

Mercury WinRunner
Tutorial

Version 8.0

Mercury WinRunner Tutorial, Version 8.0

This manual, and the accompanying software and other documentation, is protected by U.S. and
international copyright laws, and may be used only in accordance with the accompanying license
agreement. Features of the software, and of other products and services of Mercury Interactive
Corporation, may be covered by one or more of the following patents: U.S. Patent Nos. 5,701,139;
5,657,438; 5,511,185; 5,870,559; 5,958,008; 5,974,572; 6,138,157; 6,144,962; 6,205,122; 6,237,006;
6,341,310; 6,360,332, 6,449,739; 6,470,383; 6,477,483; 6,549,944; 6,560,564; 6,564,342; 6,587,969;
6,631,408; 6,631,411; 6,633,912; 6,694,288; 6,738,813; 6,738,933 and 6,754,701. Other patents
pending. All rights reserved.

Mercury, Mercury Interactive, the Mercury Interactive logo, LoadRunner, LoadRunner TestCenter,
Mercury Business Process Testing, Mercury Quality Center, Quality Center, QuickTest Professional,
SiteScope, SiteSeer, TestDirector, Topaz and WinRunner are trademarks or registered trademarks of
Mercury Interactive Corporation or its subsidiaries, in the United States and/or other countries. The
absence of a trademark from this list does not constitute a waiver of Mercury Interactive's intellectual
property rights concerning that trademark.

All other company, brand and product names are registered trademarks or trademarks of their
respective holders. Mercury Interactive Corporation disclaims any responsibility for specifying which
marks are owned by which companies or which organizations.

Mercury Interactive Corporation
379 North Whisman Road
Mountain View, CA 94043
Tel: (650) 603-5200
Toll Free: (800) TEST-911
Customer Support: (877) TEST-HLP
Fax: (650) 603-5300

© 1993-2004 Mercury Interactive Corporation, All rights reserved

If you have any comments or suggestions regarding this document, please send them via e-mail to
documentation@mercury.com.

WRTUT8.0/01

iii

Table of Contents

Welcome to the WinRunner Tutorial ..vii
Using This Tutorial..vii
Typographical Conventions...ix

Lesson 1: Introducing WinRunner ..1
The Benefits of Automated Testing...1
Understanding the Testing Process ...2
Exploring the WinRunner Window..3

Lesson 2: Setting Up the GUI Map..9
How Does WinRunner Identify GUI Objects?9
Spying on GUI Objects..10
Choosing a GUI Map Mode ..13
Using the RapidTest Script Wizard..15

Lesson 3: Recording Tests ...19
Choosing a Record Mode ..19
Recording a Context Sensitive Test...21
Understanding the Test Script...23
Recording in Analog Mode..25
Running the Test ...27
Analyzing Test Results ...29
Recording Tips ...31

Lesson 4: Synchronizing Tests ..33
When Should You Synchronize? ..33
Creating a Test...34
Changing the Synchronization Setting...36
Identifying a Synchronization Problem..37
Synchronizing the Test..38
Running the Synchronized Test..40

Table of Contents

iv

Lesson 5: Checking GUI Objects ...43
How Do You Check GUI Objects? ..43
Adding GUI Checkpoints to a Test Script ...45
Running the Test ...50
Running the Test on a New Version ...52
GUI Checkpoint Tips ..54

Lesson 6: Checking Bitmaps..57
How Do You Check a Bitmap?..57
Adding Bitmap Checkpoints to a Test Script58
Viewing Expected Results..61
Running the Test on a New Version ...62
Bitmap Checkpoint Tips ...63

Lesson 7: Programming Tests with TSL ..65
How Do You Program Tests with TSL?..65
Recording a Basic Test Script ...66
Using the Function Generator to Insert Functions.............................67
Adding Logic to the Test Script ...69
Understanding tl_step ...70
Debugging the Test Script ...71
Running the Test on a New Version ...73

Lesson 8: Creating Data-Driven Tests ...77
How Do You Create Data-Driven Tests? ...77
Converting Your Test to a Data-Driven Test.......................................78
Adding Data to the Data Table..82
Adjusting the Script with Regular Expressions83
Customizing the Results Information...85
Running the Test and Analyzing Results ..85
Data-Driven Testing Tips...87

Lesson 9: Creating Batch Tests ...89
What is a Batch Test? ..89
Programming a Batch Test ..90
Running the Batch Test on Version 4B...91
Analyzing the Batch Test Results ..92
Batch Test Tips ..95

Table of Contents

v

Lesson 10: Maintaining Your Test Scripts...97
What Happens When the User Interface Changes?97
Editing Object Descriptions in the GUI Map......................................99
Adding GUI Objects to the GUI Map..104
Updating the GUI Map with the Run Wizard...................................105

Lesson 11: Where Do You Go from Here? ..109
Getting Started ..109
Getting Additional Information..111

Table of Contents

vi

vii

Welcome to the WinRunner Tutorial

Welcome to the WinRunner tutorial, a self-paced guide that teaches you the
basics of testing your application with WinRunner. This tutorial will
familiarize you with the process of creating and running automated tests
and analyzing the test results.

Using This Tutorial

The tutorial is divided into 11 short lessons. In each lesson, you will create
and run tests on the sample Flight Reservation application located in the
WinRunner program group.

The sample Flight Reservation application comes in two versions: Flight 4A
and Flight 4B. Flight 4A is a fully working product, while Flight 4B has some
“bugs” built into it. These versions are used together in the WinRunner
tutorial to simulate the development process, in which the performance of
one version of an application is compared with that of another.

After you complete the tutorial, you can apply the skills you learn to your
own application.

Lesson 1, Introducing WinRunner compares automated and manual testing
methods. It introduces the WinRunner testing process and familiarizes you
with the WinRunner user interface.

Lesson 2, Setting Up the GUI Map explains how WinRunner identifies GUI
(Graphical User Interface) objects in an application and describes the two
modes for organizing GUI map files.

Welcome

viii

Lesson 3, Recording Tests teaches you how to record a test script and
explains the basics of Test Script Language (TSL)—Mercury Interactive’s
C-like programming language designed for creating scripts.

Lesson 4, Synchronizing Tests shows you how to synchronize a test so that
it can run successfully even when an application responds slowly to input.

Lesson 5, Checking GUI Objects shows you how to create a test that checks
GUI objects. You will use the test to compare the behavior of GUI objects in
different versions of the sample application.

Lesson 6, Checking Bitmaps shows you how to create and run a test that
checks bitmaps in your application. You will run the test on different
versions of the sample application and examine any differences, pixel by
pixel.

Lesson 7, Programming Tests with TSL shows you how to use visual
programming to add functions and logic to your recorded test scripts.

Lesson 8, Creating Data-Driven Tests shows you how to run a single test on
several sets of data from a data table.

Lesson 9, Creating Batch Tests shows you how to create a batch test that
automatically runs the tests you created in earlier lessons.

Lesson 10, Maintaining Your Test Scripts teaches you how to update the
GUI object descriptions learned by WinRunner, so that you can continue to
use your test scripts as the application changes.

Lesson 11, Where Do You Go from Here? tells you how to get started testing
your own application and where you can find more information about
WinRunner.

Welcome

ix

Typographical Conventions

This book uses the following typographical conventions:

1, 2, 3 Bold numbers indicate steps in a procedure.

➤ Bullets indicate options and features.

> The greater than sign separates menu levels (for
example, File > Open).

Stone Sans The Stone Sans font indicates names of interface
elements (for example, the Run button) and other
items that require emphasis.

Bold Bold text indicates method or function names.

Italics Italic text indicates method or function arguments, file
names in syntax descriptions, and book titles.

<> Angle brackets enclose a part of a file path or URL
address that may vary from user to user (for example,
<MyProduct installation folder>\bin).

Arial The Arial font is used for examples and text that is to
be typed literally.

Arial bold The Arial bold font is used in syntax descriptions for
text that should be typed literally.

... In a line of syntax, an ellipsis indicates that more items
of the same format may be included. In a
programming example, an ellipsis is used to indicate
lines of a program that were intentionally omitted.

[] Square brackets enclose optional arguments.

| A vertical bar indicates that one of the options
separated by the bar should be selected.

Welcome

x

1

1
Introducing WinRunner

This lesson:

➤ describes the benefits of automated testing

➤ introduces the WinRunner testing process

➤ takes you on a short tour of the WinRunner user interface

The Benefits of Automated Testing

If you have ever tested software manually, you are aware of its drawbacks.
Manual testing is time-consuming and tedious, requiring a heavy
investment in human resources. Worst of all, time constraints often make it
impossible to manually test every feature thoroughly before the software is
released. This leaves you wondering whether serious bugs have gone
undetected.

Automated testing with WinRunner addresses these problems by
dramatically speeding up the testing process. You can create test scripts that
check all aspects of your application, and then run these tests on each new
build. As WinRunner runs tests, it simulates a human user by moving the
mouse cursor over the application, clicking Graphical User Interface (GUI)
objects, and entering keyboard input—but WinRunner does this faster than
any human user.

Lesson 1 • Introducing WinRunner

2

With WinRunner you can also save time by running batch tests overnight.

Understanding the Testing Process

The WinRunner testing process consists of 6 main phases:

 1 Teaching WinRunner the objects in your application

WinRunner must learn to recognize the objects in your application in order
to run tests. The preferred way to teach WinRunner your objects depends on
the GUI map mode you select. The two GUI map modes are described in
detail in subsequent lessons.

 2 Creating additional test scripts that test your application’s functionality

WinRunner writes scripts automatically when you record actions on your
application, or you can program directly in Mercury Interactive’s Test Script
Language (TSL).

 3 Debugging the tests

You debug the tests to check that they operate smoothly and without
interruption.

Benefits of Automated Testing

Fast WinRunner runs tests significantly faster than human
users.

Reliable Tests perform precisely the same operations each time
they are run, thereby eliminating human error.

Repeatable You can test how the software reacts under repeated
execution of the same operations.

Programmable You can program sophisticated tests that bring out
hidden information from the application.

Comprehensive You can build a suite of tests that covers every feature in
your application.

Reusable You can reuse tests on different versions of an
application, even if the user interface changes.

Lesson 1 • Introducing WinRunner

3

 4 Running the tests on a new version of the application

You run the tests on a new version of the application in order to check the
application’s behavior.

 5 Examining the test results

You examine the test results to pinpoint defects in the application.

 6 Reporting defects

If you have TestDirector installed on your WinRunner computer, you can
report any defects to a database. TestDirector is Mercury Interactive’s
software test management tool.

Exploring the WinRunner Window

Before you begin creating tests, you should familiarize yourself with the
WinRunner main window.

Note: To open WinRunner, your screen display settings must be set to use at
least 256 colors.

Lesson 1 • Introducing WinRunner

4

To start WinRunner:

Choose Start > Programs > WinRunner > WinRunner. The WinRunner Add-
in Manager dialog box opens.

Note: The first time you start WinRunner, “What’s New in WinRunner” help
also opens.

The WinRunner Add-in Manager dialog box contains a list of the add-ins
available on your computer. For the purposes of this tutorial, ensure that all
of the add-in check boxes are cleared, and click OK.

Lesson 1 • Introducing WinRunner

5

The Welcome to WinRunner window opens. From the Welcome to
WinRunner window you can click Create a New Test to create a new test,
click Open an Existing Test to open an existing test, or click View a Quick
Preview of WinRunner to view an overview of WinRunner in your default
browser.

Tip: If you do not want the Welcome to WinRunner window to appear the
next time you start WinRunner, clear the Show on Startup check box.

For the purposes of this tutorial, click Create a New Test to close the
Welcome to WinRunner window and begin working in WinRunner.

Lesson 1 • Introducing WinRunner

6

Each test you create or run is displayed by WinRunner in a test window. You
can open many tests at one time.

1 The WinRunner window
displays all open tests.

2 Each test appears in its own
test window. You use this
window to record,
program, and edit test
scripts.

3 Buttons on the toolbars
help you quickly open, run,
save, and debug tests.

4 The User toolbar provides
easy access to test creation
tools.

5 The status bar displays
information about selected
commands and the current
test run.

6 The execution arrow
indicates the next script line
to be performed.

7 The Function Viewer
enables you to view, edit
and use loaded functions in
your tests.

8 The Debug Viewer enables
you to view the Watch List,
Breakpoints, and Call Chain
of your test.

2 3

45

1

6

678

Lesson 1 • Introducing WinRunner

7

The File toolbar provides easy access to frequently performed tasks, such as
opening and saving tests, and viewing test results.

The Test toolbar provides easy access to buttons used while running and
maintaining tests.

The Debug toolbar provides easy access to buttons used while debugging
tests.

Open

SaveNew

Print

Test
Properties

Help

Test
Results

Record

Run from TopRun Mode Stop

Run from Arrow

Step

Step
Into

Pause

Add
watch

Toggle
Breakpoint

Remove All
Breakpoints

Break in
Function

Lesson 1 • Introducing WinRunner

8

The User toolbar displays the tools you frequently use to create test scripts.

When you create tests, you can minimize the WinRunner window and work
exclusively from the toolbar. The commands on the File toolbar, the Test
toolbar, and the User toolbar are described in detail in subsequent lessons.

By default, the User toolbar is hidden. To display the User toolbar, View >
User Toolbar. The User toolbar is customizable. You choose to add or remove
buttons using the View > Customize User Toolbar menu option. When you
re-open WinRunner, the User toolbar appears as it was when you last closed
it.

Note that you can also execute many commands using softkeys. Softkeys are
keyboard shortcuts for carrying out menu commands. You can configure the
softkey combinations for your keyboard using the Softkey Configuration
utility in the WinRunner program group. For more information, see the
“WinRunner at a Glance” chapter in the WinRunner User’s Guide.

Now that you are familiar with the main WinRunner window, take a few
minutes to explore these window components before proceeding to the next
lesson.

Insert Function for Object/Window

Record - Context Sensitive

Stop

GUI Checkpoint for Object/Window

GUI Checkpoint for Multiple Objects

Bitmap Checkpoint for Object/Window

Synchronization Point for Object/Window Bitmap

Get Text from Object/Window

Get Text from Screen Area

Synchronization Point for Screen Area Bitmap

Insert Function from Function Generator

Default Database Checkpoint

Synchronization Point for Object/Window Property

Bitmap Checkpoint for Screen Area

9

2
Setting Up the GUI Map

This lesson:

➤ describes how WinRunner identifies GUI objects in an application

➤ shows how to use the GUI Spy to view object properties

➤ describes the two GUI map modes

➤ explains how to use the RapidTest Script wizard to learn descriptions of GUI
objects and to generate tests

How Does WinRunner Identify GUI Objects?

GUI applications are made up of GUI objects such as windows, buttons,
lists, and menus.

When WinRunner learns the description of a GUI object, it looks at the
object’s physical properties. Each GUI object has many physical properties
such as class, label, width, height, handle, and enabled to name a few.
WinRunner only learns the properties it needs to uniquely distinguish an
object from all other objects in the application. For more information
regarding properties, refer to the “Configuring the GUI Map” chapter in the
WinRunner User’s Guide.

For example, when WinRunner looks at an OK button, it might recognize
that the button is located in an Open window, belongs to the push_button
object class, and has the text label OK.

Lesson 2 • Setting Up the GUI Map

10

Spying on GUI Objects

To help you understand how WinRunner identifies GUI objects, examine
the objects in the sample Flight Reservation application.

 1 Start the Flight Reservation application.

Choose Start > Programs > WinRunner > Sample Applications > Flight 4A.
The Login window opens.

 2 Start WinRunner.

Choose Start > Programs > WinRunner > WinRunner. In the Welcome
window, click the Create a New Test button. If the Welcome window does
not open, choose File > New.

Lesson 2 • Setting Up the GUI Map

11

 3 Open the GUI Spy. This tool enables you to spy on the properties of GUI
objects.

Choose Tools > GUI Spy. The GUI Spy opens. Select Hide WinRunner.

 4 View the properties that provide a unique description of the OK button.

In the GUI Spy, click the Spy button. WinRunner is minimized so that you
can see the Login window. Move the pointer over objects in the Login
window. Notice that each object flashes as you move the pointer over it, and
the GUI Spy displays its properties.

Lesson 2 • Setting Up the GUI Map

12

Place the pointer over the OK button and press Left Ctrl + F3. This freezes
the OK button’s description in the GUI Spy.

 5 Examine the properties of the OK button.

At the top of the dialog box, the GUI Spy displays the name of the window
in which the object is located and the object’s logical name.

In the Recorded tab, the property names and values that would be recorded
are listed. For example, label OK indicates that the button has the text label
OK, and class push_button indicates that the button belongs to the push
button object class.

As you can see, WinRunner needs only a few properties to uniquely identify the
object.

Lesson 2 • Setting Up the GUI Map

13

 6 Take a few minutes to view the properties of other GUI objects in the
Login window.

Click the Spy button and move the pointer over other GUI objects in the
Login window.

If you would like to view an expanded list of properties for an object, press
Left Ctrl + F3 to stop the current Spy, and then click the All Standard tab.

 7 Exit the GUI Spy.

Press Left Ctrl + F3 to stop the current Spy and click Close.

Choosing a GUI Map Mode

Before you start teaching WinRunner the GUI of an application, you should
consider whether you want to organize your GUI map files in the GUI Map
File per Test mode or the Global GUI Map File mode.

The GUI Map File per Test Mode

In the GUI Map File per Test mode, a GUI map file is created automatically
every time you create a new test. The GUI map file that corresponds to your
test is automatically saved whenever you save your test and automatically
loaded whenever you open your test.

If you are new to WinRunner or to testing, you may want to consider
working in the GUI Map File per Test mode. This is the simplest mode for
inexperienced testers and for ensuring that updated GUI map files are saved
and loaded.

The Global GUI Map File Mode

In the Global GUI Map File mode, you can use a single GUI map for a group
of tests. When you work in the Global GUI Map File mode, you need to save
the information that WinRunner learns about the properties into a GUI map
file. When you run a test, you must load the appropriate GUI map file.

If you are familiar with WinRunner or with testing, it is probably most
efficient to work in the Global GUI Map File mode.

Lesson 2 • Setting Up the GUI Map

14

Setting Your Preferred GUI Map File Mode

By default, WinRunner is set to the Global GUI Map File mode. To change
the mode to the GUI Map File per Test mode choose Tools > General
Options, select the General category, and select GUI Map File per Test. Click
OK to close the dialog box.

Note: If you change the GUI Map File mode, you must restart WinRunner
for the changes to take effect.

Getting Started

The remaining sections in this lesson can be performed only in the Global
GUI Map File mode. If you choose to work in the GUI Map File per Test
mode, change the mode setting as described above and proceed to Lesson 3,
“Recording Tests” on page 19.

If you choose to work in the Global GUI Map File mode, proceed to the
section below on Using the RapidTest Script Wizard.

Important Notes:

It is recommended that you select one GUI map file mode and use it for the
duration of the tutorial, rather than switching between modes in different
lessons. If you want to practice using both modes, perform the entire
tutorial once for each mode.

If you choose to work in Global GUI Map File mode and you close
WinRunner before completing all lessons in this tutorial, be sure to save the
GUI map file before closing WinRunner, as described on page 27. When you
reopen WinRunner, confirm that the GUI map file is loaded as described on
page 21, before continuing the lessons.

Lesson 2 • Setting Up the GUI Map

15

Using the RapidTest Script Wizard

If you choose the Global GUI Map File mode, the RapidTest Script wizard is
usually the easiest and quickest way to start the testing process.

Note: The RapidTest Script wizard is not available when you work in the
GUI Map File per Test mode.

The RapidTest Script wizard systematically opens the windows in your
application and learns the description of every GUI object. The wizard stores
this information in a GUI map file. To observe WinRunner’s learning
process, use the RapidTest Script wizard on the Flight Reservation
application.

Note: The RapidTest Script wizard is not available when the Terminal
Emulator, WebTest, or Java add-ins are loaded. Therefore, if you are using
one or more of these add-ins, skip the remaining sections of this lesson, or
close and reopen WinRunner without loading these add-ins.

 1 Log in to the Flight Reservation application.

If the Login window is not already open on your desktop, choose Start >
Programs > WinRunner > Sample Applications > Flight 4A.

Type your name (at least four characters) in the Agent Name box, and
mercury in the Password box and click OK. The Flight Reservation
application opens.

 2 Start WinRunner.

If WinRunner is not already open, choose Start > Programs > WinRunner >
WinRunner. If the Welcome window is open, click the New Test button.
Otherwise, choose File > New. A new test window opens.

Lesson 2 • Setting Up the GUI Map

16

 3 Start the RapidTest Script wizard.

Choose Insert > RapidTest Script Wizard. Click Next in the wizard’s
Welcome screen to advance to the next screen.

 4 Point to the application you want to test.

Click the button and then click anywhere in the Flight Reservation
application. The application’s window name appears in the wizard’s
Window Name box. Click Next.

 5 Make sure that all the check boxes are cleared.

For the purposes of this exercise, confirm that all the check boxes are
cleared. You will use the wizard only to learn the GUI of the Flight
Reservation application. Click Next.

Note: A regression test is performed when the tester wishes to see the
progress of the testing process by performing identical tests before and after
a bug has been fixed. A regression test allows the tester to compare expected
test results with the actual results.

Lesson 2 • Setting Up the GUI Map

17

 6 Accept the default navigation controls.

Navigation controls tell WinRunner which GUI objects are used to open
windows. The Flight Reservation application uses the default navigation
controls (... and > >) so you do not need to define additional controls. Click
Next.

 7 Set the learning flow to Express.

The learning flow determines how WinRunner walks through your
application. Two modes are available: Express and Comprehensive.
Comprehensive mode enables you to customize how the wizard learns GUI
object descriptions. First-time WinRunner users should use Express mode.

Click the Learn button. The wizard begins walking through the application,
pulling down menus, opening windows, and learning object descriptions.
This process takes a few minutes.

If a pop-up message notifies you that an interface element is disabled, click
the Continue button in the message box.

If the wizard cannot close a window, it will ask you to show it how to close
the window. Follow the directions on the screen.

 8 Accept No in the Start Application screen.

You can choose to have WinRunner automatically open the Flight
Reservation application each time you start WinRunner. Accept the default
No. Click Next.

 9 Save the GUI information and a startup script.

The wizard saves the GUI information it learned in a GUI map file.

The wizard also creates a startup script. This script runs automatically each
time you start WinRunner. It contains a command which loads the GUI
map file so that WinRunner will be ready to test your application.

Accept the default paths for the files or define different ones. Accept the
default GUI map file name and path: <WinRunner installation folder>\
dat\flight4a.gui. Make sure that you have write permission for the selected
folders. Click Next.

 10 Click OK in the Congratulations screen.

The information WinRunner learned about the application is stored in a
GUI map file.

Lesson 2 • Setting Up the GUI Map

18

19

3
Recording Tests

This lesson:

➤ describes Context Sensitive and Analog record modes

➤ shows you how to record a test script in Context Sensitive mode

➤ helps you read the test script

➤ shows you how to record a test script in Analog mode

➤ shows you how to run the recorded test and analyze the results

➤ provides tips for test recording

Choosing a Record Mode

By recording, you can quickly create automated test scripts. You work with
your application as usual, clicking objects with the mouse and entering
keyboard input. WinRunner records your operations and generates
statements in TSL, Mercury Interactive’s Test Script Language. These
statements appear as a script in a WinRunner test window.

Before you begin recording a test, you should plan the main stages of the
test and select the appropriate record mode. Two record modes are available:
Context Sensitive and Analog.

Context Sensitive

Context Sensitive mode records your operations in terms of the GUI objects
in your application. WinRunner identifies each object you click (such as a
window, menu, list, or button), and the type of operation you perform (such
as press, enable, move, or select).

Lesson 3 • Recording Tests

20

For example, if you record a mouse click on the OK button in the Flight
Reservation Login window, WinRunner records the following TSL statement
in your test script:

button_press ("OK");

When you run the script, WinRunner reads the command, looks for the OK
button, and presses it.

Analog

In Analog mode, WinRunner records the exact coordinates traveled by the
mouse, as well as mouse clicks and keyboard input. For example, if you click
the OK button in the Login window, WinRunner records statements that
look like this:

When this statement is recorded... it really means:
move_locator_track (1); mouse track
mtype ("<T110><kLeft>-"); left mouse button press
mtype ("<kLeft>+"); left mouse button release

When you run the test, WinRunner retraces the recorded movements using
absolute screen coordinates. If your application is located in a different
position on the desktop, or the user interface has changed, WinRunner is
not able to execute the test correctly.

Note: You should record in Analog mode only when exact mouse
movements are an important part of your test, for example, when recreating
a drawing.

Lesson 3 • Recording Tests

21

When choosing a record mode, consider the following points:

If you are testing an application that contains both GUI objects and bitmap
areas, you can switch between modes as you record. This will be discussed
later in the lesson.

Recording a Context Sensitive Test

In this exercise you will create a script that tests the process of opening an
order in the Flight Reservation application. You will create the script by
recording in Context Sensitive mode.

 1 Start WinRunner and load the GUI map.

If WinRunner is not already open, choose Start > Programs > WinRunner >
WinRunner. If the Welcome window is open, click the New Test button.
Otherwise, choose File > New. A new test window opens.

If you are working in the Global GUI Map File mode, confirm that the GUI
map is loaded. To do this, choose Tools > GUI Map Editor. In the GUI Map
Editor choose View > GUI Files and confirm that flight4a.GUI is contained in
the GUI File list. If the GUI map is not loaded, in the GUI Map Editor choose
File > Open, locate and select the GUI map and click Open.

Choose Context Sensitive if... Choose Analog if...

The application contains GUI objects. The application contains bitmap areas
(such as a drawing area).

Exact mouse movements are not
required.

Exact mouse movements are required.

You plan to reuse the test in different
versions of the application.

Lesson 3 • Recording Tests

22

 2 Start the Flight Reservation application and log in.

Choose Start > Programs > WinRunner > Sample Applications > Flight 4A. In
the Login window, type your name and the password mercury, and click OK.
The name you type must be at least four characters long. The Flight
Reservation window opens.

Position the Flight Reservation application and WinRunner so that they are
both clearly visible on your desktop.

 3 Start recording in Context Sensitive mode.

In WinRunner, choose Test > Record—Context Sensitive or click the Record
button on the toolbar. From this point on, WinRunner records all mouse
clicks and keyboard input. Note that the text, Rec appears in blue above the
recording button. This indicates that you are recording in Context Sensitive
mode. The status bar also informs you of your current recording mode.

Lesson 3 • Recording Tests

23

 4 Open order #3.

In the Flight Reservation application, choose File > Open Order. In the Open
Order dialog box, select the Order No. check box. Type 3 in the adjacent
box, and click OK.

Watch how WinRunner generates a test script in the test window as you work.

 5 Stop recording.

In WinRunner, choose Test > Stop Recording or click the Stop button on the
toolbar.

 6 Save the test.

Choose File > Save or click the Save button on the toolbar. Save the test as
lesson3 in a convenient location on your hard drive.

Note that WinRunner saves the lesson3 test in the file system as a folder,
and not as an individual file. This folder contains the test script and the
results that are generated when you run the test.

Understanding the Test Script

In the previous exercise, you recorded the process of opening a flight order
in the Flight Reservation application. As you worked, WinRunner generated
a test script similiar to the following:

Flight Reservation
set_window ("Flight Reservation", 3);
menu_select_item ("File;Open Order...");

Open Order
set_window ("Open Order", 1);
button_set ("Order No.", ON);
edit_set ("Edit_1", "3");
button_press ("OK");

As you can see, the recorded TSL statements describe the objects you
selected and the actions you performed. For example, when you selected a
menu item, WinRunner generated a menu_select_item statement.

Lesson 3 • Recording Tests

24

The following points will help you understand your test script:

➤ When you click an object, WinRunner assigns the object a logical name,
which is usually the object’s text label. The logical name makes it easy for
you to read the test script. For example, when you selected the Order No.
check box, WinRunner recorded the following statement:

button_set ("Order No.", ON);

Order No. is the object’s logical name.

➤ By default, WinRunner automatically adds a comment line each time you
begin working in a new window so that your script is easier to read. For
example, when you clicked on the Flight Reservation window, WinRunner
generated the following comment line:

Flight Reservation

➤ WinRunner generates a set_window statement each time you begin
working in a new window. The statements following a set_window
statement perform operations on objects within that window. For example,
when you opened the Open Order dialog box, WinRunner generated the
following statement:

set_window ("Open Order", 1);

➤ When you enter keyboard input, WinRunner generates a type, an obj_type,
or an edit_set statement in the test script. For example, when you typed 3 in
the Order Number box, WinRunner generated the following statement:

edit_set ("Edit", "3");

For more information about the different ways in which WinRunner records
keyboard input, choose Help > TSL Online Reference.

Lesson 3 • Recording Tests

25

Recording in Analog Mode

In this exercise you will test the process of sending a fax. You will start
recording in Context Sensitive mode, switch to Analog mode in order to add
a signature to the fax, and then switch back to Context Sensitive mode.

 1 In the lesson3 test, place the cursor below the last line of the script.

You will add the new test segment to the lesson3 test. If the test is not
already open, choose File > Open and select the test. In the lesson3 test
window, place the cursor below the last line of the test.

 2 Start Recording in Context Sensitive mode.

Choose Test > Record—Context Sensitive or click the Record button on the
toolbar.

 3 Open the Fax Order form and fill in a fax number.

In the Flight Reservation application, choose File > Fax Order. In the Fax
Number box, type 4155551234.

 4 Select the Send Signature with order check box.

Lesson 3 • Recording Tests

26

 5 Sign the fax in Context Sensitive mode.

Use the mouse to sign your name in the Agent Signature box.

Watch how WinRunner records your signature.

 6 Clear the signature.

Click the Clear Signature button.

 7 Move the Fax Order window to a different position on your desktop.

Before switching to Analog mode, reposition the window in which you are
working.

 8 Sign the fax again in Analog mode.

Press F2 on your keyboard or click the Record button again to switch to
Analog mode. Note that the text, Rec appears in red above the recording
button. This indicates that you are recording in Analog mode. Sign your
name in the Agent Signature box.

Watch how WinRunner records your signature.

 9 Switch back to Context Sensitive mode and send the fax.

Press F2 or click the Record button to switch back to Context Sensitive
mode. Click Send. The application will simulate the process of sending the
fax.

 10 Stop Recording.

Choose Test > Stop Recording or click the Stop button.

 11 Save the test.

Choose File > Save or click the Save button.

Lesson 3 • Recording Tests

27

 12 If you are working in the Global GUI Map File mode, save the new
objects to the GUI map.

When you ran the RapidTest Script wizard in the previous lesson, it learned
all the windows and objects it was able to access. The fax order dialog box,
however, can be open only when an order has already been opened, as you
did in step 4 of “Recording a Context Sensitive Test,” on page 21. Therefore,
when you opened the fax order dialog box in step 3 above, WinRunner
added the new window, and the objects you recorded within that window,
to the temporary GUI map. The temporary GUI map is discarded whenever
you close WinRunner, so it is important to save new windows and objects to
the GUI map file that your test uses.

Choose Tools > GUI Map Editor. Choose View > GUI Files. Note that the Fax
Order No. 3 window is displayed in the L0 <Temporary> GUI map file.
Choose File > Save. The New Windows dialog box opens. Confirm that the
flight4a.GUI file is displayed in the Loaded GUI Files box. Click OK. The Fax
Order No. 3 window and all objects under that window are moved from the
temporary GUI map to the flight4a.GUI map file. Choose File > Exit to close
the GUI Map Editor.

Note: If you are working in the GUI Map File per Test mode, the new objects
are added to and saved with the file that is automatically saved when you
save your test. You should not manually save objects to your GUI map.

Running the Test

You are now ready to run your recorded test script and to analyze the test
results. WinRunner provides three modes for running tests. You select a
mode from the toolbar.

➤ Use Verify run mode when running a test to check the behavior of your
application, and when you want to save the test results. This is the
mode that you will use in this lesson.

➤ Use Debug run mode when you want to check that the test script runs
smoothly without errors in syntax. See Lesson 7 for more information.

Lesson 3 • Recording Tests

28

➤ Use Update run mode when you want to create new expected results
for a GUI checkpoint or bitmap checkpoint. See Lessons 5 and 6 for
more information.

To run the test:

 1 Check that WinRunner and the main window of the Flight Reservation
application are open on your desktop.

 2 Make sure that the lesson3 test window is active in WinRunner.

Click the title bar of the lesson3 test window. If the test is not already open,
choose File > Open and select the test.

 3 Make sure the main window of the Flight Reservation application is
active.

If any dialog boxes are open, close them.

 4 Make sure that Verify run mode is selected in the toolbar.

 5 Choose Run from Top.

Choose Test > Run from Top or click the From Top button. The Run Test
dialog box opens.

 6 Choose a Test Run name.

Define the name of the folder in which WinRunner will store the results of
the test. Accept the default folder name res1. The results folder will be stored
within the test’s folder.

Note the Display test results at end of run check box at the bottom of the
dialog box. When this check box is selected, WinRunner automatically
displays the test results when the test run is completed. Make sure that this
check box is selected.

Lesson 3 • Recording Tests

29

 7 Run the test.

Click OK in the Run Test dialog box. WinRunner immediately begins
running the test.

Watch how WinRunner opens each window in the Flight Reservation application.

 8 Review the test results.

When the test run is completed, the test results automatically appear in the
WinRunner Test Results window. See the next section to learn how to
analyze the test results.

Analyzing Test Results

Once a test run is completed, you can immediately review the test results in
the WinRunner Test Results window.

WinRunner 7.6 provides two styles of test results viewers:

➤ WinRunner report view—A windows-style viewer. This is the viewer that
was available in previous versions of WinRunner.

➤ Unified report view—An HTML-style viewer. This viewer is the same as
that used in QuickTest Professional.

By default, WinRunner opens the Test Results window using the WinRunner
report view, but also creates the data necessary for displaying the results in
the unified report view.

This tutorial assumes that you are working in the WinRunner report view. If
you are working in the unified report view, the Test Results window will
look significantly different than the images displayed in this tutorial.

To switch to the WinRunner report view:

 1 Close the unified report.

 2 Choose Tools > Options and select the Run category.

 3 Select WinRunner report view and click OK.

 4 Reopen the Test Results Window. The Test Results open in the WinRunner
report view.

Lesson 3 • Recording Tests

30

 5 Make sure that the WinRunner Test Results window is open and displays
the test results.

If the WinRunner Test Results window is not currently open, first click the
test window to activate it, and then choose Tools > Test Results or click the
Test Results button.

 6 Review the results.

 7 Close the Test Results window.

Choose File > Exit in the WinRunner Test Results window.

 8 Close the test.

Choose File > Close in the Winrunner main window.

 9 Close the Flight Reservation application.

Choose File > Exit.

1 Displays the name of the
current test.

2 Shows the current test results
name.

3 Shows whether a test run
passed or failed.

4 Includes general information
about the test run such as
date, operator name, and
total run time. To view these
details, double click the
Information icon.

5 The test log section lists the
major events that occurred
during the test run. It also
lists the test script line at
which each event occurred.

2 31

54

Lesson 3 • Recording Tests

31

Recording Tips

➤ Before starting to record, close applications that are not required for the test.

➤ Create the test so that it ends where it started. For example, if the test opens
an application, make sure that it also closes the application at the end of the
test run. This ensures that WinRunner is prepared to run repeated
executions of the same test.

➤ When recording in Analog mode, avoid holding down the mouse button if
this results in a repeated action. For example, do not hold down the mouse
button to scroll a window. Instead, scroll by clicking the scrollbar arrow
repeatedly. This enables WinRunner to accurately run the test.

➤ Before switching from Context Sensitive mode to Analog mode during a
recording session, always move the current window to a new position on
the desktop. This ensures that when you run the test, the mouse pointer will
reach the correct areas of the window during the Analog portion of the test.

➤ When recording, if you click a non-standard GUI object, WinRunner
generates a generic obj_mouse_click statement in the test script. For
example, if you click a graph object, it records something similar to:

obj_mouse_click (GS_Drawing, 8, 53, LEFT);

If your application contains a non-standard GUI object that behaves like a
standard GUI object, you can map this object to a standard object class so
that WinRunner will record more intuitive statements in the test script. For
more information refer to the “Configuring the GUI Map” chapter in the
WinRunner User’s Guide.

➤ When working in the Global GUI Map File mode, if you click an object
whose description was not previously learned, WinRunner learns a
description of the object and adds it to a temporary GUI map file. For more
information, refer to the “Working in the Global GUI Map File Mode”
chapter in the WinRunner User’s Guide.

➤ To easily switch between Context Sensitive and Analog modes, press F2.

➤ If you are working in the Global GUI Map File mode, always check whether
new windows or objects have been added to the temporary GUI map before
you close WinRunner. If new objects have been added, save them to the
appropriate GUI map file for your test.

Lesson 3 • Recording Tests

32

33

4
Synchronizing Tests

This lesson:

➤ describes when you should synchronize a test

➤ shows you how to change synchronization settings

➤ explains how to identify synchronization problems

➤ shows you how to synchronize a test

➤ shows you how to run the synchronized test and analyze the results

When Should You Synchronize?

When you run tests, your application may not always respond to input with
the same speed. For example, it might take a few seconds:

➤ to retrieve information from a database

➤ for a window to pop up

➤ for a progress bar to reach 100%

➤ for a status message to appear

WinRunner waits a set time interval for an application to respond to input.
The default wait interval is up to 10 seconds. If the application responds
slowly during a test run, WinRunner’s default wait time may not be
sufficient, and the test run may unexpectedly fail.

Lesson 4 • Synchronizing Tests

34

If you discover a synchronization problem between the test and your
application, you can either:

➤ Increase the default time that WinRunner waits. To do so, change the value
of the Tools > General Options > Run > Settings > Timeout for checkpoints
and CS statements option . This method affects all your tests and slows
down many other Context Sensitive operations.

➤ Insert a synchronization point into the test script at the exact point where the
problem occurs. A synchronization point tells WinRunner to pause the test
run in order to wait for a specified response in the application. This is the
recommended method for synchronizing a test with your application.

In the following exercises you will:

➤ create a test that opens a new order in the Flight Reservation application
and inserts the order into the database

➤ change the synchronization settings

➤ identify a synchronization problem

➤ synchronize the test

➤ run the synchronized test

Creating a Test

In this first exercise you will create a test that opens a new order in the
Flight Reservation application and inserts the order into a database.

 1 Start WinRunner and load the GUI map.

If WinRunner is not already open, choose Start > Programs > WinRunner >
WinRunner. If the Welcome window is open, click the New Test button.
Otherwise, choose File > New. A new test window opens.

If you are working in the Global GUI Map File mode, confirm that the GUI
map is loaded. To do this, choose Tools > GUI Map Editor. In the GUI Map
Editor choose View > GUI Files and confirm that flight4a.GUI is contained in
the GUI File list.

Lesson 4 • Synchronizing Tests

35

 2 Start the Flight Reservation application and log in.

Choose Start > Programs > WinRunner > Sample Applications > Flight 4A. In
the Login window, type your name and the password mercury, and click OK.
Reposition the Flight Reservation application and WinRunner so that they
are both clearly visible on your desktop.

 3 Start recording in Context Sensitive mode.

Choose Test > Record—Context Sensitive or click the Record button on the
toolbar. WinRunner will start recording the test.

 4 Create a new order.

Choose File > New Order in the Flight Reservation application.

 5 Fill in flight and passenger information.

1 Enter
a date in
MM/DD/YY
format.

2

3

4

5

Click the
Flights button,
then double-
click a flight.

Enter your
name.

Select First
Class.

6

Select Los
Angeles.

Select San
Francisco.

Lesson 4 • Synchronizing Tests

36

Note: Make sure that the date you enter is far enough in the future to enable
you to complete the tutorial before that date. Since the Flight Reservation
application enables you to reserve flights only for future dates, the test
scripts in this tutorial will not work if you try to run them after the date has
passed.

 6 Insert the order into the database.

Click the Insert Order button. When the insertion is complete, the status
bar displays Insert Done.

 7 Delete the order.

Click the Delete Order button and click Yes in the message window to
confirm the deletion.

 8 Stop recording.

Choose Test > Stop Recording or click the Stop button.

 9 Save the test.

Choose File > Save. Save the test as lesson4 in a convenient location on your
hard drive.

Changing the Synchronization Setting

The default interval that WinRunner waits for an application to respond to
input is 10 seconds. In the next exercise you will identify a synchronization
problem and add a synchronization point to solve it. To run the test you
have just recorded with a synchronization problem, you need to change the
default synchronization setting.

 1 Open the General Options dialog box.

Choose Tools > General Options.

Lesson 4 • Synchronizing Tests

37

 2 Select the Run category and the Settings sub-category.

 3 Change the value to 1000 milliseconds (1 second).

In the Timeout for checkpoints and CS statements box, change the value to
1000.

 4 Click OK to close the dialog box.

Identifying a Synchronization Problem

You are now ready to run the lesson4 test. As the test runs, look for a
synchronization problem.

 1 Make sure that the lesson4 test window is active in WinRunner.

Click the title bar of the lesson4 test window.

Lesson 4 • Synchronizing Tests

38

 2 Choose Run from Top.

Choose Test > Run from Top or click the From Top button. The Run Test
dialog box opens. Accept the default test run name res1. Make sure that the
Display test results at end of run check box is selected.

 3 Run the test.

Click OK in the Run Test dialog box. WinRunner starts running the test.
Watch what happens when WinRunner attempts to click the Delete button.

 4 Pause the test run.

Click Pause in the WinRunner message window. WinRunner fails to click
the Delete Order button because the button is still disabled. This error
occurred because WinRunner did not wait until the Insert Order operation
was completed. Note that the execution arrow has paused opposite the
command to click the Delete Order button.

Synchronizing the Test

In this exercise you will insert a synchronization point into the lesson4 test
script. The synchronization point will capture a bitmap image of the Insert
Done message in the status bar. Later on when you run the test, WinRunner
will wait for the Insert Done message to appear before it attempts to click
the Delete Order button.

 1 Make sure that the Flight Reservation window is visible on your screen.

Reposition the Flight Reservation application and WinRunner so that they
are both clearly visible on your desktop.

 2 Make sure that the lesson4 test window is active in WinRunner.

Click the title bar of the lesson4 test window.

Lesson 4 • Synchronizing Tests

39

 3 Place the cursor at the point where you want to synchronize the test.

Add a blank line above the button_press ("Insert Order"); statement. Place the
cursor at the beginning of the blank line.

 4 Synchronize the test so that it waits for the Insert Done message to
appear in the status bar.

Choose Insert > Synchronization Point > For Object/Window Bitmap or click
the Synchronization Point for Object/Window Bitmap button on the User
toolbar.

Use the pointer to click the message Insert Done in the Flight Reservation
window. WinRunner automatically inserts an obj_wait_bitmap
synchronization point into the test script. This statement instructs
WinRunner to wait 1 second for the Insert Done message to appear in the
status bar.

 5 Manually change the 1 second wait in the script to a 10 second wait.

The one-second wait that was inserted in the previous step is not long
enough. Find the statement:

obj_wait_bitmap("Insert Done...", "Img1", 1);

Change the 1 at the end of the statement to a 10, to indicate a 10 second
wait.

 6 Save the test.

Choose File > Save or click the Save button.

 7 If you are working in the Global GUI Map File mode, save the new
objects to the GUI map.

During this test you recorded an object in the Flight Reservation window
(the Insert Done bitmap). You should save this object in your GUI map.

To save a new object from a window that already exists in your GUI map,
choose Tools > GUI Map Editor. Choose View > GUI Files. Note that the new
object is displayed in the L0 <Temporary> GUI map file. (If it is not
displayed, choose View > Expand Objects Tree.) Choose File > Save. A
WinRunner message informs you that the new objects from the existing
window will be added to the flight4a.GUI map that contains this window
Click Yes.

Lesson 4 • Synchronizing Tests

40

The New Windows dialog prompts you to save the new window to the
existing map file or to a new one. Click OK and then click OK to add the
new window to your GUI map. Choose File > Exit to close the GUI Map
Editor.

Running the Synchronized Test

In this exercise you will run the synchronized test script and examine the
test results.

 1 Confirm that the lesson4 test window is active in WinRunner.

Click the title bar of the lesson4 test window.

 2 Confirm that Verify run mode is selected in the Test toolbar.

Verify run mode stays in effect until you choose a different mode.

 3 Choose Run from Top.

Choose Test > Run from Top or click the From Top button. The Run Test
dialog box opens. Accept the default name res2. Make sure that the Display
test results at end of run check box is selected.

FYI:

Synchronization points appear as obj_wait_bitmap or win_wait_bitmap
statements in the test script. For example:

obj_wait_bitmap("Insert Done...", "Img1", 10);

Insert Done... is the object’s logical name.

lmg1 is the file containing a captured image of the object.

10 is the time (in seconds) that WinRunner waits for the image to appear in
the application. This time is added to the default time defined by the
timeout-msec testing option. (In the above exercise, WinRunner waits a total
of 11 seconds).

Lesson 4 • Synchronizing Tests

41

 4 Run the test.

Click OK in the Run Test dialog box. WinRunner starts running the test from
the first line in the script.

Watch how WinRunner waits for the Insert Done message to appear in the status
bar.

 5 Review the results.

When the test run is completed, the test results appear in the WinRunner
Test Results window. Note that a wait for bitmap event appears in green in
the test log section. This indicates that synchronization was performed
successfully. You can double-click this event to see a bitmap image of the
status bar displaying the Insert Done message.

 6 Close the Test Results window.

Choose File > Exit.

 7 Close the lesson4 test.

Choose File > Close in WinRunner.

 8 Close the Flight Reservation application.

Choose File > Exit.

 9 Change the timeout value back to 10000 milliseconds (10 seconds).

Choose Tools > General Options to open the General Options dialog box.
Click the Run tab. Select the Run category and the Settings sub-category. In
the Timeout for checkpoints and CS statements box, change the current
value to 10000. Click OK to close the dialog box.

To learn about additional synchronization methods, read the
“Synchronizing the Test Run” chapter in the WinRunner User’s Guide.

Lesson 4 • Synchronizing Tests

42

43

5
Checking GUI Objects

This lesson:

➤ explains how to check the behavior of GUI objects

➤ shows you how to create a test that checks GUI objects

➤ shows you how to run the test on different versions of an application and
examine the results

➤ provides tips for checking GUI objects

How Do You Check GUI Objects?

When working with an application, you can determine whether it is
functioning properly according to the behavior of its GUI objects. If a GUI
object does not respond to input as expected, a defect probably exists
somewhere in the application’s code.

You check GUI objects by creating GUI checkpoints. A GUI checkpoint
examines the behavior of an object’s properties. For example, you can
check:

the content of an edit box

whether a radio button is on or off

whether a push button is enabled or disabled

Lesson 5 • Checking GUI Objects

44

To create a GUI checkpoint for a single object, you first point to it in your
application.

➤ If you single-click the object, a checklist with the default checks for the object
you selected is inserted into your test script. A checklist contains information
about the GUI object and the selected properties to check.

➤ If you double-click the object, the Check GUI dialog box opens and displays
the object you selected. Select the properties you want to check, and click
OK to insert a checklist for the object into your test script.

Whether you choose to check an object’s default properties or you specify
the properties of an object you want to check, WinRunner captures the
current values of those properties and saves this information as expected
results. It then inserts an obj_check_gui statement into the test script if you
are checking an object, or a win_check_gui statement if you are checking a
window.

When you run this test on a new version of the application, WinRunner
compares the object’s expected behavior with its actual behavior in the
application.

Select the
properties you
want to check.
The default
check for a push
button is
Enabled.

This dialog
box opens
when you
double-click
the Insert
Order push
button.

Lesson 5 • Checking GUI Objects

45

Adding GUI Checkpoints to a Test Script

In this exercise you will check that objects in the Flight Reservation Open
Order dialog box function properly when you open an existing order.

 1 Start WinRunner and load the GUI map.

If WinRunner is not already open, choose Start > Programs > WinRunner >
WinRunner. If the Welcome window is open, click the New Test button.
Otherwise, choose File > New. A new test window opens.

If you are working in the Global GUI Map File mode, confirm that the GUI
map is loaded. To do this, choose Tools > GUI Map Editor. In the GUI Map
Editor choose View > GUI Files and confirm that flight4a.GUI is contained in
the GUI File list.

 2 Start the Flight Reservation application and log in.

Choose Start > Programs > WinRunner > Sample Applications > Flight 4A. In
the Login window, type your name and the password mercury, and click OK.
Reposition the Flight Reservation application and WinRunner so that they
are both clearly visible on your desktop.

 3 Start recording in Context Sensitive mode.

Choose Test > Record—Context Sensitive or click the Record button on the
toolbar.

Lesson 5 • Checking GUI Objects

46

 4 Open the Open Order dialog box.

In the Flight Reservation application, choose File > Open Order.

 5 Create a GUI checkpoint for the Order No. check box.

In the main WinRunner window, choose Insert > GUI Checkpoint > For
Object/Window, or click the GUI Checkpoint for Object/Window button on
the User toolbar.

Note: By default, the User toolbar is hidden in new installations. To open
the User toolbar select View > User Toolbar. For more information about the
User toolbar, see “Exploring the WinRunner Window,” on page 3.

Lesson 5 • Checking GUI Objects

47

Use the pointer to double-click the Order No. check box. The Check GUI
dialog box opens and displays the available checks. Note that this dialog
box does not open if you only single-clicked the Order No. check box. Accept
the default check, State. This check captures the current state (off) of the
check box and stores it as expected results.

Click OK in the Check GUI dialog box to insert the checkpoint into the test
script. The checkpoint appears as an obj_check_gui statement.

 6 Enter 4 as the Order No.

In the Open Order window, select the Order No. check box and type in 4 in
the Order No. text box.

 7 Create another GUI checkpoint for the Order No. check box.

Choose Insert > GUI Checkpoint > For Object/Window or click the
GUI Checkpoint for Object/Window button on the User toolbar.

Use the pointer to single-click the Order No. check box. WinRunner
immediately inserts a checkpoint into the test script (an obj_check_gui
statement) that checks the default check State. (Use the single-click option
when you want to use only the default check for an object.) This check
captures the current state (on) of the check box and stores it as expected
results.

Lesson 5 • Checking GUI Objects

48

Note: To see the objects and properties in a checkpoint, you must open the
Check GUI dialog box. For additional information on this and other GUI
checkpoint dialog boxes, refer to the “Checking GUI Objects” chapter in the
WinRunner User’s Guide.

 8 Create a GUI checkpoint for the Customer Name check box.

Choose Insert > GUI Checkpoint > For Object/Window or click the
GUI Checkpoint for Object/Window button on the User toolbar.

Use the pointer to double-click the Customer Name check box. The Check
GUI dialog box opens and displays the available checks. Accept the default
check State and select Enabled as an additional check. The State check
captures the current state (off) of the check box; the Enabled check captures
the current condition (off) of the check box.

Click OK in the Check GUI dialog box to insert the checkpoint into the test
script. The checkpoint appears as an obj_check_gui statement.

Lesson 5 • Checking GUI Objects

49

 9 Click OK in the Open Order dialog box to open the order.

 10 Stop recording.

Choose Test > Stop Recording or click the Stop button.

 11 Save the test.

Choose File > Save or click the Save button. Save the test as lesson5 in a
convenient location on your hard drive.

FYI:

GUI checkpoints appear as obj_check_gui or win_check_gui statements in
the test script. For example:

obj_check_gui("Order No.", "list1.ckl", "gui1", 1);

Order No. is the object’s logical name.

list1.ckl is the checklist containing the checks you selected.

gui1 is the file containing the captured GUI data.

1 is the time (in seconds) needed to perform the check. This
time is added to the value of the timeout_msec test option. See Lesson 4
“Synchronizing Tests” on page 33 for more information.

Lesson 5 • Checking GUI Objects

50

Running the Test

You will now run the lesson5 test in order to verify that the test runs
smoothly.

 1 Make sure that the Flight Reservation application is open on your
desktop.

 2 In WinRunner, check that Verify run mode is selected in the Test
toolbar.

 3 Choose Run from Top.

Choose Test > Run from Top, or click the From Top button. The Run Test
dialog box opens. Accept the default test run name res1. Make sure that the
Display test results at end of run check box is selected.

 4 Run the test.

Click OK in the Run Test dialog box.

 5 Review the results.

When the test run is completed, the test results appear in the WinRunner
Test Results window. In the test log section all end GUI checkpoint events
should appear in green (indicating success).

Lesson 5 • Checking GUI Objects

51

Double-click on the last end GUI checkpoint event to view detailed results
of that GUI checkpoint. The GUI Checkpoint Results dialog box opens.
Select Customer Name to display the dialog box as follows:

Note: You can specify the arguments for a check on selected properties. For
more information, refer to the “Checking GUI Objects” chapter in the
WinRunner User’s Guide.

 6 Close the test results.

Click OK to close the GUI Checkpoint Results dialog box. Then choose
File > Exit to close the Test Results window.

Lists the objects
in the
checkpoint

Lists expected results

Names the
window
containing
the objects

Indicates
whether a
property check
passed or failed

Indicates
whether an
object passed or
failed

Lists the specified arguments

Lists actual results

Lists the property checks performed

Lesson 5 • Checking GUI Objects

52

 7 Close the Flight Reservation application.

Choose File > Exit.

Running the Test on a New Version

In this exercise you will run the lesson5 test on a new version of the Flight
Reservation application in order to check the behavior of its GUI objects.

 1 Open version 4B of the Flight Reservation application.

Choose Start > Programs > WinRunner > Sample Applications > Flight 4B. In
the Login window, type your name and the password mercury, and click OK.
Position the Flight Reservation application and WinRunner so that they are
both clearly visible on your desktop.

 2 Make sure that lesson5 is the active test.

Click in the lesson5 test window in WinRunner.

 3 Check that Verify run mode is selected in the toolbar.

 4 Choose Run from Top.

Choose Test > Run from Top, or click the From Top button. The Run Test
dialog box opens. Accept the default test run name res2. Make sure that the
Display test results at end of run check box is selected.

Lesson 5 • Checking GUI Objects

53

 5 Run the test.

Click OK. The test run begins. This process might take a while.

If a mismatch is detected at a GUI checkpoint, click Continue in the message
window.

 6 Review the results.

When the test run is completed, the test results appear in the WinRunner
Test Results window. In the test log section, one end GUI checkpoint
statement appears in red and its Result box lists mismatch. This indicates
that one or more of the checks performed on the object failed.

Double-click the red end GUI checkpoint event to view detailed results of
the failed check. The GUI Checkpoint Results dialog box opens. Select
Customer Name to display the dialog box as follows:

 7 Close the Test Results window.

Click OK in the GUI Checkpoint Results dialog box and then choose
File > Exit to close the Test Results window.

The expected
result is OFF.

The actual result is
ON.

The check on the
Customer Name
check box failed.

The check on the
Enabled property
of the Customer
Name check box
failed.

Lesson 5 • Checking GUI Objects

54

 8 Close the lesson5 test.

Choose File > Close.

 9 Close version 4B of the Flight Reservation application.

Choose File > Exit.

GUI Checkpoint Tips

➤ You can create a single GUI checkpoint in your test that checks several or all
objects in a window. Choose Insert > GUI Checkpoint > For Multiple
Objects. (This menu command is only available when a test is open.) The
Create GUI Checkpoint dialog box opens, which enables you to add objects
to the GUI checkpoint and to specify the checks you want to perform on
those objects. When you finish creating the checkpoint, WinRunner inserts
a win_check_gui statement into the test, which includes a checklist for the
selected objects.

➤ For overnight test runs, you can instruct WinRunner not to display a
message when a GUI mismatch is detected. Choose Tools > General Options.
In the General Options dialog box, select the Run category and the Settings
sub-category, and clear the Break when verification fails check box. This
enables the test to run without interruption.

Lesson 5 • Checking GUI Objects

55

For more information on setting test run options, refer to the “Setting
Global Testing Options” and “Setting Testing Options from a Test Script”
chapters in the WinRunner User’s Guide.

➤ If you want to create new expected results for a GUI checkpoint, run the test
in Update run mode. WinRunner overwrites the existing expected GUI data
with new data captured during the Update run.

For more information on GUI checkpoints, refer to the “Checking GUI
Objects” chapter in the WinRunner User’s Guide.

Lesson 5 • Checking GUI Objects

56

57

6
Checking Bitmaps

This lesson:

➤ explains how to check bitmap images in your application

➤ shows you how to create a test that checks bitmaps

➤ shows you how to run the test to compare bitmaps in different versions of
an application

➤ helps you analyze the results

➤ provides tips for checking bitmaps

How Do You Check a Bitmap?

If your application contains bitmap areas, such as drawings or graphs, you
can check these areas using a bitmap checkpoint. A bitmap checkpoint
compares captured bitmap images pixel by pixel.

Lesson 6 • Checking Bitmaps

58

To create a bitmap checkpoint, you indicate an area, window, or object that
you want to check. For example:

WinRunner captures a bitmap image and saves it as expected results. It then
inserts an obj_check_bitmap statement into the test script if it captures an
object, or a win_check_bitmap statement if it captures an area or window.

When you run the test on a new version of the application, WinRunner
compares the expected bitmap with the actual bitmap in the application. If
any differences are detected, you can view a picture of the differences from
the Test Results window.

Adding Bitmap Checkpoints to a Test Script

In this exercise you will test the Agent Signature box in the Fax Order dialog
box. You will use a bitmap checkpoint to check that you can sign your name
in the box. Then you will use another bitmap checkpoint to check that the
box clears when you click the Clear Signature button.

Lesson 6 • Checking Bitmaps

59

 1 Start WinRunner, open a new test and load the GUI map.

If WinRunner is not already open, choose Start > Programs > WinRunner >
WinRunner. If the Welcome window is open, click the New Test button.
Otherwise, choose File > New. A new test window opens.

If you are working in the Global GUI Map File mode, confirm that the GUI
map is loaded. To do this, choose Tools > GUI Map Editor. In the GUI Map
Editor choose View > GUI Files and confirm that flight4a.GUI is contained in
the GUI File list.

 2 Start the Flight Reservation application and log in.

Choose Start > Programs > WinRunner > Sample Applications > Flight 4A. In
the Login window, type your name and the password mercury, and click OK.
Reposition the Flight Reservation application and WinRunner so that they
are both clearly visible on your desktop.

 3 Start recording in Context Sensitive mode.

Choose Test > Record—Context Sensitive or click the Record button on the
toolbar.

 4 Open order #6.

In the Flight Reservation application, choose File > Open Order. In the Open
Order dialog box, select the Order No. check box and type 6 in the adjacent
box. Click OK to open the order.

 5 Open the Fax Order dialog box.

Choose File > Fax Order.

 6 Enter a 10-digit fax number in the Fax Number box.

You do not need to type in parentheses or dashes.

 7 Move the Fax Order dialog box.

Position the dialog box so that it least obscures the Flight Reservation
window.

 8 Switch to Analog mode.

Press F2 on your keyboard or click the Record button to switch to Analog
mode.

Lesson 6 • Checking Bitmaps

60

 9 Sign your name in the Agent Signature box.

 10 Switch back to Context Sensitive mode.

Press F2 on your keyboard or click the Record button to switch back to
Context Sensitive mode.

 11 Insert a bitmap checkpoint that checks your signature.

Choose Insert > Bitmap Checkpoint > For Object/Window or click the
Bitmap Checkpoint for Object/Window button on the User toolbar.

Use the pointer to click the Agent Signature box. WinRunner captures
the bitmap and inserts an obj_check_bitmap statement into the test script.

 12 Click the Clear Signature button.

The signature is cleared from the Agent Signature box.

 13 Insert another bitmap checkpoint that checks the Agent Signature box.

Choose Insert > Bitmap Checkpoint > For Object/Window or click the
Bitmap Checkpoint for Object/Window button on the User toolbar.

Use the pointer to click the Agent Signature box. WinRunner captures a
bitmap and inserts an obj_check_bitmap statement into the test script.

 14 Click the Cancel button on the Fax Order dialog box.

 15 Stop recording.

Choose Test > Stop Recording or click the Stop button.

 16 Save the test.

Choose File > Save or click the Save button. Save the test as lesson6 in a
convenient location on your hard drive.

 17 If you are working in the Global GUI Map File mode, save the new
objects to the GUI map.

Choose Tools > GUI Map Editor. Choose View > GUI Files. Choose
File > Save. Click Yes and/or OK to add the new object and/or new window
to your GUI map. Choose File > Exit to close the GUI Map Editor.

Lesson 6 • Checking Bitmaps

61

For more information on saving new windows and new objects, see step 7
on page 39.

Viewing Expected Results

You can now view the expected results of the lesson6 test.

 1 Open the WinRunner Test Results window.

Choose Tools > Test Results or click the Test Results button. The Test Results
window opens.

 2 View the captured bitmaps.

In the test log section, double-click the first capture bitmap event, or select
it and click the Display toolbar button.

FYI:

Bitmap checkpoints appear as obj_check_bitmap or win_check_bitmap
statements in the test script. For example:

obj_check_bitmap("(static)", "Img1", 1);

static is the object or area’s logical name.

Img1 is the file containing the captured bitmap.

1 is the time (in seconds) needed to perform the check. This time is added
to the value of the timeout_msec test option. See Lesson 4 “Synchronizing
Tests” on page 33 for more information.

Lesson 6 • Checking Bitmaps

62

Next, double-click the second capture bitmap event, or select it and click
the Display toolbar button.

 3 Close the Test Results window.

Close the bitmaps and choose File > Exit to close the Test Results window.

Running the Test on a New Version

You can now run the test on a new version of the Flight Reservation
application.

 1 Close Flight Reservation 4A.

Choose File > Exit.

 2 Start Flight Reservation 4B.

Choose Start > Programs > WinRunner > Sample Applications > Flight 4B. In
the Login window, type your name and the password mercury, and click OK.
Reposition the Flight Reservation application and WinRunner so that they
are both clearly visible on your desktop.

 3 Make sure that lesson6 is the active test.

Click in the lesson6 test window.

 4 Check that Verify run mode is selected in the Test toolbar.

 5 Choose Run from Top.

Choose Run > Run from Top, or click the Run from Top button. The Run Test
dialog box opens. Accept the default test run name res1. Make sure that the
Display test results at end of run check box is selected.

 6 Run the test.

Click OK. The test run begins.

Lesson 6 • Checking Bitmaps

63

If a mismatch is detected at a bitmap checkpoint, click Continue in the
message window.

 7 Review the results.

When the test run is completed, the test results appear in the WinRunner
Test Results window.

 8 Close the Test Results window.

Choose File > Exit to close the Test Results window.

 9 Close the lesson6 test.

Choose File > Close.

 10 Close version 4B of the Flight Reservation application.

Choose File > Exit.

Bitmap Checkpoint Tips

➤ To capture an area, choose Insert > Bitmap Checkpoint > For Screen Area or
click the Bitmap Checkpoint for Screen Area button on the User toolbar.
(This menu command is only available when a test is open.) Use the
crosshairs pointer to mark the area that you want WinRunner to capture.
WinRunner inserts a win_check_bitmap statement into your test script.

The test failed
because the Agent
Signature box did
not clear when
WinRunner clicked
the Clear
Signature button.

Double-click the
failed bitmap
checkpoint to view
the expected,
actual, and
difference bitmaps.

Lesson 6 • Checking Bitmaps

64

This statement includes additional parameters that define the position
(x- and y-coordinates) and size (width and height) of the area.

➤ For overnight test runs, you can instruct WinRunner not to display a
message when a bitmap mismatch is detected. Choose
Tools > General Options. In the General Options dialog box, select the Run
category and the Settings sub-category. Clear the Break when verification
fails check box. This enables the test to run unattended.

➤ When running a test that includes bitmap checkpoints, make sure that the
screen display settings and display driver are the same as when the test
script was created. If the display settings are different, WinRunner may
report a bitmap mismatch.

➤ If you want to create new expected results for a bitmap checkpoint, run the
test in Update run mode. WinRunner overwrites the existing expected
bitmaps with new expected bitmaps captured during the Update run.

For more information on bitmap checkpoints, refer to the “Checking
Bitmaps” chapter in the WinRunner User’s Guide.

65

7
Programming Tests with TSL

This lesson:

➤ shows you how to use visual programming to add functions to your
recorded test scripts

➤ shows you how to add decision-making logic to a recorded test script

➤ helps you debug a test script

➤ lets you run a test on a new version of an application and analyze the results

How Do You Program Tests with TSL?

When you record a test, WinRunner generates TSL statements in a test script
each time you click a GUI object or type on the keyboard. In addition to the
recorded TSL functions, TSL includes many other built-in functions which
can increase the power and flexibility of your tests. You can quickly add
these functions to a test script using WinRunner’s visual programming tool,
the Function Generator. All functions located in the Function Generator are
explained in the TSL Online Reference and the TSL Reference Guide.

The Function Generator enables you to add TSL functions in two ways:

➤ You can point to a GUI object and let WinRunner “suggest” an appropriate
function. You can then insert this function into the test script.

➤ You can select a function from a list. Functions appear by category and
alphabetically.

You can further enhance your test scripts by adding logic. Simply type
programming elements such as conditional statements, loops, and
arithmetic operators directly into the test window.

Lesson 7 • Programming Tests with TSL

66

In the following exercises you will create a test that:

➤ opens an order

➤ opens the Fax Order dialog box

➤ checks that the total is equal to the number of tickets ordered multiplied
by the price per ticket

➤ reports whether the total is correct or incorrect

Recording a Basic Test Script

Start by recording the process of opening an order in the Flight Reservation
application and opening the Fax Order dialog box.

 1 Start WinRunner, open a new test and load the GUI map.

If WinRunner is not already open, choose
Programs > WinRunner > WinRunner on the Start menu. If the Welcome
window is open, click the New Test button. Otherwise, choose File > New. A
new test window opens.

If you are working in the Global GUI Map File mode, confirm that the GUI
map is loaded. To do this, choose Tools > GUI Map Editor. In the GUI Map
Editor choose View > GUI Files and confirm that flight4a.GUI is contained in
the GUI File list.

 2 Start the Flight Reservation application and log in.

Choose Programs > WinRunner > Sample Applications > Flight 4A on the
Start menu. In the Login window, type your name and the password
mercury, and click OK. Reposition the Flight Reservation application and
WinRunner so that they are both clearly visible on your desktop.

 3 Start recording in Context Sensitive mode.

Choose Test > Record—Context Sensitive or click the Record button on the
toolbar.

Lesson 7 • Programming Tests with TSL

67

 4 Open order #3.

In the Flight Reservation application, choose File > Open Order. In the
Open Order dialog box, select the Order No. check box and type 3 in the
adjacent box. Click OK to open the order.

 5 Open the Fax Order dialog box.

Choose File > Fax Order.

 6 Click Cancel to close the dialog box.

 7 Stop recording.

Choose Test > Stop Recording or click the Stop button.

 8 Save the test.

Choose File > Save or click the Save button. Save the test as lesson7 in a
convenient location on your hard drive.

 9 If you are working in the Global GUI Map File mode, save the new
objects to the GUI map.

Choose Tools > GUI Map Editor. Choose View > GUI Files. Choose
File > Save. Click Yes and/or OK to add the new object and/or new window
to your GUI map. Choose File > Exit to close the GUI Map Editor.

For more information on saving new windows and new objects, see step 12
on page 27 and step 7 on page 39.

Using the Function Generator to Insert Functions

You are now ready to add functions to the test script which query the
Tickets, Ticket Price, and Total boxes in the Fax Order dialog box.

 1 Insert a blank line above the button_press ("Cancel"); statement and
place the cursor at the beginning of this line.

 2 Open the Fax Order dialog box.

Choose File > Fax Order in the Flight Reservation application.

Lesson 7 • Programming Tests with TSL

68

 3 Query the # Tickets box.

Choose Insert > Function > For Object/Window or click the
Insert Function for Object/Window button on the User toolbar. Use the
pointer to click the # Tickets box.

The Function Generator opens and suggests the edit_get_text function.

This function reads the text in the # Tickets box and assigns it to a variable.
The default variable name is text. Change the variable name text to tickets
by typing in the box:

edit_get_text("# Tickets:",tickets);

Click Paste to add the function to the test script.

 4 Query the Ticket Price box.

Choose Insert > Function > For Object/Window or click the
Insert Function for Object/Window button on the User toolbar. Use the
pointer to click the Ticket Price box.

The Function Generator opens and suggests the edit_get_text function.
Change the name of the text variable to price:

edit_get_text("Ticket Price:",price);

Click Paste to add the function to the test script.

 5 Query the Total box.

Choose Insert > Function > For Object/Window or click the
Insert Function For Object/Window button on the User toolbar. Use the
pointer to click the Total box.

The Function Generator opens and suggests the edit_get_text function.
Change the name of the text variable to total:

edit_get_text("Total:",total);

Lesson 7 • Programming Tests with TSL

69

Click Paste to add the function to the test script.

 6 Close the Fax Order dialog box.

Click Cancel to close the dialog box in the Flight Reservation application.

 7 Save the test.

Choose File > Save or click the Save button.

 8 If you are working in the Global GUI Map File mode, save the new
objects to the GUI map.

Choose Tools > GUI Map Editor. Choose View > GUI Files. Choose
File > Save. Click Yes and/or OK to add the new objects and/or new windows
to your GUI map. Choose File > Exit to close the GUI Map Editor.

For more information on saving new windows and new objects, see step 12
on page 27 and step 7 on page 39.

Adding Logic to the Test Script

In this exercise you will program decision-making logic into the test script
using an if/else statement. This enables the test to:

➤ check that the total is equal to the number of tickets ordered multiplied by
the price per ticket

➤ report whether the total is correct or incorrect

 1 Place the cursor below the last edit_get_text statement in the lesson7
script.

 2 Add the following statements to the test script exactly as they appear
below.

Note that the tabs or spaces at the beginning of the second and fourth lines
are optional.

if (tickets*price == total)
tl_step ("total", 0, "Total is correct.");

else
tl_step ("total", 1, "Total is incorrect.");

Lesson 7 • Programming Tests with TSL

70

In plain English these statements mean: If tickets multiplied by price equals
total, report that the total is correct, otherwise (else) report that the total is
incorrect. See “Understanding tl_step,” on page 70 for more information on
the tl_step function.

 3 Add a comment to describe what this section of the script will do.

Insert a blank line above the if statement you added in the previous step and
place the cursor at the beginning of this line. Choose Edit > Comment. After
the # sign, type check that the total ticket price is calculated correctly.

 4 Save the test.

Choose File > Save or click the Save button.

For more information on saving new windows and new objects, see step 12
on page 27 and step 7 on page 39.

Understanding tl_step

In most cases when you run a test, WinRunner reports an overall test result
of pass or fail. By adding tl_step statements to your test script, you can
determine whether a particular operation within the test passed or failed,
and send a message to the report.

FYI:

You can use the Function Generator to quickly insert tl_step statements into
the test script. Choose Insert > Function > From Function Generator or
choose Insert Function from Function Generator on the User toolbar.

Lesson 7 • Programming Tests with TSL

71

For example:

tl_step ("total", 1, "Total is incorrect.");

total is the name you assign to this operation.

1 causes WinRunner to report that the operation failed. If you use 0,
WinRunner reports that the operation passed.

Total is incorrect is the message sent to the report. You can write any message
that will make the test results meaningful.

For more information regarding the tl_step function, refer to the TSL Online
Reference in WinRunner.

Debugging the Test Script

After enhancing a test with programming elements, you should check that
the test runs smoothly, without errors in syntax and logic. WinRunner
provides debugging tools which make this process quick and easy.

You can:

➤ run the test line by line using the Step commands

➤ define breakpoints that enable you to stop running the test at a specified
line or function in the test script

➤ monitor the values of variables and expressions using the Watch List

When you debug a test script, you should run your test in Debug mode. (To
run a test in Debug mode, select Debug from the Run Mode list on the
Standard toolbar.) The test results are saved in a debug directory. Each time
you run the test in Debug mode, WinRunner overwrites the previous debug
results.

In this exercise you will control the test run using the Step command. If any
error messages appear, examine the test script and try to fix the problem.

Lesson 7 • Programming Tests with TSL

72

 1 Select Debug mode from the Run Mode list on the Standard toolbar.

Debug mode will remain in effect until you select a different mode.

 2 Place the execution marker –> next to the first line in the test script.

Click in the left margin, next to the first line in the test script.

 3 Choose Debug > Step or click the Step button to run the first line in the
test script.

WinRunner runs the first line of the test.

 4 Use the Step button to run the entire test, line by line.

Click the Step button to run each line of the test script. Note that your
mouse pointer may sometimes move to the flight application as it clicks on
objects during the test run.

 5 Click Stop.

Click the Stop button to tell WinRunner that you have completed the
Debug test run.

 6 Review the test results in the WinRunner Test Results window.

When you run the test in Debug mode, the test results do not open
automatically. Choose Tools > Test Results or click the Test Results button.
The WinRunner Test Results window displays the results of the Debug test
run.

 7 Close the Test Results window.

Choose File > Exit.

 8 Exit the Flight Reservation application.

Choose File > Exit.

For more information on debugging test scripts, refer to Part VI, “Debugging
Tests”, in the WinRunner User’s Guide.

Lesson 7 • Programming Tests with TSL

73

Running the Test on a New Version

Once the test script is debugged, you can run it on a new version of the
Flight Reservation application.

 1 Open version 4B of the Flight Reservation application.

Choose Programs > WinRunner > Sample Applications > Flight 4B on the
Start menu. In the Login window, type your name and the password
mercury, and click OK. Reposition the Flight Reservation application and
WinRunner so that they are both clearly visible on your desktop.

 2 Select Verify mode from the Run Mode list on the Standard toolbar.

Verify mode will remain in effect until you select a different mode.

 3 Choose Run from Top.

Choose Test > Run from Top, or click the From Top button. The Run Test
dialog box opens. Accept the default test run name res1. Make sure that the
Display test results at end of run check box is selected.

 4 Run the test.

Click OK in the Run Test dialog box. The test run begins.

Lesson 7 • Programming Tests with TSL

74

 5 Review the test results.

When the test run is completed, the test results appear in the WinRunner
Test Results window.

You can double-click the tl_step statement in the test log to view the full
details:

Notice that the message, Total is correct, is the same message you wrote in
the test script. Click OK to close the message.

 6 Close the test results.

Choose File > Exit to close the Test Results window.

The number of
tickets multiplied
by the price equals
the total. Therefore
the tl_step
statement reports
pass.

Lesson 7 • Programming Tests with TSL

75

 7 Close the lesson7 test.

Choose File > Close.

 8 Close version 4B of the Flight Reservation application.

Choose File > Exit.

Lesson 7 • Programming Tests with TSL

76

77

8
Creating Data-Driven Tests

This lesson:

➤ shows you how to use the DataDriver Wizard to create a data-driven test

➤ teaches you how to convert your test to a data-driven test and add data for
the test

➤ explains how to use regular expressions for GUI object names that vary with
each iteration of a test

➤ shows you how to customize results information to meet your needs

➤ enables you to run a test with several iterations and analyze the results

➤ provides tips for creating data-driven tests

How Do You Create Data-Driven Tests?

Once you have successfully debugged and run your test, you may want to
see how the same test performs with multiple sets of data. To do this, you
convert your test to a data-driven test and create a corresponding data table
with the sets of data you want to test.

Converting your test to a data-driven test involves the following steps:

➤ Adding statements to your script that open and close the data table.

➤ Adding statements and functions to your test so that it will read from the
data table and run in a loop while it applies each set of data.

➤ Replacing fixed values in recorded statements and checkpoint statements
with parameters, known as parameterizing the test.

Lesson 8 • Creating Data-Driven Tests

78

You can convert your test to a data-driven test using the DataDriver Wizard
or you can modify your script manually.

When you run your data-driven test, WinRunner runs the parameterized
part(s) of the test one time (called an iteration) for each set of data in the
data table, and then displays the results for all of the iterations in a single
Test Results window.

In Lesson 7 you created a test that opened a specific flight order and read the
number of tickets, price per ticket, and total price from a fax order dialog
box in order to check that the total price was correct. In this lesson you will
create a test that performs the same check on several flight orders in order to
check that your application computes the correct price for various quantities
and prices of tickets.

Converting Your Test to a Data-Driven Test

Start by opening the test you created in Lesson 7 and use the DataDriver
Wizard to parameterize the test.

 1 Create a new test from the lesson7 test and load the GUI map.

If WinRunner is not already open, choose Start > Programs > WinRunner >
WinRunner. If the Welcome window is open, click the Open Test button.
Otherwise, choose File > Open and select the test you created in Lesson 7.
The lesson7 test opens.

Choose File > Save As and save the test as lesson8 in a convenient location
on your hard drive.

If you are working in the Global GUI Map File mode, confirm that the GUI
map is loaded. To do this, choose Tools > GUI Map Editor. In the GUI Map
Editor choose View > GUI Files and confirm that flight4a.GUI is contained in
the GUI File list.

 2 Run the Data Driver Wizard.

Choose Table > Data Driver Wizard. The DataDriver Wizard welcome
window opens. Click Next to begin the parameterization process.

Lesson 8 • Creating Data-Driven Tests

79

 3 Create a data table for the test.

In the Use a new or existing Excel table box, type lesson8. The DataDriver
Wizard creates a Microsoft Excel table with this name and saves it in the test
folder.

 4 Assign a table variable name.

Accept the default table variable name, table.

At the beginning of a data-driven test, the Microsoft Excel data table you
wish to use is assigned as the value of the table variable. Throughout the
script, only the table variable name is used. This makes it easy for you to
assign a different data table to the script at a later time without making
changes throughout the script.

 5 Select global parameterization options.

Select Add statements to create a data-driven test. This adds TSL statements
to the test that define the table variable name, open and close the data table,
and run the appropriate script selection in a loop for each row in the data
table.

Lesson 8 • Creating Data-Driven Tests

80

Select Parameterize the test and choose the Line by line option. When you
select Parameterize the test, you instruct WinRunner to find fixed values in
recorded statements and selected checkpoints and to replace them with
parameters. The Line by line option instructs the wizard to open a screen for
each line of the selected test that can be parameterized so that you can
choose whether or not to parameterize that line.

Click Next.

 6 Select the data to parameterize.

The first line-by-line screen opens. It refers to the Order Number radio
button.

In this test you are going to open a different fax order in each iteration and
the Order Number radio button must be selected each time. Thus, for this
script line, keep the selection, Do not replace this data, and click Next.

The next line by line screen refers to the Order Number box. This is the box
you want to change for each iteration. Note that the value “3” is highlighted
and listed in the Argument to be replaced box to indicate that this is the
value selected for parameterization.

Lesson 8 • Creating Data-Driven Tests

81

Select A new column under Replace the selected value with data from: and
type Order_Num in the adjacent box. The new column option creates a
column titled Order_Num in the lesson8.xls table, and enters the value 3 in
the first row of the column.

Click Next and then click Finish. Your test is parameterized.

Lesson 8 • Creating Data-Driven Tests

82

Adding Data to the Data Table

Now that you have parameterized your test, you are ready to add the data
that the parameterized test will use.

 1 Open the data table.

Choose Table > Data Table. The lesson8.xls table opens. Note that there is
one column named Order_Num, and that the first row in the column
contains the value 3.

FYI:

The following elements are added or modified in your parameterized
test:

The table = line defines the table variable.

The ddt_open statement opens the table, and the subsequent lines
confirm that the data-driven test opens successfully.

The ddt_get_row_count statement checks how many rows are in the
table, and therefore, how many iterations of the parameterized section
of the test to perform.

The for statement sets up the iteration loop.

The ddt_set_row statement tells the test which row of the table to use
on each iteration.

In the edit_set statement, the value, “3” is replaced with a ddt_val
statement.

The ddt_close statement closes the table.

Lesson 8 • Creating Data-Driven Tests

83

 2 Add data to the table.

In rows 2, 3, 4, and 5 of the Order_Num column, enter the values, 1, 6, 8,
and 10 respectively.

 3 Save and close the table.

Click an empty cell and choose File > Save from the data table menu. Then
choose File > Close to close the table.

 4 Save the test.

Choose File > Save or click the Save button.

Adjusting the Script with Regular Expressions

Your test is almost finished. Before running the test you should look
through it to see if there are any elements that may cause a conflict in a
data-driven test. The DataDriver wizard finds all fixed values in selected
checkpoints and recorded statements, but it does not check for things such
as object labels that also may vary based on external input.

In the flight application, the name of the Fax Order window changes to
reflect the fax order number. If you run the test as it is, the test will fail on
the second iteration, because the Flight Application will open a window
titled Fax Order No. 1, but the script tells it to make the window titled Fax
Order No. 3 active. WinRunner will be unable to find this window.

Lesson 8 • Creating Data-Driven Tests

84

To solve this problem, you can use a regular expression. A regular
expression is a string that specifies a complex search phrase in order to
enable WinRunner to identify objects with varying names or titles.

In this exercise you will use a regular expression in the physical description
of the Fax Order window so that WinRunner can ignore variations in the
window’s label.

 1 Locate the Fax Order window in the flight4a.GUI GUI map file.

Choose Tools > GUI Map Editor. Choose View > GUI Files. Select flight4a.GUI
in the GUI file box. Select the Fax Order No. 3 window icon.

 2 Modify the window label with a regular expression.

Select Modify. The Modify window opens. In the Physical Description label
line, add an ! immediately following the opening quotes to indicate that
this is a regular expression. Delete the space and the number 3 at the end of
the line and replace this text with * to indicate that the text following this
phrase can vary.

 3 Close the Modify dialog box.

Click OK to close the Modify window.

 4 Save the GUI map (only if you are working in the Global GUI Map File
mode) and close the GUI Map Editor.

If you are working in the Global GUI Map File mode, choose File > Save to
save your changes and choose File > Exit to close the GUI Map Editor.

If you are working in the GUI Map File per Test mode, choose File > Exit to
exit the GUI Map Editor.

Lesson 8 • Creating Data-Driven Tests

85

Customizing the Results Information

You could run the test now, but it may be difficult for you to interpret the
results for each iteration. You can add iteration-specific information to the
reporting statements in your script so that you can see which data is the
basis for each result.

 1 Modify the tl_step statements.

Locate the first tl_step statement in your script. Delete the words "total is
correct". and replace them with "Correct. "tickets" tickets at $"price" cost
$"total"."

tl_step("total",0, "Correct. "tickets" tickets at $"price" cost $"total".");

Use the same logic to modify the next tl_step statement to report an
incorrect result. For example:

tl_step("total", 1, "Error! "tickets" tickets at $"price" does not equal $"total". ");

Now you will be able to see which data is used in each iteration when you
view the results.

 2 Save the test.

Choose File > Save or click the Save button.

Running the Test and Analyzing Results

You run the data-driven test just like any other test in WinRunner. When
the test run is completed, the results for all iterations are included in a single
Test Results window.

 1 Make sure that the Flight 4A Flight Reservation application is open on
your desktop.

 2 In WinRunner, check that Verify run mode is selected in the Test
toolbar.

 3 Choose Run from Top.

Choose Run > Run from Top, or click the Run from Top button. The Run Test
dialog box opens. Accept the default test run name. Make sure that the
Display test results at end of run check box is selected.

Lesson 8 • Creating Data-Driven Tests

86

 4 Run the test.

Click OK in the Run Test dialog box. The test will run through the
parameterized section of the script five times, once for each row in the data
table.

 5 Review the results.

When the test run is completed, the test results appear in the WinRunner
Test Results window.

Note that the tl_step event is listed five times and that the details for each
iteration include the actual number of tickets, price and total cost that was
checked.

 6 Close the test results.

Choose File > Exit to close the Test Results window.

 7 Close the Flight Reservation application.

Choose File > Exit.

 8 Close the lesson8 test.

Choose File > Close.

Lesson 8 • Creating Data-Driven Tests

87

Data-Driven Testing Tips

➤ You can parameterize only part of your test script or a loop within it, and a
single data-driven test can contain more than one parameterized loop.

➤ You can open and save data tables other than the default.xls data table. This
enables you to use several different data tables in one test script.

➤ You can parameterize statements containing GUI checkpoints, bitmap
checkpoints, and bitmap synchronization points, and constants.

➤ You can use the data table in the same way as an Excel spreadsheet,
including inserting formulas into cells.

➤ Before you run a data-driven test, you should look through it to see if there
are any elements that may cause a conflict in a data-driven test. There are
two ways to solve most of these conflicts:

➤ Use a regular expression to enable WinRunner to recognize objects based
on a portion of its physical description. For more information on regular
expressions, refer to the “Using Regular Expressions” chapter in the
WinRunner User’s Guide.

➤ Use the GUI Map Configuration dialog box to change the physical
properties that WinRunner uses to recognize the problematic object. For
more information on GUI Map configuration, refer to the “Configuring
the GUI Map” chapter in the WinRunner User’s Guide.

➤ You can change the active row, or read from a non-active row during the test
run by using TSL statements. For more information, refer to the “Using TSL
Functions with Data-Driven Tests” chapter in the WinRunner User’s Guide.

➤ It is not necessary for the data table viewer to be open when you run a test.

To learn more about data-driven tests, refer to the “Creating Data-Driven
Tests” chapter in the WinRunner User’s Guide.

Lesson 8 • Creating Data-Driven Tests

88

89

9
Creating Batch Tests

This lesson:

➤ describes how you can use a batch test to run a suite of tests unattended

➤ helps you create a batch test

➤ helps you run the batch test and analyze the results

What is a Batch Test?

Imagine that you have revised your application and you want to run old test
scripts on the revised product. Instead of running each test individually, you
can use a batch test to run several tests, leave for lunch, and see the results
of all your tests on your screen when you get back.

A batch test looks and behaves like a regular test script, except for two main
differences:

➤ It contains call statements, which open other tests. For example:

call "c:\\qa\\flights\\lesson9"();

During a test run, WinRunner interprets a call statement, and then opens
and runs the called test. When the called test is done, WinRunner returns to
the batch test and continues the run.

➤ You choose the Run in batch mode option in the Run category of the
General Options dialog box (Tools > General Options) before running the
test. This option instructs WinRunner to suppress messages that would
otherwise interrupt the test. For example, if WinRunner detects a bitmap
mismatch, it does not prompt you to pause the test run.

Lesson 9 • Creating Batch Tests

90

When you review the results of a batch test run, you can see the overall
results of the batch test (pass or fail), as well as the results of each test called
by the batch test.

Programming a Batch Test

In this exercise you will create a batch test that:

➤ calls tests that you created in earlier lessons (lesson5, lesson6, and
lesson7)

➤ runs each called test three times in order to check how the Flight
Reservation application handles the stress of repeated execution

 1 Start WinRunner, open a new test and load the GUI map.

If WinRunner is not already open, choose Start > Programs > WinRunner >
WinRunner. If the Welcome window is open, click the New Test button.
Otherwise, choose File > New. A new test window opens.

If you are working in the Global GUI Map File mode, confirm that the GUI
map is loaded. To do this, choose Tools > GUI Map Editor. In the GUI Map
Editor choose View > GUI Files and confirm that flight4a.GUI is contained in
the GUI File list.

 2 Program call statements in the test script that call lesson5, lesson6, and
lesson7.

Type the call statements into the new test window in the following format:

call "c:\\qa\\flights\\lesson5"();
call "c:\\qa\\flights\\lesson6"();
call "c:\\qa\\flights\\lesson7"();

In your test script, replace c:\\qa\\flights with the directory path that contains
your tests.

Note: When you type the path, use double backslashes between the
directory names.

Lesson 9 • Creating Batch Tests

91

 3 Define a loop that calls each test 3 times.

Add a loop around the call statements so that the test script looks like this:

for (i=0; i<3; i++)
{
call "c:\\qa\\flights\\lesson5"();
call "c:\\qa\\flights\\lesson6"();
call "c:\\qa\\flights\\lesson7"();
}

In plain English, this means: Run lesson5, lesson6, and lesson7, and then
loop back and run each test again. Repeat this process until each test runs 3
times. Note that the brackets { } define which statements are included in the
loop.

 4 Choose the Batch Run option in the General Options dialog box.

Choose Tools > General Options. In the General Options dialog box, choose
the Run category. Select the Run in batch mode check box and click OK to
close the General Options dialog box.

 5 Save the batch test.

Choose File > Save or click the Save button. Name the test batch.

Running the Batch Test on Version 4B

You are now ready to run the batch test in order to check the Flight
Reservation application. When you run the test, WinRunner will compare
the expected results of each test to the actual results in the application. It
uses the expected results stored when you created the tests in earlier lessons.

 1 Open version 4B of the Flight Reservation application and log in.

Choose Start > Programs > WinRunner > Sample Applications > Flight 4B. In
the Login window, type your name and the password mercury, and click OK.
Reposition the Flight Reservation application and WinRunner so that they
are both clearly visible on your desktop.

 2 In WinRunner, check that Verify run mode is selected in the Test
toolbar.

Lesson 9 • Creating Batch Tests

92

 3 Choose Run from Top.

Choose Test > Run from Top, or click the From Top button. The Run Test
dialog box opens. Accept the default test run name res1. Make sure that the
Display test results at end of run check box is selected.

 4 Run the test.

Click OK in the Run Test dialog box. The test run begins. The test run
consists of nine different test executions and may take some time.

Watch how WinRunner opens and runs each called test, and loops back to run the
tests again (a total of 3 times).

Analyzing the Batch Test Results

Once the batch test run is completed, you can analyze the results in the
WinRunner Test Results window. The Test Results window displays the
overall result (pass or fail) of the batch test, as well as a result for each called
test. The batch test fails if any of the called tests failed.

 1 Open the WinRunner Test Results window and display the res1 results of
the batch test.

If the WinRunner Test Results window is not currently open, click in the
batch test window and choose Tools > Test Results, or click the Test Results
button.

Lesson 9 • Creating Batch Tests

93

 2 View the results of the batch test.

The batch test failed because one or more of the called tests failed. As you
have seen in earlier lessons, version 4B contains some bugs.

The test tree shows
all the tests called
during the batch
test run. Since each
test was called 3
times, the test
names appear 3
times in the list.

Displays the
current test
results name.

Lists all the events
that occurred
during the batch
test run.

A call test event
indicates that a
called test was
opened and run.

A return event
indicates that
control was
returned to the
batch test.

Shows whether
the batch test
passed or failed.

Lesson 9 • Creating Batch Tests

94

 3 View the results of the called tests.

Click a test name in the test tree to view the results of a called test.

Recall that lesson6 uses a bitmap checkpoint to check that the Agent
Signature box in the Fax Order dialog box clears after WinRunner clicks the
Clear Signature button. Since the Signature box did not clear, the bitmap
checkpoint detected a mismatch. You can double-click the failed event to
display the expected, actual, and difference results.

 4 Close the Test Results window.

Choose File > Exit.

 5 Close the batch test.

Choose File > Close for each open test. That is, the batch test and the three
tests that were called by the batch. Alternatively, you can choose
File > Close All.

 6 Clear the Batch Run option in the General Options dialog box.

Once you are finished running the batch test, clear the Batch Run option.
Choose Tools > General Options. In the General Options dialog box, select
the Run category. Clear the Run in batch mode check box and click OK.

The highlighted
test indicates
which test results
are currently
displayed. In this
case, lesson6
results appear in
the Test Results
window.

Displays the
current test
results name.

Lists all the events
that occurred when
the test was called.

Shows whether
the selected
called test
passed or failed.

Lesson 9 • Creating Batch Tests

95

 7 Close version 4B of the Flight Reservation application.

Choose File > Exit.

Batch Test Tips

➤ By defining search paths, you can instruct WinRunner to search for called
tests in certain directories. Choose Tools > General Options. In the General
Options dialog box, select the Folders category. In the Search path for called
tests box, define the paths in which the tests are located. This enables you
to specify a relative path, such as just the test name in a call statement. For
example:

call "lesson6"();

For more information on defining search paths for called tests, refer to the
“Setting Global Testing Options” chapter in the WinRunner User’s Guide.

➤ You can pass parameter values from the batch test to a called test. Parameter
values are defined within the parentheses of a call statement.

call test_name ([parameter1, parameter2, ...]);

➤ Remember that you must select the Run in batch mode option in the Run
category of the General Options dialog box in order for the batch test to run
unattended. Otherwise, the test will stop running to display an error
message if any errors occur.

For more information on creating batch tests, refer to the “Calling Tests”
and “Running Batch Tests” chapters in the WinRunner User’s Guide.

Lesson 9 • Creating Batch Tests

96

97

10
Maintaining Your Test Scripts

This lesson:

➤ explains how the GUI map enables you to continue using your existing test
scripts after the user interface changes in your application

➤ shows you how to edit existing object descriptions or add new descriptions
to the GUI map

➤ shows you how to use the Run wizard to automatically update the GUI map

What Happens When the User Interface Changes?

Consider this scenario: you have just spent several weeks creating a suite of
automated tests that covers the entire functionality of your application. The
application developers then build a new version with an improved user
interface. They change some objects, add new objects, and remove others.
How can you test this new version using your existing tests?

WinRunner provides an easy solution. Instead of manually editing every test
script, you can update the GUI map. The GUI map contains descriptions of
the objects in your application.

Lesson 10 • Maintaining Your Test Scripts

98

An object description in the GUI map is composed of:

➤ a logical name, a short intuitive name describing the object. This is the name
you see in the test script. For example:

button_press ("Insert Order");

Insert Order is the object’s logical name.

➤ a physical description, a list of properties that uniquely identify the object. For
example:

{
class: push_button
label: "Insert Order"
}

The button belongs to the push_button object class and has the label Insert
Order.

When you run a test, WinRunner reads an object’s logical name in the test
script and refers to its physical description in the GUI map. WinRunner then
uses this description to find the object in the application under test.

If an object changes in an application, you must update its physical
description in the GUI map so that WinRunner can find it during the test
run.

In the following exercises you will:

➤ edit an object description in the GUI map

➤ add objects to the GUI map

➤ use the Run wizard to automatically detect user interface changes and
update the GUI map

Lesson 10 • Maintaining Your Test Scripts

99

Editing Object Descriptions in the GUI Map

Suppose that in a new version of the Flight Reservation application, the
Insert Order button is changed to an Insert button. In order to continue
running tests that use the Insert Order button, you must edit the label in the
button’s physical description in the GUI map. You can change the physical
description using regular expressions. For additional information, refer to
“Adjusting the Script with Regular Expressions” on page 83 of this tutorial
and to the “Using Regular Expressions” chapter in the WinRunner User’s
Guide.

 1 Start WinRunner, open a test, and load the GUI map.

If WinRunner is not already open, choose Start > Programs > WinRunner >
WinRunner. If the Welcome window is open, click the New Test button.
Otherwise, choose File > New. A new test window opens.

If you are working in the GUI Map File per Test mode, open the lesson4 test.

If you are working in the Global GUI Map File mode, confirm that the GUI
map is loaded. To do this, choose Tools > GUI Map Editor. In the GUI Map
Editor choose View > GUI Files and confirm that flight4a.GUI is contained in
the GUI File list.

Lesson 10 • Maintaining Your Test Scripts

100

 2 Open the GUI Map Editor.

Choose Tools > GUI Map Editor. The GUI Map Editor opens. Choose
View > GUI Map. The Windows/Object list displays the current contents of
the GUI Map. (If you are working in the GUI Map File per Test mode, the
GUI Map Editor will contain fewer objects than shown below.)

The GUI Map Editor displays the object names in a tree. Preceding each
name is an icon representing the object’s type. The objects are grouped
according to the window in which they are located. You can double-click a
window icon to collapse or expand the view of its objects.

Objects are listed in a tree,
according to the window in which
they are located.

When this checkbox is selected,
the physical description of the
selected object or window is
displayed below.

Within the tree,
the object is
identified by its
class using an
icon, and by its
logical name.

Lesson 10 • Maintaining Your Test Scripts

101

 3 Find the Insert Order button in the tree.

In the GUI Map Editor, choose View > Collapse Objects Tree to view only
the window titles. (If you are working in the GUI Map File per Test mode,
the GUI Map Editor will contain fewer objects than shown below.)

Double-click the Flight Reservation window to view its objects. Scroll down
the alphabetical object list until you locate the Insert Order button.

When you collapse the tree,
only window titles are listed.

Lesson 10 • Maintaining Your Test Scripts

102

 4 View the Insert Order button’s physical description.

Click the Insert Order button in the tree. (If you are working in the GUI
Map File per Test mode, the GUI Map Editor will contain fewer objects than
shown below.)

The physical description of the object is displayed in the bottom pane of the
GUI Map Editor.

Physical Description

Lesson 10 • Maintaining Your Test Scripts

103

 5 Modify the Insert Order button’s physical description.

Click the Modify button or double-click the Insert Order button. The
Modify dialog box opens and displays the button’s logical name and
physical description.

In the Physical Description box, change the label property from Insert Order
to Insert.

Click OK to apply the change and close the dialog box.

 6 Close the GUI Map Editor.

In the GUI Map Editor, choose File > Save to save your changes and then
choose File > Exit. If you are working in the GUI Map File per Test mode,
choose File > Exit in the GUI Map Editor and then File > Save in WinRunner.

The next time you run a test that contains the logical name Insert Order,
WinRunner will locate the Insert button in the Flight Reservation window.

Lesson 10 • Maintaining Your Test Scripts

104

If you are working in the GUI Map File per Test Mode, go back and perform
steps 1 through 6 for the lesson9 test.

One of the main advantages of working in the Global GUI Map File mode is
the ability to modify an object in one place and all tests using the same GUI
Map file benefit from the update. When working in the GUI Map File per
Test Mode, you must update the GUI Map file of each test containing the
modified object.

Adding GUI Objects to the GUI Map

Note: If you are working in the GUI Map File per Test mode, skip this
exercise, since new objects are saved in your test’s GUI map automatically
when you save your test.

If your application contains new objects, you can add them to the GUI map
without running the RapidTest Script wizard again. You simply use the Learn
button in the GUI Map Editor to learn descriptions of the objects. You can
learn the description of a single object or all the objects in a window.

In this exercise you will add the objects in the Flight Reservation Login
window to the GUI map.

 1 Open the Flight Reservation Login window.

Choose Start > Programs > WinRunner > Sample Applications > Flight 4A.

 2 Open the GUI Map Editor.

In WinRunner, choose Tools > GUI Map Editor. The GUI Map Editor opens.
Choose View > GUI Files.

 3 Learn all the objects in the Login window.

Click the Learn button. Use the pointer to click the title bar of the Login
window.

Lesson 10 • Maintaining Your Test Scripts

105

A message prompts you to learn all the objects in the window. Click Yes.

Watch as WinRunner learns a description of each object in the Login
window and adds it to the temporary GUI map.

 4 Save the new objects in the GUI map.

Choose File > Save in the GUI Map Editor. Click Yes and/or OK to add the
new objects and/or new windows to your GUI map. Choose File > Exit to
close the GUI Map Editor.

For more information on saving new windows and new objects, see step 7
on page 39.

 5 Close the Login window.

Click Cancel.

Updating the GUI Map with the Run Wizard

Note: If you are working in the GUI Map File per Test mode, skip this
exercise, since new objects are automatically saved in your test’s GUI map
when you save your test.

During a test run, if WinRunner cannot locate an object mentioned in the
test script, the Run wizard opens. The Run wizard helps you update the GUI
map so that your tests can run smoothly. It prompts you to point to the
object in your application, determines why it could not find the object, and
then offers a solution. In most cases the Run wizard will automatically
modify the object description in the GUI map or add a new object
description.

Lesson 10 • Maintaining Your Test Scripts

106

For example, suppose you run a test that clicks the Insert Order button in
the Flight Reservation window:

button_press ("Insert Order");

If the Insert Order button is changed to an Insert button, the Run wizard
opens during a test run and describes the problem.

You click the hand button in the wizard and click the Insert button in the
Flight Reservation program. The Run wizard then offers a solution:

Lesson 10 • Maintaining Your Test Scripts

107

When you click OK, WinRunner automatically modifies the object’s
physical description in the GUI map and then resumes the test run.

If you want to see how the Run wizard works:

 1 Open the GUI Map Editor.

Choose Tools > GUI Map Editor. Choose View > GUI Files. Select flight4a.GUI
in the GUI File box.

 2 Delete the “Fly From” list object from the GUI Map Editor tree.

The "Fly From" object is listed under the Flight Reservation window. Select
this object and click the Delete button in the GUI Map Editor. Save the GUI
map file and exit the GUI Map Editor.

 3 Open Flight Reservation 4A.

Choose Start > Programs > WinRunner > Sample Applications > Flight 4A. In
the Login window, type your name and the password mercury, and click OK.
Reposition the Flight Reservation application and WinRunner so that they
are both clearly visible on your desktop.

 4 In WinRunner, open the lesson4 test and run it.

Watch what happens when WinRunner reaches the statement

list_select_item ("Fly From:", "Los Angeles");

 5 Follow the Run wizard instructions.

The Run wizard asks you to point to the Fly From object and then adds the
object description to the GUI map. WinRunner then continues the test run.
WinRunner also fails to find the Insert Order button because we changed
the object’s label description to Insert. Follow the instructions in the Run
Wizard to fix the Insert Order object description.

 6 Save the new Fly From object to the GUI map.

When WinRunner completes the test run, return to the GUI Map Editor and
look for the Fly From object description. If you are working in the Global
GUI Map File mode, the Run wizard adds the object to the temporary GUI
map. Click File > Save to add the object back to the flight4a.GUI map file.

Lesson 10 • Maintaining Your Test Scripts

108

 7 Close the GUI map.

In the GUI Map Editor, choose File > Exit.

 8 Close the Flight Reservation application.

Choose File > Exit.

109

11
Where Do You Go from Here?

Now that you have completed the exercises in Lessons 1 through 10, you are
ready to apply the WinRunner concepts and skills you learned to your own
application.

This lesson:

➤ shows you how to start testing your application

➤ describes where you find additional information about WinRunner

Getting Started

In order to start testing your application, first decide which GUI map mode
you want to use.

If you used the GUI Map File per Test mode throughout this tutorial and you
want to continue in this mode, you can start recording tests right away.

If you want to use the Global GUI Map File mode, you should use the
RapidTest Script wizard to learn a description of every object your
application contains. Before doing this, however, remove the sample
application’s object descriptions from the GUI map.

Lesson 11 • Where Do You Go from Here?

110

To get started in Global GUI Map File mode:

 1 Close all applications on your desktop except for WinRunner and the
application you want to test.

 2 Close the flight4a.GUI map.

Choose Tools > GUI Map Editor. Choose View > GUI Files. Make sure you are
viewing the flight4a.GUI map file. Choose File > Close to close the
flight4a.GUI map file. Choose File > Exit to close the GUI Map editor.

 3 Remove the flight4a.GUI map from your startup script.

In WinRunner, choose File > Open. Browse to <WinRunner Installation
path>\dat. Select the myinit file. Delete the line:

GUI_load("<WInRunner installation path>\\dat\\flight4a.GUI");

Choose File > Save to save the startup script.

 4 Run the RapidTest Script Wizard on your application. Learn object
descriptions in Comprehensive mode.

You should now use the RapidTest Script Wizard to learn a description of
each object in your application. Choose Insert > RapidTest Script Wizard
and follow the instructions on the screen.

When the wizard asks you to choose a learning flow, choose
Comprehensive. This mode enables you to control how WinRunner learns
object descriptions. It enables you to customize logical names and map
custom objects to a standard object class.

After the learning process is complete, the wizard creates a GUI map file and
a startup script. If you are working in a testing group, store this information
on a shared network drive.

If you need help while using the wizard, click the Help button in the
appropriate screen.

 5 Create tests.

Lesson 11 • Where Do You Go from Here?

111

Once you finish using the wizard, you can start creating tests in WinRunner
in the Global GUI Map File mode. Use recording, programming, or a
combination of both to build your automated test scripts.

To get started in GUI Map File per Test mode:

 1 Close all applications on your desktop except for WinRunner and the
application you want to test.

 2 Create tests.

Plan the main stages of the test you wish to create, and select the
appropriate record mode. Use recording, programming, or a combination of
both to build your automated test scripts.

Getting Additional Information

For more information on WinRunner and TSL, refer to the user’s guides and
online resources provided with WinRunner.

Documentation Set

In addition to this tutorial, WinRunner comes with a complete set of
documentation:

WinRunner User’s Guide provides step-by-step instructions on how to use
WinRunner to test your application. It describes many useful testing tasks
and options not covered in this tutorial.

WinRunner Installation Guide explains how to install WinRunner on a
single computer or on a network.

WinRunner Customization Guide explains how to customize WinRunner to
meet the special testing requirements of your application.

TSL Reference Guide describes Test Script Language (TSL) and the functions
it contains.

Lesson 11 • Where Do You Go from Here?

112

Online Resources

WinRunner includes the following online resources:

Read Me provides last-minute news and information about WinRunner
(Start > Programs > WinRunner > Read Me).

What’s New in WinRunner describes the newest features in your version of
WinRunner.

Books Online displays the complete documentation set in PDF format.
Online books can be read and printed using Adobe Acrobat Reader. It is
recommended that you use version 5.0 or later. You can download Adobe
Acrobat Reader from www.adobe.com. Check Mercury’s Customer Support
Web site for updates to WinRunner online books.

WinRunner Context Sensitive Help provides immediate answers to questions
that arise as you work with WinRunner. It describes menu commands and
dialog boxes, and shows you how to perform WinRunner tasks. Check the
Mercury Customer Support Web site for updates to WinRunner help files.

TSL Online Reference describes Test Script Language (TSL), the functions it
contains, and examples of how to use the functions. Check the Mercury
Customer Support Web site for updates to the TSL Online Reference.

Sample Tests includes utilities and sample tests with accompanying
explanations. Check the Mercury Customer Support Web site for updates to
WinRunner sample tests.

WinRunner Quick Preview opens an overview of WinRunner in your default
browser.

Technical Support Online uses your default web browser to open the
Mercury Customer Support Web site.

Support Information presents the Mercury home page, its Customer Support
Web site, and links to help you find and contact Mercury offices around the
world.

Mercury Interactive on the Web uses your default Web browser to open the
Mercury home page. This site provides you with the most up-to-date
information on Mercury, its products and services. This includes new
software releases, seminars and trade shows, customer support, and training.

http://www.adobe.com

	Mercury WinRunner Tutorial
	Table of Contents
	Welcome to the WinRunner Tutorial
	Using This Tutorial
	Typographical Conventions

	Introducing WinRunner
	The Benefits of Automated Testing
	Understanding the Testing Process
	Exploring the WinRunner Window

	Setting Up the GUI Map
	How Does WinRunner Identify GUI Objects?
	Spying on GUI Objects
	Choosing a GUI Map Mode
	Using the RapidTest Script Wizard

	Recording Tests
	Choosing a Record Mode
	Recording a Context Sensitive Test
	Understanding the Test Script
	Recording in Analog Mode
	Running the Test
	Analyzing Test Results
	Recording Tips

	Synchronizing Tests
	When Should You Synchronize?
	Creating a Test
	Changing the Synchronization Setting
	Identifying a Synchronization Problem
	Synchronizing the Test
	Running the Synchronized Test

	Checking GUI Objects
	How Do You Check GUI Objects?
	Adding GUI Checkpoints to a Test Script
	Running the Test
	Running the Test on a New Version
	GUI Checkpoint Tips

	Checking Bitmaps
	How Do You Check a Bitmap?
	Adding Bitmap Checkpoints to a Test Script
	Viewing Expected Results
	Running the Test on a New Version
	Bitmap Checkpoint Tips

	Programming Tests with TSL
	How Do You Program Tests with TSL?
	Recording a Basic Test Script
	Using the Function Generator to Insert Functions
	Adding Logic to the Test Script
	Understanding tl_step
	Debugging the Test Script
	Running the Test on a New Version

	Creating Data-Driven Tests
	How Do You Create Data-Driven Tests?
	Converting Your Test to a Data-Driven Test
	Adding Data to the Data Table
	Adjusting the Script with Regular Expressions
	Customizing the Results Information
	Running the Test and Analyzing Results
	Data-Driven Testing Tips

	Creating Batch Tests
	What is a Batch Test?
	Programming a Batch Test
	Running the Batch Test on Version 4B
	Analyzing the Batch Test Results
	Batch Test Tips

	Maintaining Your Test Scripts
	What Happens When the User Interface Changes?
	Editing Object Descriptions in the GUI Map
	Adding GUI Objects to the GUI Map
	Updating the GUI Map with the Run Wizard

	Where Do You Go from Here?
	Getting Started
	Getting Additional Information

