
HP OpenView Internet Services

Custom Probes API Guide

Version: OVIS 4.5
January 2003

 Copyright 2003 Hewlett-Packard Company

Legal Notices

Warranty

Hewlett-Packard makes no warranty of any kind with regard to this manual, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be held liable for errors contained herein or direct, indirect, special,
incidental or consequential damages in connection with the furnishing, performance, or use of
this material.

A copy of the specific warranty terms applicable to your Hewlett-Packard product can be
obtained from your local Sales and Service Office.

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause in
DFARS 252.227-7013.

Hewlett-Packard Company
United States of America

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR
52.227-19(c)(1,2).

Copyright Notices

© Copyright 1983-2003 Hewlett-Packard Company, all rights reserved.

No part of this document may be copied, reproduced, or translated into another language
without the prior written consent of Hewlett-Packard Company. The information contained in
this material is subject to change without notice.

Trademark Notices

Java™ is a trademark of Sun Microsystems, Inc. Microsoft Windows®,Windows NT®, MS
Windows®, and Windows 2000® are U.S. registered trademarks of Microsoft Corporation.
Netscape™ and Netscape Navigator™ are U.S, trademarks of Netscape Communications
Corporation. UNIX® is a registered trademark of The Open Group. Certicom, the Certicom
logo, SSL Plus, and Security Builder are trademarks of Ceticom Corp. Copyright ©1997-2000
Certicom Corp. Portions are Copyright 1997-1998, Consensus Development Corporation, a
wholly owned subsidiary of Certicom Corp. All rights reserved. Contains an implementation
of NR signatures, licensed under U.S. patent 5,600, 725. Protected by U.S. patents 5,787,028;
4,745,568; 5,761,305. Patents pending. All other product names are the property of their
respective trademark or service mark holders and are hereby acknowledged.
2

Support

Please visit the HP OpenView website at:

http://openview.hp.com/

There you will find contact information and details about the products, services, and support
that HP OpenView offers.

The support area of the HP OpenView website includes:

• Downloadable documentation

• Troubleshooting information

• Patches and updates

• Problem reporting

• Training information

• Support program information
3

4

contents
Chapter 1 Custom Probes. .9
Introduction .9

HP OpenView Developer Support .9

What’s Included in Custom Probes .10

The Custom Probes Architecture .11

API Conventions, Libraries and Files. .12
Function-naming Conventions .12

Libraries on the Management Server and Remote Probes Systems13

Include and Lib Files .13

MakeFiles .14

Queue Files .14

Chapter 2 Implementation Steps .17
Implementing Custom Probes .18

A. Steps to implement a custom probe on MS Windows.18

B. Steps to implement a custom probe on UNIX. .23

Configuring and Deploying a Custom Probe .29
Updating a Custom Probe .29

Creating Reports for Custom Probes .30

Adding a Custom Probe to Network Node Manager .31

Troubleshooting Your Custom Probes .32
5

Contents
Chapter 3 Custom Probes API .33
The Application Programming Interface .33

API for Command Line Parsing .34

Data Structures .35

ovis_cmdline_parse() .36

ovis_cmdline_getpvalue() .37

ovis_is_print(). .38

ovis_is_dump() .39

ovis_is_trace(). .40

API for Initializing, Starting, Logging and Stopping Measurements41

ovis_meas_init() .42

ovis_meas_start() .43

ovis_meas_log() .44

ovis_meas_end() .45

API for Getting/Setting Probe Metrics .46

Table of Metric/Parameter Identifier. .47

ovis_meas_set_long() .50

ovis_meas_set_double() .51

ovis_meas_set_string(). .52

ovis_meas_get_long() .53

ovis_meas_get_double() .54

ovis_meas_get_string() .55

API for Tracing .56

Table of Trace Levels. .56

ovis_trace_init() .57

ovis_trace_set_level() .58

ovis_trace() .59

ovis_trace_l() .60

API for Error Reporting .61

Table of Error Destinations: .61

ovis_error_init() .62

ovis_err_set_output_dst()) .63
6

Contents
ovis_error_out() .64

API for Time Keeping .65

ovis_timer_start(). .66

ovis_timer_stop() .67

ovis_timer_elapsed() .68

Typical Implementation Steps and the API .69

Chapter 4 Examples. .71
Sample Probes .72

Sample Code (Windows/UNIX) .73
Sample Makefile. .77

SRP File Structure. .77
7

Contents
8

1

Custom Probes

Introduction

The HP OpenView Internet Services Custom Probe feature is designed to
allow seamless integration and measurement logging of user implemented
custom probes into the Internet Services Management Server.

HP OpenView Developer Support

Technical support for Internet Services custom probes is only available
through the purchase of hp Partner Care Extended (U2461AA). For more
information on hp Partner Care, contact your hp sales representative or hp
sales office. Additional information can be found at the Partner Care web site:
www.hp.com/go/partnercare.

Warning: Support for the Internet Services custom probes feature is NOT
available through standard support channels.

The Custom Probes feature is only supported with the English language
version of Internet Services at this time.
9

Introduction
What’s Included in Custom Probes

The Internet Services custom probe feature includes the following:

• This documentation which describes the APIs and the steps to
implementing a custom probe

• The necessary header files and libraries

• A Custom Probes wizard for adding, updating and removing custom probe
definitions into the Internet Services Configuration Manager.

• Two fully functional sample probe implementations, with full source code
and Visual C++ 6.0 project files and UNIX Makefiles.

It is recommended that you read this documentation before developing your
custom probes.

A thorough understanding of Internet Services and the underlying
data-models (in the context of probes) is required to implement a
custom probe. Also C/C++ programming skills are required.
10

Chapter 1
The Custom Probes Architecture

Figure 1 is a block diagram of the Internet Services architecture and within it
is shown how a custom probe integrates.

Figure 1 Custom Probes Architecture

Please refer to the Internet Services User’s Reference Guide and Online help
for more information on architectural data flow, probes and how Internet
Services works.
11

API Conventions, Libraries and Files
API Conventions, Libraries and Files

Function-naming Conventions

The functions of the Internet Services APIs have consistent names that reflect
the operation they perform. See Figure 2. Naming the Internet Services API
Functions for an example of how the Internet Services API functions are
named.

Figure 2 Naming the OVIS API Functions

The function names consist of the following parts:

Product Identifier: Identifies the product. In Internet Services, this
 is always 'ovis'.

OVIS Object Identifier: Identifies the OVIS object on which the operation
 is to be performed. OVIS objects are shown in Table 1.

Table 1 OVIS Objects

cmdline Probe Command Line

meas OVIS Measurement

error OVIS Error Handling

trace OVIS Tracing

timer OVIS Timers
12

Chapter 1
Operation Identifier: Identifies the operation which the function
 performs on the OVIS object.

Note: Unless explicitly mentioned all the parameters passed to the APIs
should be considered as input parameters.

Libraries on the Management Server and Remote Probes
Systems

Development of custom probes on various platforms using Internet Services
custom probes requires using platform specific libraries.

Platform Specific Libraries include:

Include and Lib Files

Development of custom probes on various platforms requires using platform
specific header files and libraries.

Table 2 Platform Specific Libraries

PLATFORM Library

MS Windows OvIsApi.dll

HPUX libOvIsApi.sl

Solaris libOvIsApi.so

Linux Red Hat libOvIsApi.so
13

API Conventions, Libraries and Files
Platform Specific Include Files/Libs:

MakeFiles

Sample make files are provided for development of custom probes on various
platforms.

Platform Specific Makefiles:

Queue Files

Every call to the ovis_meas_log() function in the probe implementation should
generate a queue file in the \<install dir>\data\queue folder(queue folder). If
your probe makes more than one call to the ovis_meas_log() (probes with
multiple transactions), check for multiple queue files in the queue folder.

Table 3 Platform Specific Header Files/Libs

PLATFORM Header File Lib File

MS Windows OvIsApi.h OvIsApi.lib

HPUX OvIsApi.h -----

Solaris OvIsApi.h -----

Linux OvIsApi.h -----

Table 4 Platform Specific Makefiles

PLATFORM MakeFile

MS Windows ProbeDummy.dsp

HPUX Makefile

Solaris Makefile

Linux Makefile
14

Chapter 1
The queue file subsequently gets uploaded to the Management Server at
regular intervals. This is done through a regular HTTP connection. If a proper
HTTP connection doesn't exist between the probe machine and the
Management Server, the queue files will continue to accrue in the \<install
dir>\data\queue folder on the probe machine. If left in such a state for a long
tie, this could result in enormous disk space consumption on the probe
machine, and the probe machine might eventually run out of disk space.

The Management Server will correctly reflect the status of all of the probes
and their service targets on the configuration manager GUI and on the
dashboard, if the queue files are getting uploaded to the Management Server
at regular intervals.
15

API Conventions, Libraries and Files
16

2

Implementation Steps

This chapter explains the basic steps to creating and implementing a custom
probe.

Please read through these steps and the detailed descriptions of the Custom
Probe API calls in Chapter 3 before you begin to develop your custom probe.
Also see Chapter 4 for example source code and sample files that can be
helpful in getting started building your custom probe.
17

Implementing Custom Probes
Implementing Custom Probes

A. Steps to implement a custom probe on MS Windows

Step 1.

Define your probe name [type]. This name must match the probe name you
enter in the Custom Probe wizard in step 2 below.

A note on probe naming convention:.

ANYTCP
DIAL
DHCP
DNS
FTP
HTTP
HTTPS
HTTP_TRANS
ICMP
IMAP4
LDAP
NNTP
NTP
POP3
RADIUS
SMTP
STREAMING_MEDIA
WAP
X_SLAM_DNS
X_SLAM_HTTP
X_SLAM_ICMP
X_SLAM_TCP
X_SLAM_UDP
X_SLAM_VoIP

You MUST prefix your probe name with a C_ (e.g., C_CUSTOM_PROBE). This
will guarantee that your probe name will never conflict with any future
changes/additions to OVIS probes.
18

Chapter 2
This list is subject to change in the future.

Step 2.

The next step is to define your probe’s input parameters and output metrics.
The Internet Services Configuration Manager on the management server
needs to be updated with the new probe definition (this is the SRP file) based
on the parameters, and metrics for your probe.

You can do this in two ways:

• Manually create an SRP file (on the Management Server) based on the
parameters, and metrics that your probe defines and manually import it
into the Configuration Manager.

See the sample SRP files in Chapter 4 to understand the format.

• Use the Custom Probes wizard to step through this process. The wizard
essentially writes the SRP file for you and automatically imports it into
the Configuration Manager. The wizard can also be used to update or
remove custom probe definitions that have previously been added.

Run the Custom Probes wizard on the Internet Services Management Server
as follows:

/SDK/InternetServices/probewizard.exe

In the first dialog you can select to Add, Update or Remove a custom probe
definition. When creating a new custom probe definition follow these steps:

• Define the new probe type's Name

• Define the new probe’s set of Parameters

• Define the new probe’s set of Metrics

• Define the new probe’s Executable name

Note that once you complete implementing your probe and data is being
collected, the graphs in the Dashboard will be available for this custom probe
without requiring a special Reports Template.

The probe name as specified in the wizard must be the same as specified in
the probe in Step 1.
19

Implementing Custom Probes
But to get reports in the Dashboard Reports tab, you must create a Report
Template file which requires you to use hp OpenView Reporter A.03.00 and
Crystal Decisions Crystal Reports version 8.5 or higher
(www.crystaldecisions.com). See "Creating Reports for Custom Probes" on
page 30.

Step 3.

Create a new folder on your system to hold the source/header files for your
new custom probe. We will refer to this folder henceforth as probeCustom in
this document.

Step 4.

Make sure you have the correct versions of these files:

OvIsApi.h,

OvIsApi.lib

These files are part of Internet Services Custom Probe feature. They should
be under the Sdk/include and Sdk/lib folders respectively. You can check
the version with the perfstat -v command.

Step 5.

To write a custom probe, in C/C++:

Implement the 'main' function body of your probe in a separate C (.c) or C++
(.cpp) source file. This source file is referred to as mainCustom.cpp in this
document. Create this file in your probeCustom folder and add it to your
probe project.

The OvIsApi.h file needs to be included in the mainCustom.cpp
implementation file, the probe needs to be linked to the OvIsApi.lib file.
The most recent release of the OvIsApi.dll will be installed in the probe
directory by the Internet Services Installer.

You can either copy these two files into your newly created probeCustom
folder or add the Hp/OpenView/Sdk/include and Hp/OpenView/Sdk/lib
paths to your project settings to make Developer Studio look for those files
there.

If you are using Visual C++ 6.0:

Add the Hp/OpenView/Sdk/include path in
20

Chapter 2
Project->Settings->C/C++->->Preprocessor->Additional include
directories

and the Hp/OpenView/Sdk/lib path in

Project->Settings->Link->Input->Additional library path

Step 6.

If you decide to use the Custom Probe’s command line parsing routines,
declare the options table, specifying your probe specific command line
parameters.

[The options table is declared as an array of string pointers each on of which
holds a switch name, that your custom probe could be passed on the command
line.]

Note that the following command line switches are reserved by Internet
Services and should not be specified in the options table.

-customer "customername"
-servicename "servicename"
-serviceid "10;10;10"
-interval 300
-timeout 30
-host "hostname"

-print
-dump
-trace l

These switches are internal to Internet Services and are automatically
handled by the Custom Probe's command line parsing routines, when passed
on the probe's command line. When passed on the command line, their values
should be in the format shown above.

Step 7.

If your custom probe is to support tracing and error logging, decide on the
probe Error Logging and Tracing scheme for your probe. Your custom probe
can either trace and log errors into the default Internet Services trace and
error log files, or you may choose to make the probe trace and log errors in
your own trace and error log files.
21

Implementing Custom Probes
If you decide to use your own trace and error log files, declare string literals
for the names of your custom error and trace files.

Step 8

The next step is to implement a timing model for the probe.

A custom probe must implement a timing model by which it self-timouts after
a certain time interval. This is necessary since all Internet Services probes
(including custom probes) are scheduled by the scheduler to run periodically.
If probes do not terminate at regular intervals, the probe system may
eventually be rendered unstable due to stray probe processes.

The time interval for timeout is typically passed to the probe through one of
the standard input parameters -TIMEOUT. Use the
get_ovis_parameter() function to retrieve the timeout passed to the
probe. Ideally the probe’s timing model should terminate the probe in a time
interval slightly less than what was specified through the -TIMEOUT
parameter. When being scheduled for execution through the scheduler, if the
probe does not self-timeout at the -TIMEOUT interval, the OVIS scheduler
will force termination of the probe.

Refer to the accompanying probeExchange sample probe’s source code, for an
example of how to implement a timing model in a probe.

Step 9

Build your custom probe using your compiler and linker.

Steps 1 - 7 ensure that your custom probe now has the appropriate settings
and declarations to use the custom probe API to write measurements to the
Internet Services Management Server.

See the section on "Configuring and Deploying a Custom Probe" on page 29
for the final steps to a working probe.
22

Chapter 2
B. Steps to implement a custom probe on UNIX

Steps to follow to write a Custom Probe on UNIX are similar to that of
Windows NT/2000:

Step 1.

Define your probe name [type]. This name must match the probe name you
enter in the Custom Probe wizard in step 2 below.

A note on probe naming convention:

The following probe names are reserved and are currently used by standard
Internet Services probes and MUST NOT be used to name your custom probe.

ANYTCP
DIAL
DHCP
DNS
FTP
HTTP
HTTPS
HTTP_TRANS
HTTP_TRANS2
ICMP
IMAP4
LDAP
NNTP
NTP
POP3
RADIUS
SMTP
STREAMING_MEDIA
WAP
X_SLAM_DNS
X_SLAM_HTTP
X_SLAM_ICMP
X_SLAM_TCP

You MUST prefix your probe name with a C_ (e.g., C_CUSTOM_PROBE). This
will guarantee that your probe name will never conflict with any future
changes/additions to OVIS probes.
23

Implementing Custom Probes
X_SLAM_UDP
X_SLAM_VoIP

This list is subject to change in the future.

Step 2.

The next step is to define your probe’s input parameters and output metrics.
The Internet Services Configuration Manager on the management server
needs to be updated with the new probe definition (this is the SRP file) based
on the parameters, and metrics for your probe.

You can do this in two ways:

• Manually create an SRP file (on the Management Server) based on the
parameters, and metrics that your probe defines and manually import it
into the Configuration Manager.

See the sample SRP files in Chapter 4 to understand the format.

• Use the Custom Probes wizard to step through this process. The wizard
essentially writes the SRP file for you and automatically imports it into
the Configuration Manager. The wizard can also be used to update or
remove custom probe definitions that have previously been added.

Run the Custom Probes wizard on the Internet Services Management Server
as follows:

/SDK/InternetServices/probewizard.exe

In the first dialog you can select to Add, Update or Remove a custom probe
definition. In creating a new custom probe definition follow these steps:

• Define the new probe type's Name

• Define the new probe’s set of Parameters

• Define the new probe’s set of Metrics

• Define the new probe’s Executable name

Note that once you complete implementing your probe and data is being
collected, the graphs in the Dashboard will be available for this custom probe
without requiring a special Reports Template.

The probe name as specified in the wizard must be the same as specified in
the probe in step 1.
24

Chapter 2
But to get reports in the Dashboard Reports tab, you must create a Report
Template file which requires you to use hp OpenView Reporter A.03.00 and
Crystal Decisions Crystal Reports version 8.5 or higher
(www.crystaldecisions.com). See "Creating Reports for Custom Probes" on
page 30.

Step 3.

Create a new folder on your system to hold the source files and header files for
your new custom probe (preferably under the /opt/OV/VPIS/probes folder).
We will refer to this folder henceforth as probeCustom in this document.

Step 4.

Make sure you have the correct versions of the files:

OvIsApi.h,
libOVisApi.so or libOvIsApi.sl (for Solaris)

These files are part of Custom Probes. They should be under the opt/OV/
VPIS/probes and opt/OV/lib folders respectively. You can use the what
command to determine the version and compare this to the list of files and
versions in the OVIS release notes. For example

what libOvIsApi.sl
libOvIsApi.sl:
 libOvIsApi A.04.00.00 1/05.01 HP-UX 11.0 - 11.20

Step 5.

To write a custom probe, in C/C++:

Implement the main function body of your probe in a separate C (.c) or C++
(.cpp) source file. This source file is referred to as mainCustom.cpp in this
document. Create this file in your probeCustom folder and add it to your
probe project.

The OvIsApi.h file needs to be included in the mainCustom.cpp
implementation file, the probe needs to be linked to the OvIsApi.so/
OvIsApi.sl file. The most recent release of the OvIsApi.sl/OvIsApi.sl
files will be installed in the /opt/OV/lib directory by the Internet Services
Installer.

Step 6.
25

Implementing Custom Probes
If you decide to use the Custom Probe's command line parsing routines,
declare the options table, specifying your probe specific command line
parameters.

[The options table is declared as an array of string pointers each on of which
holds a switch name, that your custom probe could be passed on the command
line.]

Note that the following command line switches are reserved by Internet
Services and should not be specified in the options table.

-customer "customername"
-servicename "servicename"
-serviceid "10;10;10"
-interval 300
-timeout 30
-host "hostname"

-print
-dump
-trace l

These switches are internal to Internet Services and are automatically
handled by the Custom Probe's command line parsing routines, when passed
on the probe's command line. When passed on the command line, their values
should be of the format as show above.

Step 7.

If your custom probe is to support tracing and error logging, decide on the
probe Error Logging and Tracing scheme for your probe. Your custom probe
can either trace and log errors into the default Internet Services trace and
error log files, or you may choose to make the probe trace and log errors in
your own trace and error log files.

If you decide to use your own trace and error log files, declare string literals
for the names of your custom error and trace files.

Step 8

The next step is to implement a timing model for the probe.

Steps 1 - 7 ensure that your custom probe now has the appropriate settings
and declarations to use the custom probe API to write measurements to the
Internet Services Management Server.
26

Chapter 2
A custom probe must implement a timing model by which it self-timouts after
a certain time interval. This is necessary since all Internet Services probes
(including custom probes) are scheduled by the scheduler to run periodically.
If probes do not terminate at regular intervals, the probe system may
eventually be rendered unstable due to stray probe processes.

The time interval for timeout is typically passed to the probe through one of
the standard input parameters -TIMEOUT. Use the
get_ovis_parameter() function to retrieve the timeout passed to the
probe. Ideally the probe’s timing model should terminate the probe in a time
interval slightly less than what was specified through the -TIMEOUT
parameter. When being scheduled for execution through the scheduler, if the
probe does not self-timeout at the -TIMEOUT interval, the OVIS scheduler
will force termination of the probe.

Refer to the accompanying probeExchange sample probe’s source code, for an
example of how to implement a timing model in a probe.

Step 9.

Build the Custom Probe. The probe can be built using plain command line
commands. See the following for an example of plain command line
commands:

 #g++ -I/opt/OV/VPIS/probes -c mainDummy.cpp
 #g++ -o probeDummy mainDummy.o -Wl,-rpath -Wl,/opt/OV/lib -
L/opt/OV/lib -lOvIsApi

Alternatively create your Makefile to build the probe.

A sample Makefile is shown below.

Sample Makefile for a dummy probe using shared custom probe
api library

for RedHat Linux 6.0 or later
#
Usage:
make probeDummy

OVIS_PROBE_OBJS = mainDummy.o
OVIS_CUST_LIB_N = OvIsApi
OVIS_CUST_LIB_E = .so

OVIS_SHLIB_PATH = /opt/OV/lib
OVIS_INCLU_PATH = /opt/OV/VPIS/probes
27

Implementing Custom Probes
OVIS_LIBS = -l$(OVIS_CUST_LIB_N)
OVIS_LIB_LINK_SW = -Wl,-rpath -Wl,$(OVIS_SHLIB_PATH) -
L$(OVIS_SHLIB_PATH)

OVIS_CFLAGS = -I$(OVIS_INCLU_PATH)
OVIS_CC = g++

probeDummy: $(OVIS_PROBE_OBJS) $(OVIS_SHLIB_PATH)/
lib$(OVIS_CUST_LIB_N)$(OVIS_CUST_LIB_E) Makefile
 $(OVIS_CC) -o $@ $(OVIS_PROBE_OBJS)
$(OVIS_LIB_LINK_SW) $(OVIS_LIBS)

.SUFFIXES : .o .cpp

.cpp.o:
 $(OVIS_CC) $(OVIS_CFLAGS) -c $<

clean:
 rm $(OVIS_PROBE_OBJS)

See the section on "Configuring and Deploying a Custom Probe" on page 29
for the final steps to a working probe.
28

Chapter 2
Configuring and Deploying a Custom Probe

Once your custom probe is has been fully implemented and its definition
added to the Configuration Manager, you can configure probes with this probe
type using the Internet Services Configuration Manager. In the Configuration
Manager follow the same steps as you would for a standard probe to configure
customer, service groups, service targets, services level objectives, service level
agreements and define the location of the probe system. Be sure to save your
configuration. This configuration information can be automatically deployed
to the probe system as with a standard probe. See the Internet Services User’s
Reference Guide or the Configuration Manager online help for more
information on deploying probes to UNIX and Windows NT/2000 systems.

After you have configured service targets for this custom probe type, you can
deploy the custom probe implementation (source code) as follows: on Windows
systems (local or remote) copy your probe binary into the /probes folder, on
UNIX systems copy your probe binary into the /opt/OV/VPIS/probes
directory. See the Internet Services User’s Reference Guide for more
information.

Updating a Custom Probe

Updating a custom probe involves one of the following scenarios:

1 Updating the probe implementation (source code) but keeping its input
(command line) parameters and output metrics the same.

2 Updating the probe implementation (source code) so as to change it input
parameters and/or metrics.

In case (1) you just need to redeploy the updated probe implementation to one
or more probe locations.

In case (2) you need to update the probe definition using the custom probe
wizard to reflect changes in input/output parameters and metrics and
redeploy the updated probe implementation to one or more probe locations.
29

Creating Reports for Custom Probes
Creating Reports for Custom Probes

The graphs in the Dashboard will be available for this custom probe without
requiring you to create report templates.

If you want to create reports (viewed in the Reports tab of the Dashboard) for
your custom probes you need to use hp OpenView Reporter A.03.00 (or higher)
and Crystal Decisions Crystal Reports version 8.5 (or higher)
(www.crystaldecisions.com).

Use Crystal Reports to create the custom report and hp OpenView Reporter to
configure the report to be viewed in Internet Services. Documentation on
setting up reports to be generated and viewed is provided in the Reporter
Concepts Guide in Step 6: Add the Report Definition to Reporter. Also refer to
the Reporter online help topic Add report definition for details.

A sample report template (a_IOps_Dummy.rpt) for the Dummy Probe, can
be found under the
sdk/examples/Report Template Files/ folder.

To integrate this into OVIS do the following:

1 Copy the report template file (a_IOps_Dummy.rpt) under the data/
reports/iops/ folder on the Management Server.

2 Edit the repload_C_DUMMY_PROBE.SRP file, which can be found under
the sdk/example/SRP Files folder to add the following section:

REPORT: IOPS_DUMMY
 CATEGORY: 190 Internet Services
 ALL_TEMPLATE: reports\IOps\a_iops_DUMMY.rpt
 DESCRIPTION: DUMMY - Dummy Service
 MAXTIME: 10
 FAMILY: "Internet Services"
 END_REPORT:

GROUPREPORT: IOPS_DUMMY
 GROUP: ALL
 END_GROUPREPORT:

3 Reload the SRP file into the OVIS Configuration Manager by running the
following:
repload -load repload_C_DUMMY_PROBE.SRP
30

Chapter 2
4 Let the dummy probe run overnight. Next day the nightly report for the
dummy probe should show up under the Reports tab of the Internet
Services Dashboard.

To integrate a report for your custom probe do the following:

1 To integrate a custom report template for your custom probe, create an
appropriate report template file using Crystal Reports, (similar to
a_IOps_Dummy.rpt), and put it in the data/reports/iops/ folder.

2 Use hp OpenView Reporter to add your custom report. Be sure to set the
following:
CATEGORY = 190 Internet Services
HTML_DIRECTORY = webpages\<a_custom_report_1>
Where <a_custom_report_1> is the report name in the webpages
relative directory. Refer to the Reporter documentation for how to do this.

3 Let your custom probe run overnight. Next day the nightly report for your
custom probe should show up under the Reports tab of the Internet
Services Dashboard.

Adding a Custom Probe to Network Node
Manager

With the Internet Services Network Node Manager (NNM) integration, you
can run the Internet Services Dashboard from the NNM menu toolbar. To add
the capability to view custom probe data in the Dashboard, the custom probe
type must be added with the /opt/OV/bin/addOVISprobe.ovpl command.

Example:

/opt/OV/bin/addOVISprobe.ovpl -s "DUMMY - Dummy Probe"

The parameter supplied, (in the example DUMMY - Dummy Probe), must
match the Description field in the custom probe’s SRP file.
31

Troubleshooting Your Custom Probes
Troubleshooting Your Custom Probes

1 How do I verify that measurements have been written by the probe?

Every call to the ovis_meas_log() function in the probe implementation
should generate a queue file in the \<install dir>\data\queue folder
(queue folder). If your probe makes more than one call to the
ovis_meas_log() (probes with multiple transactions), check for
multiple queue files in the queue folder.

The queue file subsequently gets uploaded to the Management Server at
regular intervals. This is done through a regular HTTP/S connection. If a
proper HTTP/S connection doesn't exist between the probe system and the
Management Server, the queue files will continue to accrue in the
\<install dir>\data\queue folder on the probe system. If left in such
a state for a long time, this could result in enormous disk space
consumption on the probe system, and the probe system might eventually
run out of disk space.

The Management Server will correctly reflect the status of all of the
probes and their service targets in the Configuration Manager status
display and in the Dashboard, if the queue files are getting uploaded to
the Management Server at regular intervals.

2 There is an error coming out of my custom probe (you’ve also tried
compiling the sample probes probeDummy/probeExchange and verified
that the same error occurs in them too). The error relates to the probes
trying to access the iopsprobe.cat file and failing. You will see the
following in the error log:

10/15/01 15:38:23 ERROR probeDummy(1740) [MError.c:92]: IOPS 0-0:
Can't open message catalog iopsprobe.cat' (Unknown error)

The Custom Probe’s error handling APIs look for the iopsprobe.cat file
in the same directory where the probe is, which is in
<install_dir>\probes. Running your probe from the probes directory
will eliminate this error message.
32

3

Custom Probes API

The Application Programming Interface

Internet Services comes with a set of Application Programming Interfaces
(APIs) that support development of Custom Probes to probe user specific
services and forward measurements back to the Internet Services
Management Server.

This chapter describes the Internet Services custom probes API data
structures and the API calls. The APIs primarily provide functionality for the
following:

• command line parsing

• probe measurement (initializing, starting, logging, stopping the probe
measurement process, and getting/setting probe metrics)

• probe tracing

• error logging and data logging to the OVIS Management Server.

Chapter 2 describes the steps to implementing a custom probe. Chapter 4
gives you examples of the makefile, SRP file and sample code.

The documentation assumes you have a good understanding and working
knowledge of OVIS and C/C++ programming.

Please read the documentation on all the API calls before using them to
develop a custom probe.
33

The Application Programming Interface
API for Command Line Parsing

An Internet Services probe is typically invoked with a set of command line
switches and corresponding values. These command line switches and
associated values are the primary input to the probe. The command line
parsing APIs provide an easy to use set of functions to parse the command line
passed to the probe and later retrieve values of the individual switches, as
needed.

For proper functioning of these routines, the command line switches and
values passed to the probe must be separated by one or more blank spaces.
For example: >probeDummy -host "xyz.com" -availability "80" -
print

The command line routines differentiate between command line switches and
command line values in the following way.

A command line switch must be prefixed by a "-" or a ’/’. Strings passed on the
command line without these prefixes are interpreted as command line values.
It is recommended that command line values be enclosed in quotes. From the
following example, you can see which are command line switches and which
are command line values in the table below.

 >probeDummy -host "xyz.com" -availability "80" -print

It is recommended that you use these command line parsing routines in your
probe code to parse the command line. Doing so has several advantages, and
it also simplifies your probe code substantially. However if your probe
requires command line parsing capabilities that are beyond the scope of these
routines, you can implement your own command line parsing code in the
probe.

Command Line Switch Command Line Value

 -host "xyz.com"

 -availability
 -print

 "80"
34

Chapter 3
Data Structures

Opaque List structure to hold command line parameter values:

A generic list structure is used to hold command line parameter values. This
structure is an opaque structure, exported through the ovis_cmdoptions
void pointer in OvIsApi.h. Use the Custom Probes APIs to set and retrieve
values from it.

OVIS_API void * OVIS_CMDOPTIONS

Opaque Data structure to hold probe metrics:

An opaque data structure is used to hold probe metrics. Use the Custom
Probes APIs to set and retrieve values from this structure.

OVIS_API void * OVIS_PARAMETRICS
35

The Application Programming Interface
ovis_cmdline_parse()

Syntax:

int ovis_cmdline_parse(int argc, char* argv[],
 int optc, char* optv[],
 OVIS_CMDOPTIONS cmdoptions)

Description:

Use this function to parse the command line. The function parses the
command line, looks for the command line parameters supported by the probe
and stores their respective values into the list pointed by the cmdoptions
parameter, for later use. Values for individual parameters can later be
retrieved by calling the ovis_cmdline_getpvalue() function, and passing
it the cmdoptions list that was populated by the ovis_cmdline_parse()
function.

Parameters:
[Input]
argc: Specifies the count of the arguments passed on the command line
argv[]: Array of string pointers wherein each element points to a parameter
passed on the command line.

optc: Specifies the count of the switches supported by the probe.

optv[]: List of string pointers wherein each element points to a switch
supported by the probe.

[Output]
cmdoptions: Pointer to a structure of type OVIS_CMDOPTIONS.
Return Value:

An Integer indicating whether the initialization was successful or not. Non-
zero if successful, zero if failed.

Version:

Internet Services 4.0 or later.
36

Chapter 3
ovis_cmdline_getpvalue()

Syntax:

char* ovis_cmdline_getpvalue(OVIS_CMDOPTIONS cmdoptions, const char*
param)

Description:

This function should always be called after a call to the
ovis_cmdline_parse() is made. Use this function to retrieve parameter
values for different command line parameter that your probe supports.

Parameters:

cmdoptions: Pointer to the list of type ovis_list that holds the command
line parameters. This list is populated by a call to the
ovis_cmdline_parse() function.

param: Specifies the name of the parameter whose value is to be returned.

Return Value:

A string pointer pointing to the value of the parameter requested. NULL if the
parameter was not passed to the probe.

Version:

Internet Services 4.0 or later.
37

The Application Programming Interface
ovis_is_print()

Description:

This function is used to check if the probe was invoked with a -print
command line option. If yes, the probe should handle the switch and print out
its output on the stdout.

Parameters:

None.

Return Value:

Non-zero if the probe was invoked with the -print command line option, else
zero.

Version:

Internet Services 4.0 or later.
38

Chapter 3
ovis_is_dump()

Description:

This function is used to check if the probe was invoked with a -dump command
line option. If yes, the probe should handle the switch and dump out its output
in a dump file. The recommended dump file format is hostname.PROTOCOL.

For example:

 >probeX -host "xyz.com" -availability "80" -dump

should generate a dump file named xyz.com.X. This follows the
recommended dump file format of hostname.PROTOCOL that all OVIS probes
follow.

Parameters:

None.

Return Value:

Non-zero if the probe was invoked with the -dump command line option, else
zero.

Version:

Internet Services 4.0 or later.
39

The Application Programming Interface
ovis_is_trace()

Description:

This function is used to check if the probe was invoked with a -trace
command line option. If yes, the probe should use the Custom Probes trace
supporting APIs for tracing in the trace file.

Parameters:

None.

Return Value:

Non-zero if the probe was invoked with the -trace l command line option,
else zero.

Version:

Internet Services 4.0 or later.
40

Chapter 3
API for Initializing, Starting, Logging and Stopping
Measurements

These APIs provide a set of functions that are used to log probe metrics to the
Internet Services Management Server.

An Internet Services probe gathers measurement metrics by probing the
appropriate host/web service and then logs the measurements to the Internet
Services Management Server.

Data logging has to be first initialized and then finally ended. In between the
initialization and end, a probe logs data one or multiple times based on
whether it is a single transaction probe or a multiple transaction probe.

The API can be used to implement either a single transaction probe in which
only one set of metrics are written to the Internet Services Management
Server at a time, or multiple transaction probe, where a probe writes more
than one set of metrics to the Internet Services Management Server during a
single run.

In a single transaction probe the process of logging probe metrics logically
involves starting the logging process, logging the data, and stopping the
logging process. A multiple transaction probe iterates this logical sequence
multiple times.

Each data log results in the creation of a temporary queue file on the probe
system, which is later uploaded at a scheduled time to the local/remote
Internet Services Management Server.

Appropriate memory allocations are done by ovis_meas_init() function.
Default values are then assigned to the probe metrics at the start of the log
process by the ovis_meas_start() function. The ovis_set_long(),
ovis_set_double(), and ovis_set_string() functions are later used to
actually set the proper values to the probe metrics. The ovis_log_data()
then logs data into the temporary queue file and completes the logging
process. The ovis_meas_end() function deallocates memory allocations
done by the ovis_meas_init() function.
41

The Application Programming Interface
ovis_meas_init()

Syntax:

int ovis_meas_init(const char* probename, OVIS_PARAMETRICS *meas)

Description:

Call this function once to initialize the probe, and the Internet Services data
structure prior to calling the ovis_meas_start() function.

Parameters:

[Input]

probename: Specifies the name [type] of the probe.

[Output]

meas: Pointer to a pointer to the opaque OVIS_PARAMETRICS data
structure.

Return Value:

An Integer indicating whether the initialization was successful or not. Non-
zero if successful, zero if failed.

Version:

Internet Services 4.0 or later.
42

Chapter 3
ovis_meas_start()

Syntax:

int ovis_meas_start(OVIS_PARAMETRICS meas)

Description:

This function initializes the probe metrics with default values. The function
should be called each time before making a call to any of the Custom Probe
timer APIs and the ovis_meas_log() function to log the probe metrics.

Parameters:

[Output]

meas: Pointer to the OVIS_PARAMETRICS opaque structure to hold
measurement metrics.

Return Value:

An Integer indicating whether the function was successful or not. Non-zero if
successful, zero if failed.

Version:

Internet Services 4.0 or later.
43

The Application Programming Interface
ovis_meas_log()

Syntax:

int ovis_meas_log(OVIS_PARAMETRICS meas)

Description:

This function logs measurement data contained in the OVIS_PARAMETRICS
data structure (pointed to by the parameter meas) to the Internet Services
Management Server. The function should be called after each successful
completion of an ovis_meas_set*() function where the measurement
metrics are stored into the OVIS_PARAMETRICS data structure.

The ovis_meas_log() call results in the creation of a temporary queue file
on the probe system which is then uploaded to the Management Server at a
scheduled time.

This call should be followed either by a call to the ovis_meas_end() function
to indicate the end of data logging, or another call to the
ovis_meas_start() function to restart another iteration of the logging
function for multiple transaction probes.

Parameters:

meas: Pointer to the OVIS_PARAMETRICS opaque structure that holds
measurement metrics.

Return Value:

An Integer indicating whether the function was successful or not. Non-zero if
successful, zero if failed.

Version:

Internet Services 4.0 or later.
44

Chapter 3
ovis_meas_end()

Syntax:

int ovis_meas_end(OVIS_PARAMETRICS meas)

Description:

This function is called to indicate the end of the probe session. The function
should be called only once to end the process of measuring/logging of the probe
metrics. The function also stops all active metric measurement timers, frees
and resets them to zero.

WARNING: No further OVIS API function calls should be made. The result of
calling any of the Custom Probe API functions after making a call to
ovis_meas_end() is undefined and will cause unspecified results.

Parameters:

meas: Pointer to the OVIS_PARAMETRICS opaque structure that holds
measurement metrics.

Return Value:

An Integer indicating whether the function was successful or not. Non-zero if
successful, zero if failed.

Version:

Internet Services 4.0 or later.
45

The Application Programming Interface
API for Getting/Setting Probe Metrics

These APIs provide a set of functions that can be used to individually get or
set probe metrics.

Internet Services incorporates support for a standard set of well-defined
default performance metrics and up to 8 user-defined metrics (typically set by
the probe developer). These metrics are listed in the table below.

Listed in Table 5 below, are the performance metrics (standard and user
defined) that should typically be set by the probe developer.

Note: All the OVIS_METRIC_* metrics need to be explicitly set. If you use the
command line parsing API ovis_cmdline_parse() to parse the probe's
command line, all of the OVIS_PARA_* metrics in the table will be
automatically set by the API. If you don't use the command line parsing API
to parse the probe's command line, it is your responsibility to set all of the
OVIS_PARA_*/OVIS_METRIC_* metrics explicitly.

A call to the ovis_meas_start() function assigns default values to all of
these metrics if values haven't been set for one or more of them. See Table 5
for default values.

Note: For most services, the metric OVIS_METRIC_TARGET and the
parameter OVIS_PARA_HOST remain the same, however for some services
the OVIS_METRIC_TARGET may be required to be different from the
OVIS_PARA_HOST.

The metric OVIS_METRIC_TARGET is assigned the same value as the HOST
by default through the call to the ovis_meas_start() function. The value
assigned is the one that was passed on the command line. You can later call
the ovis_meas_set_string() API with the OVIS_METRIC_TARGET or
OVIS_PARA_HOST id to set the HOST or TARGET to a different value. In
some cases, you might explicitly decide to set the HOST to some other value
(by calling ovis_meas_set_string() API) after a call to
ovis_meas_start(). It is then up to you to also update the TARGET
accordingly.
46

Chapter 3
Table of Metric/Parameter Identifier.

Table 5 Measurement Metric Identifiers

Metric/Parameter Identifier
Data
Type Description

Default
Value

OVIS_PARA_CUSTOMER String customer name "Un-specified"

OVIS_PARA_SERVICENAME String service name "Un-specified"

OVIS_PARA_HOST String target host name
(see the note
above)

"Un-specified"

OVIS_PARA_INTERVAL Long interval in seconds 300

OVIS_METRIC_AVAILABILITY Long availability could
be 0 (for
unavailable) or 1
(for available)

0

OVIS_METRIC_SETUPTIME double DNS + network
connection
setuptime in
seconds. This time
represents the
time it took to
establish
connection with
the server before
sending the first
protocol request.

0

OVIS_METRIC_RESPONSETIME double total response time
in seconds

0

OVIS_METRIC_TRANSFERTPUT double transfertput
KBytes/Second

0

OVIS_METRIC_1 double user defined
metric 1

0

OVIS_METRIC_2 double user defined
metric 2

0

47

The Application Programming Interface
OVIS_METRIC_3 double user defined
metric 3

0

OVIS_METRIC_4 double user defined
metric 4

0

OVIS_METRIC_5 double user defined
metric 5

0

OVIS_METRIC_6 double user defined
metric 6

0

OVIS_METRIC_7 double user defined
metric 7

0

OVIS_METRIC_8 double user defined
metric 8

0

OVIS_METRIC_TIME Long Time at
measurement
instance

0

OVIS_METRIC_TIMEZONE Long Timezone of the
probe system

0

OVIS_METRIC_PROBESYSTEM String Probe system
name

"Un-
known"

OVIS_METRIC_PROBENAME String Probe Name "Un-
known"

OVIS_METRIC_TRANSID long transaction id
should be -1 for
single transaction
probe and
indicates the
transaction
number for a
multiple
transaction probe.

-1

OVIS_METRIC_IPADDR string Target IP address "Un-resolved"

Table 5 Measurement Metric Identifiers
48

Chapter 3
OVIS_METRIC_TARGET string Probe target (see
the Note above)

"Un-specified"

OVIS_PARA_SERVICEID string serviceid - format
serviceId;serviceTa
rgetId;probeId;

0:0:0

Table 5 Measurement Metric Identifiers
49

The Application Programming Interface
ovis_meas_set_long()

Syntax:

int ovis_meas_set_long(OVIS_PARAMETRICS meas,
 int meas_parametric_id,
 long value)

Description:

This function is called to set the value of a metric/parameter (long type) as
specified by the meas_parametric_id parameter. For example:

ovis_meas_set_long(parametrics, OVIS_METRIC_AVAILABILITY,
1Availability);

Parameters:

meas: Pointer to the OVIS_PARAMETRICS opaque structure.

meas_parametric_id: Parameter/metric ID (see the metric identifier in table
5).

value: Value (long) of the parameter to be set as specified by the
meas_parametric_id.

Return Value:

An Integer indicating whether the function was successful or not. Non-zero if
successful, zero if failed.

Version:

Internet Services 4.0 or later.
50

Chapter 3
ovis_meas_set_double()

Syntax:

int ovis_meas_set_double(OVIS_PARAMETRICS meas,
 int meas_parametric_id,
 double value)

Description:

This function is called to set the value of a metric/parameter (double type) as
specified by the meas_parametric_id parameter. For example:

ovis_meas_set_double(parametrics, OVIS_METRIC_SETUPTIME,
fSetupTime);

Parameters:

meas: Pointer to the OVIS_PARAMETRICS opaque structure.

meas_parametric_id: Parameter/metric ID (see the metric identifier in table
5).

value: Value of the parameter to be set as specified by the meas_para_id.

Return Value:

An Integer indicating whether the function was successful or not. Non-zero if
successful, zero if failed.

Version:

Internet Services 4.0 or later.
51

The Application Programming Interface
ovis_meas_set_string()

Syntax:

int ovis_meas_set_string(OVIS_PARAMETRICS meas,
 int meas_parametric_id,
 char *value)

Description:

This function is called to set the value for a metric (string type) as specified by
the meas_parametric_id parameter. For example:

ovis_meas_set_string(parametrics, OVIS_METRIC_TARGET,
szTarget);

Parameters:

meas: Pointer to the OVIS_PARAMETRICS opaque structure.

meas_parametric_id: Parameter/metric ID (see the metric identifier in table
5).

value: Value of the parameter to be set as specified by the meas_para_id.

Return Value:

An Integer indicating whether the function was successful or not. Non-zero if
successful, zero if failed.

Version:

Internet Services 4.0 or later.
52

Chapter 3
ovis_meas_get_long()

Syntax:

long ovis_meas_get_long(OVIS_PARAMETRICS meas, int
meas_parametric_id)

Description:

This function is called to get the value of a metric as specified by the
meas_parametric_id parameter. For example:

ovis_meas_get_long(meas, OVIS_METRIC_AVAILABILITY);

Parameters:

meas: Pointer to the OVIS_PARAMETRICS opaque structure.

meas_parametric_id: Parameter/metric ID (see the metric identifier in table
5).

Return Value:

A long type metric as specified by the meas_parametric_id. NULL if no value
has been previously set.

Version:

Internet Services 4.0 or later.
53

The Application Programming Interface
ovis_meas_get_double()

Syntax:

double ovis_meas_get_double(OVIS_PARAMETRICS meas, int
meas_parametric_id)

Description:

This function is called to get the value of a metric as specified by the
meas_parametric_id parameter. For example:

ovis_meas_get_double(meas, OVIS_METRIC_SETUPTIME);

Parameters:

meas: Pointer to the OVIS_PARAMETRICS opaque structure.

meas_parametric_id: Parameter/metric ID (see the metric identifier in table
5)..

Return Value:

A double value of the parameter as specified by the meas_parametric_id.
NULL if no value has been previously set.

Version:

Internet Services 4.0 or later.
54

Chapter 3
ovis_meas_get_string()

Syntax:

char *ovis_meas_get_string(OVIS_PARAMETRICS meas, int
meas_parametric_id)

Description:

This function is called to get the value of a metric as specified by the
meas_parametric_id parameter. For example:

ovis_meas_get_string(meas, OVIS_METRIC_TARGET);

Parameters:

meas: Pointer to the OVIS_PARAMETRICS opaque structure.

meas_parametric_id: Parameter/metric ID (see the metric identifier in table
5).

Return Value:

A pointer (char *) to the value of the parameter as specified by the
meas_parametric_id. NULL if no value has been previously set.

Version:

Internet Services 4.0 or later.
55

The Application Programming Interface
API for Tracing

The tracing APIs provide a set of functions that can be used to trace various
probe conditions into a trace file. A typical OVIS probe writes trace
statements into a trace file indicating the various states that it goes through
while being executed. Trace logs are extremely helpful in troubleshooting and
debugging probe executions.

The degree of importance and detail of a trace statement is determined by a
trace level. Certain trace statements with fine granular details about probe
execution may not be necessary at all times and can unneccessarily clutter the
trace file.

The trace level is determined by a setting on the Internet Services
Management Server. Each trace statement is traced by the probe with a
specific trace level in mind. For example, a setting of trace level 5 on the
Management Server makes the probe trace only those statements that have a
level 5 or lower. The higher the trace level, the more granular and detailed
the trace information. Table 6 lists the various trace levels. Based on the
information you need, you can decide on the appropriate trace statements and
level.

Table of Trace Levels

Table 6 Trace Levels

OVIS_TRACE_LEVEL_OFF trace level 0 OFF

OVIS_TRACE_LEVEL_1 trace level 1 Minimum

OVIS_TRACE_LEVEL_2 trace level 2

OVIS_TRACE_LEVEL_3 trace level 3

OVIS_TRACE_LEVEL_4 trace level 4

OVIS_TRACE_LEVEL_5 trace level 5 High

OVIS_TRACE_LEVEL_6 trace level 6

OVIS_TRACE_LEVEL_7 trace level 7

OVIS_TRACE_LEVEL_8 trace level 8

OVIS_TRACE_LEVEL_9 trace level 9 Maximum
56

Chapter 3
ovis_trace_init()

Syntax:

int ovis_trace_init(int trace_level,
 const char* prog_name,
 char* trace_file)

Description:

This function initializes tracing with a default trace level (5) and a default
trace file (trace.log). Internet Services needs to be initialized before calling
any of the tracing APIs that can be used to trace various probe conditions to
the Internet Services trace file.

Parameters:

Itrace_level: Specifies the initial trace level. The trace level can be changed
using the ovis_trace_set_level() API.

prog_name: Specifies the name of the executable module that is using the
Trace engine. Typically it is the probe executable name.

trace_file: Specifies the trace file name. Should be set to NULL to use the
default trace file. The default trace file is located under the
\data\log\trace.log folder. If the trace_file parameter passed to
ovis_trace_init() is not NULL, it should contain the fully qualified path
of the custom trace file.

Return Value:

An integer indicating whether the initialization succeeded or not. Non-zero if
initialization succeeded, zero if failed.

Version:

Internet Services 4.0 or later.
57

The Application Programming Interface
ovis_trace_set_level()

Syntax:

int ovis_trace_set_level(int trace_level)

Description:

This function sets the existing trace level to a new value.

Parameters:

Itrace_level: Specifies the new trace level.

Return Value:

This API function returns the previous trace level.

Version:

Internet Services 4.0 or later.
58

Chapter 3
ovis_trace()

Syntax:

int ovis_trace(const char* format, ...)

Description:

This function logs a trace statement into the Internet Services trace file. The
format of the trace statement can be specified by the user through the format
string. The API takes a variable number of parameters based on the format
string.

If the number of parameters don't match with the format statement, the API
fails to log the statement into the trace file and returns a zero.

Parameters:

format: Format of the trace statement.

One or more trace parameters.

Return Value:

An integer indicating whether the trace was written to the trace file or not.
Non-zero if successful, zero if failed.

Version:

Internet Services 4.0 or later.
59

The Application Programming Interface
ovis_trace_l()

Syntax:

int ovis_trace_l(int trace_level, const char* format, ...)

Description:

This function logs a trace statement into the trace file. Just as the
ovis_trace() function, the format of the trace statement can be specified
by the user through the format string. In addition ovis_trace_l() takes
one more parameter, namely the trace_level. The function only logs the trace
statement if the current trace level happens to be greater than or equal to the
trace level as specified by the trace_level parameter.

Use this function to conditionally log traces in the trace file.

Parameters:

trace_level: Minimum Trace Level at which the trace statement should be
written.

format: Format of the trace statement.

Return Value:

An integer indicating whether the trace was written to the trace file or not.
Non-zero if successful, zero if failed.

Version:

Internet Services 4.0 or later.
60

Chapter 3
API for Error Reporting

The error reporting API provides a set of functions that can be used to log
various error conditions into an error log file. A typical probe writes error logs
into a log file indicating error conditions encountered while executing. Error
logs are extremely helpful in troubleshooting and debugging probe executions.

The error logs can be either written into the standard OVIS error log file, or a
custom log file, or simply printed on stdout. The destination of an error log is
determined by a flag passed to the error logging API.

Table 7 lists the various possible error destinations.

Table of Error Destinations:

Table 7 Error Destinations

Destination ID Destination

OVIS_ERR_DST_OVISLOG log errors to OVIS error log file

OVIS_ERR_DST_CUSTOMLOG log error to user defined error log file

OVIS_ERR_DST_STDERR log error to stderr
61

The Application Programming Interface
ovis_error_init()

Syntax:

int ovis_error_init(int dst, const char* prog_name, char* error_file)

Description:

This function initializes the error handling. This is necessary before making
calls to the subsequent error logging APIs that can be used to log various
probe error conditions to the OVIS error log file.

The dst parameter can be used to specify more than one destination by using a
combination of one or more of the three predefined flags. For example:
specifying the dst as
ovis_error_init(OVIS_ERR_DST_OVISLOG | OVIS_ERR_DST_STDERR,
"program_name")

Will make Internet Services log errors at two places (OVIS Error log file and
stderr) simultaneously.

Parameters:

dst: Specifies the destination for error messages. Error messages can be sent
to one or more of three different destinations, as specified by this parameter.

1 OVIS Error log file.

2 Stderr

3 User specified error log file.

prog_name: Specifies the name of the probe that reported the error.

error_file: Specifies the user specified error log file. Ignored if Dst does not
contain OVIS_ERR_DST_CUSTOMLOG.

Return Value:

An integer indicating whether the initialization succeeded or not. Non-zero if
initialization succeeded, zero if failed.

Version:

Internet Services 4.0 or later.
62

Chapter 3
ovis_err_set_output_dst())

Syntax:

int ovis_err_set_output_dst(int dst)

Description:

This function sets a new destination for error message logs. Error messages
can be directed to any of one or more (by using logical OR conditions) of the
three destinations, as specified by the Dst flag.

Parameters:

dst: Specifies the new destination for error messages.
Error messages can be sent to one or more of three different destinations, as
specified by this parameter.

1 OVIS Error log file.

2 Stderr.

3 User specified error log file.

Return Value:

An integer returns the previous error destination.

Version:

Internet Services 4.0 or later.
63

The Application Programming Interface
ovis_error_out()

Syntax:

int ovis_error_out(int error_code,
 char severity,
 int sys_errno,
 const char* source_file,
 int line_no,
 const char* format,
 ...)

Description:

This function outputs an error message indicating the error code, severity of
the error, the source file name and the source line number, as to where the
error occurred. Additionally a custom error message can be outputted through
the format parameter.

Parameters:

error_code: Specifies the error code. Error codes are user defined.

severity: Specifies the severity of the error as follows:
OVIS_ERR_SEV_WARNING for warning.
OVIS_ERR_SEV_ERROR for error.

sys_errno: Use this to pass any error code that the might have been returned
by the system as a result of a system call failure. This will provide for
additional diagnostics and help in troubleshooting the probe.

source_file: Specifies the source file name in which the error occurred.

line_no: Specifies the exact source code line number within the source file.

format: Format of error message string.

Return Value:

An integer indicating whether the error message was logged successfully or
not. Non-zero indicates success, zero indicates failure.

Version:

Internet Services 4.0 or later.
64

Chapter 3
API for Time Keeping

The time keeping APIs provide a set of functions to perform various timing
measurements. Most Internet Services probes report one or more timing
metric. Having a set of time keeping APIs makes it easier to make timing
measurements in probes.

Timers are initialized by the ovis_timer_start() function, A unique timer
ID is returned by this function. This ID can be later used to stop the timer at
a desired instance of time and later to retrieve the measured time interval.

The time keeping APIs allow for the initialization of up to 256 concurrent
timers. The accuracy and resolution of the timers are OS dependent and are
the same as the OS’s own time accuracy and resolution.
65

The Application Programming Interface
ovis_timer_start()

Description:

This function initializes a new Timer. The timer acts like a stopwatch that can
be used to measure timing related probe metrics.

Parameters:

None

Return Value:

A non-zero integer if the function is successful, zero if failed.

The return value is the ID of the newly initialized timer.

Version:

Internet Services 4.0 or later.
66

Chapter 3
ovis_timer_stop()

Syntax:

int ovis_timer_stop(int timer_id)

Description:

This function stops an existing timer. Each timer has a unique TimerID
associated with it. The Time Keeping APIs can be used to initialize concurrent
timers for the purpose of measuring timing metrics.

Parameters:

timer_id: ID of the timer that is to be stopped.

Return Value:

An integer, non-zero if Timer stop succeeded, else zero.

Version: Internet Services 4.0 or later.
67

The Application Programming Interface
ovis_timer_elapsed()

Syntax:

int ovis_timer_elapsed(int timer_id)

Description:

This function returns the elapsed time for an existing timer, since it was
started. Each timer has a unique timer_id associated with it (returned by
ovis_timer_start()). The ovis_timer_elapsed() function should be
passed the appropriate timer_id.

Parameters:

timer_id: ID of the timer that’s elapsed time is to be returned.

Return Value:

Elapsed time in milliseconds. An integer, non-zero if successful, -1 if failed.

Version:

Internet Services 4.0 or later.
68

Chapter 3
Typical Implementation Steps and the API

Coding for a typical custom probe follows the following logical sequence:

1 Parse the Command Line

2 Probe the intended Service

3 Make performance measurements

4 Log measurements to the Internet Services Management Server

5 Quit

These logical steps can be implemented using the Custom Probe API as
follows

Parse the Command Line

ovis_parse_cmdline()

Make performance measurements

ovis_meas_init()
ovis_meas_start()
ovis_timer_start()
ovis_timer_stop()
ovis_timer_elapsed()

Log measurements to the Internet Services Management Server/print
measurements out to stdout

ovis_meas_get_long()
ovis_meas_get_double()
ovis_meas_get_string()
ovis_meas_set_long()
ovis_meas_set_double()
ovis_meas_set_string()
ovis_meas_log()

Quit

ovis_meas_end()
69

The Application Programming Interface
In addition, the following APIs can be used for error handling and tracing.

ovis_error_init()
ovis_error_set_output_dst()
ovis_error_out()
ovis_trace_init()
ovis_trace_set_level()
ovis_trace()
ovis_trace_l()

Chapter 2 provides detailed implementation steps. Chapter 4 provides a
working sample custom probe implemented using the custom probe API.
70

4

Examples

This chapter includes the following examples:

• Sample Probes

• Sample Code

• Sample Makefile

• Typical SRP File
71

Sample Probes

Two fully functional sample probe implementations are provided with the
Custom Probes, with full source code and Visual C++ 6.0 project files/UNIX
Makefiles. The sample code in the next section is based on the Dummy probe.

1 Dummy probe

a ProbeDummy.dsp - under the Sdk\examples\probeDummy folder
for Windows

b Makefile - under the opt/OV/VPIS/probes/examples folder for
UNIX.

2 Exchange probe

a ProbeExchange.dsp - under the Sdk\examples\probeExchange
folder for Windows.

b Not Available on UNIX.

To build the probes, on Windows, simply load the project files
(probeDummy.dsp and probeExchange.dsp) into MS Visual Studio 6.0 (or
higher) and build the projects. For UNIX, go to the /opt/OV/VPIS/probes/
example folder and do a make probeDummy

Once built, to integrate the sample probes into an existing install of Internet
Services, please refer to the readme.txt files under each of the sample
folders.
72

Chapter 4
Sample Code (Windows/UNIX)

This section shows a skeletal C++ sample probe implementation using the
Custom Probe APIs. The sample code is based on the Dummy probe provided
with the custom probes feature.

/* mainCustom.cpp */

#include "OvIsApi.h"

#define probe_name "C_CUSTOM_PROBE"

/* Options table for command line parsing */
const char *optv[] = {
"parameter1",
"parameter2",
"parameter3"
};

int main(int argc, char* argv[])

{

 /* Structure to hold probe metrics */
 OVIS_PARAMETRICS parametrics;

 /* List to hold command line parameters */
 OVIS_CMDOPTIONS cmdoptions;

 int i_TraceLevel = 0;

 int Timer_SetupTime, Timer_ResponseTime = 0; /* Timer ids */
 long lElapsedTime = 0;
 int i = 0;

 long lAvailability = 0;
 double fSetupTime = 0;
 double fResponseTime = 0;
 double fTransferTput = 0;
 double dwSleepTime = 0;
 int optc = sizeof(optv) / sizeof(optv[0]);

 /* Parse the command line */
 ovis_parse_cmdline(argc, argv, optc, optv, cmdoptions);
73

Sample Code (Windows/UNIX)
 /* Error and trace initialization */
 ovis_error_init(OVIS_ERR_DST_OVISLOG, "probeCustom", 0);

 if(ovis_is_trace())

 {
 if(ovis_get_paramvalue("trace", cmdoptions))
 i_TraceLevel = atoi(ovis_get_paramvalue("trace", cmdoptions));

 ovis_trace_init(i_TraceLevel, "probeCustom", TraceFile);

 }

 /* Initialize measurement structure */
 ovis_meas_init(probe_name, ¶metrics);

 /* Start the measurement process */
 ovis_meas_start(parametrics);

 Timer_SetupTime = ovis_timer_start();
 Timer_ResponseTime = ovis_timer_start();

 /* Setup code here */

 ……

 …….

 …….

 ovis_timer_stop(Timer_SetupTime);

 /* Probe transaction code here */

 ……

 ……

 ……

 ovis_timer_stop(Timer_ResponseTime);

 /* Compute metric Values */
 /* Set lAvailability */
 /* Set fSetupTime */
 /* Set fResponsTime */
74

Chapter 4
 ovis_meas_set_long(parametrics, OVIS_METRIC_AVAILABILITY,
lAvailability);
 ovis_meas_set_double(parametrics, OVIS_METRIC_SETUPTIME,
fSetupTime);
 ovis_meas_set_double(parametrics, OVIS_METRIC_RESPONSETIME,
fResponseTime);
 ovis_meas_set_double(parametrics, OVIS_METRIC_TRANSFERTPUT,
fTransferTput);

 /* Log Metrics to the Management Server */
 ovis_meas_log(parametrics);

 /* Re-Start data logging */
 ovis_meas_start(parametrics);

 Timer_SetupTime = ovis_timer_start();
 Timer_ResponseTime = ovis_timer_start();

 /* Setup code here */

 ……

 …….

 …….

 ovis_timer_stop(Timer_SetupTime);

 /* Probe transaction code here */

 ……

 ……

 ……

 ovis_timer_stop(Timer_ResponseTime);

75

Sample Code (Windows/UNIX)
 /* Re-compute metric Values */
 /* Set lAvailability */
 /* Set fSetupTime */
 /* Set fResponsTime */

 ovis_meas_set_long(parametrics, OVIS_METRIC_AVAILABILITY,
lAvailability);
 ovis_meas_set_double(parametrics, OVIS_METRIC_SETUPTIME,
fSetupTime);
 ovis_meas_set_double(parametrics, OVIS_METRIC_RESPONSETIME,
fResponseTime);
 ovis_meas_set_double(parametrics, OVIS_METRIC_TRANSFERTPUT,
fTransferTput);

 /* Log Metrics to the Management Server */
 ovis_meas_log(parametircs);

 /* End of probe measurements */
 ovis_meas_end(parametrics);

 return 0;

}

76

Chapter 4
Sample Makefile

A sample Makefile is shown below.

Sample Makefile for a dummy probe using shared custom probe API library

for RedHat Linux 6.0 or later
#
Usage:
make probeDummy

OVIS_PROBE_OBJS = mainDummy.o
OVIS_CUST_LIB_N = OvIsApi
OVIS_CUST_LIB_E = .so

OVIS_SHLIB_PATH = /opt/OV/lib
OVIS_INCLU_PATH = /opt/OV/VPIS/probes

OVIS_LIBS = -l$(OVIS_CUST_LIB_N)
OVIS_LIB_LINK_SW = -Wl,-rpath -Wl,$(OVIS_SHLIB_PATH) -
L$(OVIS_SHLIB_PATH)

OVIS_CFLAGS = -I$(OVIS_INCLU_PATH)
OVIS_CC = g++

probeDummy: $(OVIS_PROBE_OBJS) $(OVIS_SHLIB_PATH)/
lib$(OVIS_CUST_LIB_N)$(OVIS_CUST_LIB_E) Makefile
 $(OVIS_CC) -o $@ $(OVIS_PROBE_OBJS) $(OVIS_LIB_LINK_SW)
$(OVIS_LIBS)

.SUFFIXES : .o .cpp

.cpp.o:
 $(OVIS_CC) $(OVIS_CFLAGS) -c $<

clean:
 rm $(OVIS_PROBE_OBJS)

SRP File Structure

A typical SRP file has the following structure
77

SRP File Structure
PROBENAME: C_CUSTOM_PROBE
 DESCRIPTION: CUSTOM - Custom Probe
 PROBEMETRICLIST: IOPS_CUSTOM
 IDENTIFIER: URL
 INSTANCEID: URL
 DEFAULT_TARGET: /
 DEFAULT_PORT: 80
 PROBE: probeCustom
 TRANSPORT:HTTP
 PARAMETER1: username
 PARAMETER2: password
 END_PROBENAME:

PROBEMETRICS: IOPS_CUSTOM

 METRIC: AVAILABILITY
 UNITS: Percent
 DEFAULT_CONDITION: >
 DEFAULT_SERVICE_LEVEL:90.000
 DEFAULT_WARNING: 90.000
 DEFAULT_BASELINE: 80.000
 DEFAULT_DURATION: 600
 DEFAULT_MESSAGE: CUSTOM Service for <TARGET> is unavailable

 METRIC: RESPONSE_TIME
 UNITS: Seconds
 DEFAULT_CONDITION: <
 DEFAULT_SERVICE_LEVEL:2.0
 DEFAULT_WARNING:2.0
 DEFAULT_MINOR:4.0
 DEFAULT_MAJOR:6.0
 DEFAULT_CRITICAL:10.0
 DEFAULT_BASELINE:80.000
 DEFAULT_DURATION: 600
 DEFAULT_MESSAGE: CUSTOM Service RESPONSE_TIME is slow
(<VALUE> vs <THRESHOLD>) on <TARGET>

 METRIC: SETUP_TIME
 UNITS: Seconds
 DEFAULT_CONDITION: <
 DEFAULT_WARNING: 3.000
 DEFAULT_BASELINE: 80.000
78

Chapter 4
 DEFAULT_DURATION: 600
 DEFAULT_MESSAGE: CUSTOM Service SETUP_TIME is slow
(<VALUE> vs <THRESHOLD>) on <TARGET>

 END_PROBEMETRICS:

METRICLIST: IOPS_PROBE_DATA
 SOURCE: IOPS
 CLASS: IOPS_PROBE_DATA
 RETAINDAYS: 30
 END_METRICLIST:

METRICS: IOPS_PROBE_DATA
 METRIC: CUSTOMER_NAME
 METRIC: SERVICE_NAME
 METRIC: AVAILABILITY
 METRIC: SETUP_TIME
 METRIC: RESPONSE_TIME
 END_METRICS:

REPORT: IOPS_CUSTOM
 CATEGORY: 190 Internet Services
 ALL_TEMPLATE: reports\IOps\a_IOps_Custom.rpt
 HTML_DIRECTORY: webpages\a_iops_custom
 DESCRIPTION: CUSTOM Report
 MAXTIME: 10
 FAMILY: "Internet Services"
 END_REPORT:

GROUPREPORT: IOps_CUSTOM
 GROUP: ALL
 END_GROUPREPORT:
79

SRP File Structure
80

	Custom Probes API Guide
	Contents
	Chapter 1 Custom Probes
	Introduction
	HP OpenView Developer Support
	What’s Included in Custom Probes

	The Custom Probes Architecture
	API Conventions, Libraries and Files
	Function-naming Conventions
	Libraries on the Management Server and Remote Probes Systems
	Include and Lib Files
	MakeFiles
	Queue Files

	Chapter 2 Implementation Steps
	Implementing Custom Probes
	A. Steps to implement a custom probe on MS Windows
	B. Steps to implement a custom probe on UNIX

	Configuring and Deploying a Custom Probe
	Updating a Custom Probe

	Creating Reports for Custom Probes
	Adding a Custom Probe to Network Node Manager
	Troubleshooting Your Custom Probes

	Chapter 3 Custom Probes API
	The Application Programming Interface
	API for Command Line Parsing
	Data Structures
	ovis_cmdline_parse()
	ovis_cmdline_getpvalue()
	ovis_is_print()
	ovis_is_dump()
	ovis_is_trace()

	API for Initializing, Starting, Logging and Stopping Measurements
	ovis_meas_init()
	ovis_meas_start()
	ovis_meas_log()
	ovis_meas_end()

	API for Getting/Setting Probe Metrics
	Table of Metric/Parameter Identifier.
	ovis_meas_set_long()
	ovis_meas_set_double()
	ovis_meas_set_string()
	ovis_meas_get_long()
	ovis_meas_get_double()
	ovis_meas_get_string()

	API for Tracing
	Table of Trace Levels
	ovis_trace_init()
	ovis_trace_set_level()
	ovis_trace()
	ovis_trace_l()

	API for Error Reporting
	Table of Error Destinations:
	ovis_error_init()
	ovis_err_set_output_dst())
	ovis_error_out()

	API for Time Keeping
	ovis_timer_start()
	ovis_timer_stop()
	ovis_timer_elapsed()

	Typical Implementation Steps and the API

	Chapter 4 Examples
	Sample Probes
	Sample Code (Windows/UNIX)
	Sample Makefile
	SRP File Structure

