

Mercury WinRunner
Advanced Features User’s Guide

Version 8.2

Mercury WinRunner Advanced Features User’s Guide, Version 8.2

This manual, and the accompanying software and other documentation, is protected by U.S. and
international copyright laws, and may be used only in accordance with the accompanying license
agreement. Features of the software, and of other products and services of Mercury Interactive
Corporation, may be covered by one or more of the following patents: United States: 5,511,185;
5,657,438; 5,701,139; 5,870,559; 5,958,008; 5,974,572; 6,137,782; 6,138,157; 6,144,962; 6,205,122;
6,237,006; 6,341,310; 6,360,332, 6,449,739; 6,470,383; 6,477,483; 6,549,944; 6,560,564; 6,564,342;
6,587,969; 6,631,408; 6,631,411; 6,633,912; 6,694,288; 6,738,813; 6,738,933; 6,754,701; 6,792,460
and 6,810,494. Australia: 763468 and 762554. Other patents pending. All rights reserved.

Mercury, Mercury Interactive, the Mercury logo, the Mercury Interactive logo, LoadRunner,
WinRunner, SiteScope and TestDirector are trademarks of Mercury Interactive Corporation and may
be registered in certain jurisdictions. The absence of a trademark from this list does not constitute a
waiver of Mercury's intellectual property rights concerning that trademark.

All other company, brand and product names may be trademarks or registered trademarks of their
respective holders. Mercury disclaims any responsibility for specifying which marks are owned by
which companies or which organizations.

Mercury Interactive Corporation
379 North Whisman Road
Mountain View, CA 94043
Tel: (650) 603-5200
Toll Free: (800) TEST-911
Customer Support: (877) TEST-HLP
Fax: (650) 603-5300

© 1993 - 2005 Mercury Interactive Corporation, All rights reserved

If you have any comments or suggestions regarding this document, please send them via e-mail to
documentation@mercury.com.

WRAG8.2/01

iii

Multi-Volume Chapter Summary

WinRunner user documentation is divided into two volumes:

➤ The Mercury WinRunner Basic Features User’s Guide introduces WinRunner
and describes its mainstream features and automated testing procedures.

➤ The Mercury WinRunner Advanced Features User’s Guide describes
WinRunner’s advanced features, introduces Mercury’s Test Script Language
(TSL), and covers advanced configuration options. It also describes how to
integrate WinRunner with other Mercury products.

A listing of the chapters in each guide is provided below:

Mercury WinRunner Basic Features User’s Guide

PART I: STARTING THE TESTING PROCESS

Chapter 1: Introduction ..3

Chapter 2: WinRunner at a Glance ...11

PART II: INTRODUCING THE GUI MAP

Chapter 3: Understanding How WinRunner Identifies GUI Objects ..25

Chapter 4: Understanding Basic GUI Map Concepts33

Chapter 5: Working in the Global GUI Map File Mode45

Chapter 6: Working in the GUI Map File per Test Mode65

Chapter 7: Editing the GUI Map ...71

Multi-Volume Chapter Summary

iv

PART III: CREATING TESTS—BASIC

Chapter 8: Designing Tests ...93

Chapter 9: Checking GUI Objects ...127

Chapter 10: Working with Web Objects...175

Chapter 11: Working with ActiveX and Visual Basic Controls217

Chapter 12: Checking PowerBuilder Applications............................237

Chapter 13: Checking Table Contents ..247

Chapter 14: Checking Databases ..259

Chapter 15: Checking Bitmaps ...321

Chapter 16: Checking Text ...331

Chapter 17: Checking Dates ...349

Chapter 18: Creating Data-Driven Tests...365

Chapter 19: Synchronizing the Test Run ..411

PART IV: RUNNING TESTS—BASIC

Chapter 20: Understanding Test Runs..427

Chapter 21: Analyzing Test Results ..453

PART V: CONFIGURING BASIC SETTINGS

Chapter 22: Setting Properties for a Single Test..............................509

Chapter 23: Setting Global Testing Options531

Multi-Volume Chapter Summary

v

Mercury WinRunner Advanced Features User’s Guide

PART I: WORKING WITH THE GUI MAP

Chapter 1: Merging GUI Map Files ...3

Chapter 2: Configuring the GUI Map ...15

Chapter 3: Learning Virtual Objects ...37

PART II: CREATING TESTS—ADVANCED

Chapter 4: Defining and Using Recovery Scenarios45

Chapter 5: Handling Web Exceptions...87

Chapter 6: Using Regular Expressions ..93

PART III : PROGRAMMING WITH TSL

Chapter 7: Enhancing Your Test Scripts with Programming103

Chapter 8: Generating Functions..121

Chapter 9: Calling Tests ..131

Chapter 10: Creating User-Defined Functions..................................147

Chapter 11: Employing User-Defined Functions in Tests157

Chapter 12: Calling Functions from External Libraries.....................175

Chapter 13: Creating Dialog Boxes for Interactive Input.................183

PART IV: RUNNING TESTS—ADVANCED

Chapter 14: Running Batch Tests..193

Chapter 15: Running Tests from the Command Line.......................201

PART V: DEBUGGING TESTS

Chapter 16: Controlling Your Test Run ..225

Chapter 17: Using Breakpoints ...231

Chapter 18: Monitoring Variables ..241

Multi-Volume Chapter Summary

vi

PART VI: CONFIGURING ADVANCED SETTINGS

Chapter 19: Customizing the Test Script Editor...............................251

Chapter 20: Customizing the WinRunner User Interface.................261

Chapter 21: Setting Testing Options from a Test Script285

Chapter 22: Customizing the Function Generator313

Chapter 23: Initializing Special Configurations................................329

PART VII: WORKING WITH OTHER MERCURY PRODUCTS

Chapter 24: Working with Business Process Testing........................335

Chapter 25: Integrating with QuickTest Professional371

Chapter 26: Managing the Testing Process379

Chapter 27: Testing Systems Under Load ..415

vii

Table of Contents

Multi-Volume Chapter Summary ... iii
Mercury WinRunner Basic Features User’s Guide............................... iii
Mercury WinRunner Advanced Features User’s Guide........................iv

Welcome to Mercury WinRunner .. xiii
Using this Guide.. xiii
WinRunner Documentation Set..xv
Online Resources ...xv
Documentation Updates ...xvii
Typographical Conventions.. xviii

PART I: WORKING WITH THE GUI MAP

Chapter 1: Merging GUI Map Files ..3
About Merging GUI Map Files...3
Preparing to Merge GUI Map Files ..4
Resolving Conflicts while Automatically Merging GUI Map Files6
Merging GUI Map Files Manually ...10
Changing to the GUI Map File per Test Mode....................................13

Chapter 2: Configuring the GUI Map ...15
About Configuring the GUI Map ..15
Understanding the Default GUI Map Configuration18
Mapping a Custom Object to a Standard Class19
Configuring a Standard or Custom Class..22
Creating a Permanent GUI Map Configuration..................................27
Deleting a Custom Class ...29
Understanding WinRunner Object Classes...30
Understanding Object Properties ..31
Understanding Default Learned Properties ..34
Properties for Visual Basic Objects ..34
Properties for PowerBuilder Objects..35

Table of Contents

viii

Chapter 3: Learning Virtual Objects ...37
About Learning Virtual Objects ..37
Defining a Virtual Object ..38
Understanding a Virtual Object’s Physical Description......................42

PART II : CREATING TESTS—ADVANCED

Chapter 4: Defining and Using Recovery Scenarios45
About Defining and Using Recovery Scenarios45
Defining Simple Recovery Scenarios ...47
Defining Compound Recovery Scenarios ...58
Managing Recovery Scenarios ...75
Working with Recovery Scenarios Files ..80
Working with Recovery Scenarios in Your Test Script........................84

Chapter 5: Handling Web Exceptions...87
About Handling Web Exceptions..87
Defining Web Exceptions..88
Modifying an Exception..90
Activating and Deactivating Web Exceptions91

Chapter 6: Using Regular Expressions ..93
About Regular Expressions ..93
Understanding When to Use Regular Expressions94
Understanding Regular Expression Syntax ...97

PART III: PROGRAMMING WITH TSL

Chapter 7: Enhancing Your Test Scripts with Programming103
About Enhancing Your Test Scripts with Programming...................104
Using Descriptive Programming ...105
Adding Comments and White Space..107
Understanding Constants and Variables ..109
Performing Calculations ...110
Creating Stress Conditions..111
Incorporating Decision-Making Statements113
Sending Messages to the Test Results Window.................................116
Starting Applications from a Test Script ...116
Defining Test Steps..117
Comparing Two Files ..118
Checking the Syntax of your TSL Script ...119

Table of Contents

ix

Chapter 8: Generating Functions..121
About Generating Functions...121
Generating a Function for a GUI Object...123
Selecting a Function from a List..126
Assigning Argument Values ..127
Modifying the Default Function in a Category129

Chapter 9: Calling Tests ..131
About Calling Tests ...131
Using the Call Statement ..133
Returning to the Calling Test..134
Setting the Search Path..136
Working with Test Parameters ..137
Viewing the Call Chain...145

Chapter 10: Creating User-Defined Functions..................................147
About Creating User-Defined Functions...147
Function Syntax ..148
Return and Exit Statements...150
Variable, Constant, and Array Declarations151
Example of a User-Defined Function ..155

Chapter 11: Employing User-Defined Functions in Tests157
About Employing User-Defined Functions157
Understanding the Contents of a Compiled Module159
Using the Function Viewer..161
Employing Functions Defined In Tests ...167
Employing Functions Defined in Compiled Modules168

Chapter 12: Calling Functions from External Libraries.....................175
About Calling Functions from External Libraries175
Dynamically Loading External Libraries...176
Declaring External Functions in TSL...177
Windows API Examples...180

Chapter 13: Creating Dialog Boxes for Interactive Input.................183
About Creating Dialog Boxes for Interactive Input183
Creating an Input Dialog Box ...184
Creating a List Dialog Box...186
Creating a Custom Dialog Box..187
Creating a Browse Dialog Box ...188
Creating a Password Dialog Box..189

Table of Contents

x

PART IV: RUNNING TESTS—ADVANCED

Chapter 14: Running Batch Tests ..193
About Running Batch Tests ..193
Creating a Batch Test ..195
Running a Batch Test ..197
Storing Batch Test Results ...197
Viewing Batch Test Results..199

Chapter 15: Running Tests from the Command Line201
About Running Tests from the Command Line201
Using the Windows Command Line ..202
Command Line Options ...204

PART V: DEBUGGING TESTS

Chapter 16: Controlling Your Test Run ..225
About Controlling Your Test Run ...225
Running a Single Line of a Test Script ..227
Running a Section of a Test Script ..228
Pausing a Test Run ..228

Chapter 17: Using Breakpoints ...231
About Using Breakpoints...231
Choosing a Breakpoint Type...234
Setting Break at Location Breakpoints ..235
Setting Break in Function Breakpoints..237
Modifying Breakpoints..239
Deleting Breakpoints ...240

Chapter 18: Monitoring Variables ..241
About Monitoring Variables..241
Adding Variables to the Watch List ..244
Viewing Variables in the Watch List...245
Modifying Variables in the Watch List ...246
Assigning a Value to a Variable in the Watch List............................247
Deleting Variables from the Watch List..248

PART VI: CONFIGURING ADVANCED SETTINGS

Chapter 19: Customizing the Test Script Editor...............................251
About Customizing the Test Script Editor ..251
Setting Display Options ..252
Personalizing Editing Commands...259

Table of Contents

xi

Chapter 20: Customizing the WinRunner User Interface.................261
About Customizing WinRunner’s User Interface..............................261
Customizing the File, Debug, and User-Defined Toolbars262
Customizing the User Toolbar ..269
Using the User Toolbar..278
Configuring WinRunner Softkeys...280

Chapter 21: Setting Testing Options from a Test Script285
About Setting Testing Options from a Test Script285
Setting Testing Options with setvar ..286
Retrieving Testing Options with getvar ..288
Controlling the Test Run with setvar and getvar289
Using Test Script Testing Options ...289

Chapter 22: Customizing the Function Generator313
About Customizing the Function Generator313
Adding a Category to the Function Generator314
Adding a Function to the Function Generator315
Associating a Function with a Category ...323
Adding a Subcategory to a Category ...324
Setting a Default Function for a Category ..326

Chapter 23: Initializing Special Configurations................................329
About Initializing Special Configurations...329
Creating Startup Tests ...330
Sample Startup Test ...331

PART VII: WORKING WITH OTHER MERCURY PRODUCTS

Chapter 24: Working with Business Process Testing........................335
About Business Process Testing ...336
Understanding Business Process Testing Methodology....................337
Getting Started with Scripted Components in WinRunner347
Connecting to your Quality Center Project348
Working with Scripted Components ..348
Creating a New Scripted Component ...349
Defining Scripted Component Properties...352
Saving a Scripted Component...363
Modifying a Scripted Component ..369

Chapter 25: Integrating with QuickTest Professional371
About Integrating with QuickTest Professional371
Calling QuickTest Tests ...372
Viewing the Results of a Called QuickTest Test374

Table of Contents

xii

Chapter 26: Managing the Testing Process379
About Managing the Testing Process ..380
Integrating the Testing Process ...381
Accessing WinRunner Tests from Quality Center382
Connecting to and Disconnecting from a Project............................384
Saving Tests to a Project ..389
Saving a Test to a Project as a Scripted Component.........................391
Opening Tests in a Project ..392
Opening Scripted Components in a Project395
Managing Test Versions in WinRunner..396
Saving GUI Map Files to a Project ...399
Opening GUI Map Files in a Project ...401
Running Tests in a Test Set ...402
Running Tests on Remote Hosts ...404
Viewing Test Results from a Project ..405
Using TSL Functions with Quality Center ..407
Command Line Options for Working with Quality Center410

Chapter 27: Testing Systems Under Load ..415
About Testing Systems Under Load ..416
Emulating Multiple Users..416
Virtual User (Vuser) Technology...417
Developing and Running Scenarios ..418
Creating GUI Vuser Scripts..419
Measuring Server Performance..420
Synchronizing Vuser Transactions..421
Creating a Rendezvous Point ..422
A Sample Vuser Script ...423

Index..425

xiii

Welcome to Mercury WinRunner

Welcome to WinRunner, the Mercury enterprise test automation solution.
With WinRunner you can create and run sophisticated automated tests on
your application.

Note: The Mercury WinRunner Basic Features User’s Guide and Mercury
WinRunner Advanced Features User’s Guide are available as separate books only
in the printed version. In the PDF and context-sensitive Help, the
information is combined.

Using this Guide

This guide describes the main concepts behind automated software testing.
It provides step-by-step instructions to help you create, debug, and run tests,
and to report defects detected during the testing process.

The Mercury WinRunner Basic Features User’s Guide provides detailed
descriptions of WinRunner’s features and automated testing procedures. The
Mercury WinRunner Advanced Features User’s Guide describes WinRunner’s
advanced features. It is recommended that users of the Mercury WinRunner
Advanced Features User’s Guide have a working knowledge of the information
covered in the Mercury WinRunner Basic Features User’s Guide.

Welcome

xiv

This guide contains the following parts:

 Part I Working with the GUI Map

Describes how to merge and configure GUI map files. It also describes how
to teach WinRunner to recognize bitmaps as GUI objects by defining
bitmaps as virtual objects.

 Part II Creating Tests—Advanced

Describes how to use regular expressions, and handle unexpected events
that occur during a test run.

 Part III Programming with TSL

Describes how to enhance your test scripts using variables, control-flow
statements, arrays, user-defined and external functions, Runner’s visual
programming tools, and interactive input during a test run.

 Part IV Running Tests—Advanced

Describes how to run batch tests, and how to run tests both from within
WinRunner and from the command line.

 Part V Debugging Tests

Describes how to control test runs to identify and isolate bugs in test scripts,
by using breakpoints and monitoring variables during the test run.

 Part VI Configuring Advanced Settings

Describes how to customize WinRunner’s user interface, test script editor
and the Function Generator. It also describes how to initialize special
configurations to adapt WinRunner to your testing environment.

 Part VII Working with Other Mercury Products

Describes how to integrate WinRunner with QuickTest Professional, Quality
Center, Business Process Testing, and LoadRunner.

Welcome

xv

WinRunner Documentation Set

In addition to this Advanced Features User’s Guide, WinRunner comes with
a complete set of printed documentation:

WinRunner Basic Features User’s Guide provides step-by-step instructions
for using WinRunner to meet the special testing requirements of your
application.

WinRunner Installation Guide describes how to install WinRunner on a
single computer or a network.

WinRunner Tutorial teaches you basic WinRunner skills and shows you how
to start testing your application.

TSL Reference Guide describes the WinRunner Test Script Language (TSL)
and the functions it contains.

WinRunner Customization Guide explains how to customize WinRunner to
meet the special testing requirements of your application.

Online Resources

WinRunner includes the following online resources, accessible from the
program group or Help menu:

Read Me provides last-minute news and information about WinRunner.

WinRunner Help provides immediate context-sensitive answers to questions
that arise as you work with WinRunner. It describes menu commands and
dialog boxes, and shows you how to perform WinRunner tasks.

WinRunner Quick Preview provides a short presentation of the main
WinRunner capabilities for new WinRunner users.

TSL Online Reference describes the WinRunner Test Script Language (TSL),
the functions it contains, and examples of how to use the functions.

Welcome

xvi

Printer-Friendly Documentation displays the complete documentation set
in PDF format. The printer-friendly books can be read and printed using
Adobe Acrobat Reader. It is recommended that you use version 5.0 or later.
You can download the latest version of Adobe Acrobat Reader from
www.adobe.com.

Sample Tests includes utilities and sample tests with accompanying
explanations.

What’s New in WinRunner describes the newest features in the latest
versions of WinRunner.

Note: The Mercury WinRunner User's Guide online version is a single
volume, while the printed and PDF versions consists of two books, the
Mercury WinRunner Basic Features User’s Guide and the Mercury WinRunner
Advanced Features User’s Guide.

Technical Support Online uses your default Web browser to open the
Mercury Customer Support Web site. The URL for this Web site is
http://support.mercury.com.

Mercury Interactive on the Web uses your default web browser to open
Mercury Interactive’s home page. This site provides you with the most
up-to-date information on Mercury Interactive, its products and services.
This includes new software releases, seminars and trade shows, customer
support, training, and more. The URL for this Web site is
http://www.mercury.com.

http://www.adobe.com

Welcome

xvii

Documentation Updates

Mercury is continuously updating its product documentation with new
information. You can download the latest version of this document from
the Customer Support Web site (http://support.mercury.com).

To download updated documentation:

 1 In the Customer Support Web site, click the Documentation link.

 2 Under Select Product Name, select WinRunner.

Note that if WinRunner does not appear in the list, you must add it to your
customer profile. Click My Account to update your profile.

 3 Click Retrieve. The Documentation page opens and lists the documentation
available for the current release and for previous releases. If a document was
recently updated, Updated appears next to the document name.

 4 Click a document link to download the documentation.

http://support.mercury.com

Welcome

xviii

Typographical Conventions

This book uses the following typographical conventions:

1, 2, 3 Bold numbers indicate steps in a procedure.

> The greater-than sign separates menu levels (for example,
File > Open).

Stone Sans The Stone Sans font indicates names of interface
elements (for example, the Run button) and other items
that require emphasis.

Bold Bold text indicates method or function names.

Italics Italic text indicates method or function arguments,
file names in syntax descriptions, and book titles.
It is also used when introducing a new term.

<> Angle brackets enclose a part of a file path or URL address
that may vary from user to user (for example, <MyProduct
installation folder>\bin).

Arial The Arial font is used for examples and text that is to be
typed literally.

Arial bold The Arial bold font is used in syntax descriptions for text
that should be typed literally.

SMALL CAPS The SMALL CAPS font indicates keyboard keys.

... In a line of syntax, an ellipsis indicates that more items of
the same format may be included. In a programming
example, an ellipsis is used to indicate lines of a program
that were intentionally omitted.

[] Square brackets enclose optional arguments.

| A vertical bar indicates that one of the options separated
by the bar should be selected.

Part I

Working with the GUI Map

2

3

1
Merging GUI Map Files

This chapter explains how to merge GUI map files. This is especially useful if
you have been working in the GUI Map File per Test mode and want to start
working in the Global GUI Map File mode. It is also useful if you want to
combine GUI map files while working in the Global GUI Map File mode.

This chapter describes:

➤ About Merging GUI Map Files

➤ Preparing to Merge GUI Map Files

➤ Resolving Conflicts while Automatically Merging GUI Map Files

➤ Merging GUI Map Files Manually

➤ Changing to the GUI Map File per Test Mode

About Merging GUI Map Files

When you work in the GUI Map File per Test mode, WinRunner
automatically creates, saves, and loads a GUI map file with each test you
create. This is the simplest way for beginners to work in WinRunner. It is not
the most efficient, however. When you become more familiar with
WinRunner, you may want to change to working in the Global GUI Map File
mode. This mode is more efficient, as it enables you to save information
about the GUI of your application in a GUI map that is referenced by several
tests. When your application changes, instead of updating each test
individually, you can merely update the GUI map that is referenced by an
entire group of tests.

Part I • Working with the GUI Map

4

The GUI Map File Merge Tool enables you to merge multiple GUI map files
into a single GUI map file. Before you can merge GUI map files, you must
specify at least two source GUI map files to merge and at least one GUI map
file as a target file. The target GUI map file can be an existing file or a new
(empty) file.

You can work with this tool in either automatic or manual mode.

➤ When you work in automatic mode, the merge tool merges the files
automatically. If there are conflicts between the merged files, the conflicts
are highlighted and you are prompted to resolve them.

➤ When you work in manual mode, you must add GUI objects to the target
file manually. The merge tool does not highlight conflicts between the files.

In both modes, the merge tool prevents you from creating conflicts while
merging the files.

Once you merge GUI map files, you must also change the GUI map file
mode, and modify your tests or your startup test to load the appropriate GUI
map files.

Preparing to Merge GUI Map Files

Before you can merge GUI map files, you must decide in which mode to
merge your files and specify the source files and the target file.

To start merging GUI map files:

 1 Choose Tools > Merge GUI Map Files.

A WinRunner message box informs you that all open GUI maps will be
closed and all unsaved changes will be discarded.

 2 To continue, click OK.

To save changes to open GUI maps, click Cancel and save the GUI maps
using the GUI Map Editor. For information on saving GUI map files, refer to
Chapter 7, “Editing the GUI Map” in the Mercury WinRunner Basic Features
User’s Guide. Once you have saved changes to the open GUI map files, start
again at step 1.

Chapter 1 • Merging GUI Map Files

5

The GUI Map File Merge Tool opens, enabling you to select the merge type
and specify the target files and source file.

 3 In the Merge Type box, accept Auto Merge or select Manual Merge.

➤ Auto Merge merges the files automatically. If there are conflicts between
the merged files, the conflicts are highlighted and you are prompted to
resolve them.

➤ Manual Merge enables you to manually add GUI objects from the source
files to the target file. The merge tool does not highlight conflicts
between the files.

 4 To specify the target GUI map file, click the browse button opposite the
Target File box. The Save GUI File dialog box opens.

➤ To select an existing GUI map file, browse to the file and highlight it so
that it is displayed in the File name box. When prompted, click OK to
replace the file.

➤ To create a new (empty) GUI map file, browse to the desired folder and
enter the name of a new file in the File name box.

Part I • Working with the GUI Map

6

 5 Specify the source GUI map files.

➤ To add all the GUI map files in a folder to the list of source files, click the
Browse Folder button. The Set Folder dialog box opens. Browse to the
desired folder and click OK. All the GUI map files in the folder are added
to the list of source files.

➤ To add a single GUI map file to the list of source files, click the Add File
button. The Open GUI File dialog box opens. Browse to the desired file
and highlight it so that it is displayed in the File name box and click OK.

➤ To delete a source file from the list, highlight a GUI map file in the
Source Files box and click Delete.

 6 Click OK to close the dialog box.

➤ If you chose Auto Merge and the source GUI map files are merged
successfully without conflicts, a message confirms the merge.

➤ If you chose Auto Merge and there are conflicts among the source GUI
map files being merged, a WinRunner message box warns of the problem.
When you click OK to close the message box, the GUI Map File Auto
Merge Tool opens. For additional information, see “Resolving Conflicts
while Automatically Merging GUI Map Files” on page 6.

➤ If you chose Manual Merge, the GUI Map File Manual Merge Tool opens.
For additional information, see “Merging GUI Map Files Manually” on
page 10.

Resolving Conflicts while Automatically Merging GUI Map
Files

If you chose the Auto Merge option in the GUI Map File Merge Tool and
there were no conflicts between files, then a message confirms the merge.

When you merge GUI map files automatically, conflicts occur under the
following circumstances:

➤ Two windows have the same name but different physical descriptions.

➤ Two objects in the same window have the same name but different physical
descriptions.

Chapter 1 • Merging GUI Map Files

7

The following example demonstrates automatically merging two conflicting
source files (before.gui and after.gui) into a new target file (new.gui). The GUI
Map File Auto Merge Tool opens after clicking OK in the conflict warning
message box, as described in “Preparing to Merge GUI Map Files” on page 4.
It enables you to resolve conflicts and prevents you from creating new
conflicts in the target file.

The conflicting objects are highlighted in red and the description of the
conflict appears in a pane at the bottom of the dialog box. The files conflict
because in both GUI map files, there is an object under the same window
with the same name and different descriptions. Note that the windows and
objects from the after.gui source file were copied to the new.gui target file
without conflicts, since the new.gui file was initially empty. The names of the
conflicting objects are displayed in red.

Logical name of
conflicting object

Description of
conflict

Physical
description of
conflicting
object

Physical
description
of conflicting
object

Logical
name of
conflicting
object

Part I • Working with the GUI Map

8

The source files are merged in the order in which they appear in the GUI
Map File Merge Tool, as described in “Preparing to Merge GUI Map Files” on
page 4.

To view the physical description of the conflicting objects or windows, click
Description.

Each highlighted conflict can be resolved by clicking any of the following
buttons. Note that these buttons are enabled only when the conflicting
object/window is highlighted in both panes:

Conflict Resolution Option Description

Use Target Resolves the conflict by using the name and
physical description of the object/window in the
target GUI map file.

Use Source Resolves the conflict by using the name and
physical description of the object/window in the
source GUI map file.

Modify Resolves the conflict by suggesting a regular
expression (if possible) for the physical description
of the object/window in the target GUI map file
that will describe both the target and the source
object/window accurately. You can modify this
description.

Modify & Copy Resolves the conflict by enabling you to edit the
physical description of the object/window in the
source GUI map file in order to paste it into the
target GUI map file.
Note: Your changes to the physical description are

not saved in the source GUI map file.

Chapter 1 • Merging GUI Map Files

9

Tips:

If there are multiple conflicting source files, you can click Prev. File or Next
File to switch between current GUI map files.

If there are multiple conflicting objects within a single source file, you can
click Prev. Conflict or Next Conflict to switch between highlighted conflicts.
If you use your mouse to highlight a non-conflicting object in the target file
(for example, to see its physical description) and no conflict is highlighted
in the target file, you can click Prev. Conflict to highlight the conflicting
object.

Once all conflicts between the current source file and the target file have
been resolved, the source file is automatically closed and the next
conflicting source file is opened. Once all conflicts between GUI map files
have been resolved, the remaining source file and the target file are closed,
and the GUI Map File Auto Merge Tool closes.

Tip: Sometimes, all the conflicts in the current source file will have been
resolved as a result of resolving conflicts in other source files, for example,
when modifying an object in the target file that used to conflict with objects
other than the current one. When this happens, the Remove File button is
displayed. Click this button to remove the current source file from the list of
source GUI map files.

Note: Changes to the target GUI map file are saved automatically.

Part I • Working with the GUI Map

10

Merging GUI Map Files Manually

When you merge GUI map files manually, you merge each target file with
the source file. The merge tool prevents you from creating conflicts while
merging the files.

When you merge GUI map files manually, the target GUI map file cannot
contain any of the following:

➤ Two windows with the same name but different physical descriptions.

➤ Two windows with the same name and the same physical descriptions
(identical windows).

➤ Two objects in the same window with the same name but different physical
descriptions.

➤ Two objects in the same window with the same name and the same physical
descriptions (identical objects).

Chapter 1 • Merging GUI Map Files

11

In the following example, the entire contents of the after.gui source file was
copied to the new.gui target file, and there are conflicts between the
before.gui source file and the target file:

Note that in the above example, the highlighted objects in both panes have
identical logical names but different descriptions. Therefore, they cannot
both exist “as is” in the merged file.

To merge GUI map files manually:

 1 Follow the procedure described in “Preparing to Merge GUI Map Files” on
page 4 and choose Manual Merge as the merge type. After you specify the
source and target files and click OK, the GUI Map File Manual Merge Tool
opens.

The contents of the source file and target file are displayed.

Physical
description

Physical
description

Logical name Logical name

Part I • Working with the GUI Map

12

 2 Locate the windows or objects to merge.

➤ You can double-click windows to see the objects in the window.

➤ If there are multiple source files, you can click Prev. File or Next File to
switch between current GUI map files.

➤ To view the physical description of the highlighted objects or windows,
click Description.

 3 Merge the files using the following merge options:

Note: Your changes to the target GUI map file are saved automatically.

Merge Option Description

Copy (enabled only when
an object/window in the
current source file is
highlighted)

Copies the highlighted object/window in source file
to the highlighted window or to the parent window
of the highlighted object in the target file.
Note: Copying a window also copies all objects

within that window.

Delete (enabled only
when an object/window
in the target file is
highlighted)

Deletes the highlighted object/window from the
target GUI map file.
Note: Deleting a window also deletes all objects

within that window.

Modify (enabled only
when an object/window
in the target file is
highlighted)

Opens the Modify dialog box, where you can
modify the logical name and/or physical
description of the highlighted object/window in the
target file.

Modify & Copy (enabled
only when an
object/window in the
current source file is
highlighted)

Opens the Modify dialog box, where you can
modify the logical name and/or physical
description of the highlighted object/window from
the source file and copy it to the highlighted
window or to the parent window of the highlighted
object in the target file.
Note: Your changes to the physical description are

not saved in the source GUI map file.

Chapter 1 • Merging GUI Map Files

13

Tips: If you have finished merging a source file, you can click Remove File to
remove it from the list of source files to merge.

If there are multiple source files, you can click Prev. File or Next File to
switch between current GUI map files.

Changing to the GUI Map File per Test Mode

When you want to change from working in the GUI Map File per Test mode
to the Global GUI Map File mode, the most complicated preparatory work is
merging the GUI map files, as described earlier in this chapter.

In addition, you must also make the following changes:

➤ You should modify your tests or your startup test to load the GUI map files.
For information on loading GUI map files, refer to Chapter 5, “Working in
the Global GUI Map File Mode” in the Mercury WinRunner Basic Features
User’s Guide.

➤ You must select Global GUI Map File in the GUI Files section in the General
category of the General Options dialog box.

When you close WinRunner, you will be prompted to save changes made to
the configuration. Click Yes.

Note: In order for this change to take effect, you must restart WinRunner.

For additional information on the General Options dialog box, refer to
Chapter 23, “Setting Global Testing Options” in the Mercury WinRunner
Basic Features User’s Guide.

➤ You should remember to save changes you make to GUI map files once you
switch GUI map file modes. For additional information, refer to Chapter 5,
“Working in the Global GUI Map File Mode” in the Mercury WinRunner Basic
Features User’s Guide.

Part I • Working with the GUI Map

14

15

2
Configuring the GUI Map

This chapter explains how to change the way WinRunner identifies GUI
objects during Context Sensitive testing.

This chapter describes:

➤ About Configuring the GUI Map

➤ Understanding the Default GUI Map Configuration

➤ Mapping a Custom Object to a Standard Class

➤ Configuring a Standard or Custom Class

➤ Creating a Permanent GUI Map Configuration

➤ Deleting a Custom Class

➤ Understanding WinRunner Objects Classes

➤ Understanding Object Properties

➤ Understanding Default Learned Properties

➤ Properties for Visual Basic Objects

➤ Properties for PowerBuilder Objects

About Configuring the GUI Map

Each GUI object in the application being tested is defined by multiple
properties, such as class, label, MSW_class, MSW_id, x (coordinate), y
(coordinate), width, and height. WinRunner uses these properties to
identify GUI objects in your application during Context Sensitive testing.

Part I • Working with the GUI Map

16

When WinRunner learns the description of a GUI object, it does not learn
all its properties. Instead, it learns the minimum number of properties to
provide a unique identification of the object. For each object class (such as
push_button, list, window, or menu), WinRunner learns a default set of
properties: its GUI map configuration.

For example, a standard push button is defined by 26 properties, such as
MSW_class, label, text, nchildren, x, y, height, class, focused, enabled. In
most cases, however, WinRunner needs only the class and label properties to
create a unique identification for the push button. Occasionally, the
property set defined for an object class may not be sufficient to create a
unique description for a particular object. In these cases, WinRunner learns
the defined property set plus a selector property, which assigns each object
an ordinal value based on the object’s location compared to other objects
with identical descriptions.

If the default set of properties learned for an object class are not ideal for
your application, you can configure the GUI map to learn a different set of
properties for that class. For example, one of the default properties for an
edit box is the attached_text property. If your application contains edit boxes
without attached text properties, then when recording, WinRunner may
capture the attached text property of another object near the edit box and
save that value as part of the object description. In this case, you may want
to remove the attached_text property from the default set of learned
properties and add another property instead.

You can also modify the type of selector used for a class or the recording
method used.

Many applications also contain custom GUI objects. A custom object is any
object not belonging to one of the standard classes used by WinRunner.
These objects are therefore assigned to the generic “object” class. When
WinRunner records an operation on a custom object, it generates
obj_mouse_ statements in the test script.

If a custom object is similar to a standard object, you can map it to one of
the standard classes. You can also configure the properties WinRunner uses
to identify a custom object during Context Sensitive testing. The mapping
and the configuration you set are valid only for the current WinRunner
session.

Chapter 2 • Configuring the GUI Map

17

To make the mapping and the configuration permanent, you must add
configuration statements to your startup test script. Each time you start
WinRunner, the startup test activates this configuration.

Note: If your application contains owner-drawn custom buttons, you can
map them all to one of the standard button classes instead of mapping each
button separately. You do this by either choosing a standard button class in
the Record owner-drawn buttons as box in the Record category in the
General Options dialog box or setting the rec_owner_drawn testing option
with the setvar function from within a test script. For more information on
the General Options dialog box, refer to Chapter 23, “Setting Global Testing
Options” in the Mercury WinRunner Basic Features User’s Guide. For more
information on setting testing options with the setvar function, see
Chapter 21, “Setting Testing Options from a Test Script.”

Object properties vary in their degree of portability. Some are non-portable
(unique to a specific platform), such as MSW_class or MSW_id. Some are
semi-portable (supported by multiple platforms, but with a value likely to
change), such as handle, or Toolkit_class. Others are fully portable (such as
label, attached_text, enabled, focused or parent).

Part I • Working with the GUI Map

18

Note about configuring non-standard Windows objects: You can use the
GUI Map Configuration tool to modify how WinRunner recognizes objects
with a window handle (HWND), such as standard Windows objects, ActiveX
and Visual Basic controls, PowerBuilder objects, and some Web objects. For
additional information on which Web objects are supported for the GUI
Map Configuration tool, refer to Chapter 10, “Working with Web Objects”
in the Mercury WinRunner Basic Features User’s Guide. If you are working with
a WinRunner add-in to test other objects, you can use the GUI map
configuration functions, such as set_record_attr, and set_record_method.
For additional information about these functions, refer to the TSL Reference.
Some add-ins also have their owns tools for configuring how WinRunner
recognizes objects in a specific toolkit. For additional information, refer to
the Read Me file for your WinRunner add-in.

Understanding the Default GUI Map Configuration

For each class, WinRunner learns a set of default properties. Each default
property is classified “obligatory” or “optional”. (For a list of the default
properties, see “Understanding Object Properties” on page 31.)

➤ An obligatory property is always learned (if it exists).

➤ An optional property is used only if the obligatory properties do not provide
unique identification of an object. These optional properties are stored in a
list. WinRunner selects the minimum number of properties from this list
that are necessary to identify the object. It begins with the first property in
the list, and continues, if necessary, to add properties to the description
until it obtains unique identification for the object.

If you use the GUI Spy to view the default properties of an OK button, you
can see that WinRunner learns the class and label properties. The physical
description of this button is therefore:

{class:push_button, label:"OK"}

Chapter 2 • Configuring the GUI Map

19

In cases where the obligatory and optional properties do not uniquely
identify an object, WinRunner uses a selector. For example, if there are two
OK buttons with the same MSW_id in a single window, WinRunner would
use a selector to differentiate between them. Two types of selectors are
available:

➤ A location selector uses the spatial position of objects.

➤ An index selector uses a unique number to identify the object in a window.

The location selector uses the spatial order of objects within the window,
from the top left to the bottom right corners, to differentiate among objects
with the same description.

The index selector uses numbers assigned at the time of creation of objects to
identify the object in a window. Use this selector if the location of objects
with the same description may change within a window. See “Configuring a
Standard or Custom Class” on page 22 for more information.

Mapping a Custom Object to a Standard Class

A custom object is any GUI object not belonging to one of the standard
classes used by WinRunner. WinRunner learns such objects under the
generic “object” class. WinRunner records operations on custom objects
using obj_mouse_ statements.

Using the GUI Map Configuration dialog box, you can teach WinRunner a
custom object and map it to a standard class. For example, if your
application has a custom button that WinRunner cannot identify, clicking
this button is recorded as obj_mouse_click. You can teach WinRunner the
“SampleCustomButtonClass” custom class and map it to the standard
push_button class. Then, when you click the button, the operation is
recorded as button_press.

Note that a custom object should be mapped only to a standard class with
comparable behavior. For example, you cannot map a custom push button
to the edit class.

Part I • Working with the GUI Map

20

To map a custom object to a standard class:

 1 Choose Tools > GUI Map Configuration to open the GUI Map Configuration
dialog box. The Class List displays all standard and custom classes identified
by WinRunner.

 2 Click the Add button to open the Add Class dialog box.

 3 Click the pointing hand and then click the object whose class you want to
add. The name of the custom object appears in the Class Name box. Note
that this name is the value of the object’s MSW_class property.

 4 Click OK to close the dialog box. The new class appears highlighted at the
bottom of the Class List in the GUI Map Configuration dialog box, preceded
by the letter “U” (user-defined).

Chapter 2 • Configuring the GUI Map

21

 5 Click the Configure button to open the Configure Class dialog box.

The Mapped to class box displays the object class. The object class is the
class that WinRunner uses by default for all custom objects.

 6 From the Mapped to class list, choose the standard class to which you want
to map the custom class. Remember that you should map the custom class
only to a standard class of comparable behavior.

Once you choose a standard class, the dialog box displays the GUI map
configuration for that class.

You can also modify the GUI map configuration of the custom class (the
properties learned, the selector, or the record method). For details, see
“Configuring a Standard or Custom Class” on page 22.

The custom class
you are mapping

The list of standard
classes

Part I • Working with the GUI Map

22

 7 Click OK to complete the configuration.

Note that the configuration is valid only for the current testing session. To
make the configuration permanent, you should paste the TSL statements
into a startup test script. See “Creating a Permanent GUI Map
Configuration” on page 27 for more information.

Configuring a Standard or Custom Class

For any of the standard or custom classes, you can modify the properties
learned, the selector, and/or the recording method.

To configure a standard or custom class:

 1 Choose Tools > GUI Map Configuration to open the GUI Map Configuration
dialog box.

The Class List contains all standard classes, as well as any custom classes you
add.

Chapter 2 • Configuring the GUI Map

23

 2 Choose the class you want to configure and click the Configure button. The
Configure Class dialog box opens.

The Class name field at the top of the dialog box displays the name of the
class to configure.

 3 Modify the learned properties, the selector, or the recording method as
desired. See “Configuring Learned Properties” on page 24, “Configuring the
Selector” on page 26, and “Configuring the Recording Method” on page 27
for details.

 4 Click OK.

Class you want to
configure

Record method for
the class

Selector for the class

Properties learned for
the class

Part I • Working with the GUI Map

24

Note that the configuration is valid only for the current testing session. To
make the configuration permanent, you should paste the TSL statements
into a startup test script. See “Creating a Permanent GUI Map
Configuration” on page 27 for more information.

 5 Click OK in the GUI Map Configuration dialog box.

Configuring Learned Properties

The Learned properties area of the Configure Class dialog box allows you to
configure which properties are recorded and learned for a class. You do this
by changing in the status of the properties in order to signify whether they
are obligatory, optional, or not used.

➤ Obligatory properties are always learned (provided that they are valid for the
specific object).

➤ Optional properties are used only if the obligatory properties do not provide
a unique identification for an object. WinRunner selects the minimum
number of properties needed to identify the object, beginning with the first
property in the list.

➤ The remaining properties are not used.

When the dialog box is displayed, the Learned property list displays the
properties learned for the class appearing in the Class Name field.

The order in which the properties appear is important. Obligatory properties
always appear at the top of the list, then optional properties, and finally not
used properties. If WinRunner cannot identify the object using the
obligatory properties, it refers to the optional properties in the order they
appear in the list. You can adjust the position of a property by selecting it
and clicking the Up or Down buttons.

To modify the property configuration:

 1 Click the Status cell of the property whose status you want to change.

 2 Select either Obligatory, Optional or Not Used from the list.

 3 Click OK to save the changes.

Chapter 2 • Configuring the GUI Map

25

Note that not all properties apply to all classes. The following table lists each
property and the classes to which it can be applied.

Property Classes

abs_x All classes

abs_y All classes

active All classes

attached_text combobox, edit, listbox, scrollbar

class All classes

displayed All classes

enabled All classes

focused All classes

handle All classes

height All classes

label check_button, push_button, radio_button, static_text, window

maximizable calendar, window

minimizable calendar, window

MSW_class All classes

MSW_id All classes, except window

nchildren All classes

obj_col_name edit

owner mdiclient, window

pb_name check_button, combobox, edit, list, push_button, radio_button,
scroll, window (object)

regexp_label All classes with labels

regexp_
MSWclass

All classes

text All classes

Part I • Working with the GUI Map

26

Configuring the Selector

In cases where both obligatory and optional properties cannot uniquely
identify an object, WinRunner applies one of two selectors: location or index.

A location selector performs the selection process based on the position of
objects within the window: from top to bottom and from left to right. An
index selector performs a selection according to a unique number assigned
to an object by the application developer. For an example of how selectors
are used, see “Understanding the Default GUI Map Configuration” on
page 18.

By default, WinRunner uses a location selector for all classes. To change the
selector, click the appropriate radio button.

value calendar, check_button, combobox, edit, listbox, radio_button,
scrollbar, static_text

vb_name All classes

virtual list, push_button, radio_button, table, object (virtual objects
only)

width All classes

x All classes

y All classes

Property Classes

Chapter 2 • Configuring the GUI Map

27

Configuring the Recording Method

By setting the recording method you can determine how WinRunner
records operations on objects belonging to the same class. Three recording
methods are available:

➤ Record instructs WinRunner to record all operations performed on a GUI
object. This is the default record method for all classes. (The only exception
is the static class (static text), for which the default is Pass Up.)

➤ Pass Up instructs WinRunner to record an operation performed on this class
as an operation performed on the element containing the object. Usually
this element is a window, and the operation is recorded as
win_mouse_click.

➤ As Object instructs WinRunner to record all operations performed on a GUI
object as though its class were “object” class.

➤ Ignore instructs WinRunner to disregard all operations performed on the
class.

To modify the recording method, click the appropriate radio button.

Creating a Permanent GUI Map Configuration

By generating TSL statements describing the configuration you set and
inserting them into a startup test, you can ensure that WinRunner always
uses the correct GUI map configuration for your standard and custom object
classes.

To create a permanent GUI map configuration for a class:

 1 Choose Tools > GUI Map Configuration to open the GUI Map Configuration
dialog box.

 2 Choose a class and click the Configure button. The Configure Class dialog
box opens.

Part I • Working with the GUI Map

28

 3 Set the desired configuration for the class. Note that in the bottom pane of
the dialog box, WinRunner automatically generates the appropriate TSL
statements for the configuration.

 4 Paste the TSL statements into a startup test using the Paste button.

For example, assume that in the WinRunner configuration file wrun.ini
(located in your Windows folder), your startup test is defined as follows:

[WrEnv]
XR_TSL_INIT = C:\tests\my_init

TSL statements
describing the GUI
map configuration

Chapter 2 • Configuring the GUI Map

29

You would open the my_init test in the WinRunner window and paste in
the generated TSL lines.

For more information on startup tests, see Chapter 23, “Initializing Special
Configurations.” For more information on the TSL functions defining a
custom GUI map configuration (set_class_map, set_record_attr, and
set_record_method), refer to the TSL Reference.

Deleting a Custom Class

You can delete only custom object classes. The standard classes used by
WinRunner cannot be deleted.

To delete a custom class:

 1 Choose Tools > GUI Map Configuration to open the GUI Map Configuration
dialog box.

 2 Choose the class you want to delete from the Class list.

 3 Click the Delete button.

Part I • Working with the GUI Map

30

Understanding WinRunner Object Classes

WinRunner categorizes GUI objects according to the following classes
according to a number of object classes. When viewing the props of any
object, the class property indicates the object property class of the object.
WinRunner supports the following object classes.:

Class Description

calendar A standard calendar object that belongs to the CDateTimeCtrl or
CMonthCalCtrl MSW_class.

check_button A check box.

edit An edit field.

frame_mdiclient Enables WinRunner to treat a window as an mdiclient object.

list A list box. This can be a regular list or a combo box.

menu_item A menu item.

mdiclient An mdiclient object.

mic_if_win Enables WinRunner to defer all record and run operations on
any object within this window to the mic_if library. Refer to the
WinRunner Customization Guide for more information.

object Any object not included in one of the classes described in this
table.

push_button A push (command) button.

radio_button A radio (option) button.

scroll A scroll bar or slider.

spin A spin object.

static_text Display-only text not part of any GUI object.

status bar A status bar on a window.

tab A tab item.

toolbar A toolbar object.

window Any application window, dialog box, or form, including MDI
windows.

Chapter 2 • Configuring the GUI Map

31

Understanding Object Properties

The following tables list all properties used by WinRunner in Context
Sensitive testing.

Property Description

abs_x The x-coordinate of the top left corner of an object, relative to
the origin (upper left corner) of the screen display.

abs_y The y-coordinate of the top left corner of an object, relative to
the origin (upper left corner) of the screen display.

active A Boolean value indicating whether this is the top-level window
associated with the input focus.

attached_text The static text located near the object.

class The WinRunner class of the GUI object. For more information,
see “Understanding WinRunner Objects Classes” on page 30.

class_index An index number that identifies an object, relative to the
position of other objects from the same class in the window (Java
add-in only).

count The number of menu items contained in a menu.

displayed A Boolean value indicating whether the object is displayed: 1 if
visible on screen, 0 if not.

enabled A Boolean value indicating whether the object can be selected or
activated: 1 if enabled, 0 if not.

focused A Boolean value indicating whether keyboard input will be
directed to this object: 1 if object has keyboard focus, 0 if not.

handle A run-time pointer to the object: the HWND handle.

height Height of object in pixels.

label The text that appears on the object, such as a button label.

maximizable A Boolean value indicating whether a window can be
maximized: 1 if the window can be maximized, 0 if not.

minimizable A Boolean value indicating whether a window can be
minimized: 1 if the window can be minimized, 0 if not.

Part I • Working with the GUI Map

32

module_name The name of an executable file which created the specified
window.

MSW_class The Microsoft Windows class.

MSW_id The Microsoft Windows ID.

nchildren The number of children the object has: the total number of
descendants of the object.

num_columns A table object in Terminal Emulator applications only.

num_rows A table object in Terminal Emulator applications only.

obj_col_name A concatenation of the DataWindow and column names. For
edit field objects in WinRunner with PowerBuilder add-in
support, indicates the name of the column.

owner (For windows), the application (executable) name to which the
window belongs.

parent The logical name of the parent of the object.

pb_name A text string assigned to PowerBuilder objects by the developer.
(The property applies only to WinRunner with PowerBuilder
add-in support.)

position The position (top to bottom) of a menu item within the menu
(the first item is at position 0).

regexp_label The text string and regular expression that enables WinRunner
to identify an object with a varying label.

regexp_MSWclass The Microsoft Windows class combined with a regular
expression. Enables WinRunner to identify objects with a
varying MSW_class.

submenu A Boolean value indicating whether a menu item has a submenu:
1 if menu has submenu, 0 if not.

sysmenu A Boolean value indicating whether a menu item is part of a
system menu.

TOOLKIT_class The value of the specified toolkit class. The value of this property
is the same as the value of the MSW_class in Windows, or the
X_class in Motif.

Property Description

Chapter 2 • Configuring the GUI Map

33

text The visible text in an object or window.

value Different for each class:
Radio and check buttons: 1 if the button is checked, 0 if not.
Menu items: 1 if the menu is checked, 0 if not.
List objects: indicates the text string of the selected item.
Edit/Static objects: indicates the text field contents.
Scroll objects: indicates the scroll position.
All other classes: the value property is a null string.

vb_name A text string assigned to Visual Basic objects by the developer
(the name property). (The property applies only to WinRunner
with Visual Basic add-in support.)

width Width of object in pixels.

x The x-coordinate of the top left corner of an object, relative to
the window origin.

y The y-coordinate of the top left corner of an object, relative to
the window origin.

Property Description

Part I • Working with the GUI Map

34

Understanding Default Learned Properties

The following table lists the default properties learned for each class. (The
default properties apply to all methods of learning: the RapidTest Script
wizard, the GUI Map Editor, and recording.)

Properties for Visual Basic Objects

The label and vb_name properties are obligatory properties: they are learned
for all classes of Visual Basic objects. For more information on testing Visual
Basic objects, refer to Chapter 11, “Working with ActiveX and Visual Basic
Controls” in the Mercury WinRunner Basic Features User’s Guide.

Note: To test Visual Basic applications, you must install Visual Basic support.
For more information, refer to the WinRunner Installation Guide.

Class Obligatory Properties Optional Properties Selector

All buttons class, label MSW_id location

list, edit, scroll,
combobox

class, attached_text MSW_id location

frame_mdiclient class, regexp_MSWclass,
regexp_label

label, MSW_class location

menu_item class, label, sysmenu position location

object class, regexp_MSWclass,
label

attached_text,
MSW_id, MSW_class

location

mdiclient class, label regexp_MSWclass,
MSW_class

static_text class, MSW_id label location

window class, regexp_MSWclass,
label

attached_text,
MSW_id, MSW_class

location

Chapter 2 • Configuring the GUI Map

35

Properties for PowerBuilder Objects

The following table lists the standard object classes and the properties
learned for each PowerBuilder object. For more information on testing
PowerBuilder objects, refer to Chapter 12, “Checking PowerBuilder
Applications” in the Mercury WinRunner Basic Features User’s Guide.

Note: In order to test PowerBuilder applications, you must install
PowerBuilder support. For more information, refer to the WinRunner
Installation Guide.

Class Obligatory Properties Optional Properties Selector

all buttons class, pb_name label, MSW_id location

list, scroll,
combobox

class, pb_name attached_text,
MSW_id

location

edit class, pb_name,
obj_col_name

attached_text,
MSW_id

location

object class, pb_name label, attached_text,
MSW_id, MSW_class

location

window class, pb_name label, MSW_id location

Part I • Working with the GUI Map

36

37

3
Learning Virtual Objects

You can teach WinRunner to recognize any bitmap in a window as a GUI
object by defining the bitmap as a virtual object.

This chapter describes:

➤ About Learning Virtual Objects

➤ Defining a Virtual Object

➤ Understanding a Virtual Object’s Physical Description

About Learning Virtual Objects

Your application may contain bitmaps that look and behave like GUI
objects. WinRunner records operations on these bitmaps using
win_mouse_click statements. By defining a bitmap as a virtual object, you
can instruct WinRunner to treat it like a GUI object such as a push button,
when you record and run tests. This makes your test scripts easier to read
and understand.

For example, suppose you record a test on the Windows NT Calculator
application in which you click buttons to perform a calculation. Since
WinRunner cannot recognize the calculator buttons as GUI objects, by
default it creates a test script similar to the following:

set_window("Calculator");
win_mouse_click ("Calculator", 87, 175);
win_mouse_click ("Calculator", 204, 200);
win_mouse_click ("Calculator", 121, 163);
win_mouse_click ("Calculator", 242, 201);

Part I • Working with the GUI Map

38

This test script is difficult to understand. If, instead, you define the
calculator buttons as virtual objects and associate them with the push
button class, WinRunner records a script similar to the following:

set_window ("Calculator");
button_press("seven");
button_press("plus");
button_press("four");
button_press("equal");

You can create virtual push buttons, radio buttons, check buttons, lists, or
tables, according to the bitmap’s behavior in your application. If none of
these is suitable, you can map a virtual object to the general object class.

You define a bitmap as a virtual object using the Virtual Object wizard. The
wizard prompts you to select the standard class with which you want to
associate the new object. Then you use a crosshairs pointer to define the
area of the object. Finally, you choose a logical name for the object.
WinRunner adds the virtual object’s logical name and physical description
to the GUI map.

Defining a Virtual Object

Using the Virtual Object wizard, you can assign a bitmap to a standard
object class, define the coordinates of that object, and assign it a logical
name.

To define a virtual object using the Virtual Object wizard:

 1 Choose Tools > Virtual Object Wizard. The Virtual Object wizard opens.

Click Next.

Chapter 3 • Learning Virtual Objects

39

 2 In the Class list, select a class for the new virtual object.

If you select the list class, select the number of visible rows that are
displayed in the window. For a table class, select the number of visible rows
and columns. Click Next.

 3 Click Mark Object. Use the crosshairs pointer to select the area of the virtual
object. You can use the arrow keys to make precise adjustments to the area
you define with the crosshairs.

Note: The virtual object should not overlap GUI objects in your application
(except for those belonging to the generic Object class, or to a class
configured to be recorded as Object). If a virtual object overlaps a GUI object,
WinRunner may not record or execute tests properly on the GUI object.

Part I • Working with the GUI Map

40

Press ENTER or click the right mouse button to display the virtual object’s
coordinates in the wizard. If the object marked is visible on the screen, you
can click the Highlight button to view it.

Click Next.

 4 Assign a logical name to the virtual object. This is the name that appears in
the test script when you record on the virtual object. If the object contains
text that WinRunner can read, the wizard suggests using this text for the
logical name. Otherwise, WinRunner suggests virtual_object,
virtual_push_button, virtual_list, etc.

Chapter 3 • Learning Virtual Objects

41

You can accept the wizard’s suggestion or type in a different name.
WinRunner checks that there are no other objects in the GUI map with the
same name before confirming your choice. Click Next.

 5 Finish learning the virtual object:

➤ If you want to learn another virtual object, choose Yes and click Next.

➤ To close the wizard, choose No and click Finish.

When you exit the wizard, WinRunner adds the object’s logical name and
physical description to the GUI map. The next time that you record
operations on the virtual object, WinRunner generates TSL statements
instead of win_mouse_click statements.

Part I • Working with the GUI Map

42

Understanding a Virtual Object’s Physical Description

When you create a virtual object, WinRunner adds its physical description
to the GUI map. The physical description of a virtual object does not
contain the label property found in the physical description of “real” GUI
objects. Instead it contains a special property, virtual. Its function is to
identify virtual objects, and its value is always TRUE.

Since WinRunner identifies a virtual object according to its size and its
position within a window, the x, y, width, and height properties are always
found in a virtual object’s physical description.

For example, the physical description of a virtual_push_button includes the
following properties:

{
 class: push_button,
 virtual: TRUE,
 x: 82,
 y: 121,
 width: 48,
 height: 28,
}

If these properties are changed or deleted, WinRunner cannot recognize the
virtual object. If you move or resize an object, you must use the wizard to
create a new virtual object.

Part II

Creating Tests—Advanced

44

45

4
Defining and Using Recovery Scenarios

You can instruct WinRunner to recover from unexpected events and errors
that occur in your testing environment during a test run.

This chapter describes:

➤ About Defining and Using Recovery Scenarios

➤ Defining Simple Recovery Scenarios

➤ Defining Compound Recovery Scenarios

➤ Managing Recovery Scenarios

➤ Working with Recovery Scenarios Files

➤ Working with Recovery Scenarios in Your Test Script

About Defining and Using Recovery Scenarios

Unexpected events, errors, and application crashes during a test run can
disrupt your test and distort test results. This is a problem particularly when
running batch tests unattended: the batch test is suspended until you
perform the action needed to recover.

The Recovery Manager provides a wizard that guides you through the
process of defining a recovery scenario: an unexpected event and the
operation(s) necessary to recover the test run. For example, you can instruct
WinRunner to detect a “Printer out of paper” message and recover the test
run by clicking the OK button to close the message, and continue the test
from the point at which the test was interrupted.

Part II • Creating Tests—Advanced

46

There are two types of recovery scenarios:

➤ Simple: Enables you to define a (non-crash) exception event and the single
operation that will terminate the event, so that the test can continue.

➤ Compound: an exception or crash event and the operation(s) required to
continue or restart the test and the associated applications.

A recovery scenario has two main components:

➤ Exception Event: The event that interrupts your test run.

➤ Recovery Operation(s): The operation(s) that terminate the interruption.

Compound recovery scenarios also include Post-Recovery Operation(s),
which provide instructions on how WinRunner should proceed once the
recovery operations have been performed, including any functions
WinRunner should run before continuing, and from which point in the test
or batch WinRunner should continue, if at all. For example, you may need
to run a function that reopens certain applications and sets them to the
proper state, and then restart the test that was interrupted from the
beginning.

The functions that you specify for recovery and post-recovery operations
can come from any regular compiled module, or they can come from the
recovery compiled module. The recovery compiled module is a special
compiled module that is always loaded when WinRunner opens so that the
functions it contains can be accessed whenever WinRunner performs a
recovery scenario.

To instruct WinRunner to perform a recovery scenario during a test run, you
must activate it.

Chapter 4 • Defining and Using Recovery Scenarios

47

The following diagram summarizes the steps involved in creating a recovery
scenario:

Recovery scenarios apply only to Windows events. You can also define Web
exceptions and handler functions. For more information, see Chapter 5,
“Handling Web Exceptions.”

Defining Simple Recovery Scenarios

A simple recovery scenario defines a non-crash exception event and the
single operation that will terminate the event, so that the test can continue.

You can define and modify simple recovery scenarios from the Simple tab of
the Recovery Manager. The Recovery wizard guides you through the process
of creating or modifying your scenario.

You can also define simple recovery scenarios using TSL statements. For
more information, see “Working with Recovery Scenarios in Your Test
Script” on page 84.

Define Recovery Scenario

Define Recovery Operation(s)

Activate Recovery Scenario
Define ExceptionDefine Exception Event

Define Post-Recovery Operation(s)
(compound only)

Part II • Creating Tests—Advanced

48

Notes:

The simple recovery scenario parallels what was formerly called exception
handling. Exceptions created in the Exception Handler in WinRunner 7.01
or earlier are displayed in the Simple tab of the Recovery Manager.

The first time you use the Recovery Manager to add, modify, or delete a
recovery scenario, WinRunner prompts you to select a new recovery
scenarios file. For more information, see “Working with Recovery Scenarios
Files” on page 80.

To create a simple recovery scenario

 1 Choose Tools > Recovery Manager. The Recovery Manager opens.

Chapter 4 • Defining and Using Recovery Scenarios

49

 2 Click New. The Recovery wizard opens to the Select Exception Event Type
screen.

 3 Select the exception event type that triggers the recovery mechanism.

➤ Object event: a change in the property value of an object that causes an
interruption in the WinRunner test.

For example, suppose that your application uses a green button to
indicate that an electrical network is closed; the same button may turn
red when the network is broken. Your test cannot continue while the
network is broken.

➤ Popup event: a window that pops up during the test run and interrupts
the test.

For example, suppose part of your test includes clicking on a Print button
to send a generated graph to the printer, and a message box opens
indicating that the printer is out of paper. Your test cannot continue until
you close the message box.

➤ TSL event: a TSL return value that can cause an interruption in the test
run.

For example, suppose a set_window statement returns an error. You
could use a recovery scenario to close, initialize, and reopen the window.

Part II • Creating Tests—Advanced

50

Click Next.

 4 The Scenario Name screen opens.

Enter a name containing only alphanumeric characters and underscores (no
spaces or special characters) and a description for your recovery scenario.

Click Next.

 5 The Define Exception Event screen opens. The options in the screen vary
based on the type of event you selected in step 3.

For information on defining object events, see page 51.

For information on defining pop-up events, see page 53.

For information on defining TSL events, see page 54.

Chapter 4 • Defining and Using Recovery Scenarios

51

If you chose an object event in step 3, enter the following information:

➤ Window name: Indicates the name of the window containing the object
that causes the exception. Enter the logical name of the window, or use the
pointing hand next to the Object name box to click on the object you want
to define for the object exception and WinRunner will automatically fill in
the Window name and Object name.

If you want to define a window as the exception object, click on the
window’s title bar, or enter the window’s logical name and leave the Object
name box empty.

➤ Object name: Indicates the name of the object that causes the exception.
Enter the logical name of the object, or use the pointing hand next to the
Object name box to specify the object you want to define for the object
exception and WinRunner will automatically fill in the Window name and
Object name.

Part II • Creating Tests—Advanced

52

Note: The object you define must be saved in the GUI Map. If the object is
not already saved in the GUI Map and you use the pointing hand to identify
the object, WinRunner automatically adds it to the active GUI Map. If you
type the object name manually, you must also add the object to the GUI
Map. For more information on the GUI Map, refer to Chapter 4,
“Understanding Basic GUI Map Concepts” in the Mercury WinRunner Basic
Features User’s Guide.

➤ Object property: The object property whose value you want to check. Select
the object property in which an exception may occur. For example, if want
to detect when a button changes from enabled to disabled, select the
enabled property.

Note: You cannot specify a property that is part of the object's physical
description.

➤ Property value: The value that indicates that an exception has occurred. For
example, if you want WinRunner to activate the recovery scenario when the
button changes from enabled to disabled, type 0 in the field.

Tip: Leave the property value empty to detect any change in the property
value.

Click Next and proceed to step 6 on page 55.

Chapter 4 • Defining and Using Recovery Scenarios

53

If you chose a pop-up event in step 3, enter the following information:

➤ Window name: Indicates the name of the pop-up window that causes the
exception. Enter the logical name of the window, or use the pointing hand
to specify the window you want to define as a pop-up exception.

If the window is not already saved in the GUI Map and you use the pointing
hand to identify the window, WinRunner automatically adds it to the active
GUI Map. If the window is not already saved in the GUI Map and you type
the name manually, WinRunner identifies the pop-up exception when a
pop-up window opens with a title bar matching the name you entered.

Note: If you want to employ the Click button recovery operation, then the
pop-up window you define must be saved in the GUI Map. If you type the
window name manually, you must also add the window to the GUI Map.
For more information about recovery operations, see page 55.

Part II • Creating Tests—Advanced

54

Tip: If the pop-up window that causes the exception has a window name
that is generated dynamically, use the pointing hand to add the window to
the GUI Map and then modify the definition of the window in the GUI Map
using regular expressions.

Click Next and proceed to step 6 on page 55.

If you chose a TSL event in step 3, enter the following information:

➤ TSL function: Select the TSL function for which you want to define the
exception event. Select a TSL function from the list. WinRunner detects the
exception only when the selected TSL function returns the code selected in
the Error code box.

Tip: Select << any function >> to trigger the exception mechanism for any
TSL function that returns the specified Error code.

Chapter 4 • Defining and Using Recovery Scenarios

55

➤ Error code: Select the TSL error code that triggers the exception mechanism.
Select an error code from the list. WinRunner activates the recovery scenario
when this return code is detected for the selected TSL function during a test
run.

Click Next.

 6 The Define Recovery Operations screen opens.

Select one of the following recovery options:

➤ Click button: Specifies the logical name of the button to click on the pop-up
window when the exception event occurs. Select one of the default button
names, type the logical name of a button, or use the pointing hand to
specify the button to click.

Part II • Creating Tests—Advanced

56

Notes:

This option is available only for pop-up exceptions.

The pop-up window defined for the recovery scenario must be defined in
the GUI map. If the pop-up window is not defined in a loaded GUI map file
when you define the pop-up recovery scenario, the recovery scenario will
automatically be set as inactive. If you later load a GUI map containing the
pop-up window, you can then activate the recovery scenario.

➤ Close active window: Instructs WinRunner to close the active (in focus)
window when the exception event occurs.

Note: WinRunner uses the (TSL) win_close mechanism to close the window.
If the win_close function cannot close the window, the recovery scenario
cannot close the window. In these situations, use the Click button or
Execute a recovery function options instead.

➤ Execute a recovery function: Instructs WinRunner to run the specified
function when the exception event occurs. You can specify an existing
function or click Define recovery function to define a new function. For
more information on defining recovery functions, see “Defining Recovery
Scenario Functions” on page 73.

Note: The compiled module containing the function must be loaded when
the test runs. Save your function in the recovery compiled module to ensure
that it is always automatically loaded when WinRunner opens. If you do not
select a function saved in the recovery compiled module, ensure that the
compiled module containing your function is loaded whenever a recovery
scenario using the function is activated.

Click Next.

Chapter 4 • Defining and Using Recovery Scenarios

57

 7 The Finished screen opens.

Determine whether you want your recovery scenario to be activated by
default when WinRunner opens:

➤ Select Activate by default to instruct WinRunner to automatically activate
the recovery scenario by default when WinRunner opens, even if the
scenario was set as inactive at the end of the previous WinRunner session.

➤ Clear Activate by default if you do not want WinRunner to automatically
activate the recovery scenario by default when WinRunner opens. Note that
if you clear this check box, your recovery scenario will not be activated
unless you activate it manually by toggling the check box in the Recovery
Manager dialog box.

For information on other ways to activate or deactivate a recovery scenario,
see “Activating and Deactivating Recovery Scenarios” on page 78 and
“Working with Recovery Scenarios in Your Test Script” on page 84.

Click Finish. The recovery scenario is added to the Simple tab of the
Recovery Manager dialog box. If you selected Activate by default (and any
required objects are found in the loaded GUI map file(s)), the recovery
scenario is activated. Otherwise the recovery scenario remains inactive.

Part II • Creating Tests—Advanced

58

Defining Compound Recovery Scenarios

A compound recovery scenario defines a crash or exception event and the
operation(s) required to continue or restart the test and the associated
applications. You define and modify compound recovery scenarios from the
Compound tab of the Recovery Manager. The Recovery wizard guides you
through the process of creating and modifying your scenario.

To create a compound recovery scenario:

 1 Choose Tools > Recovery Manager. The Recovery Manager opens.

 2 Click the Compound tab.

Chapter 4 • Defining and Using Recovery Scenarios

59

 3 Click New. The Recovery wizard opens to the Select Exception Event Type
screen.

 4 Select the exception event type that triggers the recovery mechanism.

➤ Object event: a change in the property value of an object that causes an
interruption in the WinRunner test.

For example, suppose that your application uses a green button to
indicate that an electrical network is closed; the same button may turn
red when the network is broken. Your test cannot continue while the
network is broken.

➤ Popup event: a window that pops up during the test run and interrupts
the test.

For example, suppose part of your test includes clicking on a Print button
to send a generated graph to the printer, and a message box opens
indicating that the printer is out of paper. Your test cannot continue until
you close the message box.

➤ TSL event: a TSL return value that can cause an interruption in the test
run.

➤ Crash event: an unexpected failure of an application during the test run.

Part II • Creating Tests—Advanced

60

Notes:

By default, WinRunner identifies a crash event when a window opens
containing the string: Application Error. You can modify the string that
WinRunner uses to identify crash windows in the excp_str.ini file located in
the <WinRunner installation folder>\dat folder. For more information, see
“Modifying the Crash Event Window Name” on page 78.

When you activate a crash recovery scenario, your tests may run more
slowly. For more information, refer to the WinRunner Readme.

Click Next.

 5 The Scenario Name screen opens.

Enter a name containing only alphanumeric characters and underscores (no
spaces or special characters) and a description for your recovery scenario.

Click Next.

Chapter 4 • Defining and Using Recovery Scenarios

61

 6 If you chose an object, pop-up or TSL event in step 4, the Define Exception
Event screen opens. The options for defining the event vary based on the
type of event you selected.

If you chose a crash event in step 4, there is no need to define the event.
Proceed to step 7 on page 65.

For information on defining object events, see page 61.

For information on defining pop-up events, see page 63.

For information on defining TSL events, see page 64.

If you chose an object event in step 4, enter the following information:

➤ Window name: Indicates the name of the window containing the object
that causes the exception. Enter the logical name of the window, or use the
pointing hand next to the Object name box to click on the object you want
to define for the object exception and WinRunner will automatically fill in
the Window name and Object name.

If you want to define a window as the exception object, click on the
window’s title bar, or enter the window’s logical name and leave the Object
name box empty.

Part II • Creating Tests—Advanced

62

➤ Object name: Indicates the name of the object that causes the exception.
Enter the logical name of the object, or use the pointing hand next to the
Object name box to specify the object you want to define for the object
exception and WinRunner will automatically fill in the Window name and
Object name.

Note: The object you define must be saved in the GUI Map. If the object is
not already saved in the GUI Map and you use the pointing hand to identify
the object, WinRunner automatically adds it to the active GUI Map. If you
type the object name manually, you must also add the object to the GUI
Map. For more information on the GUI Map, refer to Chapter 4,
“Understanding Basic GUI Map Concepts” in the Mercury WinRunner Basic
Features User’s Guide.

➤ Object property: The object property whose value you want to check. Select
the object property in which an exception may occur. For example, if want
to detect when a button changes from enabled to disabled, select the
enabled property.

Note: You cannot specify a property that is part of the object's physical
description.

➤ Property value: The value that indicates that an exception has occurred. For
example, if you want WinRunner to activate the recovery scenario when the
button changes from enabled to disabled, type 0 in the field.

Tip: Leave the property value empty to detect any change in the property
value.

Click Next and proceed to step 7 on page 65.

Chapter 4 • Defining and Using Recovery Scenarios

63

If you chose a pop-up event in step 4, enter the following information:

➤ Window name: Indicates the name of the pop-up window that causes the
exception. Enter the logical name of the window, or use the pointing hand
to specify the window you want to define as a pop-up exception.

If the window is not already saved in the GUI Map and you use the pointing
hand to identify the window, WinRunner automatically adds it to the active
GUI Map. If the window is not already saved in the GUI Map and you type
the name manually, WinRunner identifies the pop-up exception when a
pop-up window opens with a title bar matching the name you entered.

Note: If you want to employ a Click button recovery operation, then the
pop-up window you define must be saved in the GUI Map. If you type the
window name manually, you must also add the window to the GUI Map.
For more information about recovery operations, see page 65.

Part II • Creating Tests—Advanced

64

Tip: If the pop-up window that causes the exception has a window name
that is generated dynamically, use the pointing hand to add the window to
the GUI Map and then modify the definition of the window in the GUI Map
using regular expressions.

Click Next and proceed to step 7 on page 65.

If you chose a TSL event in step 4, enter the following information:

➤ TSL function: Select the TSL function for which you want to define the
exception event. Select a TSL function from the list. WinRunner detects the
exception only when the selected TSL function returns the code selected in
the Error code box.

Tip: Select << any function >> to trigger the exception mechanism for any
TSL function that returns the specified Error code.

Chapter 4 • Defining and Using Recovery Scenarios

65

➤ Error code: Select the TSL error code that triggers the exception mechanism.
Select an error code from the list. WinRunner activates the recovery scenario
when this return code is detected for the selected TSL function during a test
run.

Click Next.

 7 The Define Recovery Operations screen opens and displays the recovery
operations WinRunner can perform when the exception occurs.

Note that WinRunner performs the recovery operations you select according
to the order displayed in the dialog box. Select any of the following options:

➤ Click button: Specifies the logical name of the button to click when the
exception event occurs. Select one of the default button names, type the
logical name of a button, or use the pointing hand to specify the button to
click.

Part II • Creating Tests—Advanced

66

Notes:

If you choose a default button from the list, the window on which
WinRunner searches for the button depends on the type of exception event
you selected. If you selected a pop-up exception event, WinRunner searches
for the button on the pop-up window you defined. If you selected any other
exception, then WinRunner searches for the button on the active (in focus)
window.

When you use this option with a pop-up exception event, the pop-up
window defined for the recovery scenario must be defined in the GUI map.
If the pop-up window is not defined in a loaded GUI map file when you
define the pop-up recovery scenario, the recovery scenario will
automatically be set as inactive. If you later load a GUI map containing the
pop-up window, you can then activate the recovery scenario.

➤ Close active window: Instructs WinRunner to close the active (in focus)
window when the exception event occurs.

Note: WinRunner uses the (TSL) win_close mechanism to close the window.
If the win_close function cannot close the window, the recovery scenario
cannot close the window.

➤ Execute a recovery function: Instructs WinRunner to run the specified
function when the exception event occurs. You can specify an existing
function or click Define recovery function to define a new function. For
more information on defining recovery functions, see “Defining Recovery
Scenario Functions” on page 73.

Chapter 4 • Defining and Using Recovery Scenarios

67

Note: The compiled module containing the function must be loaded when
the test runs. Save your function in the recovery compiled module to ensure
that it is always automatically loaded when WinRunner opens. If you do not
select a function saved in the recovery compiled module, ensure that the
compiled module containing your function is loaded whenever a recovery
scenario using the function is activated.

➤ Close processes: Instructs WinRunner to close the application processes that
you specify in the Close Application Processes screen.

➤ Reboot the computer: Instructs WinRunner to reboot the computer before
performing the post-recovery operations.

If you select Reboot the computer, consider the following:

➤ The reboot option is performed only after all other selected recovery
actions have been performed.

➤ In order to assure a smooth reboot process, it is recommended to use the
Execute a recovery function option and add statements to your function
that save any unsaved files before the reboot. You should also confirm
that your computer is set to login automatically.

Note: When a reboot occurs as part of a recovery scenario, tests open in
WinRunner are automatically closed and you are not prompted to save
changes.

➤ If you choose the reboot option, you cannot set post-recovery operations.

➤ Before WinRunner reboots the computer during a recovery scenario, you
get a timed warning message that gives you a chance to cancel the reboot
operation.

Part II • Creating Tests—Advanced

68

➤ If the reboot operation is performed, WinRunner starts running the test
from the beginning of the test, or from the beginning of the call chain if
the test that caused the exception was called by another test. For
example, if test A calls test B, test B calls test C, and a recovery scenario
including a reboot recovery operation is triggered when test C runs,
WinRunner begins running test A from the beginning after the reboot is
performed.

➤ If you choose to cancel the reboot operation, WinRunner attempts to
continue the test from the point that the exception occurred.

➤ If you opened WinRunner using command line options before the reboot
occurred, WinRunner applies the same command line options when it
opens after the reboot operation, except for: -t, -exp, and -verify. Instead,
WinRunner uses the test, expected values and results folder for the test it
runs after the reboot.

Note: Recovery scenarios using a reboot recovery operation should not be
activated when running tests from Quality Center, because WinRunner
disconnects from Quality Center when a reboot occurs.

Click Next.

If you selected Close processes, proceed to step 8.

If you did not select Close processes or Reboot the computer, proceed to
step 9.

If you selected Reboot the computer, but not Close processes, proceed to
step 10.

Chapter 4 • Defining and Using Recovery Scenarios

69

 8 The Close Application Processes screen opens.

Specify the application processes that you want WinRunner to close when
the exception event occurs. When WinRunner runs the recovery scenario, it
ignores listed application processes that are already closed (no error occurs).

To add an application to the list, double-click the next blank space on the
list and type or browse to enter the application name, or click Select Process

Part II • Creating Tests—Advanced

70

to open the Processes list. The Processes list contains a list of processes that
are currently running.

To add a process from this list to the Close Application Processes list, select
the process and click OK.

Note: The application names you specify must have .exe extensions.

Click Next. If you selected Reboot the computer in the previous step,
proceed to step 10. Otherwise, proceed to step 9.

Chapter 4 • Defining and Using Recovery Scenarios

71

 9 The Post-Recovery Operations screen opens.

Choose from the following options:

➤ Execute function: Instructs WinRunner to run the specified function when
the recovery operations are complete. You can specify an existing function
or click Define new function to define a new function. For more information
on defining post-recovery functions, see “Defining Recovery Scenario
Functions” on page 73.

Tip: The compiled module containing the function must be loaded when
the test runs. Save your function in the recovery compiled module to ensure
that it is always automatically loaded when WinRunner opens. For more
information on the recovery compiled module, see “Defining Recovery
Scenario Functions” on page 73.

The post-recovery function can be useful for reopening applications that
were closed during the recovery process and/or setting applications to the
desired state.

Part II • Creating Tests—Advanced

72

➤ Execution point: Instructs WinRunner on how to proceed after the recovery
operation(s) and the post-recovery function (if applicable) have been
performed. Choose one of the following:

➤ Continue test run from current position: WinRunner continues to run
the current test from the location at which the exception occurred.

➤ Restart test run: WinRunner runs the current test again from the
beginning.

➤ Stop current test (run next test in batch if applicable): WinRunner stops
the current test run. If the test where the exception event occurred was
called from a batch test, WinRunner continues running the batch test
from the next line in the test.

➤ Stop all test execution: WinRunner stops the test (and batch) run.

Click Next.

 10 The Finished screen opens.

Chapter 4 • Defining and Using Recovery Scenarios

73

Determine whether you want your recovery scenario to be activated by
default when WinRunner opens:

➤ Select Activate by default to instruct WinRunner to automatically activate
the recovery scenario by default when WinRunner opens, even if the
scenario was set as inactive at the end of the previous WinRunner session.

➤ Clear Activate by default if you do not want WinRunner to automatically
activate the recovery scenario by default when WinRunner opens. Note that
if you clear this check box, your recovery scenario will not be activated
unless you activate it manually by toggling the check box in the Recovery
Manager dialog box. For more information, see “Activating and
Deactivating Recovery Scenarios” on page 78.

Click Finish. The recovery scenario is added to the Compound tab of the
Recovery Manager dialog box. If you selected Activate by default (and any
required objects are found in the loaded GUI map file(s)), the recovery
scenario is activated. Otherwise the recovery scenario remains inactive.

Defining Recovery Scenario Functions

You can define recovery functions that instruct WinRunner to respond to an
exception event in a way that meets your specific testing needs. You can also
define post-recovery functions for compound recovery scenarios. These
functions can be useful to re-open applications that may have closed when
the exception occurred or during the recovery process, and to set
applications to the desired state.

You use the Recovery Function or Post-Recovery Function dialog box that
opens from the Recovery wizard to define new recovery and post-recovery
functions. The dialog box displays the syntax and a function prototype for
the selected exception type.

Once you have defined a recovery function, you can save it in the recovery
compiled module, paste it into the current test, or copy it to the clipboard.

Part II • Creating Tests—Advanced

74

To define a recovery or post-recovery function:

 1 Click Define recovery function from the Define Recovery Operations screen,
or click Define new function from the Post-Recovery Operations screen. The
Recovery (or Post-Recovery) Function screen opens.

 2 The first three lines display the function type (always public function), the
function name and the function arguments. Replace the text: func_name
with the name of your new function.

 3 In the implementation box, enter the function content.

 4 Choose how you want to store the function:

➤ Copy to clipboard: copies the function to the clipboard.

➤ Paste to current test: pastes the function at the cursor position of the
current test.

➤ Save in the recovery compiled module: saves the function in the recovery
compiled module.

Chapter 4 • Defining and Using Recovery Scenarios

75

Notes:

If you have not defined a recovery compiled module in the Run > Recovery
category of the General Options dialog box, the Save in the recovery
compiled module option is disabled. For more information, see “Choosing
the Recovery Compiled Module” on page 82.

If you save your function in the recovery compiled module, you must either
restart WinRunner or run the compiled module manually in order to load
the recovery compiled module with your changes before running tests that
may require the new function.

If you do not select to save your function in the recovery compiled module,
ensure that the compiled module containing your function is loaded
whenever a recovery scenario using the function is activated.

 5 Click OK to return to the Recovery wizard.

Managing Recovery Scenarios

Once you have created recovery scenarios, you can use the Recovery
Manager to manage them. The Recovery Manager enables you to:

➤ View a summary of each recovery scenario

➤ Modify existing recovery scenarios using the Recovery wizard

➤ Activate or Deactivate existing recovery scenarios

➤ Delete Recovery scenarios

If you use crash recovery scenarios, you can also modify the string that
WinRunner uses to identify crash windows.

Viewing Recovery Scenario Details

The Recovery Scenario Summary dialog box displays the details of the
selected recovery scenario, and enables you to easily modify the Activate by
default setting.

Part II • Creating Tests—Advanced

76

To open the Recovery Scenario Summary dialog box:

 1 Select a recovery scenario in the Simple or Compound tab of the Recovery
Manager dialog box, and click Summary, or double-click the recovery
scenario name. The (Simple or Compound) Recovery Scenario Summary
dialog box opens.

 2 Review the settings for the recovery scenario.

 3 Select or clear the Activate by default check box if you want to modify the
setting. For more information, see “Activating and Deactivating Recovery
Scenarios” on page 78.

Modifying Recovery Scenarios

You can use the Modify option of the Recovery wizard to modify the details
of an existing recovery scenario.

To modify a recovery scenario:

 1 Select the recovery scenario you want to modify from the Recovery Manager
dialog box and click Modify.

 2 The Recovery wizard opens to the Scenario Name screen.

Chapter 4 • Defining and Using Recovery Scenarios

77

Note: You cannot modify the exception event type of an existing recovery
scenario. If you want to define a different exception event type, create a new
recovery scenario.

 3 Navigate through the Recovery wizard and modify the details as needed. For
information on the Recovery wizard options, see “Defining Simple Recovery
Scenarios” on page 47 or “Defining Compound Recovery Scenarios” on
page 58.

Deleting Recovery Scenarios

You can use the Delete option of the Recovery wizard to delete an existing
recovery scenario. When you delete a recovery scenario from the Recovery
Manager, the corresponding information is deleted from the recovery
scenarios file.

For more information on the recovery scenarios file, refer to Chapter 23,
“Setting Global Testing Options” in the Mercury WinRunner Basic Features
User’s Guide.

To delete a recovery scenario:

Select the recovery scenario you want to delete from the Recovery Manager
dialog box and click Delete.

Note: Functions that you stored in the recovery compiled module when
defining a recovery scenario are not deleted when you delete the recovery
scenario. In order to control the size of the recovery compiled module, you
should delete functions from the recovery compiled module if they are no
longer being used by any recovery scenario.

Part II • Creating Tests—Advanced

78

Activating and Deactivating Recovery Scenarios

WinRunner only identifies exception events and performs recovery
operations for active recovery scenarios. You can activate or deactivate a
recovery scenario in several ways:

➤ Select or clear the Activate by default check box when you create a recovery
scenario.

➤ Toggle (single-click) the activation check box next to the recovery scenario
name in the Recovery Manager to temporarily activate or deactivate a
recovery scenario. (The setting in the activate by default option resets the
recovery scenario to its active or inactive state each time WinRunner opens.)

➤ Select a recovery scenario in the Recovery Manager and click Summary or
double-click the recovery scenario to open the Recovery Scenario Summary
dialog box, and select or clear the Activate by default check box.

➤ Select a recovery scenario in the Recovery Manager, click Modify to open the
Recovery wizard, navigate to the Finished screen and select or clear the
Activate by default check box.

➤ Activate a recovery scenario during the test run using TSL commands. For
more information on these functions, see “Working with Recovery Scenarios
in Your Test Script” on page 84.

Modifying the Crash Event Window Name

WinRunner identifies a crash event when a window opens whose title bar
contains the string indicating an application crash. You can modify the
string that WinRunner uses to identify crash windows in the excp_str.ini file
located in the <WinRunner installation folder>\dat folder.

The excp_str.ini file is composed of sections for various Windows languages,
plus a default section for unlisted languages. WinRunner uses the string
corresponding to your Windows language to identify a crash event.

Chapter 4 • Defining and Using Recovery Scenarios

79

To modify the crash event window name, modify the window name listed
in the section corresponding to the Windows language you are using. The
language sections in the excp_str.ini file are identified by the three letter
LOCALE_SABBREVLANGNAME code.

If your Windows language is not listed, enter the crash event string you
want to use in the [DEF] section. Alternatively, add a new section to the file
using the three letter LOCALE_SABBREVLANGNAME for your Windows
Language as the section divider, and enter the crash event string below it in
quotes ("string").

The table below lists each of the codes contained in the excp_str.ini by
default and the corresponding Windows language. For the complete list of
language codes, refer to MSDN documentation.

Language Code Windows Language

ENU English (U.S.)

JPN Japanese

KOR Korean

CHS Chinese (PRC)

CHT Chinese (Taiwan)

DEU German (Germany)

SVE Swedish (Sweden)

FRA French (France)

Part II • Creating Tests—Advanced

80

Working with Recovery Scenarios Files

When you create, modify or delete recovery scenarios, the information is
saved in the active recovery scenarios file. Each time WinRunner opens, it
reads the information in the active file and includes the recovery scenarios
that are defined in the file in the Recovery Manager. You can create multiple
recovery scenarios files and then select different recovery scenarios files for
different WinRunner sessions as needed.

Note: The recovery files are used only to store the recovery information so
that you can alternate between various recovery scenario configurations.
You use the Recovery Manager and recovery wizard to create, modify, or
delete recovery scenarios.

Using the Recovery Manager for the First Time

In WinRunner, version 7.01 and earlier, all “exception handling” details
were saved in the wrun.ini file. Therefore, the wrun.ini file is the default
recovery scenarios file.

When you open the Recovery Manager for the first time, any exceptions
defined in the wrun.ini file are displayed in the Simple tab of the Recovery
Manager and they work as they did in previous versions of WinRunner.

In order to create, modify, or delete recovery scenarios using the Recovery
Manager, however, you must define a new recovery scenarios file.

You can enter a file name in the dialog that opens the first time you try to
create, modify, or delete a recovery scenario.

Chapter 4 • Defining and Using Recovery Scenarios

81

Alternatively, you can define the new recovery scenarios file in the
Run > Recovery category of the General Options dialog box before using the
Recovery Manager for the first time.

If you enter a new file name, WinRunner creates the file and any exceptions
information that was previously contained in the wrun.ini file is copied to
the new file so that you can continue to work with your existing exception
handling definitions using the Recovery Manager. For more information on
recovery scenarios files and how to choose them, see “Choosing the Active
Recovery Scenarios File” below.

Choosing the Active Recovery Scenarios File

You select the active recovery scenarios file in Run > Recovery category in
the General Options dialog box. You can select an existing file or enter a
new file name.

When you enter a new file name and confirm that you want WinRunner to
create the new file, WinRunner copies all recovery scenario information
from the current recovery scenarios file to the new file.

When you enter the name of an existing recovery scenarios file, WinRunner
sets the selected file as the active recovery scenarios file, but does not copy
any information from the previous recovery scenarios file.

To select an active recovery scenarios file:

 1 Choose Tools > General Options.

Part II • Creating Tests—Advanced

82

 2 Click the Run > Recovery category. The Recovery options pane is displayed.

 3 In the Recovery scenarios file box, type the path of the file you want to use
(or create), or click browse to select an existing recovery scenarios file.

Choosing the Recovery Compiled Module

The recovery compiled module is a special compiled module that is always
loaded when WinRunner opens so that the functions it contains can be
accessed whenever WinRunner performs a recovery scenario.

You can instruct WinRunner to save the functions you define in the Define
Recovery Function or Define Post-Recovery Function dialog boxes directly
to the recovery compiled module while creating or editing a recovery
scenario. You can also open the recovery compiled module and add
functions to the compiled module manually.

Chapter 4 • Defining and Using Recovery Scenarios

83

To select an active recovery compiled module

 1 Choose Tools > General Options.

 2 Click the Run > Recovery category. The Recovery options pane is displayed.

 3 In the Recovery compiled module box, type the path of the compiled
module you want to use (or create), or click browse to select an existing
compiled module. If you enter a new file name, WinRunner creates a new
compiled module.

For more information on compiled modules, see Chapter 11, “Employing
User-Defined Functions in Tests.”

For more information on the selecting the recovery compiled module file,
refer to Chapter 23, “Setting Global Testing Options” in the Mercury
WinRunner Basic Features User’s Guide.

Part II • Creating Tests—Advanced

84

Working with Recovery Scenarios in Your Test Script

You can use TSL statements to activate or deactivate a specific recovery
scenario, or to deactivate all active recovery scenarios during a test run. You
can also define simple recovery scenarios using TSL.

Activating and Deactivating Recovery Scenarios During the
Test Run

The Recovery Manager enables you to activate or deactivate recovery
scenarios while designing your test, but you may need to turn a recovery
scenario on or off during a test run.

Suppose you define a recovery scenario that runs a recovery function. If the
exception event triggers the recovery scenario, and then the exception event
occurs again while the recovery function for that event is running, the
recovery scenario may get stuck in an infinite loop. Thus it is recommended
to deactivate the recovery scenario at the beginning of that recovery
scenario’s recovery function, and to reactivate it at the end of the function.

To activate and deactivate a specific recovery scenario use the exception_on
and exception_off functions.

For example: The following recovery function turns off the handling of its
recovery scenario before executing the main recovery script (which reopens
the application being tested). Then it turns the recovery scenario on again.

public function label_handler(in win, in obj, in attr, in val)
{
#ignore this recovery scenario while performing the recovery function:
exception_off("label_except");
report_msg("Label has changed");
menu_select_item ("File;Exit");
system ("flights&");
invoke_application ("flights", "", "C:\\FRS", "SW_SHOWMAXIMIZED");
#if the value of "attr" no longer equals "val":
exception_on("label_except");
texit;
}

Chapter 4 • Defining and Using Recovery Scenarios

85

You can also deactivate all recovery scenarios during a test run. For example,
you may want to prevent WinRunner from performing recovery scenarios if
a certain conditional statement is true.

To deactivate all active recovery scenarios, use the exception_off_all
function.

For more information on these functions, refer to the TSL Reference.

Defining Simple Recovery Scenarios Using TSL

You can use the define_object_exception, define_popup_exception, and
define_TSL_exception functions to define new simple recovery scenarios
from your test script that are active only for the current WinRunner session.
This can be useful if you want to use a returned value as input for your
recovery scenario.

When you define a simple recovery scenario using one of the above
functions, the simple recovery scenario is displayed in the Recovery
Manager during the WinRunner session and you can modify the recovery
scenario using the recovery wizard, but these recovery scenarios are not
saved in the recovery scenarios file and are not available from the Recovery
Manager when WinRunner restarts.

To create compound recovery scenarios, which enable you to define crash
events and/or multiple recovery operations, use the Recovery Manager. For
more information, see “Defining Compound Recovery Scenarios” on
page 58.

For more information on defining simple recovery scenarios using TSL, refer
to the TSL Reference.

Part II • Creating Tests—Advanced

86

87

5
Handling Web Exceptions

You can instruct WinRunner to handle unexpected events and errors that
occur in your testing environment while testing your Web site.

This chapter describes:

➤ About Handling Web Exceptions

➤ Defining Web Exceptions

➤ Modifying an Exception

➤ Activating and Deactivating Web Exceptions

About Handling Web Exceptions

When the WebTest add-in is loaded, you can instruct WinRunner to handle
unexpected events and errors that occur in your Web site during a test run.
For example, if a Security Alert dialog box appears during a test run, you can
instruct WinRunner to recover the test run by clicking the Yes button.

Part II • Creating Tests—Advanced

88

WinRunner contains a list of exceptions that it supports in the Web
Exception Editor. You can modify the list and configure additional
exceptions that you would like WinRunner to support.

For information on loading WinRunner with the WebTest add-in, refer to
Chapter 2, “WinRunner at a Glance” in the Mercury WinRunner Basic Features
User’s Guide.

Defining Web Exceptions

You can add a new exception to the list of exceptions in the Web Exception
Editor.

To define a Web exception:

 1 Choose Tools > Web Exception Handling. The Web Exception Editor opens.

 2 Click the pointing hand and click the dialog box. A new exception is added
to the list.

 3 If you want to categorize the exception, select a category in the Type list.

The Editor displays the title, MSW_Class, and message of the exception.

Chapter 5 • Handling Web Exceptions

89

 4 In the Action list, choose the handler function action that is responsible for
recovering test execution.

➤ Web_exception_handler_dialog_click_default activates the default
button.

➤ Web_exception_handler_fail_retry activates the default button and
reloads the Web page.

➤ Web_exception_enter_username_password uses the given user name
and password.

➤ Web_exception_handler_dialog_click_yes activates the Yes button.

➤ Web_exception_handler_dialog_click_no activates the No button.

 5 Click Apply. The Save Configuration message box opens.

 6 Click OK to save the changes to the configuration file.

 7 Click Quit Edit to exit the Web Exception Editor.

Part II • Creating Tests—Advanced

90

Modifying an Exception

You can modify the details of an exception listed in the Web Exception
Editor.

To modify the details of an exception:

 1 Choose Tools > Web Exception Handling. The Web Exception Editor opens.

 2 In the Choose an Exception list, click an exception.

The exception is highlighted. The current description of the exception
appears in the Exception Details area.

 3 To modify the title of the dialog box, type a new title in the Title box.

 4 To modify the text that appears in the exception dialog box, click a text line
and edit the text.

Chapter 5 • Handling Web Exceptions

91

 5 To change the action that is responsible for recovering test execution,
choose an action from the Action list.

➤ Web_exception_handler_dialog_click_default activates the default
button.

➤ Web_exception_handler_fail_retry activates the default button and
reloads the Web page.

➤ Web_exception_enter_username_password uses the given user name
and password.

➤ Web_exception_handler_dialog_click_yes activates the Yes button.

➤ Web_exception_handler_dialog_click_no activates the No button.

 6 Click Apply. The Save Configuration message box opens.

 7 Click OK to save the changes to the configuration file.

 8 Click Quit Edit to exit the Web Exception Editor.

Activating and Deactivating Web Exceptions

The Web Exception Editor includes a list of all the available exceptions. You
can choose to activate or deactivate any exception in the list.

To change the status of an exception:

 1 Choose Tools > Web Exception Handling. The Web Exception Editor opens.

 2 In the Choose an Exception list, click an exception. The exception is
highlighted. The current description of the exception appears in the
Exception Details area.

 3 To activate an exception, select its check box. To deactivate the exception,
clear its check box.

 4 Click Apply. The Save Configuration message box opens.

 5 Click OK to save the changes to the configuration file.

 6 Click Quit Edit to exit the Web Exception Editor.

Part II • Creating Tests—Advanced

92

93

6
Using Regular Expressions

You can use regular expressions to increase the flexibility and adaptability of
your tests. This chapter describes:

➤ About Regular Expressions

➤ Understanding When to Use Regular Expressions

➤ Understanding Regular Expression Syntax

About Regular Expressions

Regular expressions enable WinRunner to identify objects with varying
names or titles. You can use regular expressions in TSL statements or in
object descriptions in the GUI map. For example, you can define a regular
expression in the physical description of a push button so that WinRunner
can locate the push button if its label changes.

A regular expression is a string that specifies a complex search phrase. In
most cases the string is preceded by an exclamation point (!). (In
descriptions or arguments of functions where a string is expected, such as
the match function, the exclamation point is not required.) By using special
characters such as a period (.), asterisk (*), caret (^), and brackets ([]), you
define the conditions of the search. For example, the string “!windo.*”
matches both “window” and “windows”. See “Understanding Regular
Expression Syntax” on page 97 for more information.

Part II • Creating Tests—Advanced

94

Understanding When to Use Regular Expressions

Use a regular expression when the name of a GUI object can vary each time
you run a test. For example, you can use a regular expression for:

➤ the physical description of an object in the GUI map

➤ a GUI checkpoint, when evaluating the contents of an edit object or static
text object with a varying name

➤ a text checkpoint, to locate a varying text string using win_find_text or
obj_find_text

Using a Regular Expression in an Object’s Physical Description
in the GUI Map

You can use a regular expression in the physical description of an object in
the GUI map, so that WinRunner can ignore variations in the object’s label.
For example, the physical description:

{
class: push_button
label: "!St.*"
}

enables WinRunner to identify a push button if its label toggles from “Start”
to “Stop”.

Using a Regular Expression in a GUI Checkpoint

You can use a regular expression in a GUI checkpoint, when evaluating the
contents of an edit object or a static text object with a varying name. You
define the regular expression by creating a GUI checkpoint on the object in
which you specify the checks. The example below illustrates how to use a
regular expression if you choose Insert > GUI Checkpoint > For
Object/Window and double-click a static text object. Note that you can also
use a regular expression with the Insert > GUI Checkpoint > For Multiple
Objects command. For additional information about GUI checkpoints, refer
to Chapter 9, “Checking GUI Objects” in the Mercury WinRunner Basic
Features User’s Guide.

Chapter 6 • Using Regular Expressions

95

To define a regular expression in a GUI checkpoint:

 1 Create a GUI checkpoint for an object in which you specify the checks. In
this example, choose Insert > GUI Checkpoint > For Object/Window.

The WinRunner window is minimized, the mouse pointer becomes a
pointing hand, and a help window opens on the screen.

 2 Double-click a static text object.

 3 The Check GUI dialog box opens:

 4 In the Properties pane, highlight the “Regular Expression” property check
and then click the Specify Arguments button.

The Check Arguments dialog box opens:

Part II • Creating Tests—Advanced

96

 5 Enter the regular expression in the Regular Expression box, and then click
OK.

Note: When a regular expression is used to perform a check on a static text
or edit object, it should not be preceded by an exclamation point.

 6 If desired, specify any additional checks to perform, and then click OK to
close the Check GUI dialog box.

An obj_check_gui statement is inserted into your test script.

For additional information on specifying arguments, refer to Chapter 9,
“Checking GUI Objects” in the Mercury WinRunner Basic Features User’s
Guide.

Using a Regular Expression in a Text Checkpoint

You can use a regular expression in a text checkpoint, to locate a varying
text string using win_find_text or obj_find_text. For example, the
statement:

obj_find_text ("Edit", "win.*", coord_array, 640, 480, 366, 284);

enables WinRunner to find any text in the object named “Edit” that begins
with “win”.

Since windows often have varying labels, WinRunner defines a regular
expression in the physical description of a window. For more information,
refer to Chapter 7, “Editing the GUI Map” in the Mercury WinRunner Basic
Features User’s Guide.

Chapter 6 • Using Regular Expressions

97

Understanding Regular Expression Syntax

Regular expressions must begin with an exclamation point (!), except when
defined in a Check GUI dialog box, a text checkpoint, or a match,
obj_find_text, or win_find_text statement. All characters in a regular
expression are searched for literally, except for a period (.), asterisk (*), caret
(^), and brackets ([]), as described below. When one of these special
characters is preceded by a backslash (\), WinRunner searches for the literal
character. For example, if you are using a win_find_text statement to search
for a phrase beginning with “Sign up now!”, then you should use the
following regular expression: “Sign up now\!.”

The options described in the remainder of this chapter can be used to create
regular expressions.

Matching Any Single Character

A period (.) instructs WinRunner to search for any single character. For
example,

welcome.

matches welcomes, welcomed, or welcome followed by a space or any other
single character. A series of periods indicates a range of unspecified
characters.

Matching Any Single Character within a Range

In order to match a single character within a range, you can use brackets
([]). For example, to search for a date that is either 1968 or 1969, write:

196[89]

You can use a hyphen (-) to indicate an actual range. For instance, to match
any year in the 1960s, write:

196[0-9]

Part II • Creating Tests—Advanced

98

Brackets can be used in a physical description to specify the label of a static
text object that may vary:

{
class: static_text,
label: "!Quantity[0-9]"
}

In the above example, WinRunner can identify the static_text object with
the label “Quantity” when the quantity number varies.

A hyphen does not signify a range if it appears as the first or last character
within brackets, or after a caret (^).

A caret (^) instructs WinRunner to match any character except for the ones
specified in the string. For example:

[^A-Za-z]

matches any non-alphabetic character. The caret has this special meaning
only when it appears first within the brackets.

Note that within brackets, the characters “.”, “*”, “[“ and “\” are literal. If
the right bracket is the first character in the range, it is also literal. For
example:

[]g-m]

matches the “]“ and g through m.

Note: Two “\” characters together (“\\”) are interpreted as a single “\”
character. For example, in the physical description in a GUI map, “!D:\\.*”
does not mean all labels that start with “D:\”. Rather, it refers to all labels
that start with “D:.”. To specify all labels that start with “D:\”, use the
following regular expression: “!D:\\\\.*”.

Chapter 6 • Using Regular Expressions

99

Matching Specific Characters

An asterisk (*) instructs WinRunner to match one or more occurrences of
the preceding character. For example:

Q*

causes WinRunner to match Q, QQ, QQQ, etc.

A period “.” followed by an asterisk “*” instructs WinRunner to locate the
specific characters followed by any combination of characters.

For example, in the following physical description, the regular expression
enables WinRunner to locate any push button that starts with “O” (for
example, On or Off):

{
class: push_button
label: "!O.*"
}

You can also use a combination of brackets and an asterisk to limit the label
to a combination of non-numeric characters. For example:

{
class: push_button
label: "!O[a-zA-Z]*"
}

Part II • Creating Tests—Advanced

100

Part III

Programming with TSL

102

103

7
Enhancing Your Test Scripts with
Programming

WinRunner test scripts are composed of statements coded in Mercury
Interactive’s Test Script Language (TSL). This chapter provides a brief
introduction to TSL and shows you how to enhance your test scripts using a
few simple programming techniques.

This chapter describes:

➤ About Enhancing Your Test Scripts with Programming

➤ Using Descriptive Programming

➤ Adding Comments and White Space

➤ Understanding Constants and Variables

➤ Performing Calculations

➤ Creating Stress Conditions

➤ Incorporating Decision-Making Statements

➤ Sending Messages to the Test Results Window

➤ Starting Applications from a Test Script

➤ Defining Test Steps

➤ Comparing Two Files

➤ Checking the Syntax of your TSL Script

Part III • Programming with TSL

104

About Enhancing Your Test Scripts with Programming

When you record a test, a test script is generated in Mercury Interactive’s
Test Script Language (TSL). Each line WinRunner generates in the test script
is a statement. A statement is any expression that is followed by a semicolon.
Each TSL statement in the test script represents keyboard and/or mouse
input to the application being tested. A single statement may be longer than
one line in the test script.

For example:

if (button_check_state("Underline", OFF) == E_OK)
report_msg("Underline check box is unavailable.");

TSL is a C-like programming language designed for creating test scripts. It
combines functions developed specifically for testing with general purpose
programming language features such as variables, control-flow statements,
arrays, and user-defined functions. You enhance a recorded test script
simply by typing programming elements into the test window, If you
program a test script by typing directly into the test window, remember to
include a semicolon at the end of each statement.

TSL is easy to use because you do not have to compile. You simply record or
type in the test script and immediately execute the test.

TSL includes four types of functions:

➤ Context Sensitive functions perform specific tasks on GUI objects, such as
clicking a button or selecting an item from a list. Function names, such as
button_press and list_select_item, reflect the function’s purpose.

➤ Analog functions depict mouse clicks, keyboard input, and the exact
coordinates traveled by the mouse.

➤ Standard functions perform general purpose programming tasks, such as
sending messages to a report or performing calculations.

➤ Customization functions allow you to adapt WinRunner to your testing
environment.

Chapter 7 • Enhancing Your Test Scripts with Programming

105

WinRunner includes a visual programming tool which helps you to quickly
and easily add TSL functions to your tests. For more information, see
Chapter 8, “Generating Functions.”

This chapter introduces some basic programming concepts and shows you
how to use a few simple programming techniques in order to create more
powerful tests. For more information, refer to the following documentation:

➤ The TSL Reference includes general information about the TSL language,
individual functions, examples of usage, function availability, and
guidelines for working with TSL. You can open this online reference by
choosing Help > TSL Reference. You can also open this reference directly to
the help topic for a specific function by pressing the F1 key when your
cursor is on a TSL statement in your test script, or by clicking the context-
sensitive Help button and then clicking a TSL statement in your test script.

➤ The TSL Reference Guide includes general information about the TSL
language, individual functions, function availability, and guidelines for
working with TSL. This printed book is included in your WinRunner
documentation set. You can also access a PDF version of this book, which is
easy to print, by choosing Help > Books Online and then clicking Test Script
Language from the WinRunner Books Online home page.

Using Descriptive Programming

When you add an object to the GUI Map, WinRunner assigns it a logical
name. Once an object exists in the GUI Map, you can add statements to
your test that perform functions on that object. To add these statements,
you usually enter the logical name of the object as the object description.

For example, in the statements below, Flight Reservation is the logical name
of a window, and File;Open Order is the logical name of the menu.

set_window ("Flight Reservation", 5);
menu_select_item ("File;Open Order...");

Because each object in the GUI Map has a unique logical name, this is all
you need to describe the object. During the test run, WinRunner finds the
object in the GUI Map based on its logical name and uses the other property
values stored for that object to identify the object in your application.

Part III • Programming with TSL

106

Note: You can modify the logical name of any object in the GUI Map to
make it easier for you to identify in your test. For more information, refer to
Chapter 7, “Editing the GUI Map” in the Mercury WinRunner Basic Features
User’s Guide.

You can also add statements to perform functions on objects without
referring to the GUI Map. To do this, you need to enter more information in
the description of the object in order to uniquely describe the object so that
WinRunner can identify the object during the test run. This is known as
descriptive programming.

For example, suppose you recorded a purchase order in a flight reservation
application. Then, after you created your test, an additional radio button
group was added to the purchase order. Rather than recording a new step in
your existing test in order to add to the object to the GUI Map, you can add
a statement to the script that describes the radio button you want to select,
and sets the radio button state to ON.

You describe the object by defining the object class, the MSW_class, and as
many additional property:value pairs as necessary to uniquely identify the
object.

The general syntax is:

function_name("{ class: class_value , MSW_class: MSW_value , property3:
value , ... , propertyX: value }" , other_function_parameters) ;

function_name: The function you want to perform on the object.

property:value: The object property and its value. Each property:value pair
should be separated by commas.

other_function_parameters: You enter other required or optional function
parameters in the statement just as you would when using the logical name
for the object parameter.

The entire object description should surrounded by curly brackets and
quotes: “{description}”.

Chapter 7 • Enhancing Your Test Scripts with Programming

107

For example, the statement below performs a button_set function on a
radio button to select a business class airline seat. When the test runs,
WinRunner finds the radio button object with matching property values
and selects it.”

set_window ("Flight Reservation", 3);
button_set ("{class: radio_button, MSW_class: Button, label: Business}", ON);

If you are not sure which properties and values you can use to identify an
object, use the GUI Spy to view the current properties and values of the
object. For more information, refer to Chapter 4, “Understanding Basic GUI
Map Concepts” in the Mercury WinRunner Basic Features User’s Guide.

Adding Comments and White Space

When programming, you can add comments and white space to your test
scripts to make them easier to read and understand.

Using Comments

A comment is a line or part of a line in a test script that is preceded by a
pound sign (#). When you run a test, the TSL interpreter does not process
comments. Use comments to explain sections of a test script in order to
improve readability and to make tests easier to update.

For example:

Open the Open Order window in Flight Reservation application
set_window ("Flight Reservation", 10);
menu_select_item ("File;Open Order...");

Select the reservation for James Brown
set_window ("Open Order_1");
button_set ("Customer Name", ON);
edit_set ("Value", "James Brown"); # Type James Brown
button_press ("OK");

Part III • Programming with TSL

108

You can use the Insert comments and indent statements option in the
Record > Script Format category of the General Options dialog box to have
WinRunner automatically divide your test script into sections while you
record based on window focus changes. When you choose this option,
WinRunner automatically inserts a comment at the beginning of each
section with the name of the window and indents the statements under
each comment. For more information on the Insert comments and indent
statements option, refer to Chapter 23, “Setting Global Testing Options” in
the Mercury WinRunner Basic Features User’s Guide.

Inserting White Space

White space refers to spaces, tabs, and blank lines in your test script. The
TSL interpreter is not sensitive to white space unless it is part of a literal
string. Use white space to make the logic of a test script clear.

Chapter 7 • Enhancing Your Test Scripts with Programming

109

Understanding Constants and Variables

Constants and variables are used in TSL to manipulate data. A constant is a
value that never changes. It can be a number, character, or a string. A
variable, in contrast, can change its value each time you run a test.

Variable and constant names can include letters, digits, and underscores (_).
The first character must be a letter or an underscore. TSL is case sensitive;
therefore, y and Y are two different characters. Certain words are reserved by
TSL and may not be used as names.

You do not have to declare variables you use outside of function definitions
in order to determine their type. If a variable is not declared, WinRunner
determines its type (auto, static, public, extern) when the test is run.

For example, the following statement uses a variable to store text that
appears in a text box.

edit_get_text ("Name:", text);
report_msg ("The Customer Name is " & text);

WinRunner reads the value that appears in the File Name text box and
stores it in the text variable. A report_msg statement is used to display the
value of the text variable in a report. For more information, see “Sending
Messages to the Test Results Window” on page 116. For information about
variable and constant declarations, see Chapter 10, “Creating User-Defined
Functions.”

Part III • Programming with TSL

110

Performing Calculations

You can create tests that perform simple calculations using mathematical
operators. For example, you can use a multiplication operator to multiply
the values displayed in two text boxes in your application. TSL supports the
following mathematical operators:

+ addition

- subtraction

- negation (a negative number - unary operator)

* multiplication

/ division

% modulus

^ or ** exponent

++ increment (adds 1 to its operand - unary operator)

-- decrement (subtracts 1 from its operand - unary
operator)

TSL supports five additional types of operators: concatenation, relational,
logical, conditional, and assignment. It also includes functions that can
perform complex calculations such as sin and exp. See the TSL Reference for
more information.

Chapter 7 • Enhancing Your Test Scripts with Programming

111

The following example uses the Flight Reservation application. WinRunner
reads the price of both an economy ticket and a business ticket. It then
checks whether the price difference is greater than $100.

Select Economy button
set_window ("Flight Reservation");
button_set ("Economy", ON);

Get Economy Class ticket price from price text box
edit_get_text ("Price:", economy_price);

Click Business.
button_set ("Business", ON);

Get Business Class ticket price from price box
edit_get_text ("Price:", business_price);

Check whether price difference exceeds $100
if ((business_price - economy_price) > 100)
tl_step ("Price_check", 1, "Price difference is too large.");

Creating Stress Conditions

You can create stress conditions in test scripts that are designed to determine
the limits of your application. You create stress conditions by defining a
loop which executes a block of statements in the test script a specified
number of times. TSL provides three statements that enable looping: for,
while, and do/while. Note that you cannot define a constant within a loop.

For Loop

A for loop instructs WinRunner to execute one or more statements a
specified number of times. It has the following syntax:

for ([expression1]; [expression2]; [expression3])
statement

First, expression1 is executed. Next, expression2 is evaluated. If expression2 is
true, expression3 is executed. The cycle is repeated as long as expression2
remains true. If expression2 is false, the for statement terminates and
execution passes to the first statement immediately following.

Part III • Programming with TSL

112

For example, the for loop below selects the file UI_TEST from the File Name
list in the Open window. It selects this file five times and then stops.

set_window ("Open")
for (i=0; i<5; i++)

list_select_item ("File Name:_1", "UI_TEST"); # Item Number 2

While Loop

A while loop executes a block of statements for as long as a specified
condition is true. It has the following syntax:

while (expression)
statement ;

While expression is true, the statement is executed. The loop ends when the
expression is false.

For example, the while statement below performs the same function as the
for loop above.

set_window ("Open");
i=0;
while (i<5)

{
i++;
list_select_item ("File Name:_1", "UI_TEST"); # Item Number 2
}

Do/While Loop

A do/while loop executes a block of statements for as long as a specified
condition is true. Unlike the for loop and while loop, a do/while loop tests the
conditions at the end of the loop, not at the beginning. A do/while loop has
the following syntax:

do
statement

while (expression);

Chapter 7 • Enhancing Your Test Scripts with Programming

113

The statement is executed and then the expression is evaluated. If the
expression is true, then the cycle is repeated. If the expression is false, the
cycle is not repeated.

For example, the do/while statement below opens and closes the Order
dialog box of Flight Reservation five times.

set_window ("Flight Reservation");
i=0;
do

{
menu_select_item ("File;Open Order...");
set_window ("Open Order");
button_press ("Cancel");
i++;
}

while (i<5);

Incorporating Decision-Making Statements

You can incorporate decision-making into your test scripts using if/else or
switch statements.

If/Else Statement

An if/else statement executes a statement if a condition is true; otherwise, it
executes another statement. It has the following syntax:

if (expression)
statement1;

[else
statement2;]

expression is evaluated. If expression is true, statement1 is executed. If
expression is false, statement2 is executed.

Part III • Programming with TSL

114

For example, the if/else statement below checks that the Flights button in
the Flight Reservation window is enabled. It then sends the appropriate
message to the report.

#Open a new order
set_window ("Flight Reservation_1");
menu_select_item ("File; New Order");

#Type in a date in the Date of Flight: box
edit_set_insert_pos ("Date of Flight:", 0, 0);
type ("120196");

#Type in a value in the Fly From: box
list_select_item ("Fly From:", "Portland");

#Type in a value in the Fly To: box
list_select_item ("Fly To:", "Denver");

#Check that the Flights button is enabled
button_get_state ("FLIGHT", value);
if (value != ON)

report_msg ("The Flights button was successfully enabled");
else

report_msg ("Flights button was not enabled. Check that values for
Fly From and Fly To are valid");

Switch Statement

A switch statement enables WinRunner to make a decision based on an
expression that can have more than two values. It has the following syntax:

switch (expression)
{

case case_1:
statements

case case_2:
statements

case case_n:
statements

default: statement(s)
}

Chapter 7 • Enhancing Your Test Scripts with Programming

115

The switch statement consecutively evaluates each case expression until one
is found that equals the initial expression. If no case is equal to the
expression, then the default statements are executed. The default statements
are optional.

Note that the first time a case expression is found to be equal to the
specified initial expression, no further case expressions are evaluated.
However, all subsequent statements enumerated by these cases are executed,
unless you use a break statement to pass execution to the first statement
immediately following the switch statement.

The following test uses the Flight Reservation application. It randomly clicks
either the First, Business or Economy Class button. Then it uses the
appropriate GUI checkpoint to verify that the correct ticket price is
displayed in the Price text box.

arr[1]="First";arr[2]="Business";arr[3]="Economy";
while(1)
{

num=int(rand()*3)+1;

Click class button
set_window ("Flight Reservation");
button_set (arr[num], ON);

Check the ticket price for the selected button
switch (num)
{

case 1: #First
obj_check_gui("Price:", "list1.ckl", "gui1", 1);
break;
case 2: #Business
obj_check_gui("Price:", "list2.ckl", "gui2", 1);
break;
case 3: #Economy
obj_check_gui("Price:", "list3.ckl", "gui3", 1);
}

}

Part III • Programming with TSL

116

Sending Messages to the Test Results Window

You can define a message in your test script and have WinRunner send it to
the test results window. To send a message to a test results window, add a
report_msg statement to your test script. The function has the following
syntax:

report_msg (message);

The message can be a string, a variable, or a combination of both.

In the following example, WinRunner gets the value of the label property in
the Flight Reservation window and enters a statement in the test results
containing the message and the label value.

win_get_info("Flight Reservation", "label", value);
report_msg("The label of the window is " & value);

Starting Applications from a Test Script

You can start an application from a WinRunner test script using the
invoke_application function. For example, you can open the application
being tested every time you start WinRunner by adding an
invoke_application statement to a startup test. See Chapter 23, “Initializing
Special Configurations,” for more information on startup tests.

Tip: You can use the Run tab of the Test Properties dialog box to open an
application at the beginning of a test run. For more information, refer to
Chapter 22, “Setting Properties for a Single Test” in the Mercury WinRunner
Basic Features User’s Guide.
You can also use a system statement to start an application. For more
information, refer to the WinRunner TSL Reference Guide.

The invoke_application function has the following syntax:

invoke_application (file, command_option, working_dir, show);

Chapter 7 • Enhancing Your Test Scripts with Programming

117

The file designates the full path of the application to invoke. The
command_option parameter designates the command line options to apply.
The work_dir designates the working directory for the application and show
specifies how the application’s main window appears when open.

For example, the statement:

invoke_application("c:\\flight4a.exe", "", "", SW_MINIMIZED);

starts the Flight Reservation application and displays it as an icon.

Defining Test Steps

After you run a test, WinRunner displays the overall result of the test
(pass/fail) in the Report form. To determine whether sections of a test pass or
fail, add tl_step statements to the test script.

The tl_step function has the following syntax:

tl_step (step_name, status, description);

The step_name is the name of the test step. The status determines whether
the step passed (0), or failed (any value except 0). The description describes
the step.

For example, in the following test script segment, WinRunner reads text
from Notepad. The tl_step function is used to determine whether the
correct text is read.

win_get_text("Document - Notepad", text, 247, 309, 427, 329);
if (text=="100-Percent Compatible")

tl_step("Verify Text", 0, "Correct text was found in Notepad");
else

tl_step("Verify Text", 1,"Wrong text was found in Notepad");

Part III • Programming with TSL

118

When the test run is complete, you can view the test results in the
WinRunner Report. The report displays a result (pass/fail) for each step you
defined with tl_step.

Note that if you are using Quality Center to plan and design tests, you
should use tl_step to create test steps in your automated test scripts. For
more information, refer to the Mercury Quality Center User’s Guide.

Comparing Two Files

WinRunner enables you to compare any two files during a test run and to
view any differences between them using the file_compare function.

While creating a test, you insert a file_compare statement into your test
script, indicating the files you want to check. When you run the test,
WinRunner opens both files and compares them. If the files are not
identical, or if they could not be opened, this is indicated in the test report.
In the case of a file mismatch, you can view both of the files directly from
the report and see the lines in the file that are different.

Suppose, for example, your application enables you to save files under a new
name (Save As...). You could use file comparison to check whether the
correct files are saved or whether particularly long files are truncated.

To compare two files during a test run, you program a file_compare
statement at the appropriate location in the test script. This function has the
following syntax:

file_compare (file_1, file_2 [,save_file]);

The file_1 and file_2 parameters indicate the names of the files to be
compared. If a file is not in the current test folder, then the full path must be
given. The optional save_file parameter saves the name of a third file, which
contains the differences between the first two files.

Chapter 7 • Enhancing Your Test Scripts with Programming

119

In the following example, WinRunner tests the Save As capabilities of the
Notepad application. The test opens the win.ini file in Notepad and saves it
under the name win1.ini. The file_compare function is then used to check
whether one file is identical to the other and to store the differences file in
the test directory.

Open win.ini using WordPad.
system("write.exe c:\win\win.ini");
set_window("win.ini - WordPad",1);

Save win.ini as win1.ini
menu_select_item("File;Save As...");
set_window("Save As");
edit_set("File Name:_0","c:\Win\win1.ini");
set_window("Save As", 10);
button_press("Save");

Compare win.ini to win1.ini and save both files to "save".
file_compare("c:\\win\\win.ini","c:\\win\\win1.ini","save");

For information on viewing the results of file comparison, refer to
Chapter 21, “Analyzing Test Results” in the Mercury WinRunner Basic Features
User’s Guide.

Checking the Syntax of your TSL Script

When WinRunner runs a test, it checks each script line for basic syntax
errors, like incorrect syntax or missing elements in If, While, Switch, and
For statements.

Part III • Programming with TSL

120

For example, WinRunner will stop and fail a test run if it finds one of the
following:

if statement without then
if()
report_msg("Bad If Structure");

#while statement without end condition
while(1
{

report_msg("Bad While Structure");
}

#for statement without closing brackets
for(i=0;i<5;i++)
{

You can use the Syntax Check options to check for these types of syntax
errors before running your test. You can run the syntax check from the
beginning of your test or starting from a selected line in your test. This
enables you to quickly check your test for syntax errors so that you can
catch them without having to run the entire test.

To run a syntax check for your entire text, choose Tools > Syntax Check >
Syntax Check from Top.

To run a syntax check from a selected point in your test, click a line in the
left gutter to set the location of the arrow. Then choose Tools > Syntax
Check > Syntax Check from Arrow.

Tip: If the left gutter is not visible, choose Tools > Editor Options, and select
Visible gutter in the Options tab.

If a syntax error is found during the syntax check, a message box describes
the error.

121

8
Generating Functions

Visual programming helps you add TSL statements to your test scripts
quickly and easily.

This chapter describes:

➤ About Generating Functions

➤ Generating a Function for a GUI Object

➤ Selecting a Function from a List

➤ Assigning Argument Values

➤ Modifying the Default Function in a Category

About Generating Functions

When you record a test, WinRunner generates TSL statements in a test script
each time you click a GUI object or use the keyboard. In addition to the
recordable functions, TSL includes many functions that can increase the
power and flexibility of your tests. You can easily add functions to your test
scripts using WinRunner’s visual programming tool, the Function
Generator.

The Function Generator provides a quick, error-free way to program scripts.
You can:

➤ Add Context Sensitive functions that perform operations on a GUI object or
get information from the application being tested.

➤ Add Standard and Analog functions that perform non-Context Sensitive
tasks such as synchronizing test execution or sending user-defined messages
to a report.

Part III • Programming with TSL

122

➤ Add Customization functions that enable you to modify WinRunner to suit
your testing environment.

You can add TSL statements to your test scripts using the Function
Generator in two ways: by pointing to a GUI object, or by choosing a
function from a list. When you choose the Insert Function command and
point to a GUI object, WinRunner suggests an appropriate Context Sensitive
function and assigns values to its arguments. You can accept this suggestion,
modify the argument values, or choose a different function altogether.

By default, WinRunner suggests the default function for the object. In many
cases, this is a get function or another function that retrieves information
about the object. For example, if you choose Insert > Function > For
Object/Window and then click an OK button, WinRunner opens the
Function Generator dialog box and generates the following statement:

button_get_info("OK",”enabled”, value);

This statement examines the enabled property of the OK button and stores
the current value of the property in the value variable. The value can be 1
(enabled), or 0 (disabled).

To select another function for the object, click Change. Once you have
generated a statement, you can perform either or both of the following
options:

➤ Paste the statement into your test script. When required, a set_window
statement is inserted automatically into the script before the generated
statement.

➤ Execute the statement from the Function Generator.

Note that if you point to an object that is not in the GUI map, the object is
automatically added to the temporary GUI map file when the generated
statement is executed or pasted into the test script.

Chapter 8 • Generating Functions

123

Note: You can customize the Function Generator to include the user-defined
functions that you most frequently use in your test scripts. You can add new
functions and new categories and sub-categories to the Function Generator.
You can also set the default function for a new category. For more
information, see Chapter 22, “Customizing the Function Generator.” You
can also change the default function for an existing category. For more
information, see “Modifying the Default Function in a Category” on
page 129.

Generating a Function for a GUI Object

With the Function Generator, you can generate a Context Sensitive function
simply by pointing to a GUI object in your application. WinRunner
examines the object, determines its class, and suggests an appropriate
function. You can accept this default function or select another function
from a list.

Using the Default Function for a GUI Object

When you generate a function by pointing to a GUI object in your
application, WinRunner determines the class of the object and suggests a
function. For most classes, the default function is a get function. For
example, if you click a list, WinRunner suggests the list_get_selected
function.

To use the default function for a GUI object:

 1 Choose Insert > Function > For Object/Window or click the
Insert Function for Object/Window button on the User toolbar. WinRunner
shrinks to an icon and the mouse pointer becomes a pointing hand.

 2 Point to a GUI object in the application being tested. Each object flashes as
you pass the mouse pointer over it.

 3 Click an object with the left mouse button. The Function Generator dialog
box opens and shows the default function for the selected object.
WinRunner automatically assigns argument values to the function.

Part III • Programming with TSL

124

To cancel the operation without selecting an object, click the right mouse
button.

 4 To paste the statement into the script, click Paste. The function is pasted
into the test script at the insertion point and the Function Generator dialog
box closes.

To execute the function, click Execute. The function is executed. Clicking
Execute does not paste the statement into the script.

 5 Click Close to close the dialog box.

Selecting a Non-Default Function for a GUI Object

If you do not want to use the default function suggested by WinRunner, you
can choose a different function from a list.

To select a non-default function for a GUI object:

 1 Choose Insert > Function > For Object/Window or click the Insert Function
for Object/Window button on the User toolbar. WinRunner is minimized
and the mouse pointer becomes a pointing hand.

 2 Point to a GUI object in the application being tested. Each object flashes as
you pass the mouse pointer over it.

 3 Click an object with the left mouse button. The Function Generator dialog
box opens and displays the default function for the selected object.
WinRunner automatically assigns argument values to the function.

To cancel the operation without selecting an object, click the right mouse
button.

 4 In the Function Generator dialog box, click Change. The dialog box expands
and displays a list of functions. The list includes only functions that can be
used on the GUI object you selected. For example, if you select a push
button, the list displays button_get_info, button_press, etc.

Only executes the function

Pastes the function into the script

Chapter 8 • Generating Functions

125

 5 In the Function Name list, select a function. The generated statement
appears at the top of the dialog box. Note that WinRunner automatically
fills in argument values. A description of the function appears at the bottom
of the dialog box.

 6 If you want to modify the argument values, click Args. The dialog box
expands and displays a text box for each argument. See “Assigning
Argument Values” on page 127 for more information on how to fill in the
argument text boxes.

 7 To paste the statement into the test script, click Paste. The function is pasted
into the test script at the insertion point.

To execute the function, click Execute. The function is immediately executed
but is not pasted into the test script.

 8 You can continue to generate function statements for the same object by
repeating the steps above without closing the dialog box. The object you
selected remains the active object and arguments are filled in automatically
for any function selected.

 9 Click Close to close the dialog box.

Part III • Programming with TSL

126

Selecting a Function from a List

When programming a test, perhaps you know the task you want the test to
perform but not the exact function to use. The Function Generator helps
you to quickly locate the function you need and insert it into your test
script. Functions are organized by category; you select the appropriate
category and the function you need from a list. A description of the
function is displayed along with its parameters.

To select a function from a list:

 1 Choose Insert > Function > From Function Generator or click the Insert
Function from Function Generator button on the User toolbar to open the
Function Generator dialog box.

 2 In the Category list, select a function category. For example, if you want to
view menu functions, select menu. If you do not know which category you
need, use the default all_functions, which displays all the functions listed in
alphabetical order.

 3 In the Function Name list, choose a function. If you select a category, only
the functions that belong to the category are displayed in the list. The
generated statement appears at the top of the dialog box. Note that
WinRunner automatically fills in the default argument values. A description
of the function appears at the bottom of the dialog box.

 4 To define or modify the argument values, click Args. The dialog box
expands and displays a text box for each argument. See “Assigning
Argument Values” on page 127 to learn how to fill in the argument text
boxes.

 5 To paste the statement into the test script, click Paste. The function is pasted
into the test script at the insertion point.

To execute the function, click Execute. The function is immediately executed
but is not pasted into the test script.

 6 You can continue to generate additional function statements by repeating
the steps above without closing the dialog box.

 7 Click Close to close the dialog box.

Chapter 8 • Generating Functions

127

Assigning Argument Values

When you generate a function using the Function Generator, WinRunner
automatically assigns values to the function’s arguments. If you generate a
function by clicking a GUI object, WinRunner evaluates the object and
assigns the appropriate argument values. If you choose a function from a
list, WinRunner fills in default values where possible, and you type in the
rest.

To assign or modify argument values for a generated function:

 1 Choose Insert > Function > From Function Generator or click the Insert
Function from Function Generator button on the User toolbar to open the
Function Generator dialog box.

 2 In the Category list, select a function category. For example, if you want to
view menu functions, select menu. If you do not know which category you
need, use the default all_functions, which displays all the functions listed in
alphabetical order.

 3 In the Function Name list, choose a function. If you select a category, only
the functions that belong to the category are displayed in the list. The
generated statement appears at the top of the dialog box. Note that
WinRunner automatically fills in the default argument values. A description
of the function appears at the bottom of the dialog box.

Part III • Programming with TSL

128

 4 Click Args. The dialog box displays the arguments in the function.

 5 Assign values to the arguments. You can assign a value either manually or
automatically.

To manually assign values, type in a value in the argument text box. For
some text boxes, you can choose a value from a list.

To automatically assign values, click the pointing hand and then click an
object in your application. The appropriate values appear in the argument
text boxes.

Note that if you click an object that is not compatible with the selected
function, a message informs you that the function is not applicable for the
object you selected. Click OK to clear the message and return to the
Function Generator.

Chapter 8 • Generating Functions

129

Modifying the Default Function in a Category

In the Function Generator, each function category has a default function.
When you generate a function by clicking an object in your application,
WinRunner determines the appropriate category for the object and suggests
the default function. For most Context Sensitive function categories, this is
a get function. For example, if you click a text box, the default function is
edit_get_text. For Analog, Standard and Customization function categories,
the default is the most commonly used function in the category. For
example, the default function for the system category is
invoke_application.

If you find that you frequently use a function other than the default for the
category, you can make it the default function.

To change the default function in a category:

 1 Choose Insert > Function > From Function Generator or click the Insert
Function from Function Generator button on the User toolbar to open the
Function Generator dialog box.

 2 In the Category list, select a function category. For example, if you want to
view menu functions, select menu.

 3 In the Function Name list, select the function that you want to make the
default.

 4 Click Set as Default.

 5 Click Close.

The selected function remains the default function in its category until it is
changed or until you end your WinRunner session.

Part III • Programming with TSL

130

To permanently save changes to the default function setting, add a
generator_set_default_function statement to your startup test. For more
information on startup tests, see Chapter 23, “Initializing Special
Configurations.”

The generator_set_default_function function has the following syntax:

generator_set_default_function (category_name, function_name);

For example:

generator_set_default_function ("push_button", "button_press");

sets button_press as the default function for the push_button category.

131

9
Calling Tests

The tests you create with WinRunner can call, or be called by, any other test.
When WinRunner calls a test, parameter values can be passed from the
calling test to the called test.

This chapter describes:

➤ About Calling Tests

➤ Using the Call Statement

➤ Returning to the Calling Test

➤ Setting the Search Path

➤ Working with Test Parameters

➤ Viewing the Call Chain

About Calling Tests

By adding call statements to test scripts, you can create a modular test tree
structure containing an entire test suite. A modular test tree consists of a
main test that calls other tests and controls test execution.

When WinRunner interprets a call statement in a test script, it opens and
runs the called test. Input parameter values may be passed to this test from
the calling test. When the called test is completed, WinRunner returns to
the calling test and continues the test run. If the called test returned output
parameter values to the calling test, the calling test can use those parameters
in its subsequent steps. Note that a called test may also call other tests.

Part III • Programming with TSL

132

By adding decision-making statements to the test script, you can use a main
test to determine the conditions that enable a called test to run.

For example:

rc= call login ("Jonathan", "Mercury");
if (rc == E_OK)
{

call insert_order();
}
else
{

tl_step ("Call Login", 1, "Login test failed");
call open_order ();

}

This test calls the login test. If login is executed successfully, WinRunner
calls the insert_order test. If the login test fails, the open_order test runs.

Called tests can have parameterized values. There are two types of
parameters:

➤ Input—The called test receives parameters from the calling test and uses
them to replace data in the test.

➤ Output—The called test returns parameters to the calling test, which can
then use the parameters’ data.

You commonly use call statements in a batch test. A batch test allows you to
call a group of tests and run them unattended. It suppresses messages that
are usually displayed during execution, such as one reporting a bitmap
mismatch. For more information, see Chapter 14, “Running Batch Tests.”

Note: If a called test that was created in the GUI Map File per Test mode
references GUI objects, it may not run properly in the Global GUI Map File
mode.

Chapter 9 • Calling Tests

133

At each break during a test run—such as after a Step command, at a
breakpoint, or at the end of a test, you can view the current chain of called
tests and functions in the Call Chain pane of the Debug Viewer window.
You can also click the Display Test button in the Call Chain pane to display
the test that is currently running.

You can also use the Insert Call to QuickTest dialog box or insert a call_ex
statement to call a QuickTest test. For more information, see Chapter 25,
“Integrating with QuickTest Professional.”

Using the Call Statement

You can use two types of call statements to invoke one test from another:

➤ A call statement invokes a test from within another test.

➤ A call_close statement invokes a test from within another test and closes
the test when the test is completed.

The call statement has the following syntax:

call test_name ([parameter1, parameter2, ...parametern]);

The call_close statement has the following syntax:

call_close test_name ([parameter1, parameter2, ... parametern]);

The test_name is the name of the test to invoke. The parameters are the input
and/or output parameters defined for the called test. For more information
on using parameters, see “Guidelines for Working with Test Parameters” on
page 139.

Any called test must be stored in a folder specified in the search path, or else
be called with the full pathname enclosed within quotation marks.

For example:

call "w:\\tests\\my_test" ();

While running a called test, you can pause execution and view the current
call chain. For more information, see “Viewing the Call Chain” on page 145.

Part III • Programming with TSL

134

Returning to the Calling Test

The treturn and texit statements are used to stop execution of called tests
and return a value to the call statement

The value of the treturn or texit statement in the called test acts as the
return value of the entire call statement in the calling test. You can return
additional values to the calling test using output parameters. For more
information, see “Working with Test Parameters” on page 137.

➤ The treturn statement stops the current test and returns control to the
calling test.

➤ The texit statement stops test execution entirely, unless tests are being
called from a batch test. In this case, control is returned to the main batch
test.

Both functions provide a return value for the called test.

treturn

The treturn statement terminates execution of the called test and returns
control to the calling test. The syntax is:

treturn [(expression)];

The optional expression is the value returned to the call statement used to
invoke the test.

For example:

test a
if (call test b() == "success")

report_msg("test b succeeded");

test b
if (win_check_bitmap ("Paintbrush - SQUARES.BMP", "Img_2", 1))

treturn("success");
else

treturn("failure");

Chapter 9 • Calling Tests

135

In the above example, test_a calls test_b. If the bitmap comparison in test_b
is successful, then the string “success” is returned to the calling test, test_a.
If there is a mismatch, then test_b returns the string “failure” to test_a.

texit

When tests are run interactively, the texit statement discontinues test
execution. However, when tests are called from a batch test, texit ends
execution of the current test only; control is then returned to the calling
batch test. The syntax is:

texit [(expression)];

The optional expression is the value returned to the call statement that
invokes the test.

For example:

batch test
return val = call help_test();
report msg("help returned the value" return val);

help test
call select menu(help, index);
msg = get text(4,30,12,100);
if (msg == "Index help is not yet implemented")

texit("index failure");
...

In the above example, batch_test calls help_test. In help_test, if a particular
message appears on the screen, execution is stopped and control is returned
to the batch test. Note that the return value of help_test is also returned to
the batch test, and is assigned to the variable return_val.

For more information on batch tests, see Chapter 14, “Running Batch
Tests.”

Part III • Programming with TSL

136

Setting the Search Path

The search path determines the directories that WinRunner will search for a
called test.

To set the search path, choose Tools > General Options. The General
Options dialog box opens. Click the Folders category and choose a search
path in the Search path for called tests box. WinRunner searches the
directories in the order in which they are listed in the box. Note that the
search paths you define remain active in future testing sessions.

➤ To add a folder to the search path, type in the folder name in the text box
and click the Add button.

➤ Use the Up and Down buttons to position this folder in the list.

➤ To delete a search path, select its name from the list and click the Delete
button.

Chapter 9 • Calling Tests

137

For more information about how to set a search path in the General Options
dialog box, refer to Chapter 23, “Setting Global Testing Options” in the
Mercury WinRunner Basic Features User’s Guide.

You can also set a search path by adding a setvar statement to a test script. A
search path set using setvar is valid for all tests in the current session only.

For example:

setvar ("searchpath", "<c:\\ui_tests>");

This statement tells WinRunner to search the c:\ui_tests folder for called
tests. For more information on using the setvar function, see Chapter 21,
“Setting Testing Options from a Test Script.”

Note: If WinRunner is connected to Quality Center, you can also set a
search path within a Quality Center database. For more information, see
“Using TSL Functions with Quality Center” on page 407.

Working with Test Parameters

When a test calls another test, it can supply the called test with one or more
parameters.

A WinRunner test can receive data in input parameters and return values in
output parameters, much like a TSL function. The calling test supplies values
for these input and output parameters as arguments in the call statement.
When working with a call chain, you can use parameters to pass data from
one test to another.

Part III • Programming with TSL

138

Note: You can run a test that has input parameters defined in it, without
using another test to call it. This is particularly useful for debugging a test
before placing it in a call chain. You give such a test the values for its input
parameters when you run it. For more information, refer to Chapter 20,
“Understanding Test Runs” in the Mercury WinRunner Basic Features User’s
Guide.

Understanding Parameter Types

There are two types of test parameters: input and output. You define both
types in the test you want to call, and you initialize them by entering them
as arguments in the test containing the call statement to that test.

You can define any number of input and output parameters for a test. You
define the parameters that a test can receive in the Parameters tab of the Test
Properties dialog box. For more information on defining test parameters,
refer to Chapter 22, “Setting Properties for a Single Test” in the Mercury
WinRunner Basic Features User’s Guide.

➤ An input parameter is a variable that is assigned a value from outside the
called test. You can define one or more input parameters for a test; any
calling test can then supply values for these parameters. These values can be
the values themselves, or variables that contain the values. If the calling test
does not supply values then the default values, if defined, are used.

For example, suppose you define two input parameters, starting_x and
starting_y for a test. The purpose of these parameters is to assign a value to
the initial mouse pointer position when the test is called. The two values
supplied by a calling test will supply the x- and y-coordinates of the mouse
pointer.

➤ An output parameter is a variable whose value is generated within the called
test (by calculation or by retrieving values during the test), and this value is
then returned to the calling test. The calling test initializes each output
parameter by including it as an argument in the call statement. After the
called test runs and returns the output parameter values, the calling test can
use those values by referring to the arguments it used in its test call.

Chapter 9 • Calling Tests

139

For example, a test reads information from two edit boxes. You define two
output parameters in the test. Steps in the test assign data to each of them
such as data retrieved from two edit boxes. You then call this test from
another test, and include two variables as arguments in the test call,
First_Name and Last_Name, that correspond to the two output parameters of
the called test. After the called test runs, the calling test can refer to
First_Name and Last_Name in its script, and will use the values returned by
the called test.

Guidelines for Working with Test Parameters

When working with test parameters consider the following:

➤ In test calls, you must supply all input parameters before any output
parameters.

➤ If no parameters are defined for the called test, the call statement must
contain an empty set of parentheses.

➤ If you do not supply a value for a defined input parameter and a default
value has been defined in the called test, the default value is used. Otherwise
the parameter is treated as an empty value.

➤ If you do not supply a variable for a defined output parameter, then the
retrieved parameter value is not returned to the calling test.

➤ If you pass more parameters to a called test than the number of parameters
that are actually defined in that test, then during the test run a warning
message ("Warning: Test <path to test>: too many arguments") is displayed.

➤ Output parameters are supported only when working with WinRunner call
chains. When working with QuickTest Professional or Quality Center, you
should not call WinRunner tests containing output parameters.

➤ Parameters sent as arrays must subsequently be handled as arrays in the
script, in both called and calling tests. Similarly, parameters sent as non-
array variables cannot be subsequently handled as arrays.

➤ It is recommended to add _IN and _OUT as suffixes (or IN_ and OUT_ as
prefixes) for the parameters you define. There prefixes or suffixes make your
test easier to read.

Part III • Programming with TSL

140

Defining Test Parameters

You can define test parameters in the Parameters tab of the Test Properties
dialog box or in the Parameterize Data dialog box.

➤ Use the Parameters tab of the Test Properties dialog box when you want to
manage the parameters of the test including adding, modifying, and
deleting the parameters list for the test. For more information about
Parameters tab of the Test Properties dialog box, refer to Chapter 22,
“Setting Properties for a Single Test” in the Mercury WinRunner Basic Features
User’s Guide.

➤ Use the Parameterize Data dialog box when you want to replace existing
data from the test with input parameters. You can replace the data with
existing input parameters or create new ones.

To define test input parameters in the Parameterize Data dialog box:

 1 In your test script, select the data that you want to parameterize.

 2 Choose Table > Parameterize Data or right-click the selected data and
choose Parameterize Data. The Parameterize Data dialog box opens.

 3 In the Parameterize using box, select Test parameters.

 4 In the Replace value with box, select An existing parameter or A new
parameter.

Chapter 9 • Calling Tests

141

 5 Select the parameter you want to use to replace the selected value.

➤ If you selected An existing parameter in step 4, select the parameter you
want to use from the list. Note that the parameters listed here are the
same as those listed in the Parameters tab of the Test Properties dialog
box.

➤ If you selected A new parameter in step 4, click the Add button. The
Parameter Properties dialog box opens. Add a new parameter as described
in Chapter 22, “Setting Properties for a Single Test” in the Mercury
WinRunner Basic Features User’s Guide. The new parameter is displayed in
the new parameter field. The new parameter is also added to the
parameters list in the Parameters tab of the Test Properties dialog box.

 6 Click OK.

The data selected in the test script is replaced with the input parameter you
created or selected.

 7 Repeat steps 1 to 6 for each argument you want to parameterize.

Part III • Programming with TSL

142

Using Test Parameters—An Example

In the example below, the calling test checks whether a certain customer is
entitled to a special discount. To retrieve the customer’s order number, it
calls another test, whose task is to return an order number based upon
supplied customer and flight date data.

calling test
Cust_Name = “Joe Bloggs”
Flt_Date = “12122004”
call “C:\\WinRunner Tests\\Get_Ord_Num”(Cust_Name, Flt_Date,
Order_Number);
if (Order_Number%50==0)

report_msg(“Prizewinner Discount!”);
else

report_msg(“Regular ticket”);

#called test, name Get_Ord_Num
Flight Reservation

win_activate ("Flight Reservation");
set_window ("Flight Reservation", 1);
wait(1);
menu_select_item ("File;Open Order...");

Open Order
set_window ("Open Order", 1);
button_set ("Customer Name", ON);
edit_set ("Edit", "Customer_Name_IN");
button_set ("Flight Date", ON);
obj_type ("MSMaskWndClass","Flight_Date_IN");
wait(1);
button_press ("OK");

Search Results
set_window ("Search Results", 1);
button_press ("OK");

Flight Reservation
set_window ("Flight Reservation", 1);
win_activate ("Flight Reservation");
edit_get_text(“Order No:”Ord_Num_OUT);

Chapter 9 • Calling Tests

143

Three parameters are defined in the called test: Customer_Name_IN,
Flight_Date_IN, and Order_No_OUT. Note that these parameter names
clearly show the parameter type.

The calling test supplies the customer name and flight date as input
parameters. The called test uses the customer name and flight date input
parameters in a search for the corresponding order number. The retrieved
number is returned as the output parameter.

The calling test then uses this output parameter in its own script to see if
this value is divisible by 50, and on that basis determines whether the
customer is a prize winner.

Test Parameter Scope

The parameter defined in the called test is known as a formal parameter. Test
parameters can be constants, variables, expressions, array elements, or
complete arrays.

Part III • Programming with TSL

144

Parameters that are expressions, variables, or array elements are evaluated
and then passed to the called test. This means that a copy is passed to the
called test. This copy is local; if its value is changed in the called test, the
original value in the calling test is not affected. For example:

test_1 (calling_test)
i = 5;
call test_2(i);
pause(i); # Opens a message box with the number "5" in it
test_2 (called test_1), with formal parameter x
x = 8;
pause(x); # Opens a message box with the number "8" in it

In the calling test (test_1), the variable i is assigned the value 5. This value is
passed to the called test (test_2) as the value for the formal parameter x.
Note that when a new value (8) is assigned to x in test_2, this change does
not affect the value of i in test_1.

Complete arrays are passed by reference. This means that, unlike array
elements, variables, or expressions, they are not copied. Any change made
to the array in the called test affects the corresponding array in the calling
test. For example:

test_q
a[1] = 17;
call test_r(a);
pause(a[1]); # Opens a message box with the number "104" in it
test_r, with parameter x
x[1] = 104;
In the calling test (test_q), element 1 of array a is assigned the value 17.
Array a is then passed to the called test (test_r), which has a formal
parameter x. In test_r, the first element of array x is assigned the value 104.

Unlike the previous example, this change to the parameter in the called test
does affect the value of the parameter in the calling test, because the
parameter is an array.

Chapter 9 • Calling Tests

145

All undeclared variables that are not on the formal parameter list of a called
test are global; they may be accessed from another called or calling test, and
altered. If a parameter list is defined for a test, and that test is not called but
is run directly, then the parameters function as global variables for the test
run. For more information about variables, refer to the WinRunner TSL
Reference Guide.

The test segments below illustrates the use of global variables. Note that
test_a is not called, but is run directly.

test_a, with input parameter k
Note that the ampersand (&) is a bitwise AND operator. It signifies
concatenation.
i = 1;
j = 2;
k = 3;
call test_b(i);
pause(j & k & l); # Opens a message box with the number '256' in it
test_b, with input parameter j
Note that the ampersand (&) is a bitwise AND operator. It signifies
concatenation.
j = 4;
k = 5;
l = 6;
pause(j & k & l); # Opens a message box with the number '456' in it

Viewing the Call Chain

At each break during a test run—such as after a Step command, at a
breakpoint, or at the end of a test, you can view the current chain of called
tests and functions in the Call Chain pane of the Debug Viewer window.

To view the current call chain:

 1 If the Debug Viewer window is not currently displayed, or the Call Chain
pane is not open in the window, choose Debug > Call Chain to display it. If
the Call Chain pane is open, but a different pane is currently displayed, click
the Call Chain tab to display it.

Part III • Programming with TSL

146

 2 Ensure that your called tests have breakpoints in places where you would
like to view the call chain. Alternatively, use the Step commands to control
the run of the test.

For more information on Step commands, see Chapter 16, “Controlling
Your Test Run.”

 3 When the test pauses, view the call chain in the Call Chain pane of the
Debug Viewer.

Tip: The Debug Viewer window can be displayed as a docked window
within the WinRunner window, or it can be a floating window that you can
drag to any location on your screen.

 4 To view the script of a test in the call chain, double-click a test or function,
or select the test or function in the list and click Display test. The selected
test or function becomes the active window in WinRunner.

147

10
Creating User-Defined Functions

You can expand WinRunner’s testing capabilities by creating your own TSL
functions. You can use these user-defined functions in a test or a compiled
module. This chapter describes:

➤ About Creating User-Defined Functions

➤ Function Syntax

➤ Return and Exit Statements

➤ Variable, Constant, and Array Declarations

➤ Example of a User-Defined Function

About Creating User-Defined Functions

In addition to providing built-in functions, TSL allows you to design and
implement your own functions.

User-defined functions are convenient when you want to perform the same
operation several times in a test script. Instead of repeating the code, you
can write a single function that performs the operation. This makes your test
scripts modular, more readable, and easier to debug and maintain.

You can use functions that you create in the test in which they reside, or you
can store them in a compiled module for use in other tests. For more
information about compiled modules, see “Understanding the Contents of a
Compiled Module” on page 159.

For example, you could create a function called open_flight that loads a GUI
map file, starts the Flight Reservation application, and logs into the system,
or resets the main window if the application is already open.

Part III • Programming with TSL

148

A function can be called from anywhere in a test script. Since it is already
compiled, execution time is accelerated. For instance, suppose you create a
test that opens a number of files and checks their contents. Instead of
recording or programming the sequence that opens the file several times,
you can write a function and call it each time you want to open a file.

Function Syntax

A user-defined function has the following structure:

[class] function name ([mode] parameter...)
{
declarations;
statements;
}

Function Classes

The class of a function can be either static, public or external.

A static function is available only to the test or module within which the
function is defined.

Once you execute a public function, it is available to all tests, for as long as
the test containing the function remains open (until you manually click the
Stop button). This is convenient when you want the function to be
accessible from called tests. However, if you want to create a function that
will be available to many tests, you should place it in a compiled module.
Once you have loaded a compiled module, its functions are available for all
tests until you unload it. For more information on loading and unloading a
compiled module, see “Loading a Function or Compiled Module” on
page 163 and “Loading and Unloading a Compiled Module” on page 170.

An external function behaves like a public function, except that while its
declaration is in the local test or compiled module, its implementation code
resides in an external source. The most common example is a function that
is defined in a DLL. You must load the DLL in which the function is defined.

Chapter 10 • Creating User-Defined Functions

149

You can then declare the function in a test or compiled module, and then
load it. Once it is loaded, your tests can call it. For more information, refer
to the chapter “Calling Functions from External Libraries.”

If no class is explicitly declared, the function is assigned the public class.

Function Parameters

Parameters need not be explicitly declared. They can be of mode in, out, or
inout. For all non-array parameters, the default mode is in. For array
parameters, the default is inout. The significance of each of these parameter
types is as follows:

in—A parameter that is assigned a value from outside the function.

out—A parameter that is assigned a value from inside the function.

inout—A parameter that can be assigned a value from outside or inside the
function.

A parameter designated as out or inout must be a variable name, not an
expression. When you call a function containing an out or an inout
parameter, the argument corresponding to that parameter must be a
variable, and not an expression. For example, consider a user-defined
function with the following syntax:

function get_date (out todays_date) { ... }

Proper usage of the function call would be:

get_date (todays_date);

Conversely, the following function calls contain expressions and are
therefore illegal:

get_date (date[i]); or get_date ("Today’s date is"& todays_date);

Array parameters are designated by square brackets. For example, the
following parameter list in a user-defined function indicates that variable a
is an array:

function my_func (a[], b, c){ ... }

Part III • Programming with TSL

150

Array parameters can be either mode out or inout. If no class is specified, the
default mode inout is assumed.

Note: You can define up to 15 parameters in a user-defined function.

Return and Exit Statements

The return statement is used exclusively in functions. The syntax is:

return ([expression]);

This statement passes control back to the calling function or test. It also
returns the value of the evaluated expression to the calling function or test.
If no expression is assigned to the return statement, an empty string is
returned.

The texit statement can be used to stop a function or test run. The syntax is:

texit ([expression]);

When a test is run interactively, texit discontinues the test run entirely.
When a test is run in batch mode, the statement ends execution of the
current main test only; control is then returned to the calling batch test. The
texit function also returns the value of the evaluated expression to the
calling function or test.

Note: QuickTest does not support texit statements inside called functions. If
QuickTest calls a WinRunner function containing a texit statement, the
function call fails.

Chapter 10 • Creating User-Defined Functions

151

Variable, Constant, and Array Declarations

Declaration is usually optional in TSL. In functions, however, variables,
constants, and arrays must all be declared. The declaration can be within the
function itself, or anywhere else within the test script or compiled module
containing the function. You can find additional information about
declarations in the TSL Reference.

Declaring Variables

Variable declarations have the following syntax:

class variable [= init_expression];

The init_expression assigned to a declared variable can be any valid
expression. If an init_expression is not set, the variable is assigned an empty
string. The class defines the scope of the variable. It can be one of the
following:

auto—An auto variable can be declared only within a function and is local
to that function. It exists only for as long as the function is running. A new
copy of the variable is created each time the function is called.

static—A static variable is local to the function, test, or compiled module in
which it is declared. The variable retains its value until the test is terminated
by an Abort command. This variable is initialized each time the definition
of the function is executed.

Note: In compiled modules, a static variable is initialized whenever the
compiled module is compiled.

public—A public variable can be declared only within a test or module, and
is available for all functions, tests, and compiled modules.

extern—An extern declaration indicates a reference to a public variable
declared outside of the current test or module.

Part III • Programming with TSL

152

Remember that you must declare all variables used in a function within the
function itself, or within the test or module that contains the function. If
you wish to use a public variable that is declared outside of the relevant test
or module, you must declare it again as extern.

The extern declaration must appear within a test or module, before the
function code. An extern declaration cannot initialize a variable.

For example, suppose that in Test 1 you declare a variable as follows:

public window_color=green;

In Test 2, you write a user-defined function that accesses the variable
window_color. Within the test or module containing the function, you
declare window_color as follows:

extern window_color;

With the exception of the auto variable, all variables continue to exist until
the Stop command is executed.

Note: In compiled modules, all variables continue to exist until the Stop
command is executed with the exception of the auto and public variables.
(The auto variables exist only as long as the function is running; public
variables exist until exiting WinRunner.)

The following table summarizes the scope, lifetime, and availability (where
the declaration can appear) of each type of variable:

Declaration Scope Lifetime Declare the Variable in...

auto local end of function function

static local until abort function, test, or module

public global until abort test or module

extern global until abort function, test, or module

Chapter 10 • Creating User-Defined Functions

153

Note: In compiled modules, the Stop command initializes static and public
variables. For more information, see Chapter 11, “Employing User-Defined
Functions in Tests.”

Declaring Constants

The const specifier indicates that the declared value cannot be modified. The
syntax of this declaration is:

[class] const name [= expression];

The class of a constant may be either public or static. If no class is explicitly
declared, the constant is assigned the default class public. Once a constant is
defined, it remains in existence until you exit WinRunner.

For example, defining the constant TMP_DIR using the declaration:

const TMP_DIR = "/tmp";

means that the assigned value /tmp cannot be modified. (This value can
only be changed by explicitly making a new constant declaration for
TMP_DIR.)

Declaring Arrays

The following syntax is used to define the class and the initial expression of
an array. Array size need not be defined in TSL.

class array_name [] [=init_expression]

The array class may be any of the classes used for variable declarations (auto,
static, public, extern).

An array can be initialized using the C language syntax. For example:

public hosts [] = {"lithium", "silver", "bronze"};

Part III • Programming with TSL

154

This statement creates an array with the following elements:

hosts[0]="lithium"
hosts[1]="silver"
hosts[2]="bronze"

Note that arrays with the class auto cannot be initialized.

In addition, an array can be initialized using a string subscript for each
element. The string subscript may be any legal TSL expression. Its value is
evaluated during compilation.

For example:

static gui_item []={
"class"="push_button",
"label"="OK",
"X_class"="XmPushButtonGadget",
"X"=10,
"Y"=60
};

creates the following array elements:

gui_item ["class"]="push_button"
gui_item ["label"]="OK"
gui_item ["X_class"]="XmPushButtonGadget"
gui_item ["X"]=10
gui_item ["Y"]=60

Note that arrays are initialized once, the first time a function is run. If you
edit the array’s initialization values, the new values will not be reflected in
subsequent test runs. To reset the array with the new initialization values,
either interrupt test execution with the Stop command, or define the new
array elements explicitly. For example:

Regular Initialization Explicit Definitions

public number_list[] = {1,2,3}; number_list[0] = 1;
number_list[1] = 2;
number_list[2] = 3;

Chapter 10 • Creating User-Defined Functions

155

Statements

Any valid statement used within a TSL test script can be used within a
function, except for the treturn statement.

Example of a User-Defined Function

The following user-defined function opens the specified text file in an
editor. It assumes that the necessary GUI map file is loaded. The function
verifies that the file was actually opened by comparing the name of the file
with the label that appears in the window title bar after the operation is
completed.

function open_file (file)
{

auto lbl;
set_window ("Editor");

Open the Open form
menu_select_item ("File;Open...");

Insert file name in the proper field and click OK to confirm
set_window ("Open");
edit_set(“Open Edit”, file);
button_press ("OK");

Read window banner label
win_get_info("Editor","label",lbl);

#Compare label to file name
if (file != lbl)

return 1;
else

return 0;
}
rc=open_file("c:\\dash\\readme.tx");
pause(rc);

Part III • Programming with TSL

156

157

11
Employing User-Defined Functions in
Tests

You can call user-defined functions from within the test in which you
defined them, from other tests containing loaded functions, and from
loaded compiled modules.

This chapter describes:

➤ About Employing User-Defined Functions

➤ Understanding the Contents of a Compiled Module

➤ Using the Function Viewer

➤ Employing Functions Defined In Tests

➤ Employing Functions Defined in Compiled Modules

About Employing User-Defined Functions

You can employ user-defined functions in one of three ways:

➤ You can call a function from within the test in which you defined it. Your
function call can include input and output arguments.

Part III • Programming with TSL

158

For example, the following simple function

public function Add6(x)
{

return(x+6);
}

can be called with the following command:

y=Add6(Ord_Num);

➤ You can call a non-static function defined in any test that you have run.
When you run a test, any public functions it contains are loaded and are
available to any other test until you click the Stop button. When you click
the Stop button, the loaded functions from all tests that are not compiled
modules become unloaded. For more information, see “Employing
Functions Defined In Tests” on page 167.

➤ You can call a non-static function from a loaded compiled module. A
compiled module is a special test type that contains a library of functions
that you may want to use often. You can load a compiled module using the
Function Viewer or from a test script. For more information on the Function
Viewer, see “Using the Function Viewer” on page 161. For more information
on loading a compiled module from a test script, see “Employing Functions
Defined in Compiled Modules” on page 168.

Note: Only public and external functions can be called using the last two of
the above options. For more information, see “Function Classes” on
page 148.

The remainder of this chapter discusses the contents of a compiled module,
the Function Viewer and the last two of the above options.

Chapter 11 • Employing User-Defined Functions in Tests

159

Understanding the Contents of a Compiled Module

A compiled module, like a regular test you create in TSL, can be opened,
edited, and saved. You indicate that a test is a compiled module in the
General tab of the Test Properties dialog box, by selecting Compiled Module
in the Test Type box. For more information, see “Creating a Compiled
Module” on page 160.

The content of a compiled module differs from that of an ordinary test. For
example, it cannot include checkpoints or any analog input such as mouse
tracking. The purpose of a compiled module is not to perform a test, but to
store the user-defined functions you use most frequently so that they can be
quickly and conveniently accessed from other tests.

Unlike an ordinary test, all data objects (variables, constants, arrays) in a
compiled module must be declared before use. The structure of a compiled
module is similar to a C program file, in that it may contain the following
elements:

➤ function definitions and declarations for variables, constants and arrays. For
more information, see Chapter 10, “Creating User-Defined Functions.”

➤ prototypes of external functions. For more information, see Chapter 12,
“Calling Functions from External Libraries.”

➤ load statements to other modules. For more information, see “Loading and
Unloading a Compiled Module” on page 170.

Note that when user-defined functions appear in compiled modules:

➤ A public or external function is available to all modules and tests, while a
static function is available only to the module within which it was defined.

➤ The loaded module remains resident in memory even when test execution is
aborted. However, all variables defined within the module (whether static,
public, or external) are initialized.

Part III • Programming with TSL

160

Note: If you make changes to a function in a loaded compiled module, you
must unload and reload the compiled module in order for the changes to
take effect.

For more information, see “Example of a Compiled Module” on page 174.

Creating a Compiled Module

Creating a compiled module is similar to creating a regular test script.

To create a compiled module:

 1 Choose File > Open to open a new test.

 2 Write the user-defined functions in the test.

 3 Choose File > Test Properties and click the General tab.

 4 In the Test type list, choose Compiled Module and then click OK.

Chapter 11 • Employing User-Defined Functions in Tests

161

 5 Choose File > Save.

Save your module in a location that is readily available to all tests that may
call functions from it. When a module is loaded, WinRunner locates it
according to the search path you define. For more information on defining a
search path, see “Setting the Search Path” on page 136.

 6 Compile the module using the load function in a test script, or the Load
button in the Function Viewer. For more information, see “Loading and
Unloading a Compiled Module” on page 170.

Using the Function Viewer

You can use the Function Viewer to load and unload compiled modules, to
copy, paste and execute the functions of loaded compiled modules and tests,
and to open loaded compiled modules and tests containing loaded
functions.

The Function Viewer is a dockable window that can be opened or closed at
any time.

The Function Viewer is comprised of a toolbar and a pane that displays the
function tree.

Part III • Programming with TSL

162

The function tree has three levels. At the highest level you can see the
loaded compiled modules and open tests containing loaded functions.

A test, or a compiled module that was loaded using the Run toolbar button,
is indicated by the test icon.

A compiled module that was loaded by the load function in a test or by the
Function Viewer Load button is indicated by the compiled module icon.

A non-static function is indicated by the non-static function icon, one level
below the compiled modules and the tests in the function tree.

A static function is indicated by the static function icon, one level below the
compiled modules and the tests in the function tree.

Input parameters, if any, are indicated by the input parameter icon, one
level below the displayed functions in the viewer.

Output and inout parameters, if any, are indicated by the output parameter
icon, one level below the displayed functions in the viewer.

You can expand any item by clicking the Expand button beside it or by
pressing the plus (+) key on your keyboard number pad.

You can expand any item and all levels below it by pressing the asterisk (*)
key on your keyboard number pad.

You can collapse any item and all levels below it by clicking the Collapse
button beside it or by pressing the minus (-) key on your keyboard number
pad.

The Function Viewer toolbar provides the following options:

➤ Load—Enables you to load a compiled module. For more information, see
“Loading a Function or Compiled Module” on page 163.

➤ Unload—Unloads the currently selected compiled module.

➤ Unload All Modules—Unloads all compiled modules. This button does not
have any effect on functions loaded from tests.

➤ Copy—Copies the selected function prototype to the clipboard. For more
information, see “Copying and Pasting a Function Prototype” on page 165.

Chapter 11 • Employing User-Defined Functions in Tests

163

➤ Paste—Copies and pastes the selected function prototype to the current
cursor location in the test. For more information, see “Copying and Pasting
a Function Prototype” on page 165.

➤ Execute—Executes the selected function. For more information, see
“Executing a Function from the Function Viewer” on page 165.

➤ Go To—Opens the selected compiled module, test, or function in the test
window. For more information, see “Opening a Loaded Compiled Module,
Test, or Function for Viewing or Editing” on page 166.

Displaying the Function Viewer

You can display the Function Viewer by choosing Tools > Function Viewer.
You can dock the Function Viewer to the top, bottom or either side of the
test window. Close the Function Viewer by clicking the Close toolbar
button, or by choosing Tools > Function Viewer again.

Loading a Function or Compiled Module

If you want to call a function that is not defined in the calling test, you need
to load it.

You can define functions in tests, or in compiled modules.

You load a function defined in a test by running the test. When you run a
test, all functions that are defined in that test are loaded and continue to be
available until you click the Stop button. The functions continue to be
loaded even if the test is closed. When you click the Stop button, you
unload all functions loaded from all tests that are not compiled modules.
For more information, see “Employing Functions Defined In Tests” on
page 167.

Note: If you load a compiled module that contains a function that has the
same name as a function in an already-loaded compiled module, the
function from the first compiled module is unloaded, and the function from
the second compiled module is loaded. If you load a compiled module that
contains a function that has the same name as a standard TSL function, the
original function is overridden.

Part III • Programming with TSL

164

You load all the functions defined in a compiled module in one of two ways:

➤ From a test script. You can load a compiled module using the load TSL
function in a test script. For more information, see “Loading and Unloading
a Compiled Module Using the TSL Functions” on page 171.

➤ From the Function Viewer. You can load a compiled module using the Load
toolbar button in the Function Viewer. Once the compiled module is
loaded, you can call any of the non-static functions defined in it.

To load a compiled module from the Function Viewer:

 1 Make sure that the Function Viewer is visible. See “Displaying the Function
Viewer” on page 163.

 2 Click the Load button. The Load Functions dialog box opens.

 3 Use the browse button to find the compiled module you want to load or
enter the path manually in the Library path edit box.

 4 Click OK. The compiled module is displayed in the Function Viewer tree. All
its functions are loaded.

Unloading a Function or Compiled Module

To unload a compiled module, select it and click the Unload button.

To unload all the loaded compiled modules, click the Unload All Modules
button.

The Unload and Unload All buttons cannot be used to unload the functions
in a test. To unload these functions, click the Stop button.

Chapter 11 • Employing User-Defined Functions in Tests

165

Copying and Pasting a Function Prototype

You can copy a function prototype to the clipboard and then paste it to any
other application.

To copy a function prototype to the clipboard, simply select it and click the
Copy button.

To copy and paste a function prototype to the test screen, select it, place the
cursor at the selected position on the test screen, then click the Paste
button. You do not need to copy it first. You can also drag-and-drop the
function prototype.

Executing a Function from the Function Viewer

You can execute a non-static function directly from the Function Viewer.
This is useful for testing your functions. For example, if you are creating a
compiled module with many functions and you want to test just one
function, you can execute the function directly without having to write a
test to load it and call it.

Note: A static function cannot be executed from the Function Viewer. If you
try to execute a static function, an error message is displayed

To execute a function from the Function Viewer

 1 Select the function you want to execute, in the Function Viewer.

 2 Click the Execute toolbar button. If the function does not require input
parameters, the function runs.

Part III • Programming with TSL

166

 3 If the function requires parameters, the Function Arguments dialog box
opens.

 4 Enter values for the parameters by clicking in the row of each argument
under the Value column and then typing the value. Click OK. The function
runs.

Note: When you call a function containing an output or an inout
parameter, the argument corresponding to that parameter must be a
variable, and not an expression.

When you call a function containing an input parameter, the argument
corresponding to that parameter cannot be a variable, but must be a string
or a number. Any non-numeric characters will be treated as a string.

Opening a Loaded Compiled Module, Test, or Function for
Viewing or Editing

You can use the Go To toolbar button to open any loaded compiled module,
test or function that is displayed in the Function Viewer. You can then view
and edit the content.

To open a compiled module or test in the test window

 1 Select the compiled module, test, or function in the Function Viewer.

Chapter 11 • Employing User-Defined Functions in Tests

167

 2 Click the Go To button or double-click the compiled module, test, or
function. The compiled module or test is opened in its own tab in the test
window. If you open a function, the entire test in which the function is
defined is opened, and the function’s first line is marked by the execution
marker.

Employing Functions Defined In Tests

You can define functions in any test script. As you run the test, WinRunner
loads each function defined in the test. All functions defined in the test are
loaded, even those that are not called by the test. The loaded functions are
displayed in the Function Viewer.

Note: If an error prevents WinRunner from reading a function when you
run the test, then that function is not loaded and is not displayed in the
Function Viewer.

The functions loaded from a test are available from the time the test runs
until the end of the WinRunner session, or until you click the Stop button.

When you click the Stop button at any time, all tests and their functions no
longer appear in the Function Viewer and their functions cannot be called
by other tests.

While a function is displayed in the function viewer, you can call the
function, execute it, copy and paste the function prototype or open the
function. For more information on copying and pasting function
prototypes, see “Copying and Pasting a Function Prototype” on page 165.
For more information on executing loaded functions, see “Executing a
Function from the Function Viewer” on page 165. For more information on
opening a function, see “Opening a Loaded Compiled Module, Test, or
Function for Viewing or Editing” on page 166.

Part III • Programming with TSL

168

Employing Functions Defined in Compiled Modules

A compiled module is a script containing a library of user-defined functions
that you want to call frequently from other tests.

By saving functions in compiled modules, you make it easier for other tests
to call those functions.

When you load a compiled module from a test, you can load it as a system
module, or as a user module. System modules are invisible to the tester, and
contain finished, working, frequently-used functions. User modules are still
in development or have less common uses.

You can load compiled modules from your startup test.

Understanding Compiled Modules

When you load a compiled module, its non-static functions are
automatically compiled and remain in memory. You can call them directly
from within any test.

For instance, you can create a compiled module containing functions that
compare the size of two files, or check your system’s current memory
resources.

Compiled modules can improve the organization and performance of your
tests. Since you debug compiled modules before using them, tests that call
functions from these modules require less error-checking. In addition,
calling a function that is already compiled is significantly faster than
interpreting a function in a test script.

Note: If you are working in the GUI Map File per Test mode, compiled
modules do not load GUI map files. If your compiled module references GUI
objects, then those objects must also be referenced in the test that loads the
compiled module. For more information, refer to Chapter 6, “Working in
the GUI Map File per Test Mode” in the Mercury WinRunner Basic Features
User’s Guide.

Chapter 11 • Employing User-Defined Functions in Tests

169

Understanding System and User Compiled Modules

A compiled module can be loaded as a system compiled module or a user
compiled module.

➤ A system compiled module is a closed module that is not visible to the tester. It
is not displayed in the test window when it is loaded, cannot be stepped
into, and cannot be stopped by a pause command. A system module is not
unloaded when you execute an unload statement with no parameters
(global unload).

You can select whether to display loaded system modules in the Function
Viewer. By default they are not displayed. To display the system modules
choose Tools > General Options and select the Display System Modules box.
The option takes effect the next time you open WinRunner.

➤ A user compiled module is the opposite of a system module in most
respects. It is displayed when it runs and you can use all WinRunner
debugging options to control the run. Generally, a user module is one that is
still being developed. In such a module you might want to make changes
and compile them incrementally.

You define compiled modules as either system or user when you load them
using the load TSL function in a test script. For more information, see
“Loading and Unloading a Compiled Module Using the TSL Functions” on
page 171. When you load a compiled module using the Load button in the
Function Viewer, it is always loaded as a user compiled module.

Running Compiled Modules Automatically on WinRunner Startup

If you create a compiled module that contains frequently-used functions,
you can load it from your startup test. You do this by adding load
statements to your startup test. For more information, see Chapter 23,
“Initializing Special Configurations.”

You do not need to add load statements to your startup test or to any other
test to load the recovery compiled module. The recovery compiled module is
automatically loaded when you start WinRunner. For more information on
the recovery compiled module, see Chapter 4, “Defining and Using
Recovery Scenarios.”

Part III • Programming with TSL

170

Loading and Unloading a Compiled Module

To access the functions in a compiled module you need to load the module.
You can load a module in one of three ways:

➤ Load the module using the Load button in the Function Viewer.

➤ Load the module from a test script using the TSL load or reload functions.
Any test script can load a compiled module using the load or reload
functions.

➤ Run the module script using the WinRunner Run commands.

When you run a compiled module, it is loaded into memory with all its
functions, and can be seen in the Function Viewer. To unload a module
loaded this way, click the Stop button. The Unload and Unload All Modules
buttons do not work for a module that was loaded using the Run button.

If you need to debug a module or make changes, you can use the Step
command to perform incremental compilation. You only need to run the
part of the module that was changed in order to update the entire module.

The remainder of this section addresses the first two options above.

Loading and Unloading a Compiled Module Using the Function
Viewer

To load or unload a compiled module using the Function Viewer, use the
Load or Unload toolbar buttons. This is useful especially for debugging
individual tests that are usually part of a larger call chain. For example,
suppose the first test in a call chain loads all of the compiled modules for all
of the called tests in a chain. If you want to debug one test in the chain, you
can load compiled modules using the Function Viewer instead of running
another test to load the modules.

When you load a compiled module using the Load button, it is loaded as a
user compiled module.

When you unload a compiled module using the Unload or Unload All
buttons from the Function Viewer, a single click on the toolbar button
completely clears the compiled module(s) from the memory. To unload only
individual instances of a loaded module, use the unload TSL function. For
more information, see “Loading and Unloading a Compiled Module Using
the TSL Functions” on page 171.

Chapter 11 • Employing User-Defined Functions in Tests

171

Loading and Unloading a Compiled Module Using the TSL Functions

You can load a compiled module from within any test script using the load
command; all tests will then be able to access the function until you exit
WinRunner or unload the compiled module.

You should insert load commands into tests so that you can run them
unsupervised. For example, suppose you have finished debugging a test.
While debugging the test, you used the Function Viewer to load and unload
any modules you needed. To run the test unsupervised, you must now add
load statements to load the necessary modules programmatically, either in
the test that calls the functions, or on a previous test in a call chain.

If you try to load a module that has already been loaded using the TSL
function, WinRunner does not load it again. Instead, it initializes variables
and increments a load counter. If a module has been loaded more than once,
then the unload statement does not unload the module, but rather
decrements the counter.

For example, suppose that Test A loads the module math_functions, and then
calls Test B. Test B also loads math_functions, and then unloads it at the end
of the test. After Test B runs, Test A calls functions defined in math_functions.
Suppose also that the unload function, instead of decrementing the counter,
were to completely unload the compiled module. In such a case, Test B’s
unload function would completely unload math_functions from memory,
and then the subsequent calls to math_functions by Test A would fail.

The counter exists to avoid this situation. With the counter, when Test B
unloads math_functions, it decrements the counter, but math_functions is still
resident in memory for any subsequent calls from Test A.

➤ The load function has the following syntax:

load (module_name [,module_type] [,open_status]);

The module_name is the name of an existing compiled module.

Two additional, optional parameters indicate the type of module. The first
parameter indicates whether the function module is a system module or a
user module: 1 indicates a system module; 0 indicates a user module.

(Default = 0)

Part III • Programming with TSL

172

For more information on system and user modules, see “Understanding
System and User Compiled Modules” on page 169.

The second optional parameter indicates whether a user module will remain
open in the WinRunner window or will close automatically after it is loaded:
1 indicates that the module will close automatically; 0 indicates that the
module will remain open.

(Default = 0)

When the load function is executed for the first time, the module is
compiled and stored in memory. This module is ready for use by any test
and does not need to be reinterpreted.

A loaded module remains resident in memory even when test execution is
aborted. All variables defined within the module (whether static or public)
are still initialized.

➤ The unload function removes the latest instance of a loaded module or
selected functions from memory. It has the following syntax:

unload ([module_name | test_name [, "function_name"]]);

For example, the following statement removes all functions loaded within
the compiled module named mem_test.

unload ("mem_test");

An unload statement with empty parentheses removes all modules loaded
within all tests during the current session, except for system modules.

If a module was loaded more than once by different scripts, then a separate
unload statement is required for each load. For more information, see
“Loading and Unloading a Compiled Module Using the TSL Functions” on
page 171.

Chapter 11 • Employing User-Defined Functions in Tests

173

➤ If you make changes in a module, you should reload it. The reload function
removes a loaded module from memory and reloads it (combining the
functions of unload and load).

The syntax of the reload function is:

reload (module_name [,module_type] [,open_status]);

The module_name is the name of an existing compiled module.

Two additional optional parameters indicate the type of module. The first
parameter indicates whether the module is a system module or a user
module: 1 indicates a system module; 0 indicates a user module.

(Default = 0)

The second optional parameter indicates whether a user module will remain
open in the WinRunner window or will close automatically after it is loaded.
1 indicates that the module will close automatically. 0 indicates that the
module will remain open.

(Default = 0)

Note: Do not load a module more than once to recompile it. To recompile a
module, use unload followed by load, or use the reload function.

Part III • Programming with TSL

174

Example of a Compiled Module

The following module contains two simple, all-purpose functions that you
can call from any test. The first function receives a pair of numbers and
returns the number with the higher value. The second function receives a
pair of numbers and returns the one with the lower value.

return maximum of two values
function max (x,y)
{

if (x>=y)
return x;

else
return y;

}

return minimum of two values
function min (x,y)
{

if (x>=y)
return y;

else
return x;

}

175

12
Calling Functions from External Libraries

WinRunner enables you to call functions from the Windows API and from
any external DLL (Dynamic Link Library).

This chapter describes:

➤ About Calling Functions from External Libraries

➤ Dynamically Loading External Libraries

➤ Declaring External Functions in TSL

➤ Windows API Examples

About Calling Functions from External Libraries

You can extend the power of your automated tests by calling functions from
the Windows API or from any external DLL. For example, using functions in
the Windows API you can:

➤ Use a standard Windows message box in a test with the MessageBox
function.

➤ Send a WM (Windows Message) message to the application being tested
with the SendMessage function.

➤ Retrieve information about your application’s windows with the GetWindow
function.

➤ Integrate the system beep into tests with the MessageBeep function.

➤ Run any windows program using ShellExecute, and define additional
parameters such as the working directory and the window size.

Part III • Programming with TSL

176

➤ Check the text color in a field in the application being tested with
GetTextColor. This can be important when the text color indicates operation
status.

➤ Access the Windows clipboard using the GetClipboard functions.

You can call any function exported from a DLL with the _ _ stdcall calling
convention. You can also load DLLs that are part of the application being
tested in order to access its exported functions.

Using the load_dll function, you dynamically load the libraries containing
the functions you need. Before you actually call the function, you must
write an extern declaration so that the interpreter knows that the function
resides in an external library.

Note: For information about specific Windows API functions, refer to the
Windows API Reference. For examples of using the Windows API functions in
WinRunner test scripts, refer to the read.me file in the \lib\win32api folder
in the installation folder.

Dynamically Loading External Libraries

In order to load the external DLLs (Dynamic Link Libraries) containing the
functions you want to call, use the TSL function load_dll. This function
performs a runtime load of a 32-bit DLL. It has the following syntax:

load_dll (pathname);

The pathname is the full pathname of the DLL to be loaded.

For example:

load_dll ("h:\\qa_libs\\os_check.dll");

Chapter 12 • Calling Functions from External Libraries

177

To unload a loaded external DLL, use the TSL function unload_dll. It has
the following syntax:

unload_dll (pathname);

For example:

unload_dll ("h:\\qa_libs\\os_check.dll");

The pathname is the full pathname of the 32-bit DLL to be unloaded.

To unload all loaded 32-bit DLLs from memory, use the following statement:

unload_dll ("");

For more information, refer to the TSL Reference.

Declaring External Functions in TSL

You must write an extern declaration for each function you want to call from
an external library. The extern declaration must appear before the function
call. It is recommended to store these declarations in a startup test. (For
more information on startup tests, see Chapter 23, “Initializing Special
Configurations.”)

The syntax of the extern declaration is:

extern type function_name (parameter1, parameter2,...);

The type refers to the return value of the function. The type can be one of
the following:

char (signed and unsigned) float

short (signed and unsigned) double

int (signed and unsigned) string (equivalent to C char*)

Each parameter must include the following information:

[mode] type [name] [<size>]

Part III • Programming with TSL

178

The mode can be either in, out, or inout. The default is in. Note that these
values must appear in lowercase letters.

The type can be any of the values listed above.

An optional name can be assigned to the parameter to improve readability.

The <size> is required only for an out or inout parameter of type string (see
below).

For example, suppose you want to call a function called set_clock that sets
the time on a clock application. The function is part of an external DLL that
you loaded with the load_dll statement. To declare the function, write:

extern int set_clock (string name, int time);

The set_clock function accepts two parameters. Since they are both input
parameters, no mode is specified. The first parameter, a string, is the name
of the clock window. The second parameter specifies the time to be set on
the clock. The function returns an integer that indicates whether the
operation succeeded.

Once the extern declaration is interpreted, you can call the set_clock
function the same way you call a TSL function:

result = set_clock ("clock v. 3.0", 3);

If an extern declaration includes an out or inout parameter of type string, you
must budget the maximum possible string size by specifying an integer
<size> after the parameter type or (optional) name. For example, the
statement below declares the function get_clock_string, that returns the
time displayed in a clock application as a string value in the format “The
time is...”.

extern int get_clock_string (string clock, out string time <20>);

The size should be large enough to avoid an overflow. If no value is specified
for size, the default is 100.

TSL identifies the function in your code by its name only. You must pass the
correct parameter information from TSL to the function. TSL does not check
parameters. If the information is incorrect, the operation fails.

Chapter 12 • Calling Functions from External Libraries

179

Note: If you want to return a string value from a function in an external
DLL, it is recommended to use an output parameter rather than a return
value.

For example your DLL should look something like:

int foo(char* szRetString)
{
 ...
 strcpy(szRetString, "hi");
 return nErrCode;
}

And the corresponding extern statement should be something like:

extern int foo(out string);

In addition, your external function must adhere to the following
conventions:

➤ Any parameter designated as a string in TSL must correspond to a parameter
of type char*.

➤ Any parameter of mode out or inout in TSL must correspond to a pointer in
your exported function. For instance, a parameter out int in TSL must
correspond to a parameter int* in the exported function.

➤ The external function must observe the standard Pascal calling convention
export far Pascal.

Part III • Programming with TSL

180

For example, the following declaration in TSL:

extern int set_clock (string name, inout int time);

must appear as follows in your external function:

int set_clock(
char* name,
int* time
);

Windows API Examples

The following sample tests call functions in the Windows API.

Checking Window Mnemonics

This test integrates the API function GetWindowTextA into a TSL function
that checks for mnemonics (underlined letters used for keyboard shortcuts)
in object labels. The TSL function receives one parameter: the logical name
of an object. If a mnemonic is not found in an object’s label, a message is
sent to a report.

load the appropriate DLL (from Windows folder)
load ("win32api");

define the user-defined function "check_labels"
public function check_labels(in obj)
{

auto hWnd,title,pos,win;
win = GUI_get_window();
obj_get_info(obj,"handle",hWnd);
GetWindowTextA(hWnd,title,128);
 pos = index(title,"&");
if (pos == 0)

report_msg("No mnemonic for object: "& obj & "in window: "& win);
}

Chapter 12 • Calling Functions from External Libraries

181

start Notepad application
invoke_application("notepad.exe","","",SW_SHOW);

open Find window
set_window ("Notepad");
menu_select_item ("Search;Find...");

check mnemonics in "Up" radio button and "Cancel" pushbutton
set_window ("Find");
check_labels ("Up");
check_labels ("Cancel");

Loading a DLL and External Function

This test fragment uses crk_w.dll to prevent recording on a debugging
application. To do so, it calls the external set_debugger_pid function.

load the appropriate DLL
load_dll("crk_w.dll");

declare function
extern int set_debugger_pid(long);

load Systems DLLs (from Windows folder)
load ("win32api");

find debugger process ID
win_get_info("Debugger","handle",hwnd);
GetWindowThreadProcessId(hwnd,Proc);

notify WinRunner of the debugger process ID
set_debugger_pid(Proc);

Part III • Programming with TSL

182

183

13
Creating Dialog Boxes for Interactive
Input

WinRunner enables you to create dialog boxes that you can use to pass
input to your test during an interactive test run.

This chapter describes:

➤ About Creating Dialog Boxes for Interactive Input

➤ Creating an Input Dialog Box

➤ Creating a List Dialog Box

➤ Creating a Custom Dialog Box

➤ Creating a Browse Dialog Box

➤ Creating a Password Dialog Box

About Creating Dialog Boxes for Interactive Input

You can create dialog boxes that pop up during an interactive test run,
prompting the user to perform an action—such as typing in text or selecting
an item from a list. This is useful when the user must make a decision based
on the behavior of the application under test (AUT) during runtime, and
then enter input accordingly. For example, you can instruct WinRunner to
execute a particular group of tests according to the user name that is typed
into the dialog box.

To create the dialog box, you enter a TSL statement in the appropriate
location in your test script. During an interactive test run, the dialog box
opens when the statement is executed. By using control flow statements,
you can determine how WinRunner responds to the user input in each case.

Part III • Programming with TSL

184

There are five different types of dialog boxes that you can create using the
following TSL functions:

➤ create_input_dialog creates a dialog box with any message you specify, and
an edit field. The function returns a string containing whatever you type
into the edit field, during an interactive run.

➤ create_list_dialog creates a dialog box with a list of items, and your
message. The function returns a string containing the item that you select
during an interactive run.

➤ create_custom_dialog creates a dialog box with edit fields, check boxes, an
“execute” button, and a Cancel button. When the “execute” button is
clicked, the create_custom_dialog function executes a specified function.

➤ create_browse_file_dialog displays a browse dialog box from which the
user selects a file. During an interactive run, the function returns a string
containing the name of the selected file.

➤ create_password_dialog creates a dialog box with two edit fields, one for
login name input, and one for password input. You use a password dialog
box to limit user access to tests or parts of tests.

Each dialog box opens when the statement that creates it is executed during
a test run, and closes when one of the buttons inside it is clicked.

Creating an Input Dialog Box

An input dialog box contains a custom one-line message, an edit field, and
OK and Cancel buttons. The text that the user types into the edit field
during a test run is returned as a string.

You use the TSL function create_input_dialog to create an input dialog box.
This function has the following syntax:

create_input_dialog (message);

The message can be any expression. The text appears as a single line in the
dialog box.

Chapter 13 • Creating Dialog Boxes for Interactive Input

185

For example, you could create an input dialog box that asks for a user name.
This name is returned to a variable and is used in an if statement in order to
call a specific test suite for any of several users.

To create such a dialog box, you would program the following statement:

name = create_input_dialog ("Please type in your name.");

The input that is typed into the dialog box during a test run is passed to the
variable name when the OK button is clicked. If the Cancel button is clicked,
an empty string (empty quotation marks) is passed to the variable name.

Tip: You can use the following statements to display the message that the
user types in the dialog box:

rc=create_input_dialog("Message");
pause(rc);

For additional information on the pause function, refer to the TSL Reference.

Note that you can precede the message parameter with an exclamation
mark. When the user types input into the edit field, each character entered
is represented by an asterisk. Use an exclamation mark to prevent others
from seeing confidential information.

Part III • Programming with TSL

186

Creating a List Dialog Box

A list dialog box has a title and a list of items that can be selected. The item
selected by the user from the list is passed as a string to a variable.

You use the TSL function create_list_dialog to create a list dialog box. This
function has the following syntax:

create_list_dialog (title, message, list_items);

➤ title is an expression that appears in the window banner of the dialog box.

➤ message is one line of text that appear in the dialog box.

➤ list_items contains the options that appear in the dialog box. Items are
separated by commas, and the entire list is considered a single string.

For example, you can create a dialog box that allows the user to select a test
to open. To do so, you could enter the following statement:

filename = create_list_dialog ("Select an Input File", "Please select one of the
following tests as input", "Batch_1, clock_2, Main_test, Flights_3, Batch_2");

The item that is selected from the list during a test run is passed to the
variable filename when the OK button is clicked. If the Cancel button is
clicked, an empty string (empty quotation marks) is passed to the variable
filename.

Chapter 13 • Creating Dialog Boxes for Interactive Input

187

Creating a Custom Dialog Box

A custom dialog box has a custom title, up to ten edit fields, up to ten check
boxes, an “execute” button, and a Cancel button. You specify the label for
the “execute” button. When you click the “execute” button, a specified
function is executed. The function can be either a TSL function or a user-
defined function.

You use the TSL function create_custom_dialog to create a custom dialog
box. This function has the following syntax:

create_custom_dialog (function_name, title, button_name, edit_name1-n,
check_name1-m);

➤ function_name is the name of the function that is executed when you click
the “execute” button.

➤ title is an expression that appears in the title bar of the dialog box.

➤ button_name is the label that will appear on the “execute” button. You click
this button to execute the contained function.

➤ edit_name contains the labels of the edit field(s) of the dialog box. Multiple
edit field labels are separated by commas, and all the labels together are
considered a single string. If the dialog box has no edit fields, this parameter
must be an empty string (empty quotation marks).

➤ check_name contains the labels of the check boxes in the dialog box.
Multiple check box labels are separated by commas, and all the labels
together are considered a single string. If the dialog box has no check boxes,
this parameter must be an empty string (empty quotation marks).

When the “execute” button is clicked, the values that the user enters are
passed as parameters to the specified function, in the following order:

edit_name1,... edit_namen ,check_name1,... check_namem

In the following example, the custom dialog box allows the user to specify
startup parameters for an application. When the user clicks the Run button,
the user-defined function, run_application1, invokes the specified Windows
application with the initial conditions that the user supplied.

Part III • Programming with TSL

188

res = create_custom_dialog ("run_application1", "Initial Conditions", "Run",
"Application:, Geometry:, Background:, Foreground:, Font:", "Sound,
Speed");

If the specified function returns a value, this value is passed to the variable
res. If the Cancel button is clicked, an empty string (empty quotation marks)
is passed to the variable res.

Note that you can precede any edit field label with an exclamation mark.
When the user types input into the edit field, each character entered is
represented by an asterisk. You use an exclamation mark to prevent others
from seeing confidential information, such as a password.

Creating a Browse Dialog Box

A browse dialog box allows you to select a file from a list of files, and returns
the name of the selected file as a string.

You use the TSL function create_browse_file_dialog to create a browse
dialog box. This function has the following syntax:

create_browse_file_dialog (filter);

where filter sets a filter for the files to display in the Browse dialog box. You
can use wildcards to display all files (*.*) or only selected files (*.exe or *.txt
etc.).

Chapter 13 • Creating Dialog Boxes for Interactive Input

189

In the following example, the browse dialog box displays all files with
extensions .dll or .exe.

filename = create_browse_file_dialog("*.dll;*.exe");

When the Open button is clicked, the name and path of the selected file is
passed to the variable filename. If the Cancel button is clicked, an empty
string (empty quotation marks) is passed to the variable filename.

Creating a Password Dialog Box

A password dialog box has two edit fields, an OK button, and a Cancel
button. You supply the labels for the edit fields. The text that the user types
into the edit fields during the interactive test run is saved to variables for
analysis.

You use the TSL function create_password_dialog to create a password
dialog box. This function has the following syntax:

create_password_dialog (login, password, login_out, password_out);

➤ login is the label of the first edit field, used for user-name input. If you
specify an empty string (empty quotation marks), the default label “Login”
is displayed.

Part III • Programming with TSL

190

➤ password is the label of the second edit field, used for password input. If you
specify an empty string (empty quotation marks), the default label
“Password” is displayed. When the user enters input into this edit field, the
characters do not appear on the screen, but are represented by asterisks.

➤ login_out is the name of the parameter to which the contents of the first edit
field (login) are passed. Use this parameter to verify the contents of the login
edit field.

➤ password_out is the name of the parameter to which the contents of the
second edit field (password) are passed. Use this parameter to verify the
contents of the password edit field.

The following example shows a password dialog box created using the
default edit field labels.

status = create_password_dialog ("", "", user_name, password);

If the OK button is clicked, the value 1 is passed to the variable status. If the
Cancel button is clicked, the value 0 is passed to the variable status and the
login_out and password_out parameters are assigned empty strings.

Part IV

Running Tests—Advanced

192

193

14
Running Batch Tests

WinRunner enables you to execute a group of tests unattended. This can be
particularly useful when you want to run a large group of tests overnight or
at other off-peak hours.

This chapter describes:

➤ About Running Batch Tests

➤ Creating a Batch Test

➤ Running a Batch Test

➤ Storing Batch Test Results

➤ Viewing Batch Test Results

About Running Batch Tests

You can run a group of tests unattended by creating and executing a single
batch test. A batch test is a test script that contains call statements to other
tests. It opens and executes each test and saves the test results.

Batch Test

Test
n

Test
3

Test
2

Test
1

Part IV • Running Tests—Advanced

194

A batch test looks like a regular test that includes call statements. A test
becomes a “batch test” when you select the Run in batch mode option in
the Run category of the General Options dialog box before you execute the
test.

When you run a test using the Verify run option in Batch mode, WinRunner
suppresses all messages that would ordinarily be displayed during the test
run, such as a message reporting a bitmap mismatch. WinRunner also
suppresses all pause statements and any halts in the test run resulting from
run time errors.

By suppressing all messages, WinRunner can run a batch test unattended.
This differs from a regular, interactive test run in which messages appear on
the screen and prompt you to click a button in order to resume test
execution. A batch test enables you to run tests overnight or during off-peak
hours, so that you can save time while testing your application.

Note: Messages are suppressed for a batch test only if you run the test using
the Verify run mode. If you use the Update or Debug run mode to run the
test, messages are displayed even when the Run in batch mode option is
selected.

At each break during a test run—such as after a Step command, at a
breakpoint, or at the end of a test, you can view the current chain of called
tests in the Call Chain pane of the Debug Viewer window. For more
information, see “Viewing the Call Chain” on page 145

When a batch test run is completed, you can view the results in the Test
Results window. The window displays the results of all the major events that
occurred during the run.

Note that you can also run a group of tests from the command line. For
details, see Chapter 15, “Running Tests from the Command Line.”

Chapter 14 • Running Batch Tests

195

Creating a Batch Test

A batch test is a test script that calls other tests. You program a batch test by
typing call statements directly into the test window and selecting the Run in
batch mode option in the Run category of the General Options dialog box
before you execute the test.

A batch test may include programming elements such as loops and decision-
making statements. Loops enable a batch test to run called tests a specified
number of times. Decision-making statements such as if/else and switch
condition test execution on the results of a test called previously by the
same batch script. See Chapter 7, “Enhancing Your Test Scripts with
Programming,” for more information.

For example, the following batch test executes three tests in succession,
then loops back and calls the tests again. The loop specifies that the batch
test should call the tests ten times.

for (i=0; i<10; i++)
{
call "c:\\pbtests\\open" ();
call "c:\\pbtests\\setup" ();
call "c:\\pbtests\\save" ();
}

To enable a batch test:

 1 Choose Tools > General Options.

The General Options dialog box opens.

 2 Click the Run category.

Part IV • Running Tests—Advanced

196

 3 Select the Run in batch mode check box.

 4 Click OK to close the General Options dialog box.

For more information on setting the batch option in the General Options
dialog box, refer to Chapter 23, “Setting Global Testing Options” in the
Mercury WinRunner Basic Features User’s Guide.

Run in batch mode

Chapter 14 • Running Batch Tests

197

Running a Batch Test

You execute a batch test in the same way that you execute a regular test.
Choose a run mode (Verify, Update, or Debug) from the list on the toolbar
and choose Test > Run from Top. Refer to Chapter 20, “Understanding Test
Runs” in the Mercury WinRunner Basic Features User’s Guide for more
information.

When you run a batch test, WinRunner opens and executes each called test.
All messages are suppressed so that the tests are run without interruption. If
you run the batch test in Verify mode, the current test results are compared
to the expected test results saved earlier. If you are running the batch test in
order to update expected results, new expected results are created in the
expected results folder for each test. See “Storing Batch Test Results” below
for more information. When the batch test run is completed, you can view
the test results in the Test Results window.

Note that if your tests contain TSL texit statements, WinRunner interprets
these statements differently for a batch test run than for a regular test run.
During a regular test run, texit terminates test execution. During a batch
test run, texit halts execution of the current test only and control is
returned to the batch test.

Storing Batch Test Results

When you run a regular, interactive test, results are stored in a subfolder
under the test. If Run in batch mode is selected in the Run category of the
General Options dialog box, then WinRunner saves the results for each
(top-level) called test separately in a subfolder under the called test.
Additionally, a subfolder is also created for the batch test that contains the
results of the entire batch test run, including all called tests.

Part IV • Running Tests—Advanced

198

For example, suppose you create three tests: Open, Setup, and Save. For each
test, expected results are saved in an exp subfolder under the test folder.
Suppose you also create a batch test that calls the three tests. Before running
the batch test in Verify mode, you instruct WinRunner to save the results in
a subfolder of the calling test called res1. When the batch test is run, it
compares the current test results to the expected results saved earlier. Under
each test folder, WinRunner creates a subfolder called res1 in which it saves
the verification results for the test. A res1 folder is also created under the
batch test to contain the overall verification results for the entire run.

If you run the batch test in Update mode in order to update expected
results, WinRunner overwrites the expected results in the exp subfolder for
each test and for the batch test.

Notes:

If a called test already had a folder called res1, when the batch run results
create folders under each test called res1, those results overwrite the previous
res1 results in the called test’s folder.

If you run the batch test without selecting the Run in batch mode check box
(Tools > General Options > Run), WinRunner saves results only in the
subfolder for the batch test. This can cause problems at a later stage if you
choose to run the called tests separately, since WinRunner will not know
where to look for the previously saved expected and verification results.

Batch Test

Open SaveSetup

exp
res1

exp
res1

exp
res1

exp
res1

Chapter 14 • Running Batch Tests

199

When working in unified report mode, all batch run results are saved in a
single results folder under the main test’s folder.

If a called test calls additional tests, then those results are saved only in the
results folder of the test that called it. For example, suppose test A calls tests
B and C, test B calls tests D, and E, and test E calls test Z, then when running
in batch mode, the results of test B and of test C are stored under test A and
also under test B and C, respectively. The results of tests D, E, and Z are all
stored only under the main batch test (A) and also under the top-level called
test (B).

Viewing Batch Test Results

When a batch test run is completed, you can view information about the
events that occurred during the run in the Test Results window. If one of the
called tests fails, the batch test is marked as failed.

The Test Results window lists all the events that occurred during the batch
test run. Each time a test is called, a call_test entry is listed. The details of the
call_test entry indicate whether the call statement was successful. Note that
even though a call statement is successful, the called test itself may fail,
based on the usual criteria for a failed test. You can set criteria for a failed
test in the Run > Settings category of the General Options dialog box. For
additional information, refer to Chapter 23, “Setting Global Testing
Options” in the Mercury WinRunner Basic Features User’s Guide.

To view the results of the called test, double-click the call_test entry. For
more information on viewing test results in the Test Results window, refer to
Chapter 21, “Analyzing Test Results” in the Mercury WinRunner Basic Features
User’s Guide.

Part IV • Running Tests—Advanced

200

201

15
Running Tests from the Command Line

You can run tests directly from the Windows command line.

This chapter describes:

➤ About Running Tests from the Command Line

➤ Using the Windows Command Line

➤ Command Line Options

About Running Tests from the Command Line

You can use the Windows Run command to start WinRunner and run a test
according to predefined options. You can also save your startup options by
creating a custom WinRunner shortcut. Then, to start WinRunner with the
startup options, you simply double-click the icon.

Using the command line, you can:

➤ start your application

➤ start WinRunner

➤ load the relevant tests

➤ run the tests

➤ specify test options

➤ specify the results directories for the test

Most of the functional options that you can set within WinRunner can also
be set from the command line. These include test run options and the
directories in which test results are stored.

Part IV • Running Tests—Advanced

202

You can also specify a custom.ini file that contains these and other
environment variables and system parameters.

For example, the following command starts WinRunner, loads a batch test,
and runs the test in Verify mode:

C:\Program Files\Mercury Interactive\WinRunner\WRUN.EXE -t
c:\batch\newclock -batch on -verify -run_minimized -dont_quit -run

The test newclock is loaded and then executed in batch mode with
WinRunner minimized. WinRunner remains open after the test run is
completed.

Note: You can use AT commands (specifically the SU.EXE command) with
WinRunner. AT commands are part of the Microsoft Windows NT operating
system. You can find information on AT commands in the NT Resource Kit.
This enables running completely automated scripts, without user
intervention.

Using the Windows Command Line

You can use the Windows command line to start WinRunner with
predefined options. If you plan to use the same set of options each time you
start WinRunner, you can create a custom WinRunner shortcut.

Starting WinRunner from the Command Line

This procedure describes how to start WinRunner from the command line.

To start WinRunner from the Run command:

 1 On the Windows Start menu, choose Run. The Run dialog box opens.

 2 Type in the path of your WinRunner wrun.exe file, and then type in any
command line options you want to use.

 3 Click OK to close the dialog box and start WinRunner.

Chapter 15 • Running Tests from the Command Line

203

Note: If you add command line options to a path containing spaces, you
must specify the path of the wrun.exe within quotes, for example:

"D:\Program Files\Mercury Interactive\WinRunner\arch\wrun.exe" -addins
WebTest

Adding a Custom WinRunner Shortcut

You can make the options you defined permanent by creating a custom
WinRunner shortcut.

To add a custom WinRunner shortcut:

 1 Create a shortcut for your wrun.exe file in Windows Explorer or My
Computer.

 2 Click the right mouse button on the shortcut and choose Properties.

 3 Click the Shortcut tab.

 4 In the Target box, type in any command line options you want to use after
the path of your WinRunner wrun.exe file.

 5 Click OK.

Part IV • Running Tests—Advanced

204

Command Line Options

Following is a description of each command line option.

-addins list of add-ins to load

Instructs WinRunner to load the specified add-ins. In the list, separate the
add-ins by commas (without spaces). This can be used in conjunction with
the -addins_select_timeout command line option.

(Formerly -addons.)

Note: All installed add-ins are listed in the registry under:
HKEY_LOCAL_MACHINE\SOFTWARE\Mercury
Interactive\WinRunner\CurrentVersion\Installed Components\.

Use the syntax (spelling) displayed in the key names under this branch
when specifying the add-ins to load. The names of the add-ins are not case
sensitive.

For example, the following line will load the four add-ins that are included
with WinRunner:

<WinRunner folder>\arch\wrun.exe -addins ActiveX,pb,vb,WebTest

-addins_select_timeout timeout

Instructs WinRunner to wait the specified time (in seconds) before closing
the Add-In Manager dialog box when starting WinRunner. When the
timeout is zero, the dialog box is not displayed. This can be used in
conjunction with the -addins command line option.

(Formerly -addons_select_timeout.)

-animate

Instructs WinRunner to execute and run the loaded test, while the
execution arrow displays the line of the test being run.

Chapter 15 • Running Tests from the Command Line

205

-app path

Runs the specified application before running WinRunner. This can be used
in conjunction with the -app_params, -app_open_win, and -WR_wait_time
command line options.

Note that you can also define a startup application in the Run tab of the Test
Properties dialog box. For more information, refer to Chapter 22, “Setting
Properties for a Single Test” in the Mercury WinRunner Basic Features User’s
Guide.

-app_params param1[,param2,...,paramN]

Passes the specified parameters to the application specified in -app.

Note: You can only use this command line option when you also use the
-app command line option.

-app_open_win setting

Determines how the application window appears when it opens.

The following are the possible values for setting:

Option Description

SW_HIDE Hides the window and activates another window.

SW_SHOWNORMAL Activates and displays a window. If the window is
minimized or maximized, Windows restores it to its
original size and position. Specify this flag when
displaying the window for the first time.

SW_SHOWMINIMIZED Activates the window and displays it as a minimized
window.

SW_SHOWMAXIMIZED Activates the window and displays it as a
maximized window.

SW_SHOWNOACTIVATE Displays a window in its most recent size and
position. The active window remains active.

Part IV • Running Tests—Advanced

206

Note: You can only use this command line option when you also use the
-app command line option.

-auto_load {on | off}

Activates or deactivates automatic loading of the temporary GUI map file.

(Default = on)

-auto_load_dir path

Determines the folder in which the temporary GUI map file (temp.gui)
resides. This option is applicable only when auto load is on.

(Default = M_Home\dat)

-batch {on | off}

Runs the loaded test in Batch mode.

(Default = off)

SW_SHOW Activates the window and displays it in its current
size and position.

SW_MINIMIZE Maximizes the specified window and activates the
next top-level window in the z-order.

SW_SHOWMINNOACTIVE Displays the window as a minimized window. The
active window remains active.

SW_SHOWNA Displays the window in its current state. The active
window remains active.

SW_RESTORE Activates and displays the window. If the window is
minimized or maximized, Windows restores it to its
original size and position. Specify this flag when
restoring a minimized window.

Option Description

Chapter 15 • Running Tests from the Command Line

207

You can also set this option using the Run in batch mode check box in the
Run category of the General Options dialog box as described in Chapter 23,
“Setting Global Testing Options” in the Mercury WinRunner Basic Features
User’s Guide.

Note that you can use the getvar function to retrieve the value of the
corresponding batch testing option from within a test script, as described in
Chapter 21, “Setting Testing Options from a Test Script.”

Tip: To ensure that the test run does not pause to display error messages, use
the -batch option in conjunction with the -verify option. For more
information on the -verify option, see page 221.

-beep {on | off}

Activates or deactivates the WinRunner system beep.

You can also set this option using the corresponding Beep when checking a
window check box in the Run > Settings category of the General Options
dialog box, described in Chapter 23, “Setting Global Testing Options” in the
Mercury WinRunner Basic Features User’s Guide.

Note that you can use the setvar and getvar functions to set and retrieve the
value of the corresponding beep testing option from within a test script, as
described in Chapter 21, “Setting Testing Options from a Test Script.”

-capture_bitmap {on | off}

Determines whether WinRunner captures a bitmap whenever a checkpoint
fails. When this option is on (1), WinRunner uses the settings from the Run
> Settings category of the General Options dialog box to determine the
captured area for the bitmaps.

(Default = off)

You can also set this option using the Capture bitmap on verification failure
check box in the Run > Settings category of the General Options dialog box,
as described in Chapter 23, “Setting Global Testing Options” in the Mercury
WinRunner Basic Features User’s Guide.

Part IV • Running Tests—Advanced

208

Note that you can use the setvar and getvar functions to set and retrieve the
value of the corresponding capture_bitmap testing option from within a test
script, as described in Chapter 21, “Setting Testing Options from a Test
Script.”

-create_text_report {on | off}

Instructs WinRunner to write test results to a text report, report.txt, which is
saved in the results folder.

-create_unirep_info {on | off}

Generates the necessary information for creating a Unified Report (when
WinRunner report view is selected) so that you can choose to view the
Unified Report of your tests at a later time.

(Default = on)

You can also set this option using the corresponding Create unified report
information option in the Run category of the General Options dialog box
as described in Chapter 23, “Setting Global Testing Options” in the Mercury
WinRunner Basic Features User’s Guide.

-cs_fail {on | off}

Determines whether WinRunner fails a test when Context Sensitive errors
occur. A Context Sensitive error is the failure of a Context Sensitive
statement during a test. Context Sensitive errors are often due to
WinRunner’s failure to identify a GUI object.

For example, a Context Sensitive error will occur if you run a test containing
a set_window statement with the name of a non-existent window. Context
Sensitive errors can also occur when window names are ambiguous. For
information about Context Sensitive functions, refer to the TSL Reference.

(Default = off)

Chapter 15 • Running Tests from the Command Line

209

You can also set this option using the corresponding Fail test when Context
Sensitive errors occur check box in the Run > Settings category of the
General Options dialog box, described in Chapter 23, “Setting Global
Testing Options” in the Mercury WinRunner Basic Features User’s Guide.

Note that you can use the setvar and getvar functions to set and retrieve the
value of the corresponding cs_fail testing option from within a test script, as
described in Chapter 21, “Setting Testing Options from a Test Script.”

-cs_run_delay non-negative integer

Sets the time (in milliseconds) that WinRunner waits between executing
Context Sensitive statements when running a test.

(Default = 0 [milliseconds])

You can also set this option using the corresponding Delay between
execution of CS statements box in the Run > Synchronization category of
the General Options dialog box, described in Chapter 23, “Setting Global
Testing Options” in the Mercury WinRunner Basic Features User’s Guide.

Note that you can use the setvar and getvar functions to set and retrieve the
value of the corresponding cs_run_delay testing option from within a test
script, as described in Chapter 21, “Setting Testing Options from a Test
Script.”

Part IV • Running Tests—Advanced

210

-def_replay_mode {verify | debug | update}

Sets the run mode that is used by default for all tests.

Note: Verify mode is only relevant when running tests, not components.
When working with components, the application is verified when the
component is run as part of a business process test in Quality Center.

Possible values:

➤ Update—Used to update the expected results of a test or to create a new
expected results folder.

➤ Verify—Used to check your application.

➤ Debug—Used to help you identify bugs in a test script.

(Default = Verify)

You can also set this option using the Default run mode option in the Run
category of the General Options dialog box as described in Chapter 23,
“Setting Global Testing Options” in the Mercury WinRunner Basic Features
User’s Guide.

-delay_msec non-negative integer

Directs WinRunner to determine whether a window or object is stable
before capturing it for a bitmap checkpoint or synchronization point. It
defines the time (in milliseconds) that WinRunner waits between
consecutive samplings of the screen. If two consecutive checks produce the
same results, WinRunner captures the window or object. (Formerly -delay,
which was measured in seconds.)

(Default = 1000 [milliseconds])

(Formerly -delay.)

Chapter 15 • Running Tests from the Command Line

211

Note: This parameter is accurate to within 20-30 milliseconds.

You can also set this option using the corresponding Delay for window
synchronization box in the Run > Synchronization category of the General
Options dialog box, described in Chapter 23, “Setting Global Testing
Options” in the Mercury WinRunner Basic Features User’s Guide.

Note that you can use the setvar and getvar functions to set and retrieve the
value of the corresponding delay_msec testing option from within a test
script, as described in Chapter 21, “Setting Testing Options from a Test
Script.”

-dont_connect

If the Reconnect on startup option is selected in the Connection to Quality
Centerdialog box, this command line enables you to open WinRunner
without connecting to Test Director.

To disable the Reconnect on startup option, choose Tools > Quality Center
Connection and clear the Reconnect on startup check box as described in
Chapter 15, “Running Tests from the Command Line”.

-dont_quit

Instructs WinRunner not to close after completing the test.

-dont_show_welcome

Instructs WinRunner not to display the Welcome window when starting
WinRunner.

-email_service

Determines whether WinRunner activates the e-mail sending options
including the e-mail notifications for checkpoint failures, test failures, and
test completed reports as well as any email_send_msg statements in the
test.

(Default = off)

Part IV • Running Tests—Advanced

212

You can also set this option using the corresponding Activate e-mail service
check box in the Notifications > E-mail category of the General Options
dialog box as described in Chapter 23, “Setting Global Testing Options” in
the Mercury WinRunner Basic Features User’s Guide.

Note that you can use the setvar and getvar functions to set and retrieve the
value of the corresponding email_service testing option from within a test
script, as described in Chapter 21, “Setting Testing Options from a Test
Script.”

-exp expected results folder name

Designates a name for the subfolder in which expected results are stored. In
a verification run, specifies the set of expected results used as the basis for
the verification comparison.

(Default = exp)

You can also view this setting using the corresponding Expected results
folder box in the Current Test tab of the Test Properties dialog box,
described in Chapter 22, “Setting Properties for a Single Test” in the Mercury
WinRunner Basic Features User’s Guide.

Note that you can use the getvar function to retrieve the value of the
corresponding exp testing option from within a test script, as described in
Chapter 21, “Setting Testing Options from a Test Script.”

-fast_replay {on | off}

Sets the speed of the test run for tests recorded in Analog mode. on sets tests
to run as fast as possible and off sets tests to run at the speed at which they
were recorded.

Note that you can also specify the analog run speed using the Run speed for
Analog mode option in the Run category of the General Options dialog box
as described in Chapter 23, “Setting Global Testing Options” in the Mercury
WinRunner Basic Features User’s Guide.

(Default = on)

Chapter 15 • Running Tests from the Command Line

213

-f file name

Specifies a text file containing command line options. The options can
appear on the same line, or each on a separate line. This option enables you
to circumvent the restriction on the number of characters that can be typed
into the Target text box in the Shortcut tab of the Windows Properties
dialog box.

Note: If a command line option appears both in the command line and in
the file, WinRunner uses the settings of the option in the file.

-fontgrp group name

Specifies the active font group when WinRunner is started.

You can also set this option using the corresponding Font group box in the
Record > Text Recognition category of the General Options dialog box,
described in Chapter 23, “Setting Global Testing Options” in the Mercury
WinRunner Basic Features User’s Guide.

Note that you can use the setvar and getvar functions to set and retrieve the
value of the corresponding fontgrp testing option from within a test script, as
described in Chapter 21, “Setting Testing Options from a Test Script.”

-ini pathname wrun.ini file

Defines the wrun.ini file that is used when WinRunner is started. This file is
read-only, unless the -update_ini command line option is also used.

The path must be a mapped drive, and not a Universal Naming Convention
path (e.g. \\<servername>\<sharename>\<directory>).

-min_diff non-negative integer

Defines the number of pixels that constitute the threshold for an image
mismatch.

(Default = 0 [pixels])

Part IV • Running Tests—Advanced

214

You can also set this option using the corresponding Threshold for
difference between bitmaps box in the Run > Settings category of the
General Options dialog box, described in Chapter 23, “Setting Global
Testing Options” in the Mercury WinRunner Basic Features User’s Guide.

Note that you can use the setvar and getvar functions to set and retrieve the
value of the corresponding min_diff testing option from within a test script,
as described in Chapter 21, “Setting Testing Options from a Test Script.”

-mismatch_break {on | off}

Activates or deactivates Break when Verification Fails before a verification
run. The functionality of Break when Verification Fails is different than
when running a test interactively: In an interactive run, the test is paused;
For a test started from the command line, the first occurrence of a
comparison mismatch terminates the test run.

Break when Verification Fails determines whether WinRunner pauses the
test run and displays a message whenever verification fails or whenever any
message is generated as a result of a Context Sensitive statement during a
test that is run in Verify mode.

For example, if a set_window statement is missing from a test script,
WinRunner cannot find the specified window. If this option is on,
WinRunner pauses the test and opens the Run wizard to enable the user to
locate the window. If this option is off, WinRunner reports an error in the
Test Results window and proceeds to run the next statement in the test
script.

(Default = on)

You can also set this option using the corresponding Break when
verification fails check box in the Run > Settings category of the General
Options dialog box, described in Chapter 23, “Setting Global Testing
Options” in the Mercury WinRunner Basic Features User’s Guide.

Note that you can use the setvar and getvar functions to set and retrieve the
value of the corresponding mismatch_break testing option from within a test
script, as described in Chapter 21, “Setting Testing Options from a Test
Script.”

Chapter 15 • Running Tests from the Command Line

215

-qc_connection {on | off}

Activates WinRunner’s connection to Quality Center when set to on.

(Default = off)

(Formerly -td_connection or -test_director.)

Note that you can connect to Quality Center from the Quality Center
Connection dialog box, which you open by choosing Tools > Quality Center
Connection. For more information about connecting to Quality Center, see
Chapter 26, “Managing the Testing Process.”

Note: If you select the “Reconnect on startup” option in the Connection to
Quality Center dialog box, setting -qc_connection to off will not prevent
the connection to Quality Center. To prevent the connection to Quality
Center in this situation, use the -dont_connect command. For more
information, see “-dont_connect,” on page 211.

-qc_cycle_name cycle name

Specifies the name of the current test cycle. This option is applicable only
when WinRunner is connected to Quality Center.

Note that you can use the corresponding qc_cycle_name testing option to
specify the name of the current test cycle, as described in Chapter 21,
“Setting Testing Options from a Test Script.”

(Formerly -td_cycle_name or -cycle.)

-qc_database_name database path

Specifies the active Quality Center database. WinRunner can open, execute,
and save tests in this database. This option is applicable only when
WinRunner is connected to Quality Center.

Use the following syntax when using this option:

<database_name>.<domain>

Part IV • Running Tests—Advanced

216

For example:

Mercury.Wrun

Note that you can use the corresponding qc_database_name testing option to
specify the active Quality Center database, as described in Chapter 21,
“Setting Testing Options from a Test Script.”

Note that when WinRunner is connected to Quality Center, you can specify
the active Quality Center project database from the Quality Center
Connection dialog box, which you open by choosing Tools > Quality Center
Connection. For more information, see Chapter 26, “Managing the Testing
Process.”

(Formerly -td_database_name or -database.)

-qc_password password

Specifies the password for connecting to a database in a Quality Center
server.

Note that you can specify the password for connecting to Quality Center
from the Quality Center Connection dialog box, which you open by
choosing Tools > Quality Center Connection. For more information about
connecting to Quality Center, see Chapter 26, “Managing the Testing
Process.”

(Formerly -td_password)

-qc_server_name server name

Specifies the name of the Quality Center server to which WinRunner
connects.

Note that you can use the corresponding qc_server_name testing option to
specify the name of the Quality Center server to which WinRunner
connects, as described in Chapter 21, “Setting Testing Options from a Test
Script.”

In order to connect to the server, use the td_connection option.

(Formerly -td_server_name or -td_server.)

Chapter 15 • Running Tests from the Command Line

217

-qc_user_name user name

Specifies the name of the user who is currently executing a test cycle.

Note that you can use the corresponding qc_user_name testing option to
specify the user, as described in Chapter 21, “Setting Testing Options from a
Test Script.”

Note that you can specify the user name when you connect to Quality
Center from the Quality Center Connection dialog box, which you open by
choosing Tools > Quality Center Connection. For more information about
connecting to Quality Center, see Chapter 26, “Managing the Testing
Process.”

(Formerly -td_user_name, -user_name, or -user.)

-rec_item_name {0 | 1}

Determines whether WinRunner records non-unique ListBox and
ComboBox items by name or by index.

(Default = 0)

You can also set this option using the corresponding Record non-unique list
items by name check box in the Record category of the General Options
dialog box, described in Chapter 23, “Setting Global Testing Options” in the
Mercury WinRunner Basic Features User’s Guide.

Note that you can use the setvar and getvar functions to set and retrieve the
value of the corresponding rec_item_name testing option from within a test
script, as described in Chapter 21, “Setting Testing Options from a Test
Script.”

-run

Instructs WinRunner to run the loaded test. To load a test into the
WinRunner window, use the -t command line option.

-run_minimized

Instructs WinRunner to open and run tests with WinRunner and the test
minimized to an icon. Note that specifying this option does not itself run
tests: use the -t command line option to load a test and the -run command
line option to run the loaded test.

Part IV • Running Tests—Advanced

218

-search_path path

Defines the directories to be searched for tests to be opened and/or called.
The search path is given as a string.

(Default = startup folder and installation folder\lib)

You can also set this option using the corresponding Search path for called
tests box in the Folders category of the General Options dialog box,
described in Chapter 23, “Setting Global Testing Options” in the Mercury
WinRunner Basic Features User’s Guide.

Note that you can use the setvar and getvar functions to set and retrieve the
value of the corresponding searchpath testing option from within a test
script, as described in Chapter 21, “Setting Testing Options from a Test
Script.”

-single_prop_check_fail {on | off}

Fails a test run when _check_info statements fail. It also writes an event to
the Test Results window for these statements. (You can create _check_info
statements using the Insert > GUI Checkpoint > For Single Property
command.)

You can use this option with the setvar and getvar functions.

(Default = on)

For information about the check_info functions, refer to the TSL Reference.

You can also set this option using the corresponding Fail test when single
property check fails option in the Run > Settings category of the General
Options dialog box, described in Chapter 23, “Setting Global Testing
Options” in the Mercury WinRunner Basic Features User’s Guide.

Note that you can use the setvar and getvar functions to set and retrieve the
value of the corresponding single_prop_check_fail testing option from within
a test script, as described in Chapter 21, “Setting Testing Options from a Test
Script.”

Chapter 15 • Running Tests from the Command Line

219

-speed {normal | fast}

Sets the speed for the execution of the loaded test.

(Default = fast)

You can also set this option using the corresponding Run Speed for Analog
Mode option in the Run category of the General Options dialog box,
described in Chapter 23, “Setting Global Testing Options” in the Mercury
WinRunner Basic Features User’s Guide.

Note that you can use the setvar and getvar functions to set and retrieve the
value of the corresponding speed testing option from within a test script, as
described in Chapter 21, “Setting Testing Options from a Test Script.”

(Formerly -run_speed.)

-start_minimized {on | off}

Indicates whether WinRunner opens in minimized mode.

(Default = off)

-t test name

Specifies the name of the test to be loaded in the WinRunner window. This
can be the name of a test stored in a folder specified in the search path or
the full pathname of any test stored in your system.

Part IV • Running Tests—Advanced

220

-timeout_msec non-negative integer

Sets the global timeout (in milliseconds) used by WinRunner when
executing checkpoints and Context Sensitive statements. This value is
added to the time parameter embedded in GUI checkpoint or
synchronization point statements to determine the maximum amount of
time that WinRunner searches for the specified window or object. (Formerly
timeout, which was measured in seconds.)

(Default = 10,000 [milliseconds])

(Formerly -timeout.)

Note: This option is accurate to within 20-30 milliseconds.

You can also set this option using the corresponding Timeout for
checkpoints and CS statements box in the Run > Settings category of the
General Options dialog box, described in Chapter 23, “Setting Global
Testing Options” in the Mercury WinRunner Basic Features User’s Guide.

Note that you can use the setvar and getvar functions to set and retrieve the
value of the corresponding timeout_msec testing option from within a test
script, as described in Chapter 21, “Setting Testing Options from a Test
Script.”

-tslinit_exp expected results folder

Directs WinRunner to the expected folder to be used when the tslinit script
is running.

-update_ini

Saves changes to configuration made during a WinRunner session when the
wrun.ini file is specified by the -ini command line option.

Note: You can only use this command line option when you also use the -ini
command line option.

Chapter 15 • Running Tests from the Command Line

221

-verify verification results folder name

Specifies that the test is to be run in Verify mode and designates the name of
the subfolder in which the test results are stored.

-WR_wait_time non-negative integer

Specifies the number of milliseconds to wait between invoking the
application and starting WinRunner.

(Default = 0 [milliseconds])

You can also set this option using the Run test after box in the Run tab of
the Test Properties dialog box, described in Chapter 22, “Setting Properties
for a Single Test” in the Mercury WinRunner Basic Features User’s Guide.

Note: You can only use this command line option when you also use the
-app command line option.

Part IV • Running Tests—Advanced

222

Part V

Debugging Tests

224

225

16
Controlling Your Test Run

Controlling the test run can help you to identify and eliminate defects in
your test scripts.

This chapter describes:

➤ About Controlling Your Test Run

➤ Running a Single Line of a Test Script

➤ Running a Section of a Test Script

➤ Pausing a Test Run

About Controlling Your Test Run

After you create a test script you should check that it runs smoothly,
without errors in syntax or logic. In order to detect and isolate defects in a
script, you can use the Step and Pause commands to control test execution.

The following Step commands are available:

➤ The Step command runs a single line of a test script.

➤ The Step Into command calls and displays another test or user-defined
function.

➤ The Step Out command—used in conjunction with Step Into—completes
the execution of a called test or user-defined function.

➤ The Step to Cursor command runs a selected section of a test script.

In addition, you can use the Pause command or the pause function to
temporarily suspend the test run.

Part V • Debugging Tests

226

You can also control the test run by setting breakpoints. A breakpoint pauses
a test run at a pre-determined point, enabling you to examine the effects of
the test on your application. You can view all breakpoints in the Breakpoints
List pane of the Debug Viewer. For more information, see Chapter 17,
“Using Breakpoints.”

To help you debug your tests, WinRunner enables you to monitor variables
in a test script. You define the variables you want to monitor in a Watch List.
As the test runs, you can view the values that are assigned to the variables.
You can view the current values of monitored variables in the Watch List
pane of the Debug Viewer. For more information, see Chapter 18,
“Monitoring Variables.”

You can use the call chain to follow and navigate the test flow. At each break
during a test run—such as after a Step command, at a breakpoint, or at the
end of a test, you can view the current chain of called tests and functions in
the Call Chain pane of the Debug Viewer. For more information, see
Chapter 9, “Calling Tests.”

When you debug a test script, you run the test in Debug mode. The results
of the test are saved in a debug folder. Each time you run the test, the
previous debug results are overwritten. Continue to run the test in Debug
mode until you are ready to run it in Verify mode. For more information on
using the Debug mode, refer to Chapter 20, “Understanding Test Runs” in
the Mercury WinRunner Basic Features User’s Guide.

Chapter 16 • Controlling Your Test Run

227

Running a Single Line of a Test Script

You can run a single line of a test script using the Step, Step Into, and
Step Out commands.

Step

Choose the Step command or click the corresponding Step button to
execute only the current line of the active test script—the line marked by
the execution arrow.

When the current line calls another test or a user-defined function, the
called test or function is executed in its entirety but the called test script is
not displayed in the WinRunner window. If you are using a startup
application or startup function, it is also executed.

Step Into

Choose the Step Into command or click the corresponding Step Into button
to execute only the current line of the active test script. However, in contrast
to Step, if the current line of the executed test calls another test or a user-
defined function in compiled mode:

➤ The test script of the called test or function is displayed in the WinRunner
window.

➤ Startup application and function settings (Test Properties dialog box, Run
tab) are not implemented.

➤ Use Step or Step Out to continue running the called test.

Step Out

You use the Step Out command only after entering a test or a user-defined
function using Step Into. Step Out executes to the end of the called test or
user-defined function, returns to the calling test, and then pauses the test
run.

Part V • Debugging Tests

228

Running a Section of a Test Script

You can execute a selected section of a test script using the Step to Cursor
command.

To use the Step to Cursor command:

 1 Move the execution arrow to the line in the test script from which you want
to begin test execution. To move the arrow, click inside the margin next to
the desired line in the test script.

 2 Click inside the test script to move the cursor to the line where you want
test execution to stop.

 3 Choose Debug >Step to Cursor or press the STEP TO CURSOR softkey.
WinRunner runs the test up to the line marked by the insertion point.

Pausing a Test Run

You can temporarily suspend a test run by choosing the Pause command or
by adding a pause statement to your test script.

Pause Command

You can suspend the running of a test by choosing Test > Pause, clicking the
Pause button, or pressing the PAUSE softkey. A paused test stops running
when all previously interpreted TSL statements have been executed. Unlike
the Stop command, Pause does not initialize test variables and arrays.

To resume running of a paused test, choose the appropriate Run command
on the Test menu. The test run continues from the point that you invoked
the Pause command, or from the execution arrow if you moved it while the
test was suspended.

Chapter 16 • Controlling Your Test Run

229

The pause Function

When WinRunner processes a pause statement in a test script, test
execution halts and a message box is displayed. If the pause statement
includes an expression, the result of the expression appears in the message
box. The syntax of the pause function is:

pause ([expression]);

In the following example, pause suspends the test run and displays the time
that elapsed between two points.

t1=get_time();
t2=get_time();
pause ("Time elapsed" is & t2-t1);

Note: The pause statement is ignored by WinRunner when running tests in
batch mode.

For more information on the pause function, refer to the TSL Reference.

Part V • Debugging Tests

230

231

17
Using Breakpoints

A breakpoint marks a place in the test script where you want to pause a test
run. Breakpoints help to identify flaws in a script.

This chapter describes:

➤ About Using Breakpoints

➤ Choosing a Breakpoint Type

➤ Setting Break at Location Breakpoints

➤ Setting Break in Function Breakpoints

➤ Modifying Breakpoints

➤ Deleting Breakpoints

About Using Breakpoints

By setting a breakpoint you can stop a test run at a specific place in a test
script. A breakpoint is indicated by a breakpoint marker in the left margin of
the test window.

WinRunner pauses the test run when it reaches a breakpoint. You can
examine the effects of the test run up to the breakpoint, view the current
value of variables, make any necessary changes, and then continue running
the test from the breakpoint. You use the Run from Arrow command to
restart the test run from the breakpoint. Once restarted, WinRunner
continues running the test until it encounters the next breakpoint or the
test is completed.

Part V • Debugging Tests

232

Note: WinRunner only pauses when it is not in batch mode. When running
tests in batch mode, WinRUnner ignores breakpoints.

Breakpoints are useful for:

➤ suspending the test run at a certain point and inspecting the state of your
application.

➤ monitoring the entries in the Watch List. See Chapter 18, “Monitoring
Variables,” for more information.

➤ marking a point from which to begin stepping through a test script using
the Step commands. See Chapter 16, “Controlling Your Test Run,” for more
information.

There are two types of breakpoints: Break at Location and Break in Function.
A Break at Location breakpoint stops a test at a specified line number in a
test script. A Break in Function breakpoint stops a test when it calls a
specified user-defined function in a loaded compiled module.

You set a pass count for each breakpoint you define. The pass count
determines the number of times the breakpoint is passed before it stops the
test run. For example, suppose you program a loop that performs a
command twenty-five times. By default, the pass count is set to zero, so test
execution stops after each loop. If you set the pass count to 25, execution
stops only after the twenty-fifth iteration of the loop.

Note: The breakpoints you define are active only during your current
WinRunner session. If you terminate your WinRunner session, you must
redefine breakpoints to continue debugging the script in another session.

Chapter 17 • Using Breakpoints

233

Viewing the Breakpoints List in the Debug Viewer

You view the values of variables in the Breakpoints List pane in the Debug
Viewer window. If the Debug Viewer window is not currently displayed, or
the Breakpoints List pane is not open in the window, choose Debug >
Breakpoints List to display it. If the Breakpoints List pane is open, but a
different pane is currently displayed, click the Breakpoints List tab to display
it.

Tip: The Debug Viewer window can be displayed as a docked window
within the WinRunner window, or it can be a floating window that you can
drag to any location on your screen. By default the Debug Viewer opens as a
docked window on the right side of the WinRunner screen. To move the
window to another location, drag the Debug Viewer titlebar.

Part V • Debugging Tests

234

Choosing a Breakpoint Type

WinRunner enables you to set two types of breakpoints: Break at Location
and Break in Function.

Break at Location

A Break at Location breakpoint stops a test at a specified line number in a
test script. This type of breakpoint is defined by a test name and a test script
line number. The breakpoint marker appears in the left margin of the test
script, next to the specified line. A Break at Location breakpoint might, for
example, appear in the Breakpoints List pane as:

ui_test[137] : 0

This means that the breakpoint marker appears in the test named ui_test at
line 137. The number after the colon represents the pass count, which is set
here to zero (the default). This means that WinRunner will stop running the
test every time it passes the breakpoint.

Break in Function

A Break in Function breakpoint stops a test when it calls a specified user-
defined function in a loaded compiled module. This type of breakpoint is
defined by the name of a user-defined function and the name of the
compiled module in which the function is located. When you define a Break
in Function breakpoint, the breakpoint marker appears in the left margin of
the WinRunner window, next to the first line of the function. WinRunner
halts the test run each time the specified function is called. A Break in
Function breakpoint might appear in the Breakpoints List pane as:

ui_func [ui_test : 25] : 10

This indicates that a breakpoint has been defined for the line containing the
ui_func function, in the ui_test compiled module: in this case line 25. The
pass count is set to 10, meaning that WinRunner stops the test each time the
function has been called ten times.

Chapter 17 • Using Breakpoints

235

Setting Break at Location Breakpoints

You set Break at Location breakpoints using the Breakpoints List pane in the
Debug Viewer, the mouse, or the Toggle Breakpoint command.

Note: You can set a breakpoint in a function only after the function has
been loaded into WinRunner (the function has been executed at least once).

To set a Break at Location breakpoint using the Breakpoints List pane:

 1 Display the Breakpoints List as described in “Viewing the Breakpoints List in
the Debug Viewer” on page 233.

 2 Click Add Entry to open the New Breakpoint dialog box.

 3 In the Type box, select At Location.

 4 The Test box displays the name of the active test. If you want to insert a
breakpoint for another test, select the name from the Test list.

 5 Enter the line number at which you want to add the breakpoint in the At
Line box

 6 If you want the test to break each time it reaches the breakpoint, accept the
default Pass Count, 0. If you only want the test to break after it reaches the
breakpoint a given number of times, enter the number in the Pass Count
box.

Part V • Debugging Tests

236

 7 Click OK to set the breakpoint and close the New Breakpoint dialog box. The
new breakpoint is displayed in the Breakpoints List pane.

The breakpoint marker appears in the left margin of the test script, next to
the specified line.

To set a Break at Location breakpoint using the mouse:

 1 Right-click the left (gray) margin of the WinRunner window next to the line
where you want to add a breakpoint. The breakpoint symbol appears in the
left margin of the WinRunner window:

Tip: If the gray margin is not visible, choose Tools > Editor Options and click
the Options tab. Then select the Visible gutter option.

 2 Breakpoints added using this method automatically use a pass count of 0. If
you want to use a different pass count, modify the breakpoint as described
in “Modifying Breakpoints” on page 239.

To set a Break at Location breakpoint using the Toggle Breakpoint
command:

 1 Move the insertion point to the line of the test script where you want test
execution to stop.

 2 Choose Debug > Toggle Breakpoint or click the Toggle Breakpoint button.
The breakpoint symbol appears in the left margin of the WinRunner
window and is displayed in the Breakpoints List.

 3 Breakpoints added using this method automatically use a pass count of 0. If
you want to use a different pass count, modify the breakpoint as described
in “Modifying Breakpoints” on page 239.

Chapter 17 • Using Breakpoints

237

To remove a Break at Location breakpoint:

Right-click the breakpoint symbol

or:

Choose Debug > Toggle Breakpoint, or click the Toggle Breakpoint button.

Setting Break in Function Breakpoints

A Break in Function breakpoint stops test execution at the user-defined
function that you specify. You set a Break in Function breakpoint from the
Breakpoint Lists pane in the Debug Viewer, or the Break in Function
command.

Note: You can set a breakpoint in a function only after the function has
been loaded into WinRunner (the function has been executed at least once).

To set a Break in Function breakpoint:

 1 If you want to set a break in function breakpoint for a function that is
already a part of your test, place the insertion point on the function name.

 2 Choose Debug > Break in Function. The New Breakpoint dialog box opens.
Proceed to step 5.

 3 Alternatively, you can open the New Breakpoint dialog box from the
Breakpoint Lists pane. Display the Breakpoints List as described in “Viewing
the Breakpoints List in the Debug Viewer” on page 233.

 4 Click Add Entry.

Part V • Debugging Tests

238

 5 The New Breakpoint dialog box opens.

Accept the breakpoint type: In Function.

 6 By default, the Function box displays the name of the function (or text) in
which the insertion point is currently located. Accept the function name or
enter the name of a valid function. The function name you specify must be
compiled by WinRunner. For more information, see Chapter 10, “Creating
User-Defined Functions,” and Chapter 11, “Employing User-Defined
Functions in Tests.”

 7 Type a value in the Pass Count box.

 8 Click OK to set the breakpoint and close the New Breakpoint dialog box.

The new breakpoint is displayed in the Breakpoints List pane.

The breakpoint symbol is displayed in the left margin next to the first line of
the function in the compiled module.

Chapter 17 • Using Breakpoints

239

Modifying Breakpoints

You can modify the definition of a breakpoint using the Modify Breakpoints
dialog box. You can change the breakpoint’s type, the test or line number
for which it is defined, and the value of the pass count.

To modify a breakpoint:

 1 Display the Breakpoints List as described in “Viewing the Breakpoints List in
the Debug Viewer” on page 233.

 2 Select a breakpoint in Breakpoint Lists pane.

 3 Click Modify entry to open the Modify Breakpoint dialog box.

 4 To change the type of breakpoint, select a different breakpoint type in the
Type box.

 5 Change the settings as necessary.

 6 Click OK to close the dialog box.

Part V • Debugging Tests

240

Deleting Breakpoints

You can delete a single breakpoint or all breakpoints defined for the current
test using the Breakpoints dialog box.

To delete a single breakpoint:

 1 Display the Breakpoints List as described in “Viewing the Breakpoints List in
the Debug Viewer” on page 233.

 2 Select a breakpoint from the list.

 3 Click Delete entry. The breakpoint is removed from the list and the
breakpoint symbol is removed from the left margin of the test.

To delete all breakpoints using the Delete All Breakpoints Command:

Choose Debug > Delete All Breakpoints or click the Delete All Breakpoints
toolbar button.

To delete all breakpoints using the Debug Viewer:

 1 Display the Breakpoints List as described in “Viewing the Breakpoints List in
the Debug Viewer” on page 233.

 2 Click Delete all breakpoints. All breakpoints are deleted from the list and all
breakpoint symbols are removed from the left margin of the relevant tests.

241

18
Monitoring Variables

The Watch List displays the values of variables, expressions, and array
elements during a test run. You use the Watch List to enhance the
debugging process.

This chapter describes:

➤ About Monitoring Variables

➤ Adding Variables to the Watch List

➤ Viewing Variables in the Watch List

➤ Modifying Variables in the Watch List

➤ Assigning a Value to a Variable in the Watch List

➤ Deleting Variables from the Watch List

About Monitoring Variables

The Watch List enables you to monitor the values of variables, expressions,
and array elements while you debug a test script. Prior to running a test, you
add the elements that you want to monitor to the Watch List. At each break
during a test run—such as after a Step command, at a breakpoint, or at the
end of a test, you can view the current values of the entries in the Watch
List.

Part V • Debugging Tests

242

Viewing the Watch List in the Debug Viewer

You view the values of variables in the Watch List pane in the Debug Viewer
window. If the Debug Viewer window is not currently displayed, or the
Watch List pane is not open in the window, choose Debug > Watch List to
display it. If the Watch List pane is open, but a different pane is currently
displayed, click the Watch List tab to display it.

Tip: The Debug Viewer window can be displayed as a docked window
within the WinRunner window, or it can be a floating window that you can
drag to any location on your screen. By default the Debug Viewer opens as a
docked window on the right side of the WinRunner screen. To move the
window to another location, drag the Debug Viewer titlebar.

Chapter 18 • Monitoring Variables

243

Watching Variable Values—An Example

For example, in the following test, the Watch List is used to measure and
track the values of variables loop (the current loop) and sum. On the last step
of each loop, the test pauses at the breakpoint so you can view the current
values.

After WinRunner executes the first loop, the test pauses. The Watch List
displays the variables and updates their values: When WinRunner completes
the test run, the Watch List shows the following results:

loop:10
sum:22
loop*sum:220

If a test script has several variables with the same name but different scopes,
the variable is evaluated according to the current scope of the interpreter.
For example, suppose both test_a and test_b use a static variable x, and test_a
calls test_b. If you include the variable x in the Watch List, the value of x
displayed at any time is the current value for the test that WinRunner is
interpreting.

Part V • Debugging Tests

244

If you choose a test or function in the Call Chain list (Debug > Call Chain),
the context of the variables and expressions in the Watch List changes.
WinRunner automatically updates their values in the Watch List.

Adding Variables to the Watch List

You add variables, expressions, and arrays to the Watch List using the Add
Watch dialog box. You can add entries before running a test or when the test
breaks after a Step command, when the test is paused, or at a breakpoint.

To add a variable, an expression, or an array to the Watch List:

 1 Choose Debug > Add Watch or click the Add Watch button.

Alternatively, display the Watch List as described in “Viewing the Watch List
in the Debug Viewer” on page 242 and click Add entry.

 2 The Add Watch dialog box opens.

In the Expression box, enter the variable, expression, or array that you want
to add to the Watch List.

 3 Click Evaluate to see the current value of the new entry. If the new entry
contains a variable or an array that has not yet been initialized, the message
“<cannot evaluate>” appears in the Value box. The same message appears if
you enter an expression that contains an error.

 4 Click OK. The Add Watch dialog box closes and the new entry appears in the
Watch List.

Chapter 18 • Monitoring Variables

245

Note: Do not add expressions that assign or increment the value of variables
to the Watch List; this can affect the test run.

Viewing Variables in the Watch List

Once you add variables, expressions, and arrays to the Watch List, you can
use the Watch List to view their values.

To view the values of variables, expressions, and arrays in the Watch List:

 1 Display the Watch List as described in “Viewing the Watch List in the Debug
Viewer” on page 242.

The variables, expressions and arrays are displayed; current values appear
after the colon.

 2 To view values of array elements, double-click the array name. The elements
and their values appear under the array name. Double-click the array name
to hide the elements.

 3 Click Close.

Part V • Debugging Tests

246

Modifying Variables in the Watch List

You can modify variables and expressions in the Watch List using the
Modify Watch dialog box. For example, you can turn variable b into the
expression b + 1, or you can change the expression b + 1 into b * 10. When
you close the Modify Watch dialog box, the Watch List is automatically
updated to reflect the new value for the expression.

To modify an expression in the Watch List:

 1 Display the Watch List as described in “Viewing the Watch List in the Debug
Viewer” on page 242.

 2 Select the variable or expression you want to modify.

 3 Click Modify entry to open the Modify Watch dialog box.

 4 Change the expression in the Expression box as needed.

 5 Click Evaluate. The new value of the expression appears in the Value box.

 6 Click OK to close the Modify Watch dialog box. The modified expression
and its new value appear in the Watch List.

Chapter 18 • Monitoring Variables

247

Assigning a Value to a Variable in the Watch List

You can assign new values to variables and array elements in the Watch List.
Values can be assigned only to variables and array elements, not to
expressions.

To assign a value to a variable or an array element:

 1 Display the Watch List as described in “Viewing the Watch List in the Debug
Viewer” on page 242.

 2 Select a variable or an array element.

 3 Click Assign Variable Value to open the Assign Variable Value dialog box.

 4 Type the new value for the variable or array element in the New Value box.

 5 Click OK to close the dialog box. The new value appears in the Watch List.

Part V • Debugging Tests

248

Deleting Variables from the Watch List

You can delete selected variables, expressions, and arrays from the Watch
List, or you can delete all the entries in the Watch List.

To delete a variable, an expression, or an array:

 1 Display the Watch List as described in “Viewing the Watch List in the Debug
Viewer” on page 242.

 2 Select a variable, an expression, or an array to delete.

Note: You can delete an array only if its elements are hidden. To hide the
elements of an array, double-click the array name in the Watch List.

 3 Click Delete entry to remove the entry from the list.

 4 Click Close to close the dialog box.

To delete all entries in the Watch List:

 1 Display the Watch List as described in “Viewing the Watch List in the Debug
Viewer” on page 242.

 2 Click Delete all entries. All entries are deleted.

 3 Click Close to close the dialog box.

Part VI

Configuring Advanced Settings

250

251

19
Customizing the Test Script Editor

WinRunner includes a powerful and customizable script editor. This enables
you to set the size of margins in test windows, change the way the elements
of a test script appear, and create a list of typing errors that will be
automatically corrected by WinRunner.

This chapter describes:

➤ About Customizing the Test Script Editor

➤ Setting Display Options

➤ Personalizing Editing Commands

About Customizing the Test Script Editor

WinRunner’s script editor lets you set display options, and personalize script
editing commands.

Setting Display Options

Display options let you configure WinRunner’s test windows and how your
test scripts are displayed. For example, you can set the size of test window
margins, and activate or deactivate word wrapping.

Display options also let you change the color and appearance of different
script elements. These include comments, strings, WinRunner reserved
words, operators, and numbers. For each script element, you can assign
colors, text attributes (bold, italic, underline), font, and font size. For
example, you could display all strings in the color red.

Part VI • Configuring Advanced Settings

252

Finally, there are display options that let you control how the hard copy of
your scripts will appear when printed.

Personalizing Script Editing Commands

WinRunner includes a list of default keyboard commands that let you move
the cursor, delete characters, and cut, copy, and paste information to and
from the clipboard. You can replace these commands with commands you
prefer. For example, you could change the Set Bookmark [#] command from
the default CTRL + K + [#] TO CTRL + B + [#].

Setting Display Options

WinRunner’s display options let you control how test scripts appear in test
windows, how different elements of test scripts are displayed, and how test
scripts will appear when they are printed.

Customizing Test Scripts and Windows

You can customize the appearance of WinRunner’s test windows and how
your scripts are displayed. For example, you can set the size of the test
window margins, highlight script elements, and show or hide text symbols.

Chapter 19 • Customizing the Test Script Editor

253

To customize the appearance of your script:

 1 Choose Tools > Editor Options. The Editor Options dialog box opens.

 2 Click the Options tab.

 3 Under the General options choose from the following options:

Options Description

Auto indent Causes lines following an indented line to
automatically begin at the same point as the
previous line. You can click the Home key on your
keyboard to move the cursor back to the left
margin.

Smart tab A single press of the tab key will insert the
appropriate number of tabs and spaces in order to
align the cursor with the text in the line above.

Part VI • Configuring Advanced Settings

254

Smart fill Insert the appropriate number of tabs and spaces in
order to apply the Auto indent option. When this
option is not selected, only spaces are used to apply
the Auto indent.
Note: Both Auto indent and Use tab character must
be selected to apply this option.

Use tab character Inserts a tab character when the tab key on the
keyboard is used. When this option is not enabled,
the appropriate number of space characters will be
inserted instead.

Line numbers in gutter Displays a line number next to each line in the
script. The line number is displayed in the test script
window’s gutter.

Statement completion Opens a list box displaying all available matches to
the function prefix whenever the user presses the
CTRL and SPACE keys simultaneously, or presses the
Underscore key. Select an item from the list to
replace the typed string. To close the list box, press
the ESC key.
Displays a tooltip with the function parameters
once the complete function name appears in the
editor.

Show all chars Displays all text symbols, such as tabs and
paragraph symbols.

Block cursor for Overwrite Displays a block cursor instead of the standard
cursor when you select overwrite mode.

Word select Selects the nearest word when you double-click on
the test window.

Syntax highlight Highlights script elements such as comments,
strings, or reserved words. For information on
reserved words, see “Reserved Words” on page 257.

Visible right margin Displays a line that indicates the test window’s right
margin.

Options Description

Chapter 19 • Customizing the Test Script Editor

255

Highlighting Script Elements

WinRunner scripts contain many different elements, such as comments,
strings, WinRunner reserved words, operators and numbers. Each element of
a WinRunner script is displayed in a different color and style. You can create
your own personalized color scheme and style for each script element. For
example, all comments in your scripts could be displayed as italicized, blue
letters on a yellow background.

To edit script elements:

 1 Choose Tools > Editor Options. The Editor Options dialog box opens.

Right margin Sets the position, in characters, of the test window’s
right margin (0=left window edge).

Visible gutter Displays a blank area (gutter) in the test window’s
left margin.

Gutter width Sets the width, in pixels, of the gutter.

Block indent step size Sets the number characters that the selected block
of TSL statements will be moved (indented) when
the INDENT SELECTED BLOCK softkey is used. For
more information on editor softkeys, see
“Personalizing Editing Commands” on page 259.

Tab stop Sets the distance, in characters, between each tab
stop.

Options Description

Part VI • Configuring Advanced Settings

256

 2 Click the Highlighting tab.

 3 Select a script element from the Element list.

 4 Choose from the following options:

Options Description

Foreground Sets the color applied to the text of the script
element.

Background Sets the color that appears behind the script
element.

Text Attributes Sets the text attributes applied to the script element.
You can select bold, italic, or underline or a
combination of these attributes.

Use defaults for Applies the font and colors of the “default” style to
the selected style.

Font Sets the typeface of all script elements.

Chapter 19 • Customizing the Test Script Editor

257

An example of each change you apply will be displayed in the pane at the
bottom of the dialog box.

 5 Click OK to apply the changes.

Reserved Words

WinRunner contains “reserved words,” which include the names of all TSL
functions and language keywords, such as auto, break, char, close, continue,
int, function. For a complete list of all reserved words in WinRunner, refer to
the TSL Reference. You can add your own reserved words in the
[ct_KEYWORD_USER] section of the reserved_words.ini file, which is located
in the dat folder in the WinRunner installation directory. Use a text editor,
such as Notepad, to open the file. Note that after editing the list, you must
restart WinRunner so that it will read from the updated list.

Customizing Print Options

You can set how the hard copy of your script will appear when it is sent to
the printer. For example, your printed script can include line numbers, the
name of the file, and the date it was printed.

To customize your print options:

 1 Choose Tools > Editor Options. The Editor Options dialog box opens.

Size Set the size, in points, of all script elements.

Charset Sets the character subset of the selected font.

Options Description

Part VI • Configuring Advanced Settings

258

 2 Click the Options tab.

 3 Choose from the following Print options:

 4 Click OK to apply the changes.

Option Description

Wrap long lines Automatically wraps a line of text to the next line if
it is wider than the current printer page settings.

Line numbers Prints a line number next to each line in the script.

Title in header Inserts the file name into the header of the printed
script.

Date in header Inserts today’s date into the header of the printed
script.

Page numbers Numbers each page of the script.

Chapter 19 • Customizing the Test Script Editor

259

Personalizing Editing Commands

You can personalize the default keyboard commands you use for editing test
scripts. WinRunner includes keyboard commands that let you move the
cursor, delete characters, and cut, copy, and paste information to and from
the clipboard. You can replace these commands with your own preferred
commands. For example, you could change the Paste command from the
default CTRL + V TO CTRL + P.

To personalize editing commands:

 1 Choose Tools > Editor Options. The Editor Options dialog box opens.

 2 Click the Key assignments tab.

 3 Select a command from the Commands list.

Part VI • Configuring Advanced Settings

260

 4 Click Add to create an additional key assignment or click Edit to modify the
existing assignment. The Add/Edit key pair for dialog box opens. Press the
keys you want to use, for example, CTRL + 4:

 5 Click Next. To add an additional key sequence, press the keys you want to
use, for example U:

 6 Click Finish to add the key sequence(s) to the Use keys list.

If you want to delete a key sequence from the list, highlight the keys in the
Uses keys list and click Delete.

 7 Click OK to apply the changes.

261

20
Customizing the WinRunner User
Interface

You can customize the WinRunner user interface to adapt it to your testing
needs and to the application you are testing.

This chapter describes:

➤ About Customizing WinRunner’s User Interface

➤ Customizing the File, Debug, and User-Defined Toolbars

➤ Customizing the User Toolbar

➤ Using the User Toolbar

➤ Configuring WinRunner Softkeys

About Customizing WinRunner’s User Interface

You can adapt WinRunner’s user interface to your testing needs by changing
the way you access WinRunner commands.

You may find that when you create and run tests, you frequently use the
same WinRunner menu commands and insert the same TSL statements into
your test scripts. You can create shortcuts to these commands and TSL
statements by customizing the WinRunner toolbars.

The application you are testing may use softkeys that are preconfigured for
WinRunner commands. If so, you can adapt the WinRunner user interface
to this application by using the WinRunner Softkey utility to reconfigure
the conflicting WinRunner softkeys.

Part VI • Configuring Advanced Settings

262

Customizing the File, Debug, and User-Defined Toolbars

You can use the Customize Toolbars option to create user-defined toolbars
and to customize the appearance and contents of the File, Debug, and user-
defined toolbars.

Note: You can also customize the User toolbar. For more information, see
“Customizing the User Toolbar” on page 269.

Adding or Removing Toolbar Buttons that Perform Menu
Commands

Using the Commands tab of the Customize Toolbars dialog box, you can add
toolbar buttons that perform frequently-used menu commands to the File
and Debug toolbars or to any existing user-defined toolbars. You can also
remove toolbar buttons from any of these toolbars.

Tip: You can restore the default buttons to a selected toolbar or to all
toolbars using the Reset or Reset All buttons in the Toolbars tab. For more
information, see “Controlling the Toolbars Display” on page 264.

Chapter 20 • Customizing the WinRunner User Interface

263

To add a button to the File, Debug, or User-Defined Toolbars:

 1 Choose View > Customize Toolbars. The Customize Toolbars dialog box
opens and displays the Commands tab.

 2 In the Categories list, find and select the menu name that contains the
command you want to add to the toolbar.

 3 In the Commands list, select the command you want to add and drag it to
the File, Debug, or User-Defined toolbar.

 4 When you place the button over one of these toolbars, the mouse pointer
becomes an I-beam cursor, indicating the location where the button will be
placed. Drag the I-beam cursor to the location where you want to add the
button, and release the mouse button.

Tip: You can also drag toolbar buttons from one toolbar to another toolbar
while the Customize Toolbars dialog box is open.

Part VI • Configuring Advanced Settings

264

To remove a button from the File, Debug, or User-Defined Toolbars:

 1 Choose View > Customize Toolbars. The Customize Toolbars dialog box
opens.

 2 Drag the toolbar button you want to remove from the toolbar to any
location outside the toolbars area. The toolbar is removed.

Controlling the Toolbars Display

The Toolbars tab of the Customize Toolbars dialog box enables you to
display or hide toolbars; restore the default buttons on toolbars; create,
rename, and delete user-defined toolbars; and control the appearance of
individual toolbars.

Tip: You can also display or hide WinRunner toolbars using the appropriate
option in the View menu.

Chapter 20 • Customizing the WinRunner User Interface

265

To display or hide a toolbar:

 1 Choose View > Customize Toolbars. The Customize Toolbars dialog box
opens and displays the Commands tab.

 2 Click the Toolbars tab.

 3 Select or clear the check box next to a WinRunner or user-defined toolbar to
display or hide it.

Note: You cannot hide the Menu bar.

To restore the default buttons on one or all WinRunner toolbars:

 1 Choose View > Customize Toolbars. The Customize Toolbars dialog box
opens and displays the Commands tab.

 2 Click the Toolbars tab.

 3 To restore the default buttons for a specific toolbar, select the toolbar from
the toolbars list and click Reset.

Note: The Reset button is disabled if a user-defined toolbar is selected.

To restore the default buttons for all WinRunner toolbars, click Reset All.

To create a user-defined toolbar:

 1 Choose View > Customize Toolbars. The Customize Toolbars dialog box
opens and displays the Commands tab.

 2 Click the Toolbars tab.

Part VI • Configuring Advanced Settings

266

 3 Click New. The Toolbar Name dialog box opens.

 4 Enter a unique name for the toolbar and click OK. The name of the new
toolbar is added to the Toolbars list. The new, blank toolbar opens as a
floating toolbar in the middle of your screen.

 5 Drag the toolbar to the location where you want to keep it. If you drag the
toolbar to a location within the top or right-hand toolbar area, it becomes a
docked toolbar (the titlebar is replaced with a toolbar handle).

Tip: You can also double-click the titlebar to dock the toolbar in a default
location in the top toolbar area.

 6 Use the Commands tab of the Customize Toolbars dialog box to add toolbar
buttons to your new toolbar. For more information, see “Adding or
Removing Toolbar Buttons that Perform Menu Commands” on page 262.

To rename a user-defined toolbar:

 1 Choose View > Customize Toolbars. The Customize Toolbars dialog box
opens and displays the Commands tab.

 2 Click the Toolbars tab.

 3 Select the user-defined toolbar you want to rename.

Chapter 20 • Customizing the WinRunner User Interface

267

Note: The Rename option is enabled only when a user-defined toolbar is
selected.

 4 Click Rename. The Toolbar Name dialog box opens and displays the current
name of the selected toolbar.

 5 Enter a new name and click OK.

To delete a user-defined toolbar:

 1 Choose View > Customize Toolbars. The Customize Toolbars dialog box
opens and displays the Commands tab.

 2 Click the Toolbars tab.

 3 Select the user-defined toolbar you want to rename.

Note: The Delete option is enabled only when a user-defined toolbar is
selected.

 4 Click Delete.

 5 Click Yes to confirm that you want to delete the selected toolbar. The
toolbar is deleted from the toolbars list and from the WinRunner window.

To display text labels on the Debug, File, or Test Toolbars:

 1 Choose View > Customize Toolbars. The Customize Toolbars dialog box
opens and displays the Commands tab.

 2 Click the Toolbars tab.

 3 Select the Debug, File, or Test toolbar from the Toolbars list.

 4 Select the Show text labels check box.

Part VI • Configuring Advanced Settings

268

Setting Toolbar Options

The Options tab of the Customize Toolbars dialog box enables you to set
options that apply to all toolbars.

The Options tab contains the following options:

Option Description

Show ScreenTips on
toolbars

Shows tips containing the name of the command
represented by a toolbar button when you point to
the button with the mouse.

Show shortcut keys in
ScreenTips

Shows the shortcut key for the command
represented by a toolbar button in its screen tip.
Enabled only when Show ScreenTips on toolbars is
selected

Chapter 20 • Customizing the WinRunner User Interface

269

Customizing the User Toolbar

The User toolbar contains buttons for commands used when creating tests.
In its default setting, the User toolbar enables easy access to the following
WinRunner commands:

By default, the User toolbar is hidden. To display the User toolbar, choose
View > User Toolbar or select User Toolbar in the Toolbars tab of the
Customize Toolbars dialog box (View > Customize Toolbars). When the User
toolbar is displayed, its default position is docked at the right edge of the
WinRunner window.

Large Icons Displays all toolbar buttons using large icons.

Look 2000 When selected, displays toolbar handles in the
Windows 2000 style with one bar. When cleared,
displays toolbar handles with two bars. This option
is available only when the Default theme is selected
in the Appearance category of the General Options
dialog box.

Option Description

Insert Function for Object/Window

Record - Context Sensitive

Stop

GUI Checkpoint for Object/Window

GUI Checkpoint for Multiple Objects

Bitmap Checkpoint for Object/Window

Synchronization Point for Object/Window Bitmap

Get Text from Object/Window

Get Text from Screen Area

Synchronization Point for Screen Area Bitmap

Insert Function from Function Generator

Default Database Checkpoint

Synchronization Point for Object/Window Property

Bitmap Checkpoint for Screen Area

Part VI • Configuring Advanced Settings

270

The User toolbar is a customizable toolbar. You can add or remove buttons
to facilitate access to the commands you most frequently use when testing
an application. You can use the User toolbar to:

➤ execute additional WinRunner menu commands. For example, you can add
a button to the User toolbar that opens the GUI Map Editor.

➤ paste TSL statements into your test scripts. For example, you can add a
button to the User toolbar that pastes the TSL statement report_msg into
your test scripts.

➤ execute TSL statements. For example, you can add a button to the User
toolbar that executes the TSL statement:

load ("my_module");

➤ parameterize TSL statements before pasting them into your test scripts or
executing them. For example, you can add a button to the User toolbar that
enables you to add parameters to the TSL statement list_select_item, and
then either paste it into your test script or execute it.

Note: None of the buttons that appear by default in the User toolbar appear
in the illustration above.

Edit GUI Map

Paste report_msg Execute load ("my_module");

Parameterize list_select_item

Chapter 20 • Customizing the WinRunner User Interface

271

Adding Buttons to the User Toolbar that Perform Menu
Commands

You can add buttons to the User toolbar that perform frequently-used menu
commands using the Customize User Toolbar dialog box.

Note: You can also add buttons to the File and Debug toolbars, and you can
create user-defined toolbars. For more information, see “Customizing the
File, Debug, and User-Defined Toolbars” on page 262.

To add a menu command to the User toolbar:

 1 Choose View > Customize User Toolbar.

The Customize User Toolbar dialog box opens.

Note that each menu in the menu bar corresponds to a category in the
Category pane of the Customize User Toolbar dialog box.

 2 In the Category pane, select a menu.

 3 In the Command pane, select the check box next to the menu command.

 4 Click OK to close the Customize User Toolbar dialog box.

The selected menu command button is added to the User toolbar.

Part VI • Configuring Advanced Settings

272

To remove a menu command from the User toolbar:

 1 Choose View > Customize User Toolbar to open the Customize User Toolbar
dialog box.

 2 In the Category pane, select a menu.

 3 In the Command pane, clear the check box next to the menu command.

 4 Click OK to close the Customize User Toolbar dialog box.

The selected menu command button is removed from the User toolbar.

Tip: You can also restore the default buttons to the User toolbar using the
Reset or Reset All buttons in the Toolbars tab of the Customize Toolbars
dialog box. For more information, see “Controlling the Toolbars Display” on
page 264.

Adding Buttons that Paste TSL Statements

You can add buttons to the User toolbar that paste TSL statements into test
scripts. One button can paste a single TSL statement or a group of
statements.

To add a button to the User toolbar that pastes TSL statements:

 1 Choose View > Customize User Toolbar. The Customize User Toolbar dialog
box opens.

Chapter 20 • Customizing the WinRunner User Interface

273

 2 In the Category pane, select Paste TSL.

 3 In the Command pane, select the check box next to a button, and then
select the button.

 4 Click Modify. The Paste TSL Button Data dialog box opens.

 5 In the Button Title box, enter a name for the button.

 6 In the Text to Paste pane, enter the TSL statement(s).

 7 Click OK to close the Paste TSL Button Data dialog box.

The name of the button is displayed beside the corresponding button in the
Command pane.

 8 Click OK to close the Customize User Toolbar dialog box. The button is
added to the User toolbar.

Part VI • Configuring Advanced Settings

274

To modify a button on the User toolbar that pastes TSL statements:

 1 Choose View > Customize User Toolbar to open the Customize User Toolbar
dialog box.

 2 In the Category pane, select Paste TSL.

 3 In the Command pane, select the button whose content you want to
modify.

 4 Click Modify. The Paste TSL Button Data dialog box opens.

 5 Enter the desired changes in the Button Title box and/or the Text to Paste
pane.

 6 Click OK to close the Paste TSL Button Data dialog box.

 7 Click OK to close the Customize User Toolbar dialog box. The button on the
User toolbar is modified.

To remove a button from the User toolbar that pastes TSL statements:

 1 Choose View > Customize User Toolbar to open the Customize User Toolbar
dialog box.

 2 In the Category pane, select Paste TSL.

 3 In the Command pane, clear the check box next to the button.

 4 Click OK to close the Customize User Toolbar dialog box. The button is
removed from the User toolbar.

Adding Buttons that Execute TSL Statements

You can add buttons to the User toolbar that execute frequently-used TSL
statements.

To add a button to the User toolbar that executes a TSL statement:

 1 Choose View > Customize User Toolbar.

The Customize User Toolbar dialog box opens.

Chapter 20 • Customizing the WinRunner User Interface

275

 2 In the Category pane, select Execute TSL.

 3 In the Command pane, select the check box next to a button, and then
select the button.

 4 Click Modify.

The Execute TSL Button Data dialog box opens.

 5 In the TSL Statement box, enter the TSL statement.

 6 Click OK to close the Execute TSL Button Data dialog box.

The TSL statement is displayed beside the corresponding button in the
Command pane.

 7 Click OK to close the Customize User Toolbar dialog box. The button is
added to the User toolbar.

To modify a button on the User toolbar that executes a TSL statement:

 1 Choose View > Customize User Toolbar to open the Customize User Toolbar
dialog box.

 2 In the Category pane, select Execute TSL.

Part VI • Configuring Advanced Settings

276

 3 In the Command pane, select the button whose content you want to
modify.

 4 Click Modify. The Execute TSL Button Data dialog box opens.

 5 Enter the desired changes in the TSL Statement box.

 6 Click OK to close the Execute TSL Button Data dialog box.

 7 Click OK to close the Customize User Toolbar dialog box. The button on the
User toolbar is modified.

To remove a button from the User toolbar that executes a TSL statement:

 1 Choose View > Customize User Toolbar to open the Customize User Toolbar
dialog box.

 2 In the Category pane, select Execute TSL.

 3 In the Command pane, clear the check box next to the button.

 4 Click OK to close the Customize User Toolbar dialog box. The button is
removed from the User toolbar.

Adding Buttons that Parameterize TSL Statements

You can add buttons to the User toolbar that enable you to easily
parameterize frequently-used TSL statements, and then paste them into
your test script or execute them.

To add a button to the User toolbar that enables you to parameterize a TSL
statement:

 1 Choose View > Customize User Toolbar. The Customize User Toolbar dialog
box opens.

Chapter 20 • Customizing the WinRunner User Interface

277

 2 In the Category pane, select Parameterize TSL.

 3 In the Command pane, select the check box next to a button, and then
select the button.

 4 Click Modify.

The Parameterize TSL Button Data dialog box opens.

 5 In the TSL Statement box, enter the name of TSL function. You do not need
to enter any parameters. For example, enter list_select_item.

 6 Click OK to close the Parameterize TSL Button Data dialog box. The TSL
statement is displayed beside the corresponding button in the Command
pane.

 7 Click OK to close the Customize User Toolbar dialog box. The button is
added to the User toolbar.

Part VI • Configuring Advanced Settings

278

To modify a button on the User toolbar that enables you to parameterize a
TSL statement:

 1 Choose View > Customize User Toolbar to open the Customize User Toolbar
dialog box.

 2 In the Category pane, select Parameterize TSL.

 3 In the Command pane, select the button whose content you want to
modify.

 4 Click Modify. The Parameterize TSL Button Data dialog box opens.

 5 Enter the desired changes in the TSL Statement box.

 6 Click OK to close the Parameterize TSL Button Data dialog box.

 7 Click OK to close the Customize User Toolbar dialog box. The button on the
User toolbar is modified.

To remove a button from the User toolbar that enables you to parameterize
a TSL statement:

 1 Choose View > Customize User Toolbar to open the Customize User Toolbar
dialog box.

 2 In the Category pane, select Parameterize TSL.

 3 In the Command pane, clear the check box next to the button.

 4 Click OK to close the Customize User Toolbar dialog box. The button is
removed from the User toolbar.

Using the User Toolbar

The User toolbar is hidden by default. You can display it by selecting it from
the View menu. To execute a command on the User toolbar, click the button
that corresponds to the command you want. You can also access the same
TSL-based commands that appear on the User toolbar by choosing them on
the Insert menu.

Chapter 20 • Customizing the WinRunner User Interface

279

When the User toolbar is a “floating” toolbar, it remains open when you
minimize WinRunner while recording a test. For more information, refer to
Chapter 8, “Designing Tests” in the Mercury WinRunner Basic Features User’s
Guide.

Parameterizing a TSL Statement

When you click a button on the User toolbar that represents a TSL statement
to be parameterized, the Set Function Parameters dialog box opens.

The Set Function Parameters dialog box varies in its appearance according to
the parameters required by a particular TSL function. For example, the
list_select_item function has four parameters: List, Item, Button and Offset.
For each parameter, you define a value as described below:

➤ To define a value for the List parameter, click the pointing hand. WinRunner
is minimized, a help window opens, and the mouse pointer becomes a
pointing hand. Click the list in your application.

➤ To define a value for the Item parameter, type it in the corresponding box.

➤ To define a value for the Button parameter, select it from the list.

➤ To define a value for the Offset parameter, type it in the corresponding box.

Part VI • Configuring Advanced Settings

280

Accessing TSL Statements on the Menu Bar

All TSL statements that you add to the User toolbar can also be accessed via
the Insert menu.

To choose a TSL statement from a menu:

➤ To paste a TSL statement, choose Insert > Paste TSL > [TSL Statement].

➤ To execute a TSL statement, choose Insert > Execute TSL > [TSL Statement].

➤ To parameterize a TSL statement, choose Insert > Parameterize TSL > [TSL
Statement].

Configuring WinRunner Softkeys

Several WinRunner commands can be carried out using softkeys.
WinRunner can carry out softkey commands even when the WinRunner
window is not the active window on your screen, or when it is minimized.

If the application you are testing uses a softkey combination that is
preconfigured for WinRunner, you can redefine the WinRunner softkey
combination using WinRunner’s Softkey Configuration utility.

Default Settings for WinRunner Softkeys

The following table lists the default softkey configurations and their
functions.

Command
Default Softkey
Combination

Function

RECORD F2 Starts test recording. While
recording, this softkey toggles
between Context Sensitive and
Analog modes.

CHECK GUI FOR SINGLE
PROPERTY

Alt Right + F12 Checks a single property of a GUI
object.

CHECK GUI FOR
OBJECT/WINDOW

Ctrl Right + F12 Creates a GUI checkpoint for an
object or a window.

Chapter 20 • Customizing the WinRunner User Interface

281

CHECK GUI FOR
MULTIPLE OBJECTS

F12 Opens the Create GUI Checkpoint
dialog box.

CHECK BITMAP OF
OBJECT/WINDOW

Ctrl Left + F12 Captures an object or a window
bitmap.

CHECK BITMAP OF
SCREEN AREA

Alt Left + F12 Captures an area bitmap.

CHECK DATABASE
(DEFAULT)

Ctrl Right + F9 Creates a check on the entire
contents of a database.

CHECK DATABASE
(CUSTOM)

Alt Right + F9 Checks the number of columns,
rows and specified information of a
database.

SYNCHRONIZE
OBJECT/WINDOW
PROPERTY

Ctrl Right + F10 Instructs WinRunner to wait for a
property of an object or a window
to have an expected value.

SYNCHRONIZE BITMAP
OF OBJECT/WINDOW

Ctrl Left + F11 Instructs WinRunner to wait for a
specific object or window bitmap to
appear.

SYNCHRONIZE BITMAP
OF SCREEN AREA

Alt Left + F11 Instructs WinRunner to wait for a
specific area bitmap to appear.

GET TEXT FROM
OBJECT/WINDOW

F11 Captures text in an object or a
window.

GET TEXT FROM SCREEN
AREA

Alt Right + F11 Captures text in a specified area and
adds a get_text statement to the
test script.

INSERT FUNCTION FOR
OBJECT/WINDOW

F8 Inserts a TSL function for a GUI
object.

INSERT FUNCTION FROM
FUNCTION GENERATOR

F7 Opens the Function Generator
dialog box.

RUN FROM TOP Ctrl Left + F5 Runs the test from the beginning.

Command
Default Softkey
Combination

Function

Part VI • Configuring Advanced Settings

282

RUN FROM ARROW Ctrl Left + F7 Runs the test from the line in the
script indicated by the arrow.

STEP F6 Runs only the current line of the
test script.

STEP INTO Ctrl Left + F8 Like Step: however, if the current
line calls a test or function, the
called test or function is displayed
in the WinRunner window but is
not executed.

STEP TO CURSOR Ctrl Left + F9 Runs a test from the line indicated
by the arrow to the line marked by
the insertion point.

PAUSE PAUSE Stops the test run after all
previously interpreted TSL
statements have been executed.
Execution can be resumed from this
point using the Run from Arrow
command or the RUN FROM ARROW
softkey.

STOP Ctrl Left + F3 Stops test recording or the test run.

MOVE LOCATOR Alt Left + F6 Records a move_locator_abs
statement with the current position
(in pixels) of the screen pointer.

Command
Default Softkey
Combination

Function

Chapter 20 • Customizing the WinRunner User Interface

283

Redefining WinRunner Softkeys

The Softkey Configuration dialog box lists the current softkey assignments
and displays an image of a keyboard. To change a softkey setting, click the
new key combination as it appears in the dialog box.

To change a WinRunner softkey setting:

 1 Choose Start > Programs > WinRunner > Softkey Configuration. The Softkey
Configuration dialog box opens.

The Commands pane lists all the WinRunner softkey commands.

 2 Click the command you want to change. The current softkey definition
appears in the Softkey box; its keys are highlighted on the keyboard.

 3 Click the new key or combination that you want to define. The new
definition appears in the Softkey box.

An error message appears if you choose a definition that is already in use or
an illegal key combination. Click a different key or combination.

 4 Click Save to save the changes and close the dialog box. The new softkey
configuration takes effect when you start WinRunner.

Part VI • Configuring Advanced Settings

284

285

21
Setting Testing Options from a Test Script

You can control how WinRunner records and runs tests by setting and
retrieving testing options from within a test script.

This chapter describes:

➤ About Setting Testing Options from a Test Script

➤ Setting Testing Options with setvar

➤ Retrieving Testing Options with getvar

➤ Controlling the Test Run with setvar and getvar

➤ Using Test Script Testing Options

About Setting Testing Options from a Test Script

WinRunner testing options affect how you record test scripts and run tests.
For example, you can set the speed at which WinRunner executes a test or
determine how WinRunner records keyboard input.

You can set and retrieve the values of testing options from within a test
script. To set the value of a testing option, use the setvar function. To
retrieve the current value of a testing option, use the getvar function. By
using a combination of setvar and getvar statements in a test script, you
can control how WinRunner executes a test. You can use these functions to
set and view the testing options for all tests, for a single test, or for part of a
single test. You can also use these functions in a startup test script to set
environment variables.

Part VI • Configuring Advanced Settings

286

Most testing options can also be set using the General Options dialog box.
For more information on setting testing options using the General Options
dialog box, refer to Chapter 23, “Setting Global Testing Options” in the
Mercury WinRunner Basic Features User’s Guide.

Setting Testing Options with setvar

You use the setvar function to set the value of a testing option from within
the test script. This function has the following syntax:

setvar ("testing_option", "value");

In this function, testing_option may specify any one of the following:

For example, if you execute the following setvar statement:

setvar ("mismatch_break", "off");

WinRunner disables the mismatch_break testing option. The setting remains
in effect during the testing session until it is changed again, either with
another setvar statement or from the corresponding Break when
verification fails check box in the Run > Settings category of the General
Options dialog box.

Using the setvar function changes a testing option globally, and this change
is reflected in the General Options dialog box. However, you can also use
the setvar function to set testing options for a specific test, or even for part
of a specific test.

attached_text_area
attached_text_search_radius
beep
capture_bitmap
cs_run_delay
cs_fail
delay_msec
drop_sync_timeout
email_service

enum_descendent_toplevel
fontgrp
item_number_seq
List_item_separator
Listview_item_separator
min_diff
mismatch_break
rec_item_name
rec_owner_drawn

searchpath
silent_mode
single_prop_check_fail
speed
sync_fail_beep
synchronization_timeout
tempdir
timeout_msec
Treeview_path_separator

Chapter 21 • Setting Testing Options from a Test Script

287

To use the setvar function to change a variable only for the current test,
without overwriting its global value, save the original value of the variable
separately and restore it later in the test.

For example, if you want to change the delay_msec testing option to 20,000
for a specific test only, insert the following at the beginning of your test
script:

Keep the original value of the 'delay_msec' testing option
old_delay = getvar ("delay_msec") ;
setvar ("delay_msec", "20,000") ;

To change back the delay testing option to its original value at the end of the
test, insert the following at the end of your test script:

#Change back the ‘delay_msec’ testing option to its original value.
setvar (“delay_msec”, old_delay) ;

Note: Some testing options are set by WinRunner and cannot be changed
through either setvar or the General Options dialog box. For example, the
value of the testname option is always the name of the current test. You can
use getvar to retrieve this read-only value. For more information, see
“Retrieving Testing Options with getvar” on page 288.

Part VI • Configuring Advanced Settings

288

Retrieving Testing Options with getvar

You use the getvar function to retrieve the current value of a testing option.
The getvar function is a read-only function, and does not enable you to
alter the value of the retrieved testing option. (To change the value of a
testing option in a test script, use the setvar function, described above.) The
syntax of this statement is:

user_variable = getvar ("testing_option");

In this function, testing_option may specify any one of the following:

For example:

currspeed = getvar ("speed");

assigns the current value of the run speed to the user-defined variable
currspeed.

attached_text_area
attached_text_search_radius
batch
beep
capture_bitmap
cs_fail
cs_run_delay
curr_dir
delay_msec
drop_sync_timeout
email_service
enum_descendent_toplevel
exp
fontgrp
item_number_seq

key_editing
line_no
List_item_separator
Listview_item_separator
min_diff
mismatch_break
rec_item_name
rec_owner_drawn
result
runmode
searchpath
shared_checklist_dir
single_prop_check_fail
silent_mode
speed

sync_fail_beep
synchronization_timeout
qc_connection
qc_cycle_name
qc_database_name
qc_log_dirname
qc_log_dirname
qc_server_name
qc_test_instance
qc_test_run_id
qc_user_name
tempdir
testname
timeout_msec
Treeview_path_separator

Chapter 21 • Setting Testing Options from a Test Script

289

Controlling the Test Run with setvar and getvar

You can use getvar and setvar together to control a test run without
changing global settings. In the following test script fragment, WinRunner
checks the bitmap Img1. The getvar function retrieves the values of the
timeout_msec and delay_msec testing options, and setvar assigns their values
for this win_check_bitmap statement. After the window is checked, setvar
restores the values of the testing options.

t = getvar ("timeout_msec");
d = getvar ("delay_msec");
setvar ("timeout_msec", 30000);
setvar ("delay_msec", 3000);
win_check_bitmap ("calculator", Img1, 2, 261,269,93,42);
setvar ("timeout_msec", t);
setvar ("delay_msec", d);

Note: You can use the setvar and getvar functions in a startup test script to
set environment variables for a specific WinRunner session. For more
information, see Chapter 23, “Initializing Special Configurations.”

Using Test Script Testing Options

This section describes the WinRunner testing options that can be used with
the setvar and getvar functions from within a test script. If you can also use
set or view the corresponding option from a dialog box, it is indicated
below.

attached_text_area

This option specifies the location on a GUI object from which WinRunner
searches for its attached text.

Part VI • Configuring Advanced Settings

290

Possible values:

Note: All of the above possible values are text strings.

You can use this option with the setvar and getvar functions.

You can also set this option using the Attached Text - Preferred search area
box in the Record category of the General Options dialog box as described
in Chapter 23, “Setting Global Testing Options” in the Mercury WinRunner
Basic Features User’s Guide.

Value Location on the GUI Object

Default Top-left corner of regular (English-style) windows;
Top-right corner of windows with RTL-style
(WS_EX_BIDI_CAPTION) windows.

Top-Left Top-left corner.

Top Midpoint of two top corners.

Top-Right Top-right corner.

Right Midpoint of two right corners.

Bottom-Right Bottom-right corner.

Bottom Midpoint of two bottom corners.

Bottom-Left Bottom-left corner.

Left Midpoint of two left corners.

Chapter 21 • Setting Testing Options from a Test Script

291

Notes: When you run a test, you must use the same values for the attached
text options that you used when you recorded the test. Otherwise,
WinRunner may not identify the GUI object.

In previous versions of WinRunner, you could not set the preferred search
area: WinRunner searched for attached text based on what is now the
Default setting for the preferred search area. If backward compatibility is
important, choose the Default setting.

attached_text_search_radius

This option specifies the radius from the specified location on a GUI object
that WinRunner searches for the static text object that is its attached text.

Possible values: 3 - 300 (pixels)

You can use this option with the setvar and getvar functions.

You can also set this option using the Attached Text - Search radius box in
the Record category of the General Options dialog box as described in
Chapter 23, “Setting Global Testing Options” in the Mercury WinRunner
Basic Features User’s Guide.

Note: When you run a test, you must use the same values for the attached
text options that you used when you recorded the test. Otherwise,
WinRunner may not identify the GUI object.

Part VI • Configuring Advanced Settings

292

batch

This option displays whether WinRunner is running in batch mode. In
batch mode, WinRunner suppresses messages during a test run so that a test
can run unattended. WinRunner also saves all the expected and actual
results of a test run in batch mode in one folder, and displays them in one
Test Results window. For more information on the batch testing option, see
Chapter 14, “Running Batch Tests.”

For example, if a set_window statement is missing from a test script,
WinRunner cannot find the specified window. If this option is on and the
test is run in batch mode, WinRunner reports an error in the Test Results
window and proceeds to run the next statement in the test script. If this
option is off and the test is not run in batch mode, WinRunner pauses the
test and opens the Run wizard to enable the user to locate the window.

You can use this option with the getvar function.

Possible values: on, off (text strings)

You can also set this option using the Run in batch mode check box in the
Run category of the General Options dialog box as described in Chapter 23,
“Setting Global Testing Options” in the Mercury WinRunner Basic Features
User’s Guide.

Note that you can also set this option using the corresponding -batch
command line option, described in Chapter 15, “Running Tests from the
Command Line.”

Note: When you run tests in batch mode, you automatically run them in
silent mode. For information about the silent_mode testing option, see
page 304.

Chapter 21 • Setting Testing Options from a Test Script

293

beep

This option determines whether WinRunner beeps when checking any
window during a test run.

You can use this option with the setvar and getvar functions.

Possible values: on, off (text strings)

You can also set this option using the corresponding Beep when checking a
window check box in the Run > Settings category of the General Options
dialog box as described in Chapter 23, “Setting Global Testing Options” in
the Mercury WinRunner Basic Features User’s Guide.

Note that you can also set this option using the corresponding -beep
command line option, described in Chapter 15, “Running Tests from the
Command Line.”

capture_bitmap

This option determines whether WinRunner captures a bitmap whenever a
checkpoint fails. When this option is on, WinRunner uses the settings from
the Run > Settings category of the General Options dialog box to determine
the captured area for the bitmaps.

You can use this option with the setvar and getvar functions.

Possible values: on, off (text strings)

You can also set this option using the Capture bitmap on verification failure
check box in the Run > Settings category of the General Options dialog box,
as described in Chapter 23, “Setting Global Testing Options” in the Mercury
WinRunner Basic Features User’s Guide.

Note that you can also set this option using the corresponding
-capture_bitmap command line option, described in Chapter 15, “Running
Tests from the Command Line.”

Part VI • Configuring Advanced Settings

294

cs_fail

This option determines whether WinRunner fails a test when Context
Sensitive errors occur. A Context Sensitive error is the failure of a Context
Sensitive statement during a test. Context Sensitive errors are often due to
WinRunner’s failure to identify a GUI object.

For example, a Context Sensitive error will occur if you run a test containing
a set_window statement with the name of a non-existent window. Context
Sensitive errors can also occur when window names are ambiguous. For
information about Context Sensitive functions, refer to the TSL Reference.

You can use this option with the setvar and getvar functions.

Possible values: 1,0

You can also set this option using the corresponding Fail test when Context
Sensitive errors occur check box in the Run > Settings category of the
General Options dialog box as described in Chapter 23, “Setting Global
Testing Options” in the Mercury WinRunner Basic Features User’s Guide.

You can also set this option using the corresponding -cs_fail command line
option, described in Chapter 15, “Running Tests from the Command Line.”

cs_run_delay

This option sets the time (in milliseconds) that WinRunner waits between
executing Context Sensitive statements when running a test.

You can use this option with the setvar and getvar functions.

Possible values: numbers 0 and higher

You can also set this option using the corresponding Delay between
execution of CS statements box in the Run > Synchronization category of
the General Options dialog box as described in Chapter 23, “Setting Global
Testing Options” in the Mercury WinRunner Basic Features User’s Guide.

Note that you can also set this option using the corresponding -cs_run_delay
command line option, described in Chapter 15, “Running Tests from the
Command Line.”

Chapter 21 • Setting Testing Options from a Test Script

295

curr_dir

This option displays the current working folder for the test.

You can use this option with the getvar function.

You can also view the location of the current working folder for the test
from the corresponding Current folder box in the Current Test tab of the
Test Properties dialog box, described in Chapter 22, “Setting Properties for a
Single Test” in the Mercury WinRunner Basic Features User’s Guide.

delay_msec

This option sets the sampling interval (in seconds) used to determine that a
window is stable before capturing it for a Context Sensitive checkpoint or
synchronization point. To be declared stable, a window must not change
between two consecutive samplings. This sampling continues until the
window is stable or the timeout (as set with the timeout_msec testing option)
is reached. (Formerly delay, which was measured in seconds.)

For example, when the delay is two seconds and the timeout is ten seconds,
WinRunner checks the window in the application under test every two
seconds until two consecutive checks produce the same results or until ten
seconds have elapsed. Setting the value to 0 disables all bitmap checking.

You can use this option with the setvar and getvar functions.

Possible values: numbers 0 and higher

Note: This option is accurate to within 20-30 milliseconds.

You can also set this option using the corresponding Delay for window
synchronization option in the Run > Synchronization category of the
General Options dialog box as described in Chapter 23, “Setting Global
Testing Options” in the Mercury WinRunner Basic Features User’s Guide.

Note that you can also set this option using the corresponding -delay_msec
command line option, described in Chapter 15, “Running Tests from the
Command Line.”

Part VI • Configuring Advanced Settings

296

drop_sync_timeout

determines whether WinRunner minimizes the synchronization timeout (as
defined in the timeout_msec option) after the first synchronization failure.

Possible values: on, off (text strings)

You can use this option with the getvar and setvar functions.

You can also set this option using the corresponding Drop synchronization
timeout if failed check box in the Run > Synchronization category of the
General Options dialog box as described in Chapter 23, “Setting Global
Testing Options” in the Mercury WinRunner Basic Features User’s Guide.

email_service

This option determines whether WinRunner activates the e-mail sending
options including the e-mail notifications for checkpoint failures, test
failures, and test completed reports as well as any email_send_msg
statements in the test.

Possible values: on, off (text strings)

You can use this option with the getvar and setvar functions.

You can also set this option using the corresponding Activate e-mail service
check box in the Notifications > E-mail category of the General Options
dialog box as described in Chapter 23, “Setting Global Testing Options” in
the Mercury WinRunner Basic Features User’s Guide.

Note that you can also set this option using the corresponding
-email_service command line option, described in Chapter 15, “Running
Tests from the Command Line.”

Chapter 21 • Setting Testing Options from a Test Script

297

enum_descendent_toplevel

This option determines whether WinRunner records controls (objects) of a
child object whose parent is an object but not a window and identifies these
controls when running a test.

Possible values: 1,0

You can use this option with the getvar and setvar functions.

You can also set this option using the corresponding Consider child
windows check box in the Record category of the General Options dialog
box as described in Chapter 23, “Setting Global Testing Options” in the
Mercury WinRunner Basic Features User’s Guide.

exp

This option displays the full path of the expected results folder associated
with the current test run.

You can use this option with the getvar function.

You can also view the full path of the expected results folder from the
corresponding Expected results folder box in the Current Test tab of the Test
Properties dialog box as described in Chapter 23, “Setting Global Testing
Options” in the Mercury WinRunner Basic Features User’s Guide.

Note that you can also set this option using the corresponding -exp
command line option, described in Chapter 15, “Running Tests from the
Command Line.”

fontgrp

To be able to use Image Text Recognition (instead of the default Text
Recognition), (described in Chapter 23, “Setting Global Testing Options” in
the Mercury WinRunner Basic Features User’s Guide), you must choose an
active font group. This option sets the active font group for Image Text
Recognition. For more information on font groups, refer to Chapter 16,
“Checking Text” in the Mercury WinRunner Basic Features User’s Guide.

You can use this option with the setvar and getvar functions.

Possible values: any text string

Part VI • Configuring Advanced Settings

298

You can also set this option using the corresponding Font group box in the
Record > Text Recognition category of the General Options dialog box as
described in Chapter 23, “Setting Global Testing Options” in the Mercury
WinRunner Basic Features User’s Guide.

Note that you can also set this option using the corresponding -fontgrp
command line option, described in Chapter 15, “Running Tests from the
Command Line.”

item_number_seq

This option defines the string recorded in the test script to indicate that a
List, ListView, or TreeView item is specified by its index number.

You can use this option with the setvar and getvar functions.

Possible values: any text string

You can also set this option using the corresponding String indicating that
what follows is a number box in the Record > Script Format category of the
General Options dialog box as described in Chapter 23, “Setting Global
Testing Options” in the Mercury WinRunner Basic Features User’s Guide.

key_editing

This option determines whether WinRunner generates more concise type,
win_type, and obj_type statements in a test script.

When this option is on, WinRunner generates more concise type,
win_type, and obj_type statements that represent only the net result of
pressing and releasing input keys. This makes your test script easier to read.

For example:

obj_type (object, "A");

When this option is disabled, WinRunner records the pressing and releasing
of each key. For example:

obj_type (object, "<kShift_L>-a-a+<kShift_L>+");

Disable this option if the exact order of keystrokes is important for your test.

Chapter 21 • Setting Testing Options from a Test Script

299

For more information on this subject, see the type function in the TSL
Reference.

You can use this option with the setvar and getvar functions.

Possible values: on, off (text strings)

You can also set this option using the corresponding Generate concise,
more readable type statements check box in the Record > Script Format
category of the General Options dialog box as described in Chapter 23,
“Setting Global Testing Options” in the Mercury WinRunner Basic Features
User’s Guide.

line_no

This option displays the line number of the current location of the
execution arrow in the test script.

You can use this option with the getvar function.

You can also view the current line number in the test script from the
corresponding Current line number box in the Current Test tab of the Test
Properties dialog box, described in Chapter 22, “Setting Properties for a
Single Test” in the Mercury WinRunner Basic Features User’s Guide.

List_item_separator

This option defines the string recorded in the test script to separate items in
a list box or a combo box.

You can use this option with the setvar and getvar functions.

Possible values: any text string

You can also set this option using the corresponding String for separating
ListBox or ComboBox items box in the Record > Script Format category of
the General Options dialog box as described in Chapter 23, “Setting Global
Testing Options” in the Mercury WinRunner Basic Features User’s Guide.

Part VI • Configuring Advanced Settings

300

Listview_item_separator

This option defines the string recorded in the test script to separate items in
a ListView or a TreeView.

You can use this option with the setvar and getvar functions.

Possible values: any text string

You can also set this option using the corresponding String for separating
ListView or TreeView items box in the Record > Script Format category of
the General Options dialog box as described in Chapter 23, “Setting Global
Testing Options” in the Mercury WinRunner Basic Features User’s Guide.

min_diff

This option defines the number of pixels that constitute the threshold for
bitmap mismatch. When this value is set to 0, a single pixel mismatch
constitutes a bitmap mismatch.

You can use this option with the setvar and getvar functions.

Possible values: numbers 0 and higher

You can also set this option using the corresponding Threshold for
difference between bitmaps box in the Run > Settings category of the
General Options dialog box as described in Chapter 23, “Setting Global
Testing Options” in the Mercury WinRunner Basic Features User’s Guide.

Note that you can also set this option using the corresponding -min_diff
command line option, described in Chapter 15, “Running Tests from the
Command Line.”

mismatch_break

This option determines whether WinRunner pauses the test run and
displays a message whenever verification fails or whenever any message is
generated as a result of a context sensitive statement during a test that is run
in Verify mode. This option should be used only when working
interactively.

Chapter 21 • Setting Testing Options from a Test Script

301

For example, if a set_window statement is missing from a test script,
WinRunner cannot find the specified window. If this option is on,
WinRunner pauses the test and opens the Run wizard to enable the user to
locate the window. If this option is off, WinRunner reports an error in the
Test Results window and proceeds to run the next statement in the test
script.

You can use this option with the setvar and getvar functions.

Possible values: on, off (text strings)

You can also set this option using the corresponding Break when
verification fails check box in the Run > Settings category of the General
Options dialog box as described in Chapter 23, “Setting Global Testing
Options” in the Mercury WinRunner Basic Features User’s Guide.

Note that you can also set this option using the corresponding
-mismatch_break command line option, described in Chapter 15, “Running
Tests from the Command Line.”

rec_item_name

This option determines whether WinRunner records non-unique ListBox
and ComboBox items by name or by index.

You can use this option with the setvar and getvar functions.

Possible values: 1,0

You can also set this option using the corresponding Record non-unique list
items by name check box in the Record category of the General Options
dialog box as described in Chapter 23, “Setting Global Testing Options” in
the Mercury WinRunner Basic Features User’s Guide.

Note that you can also set this option using the corresponding
-rec_item_name command line option, described in Chapter 15, “Running
Tests from the Command Line.”

Part VI • Configuring Advanced Settings

302

rec_owner_drawn

Since WinRunner cannot identify the class of owner-drawn buttons, it
automatically maps them to the general “object” class. This option enables
you to map all owner-drawn buttons to a standard button class
(push_button, radio_button, or check_button).

You can use this option with the setvar and getvar functions.

Possible Values: object, push_button, radio_button, check_button (text
strings)

You can also set this option using the corresponding Record owner-drawn
buttons as box in the Record category of the General Options dialog box as
described in Chapter 23, “Setting Global Testing Options” in the Mercury
WinRunner Basic Features User’s Guide.

result

This option displays the full path of the verification results folder associated
with the current test run.

You can use this option with the getvar function.

You can also view the full path of the verification results folder from the
corresponding Verification results folder box in the Current Test tab of the
Test Properties dialog box as described in Chapter 22, “Setting Properties for
a Single Test” in the Mercury WinRunner Basic Features User’s Guide.

runmode

This option displays the current run mode.

You can use this option with the getvar function.

Possible values: verify, debug, update (text strings)

You can also view the current run mode from the corresponding Run mode
box in the Current Test tab of the Test Properties dialog box, described in
Chapter 22, “Setting Properties for a Single Test” in the Mercury WinRunner
Basic Features User’s Guide.

Chapter 21 • Setting Testing Options from a Test Script

303

searchpath

This option sets the path(s) in which WinRunner searches for called tests. If
you define search paths, you do not need to designate the full path of a test
in a call statement. You can set multiple search paths in a single statement
by leaving a space between each path. To set multiple search paths for long
file names, surround each path with angle brackets < >. WinRunner searches
for a called test in the order in which multiple paths appear in the getvar or
setvar statement.

You can use this option with the setvar and getvar functions.

You can also set this option using the corresponding Search path for called
tests box in the Folders category of the General Options dialog box as
described in Chapter 23, “Setting Global Testing Options” in the Mercury
WinRunner Basic Features User’s Guide.

Note that you can also set this option using the corresponding -search_path
command line option, described in Chapter 15, “Running Tests from the
Command Line.”

Note: When WinRunner is connected to Quality Center, you can specify the
paths in a Quality Center database that WinRunner searches for called tests.
Search paths in a Quality Center database can be preceded by [QC].

shared_checklist_dir

This option designates the folder in which WinRunner stores shared
checklists for GUI and database checkpoints. In the test script, shared
checklist files are designated by SHARED_CL before the file name in a
win_check_gui, obj_check_gui, check_gui, or check_db statement. For
more information on shared GUI checklists, refer to Chapter 9, “Checking
GUI Objects” in the Mercury WinRunner Basic Features User’s Guide. For more
information on shared database checklists, refer to Chapter 14, “Checking
Databases” in the Mercury WinRunner Basic Features User’s Guide. Note that if
you designate a new folder, you must restart WinRunner in order for the
change to take effect.

You can use this option with the getvar function.

Part VI • Configuring Advanced Settings

304

You can also view the location of the folder in which WinRunner stores
shared checklists from the corresponding Shared checklists box in the
Folders category of the General Options dialog box as described in
Chapter 23, “Setting Global Testing Options” in the Mercury WinRunner
Basic Features User’s Guide.

silent_mode

This option displays whether WinRunner is running in silent mode. In
silent mode, WinRunner suppresses messages during a test run so that a test
can run unattended. When you run a test remotely from Quality Center,
you must run it in silent mode, because no one is monitoring the computer
where the test is running to view the messages. For information on running
tests remotely from Quality Center, see Chapter 26, “Managing the Testing
Process.”

You can use this option with the setvar and getvar functions.

Possible values: on, off (text strings)

Note: When you run tests in batch mode, you automatically run them in
silent mode. For information running tests in batch mode, see Chapter 14,
“Running Batch Tests.”

single_prop_check_fail

This option fails a test run when _check_info statements fail. It also writes
an event to the Test Results window for these statements. (You can create
_check_info statements using the Insert > GUI Checkpoint > For Single
Property command.)

You can use this option with the setvar and getvar functions.

Possible values: 1,0

For information about the check_info functions, refer to the TSL Reference.

Chapter 21 • Setting Testing Options from a Test Script

305

You can also set this option using the corresponding Fail test when single
property check fails option in the Run > Settings category of the General
Options dialog box as described in Chapter 23, “Setting Global Testing
Options” in the Mercury WinRunner Basic Features User’s Guide.

Note that you can also set this option using the corresponding
-single_prop_check_fail command line option, described in Chapter 15,
“Running Tests from the Command Line.”

speed

This option sets the default run speed for tests run in Analog mode.

Possible values: normal, fast (text strings)

Setting the option to normal runs the test at the speed at which it was
recorded.

Setting the option to fast runs the test as fast as the application can receive
input.

You can use this option with the setvar and getvar functions.

You can also set this option using the corresponding Run speed for Analog
mode option in the Run category of the General Options dialog box as
described in Chapter 23, “Setting Global Testing Options” in the Mercury
WinRunner Basic Features User’s Guide.

Note that you can also set this option using the corresponding -speed
command line option, described in Chapter 15, “Running Tests from the
Command Line.”

sync_fail_beep

This option determines whether WinRunner beeps when synchronization
fails.

You can use this option with the setvar and getvar functions.

Possible values: 1,0

Part VI • Configuring Advanced Settings

306

You can also set this option using the corresponding Beep when
synchronization fails check box in the Run > Synchronization category of
the General Options dialog box as described in Chapter 23, “Setting Global
Testing Options” in the Mercury WinRunner Basic Features User’s Guide.

Note: This option is useful primarily for debugging test scripts.

Note: If synchronization often fails during your test runs, consider
increasing the value of the synchronization_timeout testing option (described
below) or the corresponding Timeout for waiting for synchronization
message option in the Run > Synchronization category of the General
Options dialog box.

synchronization_timeout

This option sets the timeout (in milliseconds) that WinRunner waits before
validating that keyboard or mouse input was entered correctly during a test
run.

You can use this option with the setvar and getvar functions.

Possible values: numbers 0 and higher

You can also set this option using the corresponding Timeout for waiting for
synchronization message box in the Run > Synchronization category of the
General Options dialog box as described in Chapter 23, “Setting Global
Testing Options” in the Mercury WinRunner Basic Features User’s Guide.

Note: If synchronization often fails during your test runs, consider
increasing the value of this option.

Chapter 21 • Setting Testing Options from a Test Script

307

qc_connection

This option indicates whether WinRunner is currently connected to Quality
Center. (Formerly td_connection or test_director.)

You can use this option with the getvar function.

Possible values: on, off (text strings)

You can connect to Quality Center from the Quality Center Connection
dialog box or using the -qc_connection command line option. For more
information about connecting to Quality Center, see Chapter 26,
“Managing the Testing Process.”

qc_cycle_name

This option displays the name of the Quality Center test set (formerly
known as “cycle”) for the test. (Formerly td_cycle_name or cycle.)

You can use this option with the getvar function.

You can set this option using the Run Tests dialog box when you run a test
set from WinRunner while connected to Quality Center. For more
information, see “Running Tests in a Test Set” on page 402. You can also set
this option from within Quality Center. For more information, refer to the
Mercury Quality Center User’s Guide.

Note that you can also set this option using the corresponding
-qc_cycle_name command line option, described in Chapter 15, “Running
Tests from the Command Line.”

qc_database_name

This option displays the name of the Quality Center project database to
which WinRunner is currently connected. (Formerly td_database_name)

You can use this option with the getvar function.

You can set this option using the Project option in the Quality Center
Connection dialog box, which you can open by choosing
Tools > Quality Center Connection. For more information, see Chapter 26,
“Managing the Testing Process.”

Part VI • Configuring Advanced Settings

308

Note that you can also set this option using the corresponding
-qc_database_name command line option, described in Chapter 15,
“Running Tests from the Command Line.”

qc_server_name

This option displays the name of the Quality Center server to which
WinRunner is currently connected. (Formerly td_server_name)

You can use this option with the getvar function.

You can set this option using the Server box in the Quality Center
Connection dialog box, which you can open by choosing
Tools > Quality Center Connection. For more information, see Chapter 26,
“Managing the Testing Process.”

Note that you can also set this option using the corresponding
-qc_server_name command line option, described in Chapter 15, “Running
Tests from the Command Line.”

qc_test_instance

This option displays the instance of the test that is currently opened and
running in the Quality Center test set.

You can use this option with the getvar function.

You can set this value using the Test Instance box in the Test Run dialog box
when you are connected to Quality Center. For more information, see
“Running Tests in a Test Set” on page 402.

qc_test_run_id

This option displays the run name of the test that is currently opened and
running in the Quality Center test set.

You can use this option with the getvar function.

You can set this value using the Test Run Name box in the Test Run dialog
box when you are connected to Quality Center. For more information, see
“Running Tests in a Test Set” on page 402.

Chapter 21 • Setting Testing Options from a Test Script

309

qc_user_name

This option displays the user name for opening the selected Quality Center
database. (Formerly td_user_name or user.)

You can use this option with the getvar function.

Note that you can also set this option using the corresponding
-qc_user_name command line option, described in Chapter 15, “Running
Tests from the Command Line.”

You can set this option using the User name box in the Quality Center
Connection dialog box, which you can open by choosing
Tools > Quality Center Connection. For more information, see Chapter 26,
“Managing the Testing Process.”

tempdir

This option designates the folder containing temporary files. Note that if
you designate a new folder, you must restart WinRunner in order for the
change to take effect.

You can use this option with the setvar and getvar functions.

You can also set this option using the corresponding
Temporary files box in the Folders category of the General Options dialog
box as described in Chapter 23, “Setting Global Testing Options” in the
Mercury WinRunner Basic Features User’s Guide.

testname

This option displays the full path of the current test.

You can use this option with the getvar function.

You can also view the location and the test name of the current test in the
General tab of the Test Properties dialog box as described in Chapter 22,
“Setting Properties for a Single Test” in the Mercury WinRunner Basic Features
User’s Guide.

Part VI • Configuring Advanced Settings

310

timeout_msec

This option sets the global timeout (in milliseconds) used by WinRunner
when executing checkpoints and Context Sensitive statements. This value is
added to the time parameter embedded in GUI checkpoint or
synchronization point statements to determine the maximum amount of
time that WinRunner searches for the specified window. The timeout must
be greater than the delay for window synchronization (as set with the
delay_msec testing option). This option was formerly known as timeout, and
was measured in seconds.

For example, in the statement:

win_check_bitmap ("calculator", Img1, 2, 261,269,93,42);

when the timeout_msec variable is 10,000 milliseconds, this operation takes a
maximum of 12,000 (2,000 +10,000) milliseconds.

You can use this option with the setvar and getvar functions.

Possible values: numbers 0 and higher

Note: This option is accurate to within 20-30 milliseconds.

You can also set this option using the corresponding Timeout for
checkpoints and CS statements box in the Run > Settings category of the
General Options dialog box as described in Chapter 23, “Setting Global
Testing Options” in the Mercury WinRunner Basic Features User’s Guide.

Note that you can also set this option using the corresponding -timeout_msec
command line option, described in Chapter 15, “Running Tests from the
Command Line.”

Chapter 21 • Setting Testing Options from a Test Script

311

Treeview_path_separator

This option defines the string recorded in the test script to separate items in
a tree view path.

Possible values: any text string

You can use this option with the getvar and setvar functions.

You can also set this option using the corresponding String for parsing a
TreeView path box in the Record > Script Format category of the General
Options dialog box as described in Chapter 23, “Setting Global Testing
Options” in the Mercury WinRunner Basic Features User’s Guide.

Part VI • Configuring Advanced Settings

312

313

22
Customizing the Function Generator

You can customize the Function Generator to include the user-defined
functions that you most frequently use in your tests scripts. This makes
programming tests easier and reduces the potential for errors.

This chapter describes:

➤ About Customizing the Function Generator

➤ Adding a Category to the Function Generator

➤ Adding a Function to the Function Generator

➤ Associating a Function with a Category

➤ Adding a Subcategory to a Category

➤ Setting a Default Function for a Category

About Customizing the Function Generator

You can modify the Function Generator to include the user-defined
functions that you use most frequently. This enables you to quickly generate
your favorite functions and insert them directly into your test scripts. You
can also create custom categories in the Function Generator in which you
can organize your user-defined functions. For example, you can create a
category named my_button, which contains all the functions specific to the
my_button custom class. You can also set the default function for the new
category, or modify the default function for any standard category.

Part VI • Configuring Advanced Settings

314

To add a new category with its associated functions to the Function
Generator:

 1 Add a new category to the Function Generator.

 2 Add new functions to the Function Generator.

 3 Associate the new functions with the new category.

 4 Set the default function for the new category.

 5 Add a subcategory for the new category (optional).

You can find all the functions required to customize the Function Generator
in the “function table” category of the Function Generator. By inserting
these functions in a startup test, you ensure that WinRunner is invoked with
the correct configuration.

Adding a Category to the Function Generator

You use the generator_add_category TSL function to add a new category to
the Function Generator. This function has the following syntax:

generator_add_category (category_name);

where category_name is the name of the category that you want to add to the
Function Generator.

In the following example, the generator_add_category function adds a
category called “my_button” to the Function Generator:

generator_add_category ("my_button");

Note: If you want to display the default function for category when you
select an object using the Insert > Function > For Object/Window command,
the category name must be the same as the name of the GUI object class.

Chapter 22 • Customizing the Function Generator

315

To add a category to the Function Generator:

 1 Open the Function Generator. (Choose Insert > Function > From Function
Generator, click the Insert Function from Function Generator button on the
User toolbar, or press the INSERT FUNCTION FROM FUNCTION GENERATOR
softkey.)

 2 In the Category box, click function table.

 3 In the Function Name box, click generator_add_category.

 4 Click Args. The Function Generator expands.

 5 In the Category Name box, type the name of the new category between the
quotes. Click Paste to paste the TSL statement into your test script.

 6 Click Close to close the Function Generator.

A generator_add_category statement is inserted into your test script.

Note: You must run the test script in order to insert a new category into the
Function Generator.

Adding a Function to the Function Generator

When you add a function to the Function Generator, you specify the
following:

➤ how the user supplies values for the arguments in the function

➤ the function description that appears in the Function Generator

Note that after you add a function to the Function Generator, you should
associate the function with a category. See “Associating a Function with a
Category” on page 323.

You use the generator_add_function TSL function to add a user-defined
function to the Function Generator.

Part VI • Configuring Advanced Settings

316

To add a function to the Function Generator:

 1 Open the Function Generator. (Choose Insert > Function > From Function
Generator, click the Insert Function from Function Generator button on the
User toolbar, or press the INSERT FUNCTION FROM FUNCTION GENERATOR
softkey.)

 2 In the Category box, click function table.

 3 In the Function Name box, click generator_add_function.

 4 Click Args. The Function Generator expands.

 5 In the Function Generator, define the function_name, description, and
arg_number arguments:

➤ In the function_name box, type the name of the new function between
the quotes. Note that you can include spaces and upper-case letters in the
function name.

➤ In the description box, enter the description of the function between the
quotes. Note that it does not have to be a valid string expression and it
must not exceed 180 characters.

➤ In the arg_number box, you must choose 1. To define additional
arguments (up to eight arguments for each new function), you must
manually modify the generated generator_add_function statement
once it is added to your test script.

 6 For the function’s first argument, define the following arguments: arg_name,
arg_type, and default_value (if relevant):

➤ In the arg_name box, type the name of the argument within the
quotation marks. Note that you can include spaces and upper-case letters
in the argument name.

➤ In the arg_type box, select “browse()”, “point_object”, “point_window”,
“select_list (01)”, or “type_edit”, to choose how the user will fill in the
argument’s value in the Function Generator, as described in “Defining
Function Arguments” on page 317.

➤ In the default_value box, if relevant, choose the default value for the
argument.

Chapter 22 • Customizing the Function Generator

317

➤ Note that any additional arguments for the new function cannot be
added from the Function Generator: The arg_name, arg_type, and
default_value arguments must be added manually to the
generator_add_function statement in your test script.

 7 Click Paste to paste the TSL statement into your test script.

 8 Click Close to close the Function Generator.

Note: You must run the test script in order to insert a new function into the
Function Generator.

Defining Function Arguments

The generator_add_function function has the following syntax:

generator_add_function (function_name, description, arg_number,
arg_name_1, arg_type_1, default_value_1,

...
arg_name_n, arg_type_n, default_value_n);

➤ function_name is the name of the function you are adding.

➤ description is a brief explanation of the function. The description appears in
the Description box of the Function Generator when the function is
selected. It does not have to be a valid string expression and must not
exceed 180 characters.

➤ arg_number is the number of arguments in the function. This can be any
number from zero to eight.

For each argument in the function you define, you supply the name of the
argument, how it is filled in, and its default value (where possible). When
you define a new function, you repeat the following parameters for each
argument in the function: arg_name, arg_type, and default_value.

➤ arg_name defines the name of the argument that appears in the Function
Generator.

Part VI • Configuring Advanced Settings

318

➤ arg_type defines how the user fills in the argument’s value in the Function
Generator. There are five types of arguments:

“browse()”: The value of the argument is evaluated by pointing to
a file in a browse file dialog box. Use browse when the
argument is a file. To select a file with specific file
extensions only, specify a list of default extension(s).
Items in the list should be separated by a space or tab.
Once a new function is defined, the browse argument is
defined in the Function Generator by using a Browse
button.

“point_object”: The value of the argument is evaluated by pointing to
a GUI object (other than a window). Use point_object
when the argument is the logical name of an object.
Once a new function is defined, the point_object
argument is defined in the Function Generator by
using a pointing hand.

“point_window”: The value of the argument is evaluated by pointing to
a window. Use point_window when the argument is the
logical name of a window. Once a new function is
defined, the point_window argument is defined in the
Function Generator by using a pointing hand.

“select_list (01)”: The value of the argument is selected from a list. Use
select_list when there is a limited number of argument
values, and you can supply all the values. Once a new
function is defined, the select_list argument is defined
in the Function Generator by using a combo box.

“type_edit”: The value of the argument is typed in. Use type_edit
when you cannot supply the full range of argument
values. Once a new function is defined, the type_edit
argument is defined in the Function Generator by
typing into an edit field.

Chapter 22 • Customizing the Function Generator

319

➤ default_value provides the argument’s default value. You may assign default
values to select_list and type_edit arguments. The default value you specify
for a select_list argument must be one of the values included in the list. You
cannot assign default values to point_window and point_object arguments.

The following are examples of argument definitions that you can include in
generator_add_function statements. The examples include the syntax of
the argument definitions, their representations in the Function Generator,
and a brief description of each definition.

Example 1

generator_add_function ("window_name","This function...",1,
"Window Name","point_window","");

The function_name is window_name. The description is “This function...”.
The arg_number is 1. The arg_name is Window Name. The arg_type is
point_window. There is no default_value: since the argument is selected by
pointing to a window, this argument is an empty string.

When you select the window_name function in the Function Generator
and click the Args button, the Function Generator appears as follows:

Part VI • Configuring Advanced Settings

320

Example 2

generator_add_function("state","This function...",1,"State","select_list (0 1)",0);

The function_name is state. The description is “This function...”. The
arg_number is 1. The arg_name is State. The arg_type is select_list. The
default_value is 0.

When you select the state function in the Function Generator and click the
Args button, the Function Generator appears as follows:

Example 3

generator_add_function("value","This function...",1,"Value","type_edit","");

The function_name is value. The description is “This function...”. The
arg_number is 1. The arg_name is Value. The arg_type is type_edit. There is no
default_value.

Chapter 22 • Customizing the Function Generator

321

When you select the value function in the Function Generator and click the
Args button, the Function Generator appears as follows:

Defining Property Arguments

You can define a function with an argument that uses a Context Sensitive
property, such as the label on a pushbutton or the width of a checkbox. In
such a case, you cannot define a single default value for the argument.
However, you can use the attr_val function to determine the value of a
property for the selected window or GUI object. You include the attr_val
function in a call to the generator_add_function function.

The attr_val function has the following syntax:

attr_val (object_name, "property");

➤ object_name defines the window or GUI object whose property is returned. It
must be identical to the arg_name defined in a previous argument of the
generator_add_function function.

➤ property can be any property used in Context Sensitive testing, such as
height, width, label, or value. You can also specify platform-specific
properties such as MSW_class and MSW_id.

Part VI • Configuring Advanced Settings

322

You can either define a specific property, or specify a parameter that was
defined in a previous argument of the same call to the function,
generator_add_function. For an illustration, see example 2, below.

Example 1

In this example, a function called “check_my_button_label” is added to the
Function Generator. This function checks the label of a button.

generator_add_function("check_my_button_label", "This function checks the
label of a button.", 2,

"button_name", "point_object"," ",
"label", "type_edit", "attr_val(button_name, \"label\")");

The “check_my_button_label” function has two arguments. The first is the
name of the button. Its selection method is point_object and it therefore has
no default value. The second argument is the label property of the button
specified, and is a type_edit argument. The attr_val function returns the label
property of the selected GUI object as the default value for the property.

Example 2

The following example adds a function called “check_my_property” to the
Function Generator. This function checks the class, label, or active property
of an object. The property whose value is returned as the default depends on
which property is selected from the list.

generator_add_function ("check_my_property","This function checks an object’s
property.",3,

"object_name", "point_object", " ",
"property", "select_list(\"class\"\"label\"\"active\")", "\"class\"",
"value:", "type_edit", "attr_val(object_name, property)");

The first three arguments in generator_add_function define the following:

➤ the name of the new function (check_my_property).

➤ the description appearing in the Description field of the Function
Generator. This function checks an object’s property.

➤ the number of arguments (3).

Chapter 22 • Customizing the Function Generator

323

The first argument of “check_my_property” determines the object whose
property is to be checked. The first parameter of this argument is the object
name. Its type is point_object. Consequently, as the null value for the third
parameter of the argument indicates, it has no default value.

The second argument is the property to be checked. Its type is select_list. The
items in the list appear in parentheses, separated by field separators and in
quotation marks. The default value is the class property.

The third argument, value, is a type_edit argument. It calls the attr_val
function. This function returns, for the object defined as the function’s first
argument, the property that is defined as the second argument (class, label
or active).

Associating a Function with a Category

You should associate any function that you add to the Function Generator
with an existing category. You make this association using the
generator_add_function_to_category TSL function. Both the function and
the category must already exist.

This function has the following syntax:

generator_add_function_to_category (category_name, function_name);

➤ category_name is the name of a category in the Function Generator. It can be
either a standard category, or a custom category that you defined using the
generator_add_category function.

➤ function_name is the name of a custom function. You must have already
added the function to the Function Generator using the function,
generator_add_function.

To associate a function with a category:

 1 Open the Function Generator. (Choose Insert > Function > From Function
Generator, click the Insert Function from Function Generator button on the
User toolbar, or press the INSERT FUNCTION FROM FUNCTION GENERATOR
softkey.)

 2 In the Category box, click function table.

Part VI • Configuring Advanced Settings

324

 3 In the Function Name box, click generator_add_function_to_category.

 4 Click Args. The Function Generator expands.

 5 In the Category Name box, enter the category name as it already appears in
the Function Generator.

 6 In the Function Name box, enter the function name as it already appears in
the Function Generator.

 7 Click Paste to paste the TSL statement into your test script.

 8 Click Close to close the Function Generator.

A generator_add_function_to_category statement is inserted into your test
script. In the following example, the “check_my_button_label” function is
associated with the “my_button” category. This example assumes that you
have already added the “my_button” category and the
“check_my_button_label” function to the Function Generator.

generator_add_function_to_category ("my_button", "check_my_button_label");

Note: You must run the test script in order to associate a function with a
category.

Adding a Subcategory to a Category

You use the generator_add_subcategory TSL function to make one category
a subcategory of another category. Both categories must already exist. The
generator_add_subcategory function adds all the functions in the
subcategory to the list of functions for the parent category.

If you create a separate category for your new functions, you can use the
generator_add_subcategory function to add the new category as a
subcategory of the relevant Context Sensitive category.

Chapter 22 • Customizing the Function Generator

325

The syntax of generator_add_subcategory is as follows:

generator_add_subcategory (category_name, subcategory_name);

➤ category_name is the name of an existing category in the Function Generator.

➤ subcategory_name is the name of an existing category in the Function
Generator.

To add a subcategory to a category:

 1 Open the Function Generator. (Choose Insert > Function > From Function
Generator, click the Insert Function from Function Generator button on the
User toolbar, or press the INSERT FUNCTION FROM FUNCTION GENERATOR
softkey.)

 2 In the Category box, click function table.

 3 In the Function Name box, click generator_add_subcategory.

 4 Click Args. The Function Generator expands.

 5 In the Category Name box, enter the category name as it already appears in
the Function Generator.

 6 In the Subcategory Name box, enter the subcategory name as it already
appears in the Function Generator.

 7 Click Paste to paste the TSL statement into your test script.

 8 Click Close to close the Function Generator.

A generator_add_subcategory statement is inserted into your test script. In
the following example, the “my_button” category is defined as a
subcategory of the “push_button” category. All “my_button” functions are
added to the list of functions defined for the push_button category.

generator_add_subcategory ("push_button", "my_button");

Note: You must run the test script in order to add a subcategory to a
category.

Part VI • Configuring Advanced Settings

326

Setting a Default Function for a Category

You set the default function for a category using the
generator_set_default_function TSL function. This function has the
following syntax:

generator_set_default_function (category_name, function_name);

➤ category_name is an existing category.

➤ function_name is an existing function.

You can set a default function for a standard category or for a user-defined
category that you defined using the generator_add_category function. If
you do not define a default function for a user-defined category, WinRunner
uses the first function in the list as the default function.

Note that the generator_set_default_function function performs the same
operation as the Set As Default button in the Function Generator dialog box.
However, a default function set through the Set As Default checkbox
remains in effect during the current WinRunner session only. By adding
generator_set_default_function statements to your startup test, you can set
default functions permanently.

Chapter 22 • Customizing the Function Generator

327

To set a default function for a category:

 1 Open the Function Generator. (Choose Insert > Function > From Function
Generator, click the Insert Function from Function Generator button on the
User toolbar, or press the INSERT FUNCTION FROM FUNCTION GENERATOR
softkey.)

 2 In the Category box, click function table.

 3 In the Function Name box, click generator_set_default_function.

 4 Click Args. The Function Generator expands.

 5 In the Category Name box, enter the category name as it already appears in
the Function Generator.

 6 In the Default box, enter the function name as it already appears in the
Function Generator.

 7 Click Paste to paste the TSL statement into your test script.

 8 Click Close to close the Function Generator.

A generator_set_default_function statement is inserted into your test
script. In the following example, the default function of the push button
category is changed from button_check_enabled to the user-defined
“check_my_button_label” function.

generator_set_default_function ("push_button", "check_my_button_label");

Note: You must run the test script in order to set a default function for a
category.

Part VI • Configuring Advanced Settings

328

329

23
Initializing Special Configurations

By creating startup tests, you can automatically initialize special testing
configurations each time you start WinRunner.

This chapter describes:

➤ About Initializing Special Configurations

➤ Creating Startup Tests

➤ Sample Startup Test

About Initializing Special Configurations

A startup test is a test script that is automatically run each time you start
WinRunner. You can create startup tests that load GUI map files and
compiled modules, configure recording, and start the application under test.

You designate a test as a startup test by entering its location in the Startup
test box in the General > Startup category in the General Options dialog
box. For more information on using the General Options dialog box, refer to
Chapter 23, “Setting Global Testing Options” in the Mercury WinRunner
Basic Features User’s Guide.

Part VI • Configuring Advanced Settings

330

Creating Startup Tests

You should add the following types of statements to your startup test:

➤ load statements, which load compiled modules containing user-defined
functions that you frequently call from your test scripts.

➤ GUI_load statements, which load one or more GUI map files. This ensures
that WinRunner recognizes the GUI objects in your application when you
run tests.

➤ statements that configure how WinRunner records GUI objects in your
application, such as set_record_attr or set_class_map.

➤ an invoke_application statement, which starts the application being tested.

➤ statements that enable WinRunner to generate custom record TSL functions
when you perform operations on custom objects, such as
add_cust_record_class.

By including the above elements in a startup test, WinRunner automatically
compiles all designated functions, loads all necessary GUI map files,
configures the recording of GUI objects, and loads the application being
tested.

Note: You can use the RapidTest Script wizard to create a basic startup test
called myinit that loads a GUI map file and the application being tested.
Note that when you work in the GUI Map File per Test mode (described in
Chapter 6, “Working in the GUI Map File per Test Mode” in the Mercury
WinRunner Basic Features User’s Guide) the myinit test does not load GUI map
files.

Chapter 23 • Initializing Special Configurations

331

Sample Startup Test

The following is an example of the types of statements that might appear in
a startup test:

Start the Flight application if it is not already displayed on the screen
if ((rc=win_exists("Flight")) == E_NOT_FOUND)

invoke_application("w:\\flight_app\\flight.exe", "", "w:\\flight_app",
SW_SHOW);

Load the compiled module "qa_funcs"
load("qa_funcs", 1, 1);

Load the GUI map file "flight.gui"
GUI_load ("w:\\qa\\gui\\flight.gui");

Map the custom “borbtn” class to the standard “push_button” class
set_class_map (“borbtn”, “push_button”);

Part VI • Configuring Advanced Settings

332

Part VII

Working with Other Mercury Products

334

335

24
Working with Business Process Testing

Business Process Testing is a module of Mercury Quality Center that utilizes
a new methodology for quality-assurance testing, based on the creation and
implementation of components in business process tests. This methodology
enables non-technical SMEs (subject matter experts) to design business
process tests early in the development cycle and in a script-free
environment.

Integrating WinRunner with Business Process Testing enables you to
leverage your investment in existing WinRunner scripts and improve the
test automation process by using the Business Process Testing framework.

This chapter describes how to use WinRunner to create and manage scripted
components that are used in Business Process Testing. WinRunner options
and features that are common or similar for both components and tests are
described in the relevant chapters throughout this user’s guide.

This chapter describes:

➤ About Business Process Testing

➤ Understanding Business Process Testing Methodology

➤ Getting Started with Scripted Components in WinRunner

➤ Connecting to your Quality Center Project

➤ Working with Scripted Components

➤ Creating a New Scripted Component

➤ Defining Scripted Component Properties

➤ Saving a Scripted Component

➤ Modifying a Scripted Component

Part VII • Working with Other Mercury Products

336

About Business Process Testing

A business process test is a scenario composed of a serial flow of
components, which are easily-maintained reusable scripts that perform a
specific task in the application being tested.

Generally, components are created and modified in Quality Center by SMEs.
However, when WinRunner is connected to a Quality Center project with
Business Process Testing, you can create, view, modify, and debug
components in WinRunner. You can then save your components to a
project in Quality Center in the form of scripted components. SMEs working
in Quality Center can combine each of your components into one or more
business process tests.

The SME can combine components from other testing tools, such as
QuickTest, with WinRunner components in business process tests, ensuring
that every aspect of the application to be tested is covered, even before it is
ready to be tested.

You can also save your existing WinRunner test scripts as scripted
components, so that SMEs can use them in business process tests.

Note: You can integrate Business Process Testing with WinRunner by
purchasing Business Process Testing licenses. In addition, to work with
Business Process Testing from within WinRunner, you must connect to a
Quality Center project with Business Process Testing support.

You can add specially formulated comments to your WinRunner
components to describe their steps. (Steps represent operations to be
performed during the business process test run.) The SME can view these
comments in Quality Center and can use them to understand the flow of
the script.

SMEs can view and work with scripted components in Quality Center
modules. However, they cannot modify scripted component steps.

Chapter 24 • Working with Business Process Testing

337

The remaining sections in this chapter describe options and features that are
unique to working with scripted components in WinRunner. For more
information on scripted components, refer to the Business Process Testing
User’s Guide.

Understanding Business Process Testing Methodology

Components are parts of a business process that has been broken down into
smaller parts. Components are the building blocks from which an effective
business process testing structure can be produced.

For example, in most applications users need to log in before they can do
anything else. A WinRunner expert can create one scripted component that
tests the login procedure for an application. This component can then be
reused in multiple business process tests, resulting in easier maintenance,
updating, and test management.

Components are comprised of steps. For example, the login component’s
first step may be to open the application. Its second step could be entering a
user name. Its third step could be entering a password, and its fourth step
could be clicking the Enter button.

You create scripted components in WinRunner by recording steps or by
manually entering steps on applications designed in any supported
environment. You can add checkpoints and output values, parameterize
selected items, and enhance the component with flow statements and other
testing functions. You then save the scripted component to a project in
Quality Center. An SME using Business Process Testing in Quality Center
combines your saved components into one or more business process tests,
which are used to check that the application behaves as expected.

Part VII • Working with Other Mercury Products

338

The component creation process can be divided into two elements: the
component shell and the component implementation.

➤ The component shell is the component’s outer layer. The information in the
shell is visible or available at the test level. The component shell
information can be created in WinRunner or Quality Center.

Once the component shell is created, it can be used by the SME to build
business process tests even if the script implementation has not yet begun.

➤ The component implementation is the component’s inner layer. It includes the
actual script and specific settings for the component. The information can
be seen only at the component level. You create the component
implementation using WinRunner.

Understanding the Differences Between Components and Tests

If you are already familiar with using WinRunner to create tests, you will
find that the procedures for creating and editing scripted components are
quite similar. However, due to the design and purpose of the component
model, there are certain differences in the way you design, edit, and run
components. The guidelines in the sections below provide an overview of
these differences.

General Differences Between Components and Tests

Following are guidelines and information regarding differences between
components and tests:

➤ A component can call another WinRunner component, but it cannot call a
WinRunner test, a QuickTest test, a business process test, or a QuickTest
component.

➤ A WinRunner test can call another test, but it cannot call a WinRunner
component, a keyword-driven component, or a business process test.

➤ When working with components, all external files are stored in the Quality
Center project to which you are currently connected.

➤ When working with components, only the Debug and Update run modes
are supported. The Verify run mode is not available to run components
because verification that the application works is performed when the
component is run as part of a business process test in Quality Center.

Chapter 24 • Working with Business Process Testing

339

➤ Specific toolbar and menu commands are used to create and open tests and
components. You can use the New and Open toolbar buttons to create or
open tests. You can use the menu commands to create and open tests or
components.

➤ By default, the Save command and toolbar button save untitled documents
as tests. However, if you work with components, you can change this default
so that the Save command and toolbar button save untitled documents as
components. For more information, see “Setting WinRunner Scripted
Component as the Default Save Type” on page 368.

Differences When Using the Data Table with Components

You should consider the following when using the Data Table with
components.

➤ If you enter and parameterize test data values in more than one row of the
Data Table, then each component iteration run will perform the relevant
data table loop according to the number of rows in the data table (in
addition to component iterations according to the data set for the
component parameters).

➤ The component (or test saved in Quality Center) can use any Quality Center
Data Table according to the specified Quality Center path. If a Data Table is
not saved with the test, the user must upload the Data Table to the Quality
Center project.

For more information on Data Tables, refer to Chapter 18, “Creating Data-
Driven Tests” in the Mercury WinRunner Basic Features User’s Guide.

Part VII • Working with Other Mercury Products

340

Understanding Business Process Testing Roles

The Business Process Testing model is role-based, allowing non-technical
SMEs to define and document components and business process tests.
Automation Engineers for testing tool applications such as WinRunner,
record, program, and debug individual steps of components, which SMEs
can include in their business process tests.

Note: The role structure and the tasks performed by various roles in your
organization may differ from those described here, according to the
methodology adopted by your organization. For example, the tasks of the
SME and the testing tool engineer may be performed by the same person.

The following basic user roles are identified in the Business Process Testing
model when working with WinRunner:

➤ Subject Matter Expert (SME)—The SME has specific knowledge of the
application logic, a high-level understanding of the entire system, and a
detailed understanding of the individual elements and tasks that are
fundamental to the application being tested.

This enables the SME to determine the operating scenarios or business
processes that must be tested and to identify the key business activities that
are common to multiple business processes. The SME is also responsible for
maintaining the testing steps for each of the individual components created
within Quality Center.

One of the great advantages of the Business Process Testing model is that the
work of the SME is not dependent on the completion of component
implementation by the Automation Engineer. Hence, using Business Process
Testing, the testing process can start early in the development cycle, before
the application to be tested is at a level at which automated components
can be recorded.

Chapter 24 • Working with Business Process Testing

341

The SME configures the values used for business process tests, runs them in
test sets, and reviews the results.

➤ Automation Engineer—The Automation Engineer is an expert for an
automated testing tool, such as WinRunner. The Automation Engineer is
responsible for implementing, maintaining, and debugging the scripted
components created within WinRunner.

Note: This chapter is primarily targeted at the Automation Engineer and the
tasks that the Automation Engineer can perform in WinRunner. For more
information on the options available to the SME in Quality Center, refer to
the Mercury Quality Center User’s Guide.

Part VII • Working with Other Mercury Products

342

Understanding the Business Process Testing Workflow

The following is an example of a common Business Process Testing
workflow. The actual workflow in an organization may differ for different
projects, or at different stages of the product development life cycle.

Chapter 24 • Working with Business Process Testing

343

Understanding Business Process Testing Terminology

The following terminology, specific to Business Process Testing, is used in
this chapter:

Steps—A step represents an operation to be performed during the business
process test run.

Scripted Component (or Component)—An easily-maintained, reusable unit
comprising one or more steps that perform a specific task. Scripted
components may require input values from an external source or from other
components. They can return output values to other components.

Business Process Test—A scenario comprising a serial flow of components,
designed to test a specific business process of an application.

Component Input Parameters—Variable values that a component can
receive and use as the values for specific, parameterized steps in the
component. A component parameter may be accessed by any component in
the Quality Center project.

Component Output Parameters—Values that a component can return.
These values can be viewed in the business process test results and can also
be used as input for a component that is used later in the test. A component
parameter can be accessed by any component in the Quality Center project.

Roles—The various types of users who are involved in Business Process
Testing.

Subject Matter Expert (SME)—A person who has specific knowledge of the
application logic, a high-level understanding of the entire system, and a
detailed understanding of the individual elements and tasks that are
fundamental to the application being tested. The Subject Matter Expert uses
Quality Center to create components and business process tests.

Automation Engineer—An expert in an automated testing tool, such as
WinRunner.

Part VII • Working with Other Mercury Products

344

Creating Components in the Quality Center Business
Components Module

The SME can create a new component and define its shell and
non-automated steps in the Quality Center Business Components module.

The SME can convert the component to a WinRunner component by
automating the steps. When non-automated components are converted to
WinRunner components, the non-automated steps in the components are
displayed in WinRunner as comments, preceded by #’#.

Note: Because WinRunner comments cannot exceed 500 characters, it is
important that the SME avoids exceeding 500 characters when creating
non-automated steps in Quality Center.

An example of a component in a Quality Center project is shown below:

Menu Bar

Toolbar

Sidebar

Component
Requests Pane

Business Components Module Tabs

Components
Tree

Chapter 24 • Working with Business Process Testing

345

The component shell includes the following elements:

➤ Details—A general summary of the component’s purpose or contents,
whether iterations are allowed, and more detailed instructions that define
the pre-conditions and the post-conditions for the component.

➤ Snapshot—An image that provides a visual cue or description of the
component’s purpose or operations.

➤ Input parameters—The name, default value, and description of the data the
component can receive.

➤ Output parameters—The name and description of the values that the
component can return to the business process test.

➤ Status—The current status of the component, for example, whether the
component is fully implemented and ready to be run, or whether it has
errors that need to be fixed. The highest severity component status defines
the overall status of the business process test.

Note: All the above elements can be created or modified in WinRunner
using the Scripted Component Properties dialog box. For more information,
see “Defining Scripted Component Properties” on page 352.

Implementing Components in WinRunner

You implement scripted components in WinRunner. You can open and
implement an existing component whose shell was defined by the SME, or
you can save a WinRunner test as a scripted component in a Quality Center
project.

From WinRunner, you implement components by recording steps on any
supported environment or by manually programming steps in TSL
(WinRunner’s Test Script language). You add checkpoints and output values,
parameterize selected items, and enhance your test with flow statements
and user-defined functions.

Part VII • Working with Other Mercury Products

346

From WinRunner you can also view and set options specific to components.
For example, you can view the component description, modify the
component screenshot, and determine whether component iterations are
applicable for the component.

Once a scripted component has been implemented, the SME can open the
component in the Quality Center Business Components module to view
specially labeled comments that the Automation Engineer enters from
WinRunner. These comments should provide a summary of the component
steps in the Steps tab. The SME or Automation Engineer can also view or
debug the component by using Quality Center to launch WinRunner and
run the component.

Creating Business Process Tests in the Quality Center Test Plan
Module

To create a business process test, the SME selects (drags and drops) the
components that apply to the business process test and configures their run
settings.

Each component can be used differently by different business process tests.
For example, in each test, the component can be configured to use different
input parameter values or to run a different number of iterations.

Running Business Process Tests and Analyzing the Results

You can use the run and debug options in WinRunner to run and debug an
individual scripted component. You can also debug a scripted component
within a business process test by running the component from the Test Plan
module in Quality Center. Quality Center launches WinRunner and runs
the component.

When the business process test has been debugged and is ready for regular
test runs, it can be run from the Test Lab module in the same way as any
other test is run in Quality Center. Before running the test, the tester can
define run-time parameter values and iterations.

From the Test Lab module, the SME can view the results of the entire
business process test run. The results include the value of each parameter,
and the results of individual events reported by WinRunner.

Chapter 24 • Working with Business Process Testing

347

The Scripted Component View at a Glance

The scripted component is viewed in the Steps tab in the Quality Center
Business Components module as a list of step comments. Each comment is
displayed in a separate row.

For more information, refer to the Business Process Testing User’s Guide.

Getting Started with Scripted Components in WinRunner

When your Quality Center includes Business Process Testing licences, you
can connect WinRunner to your Quality Center project. This enables you to
create, view, and debug scripted components that can be included in
Quality Center business process tests.

If the Automation Engineer provides easy-to-understand comments in the
WinRunner component script, then the SME can view the details of the
component and choose to include them in business process tests without
the need for any programming knowledge.

Part VII • Working with Other Mercury Products

348

Connecting to your Quality Center Project

To work with scripted components, you must first connect WinRunner to a
Quality Center server. This server handles the connections between
WinRunner and the Quality Center project. Then you choose the Quality
Center project that you want WinRunner to access. The project stores
component and run session information for the application you are testing.
Note that Quality Center projects are password protected, so you must
provide a user name and a password.

Note: Before you can work with scripted components in WinRunner, you
must enable integration between WinRunner and your Quality Center
project. From the main WinRunner window, choose Tools > General
Options. Select the Run category. Then select the Allow other Mercury
products to run tests remotely check box.

For information on how to connect to Quality Center, see “Connecting
WinRunner to Quality Center” on page 385.

For information on how to disconnect from Quality Center, see
“Disconnecting from Quality Center” on page 387.

Working with Scripted Components

You can utilize the full power of WinRunner tools and options when
working with scripted components. For example, you can use the Function
Generator to guide you through the process of adding functions to your
scripted component. You can also call user-defined functions from compiled
modules, parameterize selected items, and add checkpoints and output
values to your scripted component.

This chapter describes only how to create scripted components. Use the
relevant chapters in this guide for information on how to enter and
enhance the steps in your script.

Chapter 24 • Working with Business Process Testing

349

After you create a scripted component, SMEs can view the specially labeled
(read-only) comments in the component in the Business Components
module of the Quality Center project. They can run the scripted component
and add it to their business process tests, but you remain responsible for
maintaining the scripted component in WinRunner, if any changes are
needed. Scripted components cannot be modified in Quality Center.

You save scripted components in the same way as you save tests. For more
information, see “Saving a Scripted Component” on page 363.

Creating a New Scripted Component

This section describes how to create a new scripted component in
WinRunner.

Before you create or open a scripted component, you must connect
WinRunner to a Quality Center project, which is where scripted
components are stored.

Note: If you want to delete a scripted component, whether it was created in
WinRunner or in Quality Center, it can be deleted only from Quality
Center. For more information, refer to the Business Process Testing User’s
Guide.

To create a new scripted component:

 1 Connect to the Quality Center project in which you want to save the
scripted component. For more information, see “Connecting to your
Quality Center Project” on page 348.

 2 Choose File > New or press CTRL+N.

Part VII • Working with Other Mercury Products

350

A new, untitled test opens.

 3 Add steps to the test using the functionality and options provided by
WinRunner in the same way as you do for a test. For example, you can use
the Step Generator to add steps containing programming logic. You can also
add checkpoints and output values to your scripted component.

Note: There are a few testing options that are not available or behave
differently when working with scripted components, compared to tests.
For more information, see “Understanding the Differences Between
Components and Tests” on page 338.

Note: Subject Matter Experts can view read-only comments of scripted
components from the Quality Center Business Components module, and
they can include them in business process tests using the Test Plan module.
They cannot modify the scripted component steps.

 4 Define the component’s properties, such as description, input and output
parameters, status, and whether iterations are allowed, in the Scripted
Component Properties dialog box. For more information, see “Defining
Scripted Component Properties” on page 352.

Chapter 24 • Working with Business Process Testing

351

 5 Save the test as a scripted component. For more information, see “Saving a
Scripted Component” on page 363.

Adding Comments for the SME

WinRunner can provide an HTML presentation of the marked comments
that an SME can view in the Business Components module of Quality
Center.

For every comment that you want to make visible to the SME in Quality
Center, add the prefix #’# to the row.

The comments you add in WinRunner could appear as follows:

The comments would display in Quality Center as follows:

Part VII • Working with Other Mercury Products

352

Defining Scripted Component Properties

You can define properties for the scripted component in WinRunner. The
SME can view these properties in Quality Center and modify them if
required. Conversely, you can view or modify scripted component
properties that were originally defined by the SME in Quality Center.

To define scripted component properties:

 1 Connect to the Quality Center project that contains the scripted component
whose properties you want to define. For more information, see
“Connecting to your Quality Center Project” on page 348.

 2 Choose File > Open Scripted Component or press CTRL+H. The Open
WinRunner Component from Quality Center Project dialog box opens.

The status of each component is indicated by its icon. For information on
component statuses and their icons, refer to the Business Process Testing
User’s Guide.

Tip: You can open a recently used component by selecting it from the
Recent Files list in the File menu.

Chapter 24 • Working with Business Process Testing

353

 3 Click the relevant folder in the component tree. To expand the tree and
view the components, double-click closed folders. To collapse the tree,
double-click open folders.

 4 Select a component. The component name is displayed in the read-only
Component Name box.

 5 Click OK to open the component.

When the component opens, the WinRunner title bar displays the full
Quality Center path and the component name. For example, the title bar for
the login component may be:

Components\Flights\login

 6 In the File menu, choose Scripted Component Properties. The Scripted
Component Properties dialog box opens. It is divided by subject into seven
tabbed pages.

Part VII • Working with Other Mercury Products

354

Note: The Scripted Component Properties command is available in the File
menu only when you are connected to Quality Center with Business Process
Testing.

 7 To set the properties for your scripted component, select the appropriate tab
and set the options, as described in the sections that follow.

 8 To apply your changes and keep the Scripted Component Properties dialog
box open, click Apply.

 9 When you are finished, click OK and close the dialog box.

 10 Close the component.

Note: Changes to parameters are saved to Quality Center only when the
component is closed in WinRunner. All other changes to the Scripted
Component Properties are saved when you click Apply or when you close
the Scripted Component Properties dialog box.

The Scripted Component Properties dialog box contains the following tabs
that have special options or significance for scripted components:

Tab Heading Description

General Enables you to set general details about the scripted
component.

Description Enables you to enter a textual description of the scripted
component.

Parameters Enables you to define input and output parameters for the
scripted component.

Snapshot Enables you to attach an appropriate snapshot for the
scripted component.

Chapter 24 • Working with Business Process Testing

355

The Add-ins, Current Test and Run tabs are equally relevant for tests and
components. For more information on these tabs, refer to “Setting Test
Properties from the Test Properties Dialog Box” on page 510.

Defining General Details

You can document and view general details about a scripted component in
the General tab of the Scripted Component Properties dialog box. You can
modify the name of the author, define the component status, and choose
whether the scripted component can be iterated in business process tests.

The General tab contains the following information relevant to a scripted
component:

Option Description

Displays the name of the scripted component.

Location Displays the scripted component’s location in the
Quality Center component tree.

Part VII • Working with Other Mercury Products

356

Author Enables you to enter or modify the scripted
component author’s name.

Created Displays the date and time that the scripted
component was created.

Read/write
status

Indicates whether the scripted component is
writable.

Type Indicates that the component type is a Scripted
Component.

Main data
table

Enables you to select the Data Table file, either
default.xls or a Quality Center path to a Data Table
stored in Quality Center.

File system
path

Displays the temporary path in the file system
where the component is stored while it is open in
WinRunner. This path is the cache path for Quality
Center.

Component
Status

Enables you to define the component’s state of
readiness. The status can be set to Under
Development, Ready, Maintenance or Error. The
status can also be set in the component’s Details tab
in Quality Center.

For more information about component statuses,
refer to the chapter, “Getting Started with the Business
Components Module” in the Business Process Testing
User’s Guide.

Allow
Iterations

Enables you to define whether multiple iterations
can be set for the scripted component in a business
process test. This option can also be set in the
component’s Details tab in Quality Center.

Option Description

Chapter 24 • Working with Business Process Testing

357

Defining a Component Description

The Description tab of the Scripted Component Properties dialog box
enables you to view or enter a description of the scripted component.

The Description tab contains the following information relevant to a
scripted component:

Option Description

Description
summary

Enables you to specify a short summary of the
component.

Tested
functionality

Enables you to specify a description of the
application functionality you are testing.

Part VII • Working with Other Mercury Products

358

Defining Component Parameters

Using output and input component parameters, you can transfer data from
one component to a later component in a business process test.

A component parameter is an element within a business process test or
component that can be assigned various values. Input and output
component parameters allow components to use variable values that pass
values between components in the business process test. The values
supplied for component parameters can affect the test results. This process
greatly increases the power and flexibility of your components and business
process tests.

You can define, edit, and delete parameters for the scripted component in
the Parameters tab of the Scripted Component Properties dialog box.

The Parameters tab of the Scripted Component Properties dialog box
enables you to define input component parameters that pass values into
your component and output component parameters that pass values from
your component to other components.

Functional
specification

Enables you to specify a reference to the
application’s functional specification(s) for the
features you are testing.

Details Displays a textual description of the scripted
component, including its pre- and post-conditions.
You can enter or modify the information in this
area if required.

Option Description

Chapter 24 • Working with Business Process Testing

359

You can also use the Parameters tab to modify or delete existing component
parameters.

The Parameters tab displays the details of existing parameters for the
scripted component. For more information about component parameters,
refer to the Business Process Testing User’s Guide.

Note: Changes to parameters are saved to Quality Center only when the
component is closed in WinRunner. All other changes to the Scripted
Component Properties are saved when you click Apply or when you close
the Scripted Component Properties dialog box.

Part VII • Working with Other Mercury Products

360

To define a new input or output parameter:

 1 In the Parameters tab of the Scripted Components Properties dialog box,
click the Add button corresponding to the parameter list (Input or Output)
to which you want to add a parameter. The Input Parameters or Output
Parameters dialog box opens.

For input parameters, the dialog box includes a text box to enter a Default
Value. For output parameters, there is no Default Value edit box in the
dialog box.

 2 Enter a Name and a Description for the parameter. For input parameters,
you can specify a Default Value for the parameter. The default value is used
when the component runs if no other value is supplied by the business
process test.

Tip: It is recommended to use IN or OUT prefixes or suffixes for the
parameter names to indicate the parameter type. This makes the component
steps more readable.

Chapter 24 • Working with Business Process Testing

361

 3 Click OK. The parameter is added to the appropriate parameters list.

 4 If required, use the Move Item Up and Move Item Down arrow buttons to
change the order of the parameters.

Note: Because parameter values are assigned sequentially, the order in which
parameters are listed in the Parameters tab determines the value that is
assigned to a parameter when the component is iterated.

In addition, changing the parameter order in a component that is used by a
business process test could cause that test to fail.

 5 Click OK to close the dialog box. The parameter details are displayed in the
Parameters tab.

 6 Close the component to save the parameters you have defined.

To delete a parameter from the parameter list:

 1 In the Parameters tab of the Scripted Component Properties dialog box,
select the name of the parameter to delete.

 2 Click the Delete button corresponding to the parameter you want to delete.

 3 Click OK to close the dialog box.

To modify a parameter in the parameter list:

 1 In the Parameters tab of the Scripted Component Properties dialog box,
select the name of the parameter to modify.

 2 Click the Modify Parameter button or double-click the parameter name. The
Input Parameters or Output Parameters dialog box opens with the current
name, description (and default value if applicable), of the parameter.

 3 Modify the parameter as needed.

 4 Click OK to close the dialog box. The modified parameter is displayed in the
parameters list.

 5 Close the component to save the changes you have made.

Part VII • Working with Other Mercury Products

362

Attaching a Snapshot

You can attach an image associated with a scripted component using the
Snapshot tab of the Scripted Component Properties dialog box.

In Quality Center, this image is displayed in business process tests that use
the component. The image provides a visual indication to the Subject
Matter Expert of the main purpose of the component. The image for each
component in a business process test can be viewed in the Test Script tab of
the Test Plan module by clicking the relevant thumbnail image. This can
help the SME to quickly understand the flow of the business process test by
viewing the serial flow of these images.

The Snapshot tab enables you to capture a snapshot or load a previously
saved .png file containing an image.

Note: The snapshot image can also be captured and saved with the scripted
component when working in Quality Center.

Chapter 24 • Working with Business Process Testing

363

To capture and attach a snapshot:

 1 In the Snapshot tab of the Scripted Component Properties dialog box, select
Capture snapshot from application and click Capture. The cursor changes to
a crosshairs pointer.

 2 Drag the pointer to select the area in the application that you want to
capture and click the right mouse button. The captured image is saved and
displayed in the Snapshot tab.

 3 Click OK.

To load an existing snapshot:

 1 In the Snapshot tab of the Scripted Component Properties dialog box, select
Load from file and click the browse button.

 2 The Choose Picture File dialog box opens.

 3 Browse to the required .png file and click Open. The captured image is saved
and displayed in the Snapshot tab of the component.

 4 Click OK.

Saving a Scripted Component

You create new components by saving an existing or new test as a scripted
component. After you modify a component or test, you can save the
updated component to your Quality Center project. When you save a
component, you give it a descriptive name and save it to the relevant folder
in the component tree in the Quality Center project (Business Components
module).

You can also save a copy of an existing component to any folder in the same
Quality Center project. To enable all users to differentiate between the
various components, you may want to rename a copy of a component, even
if you save it to a different folder.

Part VII • Working with Other Mercury Products

364

To save a component to your Quality Center project:

 1 Save the component in one of the following ways:

➤ To save an existing WinRunner test as a component, choose File > Save as
Scripted Component.

➤ To save a modified existing component, click Save.

➤ To save changes to an existing component or to save a copy of an
existing component, choose File > Save as Scripted Component. Proceed
to step 2.

➤ To save an untitled test as a scripted component, click Save, choose
File > Save, or press CTRL+S. If the component has never been saved, the
Select Type dialog box opens.

Select WinRunner Scripted Component and click OK.

Chapter 24 • Working with Business Process Testing

365

 2 The Save WinRunner Component to Quality Center Project dialog box
opens and displays the component tree.

Select the folder in which you want to save the component. To expand the
tree and view a sublevel, double-click a closed folder. To collapse a sublevel,
double-click an open folder.

You can either save the component to an existing folder in your Quality
Center project or click the New Folder button to create a new folder in
which to save it. If you want to save a copy of an existing component with
the same name, you must save it to a different folder.

Note: Component folder names cannot include any of the following
characters: \ ^ *

Part VII • Working with Other Mercury Products

366

 3 In the Component Name box, enter a name for the component. Use a
descriptive name that will help you and others identify the component
easily.

Note: Scripted component names cannot begin or end with a space, or
include any of the following characters:

! @ # $ % ^ & * () - + = { } [] | \ " ' : ; ? / < > . , ~ ‘

 4 Accept the Component Type—WinRunner Component.

 5 Click OK to save the component and close the dialog box. As WinRunner
saves the component, the operations that it performs are displayed in the
status bar.

The component is saved to the Quality Center project. You can now view
and modify it using WinRunner.

Saving a Test as a Scripted Component

You can save an existing test as a scripted component in Quality Center with
Business Process Testing. This enables a Subject Matter Expert (SME) to
include the scripted component in one or more business process tests.

You can save a scripted component to a Quality Center database only if you
are connected to a Quality Center project.

To save an existing test as a scripted component:

 1 Ensure you are connected to a Quality Center project. For more
information, see “Connecting to your Quality Center Project” on page 348.

 2 Open a new or existing WinRunner test.

Chapter 24 • Working with Business Process Testing

367

 3 Choose File > Save As Scripted Component. The Save WinRunner
Component to Quality Center Project dialog box opens.

The component tree from the Quality Center Business Components module
is displayed.

Note: You can use the Save as Scripted Component command in the File
menu only when you are connected to Quality Center with Business Process
Testing.

 4 Select the relevant folder in the component tree or click the New Folder
button to create a new folder. To expand the component tree, double-click a
closed folder icon. To collapse a sublevel, double-click an open folder icon.

 5 In the Component Name text box, enter a name for the scripted
component. Use a descriptive name that will help you and the SME using
Quality Center to easily identify the component.

 6 Click OK to save the component and close the dialog box.

Part VII • Working with Other Mercury Products

368

The next time you start Quality Center, or refresh the component tree in the
Business Components module, the new scripted component will be
displayed in the tree. Refer to the Business Process Testing User’s Guide for
more information. For more information on saving tests to a Quality Center
project, see Chapter 26, “Managing the Testing Process.”

Setting WinRunner Scripted Component as the Default Save
Type

By default, the Save command and toolbar button save untitled documents
as tests. You can change this default so that the Save command and toolbar
button save untitled documents as WinRunner scripted components.

To set Scripted Component as the default save type:

 1 Save a new script as a scripted component. The Select Type dialog box
opens:

 2 Select WinRunner Scripted Component and then select the Don’t show it
again check box.

When you next save a new script, clicking the Save command or toolbar
button will open the Save WinRunner Component to Quality Center Project
dialog box.

Chapter 24 • Working with Business Process Testing

369

Tip: When you select the Don’t show it again check box, the Select Type
dialog box is not shown in the future when saving a new scripted
component or test, and the toolbar Save button and menu command always
save as the type you selected in the dialog.

If, after selecting the Don’t show it again check box, you want to display the
Select Type dialog box again, choose Tools > General Options and select the
Show Save Type dialog checkbox.

You can also use File > Save As Test or File > Save As Scripted Component to
save your component or test.

Modifying a Scripted Component

When WinRunner is connected to a Quality Center project, you can open a
scripted component that is stored in the project to view, modify, debug, or
run it. You find components according to their location in the component
tree.

Note: Components that are currently open in Quality Center or another
WinRunner session are locked and can be opened in read-only format only.

Part VII • Working with Other Mercury Products

370

To modify a scripted component:

 1 Connect to the Quality Center project in which the scripted component is
stored.

 2 Choose File > Open Scripted Component or press CTRL+H. The Open
WinRunner Component from Quality Center Project dialog box opens.

 3 Click the relevant folder in the component tree.

 4 Select a Component Type:

➤ WinRunner Component—Displays components in the selected folder
that have already been saved as WinRunner scripted components.

➤ Non-automated Component—Displays components in the selected
folder that were created in Quality Center, but have not yet been
automated in a Mercury testing tool. When you open a non-automated
component in WinRunner, you permanently convert it to a WinRunner
component.

➤ All Components—Displays all WinRunner and non-automated
components in the selected folder.

 5 Select a component. The component name is displayed in the read-only
Component Name box.

 6 Click OK to open the component. If you selected a non-automated
component, it is converted to a WinRunner component.

371

25
Integrating with QuickTest Professional

You can design tests in QuickTest Professional and then leverage your
investments in existing WinRunner script libraries by calling WinRunner
tests and functions from your QuickTest test. You can also call QuickTest
tests from WinRunner.

This chapter describes calling QuickTest tests from WinRunner. For
information on calling WinRunner tests and functions from QuickTest, refer
to the QuickTest Professional User’s Guide.

This chapter describes:

➤ About Integrating with QuickTest Professional

➤ Calling QuickTest Tests

➤ Viewing the Results of a Called QuickTest Test

About Integrating with QuickTest Professional

If you have QuickTest Professional 6.0 or later installed on your computer,
you can include calls to QuickTest tests from your WinRunner test. If you
have QuickTest Professional 6.5 or later, you can call QuickTest tests and
view detailed results of the test call.

You can view the detailed results of the QuickTest test run in the Unified
report view of the WinRunner Test Results Window.

When WinRunner runs a called QuickTest test, it automatically loads the
QuickTest add-ins required for the test, according to the associated add-ins
list specified in the Properties tab of the QuickTest Test Settings dialog box.

Part VII • Working with Other Mercury Products

372

Note: When using a version of QuickTest earlier than 8.0, you cannot call
QuickTest tests that use QuickTest’s Web Add-in from a WinRunner test if
the WebTest Add-in is loaded.

For more information on working with QuickTest Add-ins, refer to the
QuickTest Professional User’s Guide.

When WinRunner is connected to a Quality Center project that contains
QuickTest tests, you can call a QuickTest test that is stored in that Quality
Center project.

For information on creating QuickTest tests, refer to the QuickTest
Professional documentation.

Calling QuickTest Tests

When WinRunner links to QuickTest to run a test, it starts QuickTest, opens
the test (in minimized or displayed mode), and runs it. Detailed information
about the results of the QuickTest test run are displayed in the Unified
report view of the WinRunner Test Results window.

You can insert a call to a QuickTest test using the Call to QuickTest Test
dialog box or by manually entering a call_ex statement.

Note: You cannot call a QuickTest test that includes calls to WinRunner
tests.

Chapter 25 • Integrating with QuickTest Professional

373

To insert a call to a QuickTest test using the Call to QuickTest Test dialog
box:

 1 Choose Insert > Call to QuickTest Test. The Call to QuickTest Test dialog box
opens.

 2 In the QuickTest test path box, enter the path of the QuickTest test or
browse to it.

If you are connected to Quality Center when you click the browse button,
the Open from Quality Center project dialog box opens so that you can
select the test from the Quality Center project. For more information on this
dialog box, see Chapter 26, “Managing the Testing Process.”

 3 Select Run QuickTest minimized if you do not want to view the QuickTest
window while the test runs. (This option is supported only for QuickTest 6.5
or later.)

 4 Select Close QuickTest after running the test if you want the QuickTest
application to close when the step calling the QuickTest test is complete.

 5 Click OK to close the dialog box. A call_ex statement similar to the
following is inserted in your test:

call_ex("F:\\Merc_Progs\\QTP\\Tests\\web\\short_flight",1,1);

The call_ex function has the following syntax:

call_ex (QT_test_path [, run_minimized, close_QT]);

Part VII • Working with Other Mercury Products

374

Note: The call_ex statement provided with WinRunner 7.5 returned
different values than the 7.6 version of this function. If you have tests that
were created in WinRunner 7.5 and use the return value of this function,
you may need to modify your test to reflect the new return values. For more
information on these methods, refer to the TSL Reference.

For additional information on the call_ex function and an example of
usage, refer to the TSL Reference.

Viewing the Results of a Called QuickTest Test

You can view the results of any WinRunner test run in the WinRunner
report view or the unified report view. However, to view detailed
information about a called QuickTest test (version 6.5 or later), you must
ensure that WinRunner is set to generate unified report information before
you run your test, and that it is set to display the unified report when you
view your test results.

To instruct WinRunner to create unified report information and display the
unified report:

 1 Before running your test (or before displaying the test results), choose Tools
> General Options. The General Options dialog box opens.

 2 Click the Run category.

 3 To ensure that unified report information is created before a test run, select
Unified report view or select WinRunner report view and the Generate
unified report information option.

To display the unified report information, select Unified report view before
opening the Test Results window.

For more information, refer to Chapter 21, “Analyzing Test Results” in the
Mercury WinRunner Basic Features User’s Guide.

Chapter 25 • Integrating with QuickTest Professional

375

Analyzing the Results of a Called QuickTest Test

The unified report view of the WinRunner Test Results window includes a
node for each event in your WinRunner test, plus a node for each step of the
called QuickTest test.

When you select a node corresponding to a QuickTest step, the right pane
displays details of the step and may contain a screen capture of the
application at the time the step was performed.

Part VII • Working with Other Mercury Products

376

Note: You can view the results of the called QuickTest test only in the
WinRunner unified report view from the results folder of the WinRunner
test. The results of the QuickTest test are not saved under the called
QuickTest test folder.

When analyzing the results of a WinRunner test containing a call to a
QuickTest test, you may want to view the following:

➤ Select the start run node to view summary results of the WinRunner test.
This summary indicates the status of the test run, but includes summary
checkpoint information only for the WinRunner steps in your test.

➤ Select a WinRunner node to view the results of WinRunner events, just as
you would with any WinRunner test.

➤ Select the QuickTest Test node to view summary results of the called
QuickTest test. This summary includes the status of the QuickTest test run,
and statistical information about the checkpoints contained in the
QuickTest test.

➤ Select the QuickTest Run-Time Data node to view the resulting Data Table of
the QuickTest test, including data used in Data Table parameters and data
stored in the table during the test run by output values in the test.

➤ Select an iteration node to view summary information for a test iteration.

➤ Select an action node to view summary information for an action.

➤ Select a QuickTest step node to view information about the results of the
selected step. If a screen was captured for the selected step, the captured
screen is displayed in the bottom right pane of the Test Results window.

By default, QuickTest only captures screens for failed steps. You can change
the Save step screen capture to results option in the Run tab of the
QuickTest Options dialog box.

Chapter 25 • Integrating with QuickTest Professional

377

For more information on the data provided for various QuickTest test steps,
refer to the QuickTest Professional User’s Guide.

For more information on analyzing WinRunner Test Results, refer to
Chapter 21, “Analyzing Test Results” in the Mercury WinRunner Basic Features
User’s Guide.

Part VII • Working with Other Mercury Products

378

379

26
Managing the Testing Process

Software testing typically involves creating and running thousands of tests.
Quality Center (powered by TestDirector) is the Mercury application quality
management solution. You can use it together with WinRunner to help you
organize and control the testing process.

This chapter describes:

➤ About Managing the Testing Process

➤ Integrating the Testing Process

➤ Accessing WinRunner Tests from Quality Center

➤ Connecting to and Disconnecting from a Project

➤ Saving Tests to a Project

➤ Saving a Test to a Project as a Scripted Component

➤ Opening Tests in a Project

➤ Managing Test Versions in WinRunner

➤ Saving GUI Map Files to a Project

➤ Opening GUI Map Files in a Project

➤ Running Tests in a Test Set

➤ Running Tests on Remote Hosts

➤ Viewing Test Results from a Project

➤ Using TSL Functions with Quality Center

➤ Command Line Options for Working with Quality Center

Part VII • Working with Other Mercury Products

380

About Managing the Testing Process

Quality Center is a powerful test management tool that helps you
systematically control the testing process. It helps you create a framework
and foundation for your testing workflow.

Quality Center helps you maintain a project of tests that cover all aspects of
your application’s functionality. Every test in your project is designed to
fulfill a specified testing requirement of your application. To meet the goals
of a project, you organize the tests in your project into unique groups.
Quality Center provides an intuitive and efficient method for scheduling
and running tests, collecting test results, and analyzing the results.

You can save existing WinRunner tests as scripted components, or create
new scripted components that can be used in Business Process Testing.
Business Process Testing is a module of Quality Center that enables Subject
Matter Experts (SMEs) to design quality assurance tests for an application
early in the development cycle and in a script-free environment. Business
Process Testing uses a new methodology for testing, and in conjunction
with WinRunner, provides numerous benefits in an improved automated
testing environment.

Quality Center also features a system for tracking defects, enabling you to
monitor defects closely from initial detection until resolution.

WinRunner works with TestDirector 7.x and 8.0 and Quality Center.

TestDirector versions 7.5 and later, and Quality Center provide version
control support, which enables you to update and revise your automated
test scripts while maintaining old versions of each test. This helps you keep
track of the changes made to each test script, see what was modified from
one version of a script to another, or return to a previous version of the test
script. For more information on version control support, see “Managing Test
Versions in WinRunner” on page 396.

Chapter 26 • Managing the Testing Process

381

Note: This chapter describes the integration of WinRunner with Quality
Center. For more information on working with Quality Center, refer to the
Mercury Quality Center User’s Guide. For more information about working
with scripted components, refer to the Business Process Testing User’s Guide.

Integrating the Testing Process

Quality Center and WinRunner work together to integrate all aspects of the
testing process. In WinRunner, you can create scripted components and
tests and save them in your Quality Center project. The components can
then be included in business process tests. After you run your test, you can
view and analyze the results in Quality Center.

Quality Center stores test and defect information in a project database. You
can create Quality Center projects in Microsoft Access, Oracle, Sybase, or
Microsoft SQL. These projects store information related to the current
testing project, such as tests, test run results, and reported defects.

In order for WinRunner to access the project, you must connect it to the
Web server where Quality Center is installed.

Part VII • Working with Other Mercury Products

382

When WinRunner is connected to Quality Center, you can save a test by
associating it with the Test Plan Manager. You can schedule to run a test on
local or remote hosts. Test run results are sent directly to your Quality
Center project.

Note: In order for Quality Center to run WinRunner tests from a remote
machine, you must enable the Allow Quality Center to run tests remotely
option from WinRunner. By default, this option is disabled. You can enable
it from the Run category of the General Options dialog box (Tools > General
Options). For more information on setting this option, refer to Chapter 23,
“Setting Global Testing Options” in the Mercury WinRunner Basic Features
User’s Guide.

Accessing WinRunner Tests from Quality Center

When Quality Center accesses a WinRunner test, the test is downloaded
from a project database to a local temporary directory, which becomes your
current working directory. If the test calls another file (for example, a
module or a test), and the full pathname of the called file is not specified,
the current working directory becomes the relative path of the referenced
file. Therefore, WinRunner cannot open the called test.

For example, suppose a test calls the flt_lib file:

static lib_path = getvar("testname") & "\\..\\flt_lib";
reload(lib_path);

WinRunner looks for the called test in the relative path. To enable
WinRunner to find the correct pathname, you can:

➤ change the pathname of the WinRunner called file, or

➤ set direct file access for all WinRunner tests (LAN only)

Chapter 26 • Managing the Testing Process

383

Changing the Pathname of Files

To enable WinRunner to access a called file from a test, save the file in your
Quality Center project and then change the pathname in your WinRunner
test script.

For example, suppose you save the flt_lib file in your Quality Center project
under subject\\module. Quality Center now calls the file using the following
statement:

static lib_path = "[QC]\\Subject\\module\\flt_lib";

For more information on saving tests to a Quality Center project, see
“Saving Tests to a Project” on page 389.

Accessing WinRunner Tests Directly (LAN only)

If you are working in a local area network (LAN) environment, you can set
your machine so that it provides direct file access to all WinRunner tests,
regardless of their directory path. This enables you to run WinRunner tests
from Quality Center without changing the directory path of other called
tests.

To set the direct file access option:

 1 On the machine where WinRunner is installed, click Run on the Start menu.
The Run dialog box opens.

 2 Type regedit and click OK. The Registry Editor opens.

 3 Locate the following folder:

My Computer > HKEY_LOCAL_MACHINE > Software > Mercury Interactive >
TestDirector > Testing Tools > WinRunner.

 4 In the WinRunner folder, double-click DirectFileAccess. Change the value in
the Value Data box to "Y".

Tip: After setting the direct access option, your Web access performance will
improve while accessing WinRunner tests from Quality Center.

Part VII • Working with Other Mercury Products

384

Connecting to and Disconnecting from a Project

If you are working with both WinRunner and Quality Center, WinRunner
can communicate with your Quality Center project. You can connect or
disconnect WinRunner from a Quality Center project at any time during the
testing process. However, do not disconnect WinRunner from Quality
Center while running tests in WinRunner from Quality Center.

The connection process has two stages. First, you connect WinRunner to the
Quality Center server. This server handles the connections between
WinRunner and the Quality Center project. Next, you choose the project
you want WinRunner to access. The project stores the components, tests
and test run information for the application you are testing. Note that
Quality Center projects are password protected, so you must provide a user
name and a password.

Chapter 26 • Managing the Testing Process

385

Connecting WinRunner to Quality Center

You must connect WinRunner to the server before you connect WinRunner
to a project. For more information, see “Integrating the Testing Process” on
page 381.

To connect WinRunner to Quality Center:

 1 Choose Tools > Quality Center Connection.

The Quality Center Connection dialog box opens.

 2 In the Server box, type the URL of the Web server where Quality Center is
installed.

Note: You can choose a Web server accessible via a Local Area Network
(LAN) or a Wide Area Network (WAN).

 3 In the Server connection area, click Connect.

Part VII • Working with Other Mercury Products

386

After the connection to the server is established, the server’s name is
displayed in read-only format in the Server box.

 4 In the Domain box, enter or select the domain that contains the Quality
Center project. (If you are working with a project in versions of TestDirector
earlier than version 7.5, the Domain box is not relevant. Proceed to the next
step.)

 5 In the Project box, enter the Quality Center project name or select a project
from the list.

 6 In the User name box, type a user name for opening the selected project.

 7 In the Password box, type a password for the selected project.

 8 In the Project connection area, click Connect to connect WinRunner to the
selected project.

After the connection to the selected project is established, the server and
project connection details are displayed in read-only format.

To automatically reconnect to the Quality Center server and the selected
project the next time you open WinRunner, select the Reconnect on startup
check box.

If you do not select the Reconnect on startup check box, you will be
prompted to connect to a Quality Center project the next time you try to
create or open a scripted component.

If the Reconnect on startup check box is selected, then the Save password
for reconnection on startup check box is enabled. To save your password for
reconnection the next time you open WinRunner, select the Save password
for reconnection on startup check box.

If you do not save your password, you will be prompted to enter it when
WinRunner connects to Quality Center on startup.

Note: If Reconnect on startup is selected, but you want to open WinRunner
without connecting to Quality Center, you can use the -dont_connect
command line option as described in Chapter 15, “Running Tests from the
Command Line”.

Chapter 26 • Managing the Testing Process

387

 9 Click Close to close the Quality Center Connection dialog box.

Note: You can also connect WinRunner to a Quality Center server and
project using the corresponding -qc_connection, -qc_database_name,
-qc_password, -qc_server_name, -qc_user_name command line options. For
more information on these options, see “Command Line Options for
Working with Quality Center” on page 410. For more information on using
command line options, see Chapter 15, “Running Tests from the Command
Line.”

Disconnecting from Quality Center

You can disconnect from a Quality Center project or server. Note that if you
disconnect WinRunner from a server without first disconnecting from a
project, WinRunner’s connection to that database is automatically
disconnected.

Note: If a test or scripted component is open when disconnecting from
Quality Center, then WinRunner closes it.

Part VII • Working with Other Mercury Products

388

To disconnect WinRunner from Quality Center:

 1 Choose Tools > Quality Center Connection.

The Quality Center Connection dialog box opens.

 2 In the Project connection area, click Disconnect to disconnect WinRunner
from the selected project. If you want to open a different project while using
the same server, select the project as described in step 5 on page 386.

 3 To disconnect WinRunner from the Quality Center server, click Disconnect
in the Server connection area.

 4 Click Close to close the Quality Center Connection dialog box.

Chapter 26 • Managing the Testing Process

389

Saving Tests to a Project

When WinRunner is connected to a Quality Center project, you can create
new tests in WinRunner and save them directly to your project. To save a
test, you give it a descriptive name and associate it with the relevant subject
in the test plan tree. This helps you to keep track of the tests created for each
subject and to quickly view the progress of test planning and creation.

Note: You can also save a test as a scripted component in Quality Center. For
more information, see “Saving a Test to a Project as a Scripted Component”
on page 391.

To save a test to a Quality Center project:

 1 Choose File > Save as Test or click the Save button. For a test already saved
in the file system, choose File > Save As.

If WinRunner is connected to a Quality Center project, the Save Test to
Quality Center Project dialog box opens and displays the test plan tree.

Part VII • Working with Other Mercury Products

390

Note that the Save Test to Quality Center Project dialog box opens only
when WinRunner is connected to a Quality Center project.

Note: To save a test directly in the file system, click the File System button,
which opens the Save Test dialog box. (From the Save Test dialog box, you
may return to the Save Test to Quality Center Project dialog box by clicking
the Quality Center button.)

If you save a test directly in the file system, your test will not be saved in the
Quality Center project.

 2 Select the relevant subject in the test plan tree. To expand the tree and view
a sublevel, double-click a closed folder. To collapse a sublevel, double-click
an open folder.

 3 In the Test Name box, enter a name for the test. Use a descriptive name that
will help you easily identify the test.

 4 Click OK to save the test and close the dialog box.

Note: To save a batch test, choose WinRunner Batch Tests in the Test Type
box.

The next time you start Quality Center, the new test will appear in the
Quality Center’s test plan tree. Refer to the Mercury Quality Center User’s
Guide for more information.

Chapter 26 • Managing the Testing Process

391

Saving a Test to a Project as a Scripted Component

If you are working with Quality Center, you can save a new or existing test
created in WinRunner directly to your project as a scripted component. The
component can then be included in one or more business process tests
within Quality Center. You can also define general details for the
component, input and output parameters, and attach a snapshot.

Saving a Test as a Scripted Component

You can save a WinRunner test as a scripted component in the Business
Components module of Quality Center.

To save a test to a Quality Center project as a scripted component:

 1 After connecting to a Quality Center project, choose File > Save As Scripted
Component. The Save WinRunner Component to Quality Center project
dialog box opens and displays the component tree.

Part VII • Working with Other Mercury Products

392

Note: The Save as Scripted Component option in the File menu is visible
only when you are connected to Quality Center with Business Process
Testing.

 2 Select the relevant folder in the component tree or click the New Folder
button to create a new folder. To expand the tree, double-click a closed
folder icon. To collapse a sublevel, double-click an open folder icon.

 3 In the Component Name text box, enter a name for the scripted
component. Use a descriptive name that will help you easily identify the
component.

 4 Click OK to save the component and close the dialog box.

The next time you start Quality Center, or refresh the component tree in the
Business Components module, the new scripted component will appear in
the tree. Refer to the Business Process Testing User’s Guide for more
information.

Opening Tests in a Project

If WinRunner is connected to a Quality Center project, you can open
automated tests that are a part of your project. You locate tests according to
their position in the test plan tree, rather than by their actual location in the
file system.

To open a test saved to a Quality Center project:

 1 Choose File > Open Test or click the Open button.

Chapter 26 • Managing the Testing Process

393

The Open Test from Quality Center Project dialog box opens and displays
the test plan tree.

Note that the Open Test from Quality Center Project dialog box opens only
when WinRunner is connected to a Quality Center project.

Note: To open a test directly from the file system, click the File System
button, which opens the Open Test dialog box. (From the Open Test dialog
box, you can return to the Open Test from Quality Center Project dialog box
by clicking the Quality Center button.)

If you open a test from the file system, then when you run that test, the
events of the test run will not be written to the Quality Center project.

 2 Click the relevant subject in the test plan tree. To expand the tree and view
sublevels, double-click closed folders. To collapse the tree, double-click open
folders.

Note that when you select a subject, the tests that belong to the subject
appear in the Test Name list.

Part VII • Working with Other Mercury Products

394

 3 Select a test from the Test Name list in the right pane. The test appears in
the read-only Test Name box.

 4 Click OK to open the test. The test opens in a window in WinRunner. Note
that the test window’s title bar shows the full subject path.

Note: To open a batch test, choose WinRunner Batch Tests in the Test Type
box. For more information on batch tests, see Chapter 14, “Running Batch
Tests.”

Chapter 26 • Managing the Testing Process

395

Opening Scripted Components in a Project

If WinRunner is connected to a Quality Center project, you can open an
existing scripted component that is a part of your project.

To open a scripted component from a Quality Center project:

 1 If you are connected to a Quality Center project, choose File > Open
Scripted Component. The Open WinRunner Component from Quality
Center Project dialog box opens and displays the component tree.

Note: The Open Scripted Component option in the File menu is visible only
when you are connected to Quality Center with Business Process Testing
support.

 2 Select the relevant component in the component tree. To expand the tree
and view sublevels, double-click closed folders. To collapse the tree,
double-click open folders. The scripted component appears in the read-only
Component Name box.

Part VII • Working with Other Mercury Products

396

 3 Click OK to open the scripted component. The component opens in a
window in WinRunner. Note that WinRunner’s title bar shows the full
subject path of the scripted component.

Note: The above procedure will also enable you to open a manual
component, that is, a component created in Quality Center that is not yet
converted to a specific testing tool type. Opening a manual component in
WinRunner will set it permanently as a WinRunner component. This action
cannot be reversed, even if the component is not saved in WinRunner.

Managing Test Versions in WinRunner

When WinRunner is connected to a Quality Center project with version
control support, you can update and revise your automated test scripts
while maintaining old versions of each test. This helps you keep track of the
changes made to each test script, see what was modified from one version of
a script to another, or return to a previous version of the test script.

Note: A Quality Center project with version control support requires the
installation of version control software as well as Quality Center’s version
control software components. For more information about the Quality
Center version control add-ins, refer to the Quality Center Installation Guide.

You manage test versions by checking tests in and out of the version control
database.

Chapter 26 • Managing the Testing Process

397

Adding Tests to the Version Control Database

When you add a test to the version control database for the first time, it
becomes the Working Test and is also assigned a permanent version number.

The working test is the test that is located in the test repository and is used
by Quality Center for all test runs.

Note: Usually the latest version is the working test, but any version can be
designated as the working test in Quality Center. For more information,
refer to the Quality Center documentation.

To add a new test to the version control database:

 1 Choose File > Check In.

Note: The Check In and Check Out options in the File menu are visible only
when you are connected to a Quality Center project database with version
control support, and you have a test open. The Check In option is enabled
only if the active script has been saved to the project database.

 2 Click OK to confirm adding the test to the version control database.

 3 Click OK to reopen the checked-in test. The test will close and then reopen
as a read-only file.

If you have made unsaved changes in the active test, you will be prompted
to save the test.

You can review the checked-in test. You can also run the test and view the
results. While the test is checked in and is in read-only format, however, you
cannot make any changes to the script.

If you attempt to make changes, a WinRunner message reminds you that the
script has not been checked out and that you cannot change it.

Part VII • Working with Other Mercury Products

398

Checking Tests Out of the Version Control Database

When you open a test that is currently checked in to the version control
database, you cannot make any modifications to the script. If you wish to
make modifications to this script, you must check out the script.

When you check out a test, Quality Center copies the latest version of the test
to your unique checkout directory (automatically created the first time you
check out a test), and locks the test in the project database. This prevents
other users of the Quality Center project from overwriting any changes you
make to the test.

To check out a test:

 1 Choose File > Check Out.

 2 Click OK. The read-only test will close and automatically reopen as a
writable script.

Note: The Check Out option is enabled only if the active script is currently
checked in to the project’s version control database.

You should check a script out of the version control database only when you
want to make modifications to the script or to test the script for workability.

Checking Tests In to the Version Control Database

When you have finished making changes to a test you check it in to the
version control database in order to make it the new latest version and to
assign it as the working test.

When you check a test back into the version control database, Quality
Center deletes the test copy from your checkout directory and unlocks the
test in the database so that the test version will be available to other users of
the Quality Center project.

To check in a test:

 1 Choose File > Check In.

 2 Click OK. The file will close and automatically reopen as a read-only script.

Chapter 26 • Managing the Testing Process

399

If you run tests after you have checked in the script, the results will be saved
to the Quality Center Project database.

Tip: You should close a test in WinRunner before using Quality Center to
change the checked in/checked out status of the test. If you make changes to
the test’s status using Quality Center while the test is open in WinRunner,
WinRunner will not reflect those changes. For more information, refer to
the Quality Center documentation.

Saving GUI Map Files to a Project

When WinRunner is connected to a Quality Center project, choose File >
Save in the GUI Map Editor to save your GUI map file to the open database.
All the GUI map files used in all the tests saved to the Quality Center project
are stored together. This facilitates keeping track of the GUI map files
associated with tests in your project.

To save a GUI map file to a Quality Center project:

 1 Choose Tools > GUI Map Editor to open the GUI Map Editor.

 2 From a temporary GUI map file, choose File > Save. From an existing GUI
map file, choose File > Save As.

Part VII • Working with Other Mercury Products

400

The Save GUI File to Quality Center project dialog box opens. If any GUI
map files have already been saved to the open database, they are listed in
the dialog box.

Note that the Save GUI File to Quality Center Project dialog box opens only
when WinRunner is connected to a Quality Center project.

To save a GUI map file directly to the file system, click the File System
button, which opens the Save GUI File dialog box. (From the Save GUI File
dialog box, you may return to the Save GUI File to Quality Center Project
dialog box by clicking the Quality Center button.)

Note: If you save a GUI map file directly to the file system, your GUI map
file will not be saved in the Quality Center project.

 3 In the File name text box, enter a name for the GUI map file. Use a
descriptive name that will help you easily identify the GUI map file.

 4 Click Save to save the GUI map file and to close the dialog box.

Note: When you choose to save a GUI map file to a Quality Center project,
it is uploaded to the project immediately.

Chapter 26 • Managing the Testing Process

401

Opening GUI Map Files in a Project

When WinRunner is connected to a Quality Center project, you can use the
GUI Map Editor to open a GUI map file saved to a Quality Center project.

To open a GUI map file saved to a Quality Center project:

 1 Choose Tools > GUI Map Editor to open the GUI Map Editor.

 2 In the GUI Map Editor, choose File > Open.

The Open GUI File from Quality Center project dialog box opens. All the
GUI map files that have been saved to the open database are listed in the
dialog box.

Note that the Open GUI File from Quality Center project dialog box opens
only when WinRunner is connected to a Quality Center project.

To open a GUI map file directly from the file system, click the File System
button, which opens the Open GUI File dialog box. (From the Open GUI
File dialog box, you may return to the Open GUI File from Quality Center
Project dialog box by clicking the Quality Center button.)

 3 Select a GUI map file from the list of GUI map files in the open database.
The name of the GUI map file appears in the File name box.

Part VII • Working with Other Mercury Products

402

 4 To load the GUI map file to open into the GUI Map Editor, click Load into
the GUI Map. Note that this is the default setting. Alternatively, if you only
want to edit the GUI map file, click Open for Editing Only. For more
information, refer to Chapter 7, “Editing the GUI Map” in the Mercury
WinRunner Basic Features User’s Guide.

 5 Click Open to open the GUI map file. The GUI map file is added to the GUI
file list. The letter “L” indicates that the file is loaded.

Running Tests in a Test Set

A test set is a group of tests selected to achieve specific testing goals. For
example, you can create a test set that tests the user interface of the
application or the application’s performance under stress. You define test
sets when working in Quality Center’s test run mode.

If WinRunner is connected to a project and you want to run tests in the
project from WinRunner, specify the name of the current test set before you
begin. When the test run is completed, the tests are stored in Quality Center
according to the test set you specified.

To specify a test set and user name:

 1 Choose a Run command from the Test menu.

The Run Test dialog box opens.

Chapter 26 • Managing the Testing Process

403

 2 In the Test Set box, select a test set from the list. The list contains test sets
created in Quality Center.

 3 If your test set contains more than one instance of the test, select the Test
Instance. If you are working with a version of TestDirector earlier than 7.5,
the Test Instance is always 1.

 4 In the Test Run Name box, select a name for this test run, or enter a new
name.

 5 To run tests in Debug mode, select the Use Debug mode check box. If this
option is selected, the results of this test run are not written to the Quality
Center project.

 6 To display the test results in WinRunner at the end of a test run, select the
Display test results at end of run check box.

 7 To supply values for input parameters, click Input Parameters and enter the
values you want to use for this test run in the Input Parameters dialog box.
For more information, refer to Chapter 20, “Understanding Test Runs” in
the Mercury WinRunner Basic Features User’s Guide.

 8 Click OK to save the parameters and to run the test.

Part VII • Working with Other Mercury Products

404

Running Date Operations Tests in a Test Set

If the Enable date operations option is selected (Tools > General Options >
General category), you can also view and modify the Date Operations Run
Mode settings from the Run Test dialog box.

For more information on running tests to check date operations, refer to
Chapter 20, “Understanding Test Runs” in the Mercury WinRunner Basic
Features User’s Guide.

Running Tests on Remote Hosts

You can run WinRunner tests on multiple remote hosts. To enable another
Mercury product to use a computer as a remote host, you must activate the
Allow other Mercury products to run tests remotely option. Note that when
you run a test on a remote host, you should run the test in silent mode,
which suppresses WinRunner messages during a test run. For more
information on silent mode, see Chapter 21, “Setting Testing Options from
a Test Script.”

Chapter 26 • Managing the Testing Process

405

To enable another Mercury product on a remote machine to run WinRunner
tests:

 1 Choose Tools > General Options to open the General Options dialog box.

 2 Click the Run category.

 3 Select the Allow other Mercury products to run tests remotely check box.

Note: If the Allow other Mercury Products to run tests remotely check box
is cleared, WinRunner tests can only be run locally.

For more information on setting testing options using the General Options
dialog box, refer to Chapter 23, “Setting Global Testing Options” in the
Mercury WinRunner Basic Features User’s Guide.

Viewing Test Results from a Project

If you run tests in a test set, you can view the test results from a Quality
Center project. If you run a test set in Verify mode, the Test Results window
opens automatically at the end of the test run. At other times, choose Tools
> Test Results to open the Test Results window. By default, the Test Results
window displays the test results of the last test run of the active test. To view
the test results for another test or for an earlier test run of the active test,
choose File > Open in the Test Results window.

To view test results from a Quality Center project:

 1 Choose Tools > Test Results.

The Test Results window opens, displaying the test results of the last test run
of the active test.

 2 In the Test Results window, choose File > Open.

Part VII • Working with Other Mercury Products

406

The Open Test Results from Quality Center project dialog box opens and
displays the test plan tree.

Note that the Open Test Results from Quality Center project dialog box
opens only when WinRunner is connected to a Quality Center project.

To open test results directly from the file system, click the File System
button, which opens the Open Test Results dialog box. (From the Open Test
Results dialog box, you may return to the Open Test Results from Quality
Center Project dialog box by clicking the Quality Center button.)

 3 In the Test Type box, select the type of test to view in the dialog box: all
tests (the default setting), WinRunner tests, or WinRunner batch tests.

 4 Select the relevant subject in the test plan tree. To expand the tree and view
a sublevel, double-click a closed folder. To collapse a sublevel, double-click
an open folder.

Chapter 26 • Managing the Testing Process

407

 5 Select a test run to view. In the right pane:

➤ The Run Name column displays whether your test run passed or failed
and contains the names of the test runs.

➤ The Test Set column contains the names of the test sets.

➤ Entries in the Status column indicate whether the test passed or failed.

➤ The Run Date column displays the date and time when the test set was
run.

 6 Click OK to view the results of the selected test.

If the test results indicate defects in your application, you can report the
defects to your Quality Center defect database directly from the Test Results
window. For more information, refer to Chapter 21, “Analyzing Test
Results.” in the Mercury WinRunner Basic Features User’s Guide.

For information about the options in the Test Results window, refer to
Chapter 21, “Analyzing Test Results” in the Mercury WinRunner Basic Features
User’s Guide.

Using TSL Functions with Quality Center

Several TSL functions facilitate your work with a Quality Center project by
returning the values of fields in a Quality Center project. In addition,
working with Quality Center facilitates working with many TSL functions:
when WinRunner is connected to Quality Center, you can specify a path in
a Quality Center project in a TSL statement instead of using the full file
system path.

Quality Center Project Functions

Several TSL functions enable you to retrieve information from a Quality
Center project.

qcdb_add_defect Adds a new defect to the Quality Center
defect database for the project to which
WinRunner is connected.

Part VII • Working with Other Mercury Products

408

qcdb_get_step_value Returns the value of a field in the "dessteps"
table in a Quality Center project.

qcdb_get_test_value Returns the value of a field in the "test" table
in a Quality Center project.

qcdb_get_testset_value Returns the value of a field in the "testcycl"
table in a Quality Center project.

qcdb_load_attachment Downloads a file attachment of a test to the
local cache and returns its location.

You can use the Function Generator to insert these functions into your test
scripts, or you can manually program statements that use them.

For more information about these functions, refer to the TSL Reference.

Call Statements and Compiled Module Functions

When WinRunner is connected to Quality Center, you can specify the paths
of tests and compiled module functions saved in a Quality Center project
when you use the call, call_close, load, reload, and unload functions.

For example, if you have a test with the following path in your Quality
Center project, Subject\Sub1\My_test, you can call it from your test script
with the statement:

call "[QC]\\Subject\\Sub1\\My_test"();

Alternatively, if you specify the “[QC]\Subject\Sub1” search path in the
Folders category of the General Options dialog box or by using a setvar
statement in your test script, you can call the test from your test script with
the following statement:

call "My_test" ();

Note that the [QC] prefix is optional when specifying a test or a compiled
module in a Quality Center project.

Chapter 26 • Managing the Testing Process

409

Note: When you run a WinRunner test from a Quality Center project, you
can specify its “In” parameters from within Quality Center, instead of using
call statements to pass parameters from a test to a called test. You may not
use Quality Center to call a WinRunner test that has “Out” parameters
defined. For information about specifying parameters for WinRunner tests
from Quality Center, refer to the Mercury Quality Center User’s Guide. For
information on “In” and “Out” parameters, see “About Calling Tests” on
page 131.

For more information on working with the specified Call Statement and
Compiled Module functions, refer to the TSL Reference.

GUI Map Editor Functions

When WinRunner is connected to Quality Center, you can specify the
names of GUI map files saved in a Quality Center project when you use GUI
Map Editor functions in a test script.

When WinRunner is connected to a Quality Center project, WinRunner
stores GUI map files in the GUI repository in the database. Note that the
[QC] prefix is optional when specifying a GUI map file in a Quality Center
project.

For example, if the My_gui.gui GUI map file is stored in a Quality Center
project, in My_project_database\GUI, you can load it with the statement:

GUI_load ("My_gui.gui");

For information about working with GUI Map Editor functions, refer to the
TSL Reference.

Part VII • Working with Other Mercury Products

410

Specifying Search Paths for Tests Called from Quality Center

You can configure WinRunner to use search paths based on the path in a
Quality Center project.

In the following example, a setvar statement specifies a search path in a
Quality Center project:

setvar ("searchpath", "[QC]\\My_project_database\\Subject\\Sub1");

For information on how to specify the search path using the General
Options dialog box, refer to Chapter 23, “Setting Global Testing Options” in
the Mercury WinRunner Basic Features User’s Guide. For information on how to
specify the search path by using a setvar statement, see Chapter 21, “Setting
Testing Options from a Test Script.”

Command Line Options for Working with Quality Center

You can use the Windows Run command to set parameters for working with
Quality Center. You can also save your startup parameters by creating a
custom WinRunner shortcut. Then, to start WinRunner with the startup
parameters, you simply double-click the icon.

You can use the command line options described below to set parameters for
working with Quality Center. For additional information on using
command line options, see Chapter 15, “Running Tests from the Command
Line.”

-dont_connect

If the Reconnect on startup check box is selected in the Quality Center
Connection dialog box, this command line enables you to open WinRunner
without connecting to Quality Center.

-qc_connection {on | off}

Activates WinRunner’s connection to Quality Center when set to on.

(Default = off)

(Formerly -test_director.)

Chapter 26 • Managing the Testing Process

411

Note: If you select the “Reconnect on startup” option in the Connection to
Test Director dialog box, setting -qc_connection to off will not prevent the
connection to Quality Center. To prevent the connection to Quality Center
in this situation, use the -dont_connect command. For more information,
see “-dont_connect,” on page 410.

-qc_cycle_name cycle_name

Specifies the name of the current test cycle. This option is applicable only
when WinRunner is connected to Quality Center.

Note that you can use the corresponding qc_cycle_name testing option to
specify the name of the current test cycle, as described in Chapter 21,
“Setting Testing Options from a Test Script.”

-qc_database_name database_pathname

Specifies the active Quality Center project. WinRunner can open, execute,
and save tests in this project. This option is applicable only when
WinRunner is connected to Quality Center.

Note that you can use the corresponding qc_database_name testing option to
specify the active Quality Center database, as described in Chapter 21,
“Setting Testing Options from a Test Script.”

Note that when WinRunner is connected to Quality Center, you can specify
the active Quality Center project from the Quality Center Connection
dialog box, which you open by choosing Tools > Quality Center Connection.
For more information about connecting to Quality Center, see “Connecting
to and Disconnecting from a Project” on page 384.

Part VII • Working with Other Mercury Products

412

-qc_password

Specifies the password for connecting to a project in a Quality Center server.

Note that you can specify the password for connecting to Quality Center
from the Quality Center Connection dialog box, which you open by
choosing Tools > Quality Center Connection.

For more information about connecting to Quality Center, see “Connecting
to and Disconnecting from a Project” on page 384.

-qc_server_name

Specifies the name of the Quality Center server to which WinRunner
connects.

Note that you can use the corresponding qc_server_name testing option to
specify the name of the Quality Center server to which WinRunner
connects, as described in Chapter 21, “Setting Testing Options from a Test
Script.”

Note that you can specify the name of the Quality Center server to which
WinRunner connects from the Quality Center Connection dialog box,
which you open by choosing Tools > Quality Center Connection. For more
information about connecting to Quality Center, see “Connecting to and
Disconnecting from a Project” on page 384.

-qc_user_name user_name

Specifies the name of the user who is currently executing a test cycle.
(Formerly user.)

Note that you can use the corresponding qc_user_name testing option to
specify the user, as described in Chapter 21, “Setting Testing Options from a
Test Script.”

Chapter 26 • Managing the Testing Process

413

Note that you can specify the user name when you connect to Quality
Center from the Quality Center Connection dialog box, which you open by
choosing Tools > Quality Center Connection. For more information about
connecting to Quality Center, see “Connecting to and Disconnecting from a
Project” on page 384.

For more information on using command line options, see Chapter 15,
“Running Tests from the Command Line.”

Part VII • Working with Other Mercury Products

414

415

27
Testing Systems Under Load

Today’s applications are run by multiple users over complex architectures.
With LoadRunner, the Mercury solution for automated performance testing,
you can test the performance and reliability of an entire system.

This chapter describes:

➤ About Testing Systems Under Load

➤ Emulating Multiple Users

➤ Virtual User (Vuser) Technology

➤ Developing and Running Scenarios

➤ Creating GUI Vuser Scripts

➤ Measuring Server Performance

➤ Synchronizing Vuser Transactions

➤ Creating a Rendezvous Point

➤ A Sample Vuser Script

Part VII • Working with Other Mercury Products

416

About Testing Systems Under Load

Software testing is no longer confined to testing applications that run on a
single, standalone PC. Applications are run in network environments where
multiple client PCs or UNIX workstations interact with a central server.
Web-based applications are also common.

Modern architectures are complex. While they provide an unprecedented
degree of power and flexibility, these systems are difficult to test.
LoadRunner emulates load and then accurately measures and analyzes
performance and functionality. This chapter provides an overview of how to
use WinRunner together with LoadRunner to test your system. For detailed
information about how to load test an application, refer to the LoadRunner
documentation.

Emulating Multiple Users

With LoadRunner, you emulate the interaction of multiple users by creating
scenarios. A scenario defines the events that occur during each load testing
session, such as the number of users, the actions they perform, and the
machines they use. For more information about scenarios, refer to the
LoadRunner Controller User’s Guide.

In a scenario, LoadRunner replaces the human user with a virtual user or
Vuser. A Vuser emulates the actions of a human user working with your
application. A scenario can contain tens, hundreds, or thousands of Vusers.

Chapter 27 • Testing Systems Under Load

417

Virtual User (Vuser) Technology

LoadRunner provides a variety of Vuser technologies that enable you to
generate load when using different types of system architectures. Each Vuser
technology is suited to a particular architecture, and results in a specific type
of Vuser. For example, you use GUI Vusers to operate graphical user interface
applications in environments such as Microsoft Windows; Web Vusers to
emulate users operating Web browsers; RTE Vusers to operate terminal
emulators; Database Vusers to emulate database clients communicating with
a database application server.

The various Vuser technologies can be used alone or together, to create
effective load testing scenarios.

GUI Vusers

GUI Vusers operate graphical user interface applications in environments
such as Microsoft Windows. Each GUI Vuser emulates a real user submitting
input to and receiving output from a client application.

A GUI Vuser consists of a copy of WinRunner and a client application. The
client application can be any application used to access the server, such as a
database client. WinRunner replaces the human user and operates the client
application. Each GUI Vuser executes a Vuser script. This is a WinRunner
test that describes the actions that the Vuser will perform during the
scenario. It includes statements that measure and record the performance of
the server. For more information, refer to the LoadRunner Creating Vuser
Scripts guide.

Part VIII • Working with Other Mercury Products

418

Developing and Running Scenarios

You use the LoadRunner Controller to develop and run scenarios. The
Controller is an application that runs on any network PC.

The following procedure outlines how to use the LoadRunner Controller to
create, run, and analyze a scenario. For more information, refer to the
LoadRunner Controller User’s Guide.

Chapter 27 • Testing Systems Under Load

419

 1 Invoke the Controller.

 2 Create the scenario.

A scenario describes the events that occur during each load testing session,
such as the participating Vusers, the scripts they run, and the machines the
Vusers use to run the scripts (load generating machines).

 3 Run the scenario.

When you run the scenario, LoadRunner distributes the Vusers to their
designated load generating machines. When the load generating machines
are ready, they begin executing the scripts. During the scenario run,
LoadRunner measures and records server performance data, and provides
online network and server monitoring.

 4 Analyze server performance.

After the scenario runs, you can use LoadRunner’s graphs and reports to
analyze server performance data captured during the scenario run.

The rest of this chapter describes how to create GUI Vuser scripts. These
scripts describe the actions performed by a human user accessing a server
from an application running on a client PC.

Creating GUI Vuser Scripts

A GUI Vuser script describes the actions a GUI Vuser performs during a
LoadRunner scenario. You use WinRunner to create GUI Vuser scripts. The
following procedure outlines the process of creating a basic script. For a
detailed explanation, refer to the LoadRunner Creating Vuser Scripts guide.

To create a GUI Vuser script:

 1 Start WinRunner.

 2 Start the client application.

 3 Record operations on the client application.

 4 Edit the Vuser script using WinRunner, and program additional TSL
statements. Add control-flow structures as needed.

Part VIII • Working with Other Mercury Products

420

 5 Define actions within the script as transactions to measure server
performance.

 6 Add synchronization points to the script.

 7 Add rendezvous points to the script to coordinate the actions of multiple
Vusers.

 8 Save the script and exit WinRunner.

Measuring Server Performance

Transactions measure how your server performs under the load of many
users. A transaction may be a simple task, such as entering text into a text
field, or it may be an entire test that includes multiple tasks. LoadRunner
measures the performance of a transaction under different loads. You can
measure the time it takes a single user or a hundred users to perform the
same transaction.

The first stage of creating a transaction is to declare its name at the start of
the Vuser script. When you assign the Vuser script to a Vuser, the Controller
scans the Vuser script for transaction declaration statements. If the script
contains a transaction declaration, LoadRunner reads the name of the
transaction and displays it in the Transactions window.

To declare a transaction, you use the declare_transaction function. The
syntax of this functions is:

declare_transaction ("transaction_name");

The transaction_name must be a string constant, not a variable or an
expression. This string can contain up to 128 characters. No spaces are
permitted.

Next, mark the point where LoadRunner will start to measure the
transaction. Insert a start_transaction statement into the Vuser script
immediately before the action you want to measure.

Chapter 27 • Testing Systems Under Load

421

The syntax of this function is:

start_transaction ("transaction_name");

The transaction_name is the name you defined in the declare_transaction
statement.

Insert an end_transaction statement into the Vuser script to indicate the
end of the transaction. If the entire test is a single transaction, then insert
this statement in the last line of the script. The syntax of this function is:

end_transaction ("transaction_name" [, status]);

The transaction_name is the name you defined in the declare_transaction
statement. The status tells LoadRunner to end the transaction only if the
transaction passed (PASS) or failed (FAIL).

Synchronizing Vuser Transactions

For transactions to accurately measure server performance, they must reflect
the time the server takes to respond to user requests. A human user knows
that the server has completed processing a task when a visual cue, such as a
message, appears. For instance, suppose you want to measure the time it
takes for a database server to respond to user queries. You know that the
server completed processing a database query when the answer to the query
is displayed on the screen. In Vuser scripts, you instruct the Vusers to wait
for a cue by inserting synchronization points.

Synchronization points tell the Vuser to wait for a specific event to occur,
such as the appearance of a message in an object, and then resume script
execution. If the object does not appear, the Vuser continues to wait until
the object appears or a time limit expires. You can synchronize transactions
by using any WinRunner synchronization or object function. For more
information on WinRunner synchonization functions, refer to Chapter 19,
“Synchronizing the Test Run” in the Mercury WinRunner Basic Features User’s
Guide.

Part VIII • Working with Other Mercury Products

422

Creating a Rendezvous Point

During the scenario run, you instruct multiple Vusers to perform tasks
simultaneously by creating a rendezvous point. This ensures that:

➤ intense user load is emulated

➤ transactions are measured under the load of multiple Vusers

A rendezvous point is a meeting place for Vusers. You designate the meeting
place by inserting rendezvous statements into your Vuser scripts. When the
rendezvous statement is interpreted, the Vuser is held by the Controller
until all the members of the rendezvous arrive. When all the Vusers have
arrived (or a time limit is reached), they are released together to perform the
next task in their Vuser scripts.

The first stage of creating a rendezvous point is to declare its name at the
start of the Vuser script. When you assign the Vuser script to a Vuser,
LoadRunner scans the script for rendezvous declaration statements. If the
script contains a rendezvous declaration, LoadRunner reads the rendezvous
name and creates a rendezvous. If you create another Vuser that runs the
same script, the Controller will add the Vuser to the rendezvous.

To declare a rendezvous, you use the declare_rendezvous function. The
syntax of this functions is:

declare_rendezvous ("rendezvous_name");

where rendezvous_name is the name of the rendezvous. The rendezvous_name
must be a string constant, not a variable or an expression. This string can
contain up to 128 characters. No spaces are permitted.

Next, you indicate the point in the Vuser script where the rendezvous will
occur by inserting a rendezvous statement. This tells LoadRunner to hold
the Vuser at the rendezvous until all the other Vusers arrive. The function
has the following syntax:

rendezvous ("rendezvous_name");

The rendezvous_name is the name of the rendezvous. The rendezvous_name
must be a string constant, not a variable or an expression. This string can
contain up to 128 characters. No spaces are permitted.

Chapter 27 • Testing Systems Under Load

423

A Sample Vuser Script

In the following sample Vuser script, the “Ready” transaction measures how
long it takes for the server to respond to a request from a user. The user
enters the request and then clicks OK. The user knows that the request has
been processed when the word “Ready” appears in the client application’s
Status text box.

In the first part of the Vuser script, the declare_transaction and
declare_rendezvous functions declare the names of the transaction and
rendezvous points in the Vuser script. In this script, the transaction “Ready”
and the rendezvous “wait” are declared. The declaration statements enable
the LoadRunner Controller to display transaction and rendezvous
information.

Declare the transaction name
declare_transaction ("Ready");

Define the rendezvous name
declare_rendezvous ("wait");

Next, a rendezvous statement ensures that all Vusers click OK at the same
time, in order to create heavy load on the server.

Define rendezvous points
rendezvous ("wait");

In the following section, a start_transaction statement is inserted just
before the Vuser clicks OK. This instructs LoadRunner to start recording the
“Ready” transaction. The “Ready” transaction measures the time it takes for
the server to process the request sent by the Vuser.

Deposit transaction
start_transaction ("Ready");
button_press ("OK");

Before LoadRunner can measure the transaction time, it must wait for a cue
that the server has finished processing the request. A human user knows
that the request has been processed when the “Ready” message appears
under Status; in the Vuser script, an obj_wait_info statement waits for the
message.

Part VIII • Working with Other Mercury Products

424

Setting the timeout to thirty seconds ensures that the Vuser waits up to
thirty seconds for the message to appear before continuing test execution.

Wait for the message to appear
rc = obj_wait_info("Status","value","Ready.",30);

The final section of the test measures the duration of the transaction. An if
statement is defined to process the results of the obj_wait_info statement.

If the message appears in the field within the timeout, the first
end_transaction statement records the duration of the transaction and that
it passed. If the timeout expires before the message appears, the transaction
fails.

End transaction.
if (rc == 0)

end_transaction ("OK", PASS);
else

end_transaction ("OK" , FAIL);

425

Symbols

\ character in regular expressions 98

A

abs_x property 25, 31
abs_y property 25, 31
accessing TSL statements on the menu bar

280
Acrobat Reader xvi
active property 25, 31
Active Screen 375
ActiveX controls

support for. See the WinRunner Basic
Features User’s Guide

Add Class dialog box 20
Add Watch button 244
Add Watch command 244
add_cust_record_class function 330
adding comments for the SME 351
add-ins

QuickTest 371
addins command line option 204
addins_select_timeout command line option

204
addons command line option See addins

command line option
addons_select_timeout command line

option See addins_select_timeout
command line option

Analog mode, run speed 305
Analog mode. See the WinRunner Basic

Features User’s Guide
animate command line option 204
API, Windows. See calling functions from

external libraries
app command line option 205

app_open_win command line option 205
app_params command line option 205
argument values, assigning 127–128
Assign Variable dialog box 247
attached text

search area 289
search radius 291

attached_text property 25, 31
attached_text_area testing option 289
attached_text_search_radius testing option

291
attr_val function 321
attributes. See properties
Auto Merge (of GUI map files) 5

resolving conflicts created during 6–9
auto_load command line option 206
auto_load_dir command line option 206
Automation Engineer 341, 343

B

batch command line option 206
batch mode, running tests in 292
batch testing option 292
batch tests 193–199

creating 195–196
expected results 197–199
overview 193–194, 197–199
running 197
storing results 197
verification results 197–199
viewing results 199

beep command line option 207
beep testing option 293
Bitmap Checkpoint for Object/Window

button 269

Index

Index

426

Bitmap Checkpoint for Screen Area button
269

bitmap checkpoints. See the WinRunner
Basic Features User’s Guide

bitmaps
capturing 293
mismatch 300

Break at Location breakpoint 234, 235
Break in Function breakpoint 234, 237
Break in Function command 237
breakpoints 231–240

Break at Location 234, 235
Break in Function 234, 237
deleting 240
modifying 239
overview 231–232
pass count 234

Breakpoints List pane, Debug Viewer 233
business components. See components
Business Process Testing 337

roles 340
workflow 342

business process tests 343
running 346

buttons on the User toolbar
that execute menu commands,

adding 271–272
that execute TSL statements, adding

274–276
that parameterize TSL statements,

adding 276–278
that paste TSL statements, adding

272–274
buttons, recording 302

C

calculations, in TSL 110
calendar class 30
Call Chain pane, Debug Viewer 145
call statements 133, 408

functions for working with Quality
Center 408

Call to QuickTest Test dialog box 372
call_close statement 133, 408
call_ex function 372

called tests
specifying search paths 303

calling functions from external libraries
175–181

declaring external functions in TSL
177–180

examples 180–181
loading and unloading DLLs 176–177
overview 175–176

calling tests 131–146
call statement 133
overview 131–132
returning to calling tests 134–135
setting the search path 136
texit statement 134–135
treturn statement 134–135

capture_bitmap command line option 207
capture_bitmap testing option 293
Check Arguments dialog box

for Range property check 95
CHECK BITMAP OF SCREEN AREA softkey 281
CHECK BITMAP OF WINDOW softkey 281
CHECK DATABASE (CUSTOM) softkey 281
CHECK DATABASE (DEFAULT) softkey 281
CHECK GUI FOR MULTIPLE OBJECTS softkey

281
CHECK GUI FOR OBJECT/WINDOW softkey

280
CHECK GUI FOR SINGLE PROPERTY softkey 280
Check In command 397, 398
Check Out command 398
check_button class 30
check_info functions, failing test when

statement fails 218, 304
checking

dates. See the WinRunner Basic
Features User’s Guide

checking tables. See the WinRunner Basic
Features User’s Guide

checking tests
into version control 398
out of version control 398

checking windows 293
checklists, shared 303
checkpoints

capturing bitmaps on failure 293

Index

427

checkpoints (continued)
database. See the WinRunner Basic

Features User’s Guide
text. See the WinRunner Basic Features

User’s Guide xiv
child windows, recording 296, 297
class property 25, 30, 31
class_index property 31
classes

configuring 22–27
object 16

ComboBox
recording non-unique items by name

217, 301
string for separating 299

command line
creating custom WinRunner shortcut

203
options 204–221
options for working with Quality

Center 410–413
running tests from the 201–221

comments
in TSL 107

comparing two files 118
compiled module functions for working with

Quality Center 408
compiled modules 157–174

changing functions in 160
creating 160
example 174
for recovery scenarios 82
loading 170–173
overview 168–169
reloading 170–173
structure 159
Test Properties dialog box, General tab

160
unloading 170–173

component parameter
input 343
output 343

components
definition 343
differences to tests 338

components (continued)
saving 363
using Data Table with 339

components, scripted. See scripted
components

compound recovery scenarios 58–75
configurations, initializing 329–331
Configure Class dialog box 21, 23, 27
configuring

classes 22–27
GUI map. See GUI map configuration
recording method 27
WinRunner softkeys 280–283

connecting to Quality Center 348
connecting WinRunner to a Quality Center

project 307, 384–387
constants, in TSL 109
Context Sensitive

errors 294
mode. See the WinRunner Basic

Features User’s Guide
statements 294
statements, delay between executing

294
statements, timeout 310
testing, introduction to. See the

WinRunner Basic Features User’s
Guide

Controller, LoadRunner 418
controlling test execution with setvar and

getvar 289
count property 31
create_browse_file_dialog function 188
create_custom_dialog function 187
create_input_dialog function 184
create_list_dialog function 186
create_password_dialog function 189
create_text_report command line option 208
create_unirep_info command line option

208
cs_fail command line option 208
cs_fail testing option 294
cs_run_delay command line option 209
cs_run_delay testing option 294
ct_KEYWORD_USER section of

reserved_words.ini file 257

Index

428

curr_dir testing option 295
custom objects

adding custom class 20
mapping to a standard class 19–22

custom shortcut for starting WinRunner 203
Customize Toolbars dialog box 262

Commands tab 262
Options tab 268

Customize User Toolbar dialog box 271, 272,
274, 276

customizing
the Function Generator 313–327
WinRunner’s user interface 261–283

customizing test scripts 251–260
highlighting script elements 255
overview 251
print options 252
script window customization 258

Customizing Toolbars dialog box
Toolbars tab 264

cycle command line option See
qc_cycle_name command line option

D

Data Table
using with components 339

databases
checking. See the WinRunner Basic

Features User’s Guide
data-driven tests. See the WinRunner Basic

Features User’s Guide
Debug toolbar

customizing 262
Debug Viewer

Breakpoints List pane 233
Call Chain pane 145
Watch List pane 242

debugging test scripts 225–229
overview 225–226
Pause command 228
pause function 229
Step command 227
Step Into command 227
Step Out command 227
Step to Cursor command 228

decision-making in TSL 113
if/else statements 113
switch statements 114

declare_rendezvous function 422
declare_transaction function 420
def_replay_mode command line option 210
Default Database Checkpoint button 269
default settings for WinRunner softkeys 280
define_object_exception function 85
define_popup_exception function 85
define_TSL_exception function 85
defining functions. See user-defined

functions
definition 343
delay

between execution of Context
Sensitive statements 294

for window synchronization 295
delay command line option. See delay_msec

command line option
delay testing option. See delay_msec testing

option
delay_msec command line option 210
delay_msec testing option 295
descriptive programming 105–107

syntax 106
dialog boxes for interactive input

creating 183–190
dialog boxes for interactive input, creating

overview 183–184
dialog boxes, creating

browse dialog boxes 188
custom dialog boxes 187
input dialog boxes 184
list dialog boxes 186
option dialog boxes 186
overview 183–184
password dialog boxes 189

disconnecting from a Quality Center
project 387

displayed property 25, 31
DLLs

loading 176
unloading 177

documentation
updates xvii

Index

429

documentation, printed
WinRunner Basic Features User’s

Guide xv
dont_connect command line option 211,

410
dont_quit command line option 211
dont_show_welcome command line option

211
drop_sync_timeout testing option 296

E

edit class 30
editing

GUI map. See the WinRunner Basic
Features User’s Guide xiv

list of reserved words 257
Editor Options dialog box 253
enabled property 25, 31
end_transaction function 421
enum_descendent_toplevel testing option

296, 297
error handling. See recovery scenarios
exception event 46
exception handling. See recovery scenarios
exception_off function 84
exception_off_all function 85
exception_on function 84
excp_str.ini file 78
Execute TSL Button Data dialog box 275
executing

menu commands from the User
toolbar 271–272

TSL statements from the User toolbar
274–276

exp command line option 211, 212
exp testing option 297
expected results folder, location 297
extern declaration 177–180
external function 148
external functions, declaring in TSL 177–180
external libraries, dynamically linking

176–177

F

f command line option 213
fast_replay command line option 212
file comparison 118
File toolbar

customizing 262
file_compare function 118
filename command line option. See f

command line option
focused property 25, 31
font group 297
fontgrp command line option 213
fontgrp testing option 297
frame_mdiclient class 30
Function Generator 121–130

assigning argument values 127–128
changing the default functions

129–130
choosing a function from a list 126
choosing a non-default function for a

GUI object 124
get functions 122
overview 121–123
using the default function for a GUI

object 123
Function Generator, customizing 313–327

adding a function 315–323
adding categories 314–315
adding sub-categories to a category

324–325
associating a function with a category

323–324
changing default functions 326–327
overview 313–314

functions
calling from external libraries. See

calling functions from external
libraries

user-defined. See user-defined
functions

Index

430

G

General Options dialog box 212
General tab

Test Properties dialog box 160
generating functions 121–130

See also Function Generator
generator_add_category function 314–315
generator_add_function function 315–323
generator_add_function_to_category

function 323–324
generator_add_subcategory function

324–325
generator_set_default_function function

130, 326–327
get functions 122
Get Text from Object/Window button 269
GET TEXT FROM OBJECT/WINDOW softkey

281
Get Text from Screen Area button 269
GET TEXT FROM SCREEN AREA softkey 281
getvar function 288

controlling test execution with 289
Global GUI Map File mode

setting option 13
Global GUI Map File mode option 13
Global GUI Map File mode. See the

WinRunner Basic Features User’s
Guide

global timeout 310
glossary of terms 343
GUI Checkpoint for Multiple Objects button

269
GUI Checkpoint for Object/Window button

269
GUI Checkpoint for Single Property

command
failing test when statement fails 218,

304
GUI checkpoints

checking Web objects. See the
WinRunner Basic Features User’s
Guide xiv

GUI checkpoints. See the WinRunner Basic
Features User’s Guide

GUI map
configuring 15–35
configuring, overview 15–17
introduction. See the WinRunner

Basic Features User’s Guide
understanding. See the WinRunner

Basic Features User’s Guide
GUI Map Configuration

WinRunner add-ins 18
GUI map configuration 15–35

configuring a class 22–27
creating a permanent 27–29
default 18
defining 27
deleting a custom class 29
mapping a custom object to a

standard class 19–22
overview 15–17

GUI Map Configuration dialog box 20, 22
GUI Map Editor, functions for working with

Quality Center 409
GUI Map Editor. See the WinRunner Basic

Features User’s Guide
GUI Map File Auto Merge Tool 7
GUI Map File Merge Tool 5

Auto Merge 5
Manual Merge 5

GUI map file modes
changing modes 13
Global GUI Map File mode. See the

WinRunner Basic Features User’s
Guide

GUI map files
editing. See the WinRunner Basic

Features User’s Guide
merging 3–13
merging in Manual Merge mode

10–12
GUI objects

checking. See the WinRunner Basic
Features User’s Guide

identifying. See the WinRunner Basic
Features User’s Guide xiv

GUI Vuser Scripts 419
GUI Vusers 417
GUI_load function 330

Index

431

H

handle property 25, 31
height property 25, 31
HWND window handle 18

I

index number specifying a list item 298
index selector 19, 26
ini command line option 213
initialization tests. See startup tests
input parameters 138
Insert Function > For Object/Window

command 123–125
Insert Function > From Function Generator

command 126
Insert Function for Object/Window button

123–125, 269
INSERT FUNCTION FOR OBJECT/WINDOW

softkey 281
Insert Function from Function Generator

button 126, 269
INSERT FUNCTION FROM FUNCTION

GENERATOR softkey 281, 315, 316,
323

interactive testing, passing input to tests
183–190

invoke_application function 116, 330
item_number_seq testing option 298

K

key assignments
creating 259

key_editing testing option 298
keyboard input, synchronization 306
keyboard shortcuts

deleting 259
editing 259

L

label property 25, 31
learned properties, configuring 24
line_no testing option 299
list class 30

list item, specified by its index number 298
List_item_separator testing option 299
ListBox

recording non-unique items by name
217, 301

string for separating 299
ListView, string for separating 300
Listview_item_separator testing option 300
load function 330, 408
load testing. See LoadRunner
load_dll function 176
LoadRunner 415–424

controller 418
creating GUI Vuser Scripts 419
GUI Vusers 417
measuring server performance 420
rendezvous 422
RTE Vusers 417
scenarios 416, 418
simulating multiple users 416
synchronizing transactions 421
transactions 420
TUXEDO Vusers 417
Vusers 416
Web Vusers 417

location
current test 309
current working folder 295
expected results folder 297
shared checklists 303
temporary files 309
verification results folder 302

location selector 19, 26
loops, in TSL 111

do/while loops 112
for loops 111
while loops 112

M

managing the testing process 379–413
Manual Merge (of GUI map files) 5, 10–12
mapping

a custom class to a standard class
19–22

Index

432

mapping (continued)
custom objects to a standard class

19–22
maximizable property 25, 31
mdiclient class 30
menu commands, executing from the User

toolbar 271–272
menu_item class 30
Merge GUI Map Files command 4
merging GUI map files 3–13

automatically, resolving conflicts 6–9
manually 10–12
overview 3–4
preparing 4–6

messages
suppressing 292

mic_if_win class 30
min_diff command line option 213
min_diff testing option 300
minimizable property 25, 31
mismatch, bitmap 300
mismatch_break command line option 214
mismatch_break testing option 300
mode 304
Modify Watch dialog box 246
module_name property 32
modules, compiled. See compiled modules
monitoring variables. See Watch List
mouse input, synchronization 306
MOVE LOCATOR softkey 282
MSW_class property 25, 32
MSW_id property 25, 32
myinit startup test 330

N

nchildren property 25, 32
New Breakpoint dialog box 235, 237, 238
num_columns property 32
num_rows property 32

O

obj_col_name property 25, 32
obj_mouse functions 16, 19
obj_mouse_click function 19

obj_type function 298
object class 16, 30
object class buttons, recording 302
object description 105–107
object exception event, defining 51, 61
objects

custom 19–22
mapping to a standard class 19–22
standard 25
virtual. See also virtual objects 37–42

obligatory properties 18
online resources xv
Open GUI File from Quality Center Project

dialog box 401
Open Test from Quality Center Project dialog

box 393
Open Test Results from Quality Center

Project dialog box 406
opening GUI map files in a Quality Center

project 401–402
opening tests

in a Quality Center project 392–394
operators, in TSL 110
optional properties 18
options, testing. See setting testing options
output parameters 138
owner property 25, 32

P

Parameterize Data command 140
Parameterize Data dialog box 140
Parameterize TSL Button Data dialog box 277
parameterizing TSL statements from the User

toolbar 276–278
parameters

defining 140
defining for a scripted component

360
formal 143
input 138
output 138

parameters (continued)
using 142

parent property 32
pass count 234

Index

433

Paste TSL Button Data dialog box 273
pasting TSL statements from the User toolbar

272–274
Pause button 228
Pause command 228
pause function 229
PAUSE softkey 228, 282
pausing test execution using breakpoints

231–240
pb_name property 25, 32
physical descriptions

non-unique MSW_id in a single
window 19

pop-up exception event, defining 53, 63
position property 32
post-recovery operation(s) 46
PowerBuilder

object properties 35
pb_name property 25, 32
See also checking tables

PowerBuilder applications. See the
WinRunner Basic Features User’s
Guide

print options 252
list 258

programming in TSL 103–120
calculations 110
comments 107
constants 109
decision-making 113
defining steps 117
loops 111
overview 104–105
starting applications 116
variables 109
white space 108

programming, visual. See Function
Generator

project (Quality Center)
connecting to 348
connecting WinRunner to 384–387
direct file access to WinRunner tests

382
disconnecting from 387
opening GUI map files in 401–402
opening tests in 392–394

project (Quality Center) (continued)
running tests remotely 404–405
saving GUI map files to 399–400
saving tests to 389–390
saving tests to as scripted components

391
search paths, specifying 410
viewing test results from 405–407

properties
class 30
default 34
obligatory 18
optional 18
portable 31
PowerBuilder objects 35
test. See the WinRunner Basic Features

User’s Guide
Visual Basic objects 34

public 148
public function

user-defined function 148
push_button class 30

Q

qc_connection command line option 215,
410

qc_connection testing option 307
qc_cycle_name command line option 215,

411
qc_cycle_name testing option 307
qc_database_name command line option

215, 411
qc_database_name testing option 307
qc_password command line option 216, 412
qc_server_name command line option 216,

412
qc_server_name testing option 308
qc_test_instance testing option 308
qc_test_run_id testing option 308
qc_user_name command line option 217,

412
qc_user_name testing option 309
qcdb_add_defect function 407
qcdb_get_step_value function 408
qcdb_get_test_value function 408

Index

434

qcdb_get_testset_value function 408
qcdb_load_attachment function 408
Quality Center

command line options for working
with 410–413

connecting to project 348
defect tracking 380
test execution 380
test planning 380
TSL functions for working with

407–410
version control 396–399
working with 379–413
See also Quality Center project

Quality Center Connection dialog box 348,
385

Quality Center project
connecting WinRunner to 384–387
connecting WinRunner to a 307
direct file access to WinRunner tests

382
disconnecting from 387
displaying name 307
displaying Quality Center server

name 308
displaying the current test instance

308
displaying the name of the Quality

Center test set 307
displaying the test run ID 308
displaying the user name 309
opening GUI map files in 401–402
opening tests in 392–394
running tests from 404–405
saving GUI map files to 399–400
saving tests as scripted components

391
saving tests to 389–390
search paths,specifying 410
viewing test results from 405–407
See also Quality Center

QuickTest
calling from WinRunner 372
loading associated add-ins 371
supported versions 371

R

radio_button class 30
radius for attached text 291
RapidTest Script wizard

startup tests 330
Read Me file xv
rec_item_name command line option 217
rec_item_name testing option 301
rec_owner_drawn testing option 302
reconnect on startup, Quality Center 211,

410
Record - Context Sensitive button 269
RECORD softkey 280
recording

buttons 302
child windows 296, 297
ComboBox items 217, 301
ListBox items 217, 301
method 27
object-class buttons 302

recovery compiled module 82
Recovery Manager dialog box 48, 58
recovery operation(s) 46
Recovery Scenario Summary dialog box 76
recovery scenarios

activating and deactivating 78
compound 58–75
crash event window name 78
defined 45
defining and using 45–85
defining functions for 73
deleting 77
managing 75–79
modifying 76
simple 47–57
using TSL statements for 84–85

recovery scenarios file 80–82
Recovery wizard 47

Close Application Processes screen 69
Define Exception Event screen 61
Define Exception Event screen

(simple) 50
Define Post-Recovery Function screen

74
Define Recovery Function screen 74

Index

435

Recovery wizard (continued)
Define Recovery Operations screen 55
Define Recovery Operations screen

(compound) 65
Post-Recovery Operations screen 71
Processes list 70
Scenario Name screen 50, 60
Select Exception Event Type screen

(compound) 59
Select Exception Event Type screen

(simple) 49
redefining WinRunner softkeys 283
regexp_label property 25, 32
regexp_MSWclass property 25, 32
regular expressions 93–99

character 98
in GUI checkpoints 94
in physical descriptions 94
in text checkpoints 96
overview 93
syntax 97–99

reload function 173, 408
remote hosts, running tests on 404–405
rendezvous function 422
rendezvous, LoadRunner 422
report_msg function 116
reserved words 257
reserved_words.ini file 257
result testing option 302
results of tests. See the WinRunner Basic

Features User’s Guide xiv
return statement 150
roles 343
roles in Business Process Testing 340
RTL-style windows

finding attached text in 290
run command line option 217
RUN FROM ARROW softkey 282
RUN FROM TOP softkey 281
Run in Batch Mode check box 194
run modes

displaying for current test 302
Run Test dialog box

for tests in a Quality Center project
402

run_minimized command line option 217

run_speed command line option See speed
command line option

runmode testing option 302
running tests

batch run 193–199
for debugging 225–229
from a Quality Center project

404–405
from the command line 201–221
in a test set 402–403
on remote hosts 404–405
pausing execution 228
with setvar and getvar functions 289

running tests. See the WinRunner Basic
Features User’s Guide

S

sample tests xvi
Save GUI File to Quality Center Project

dialog box 400
Save step screen capture to test results

option, QuickTest test 375
Save Test to Quality Center Project dialog

box 389, 391
Save WinRunner Component to Quality

Center Project dialog box 367
saving

component 363
saving GUI map files to a Quality Center

project 399–400
saving tests

to a Quality Center project 389–390
saving tests as scripted components 391
scenarios, LoadRunner 416, 418
scripted components 348–370

at a glance 347
creating 349

scroll class 30
search area for attached text 289
Search Path for Called Tests box 136
search paths

for called tests 303
for tests called from a Quality Center

project 410
setting 136

Index

436

search radius for attached text 291
search_path command line option 218
searchpath testing option 136, 303
selectors

configuring 26
index 19, 26
location 19, 26

server
Quality Center, connecting to 348

server performance, measuring (with
LoadRunner) 420

Set Function Parameters dialog box 279
set, of tests (Quality Center) 402–403
set_class_map function 29, 330
set_record_attr function 29, 330
set_record_method function 29
setting test properties. See the WinRunner

Basic Features User’s Guide xiv
setting testing options

using the getvar function 288
using the setvar function 286–287
within a test script 285–311

setvar function 136, 286–287
controlling test execution with 289

shared checklists, location of 303
shared_checklist_dir testing option 303
shortcut for starting WinRunner 203
silent mode, running tests in 304
silent_mode testing option 304
simple recovery scenarios 47–57
single_prop_check_fail command line

option 218
single_prop_check_fail testing option 304
SME. See Subject Matter Expert
Softkey Configuration dialog box 283
softkeys

configuring WinRunner 280–283
default settings 280

speed command line option 219
speed testing option 305
spin class 30
standard classes. See classes
start_minimized command line option 219
start_transaction function 421
startup tests 329–331

sample 331

static function 148
static_text class 30
status bar class 30
Step button 227
Step command 227
Step Into button 227
Step Into command 227
STEP INTO softkey 282
Step Out command 227
STEP softkey 282
Step to Cursor command 228
STEP TO CURSOR softkey 228, 282
steps

defining in a test script 117
definition 343

Stop button 269
STOP softkey 282
stress conditions, creating in tests 111
Subject Matter Expert 340, 343, 380
submenu property 32
suppressing messages 292
sync_fail_beep testing option 305
synchronization 305

delaying window 295
following keyboard or mouse input

306
timeout 296

Synchronization Point for Object/Window
Bitmap button 269

Synchronization Point for Object/Window
Property button 269

Synchronization Point for Screen Area
Bitmap button 269

synchronization_timeout testing option 306
SYNCHRONIZE BITMAP OF OBJECT/WINDOW

softkey 281
SYNCHRONIZE BITMAP OF SCREEN AREA

softkey 281
SYNCHRONIZE OBJECT PROPERTY (CUSTOM)

softkey 281
synchronizing tests. See the WinRunner Basic

Features User’s Guide
syntax check 119
sysmenu property 32

Index

437

T

t command line option 219
tab class 30
tables

checking. See the WinRunner Basic
Features User’s Guide

technical support online xvi
tempdir testing option 309
temporary files, location 309
terminology, Business Process Testing 343
test execution

controlling with setvar and getvar 289
pausing 228

Test Properties command 160
test properties. See the WinRunner Basic

Features User’s Guide
test results

for batch tests 199
of called QuickTest test 374

test results. See the WinRunner Basic Features
User’s Guide

test run
speed 212

Test Script Language (TSL) 103–120
overview 104–105

test scripts
customizing 251–260
highlighting script elements 255
print options 252
script window customization 258

test set (Quality Center) 402–403
test versions in WinRunner 396–399
test window

customizing appearance of 251
highlighting script elements 255

TestDirector See Quality Center
testing options

global. See the WinRunner Basic
Features User’s Guide

within a test script 285–311
See also setting testing options

testing process
analyzing results. See the WinRunner

Basic Features User’s Guide
managing the 379–413

testing process (continued)
running tests. See the WinRunner

Basic Features User’s Guide
Testing Tool engineer

role in Business Process Testing 340
testname command line option. See t

command line option
testname testing option 309
tests

calling. See calling tests
designing. See the WinRunner Basic

Features User’s Guide
differences to components 338

texit statement 134–135, 197
text

checking. See the WinRunner Basic
Features User’s Guide

text checkpoints. See the WinRunner Basic
Features User’s Guide

text labels, displaying on toolbars 267
text property 25, 33
time parameter 310
timeout

for checkpoints 310
for Context Sensitive statements 310
for synchronization 296
global 310

timeout command line option. See
timeout_msec command line option

timeout testing option. See timeout_msec
testing option

timeout_msec command line option 220
timeout_msec testing option 310
tl_step function 117
Toggle Breakpoint command 235
toolbar

adding buttons to 263
creating user-defined toolbars 265
customizing 262
deleting user-defined toolbars 267
displaying and hiding 265
displaying text labels 267
handles look 268
large icons 268
removing buttons from 264

Index

438

toolbar (continued)
renaming user-defined toolbars 266
restoring default buttons 265
screentips 268

toolbar buttons
adding to toolbars 263
removing from toolbars 264

toolbar class 30
toolkit_class property 32
tooltips, on toolbars 268
transactions, synchronizing (for

LoadRunner) 421
TreeView

string for parsing a path 311
string for separating 300

Treeview_path_separator testing option 311
treturn statement 134–135
TSL documentation 105
TSL exception event, defining 54, 64
TSL functions

call statement functions with Quality
Center 408

compiled module functions with
Quality Center 408

for working with Quality Center
407–410

GUI Map Editor functions with
Quality Center 409

reserved words 257
TSL Online Reference xv, 105
TSL Reference Guide xv, 105
TSL statements

accessing from the menu bar 280
executing from the User toolbar

274–276
parameterizing from the User toolbar

276–278
pasting from the User toolbar

272–274
TSL, syntax check 119
tslinit_exp command line option 220
type function 298
typographical conventions xviii

U

unified report
viewing a called QuickTest test 374

unload function 172, 408
unload_dll function 177
update_ini command line option 220
updates, documentation xvii
user command line option See qc_user_name

command line option
user command line option. See

qc_user_name command line option
user interface, WinRunner, customizing

261–283
User toolbar 269–280

adding buttons that execute menu
commands 271–272

adding buttons that execute TSL
statements 274–276

adding buttons that parameterize TSL
statements 276–278

adding buttons that paste TSL
statements 272–274

creating 269–278
using 278–280

user_name command line option. See
qc_user_name command line option

User’s Guide, WinRunner xv
user-defined function

external 148
static 148

user-defined functions 147–155
adding to the Function Generator. See

customizing the Function
Generator

array declarations 153
class 148
constant declarations 153
declaration of variables, constants,

and arrays 151–155
example 155
overview 147–148
parameters 149
return statement 150
syntax 148–150
variable declarations 151

Index

439

user-defined toolbars
creating 265
deleting 267
renaming 266

V

value property 26, 33
variables

in TSL 109
monitoring. See Watch List

vb_name property 26, 33
verification failure 300
verification results folder, location 302
verify command line option 221
version control 396–399

adding tests to 397
checking tests in to 397, 398
checking tests out of 398

version manager 396–399
viewing test results from a Quality Center

project 405–407
Virtual Object wizard 38–41
virtual objects 37–42

defining 38–41
overview 37–38
physical description 42

virtual property 26, 42
virtual users 417
Visual Basic

object properties 34
vb_name property 26, 33
See also checking tables

Visual Basic controls
support for. See the WinRunner Basic

Features User’s Guide
visual programming. See Function Generator

W

Watch List 241–248
adding variables 244–245
assigning values to variables 247
deleting variables 248
modifying expressions 246

Watch List (continued)
overview 241–244
viewing variables 245

Watch List pane, Debug Viewer 242
Web Exception Editor 88, 90, 91
Web exception handling 87–91

activating and deactivating 91
Web exceptions

defining 88–89
modifying 90–91

Web objects. See the WinRunner Basic
Features User’s Guide

What’s New in WinRunner help xvi
white space, in TSL 108
width property 26, 33
wildcard characters. See regular expressions
win_type function 298
Win32API library. See calling functions from

external libraries
window class 30
window synchronization, delaying 295
Windows API. See calling functions from

external libraries
windows, checking 293
WinRunner

creating custom shortcut for 203
main window. See the WinRunner

Basic Features User’s Guide
online resources xv
using with Quality Center 381

WinRunner add-ins and GUI map
configuration 18

WinRunner Context-Sensitive Help xv
WinRunner Customization Guide xv
WinRunner Installation Guide xv
WinRunner Quick Preview xv
WinRunner Tutorial xv
workflow, Business Process Testing 342
working test 397
WR_wait_time command line option 221

Index

440

X

x property 26, 33
XR_TSL_INIT 28, 329

Y

y property 26, 33

	Mercury WinRunner Advanced Features User's Guide
	Multi-Volume Chapter Summary
	Mercury WinRunner Basic Features User’s Guide
	Mercury WinRunner Advanced Features User’s Guide

	Table of Contents
	Welcome to Mercury WinRunner
	Using this Guide
	WinRunner Documentation Set
	Online Resources
	Documentation Updates
	Typographical Conventions

	Working with the GUI Map
	Merging GUI Map Files
	About Merging GUI Map Files
	Preparing to Merge GUI Map Files
	Resolving Conflicts while Automatically Merging GUI Map Files
	Merging GUI Map Files Manually
	Changing to the GUI Map File per Test Mode

	Configuring the GUI Map
	About Configuring the GUI Map
	Understanding the Default GUI Map Configuration
	Mapping a Custom Object to a Standard Class
	Configuring a Standard or Custom Class
	Creating a Permanent GUI Map Configuration
	Deleting a Custom Class
	Understanding WinRunner Objects Classes
	Understanding Object Properties
	Understanding Default Learned Properties
	Properties for Visual Basic Objects
	Properties for PowerBuilder Objects

	Learning Virtual Objects
	About Learning Virtual Objects
	Defining a Virtual Object
	Understanding a Virtual Object’s Physical Description

	Creating Tests-Advanced
	Defining and Using Recovery Scenarios
	About Defining and Using Recovery Scenarios
	Defining Simple Recovery Scenarios
	Defining Compound Recovery Scenarios
	Managing Recovery Scenarios
	Working with Recovery Scenarios Files
	Working with Recovery Scenarios in Your Test Script

	Handling Web Exceptions
	About Handling Web Exceptions
	Defining Web Exceptions
	Modifying an Exception
	Activating and Deactivating Web Exceptions

	Using Regular Expressions
	About Regular Expressions
	Understanding When to Use Regular Expressions
	Understanding Regular Expression Syntax

	Programming with TSL
	Enhancing Your Test Scripts with Programming
	About Enhancing Your Test Scripts with Programming
	Using Descriptive Programming
	Adding Comments and White Space
	Understanding Constants and Variables
	Performing Calculations
	Creating Stress Conditions
	Incorporating Decision-Making Statements
	Sending Messages to the Test Results Window
	Starting Applications from a Test Script
	Defining Test Steps
	Comparing Two Files
	Checking the Syntax of your TSL Script

	Generating Functions
	About Generating Functions
	Generating a Function for a GUI Object
	Selecting a Function from a List
	Assigning Argument Values
	Modifying the Default Function in a Category

	Calling Tests
	About Calling Tests
	Using the Call Statement
	Returning to the Calling Test
	Setting the Search Path
	Working with Test Parameters
	Viewing the Call Chain

	Creating User-Defined Functions
	About Creating User-Defined Functions
	Function Syntax
	Return and Exit Statements
	Variable, Constant, and Array Declarations
	Example of a User-Defined Function

	Employing User-Defined Functions in Tests
	About Employing User-Defined Functions
	Understanding the Contents of a Compiled Module
	Using the Function Viewer
	Employing Functions Defined In Tests
	Employing Functions Defined in Compiled Modules

	Calling Functions from External Libraries
	About Calling Functions from External Libraries
	Dynamically Loading External Libraries
	Declaring External Functions in TSL
	Windows API Examples

	Creating Dialog Boxes for Interactive Input
	About Creating Dialog Boxes for Interactive Input
	Creating an Input Dialog Box
	Creating a List Dialog Box
	Creating a Custom Dialog Box
	Creating a Browse Dialog Box
	Creating a Password Dialog Box

	Running Tests-Advanced
	Running Batch Tests
	About Running Batch Tests
	Creating a Batch Test
	Running a Batch Test
	Storing Batch Test Results
	Viewing Batch Test Results

	Running Tests from the Command Line
	About Running Tests from the Command Line
	Using the Windows Command Line
	Command Line Options

	Debugging Tests
	Controlling Your Test Run
	About Controlling Your Test Run
	Running a Single Line of a Test Script
	Running a Section of a Test Script
	Pausing a Test Run

	Using Breakpoints
	About Using Breakpoints
	Choosing a Breakpoint Type
	Setting Break at Location Breakpoints
	Setting Break in Function Breakpoints
	Modifying Breakpoints
	Deleting Breakpoints

	Monitoring Variables
	About Monitoring Variables
	Adding Variables to the Watch List
	Viewing Variables in the Watch List
	Modifying Variables in the Watch List
	Assigning a Value to a Variable in the Watch List
	Deleting Variables from the Watch List

	Configuring Advanced Settings
	Customizing the Test Script Editor
	About Customizing the Test Script Editor
	Setting Display Options
	Personalizing Editing Commands

	Customizing the WinRunner User Interface
	About Customizing WinRunner’s User Interface
	Customizing the File, Debug, and User-Defined Toolbars
	Customizing the User Toolbar
	Using the User Toolbar
	Configuring WinRunner Softkeys

	Setting Testing Options from a Test Script
	About Setting Testing Options from a Test Script
	Setting Testing Options with setvar
	Retrieving Testing Options with getvar
	Controlling the Test Run with setvar and getvar
	Using Test Script Testing Options

	Customizing the Function Generator
	About Customizing the Function Generator
	Adding a Category to the Function Generator
	Adding a Function to the Function Generator
	Associating a Function with a Category
	Adding a Subcategory to a Category
	Setting a Default Function for a Category

	Initializing Special Configurations
	About Initializing Special Configurations
	Creating Startup Tests
	Sample Startup Test

	Working with Other Mercury Products
	Working with Business Process Testing
	About Business Process Testing
	Understanding Business Process Testing Methodology
	Getting Started with Scripted Components in WinRunner
	Connecting to your Quality Center Project
	Working with Scripted Components
	Creating a New Scripted Component
	Defining Scripted Component Properties
	Saving a Scripted Component
	Modifying a Scripted Component

	Integrating with QuickTest Professional
	About Integrating with QuickTest Professional
	Calling QuickTest Tests
	Viewing the Results of a Called QuickTest Test

	Managing the Testing Process
	About Managing the Testing Process
	Integrating the Testing Process
	Accessing WinRunner Tests from Quality Center
	Connecting to and Disconnecting from a Project
	Saving Tests to a Project
	Saving a Test to a Project as a Scripted Component
	Opening Tests in a Project
	Opening Scripted Components in a Project
	Managing Test Versions in WinRunner
	Saving GUI Map Files to a Project
	Opening GUI Map Files in a Project
	Running Tests in a Test Set
	Running Tests on Remote Hosts
	Viewing Test Results from a Project
	Using TSL Functions with Quality Center
	Command Line Options for Working with Quality Center

	Testing Systems Under Load
	About Testing Systems Under Load
	Emulating Multiple Users
	Virtual User (Vuser) Technology
	Developing and Running Scenarios
	Creating GUI Vuser Scripts
	Measuring Server Performance
	Synchronizing Vuser Transactions
	Creating a Rendezvous Point
	A Sample Vuser Script

	Index

