAME: inetd.conf"
 :: = { fconfig 1 }

If the agent receives a SNMP SetRequest for flintstones.fconfig.fIntdConf.0 with the
contents of a inetd.conf configuration file, the agent would execute the command
Chapter 6 89

Creating your MIB Module
Determining the Type of MIB Object to Define
prg_samples/eagent/update_inetd SetRequest

The agent would then write the contents to inetd.conf. The agent then executes

prg_samples/eagent/update_inetd PostSetRequest

The command checks the value of the first argument. If the value is PostSetRequest, the
command executes inetd -c to tell inetd to re- read its configuration file.

Using the PIPE-IN-NAME and PIPE-OUT-NAME Clauses

The PIPE-IN-NAME and PIPE-OUT-NAME clauses are used for interprocess communication
between the agent and another UNIX process.

The pipe_out_name file name specified after the PIPE-OUT-NAME receives data before the
agent reads the file. After a process reads the data, the process may update the contents of the
file. After the process is finished updating the file, it must notify the agent that it is done by
writing to the pipe_in_name file specified after PIPE-IN-NAME.

Lets use the same example for FILE-COMMAND. Rather than execute a command to fill the
contents of the file, a process will be running in the background waiting to fill the contents of
the file.

internet OBJECT IDENTIFIER ::= { iso(1) org(3) dod(6) internet(1) }
enterprises OBJECT IDENTIFIER ::= { internet private(4) 1 }
flintstones OBJECT IDENTIFIER ::= { enterprises 4242 }
fprocess OBJECT IDENTIFIER ::= { flintstones 6 }

fUserRootProcessTable OBJECT-TYPE
 SYNTAX SEQUENCE OF FUserRootProcessEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "List of root processes.
 PIPE-IN-NAME: /tmp/fifo_in
 PIPE-OUT-NAME: /tmp/fifo_out
 FILE-NAME:prg_samples/eagent/root_processes"
 ::= { fprocess 1 }

fUserRootProcessEntry OBJECT-TYPE
 SYNTAX FUserRootProcessEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "This macro documents the column that uniquely describes each row."
 INDEX { fProcessID }
 ::= { fUserRootProcessTable 1 }

FUserRootProcessEntry ::=
 SEQUENCE {
Chapter 690

Creating your MIB Module
Determining the Type of MIB Object to Define
 fProcessID INTEGER,
 fProcessName DisplayString
 }

fProcessID OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "Process ID"
 ::= { fUserRootProcessEntry 1 }

fProcessName OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "Name of process"
 ::= { fUserRootProcessEntry 2 }

If the agent receives an SNMP GetNextRequest for

fprocess.fUserRootProcessTable.fUserRootProcessEntry.fProcessID
fprocess.fUserRootProcessTable.fUserRootProcessEntry.fProcessName

the agent would send a message to /tmp/fifo_out.

The message contents include:

• The manager’s IP address

• Community name

• Object id

• Object type

• PDU type

• Instance

The end of the message is denoted by a \0 character.

The background process would then receive this message, create the file

prg_samples/eagent/root_processes

containing the process ids and process names run by root.

The background process then writes a 0 to /tmp/fifo_in to indicate that the file creation was
successful. If the agent receives data other than a 0, a noSuchName error is returned to the
management station and a message is logged to snmpd.log.
Chapter 6 91

Creating your MIB Module
Determining the Type of MIB Object to Define
The agent then reads prg_samples/eagent/root_processes, sorts the contents, and returns
the first row to the management station.

An example background process might look like this:

#! /bin/ksh

set -u
#set -x

PIPE_IN="$PWD/fifo_in"
PIPE_OUT="$PWD/fifo_out"

if [-p "PIPE_OUT"] ; then
 ! rm -f “PIPE_OUT"
fi

! mkfifo "PIPE_OUT"
! chmod 777 "PIPE_OUT"

if [-p "$PIPE_IN"] ; then
 ! rm -f "PIPE_IN"
fi

! mkfifo "PIPE_IN"
! chmod 777 "PIPE_IN"

while true ; do
 echo "\n--"
 read ipAddr comm oid oidType pduKeywd instance theRest < "PIPE_OUT"
 echo " ipAddr '$ipAddr'"
 echo " comm '$comm'"
 echo " oid '$oid'"
 echo " oidType '$oidType'"
 echo " pduKeywd '$pduKeywd'"
 echo " instance '$instance'"
 echo " theRest '$theRest'"
 echo
 echo "\00" >> "PIPE_IN" # Handshake with snmpd.
done < "PIPE_OUT" # Extra pipe reader to keep pipe open so snmpd read

The files /tmp/fifo_out and /tmp/fifo_in can be created using the mkfifo command.

By default, data is written to the pipe_out_name pipe no more often than every 10 seconds. To
change this frequency, you can specify a new value using the PIPE-FREQUENCY clause.

Set operations using the PIPE clauses work similarly as the FILE-COMMAND. Data is written to
the pipe_out_name pipe before and after the pipe is read. After the process receives data from
the pipe_out_name pipe the process must write data to the pipe_in_name pipe.

The agent will wait at the most, DEFAULT_PIPE_TIMEOUT (20 seconds) for data from the
pipe_in_name pipe.
Chapter 692

Creating your MIB Module
Determining the Type of MIB Object to Define
For a set request, extsubagt does the following actions:

• Sends a SetRequest to change value of object. The external process responds with "\0" in
PIPE_IN.

• Queries external process if the set was a success by sending PostSetRequest into
PIPE_OUT. The external process now responds with "\0" in PIPE_IN.

NOTE If the external process is unable to set the value, it will not respond with a "\0"
into PIPE_IN.

If the variables of multi-Varbind requests belong to the same family:

• For SET/GET requests, only the first variable is put into the PIPE file.

• For SET requests, only the last variable PostSetRequest is put into the PIPE file.

extsubagt assumes that all objects that belong to a particular family are handled by a single
external process. So, when you request a GET:

• The external process updates the data of all the objects in the family.

• extsubagt reads the data for all objects and updates its internal cache.

Creating Proxies Using the Extensible SNMP Agent

You can use the Extensible SNMP Agent to create a proxy. The agent can respond to objects
on behalf of another system, device, or application.

For example, if you want the agent to respond with the amount of memory for three systems
that do not support SNMP, the agent can act as a proxy for those other systems. The three
systems that do not support SNMP are named larry, curly, and moe. The following three
files contain the amount of memory on each system:

prg_samples/eagent/memory.larry
prg_samples/eagent/memory.curly
prg_samples/eagent/memory.moe

prg_samples/eagent/memory.larry contains the value 32 for 32 megabytes.
prg_samples/eagent/memory.curly contains 128 and prg_samples/eagent/memory.moe
contains 64.

Larry has IP address 15.2.112.244, curly has IP address 15.2.114.237, and moe has IP
address 15.2.113.223.

To implement this proxy, you would define the following object:
Chapter 6 93

Creating your MIB Module
Determining the Type of MIB Object to Define
internet OBJECT IDENTIFIER ::= { iso(1) org(3) dod(6) internet(1) }
enterprises OBJECT IDENTIFIER ::= { internet private(4) 1 }
flintstones OBJECT IDENTIFIER ::= { enterprises 4242 }
fsys OBJECT IDENTIFIER ::= { flintstones 1 }

fmemory OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "Amount of memory (in megabytes) on system
 APPEND-COMMUNITY-NAME:true
 FILE-NAME: prg_samples/eagent/memory"
 ::= { fsys 2 }

The agent will respond on behalf of larry, curly, and moe for the object
flintstones.fsys.fmemory. The community name in the request indicates the system of
interest. If the community name is larry, the amount of memory for 15.2.112.244 will be
returned. If the community name is curly, the amount of memory for 15.2.114.237 will be
returned, and if the community name is moe, the amount of memory for 15.2.113.223 will be
returned.

The new field, APPEND-COMMUNITY-NAME, tells the agent to read the file named

prg_samples/eagent/memory.communityName

If the agent receives an SNMP GetRequest for flintstones.fsys.fmemory.0 with
community name moe, the agent reads prg_samples/eagent/memory.moe and returns 64 to
the management station.

If the agent receives an SNMP GetRequest for flintstones.fsys.fmemory.0 with
community name larry, the agent reads prg_samples/eagent/memory.larry and returns
32 to the management station.

Using Proxy for Objects that are Built into the Agent

This proxy can be used to proxy for MIB-II objects or HP-UNIX objects.

For example, if you want to return different sysDescr values for the proxied systems larry,
curly and moe, the following files would contain a value for sysDescr:

prg_samples/eagent/sysDescr.larry
prg_samples/eagent/sysDescr.curly
prg_samples/eagent/sysDescr.moe

To implement this proxy, you would define the following object:

internet OBJECT IDENTIFIER ::= { iso(1) org(3) dod(6) internet(1) }
enterprises OBJECT IDENTIFIER ::= { internet private(4) 1 }
flintstones OBJECT IDENTIFIER ::= { enterprises 4242 }
Chapter 694

Creating your MIB Module
Determining the Type of MIB Object to Define
mgmt OBJECT IDENTIFIER ::= { internet 2 }
mib-2 OBJECT IDENTIFIER ::= { mgmt 1 }
system OBJECT IDENTIFIER ::= { mib-2 1 }

sysDescr OBJECT-TYPE
 SYNTAX DisplayString (SIZE (0..255))
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "A textual description of the entity. This value
 should include the full name and version
 identification of the system's hardware type,
 software operating-system, and networking
 software. It is mandatory that this only contain
 printable ASCII characters.
 APPEND-COMMUNITY-NAME: true
 FILE-NAME: prg_samples/eagent/sysDescr"
 ::= { system 1 }

If the agent receives an SNMP GetRequest for system.sysDescr.0 with community name
moe, the agent reads prg_samples/eagent/sysDescr.moe and returns the string contained
in the file to the management station.

If the agent receives an SNMP GetRequest for system.sysDescr.0 with community name
public, the agent returns its internal value for sysDescr.

Writing Shell Commands

This section discusses the steps for writing your own shell commands and the conventions
that you need to follow for the commands to work with SNMP. The shell commands can be
either UNIX shell scripts or programs.

Here are the steps.

1. Log on to the agent system where you want the command to execute.

2. Write the script or the program.

For an example, see the example script at the end of these steps, or
prg_samples/eagent/num_widgets or prg_samples/eagent/change_num_widgets.

Arguments

By default, extsubagt does not pass any arguments to the read_command or
file_command. If you want extsubagt to pass arguments, use the arguments listed below.

By default, extsubagt passes an argument to the write_command -- the value you want to
set the object to. For example, if you want to set the object value to 2, the agent passes
that value to the command.
Chapter 6 95

Creating your MIB Module
Determining the Type of MIB Object to Define
Optionally, if you want extsubagt to pass arguments to the read_command,
write_command and file_command, use the following arguments. You can specify the
arguments in any order.

Argument Value passed in

$i The management station’s IP address. The address is in internet dot
notation.

$c The community name used in the request.

$o The OBJECT IDENTIFIER used in the request. The OBJECT
IDENTIFIER is in dot notation.

$r The request issued by the management station. One of the following
values will be passed: GetRequest, GetNextRequest, SetRequest, or
PostSetRequest. The PostSetRequest will be passed to the
file_command after the file_name has been created.

$I The instance used in the request.

$s The SYNTAX of the object. One of the following values will be passed:
INTEGER, OCTET STRING, OBJECT IDENTIFIER, NULL, NetworkAddress,
IpAddress, Counter, Gauge, TimeTicks, Opaque, DisplayString, or
PhysAddress.

$* This is the same as specifying $i $c $o $s.

$$ Substitute $.

You add these arguments when you specify the command in the snmpd.extend file. For
example, if you want extsubagt to pass in the IP address of the management station, the
community name, and the object ID when executing the
prg_samples/eagent/change_num_widgets command, specify the following in the
DESCRIPTION clause in the snmpd.extend file:

READ-COMMAND:prg_samples/eagent/change_num_widgets $i $c $o

When the command executes, extsubagt substitutes the $ arguments with the real IP
address of the management station, the community name, and the object ID.

Search path

HP recommends that you use the full path when specifying the command. However, this is
not a requirement. You inherit the path of the calling process.

Return values

The return values for the read_command should be printed to standard out or standard
error.
Chapter 696

Creating your MIB Module
Determining the Type of MIB Object to Define
Execution

The read_command, write_command, and file_command are executed as if executed by
/bin/sh.

Shell commands are supported. You can specify shell commands such as exit, read, if,
and for in the read_command, write_command, and file_command. For a description of
the shell commands, see the manpage for sh. Shell commands do not have a path. See the
manpage for snmpd.extend for examples.

Exit codes

Make sure that the shell command exits with the correct exit code. An invalid exit code
results in an error returned to the management station. The following tables are the
errors returned to the management station for different exit codes:

read_command exit codes are:

write_command exit codes are:

Table 6-5

Exit Code What it Means to the Management System

0 No error, that is, your command is successful. The data
echoed to standard out or standard error will be
returned to the management station in the SNMP reply.
Only data necessary for the reply should be echoed to
standard out or standard error. Too much data will
return an error. The data echoed must be of the same
SYNTAX as specified in the snmpd.extend file. If the data
is not the same SYNTAX, an error will be returned to the
management station.

Non-zero noSuchName error, that is, the command is unsuccessful.

Table 6-6

Exit Code What it Means to the Management System

0 No error, that is, your command is successful. No data
should be echoed to standard out or standard error.
Chapter 6 97

Creating your MIB Module
Determining the Type of MIB Object to Define
file_command should exit with 0, if not, a noSuchName error is returned to the
management station.

Any errors the system encounters while trying to execute your shell command, are
returned as noSuchName error for the READ-COMMAND and FILE-COMMAND and genErr for
WRITE-COMMAND. The error is logged in the snmpd.log file.

3. Verify that the shell command executes successfully.

To verify that your shell command executes successfully, execute the command. For
example, to verify that the command associated with fmailListMsgs in the example
snmpd.extend file executes successfully, type

/usr/bin/mailq

The command should return a list of mail messages on the mail queue.

4. Check the exit code by typing:

echo $?

If the value is 0, the shell command is successful.

5. If your shell command has arguments, verify the arguments.

For example, assume you want to verify the num_widgets command shown in the “Sample
Shell Command” section. The num_widgets command is defined in the example
snmpd.extend file as:

DESCRIPTION "
READ-COMMAND: prg_samples/eagent/num_widgets $i $c $o $s"

To verify the arguments, the command you type may look something like:

num_widgets 15.2.3.149 public 1.3.6.1.4.4242.3.1 Gauge

The steps for writing your own shell commands are done.

Non-zero General error (genErr), that is, the command is
unsuccessful. If anything is echoed to standard out or
standard error on the write_command, a general error is
returned.

Table 6-6 (Continued)

Exit Code What it Means to the Management System
Chapter 698

Creating your MIB Module
Determining the Type of MIB Object to Define
Sample Shell Command

#! /bin/sh
@(#) HP OpenView Extensible SNMP Agent Release 3.0
num_widgets $Date: 94/01/19 15:35:33 $ $Revision: 3.3 $
#
This shell script is an example for the SNMP extensible agent
(snmpd.ea manpage).
#
This script is called by the agent when a management station requests
the object
#
iso.org.dod.internet.private.enterprises.flintstones.fwidgets.
fwidgetsPerHour.
#
This script is registered in the snmpd.extend(4) file.
#
This program will return the number of fwidgetsPerHour. The number of
widgets per hour is stored in /tmp/widgets_per_hour.

A general error will be returned if
a) the request is made for an object identifier other than the one
listed above.
b) the request is made with the community string not equal to "public"
c) the request is made for an object with SYNTAX not equal to "Gauge"
#
WIDGETS_FILE=/tmp/widgets_per_hour

echo $* >$0.out 2> $0.err

case $2 in
 public) break;;
 secret) break;;
 *) echo "Invalid Community Name"; exit 5;
esac

case $3 in
 1.3.6.1.4.1.4242.3.1) break;;
 *) echo "Invalid Object Identifier"; exit 5;
esac

case $4 in
 Gauge) break;;
 *) echo "Invalid syntax"; exit 5;;
esac

if [-r $WIDGETS_FILE]
then
 cat $WIDGETS_FILE
else
 echo 3 >$WIDGETS_FILE
Chapter 6 99

Creating your MIB Module
Determining the Type of MIB Object to Define
 cat $WIDGETS_FILE
fi
exit 0
Chapter 6100

7 Troubleshooting

This chapter focuses on troubleshooting the HP OpenView Extensible SNMP agent product.
The following topics are discussed:

• Recommended practices for problem prevention, isolation, and recovery.
Chapter 7 101

Troubleshooting
• Characterizing the problem.

• General product troubleshooting considerations.

• Troubleshooting by component.

General network troubleshooting is not discussed.
Chapter 7102

Troubleshooting
Recommended Practices
Recommended Practices
Following these recommended practices helps prevent and isolate problems, and recover from
them:

• Ensure that the agent system meets the hardware, software, and configuration
recommendations discussed in previous chapters.

• Do not modify HP OpenView SNMP agent product files, such as snmpd.conf, without
retaining the original files. The original files provide a way of restoring a known good
operational configuration. If you correct a problem by restoring the original files, you can
isolate the problem to the changes you made to these files.

• Use logging of the agent background processes to help isolate problems, but be sure to
clean up log files regularly. For information about logging, see the next page and check the
manpage for snmpd.

CAUTION Logging is usually used by support personnel only. It can cause the log file to
quickly grow very large (multiple megabytes in size). If you use logging,
remember to monitor the size of the log file often, and to turn logging off as soon
as you are finished debugging.

Logging Options

The logging options for the HP OpenView SNMP agent background process are described in
Table 7-1. To set the initial log mask, use the following option:

-m logmask

The default log mask is 3, which means the HP OpenView SNMP agent logs authentication
failure traps and errors.

Table 7-1 Command Line Options for SNMP Agent Logging

Task Hexadecimal
Value String

Turn off logging. 0 LOGGING_OFF

Log errors. 0x10000000 FACTORY_ERROR
Chapter 7 103

Troubleshooting
Recommended Practices
NOTE Log masks specify the type of output listed in snmpd.log. To select multiple
output types, add the individual logmask values together and enter that
number.

When the object you are trying to get returns an error, look in the snmpd.log to find out what
the error is. If you have just defined new objects, look in the snmpd.log for syntax errors.

Log trace
messages.

0x00800000 FACTORY_TRACE

Log warning
messages.

0x20000000 FACTORY_WARN

Table 7-1 Command Line Options for SNMP Agent Logging (Continued)

Task Hexadecimal
Value String
Chapter 7104

Troubleshooting
Characterizing the Problem
Characterizing the Problem
Symptoms are visible circumstances that indicate a problem. Whenever you encounter a
symptom, collect the basic information as described in this section.

Scope: What is Affected?

Is This an Agent or Manager Problem?

A problem with the agent often shows up as a symptom of a problem on the manager system.
When a manager depends on SNMP for data, the problem is usually with the agent. For
example, if your manager provides information about a particular node on the network and
that information is incorrect, the problem may be that the agent sends incorrect information.
To isolate the problem, see “Troubleshooting by Component” on page 109.

Affected Parts of the HP OpenView SNMP Agent

What part of the HP OpenView SNMP agent is affected? All operations, or just some?

Is This a Master or Subagent Problem?

Any general protocol error is probably a problem with the master. However, you are much
more likely to encounter a failed request for a MIB object — an operation handled by
subagents. When a failed request occurs, try the following:

• Do any other MIB objects respond? A good one to try is sysDescr.0. This MIB object is
supported by the master. If you receive a successful response, it is likely that the master is
operating properly.

Next, try querying other objects. Try some objects from the subagent that appears to be
the problem, as well as other subagents. If only one subagent is failing, the problem is
likely with that subagent.

• If you get no response from the agent at all, the problem is likely with the master or the
configuration. To find out:

First, confirm that the agent is running. Execute:

ps -ef | grep snmpd

You should see something similar to the following:

root 18511 1 0 14:56:56 ? 0:00 /usr/sbin/snmpdm
Chapter 7 105

Troubleshooting
Characterizing the Problem
If the master is not running, restart it by executing snmpd.

At this point, the master is up and responding. You probably have a configuration
problem. Verify that the configuration file, including community strings, is correct. Then
restart the agent.

• At this point, you know the master is up and responding, but the agent is still not
responding properly. Contact Hewlett-Packard. Please have the following information
ready at hand:

1. A complete description of the problem. Include the type of hardware and operating
system that is running. If possible, include a description of how to reproduce the
problem.

2. A copy of /etc/SnmpAgent.d/snmpd.conf

3. A complete list of all subagents on the system

4. The names and IP addresses of the management stations that interact with this
agent.

5. The output from a what command run on:

/usr/sbin/snmpdm
/usr/sbin/hp_unixagt
/usr/sbin/mib2agt

and all other subagents.

6. If the problem can be reproduced, kill the master.

Context: What Changed?

Determine what may have changed on your network or product configuration: hardware,
software, files, security, utilization, and so forth.

Duration: How Long or How Often?

Is the problem consistent (fails every time) or intermittent (fails sometimes)?

Context: What Action Was Performed?

When the problem occurred, what was happening? For instance,

• What operation was selected?

• What command was executed?
Chapter 7106

Troubleshooting
Characterizing the Problem
• What data was requested or sent?
Chapter 7 107

Troubleshooting
General Product Troubleshooting Considerations
General Product Troubleshooting Considerations
When troubleshooting the HP OpenView Extensible SNMP agent product, consider the fact
that SNMP is based on User Datagram Protocol. UDP is an unreliable protocol (no error
checking and no guarantee of message receipt). This may cause occasional failures of
manager-agent communication.

When You Need More Information

Other information that may assist your troubleshooting of the HP OpenView Extensible
SNMP agent product is available, as follows:

• Chapter 1, “Introduction and Operational Concepts.”

• Appendix A, “Supported MIB Objects.”

• Manpages.

If a problem does not appear to be with the HP OpenView SNMP agent itself, refer to the
following:

• Your networking documentation for network troubleshooting procedures.

• Your system documentation for system troubleshooting procedures.
Chapter 7108

Troubleshooting
Troubleshooting by Component
Troubleshooting by Component
This section suggests actions to take if you suspect a problem with a component of the agent
system. This section also discusses the sequence of interactions and/or the flow of data
associated with a component's operation when such information may help you to isolate the
problem. This section covers the following components of the network management system:

• Runtime components

• SNMP subsystem

• Agent MIB

For detailed information on a command or process mentioned in this section, see its associated
manpage.

Runtime Components

If you are having problems running the HP OpenView SNMP agent, check software versions,
file permissions, and start-up scripts. Make sure the communication strings match on the
manager and agent.

NOTE No duplicate community strings are allowed in the snmpd.conf file. Entering
one results in an error message in the log file. Also, the set community string is
valid for both get and set operations. There is no need to configure a get
community string separately.

Agent File Permissions

By default, the HP OpenView SNMP agent (snmpd or snmpdm) is executable only by root.

Startup Scripts

Check to see if some component in the execution sequence is “broken,” such as a syntax error
in one of the product’s startup scripts. The start-up script for each platform during invocation
of the HP OpenView SNMP agent is listed in Chapter 2, “Before You Install.”

SNMP Subsystem

Use these methods to troubleshoot the SNMP subsystem:
Chapter 7 109

Troubleshooting
Troubleshooting by Component
• Verify that community names are correctly configured on both the manager and agent
system. See Chapter 4, “Configuring the Master SNMP Agent,” for more information on
this topic.

• Use the command to verify operation of the SNMP agent on an HP OpenView SNMP
agent system. See the snmpget manpage.

• Use the snmpget command to verify operation of the SNMP agent on an HP OpenView
SNMP agent system.

• Check the snmpd.log file on an HP OpenView SNMP agent for errors (if you have logging
turned on).

• Verify that the agent system’s trap destination is set properly. See Chapter 4,
“Configuring the Master SNMP Agent,” for more information.

• If you use HP OpenView Network Node Manager, you can also use the Fault:Test
IP/TCP/SNMP operation to verify SNMP operation on a remote SNMP node.

• Enable all logging features so more detail is seen. (See the logging list in the snmpd
manpage.)

• Ensure you have the right agent. If you are running the right agent, ensure the
configuration has been internalized by “kill;” then restart the SNMP agent.

Agent MIB

Use these methods to troubleshoot the agent MIB.

• Make sure that the agent and the manager can communicate. The problem may be with
the network configuration on the agent system. To test network connectivity, execute the
ping command.

• Use an SNMP get command from the manager system to inspect an individual agent MIB
value. If you use HP OpenView Network Node Manager, the command is snmpget.

• Use an SNMP walk command from the manager system to dump part or all of the agent’s
MIB for inspection. If you use HP OpenView Network Node Manager, the command is
snmpwalk.

• Check that the object ID configured on the agent system is the same as the object ID
configured on the manager system.

• If you are trying to do an SNMP SetRequest, verify that the agent is configured to respond
to SNMP SetRequests. (By default, the agent does not allow managers to alter MIB
values.)
Chapter 7110

Troubleshooting
Troubleshooting by Component
To configure the agent to respond to SNMP SetRequests, add a set-community-name to
the agent’s snmpd.conf file. If you use HP OpenView Network Node Manager, see
snmpconf (4) to configure the manager.

• If you use the HP OpenView Network Node Manager product, you can also use the Browse
MIB operation to verify that the information retrieved is accurate.
Chapter 7 111

Troubleshooting
Troubleshooting the snmpd.extend File
Troubleshooting the snmpd.extend File
To troubleshoot the snmpd.extend file, first troubleshoot locally, then troubleshoot over the
network.

Use the following methods to troubleshoot the snmpd.extend file.

Locally

• Execute each command in the snmpd.extend file by itself from the operating system
command line to see if the command returns the expected response.

• Verify that the command executed correctly by typing:

echo $?

• If the command has arguments, verify the arguments. To do so, execute the commands
independently supplying all necessary parameters.

• Check the snmpd.log for syntax errors.

• If the agent finds an error when reading in the snmpd.extend file, the agent will display
the line where the error occurred and the correct syntax.

• Check that the command defined in the snmpd.extend file is executable.

• Verify that execute permission is set on the command.

• Check that the object ID on which you are trying to get information executes the proper
command. To turn on maximum logging start extsubagt with the APALL logging option:

/usr/sbin/extsubagt -m APALL

• Check that the output for the command you are executing corresponds to the proper data
type.

• Check that the command in the snmpd.extend file is spelled correctly. For example, a
common error is to type /usr as /user.

From the Manager

If, after troubleshooting the problem on the agent system you still have a problem, check the
following:

• Do an SNMP request to each object in the snmpd.extend file from the management
station to make sure the file works correctly.
Chapter 7112

Troubleshooting
Troubleshooting the snmpd.extend File
• After you have done an SNMP SetRequest, do an SNMP GetRequest to verify that the
value was set correctly.
Chapter 7 113

Troubleshooting
Troubleshooting the snmpd.extend File
Chapter 7114

A Supported MIB Objects

This appendix lists the MIB objects supported by the HP OpenView Extensible SNMP Agent.
Included in the list are:
Appendix A 115

Supported MIB Objects
• Standard MIB-II objects which are implemented by the HP OpenView SNMP MIB-II
subagent. This MIB definition is in file rfc1213-MIB-II beneath the snmp_mibs directory
on the HP OpenView manager system.

• Hewlett-Packard's enterprise-specific hp-unix MIB objects which are implemented by the
HP UNIX subagent. This MIB definition is in file hp-unix beneath the directory
snmp_mibs on the HP OpenView manager system.
Appendix A116

Supported MIB Objects
Standard MIB-II Objects Supported by the MIB2 Subagent
Standard MIB-II Objects Supported by the MIB2 Subagent
The HP OpenView Extensible SNMP Agent running on your HP OpenView network
management system supports all standard MIB-II objects, except for the EGP group. Refer to
RFC 1213: Management Information Base for Network Management of TCP/IP-based
internets: MIB-II for details.

This section lists the standard MIB-II objects that:

• The HP OpenView Extensible SNMP Agent allows you to change.

• Return the value 0 (zero).

• Return noSuchName errors (Solaris only).

Refer to RFC 1213: Management Information Base for Network Management of TCP/IP-based
internets: MIB-II for details on the MIB-II objects. Solaris supports all of MIB-II.

Objects That Agents Allow You to Change

The following list shows the objects that the HP OpenView Extensible SNMP Agent allows
you to change through an SNMP SetRequest.

NOTE Before you can change agent MIB values, you must configure the agent to
respond to SNMP SetRequests. To do so, add a set-community-name to the
snmpd.conf file on the agent.

sysContact
sysName
sysLocation
ifAdminStatus
atPhysAddress
ipRouteNextHop
ipRouteType
ipRouteAge
ipNetToMediaPhysAddress
ipNetToMediaTypesysName
snmpEnableAuthTraps
Appendix A 117

Supported MIB Objects
Standard MIB-II Objects Supported by the MIB2 Subagent
Objects That Return Null Values (Solaris only)

ifInNUcastPkts
ifInDiscards
ifOutNUcastPkts
ifOutDiscards

Objects That Return noSuchName Errors (Solaris only)

ifLastChange
ifInOctets
ifInUnknownProtos
ifOutOctets

ipInReceives
ipInAddrErrors
ipForwDatagrams
ipInUnknownProtos
ipInDiscards
ipInDelivers
ipOutRequests
ipOutDiscards
ipOutNoRoutes
ipReasmTimeout
ipReasmReqds
ipReasmOKs
ipReasmFails
ipFragOKs
ipFragFails
ipFragCreates

ipAdEntReasmMaxSize

ipRouteAge

ipRoutingDiscards

tcpActiveOpens
tcpPassiveOpens
tcpAttemptFails
tcpEstabResets
tcpInSegs
tcpOutSegs
tcpRetransSegs
tcpInErrs
tcpOutRsts
Appendix A118

Supported MIB Objects
Standard MIB-II Objects Supported by the MIB2 Subagent
udpInDatagrams
udpNoPorts
udpOutDatagrams

egp group
Appendix A 119

Supported MIB Objects
MIBs Supported by the HP UNIX Subagent
MIBs Supported by the HP UNIX Subagent
This section describes which MIB objects are supported by the HP UNIX subagent
(hp_unixagt). This MIB resides in the file hp-unix on the HP OpenView network
management system.

HP-UX:

All objects described in hp-unix are implemented on HP-UX.

Solaris:

nm.snmp.snmpdConf.snmpdConfRespond
nm.snmp.snmpdConf.snmpdFlag
nm.snmp.snmpdConf.snmpdLogMask
nm.snmp.snmpdConf.snmpdReConfigure
nm.snmp.snmpdConf.snmpdSize
nm.snmp.snmpdConf.snmpdStatus
nm.snmp.snmpdConf.snmpdVersion
nm.snmp.snmpdConf.snmpdWhatString
nm.system.general.computerSystem.computerSystemAvgJobs1
nm.system.general.computerSystem.computerSystemAvgJobs15
nm.system.general.computerSystem.computerSystemAvgJobs5
nm.system.general.computerSystem.computerSystemUpTime
nm.system.general.computerSystem.computerSystemUsers
nm.system.general.fileSystem.fileSystemMounted
general.fileSystem.fileSystemTable.fileSystemEntry.fileSystemBavail
general.fileSystem.fileSystemTable.fileSystemEntry.fileSystemBfree
general.fileSystem.fileSystemTable.fileSystemEntry.fileSystemBlock
general.fileSystem.fileSystemTable.fileSystemEntry.fileSystemBsize
general.fileSystem.fileSystemTable.fileSystemEntry.fileSystemDir
general.fileSystem.fileSystemTable.fileSystemEntry.fileSystemFfree
general.fileSystem.fileSystemTable.fileSystemEntry.fileSystemFiles
general.fileSystem.fileSystemTable.fileSystemEntry.fileSystemID1
general.fileSystem.fileSystemTable.fileSystemEntry.fileSystemID2
general.fileSystem.fileSystemTable.fileSystemEntry.fileSystemName

Format of Definitions

The next section contains the specification of all HP object types contained in the MIB.
Following the conventions of the RFC 1212, the object types are defined using the following
fields:

OBJECT-TYPE A textual name, termed the OBJECT DESCRIPTOR, for the object type.
Appendix A120

Supported MIB Objects
MIBs Supported by the HP UNIX Subagent
SYNTAX The abstract syntax for the object type, presented using ASN.1. This must
resolve to an instance of the ASN.1 type ObjectSyntax defined in the
Structure of Management Information (SMI). SMI identifies the rules used
to define the objects that can be accessed through a network management
protocol.

ACCESS A keyword, one of read-only, read-write, write-only, or not-accessible.

STATUS A field describing the status of the object type.

DESCRIPTION textual description of the semantics of the object type. Implementations
should ensure that their interpretation of the object type fulfills this
definition since this MIB is intended for use in multivendor environments.
As such it is vital that object types have consistent meaning across all
machines.

::= The OBJECT IDENTIFIER corresponding to the object type.
Appendix A 121

Supported MIB Objects
MIBs Supported by the HP UNIX Subagent
Appendix A122

B Platform Equivalents

Table C-1 lists the directory paths used in this guide and their equivalents on each supported
platform. It also provides the name for the snmp_mib file.
Appendix B 123

Platform Equivalents
File Path Names
File Path Names
Table B-1 File and Directory Paths

Platform Agent Path snmp.log Path snmpd.conf Path

HP-UX 11.X /usr/sbin/snmpd /var/adm/snmpd.log /etc/SnmpAgent.d/s
nmpd.conf

Solaris 2.8 or
later

/usr/sbin/snmpd /var/adm/snmpd.log /etc/SnmpAgent.d/s
nmpd.conf

Table B-2 File and Directory Paths

Platform MIB Path prg_samples Path Startup Config
Path

HP-UX
11.X

/var/opt/OV/share/s
nmp_mibs/*

/opt/OV/prg_samples /etc/rc.config.d/S
nmpMaster

Solaris 2.8
or later

/var/opt/OV/share/s
nmp_mibs/*

/opt/OV/prg_samples /etc/rc.config.d/s

nmp*
Appendix B124

Glossary
A

Agent 1- A process running on a device that
responds to SNMP requests and sends
SNMP traps.
2 - A device that responds to SNMP requests
and sends SNMP traps.

Agent system A device, such as a host,
gateway, terminal server, hub, or bridge, that
has an agent responsible for performing the
network management operations requested
by the manager.

C

Community name A password that allows
a manager to access MIB values on an agent.

E

Enterprise-specific MIB MIBs developed
by individual vendors for their specific
product lines. Vendors register their private
MIBs under the enterprises object identifier
subtree.

Extensible Agent An agent that has been
configured to support any MIB object defined
on the agent.

G

get An action that enables the manager to
retrieve management information from an
agent.

H

HP OpenView Extensible SNMP Agent

An agent that extends the existing
Management Information Base (MIB) to
support new objects.

HP OpenView Network Node Manager

An application that provides fault,
configuration, and performance
management of multivendor TCP/IP
networks.

L

Leaf node A node in the MIB tree that does
not have “children.” The leaf node is the
actual object.

M

Manager A system that is executing
network management software.

Manager system A system that executes
network management operations and control
agent systems.

MIB Management Information Base. A
collection of objects (management
information) that can be accessed through a
network management protocol.

MIB module A file defining all the MIB
objects under a subtree. For example, the
Internet-standard MIB-II and the HP
enterprise-specific MIB are MIB modules.
Glossary 125

Glossary
MIB object
MIB object Managed object defined
according to the RFC 1155: Structure and
Identification of Management Information
for TCP/IP-based Internets or RFC 1212:
Concise MIB Definitions.

MIB tree A concept used to illustrate the
organization of MIB objects.

MIB variable A pairing of a MIB object and
associated MIB value or values.

N

Node A branch of the MIB tree.

Network A group of data communication
objects, with varying degrees of intelligence,
that are interconnected through a common
transmission medium. A network has both
logical and physical characteristics.

O

Object ID The name used to uniquely
identify a MIB object. The object ID is based
on an object's place in the MIB tree.

S

set An action that enables the manager to
alter management information on an agent.

Simple Network Management Protocol

The protocol used to retrieve network
information from nodes; defined by RFC
1157: A Simple Network Management
Protocol (SNMP).

SNMP See the Simple Network
Management Protocol.

SNMP table A table defined using the
SYNTAX SEQUENCE OF and the INDEX
clause.

snmpd The background process on the
extensible agent system that processes
requests from the manager.

snmpd.extend The default MIB module
that extends the MIB on the agent to include
new user-defined objects.

Subtree All nodes and children under a
branch of the MIB tree.

T

Trap Information sent from a node that
supports SNMP (an agent) to the manager
without an explicit request from the
manager. Traps inform the manager of
changes that occur on these nodes (for
example, reboot).
Glossary126

Index
A
access MIB information, 19
agent

authentication failure, 53
community name, 53
configuration, 59
definition, 16
extensible, 24
file permissions, 109
information available from, 21
starting, 36
stopping, 36
system contact, 51
system definition, 16
system location, 51
trap destination, 55

agent MIB
copy to manager system, 63
integrate into manager MIB, 63

APPEND-COMMUNITY-NAME, 75
arguments in commands, 95
authentication failure

default agent behavior, 53
definition, 53

C
CD-ROM

mounting, 39
specifying device filename, 39

command
arguments, 95
define, 73
execution, 97
exit codes, 97
objects, 69
return values, 96
search path, 96
shell, 95
size, 77
verify argument, 98
verify execution, 98
write, 95

command information, 109
command length

limit, 77
syntax for multiple lines, 77

commands
defining MIB objects, 77
shell, 95

community name, 54
default agent configuration, 53
definition, 16, 53
example, 54
implementation characteristics, 53
invalid, 53
problems, 110
recommendations, 54
security of, 53
snmpd.conf modifications for, 54

concepts, 16
configuration

commands, 95
copy new MIB to manager system, 63
extensible agent, 59
illustration, 59
integrate new MIB into manager MIB, 63
sample MIB solution, 77
sample shell command, 98
steps to add new objects, 59
verify extensible agent, 62
verify extensible agent example, 80
write MIB module, 60

configure extensible agent, 59
prerequisites, 59

configure manager, 63
configure multiple agents, 62
configure traps, 64
configuring

community name, 54
contact, system

definition, 51
example, 51
maximum length, 51
precedence of settings, 52

copy agent MIB, 63
create MIB module, 61

example, 78

D
define MIB object

example steps, 77
steps, 60
127

Index
define MIB objects
using files, 81

define MIB ojbect
using commands, 77

define traps, 64
defining MIB objects, 69
definitions, HP OpenView concepts, 16
DESCRIPTION clause

syntax, 76
device filename, 39
disk space

checking, 30
requirements, 30

documentation references, 11

E
enterprise ID

how to get, 61
enterprise-specific MIB, 17
enterprise-specific trap, 24, 64
errors, 43

installation, 40
example MIB configuration, 77
example trap solution, 65
execution of shell commands, 97
exit codes, 97
extended MIB objects, 17

HP's enterprise-specific, 120
extensible agent, 24

benefits of, 24
concepts, 24
configuration, 59
definition, 24
examples of how to manage network with,

26
See Also agent

F
failed SNMP requests

return values, 97
file

define MIB objects, 81
objects, 69
updating contents, 87

file permissions, 109
file, original product, 103
FILE-COMMAND, 74, 87, 89

FILE-COMMAND-FREQUENCY, 74

G
generic trap numbers, 21
get operation

definition, 16
GetRequests, 53

H
hardware prerequisites, 30
HP OpenView Extensible SNMP Agent, 24
HP OpenView Network Node Manager, 26

I
installation

command for, 39
errors, 43
remote installation procedures, 39, 45
verifying, 40, 43

installation steps
with no other HP OpenView products, 39

installing
manpages, 39

integrate agent MIB into manager MIB, 63
Internet Assigned Numbers Authority

(IANA), 61
Internet-standard MIB, 17
interprocess communication, 90
invocation behavior of processes and files, 32

L
leaf node, 20
location, system

definition, 51
example, 51
maximum length, 51
precedence of settings, 52

logging
recommendations, 103

logmask values, 104

M
macro template, 69
management station

See manager system
manager
128

Index
definition, 16
setting MIB values, 54

manager system, 16
definition, 16

manpages, 39
acessing, 15

MIB, 54
definition, 16
description, 16
enterprise-specific, 17
extended, 17
information access, 19
inspecting, 110
internet-standard, 17
module, 17
objects, 19
organization, 19
problems, 110
tree, 19

MIB configuration
example, 77

MIB module
create, 61
example file, 78

MIB objects
defining, 69, 81
HP's enterprise-specific MIB module, 120
HP-UNIX definitions, 120
simple, 82
table, 83

MIB-II
definition, 16

monolithic SNMP agent, 32
mounting CD-ROM, 39

N
netnmrc script

execution sequence, 109
network element

See agent system
Network management manuals, 11
node definition, 20

O
object identifier

example, 78
objects

multiple values, 83
single value, 82

operational behavior of processes and files,
34

P
path equivalents

platform dependent, 124
PIPE-FREQUENCY, 75
PIPE-IN-NAME, 74, 90
PIPE-OUT-NAME, 75, 90
platform

file and directory paths, 124
prerequisites, 30

hardware and software, 30
problems

characterization, 105
manager-agent communication, 108
MIB, 110
runtime, 109
SNMP, 109
snmpd, 110
snmpd.extend, 112

proxy
creating, 93

R
rc.local script, 32

execution sequence, 109
READ-COMMAND, 73
READ-COMMAND-TIMEOUT, 73
register your enterprise, 61
remote installation procedures, 45

on SunOS from remote CD-ROM drive, 45
restarting agent software, 36
return values in commands, 96
runtime components, 109

S
sample MIB solution, 77
sample trap solution, 65
scripts

startup, 109
search path in commands, 96
set operation

definition, 16
set request

using with the FILE-COMMAND, 89
SetRequests, 54
shell commands

arguments, 95
execution, 97
129

Index
exit codes, 97
return values, 96
search path, 96
verify arguments, 98
verify execution, 98
write, 95
writing, 95

simple objects, 82
SNMP

definition, 16
files, 32
problems, 109
processes, 32
related problems, 108
testing, 110

SNMP requests
how extensible agent responds to, 24

SNMP traps
configure, 64

snmpd
process problems, 110
verifying operation of process, 110

snmpd.conf file
community name modifications to, 54
trap destination modifications, 55

snmpd.ea processes
snmpd.extend file, 75

snmpd.extend
DESCRIPTION field, 69
EXPORT clause, 69
IMPORT clause, 69
multiple subtrees in, 60, 77

snmpd.extend file
create, 61
example, 78
problems with, 112

snmpd.log file, 104
snmpget command, 110
snmptrap command, 24, 64

when to use, 64
SNMPv1 references, 11
snmpwalk command, 110
Software Distributor

used in installation, 29
software prerequisites, 30
spawned process

servicing of multiple requests, 75

timeout limit, 73
specific trap numbers, 21
starting HP NNM

on an NFS diskless system, 43
startup scripts, 109
STATUS

valid values, 72
stopping agent software, 36
subtree, 20
swagent.log file, 40, 43
system, 51

contact, 51
location, 51

T
table objects, 83
template for MIB module, 69
trap destination

definition, 55
example, 55
snmpd.conf modifications for, 55

trap, SNMP
authentication failure, 53
definition, 16
enterprise-specific, 24
numbers, 21

trap,SNMP
definition, 21

traps
configure, 64
define enterprise-specific, 64
sample solution, 65
send using snmptrap, 64

troubleshooting
additional help, 108
recommended practices, 103
SNMP agent, 101

U
UDP (User Datagram Protocol), 108
UNIX script, 87
using snmptrap, 65

V
verify agent configuration, 62

example, 80
130

Index
verify shell command argument, 98
verify shell command execution, 98

W
write MIB module

example procedure, 77
prerequisites, 59
procedure, 60

WRITE-COMMAND, 73
WRITE-COMMAND-TIMEOUT, 73
131

	1 Introduction and Operational Concepts
	Documentation Guide and References
	Network Management Manuals
	TCP/IP and SNMP Concepts
	SNMPv1
	SNMPv2
	<TABLE>

	SNMPv3
	<TABLE>

	General Operating System Knowledge
	Manpages
	Accessing Manpages

	Definitions and Concepts
	MIBs
	<TABLE>

	How to Access the MIB
	Figure�1�1 Manager-Agent Communication through SNMP

	How MIBs are Organized
	Figure�1�2 Part of the Top of the MIB Naming Tree

	Traps

	Extensible SNMP Agent Architecture
	Figure�1�3 Extensible SNMP Agent Concepts

	The HP OpenView Extensible SNMP Subagent
	Example Uses for the Extensible Subagent

	2 Before You Install
	Installation Mechanism
	Hardware and Software Prerequisites
	Hardware
	Software
	Disk Space Requirements

	Processes and Files
	Invocation Behavior
	<TABLE>
	<TABLE>

	Operational Behavior
	Figure�2�1 Agent Processes and Files during Operation

	Manually Stopping and Restarting the Agent Software
	<TABLE>

	3 Installing the HP OpenView Extensible SNMP Agent
	Installing on a System with No Other HP OpenView Software Installed
	If Errors Occurred

	Installing on an NFS Diskless Cluster
	Procedure
	If Errors Occurred
	Starting the Extensible Agent on an NFS Diskless System
	Removing an NFS Diskless Cluster

	Installing from a Remote CD-ROM
	On the Source Workstation
	On the Target Workstation
	If Errors Occurred
	Post-Installation Steps

	4 Configuring the Master SNMP Agent
	System Contact and Location
	Configuring System Contact and Location

	Community Name
	GetRequests
	Authentication Failure
	Configuring an Agent's Community Name
	SetRequests
	Manager-Agent Community Name Relationship

	Trap Destinations
	Configuring Trap Destinations

	5 Configuring the HP OpenView Extensible SNMP Subagent
	Configuring Extensible SNMP Agents
	Figure�5�1 Extensible SNMP Agent Configuration
	Before You Begin
	Step 1. Write MIB Module
	Step 2. Copy New MIB to the Manager System
	Step 3. Integrate New MIB into the Manager’s MIB

	Configuring Traps
	Before You Begin
	How to Define Traps
	How Traps Are Sent
	When to Use snmptrap
	Using snmptrap
	Sample Trap Solution

	6 Creating your MIB Module
	Determining the Type of MIB Object to Define
	Using the Macro Template
	<TABLE>
	<TABLE>
	<TABLE>
	The DESCRIPTION Clause

	Using Commands to Define your MIB Object
	Sample MIB Solution

	Using Files to Define Your MIB Object
	Simple Objects
	Table Objects
	Filling the File with Values
	The FILE-COMMAND
	Using the FILE-COMMAND with Set Requests
	Using the PIPE-IN-NAME and PIPE-OUT-NAME Clauses
	Creating Proxies Using the Extensible SNMP Agent
	Using Proxy for Objects that are Built into the Agent

	Writing Shell Commands
	Sample Shell Command

	7 Troubleshooting
	Recommended Practices
	Logging Options
	<TABLE>

	Characterizing the Problem
	Scope: What is Affected?
	Is This an Agent or Manager Problem?

	Affected Parts of the HP OpenView SNMP Agent
	Is This a Master or Subagent Problem?

	Context: What Changed?
	Duration: How Long or How Often?
	Context: What Action Was Performed?

	General Product Troubleshooting Considerations
	When You Need More Information

	Troubleshooting by Component
	Runtime Components
	Agent File Permissions
	Startup Scripts

	SNMP Subsystem
	Agent MIB

	Troubleshooting the snmpd.extend File
	Locally
	From the Manager

	A Supported MIB Objects
	Standard MIB-II Objects Supported by the MIB2 Subagent
	Objects That Agents Allow You to Change
	Objects That Return Null Values (Solaris only)
	Objects That Return noSuchName Errors (Solaris only)

	MIBs Supported by the HP UNIX Subagent
	Format of Definitions

	B Platform Equivalents
	File Path Names
	<TABLE>
	<TABLE>

	Glossary

