
Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Online Guide

WinRunner® 7. 5
Testing Java Applications
and Applets

put name of
book here

Table of Contents

Chapter 1: Introduction... 4

Using the Java Add-in .. 5

How the Java Add-in Identifies Java Objects 6

Activating the Java Add-in .. 7

Chapter 2: Testing Standard Java Objects 10

About Testing Standard Java Objects .. 11

Recording Context Sensitive Tests .. 11

Enhancing Your Script with TSL... 13

Setting the Value of a Java Bean Property....................................... 14

Configuring How WinRunner Learns Object

Descriptions and Runs Tests .. 19

Chapter 3: Working with Java Methods and Events 25

About Working with Java Methods and Events 26

Invoking Java Methods... 27

Accessing Object Fields ... 30

Working with Return Values (Advanced).. 35

Viewing Object Methods in Your Application or Applet 37

Firing Java Events .. 46

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Page 2

Table of Contents

Chapter 4: Configuring Custom Java Objects............................ 48

About Configuring Custom Java Objects.. 49

Adding Custom Java Objects to the GUI Map.................................. 50

Configuring Custom Java Objects with the Custom Object Wizard.. 52

Chapter 5: Using Java Direct Call (JDC) 59

About Java Direct Call Mechanism... 60

Using the JDC Mechanism... 61

Preparing a TSL Script for Use with JDC ... 63

Using JDC: An Example... 64

Chapter 6: Troubleshooting Java Add-in

Recording Problems .. 68

Handling General Problems Testing Applets or Applications 69

Handling Java Add-in Problems ... 71

Index .. 72

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Page 3

Introduction

Welcome to WinRunner with add-in support for Java. This guide explains how to
use WinRunner to successfully test Java applications and applets. It should be
used in conjunction with the WinRunner User’s Guide and the TSL Online
Reference.

This chapter describes:

• Using the Java Add-in

• How the Java Add-in Identifies Java Objects

• Activating the Java Add-in

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 1, page 4

Introduction

Using the Java Add-in

The Java Add-in is an add-in to WinRunner, Mercury Interactive’s automated
GUI testing tool for Microsoft Windows applications. The Java Add-in enables
you to test cross-platform Java applets and applications.

To create a test for a Java applet or application, use WinRunner to record the
operations you perform on the applet or applications. As you click on Java
objects, WinRunner generates a test script in TSL, Mercury Interactive’s C-like
test script language.

With the Java Add-in you can:

•	 Record operations on standard Java objects just as you would any other
Windows object.

•	 Configure the GUI map to recognize custom Java objects as push buttons,
check buttons, static text or text fields.

• Use various TSL functions to execute Java methods from the WinRunner script.

•	 Use the java_fire_event function to simulate a Java event on the specified
object.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 1, page 5

Introduction

How the Java Add-in Identifies Java Objects

WinRunner learns a set of default properties for each object you operate on while
recording a test. These properties enable WinRunner to obtain a unique
identification for every object that you test. This information is stored in the GUI
map. WinRunner uses the GUI map to help it locate frames and objects during a
test run.

WinRunner identifies standard java objects as push button, check button, static
text, list, table, or text field classes, and stores the relevant physical properties in
the GUI Map just like the corresponding classes of Windows objects. If you record
an action on a custom or unsupported java object, WinRunner maps the object to
the general object class in the WinRunner GUI map unless you configure the GUI
map to identify the object as a custom java object, by choosing Tools > Java GUI
Map Configuration. A custom java object can be configured as a push button,
check button, static text, text field, etc. and you can configure the physical
properties that will be used to identify the object. For more information on GUI
maps, refer to the “Configuring the GUI Map” chapter in the WinRunner User’s
Guide.

You can view the contents of your GUI map files in the GUI Map Editor, by
choosing Tools > GUI Map Editor. The GUI Map Editor displays the logical
names and the physical descriptions of objects. For more information on GUI
maps, refer to the “Understanding the GUI Map” section in the WinRunner User’s
Guide.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 1, page 6

Introduction

Activating the Java Add-in

Before you begin testing your Java application or applet, make sure that you have
installed all the necessary files and made any necessary configuration changes.
For more information, refer to the Java Add-in Installation Guide.

Note: The RapidTest Script wizard option is not available when the Java Add-in
is loaded. For more information about the RapidTest Script wizard, refer to the
WinRunner User’s Guide.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 1, page 7

Introduction

To activate the Java Add-in:

1	 Select Programs > WinRunner > WinRunner in the Start menu. The Add-in
Manager dialog box opens.

2 Select Java.

3 Click OK. WinRunner opens with the Java Add-in loaded.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 1, page 8

Introduction

Note:

If the Add-In Manager dialog box does not open:

1 Start WinRunner.

2	 In Settings > General Options > Environment tab, check Show Add-in
Manager dialog for ___ seconds and fill in a comfortable amount of time in
seconds. (The default value is 10 seconds.)

3 Click OK.

4	 Close WinRunner. A WinRunner Message dialog opens asking “Would you like
to save changes made in the configuration?” Click Yes.

5 Repeat the procedure described in “To activate the Java Add-in,” on page 8.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

For more information on the Add-in Manager, refer to the WinRunner User’s
Guide.

Testing Java Applications and Applets Chapter 1, page 9

Testing Standard Java Objects

This chapter describes how to record standard Java objects and enhance scripts
that test Java applets and applications.

This chapter describes:

• Recording Context Sensitive Tests

• Enhancing Your Script with TSL

• Setting the Value of a Java Bean Property

• Configuring How WinRunner Learns Object Descriptions and Runs Tests

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 2, page 10

Testing Standard Java Objects

About Testing Standard Java Objects

With the Java Add-in, you can record or write context sensitive scripts on all
standard Java objects from the supported toolkits in Netscape, Internet Explorer,
AppletViewer, or a standalone Java application.

Recording Context Sensitive Tests

Whenever you start WinRunner with the Java Add-in loaded, support for the Java
environments you installed will always be loaded. For more information about
selecting Java environments refer to the Java Add-in Installation Guide.

You can confirm that your Java environment has opened properly by checking the
Java console for the following confirmation message: "Loading Mercury
Support (version x.xxx)".

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Note: If the Java console and a Java plug-in are open simultaneously, the Java
add-in support will not function properly as this scenario results in two virtual
machines and WinRunner cannot distinguish between them.If this happens,
close the browser and console and then re-open the browser before running the
tests.

Testing Java Applications and Applets Chapter 2, page 11

Testing Standard Java Objects

If your Java application or applet uses standard Java objects from any of the
supported toolkits, then you can use WinRunner to record a Context Sensitive test
in Netscape, Internet Explorer, AppletViewer or a standalone Java application,
just as you would with any Windows application.

As you record, WinRunner adds standard Context Sensitive TSL statements into
the script. If you try to record an action on an unsupported or custom Java object,
WinRunner records a generic obj_mouse_click or win_mouse_click
statement. You can configure WinRunner to recognize your custom objects as
push buttons, check buttons, static text, edit fields, etc. by using the Java Custom
Objects wizard. For more information, refer to Chapter 4, Configuring Custom
Java Objects.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 2, page 12

Testing Standard Java Objects

Enhancing Your Script with TSL

WinRunner includes several TSL functions that enable you to add Java-specific
statements to your script. Specifically, you can use TSL functions to:

• Set the value of a Java bean property.

• Activate a specified Java edit field.

•	 Find the dimensions and coordinates of list and tree objects in JFC (swing
toolkit).

• Select an item from a Java pop-up menu.

•	 Configure the way WinRunner learns object descriptions and runs tests on Java
applets and applications.

You can also use TSL functions to invoke the methods of Java objects and to
simulate events on Java objects. These are covered in Chapter 3, Working with
Java Methods and Events.

For more information about TSL functions and how to use TSL, refer to the TSL
Reference Guide or the TSL Online Reference.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 2, page 13

Testing Standard Java Objects

Setting the Value of a Java Bean Property

You can set the value of a Java bean property with the obj_set_info function.
This function works on all properties that have a set method. The function has the
following syntax:

obj_set_info (object, property, value);

The object parameter is the logical name of the object. The object may belong to
any class. The property parameter is the object property you want to set and can
be any of the properties displayed when using the WinRunner GUI Spy. Refer to
the WinRunner Users Guide for more information on the GUI Spy or for a list of
properties. The value parameter is the value that is assigned to the property.

Note: When writing the property parameter name in the function, convert the
capital letters of the property to lowercase, and add an underscore before letters
that are capitalized within the Java bean property name. Therefore a Java bean
property called MyProp becomes my_prop in the TSL statement.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 2, page 14

Testing Standard Java Objects

For example, for a property called MyProp, which has method setMyProp(String),
you can use the function as follows:

obj_set_info(object, "my_prop", "Mercury");

The obj_set_info function will return ATTRIBUTE_NOT_SUPPORTED for the
property, my_prop if one of the following statements is true:

• The object does not have a method called setMyProp.

•	 The method setMyProp() exists, but it has more than one parameter, or the
parameter is not of one of the following types: String, int (or Integer), boolean (or
Boolean), or float (or Float).

•	 The value parameter is not convertible to one of the above Java classes. For
example, the method gets an integer number as a parameter, but the function’s
value parameter was a non-numeric value.

• The setMyprop() method creates a Java exception.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 2, page 15

Testing Standard Java Objects

Activating a Java Edit Object
You can activate an edit field with the edit_activate function. This is the
equivalent of a user pressing the ENTER key on an edit field. This function has
the following syntax:

edit_activate (object);

The object parameter is the logical name of the edit object on which you want to
perform the action.

For example, if you want to enter John Smith into the edit field, "Text_Fields_0",
then you can set the text in the edit field and then use edit_activate to send the
activate event as in the following script:

set_window("swingsetapplet.html", 8);
edit_set("Text Fields:_0", "John Smith 2");
edit_activate("Text Fields:_0");

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 2, page 16

Testing Standard Java Objects

Finding the Location of a List Item
You can find the dimensions and coordinates of list and tree objects in JFC (swing
toolkit) with the list_get_item_coord function. This function has the following
syntax:

list_get_item_coord (list, item, out_x, out_y, out_width, out_height);

The list parameter is the name of the list. The item parameter is the item string.
The out_x and out_y parameters are the output variables that store the x- and y-
coordinates of the item rectangle. The out_width and out_height parameters are
the output variables that store the width and height of the item rectangle.

For example, for a list called "ListPanel$1" containing an item called "Cola", you
can use the function as follows to find the location of the Cola item:

set_window("swingsetapplet.html");
tab_select_item("JTabbedPane", "ListBox");
list_select_item("ListPanel$1", " Cola");
rc = list_get_item_coord("ListPanel$1", " Cola", x_list_src, y_list_src,

width_list_src, height_list_src);

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 2, page 17

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Standard Java Objects

Testing Java Applications and Applets Chapter 2, page 18

In

Selecting an Item from a Java Pop-up Menu
You can select an item from a Java pop-up menu using the popup_select_item
function. This function has the following syntax:

popup_select_item ("menu;item");

The menu;item parameter indicates the logical name of the component
containing the menu and the name of the item.

Note that menu and item are represented as a single string, and are separated by
a semicolon.

When an item is selected from a submenu, each consecutive level of the menu is
separated by a semicolon in the format "menu; sub_menu1;
sub_menu2;...sub_menun; item." The selected item must be the last item in a
menu tree, for example: popup_select_item ("Copy"); is not legal, while
popup_select_item ("MyEdit;Copy"); is legal.

The popup_select_item statement does not open the pop-up menu: you can
open the menu by a preceding TSL statement. For example:

obj_mouse_click ("MyEdit", 1, 1, RIGHT);

Testing Standard Java Objects

Configuring How WinRunner Learns Object
Descriptions and Runs Tests

You can configure how WinRunner learns descriptions of objects, records tests,
and runs tests on a Java applet or application with the set_aut_var function. The
function has the following syntax:

set_aut_var (variable, value);

The following variables and corresponding values are available:

EDIT_REPLAY_MODE	 Controls how WinRunner performs actions on
edit fields. Use one or more of the following
values:

“S”- uses the setText () or setValue () methods
to set a value of the edit object.

“P”- sends KeyPressed event to the object for
every character from the input string.

“T”- sends KeyTyped events to the object for
every character from the input string.

“R”- sends KeyReleased event to the object for
every character from the input string.

“F”- generates a FocusLost event at the end of
function execution.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 2, page 19

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Standard Java Objects

Testing Java Applications and Applets Chapter 2, page 20

In

“E”- generates a FocusGained event at the
beginning of function execution.
(Oracle only, EWT toolkit)

Default value: “PTR”

Note that the default action sends a triple event
to the edit field (KeyPressed-KeyTyped-
KeyReleased).

EVENT_MODEL Sets the event model that will be used to send
events to the AUT objects. Use one of the
following values:

“NEW”- for applications written in the new event
model.

“OLD”- for applications written in the old event
model.

“DEFAULT”- Uses the OLD event model for
AWT objects and NEW for all other toolkit
objects.

Default value: "DEFAULT"

MAX_TEXT_DISTANCE Sets the maximum distance in pixels, to look for
attached text.

Default value: 100

Testing Standard Java Objects

REPLAY_INTERVAL

RETRY_DELAY

SKIP_ON_LEARN

TABLE_RECORD_MODE

Sets the processing time in milliseconds
between the execution of two functions.

Default value: 200

Sets the maximum time in milliseconds to wait
before retrying to execute a command.

Default value: 1000

Controls how WinRunner learns a window.
Mercury Interactive classes listed in the variable
are ignored. May contain a list of Mercury
Interactive classes, separated by spaces. By
default, only non-“object" objects are learned.

Default value: "object"

Sets the record mode for a table object (CS or
ANALOG).

“CS”: indicates that the record mode is Context
Sensitive.

“ANALOG”: records only low-level (Analog)
table functions: tbl_click_cell,
tbl_dbl_click_cell, and tbl_drag. (JFC JTable
objects, KLG 3.6 table objects, and KLG 4.x/5.0
JCTable objects only).

Default value: “CS”

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 2, page 21

Testing Standard Java Objects

COLUMN_NUMBER

MAX_COLUMN_GAP

MAX_LINE_DEVIATION

MAX_LIST_COLUMNS

MAX_ROW_GAP

Minimum number of columns for a table to be
considered a table object. Otherwise the edit
fields are treated as separate objects.
(Oracle only)

Default value: 2

The maximum number of pixels between objects
in a table to be considered a column.
(Oracle only)

Default value: 12

The maximum number of pixels between objects
to be considered to be on a single line.
(Oracle only)

Default value: 8

The maximum number of columns in an Oracle

LOV object to be considered a list. A larger

number constitutes a table.

(Oracle only)

Default value: 99

The maximum number of pixels between objects

to be considered one table row.

(Oracle only)

Default value: 12

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 2, page 22

Testing Standard Java Objects

RECORD_BY_NUM

USE_LOW_LEVEL_EVENTS

Controls how items in list, combo box, table, tab
control, and tree view objects are recorded. The
variable can be one of the following values: list,
combo, table, tab control, tree, or a combination
separated by a space. If one of these objects
has been detected, numbers are recorded
instead of the item names or row/column header
names. ("Table" is supported for KLG or
JCTable objects. "Tab" is supported for JFC,
Vcafe, and KLG 3.x.)

Controls whether WinRunner simulates user
input by Java events or by the mouse and
keyboard drivers.

"All": indicates that WinRunner simulates all
mouse clicks and keyboard strokes for all types
of Java objects by the mouse and keyboard
drivers.

Class names separated by a space indicates
that WinRunner uses mouse and keyboard
drivers to simulate user input on object of the
class names listed. For example, "push_button
edit" uses mouse and keyboard drivers to
simulate user input on all buttons and edit
boxes.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 2, page 23

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Standard Java Objects

Testing Java Applications and Applets Chapter 2, page 24

In

EXCLUDE_CONTROL_CHARS Specifies the characters to be ignored from the
setText () call by the edit_set command when
REPLAY_MODE_EDIT contains "S".
For example:
set_aut_var
("EXCLUDE_CONTROL_CHARS", "\t");
means that the tab character will not be
included in the setText () method call when
REPLAY_MODE_EDIT contains "S".

SOFTKEYS_REC Controls whether WinRunner records Oracle
application softkeys. By default, WinRunner
does not record special function and action
keys.

"On" (or any non-zero numeric value): Enables
recording of Oracle application softkeys.

Working with Java Methods and Events

This chapter describes how to invoke the methods of Java objects. It also
describes how to simulate events on Java objects.

This chapter describes:

• Invoking Java Methods

• Accessing Object Fields

• Working with Return Values (Advanced)

• Viewing Object Methods in Your Application or Applet

• Firing Java Events

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 3, page 25

Working with Java Methods and Events

About Working with Java Methods and Events

You can invoke object methods during your test using the java_activate_method
function or static (class) methods using the java_activate_static function. You
can view the methods of Java objects in your application using the GUI spy or the
Java Method wizard. You can also generate the appropriate TSL statement for
activating the method you select.

You can access object fields using any of the following functions: java_get_field,
java_set_field, java_get_static, or java_set_static.

You can also simulate events on Java objects using the fire_java_event function.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 3, page 26

Working with Java Methods and Events

Invoking Java Methods

You can invoke a Java method for any Java object using the
java_activate_method function. You can invoke a static method using the
java_activate_static function.

Using the java_activate_method Function
You can use the java_activate_method function to invoke object methods during
your test.

The java_activate_method function has the following syntax:

java_activate_method (object, method_name, retval [, param1, ... param8
]);

The object parameter is the logical name of the object (for a visible, GUI object)
or an object returned from a previous java_activate_method function or any
other function described in this chapter. For more information on return values,
see Working with Return Values (Advanced) on page 35. The method_name
parameter indicates the name of the Java method to invoke. The retval
parameter is an output variable that holds a return value from the invoked
method. Note that this parameter is required even for void Java methods.
param1...8 are optional parameters to be passed to the Java method.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 3, page 27

Working with Java Methods and Events

The Java method parameters, may belong to one of the following Java data types:
boolean, int, long, float, double, or String, or they may be any other Java object
returned from a previous java_activate_method function or any other function
described in this chapter. For more information about using returned objects in
your script, see Working with Return Values (Advanced) on page 35.

Note: If the function returns boolean output, the retval parameter will return the
string representation of the output: “true” or “false”.

For example, you can use the java_activate_method function to perform actions
on a list:

Add item to the list at position 2:
java_activate_method("list", "add", retval, "new item", 2);

Get number of visible rows in a list:
java_activate_method("list", "getRows", rows);

Check if an item is selected:
java_activate_method("list", "isIndexSelected", isSelected, 2);

The TSL return value for the java_activate_method function can be any of the
TSL general return values. For more information on TSL return values, refer to
the TSL Reference Guide.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 3, page 28

Working with Java Methods and Events

Using the java_activate_static Function
You can invoke a static method of any Java class using the java_activate_static
function.

The java_activate_static function has the following syntax:

java_activate_static (class_name, method_name, retval);

The class_name parameter is the fully-qualified Java class name. The
method_name parameter indicates the name of the static Java method to
invoke. The retval parameter is an output variable that holds a return value from
the invoked method.

The Java method parameters, may belong to one of the following Java data types:
boolean, int, long, float, double, or String, or they may be any other Java object
returned from a previous java_activate_static function or any other function
described in this chapter. For more information about using returned objects in
your script, see Working with Return Values (Advanced) on page 35.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Note: If the function returns boolean output, the retval parameter will return the
string representation of the output: “true” or “false”.

For example, you can use the java_activate_static function to invoke the
toHexString static method of the Java class Integer.

java_activate_static("java.lang.Integer", "toHexString", hex_str, 127);

Testing Java Applications and Applets Chapter 3, page 29

Working with Java Methods and Events

Accessing Object Fields

You can access object fields using the java_get_field or java_set field functions.
You can use the java_get_static or java_set_static functions to access static
fields.

Using the java_get_field Function
You can use the java_get_field function to retrieve the current value of an
object’s field.

The java_get_field function has the following syntax:

java_get_field (object, field_name, value);

The object parameter is the logical name of the object whose field is retrieved, or
an object returned from a previous java_get_field function or any other function
described in this chapter. The field_name parameter indicates the name of the
field to retrieve. The value parameter is an output variable that holds the value
from the retrieved field.

The Java method parameters, may belong to one of the following Java data types:
boolean, int, long, float, double, or String, or they may be any other Java object
returned from a previous java_get_field function or any other function described
in this chapter. For more information about using returned objects in your script,
see Working with Return Values (Advanced) on page 35.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 3, page 30

Working with Java Methods and Events

Note: If the function returns boolean output, the value parameter will return the
string representation of the output: “true” or “false”.

For example, you can use the java_get_field function to retrieve the value of the
"x" field of a Java point object:

java_get_field(point_object, "x", ret_val);

Using the java_set_field Function
You can use the java_set_field function to set the specified value of an object’s
field.

The java_set_field function has the following syntax:

java_set_field (object, field_name, value);

The object parameter is the logical name of the object or the value returned from
a previous java_set_field function or any other function described in this
chapter. The field_name parameter indicates the name of the field whose value
will be set. The value parameter holds the new value of the field.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 3, page 31

Working with Java Methods and Events

The value parameter may belong to one of the following Java data types: boolean,
int, long, float, double, or String, or it may be any other value returned from a
previous java_set_field function or any other function described in this chapter.
For more information about using returned objects in your script, see Working
with Return Values (Advanced) on page 35.

Note: If the function returns boolean output, the value parameter will return the
string representation of the output: “true” or “false”.

For example, you can use the java_set_field function to set the value of the "x"
field to 5:

java_set_field(point_object, "x", 5);

Using the java_get_static Function
You can use the java_get_static function to retrieve the current value of a static
field.

The java_get_static function has the following syntax:

java_get_static (class, field_name, value);

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 3, page 32

Working with Java Methods and Events

The class parameter is the fully-qualified Java class name. The field_name
parameter indicates the name of the field to retrieve. The value parameter is an
output variable that holds a return value from the retrieved field.

The Java method parameters, may belong to one of the following Java data types:
boolean, int, long, float, double, or String, or they may be any other Java object
returned from a previous java_get_static function or any other function described
in this chapter. For more information about using returned objects in your script,
see Working with Return Values (Advanced) on page 35.

Note: If the function returns boolean output, the value parameter will return the
string representation of the output: “true” or “false”.

For example, you can use the java_get_static function to retrieve the value of the
"out" static field of the "java.lang.System" class:

java_get_static("java.lang.System", "out", ret_val);

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 3, page 33

Working with Java Methods and Events

Using the java_set_static Function
You can use the java_set_static function to set the specified value of a static
field.

The java_set_static function has the following syntax:

java_set_static (class, field_name, value);

The class parameter is the fully-qualified Java class name. The field_name
parameter indicates the name of the field whose value will be set. The value
parameter holds the new value of the field.

The value parameter may belong to one of the following Java data types: boolean,
int, long, float, double, or String, or it may be any other value returned from a
previous java_set_static function or any other function described in this chapter.
For more information about using returned objects in your script, see Working
with Return Values (Advanced) on page 35.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Note: If the function returns boolean output, the value parameter will return the
string representation of the output: “true” or “false”.

Testing Java Applications and Applets Chapter 3, page 34

Working with Java Methods and Events

Working with Return Values (Advanced)

If a Java object is returned from a prior java_activate_method statement, you
can use the returned object to invoke its methods. You can also use the returned
object as an argument to another java_activate_method function or any of the
other functions described in this chapter.

You can also use the jco_create function to create a new Java object within your
application or applet.

The jco_create function has the following syntax:

jco_create (existing_obj , new_obj , class_name , [param1 , ... , param8]);

The existing_obj parameter specifies the object whose classloader will be used
to find the class of the newly created object. This can be the main application or
applet window, or any other Java object within the application or applet. The
new_obj output parameter is the new object to be returned. The class_name
parameter is the fully-qualified Java class name. Param1...Param8 are the
required parameters for that object constructor. These parameters can be of
type: int, float, boolean ("true" or "false"), String, or any value returned from a
previous jco_create function or any of the other functions described in this
chapter.

You invoke the methods of a returned object just as you would any other Java
object, using the java_activate_method syntax described above.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 3, page 35

Working with Java Methods and Events

Note: You can use the "_jco_null" object as a parameter in order to represent a
null object.

When a Java object is returned from a java_activate_method or jco_create
statement, a reference to the object is held by the Java Add-in. When you have
finished using the returned object in your script, you should use the jco_free
function to release the reference to the specific object. You can also use the
jco_free_all function to release all object references held by the Java Add-in.

These two functions have the following syntax:

jco_free (object_name);
jco_free_all();

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back
Note: A returned object can only be used to invoke the methods of that object or
as an argument for another java_activate_method or any of the other functions
described in this chapter. Do not use a returned object as an argument for other
functions.

Testing Java Applications and Applets Chapter 3, page 36

Working with Java Methods and Events

Viewing Object Methods in Your Application or Applet

If you are not sure which methods are available for a given object, you can use
the GUI Spy or the Java Method wizard to view all of the methods associated with
the object. You can also use the GUI Spy or the Java Method wizard to generate
the appropriate java_activate_method function for a selected method.

Using the GUI Spy
You can view all methods associated with GUI Java objects in your application or
applet and generate the appropriate java_activate_method function for a
selected method using the Java tab of the GUI Spy.

Note: As with any other GUI object, you can view all properties or just the
recorded properties of a Java object in the All Standard or Recorded tabs of the
GUI Spy. For more information on these elements of the GUI Spy, refer to the
WinRunner User’s Guide.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

To view object methods in your application or applet using the GUI Spy:

1	 Open the Java application or applet that contains the object for which you want
to view the methods.

Testing Java Applications and Applets Chapter 3, page 37

Working with Java Methods and Events

2 Choose Tools > GUI Spy. The GUI Spy opens.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

3 Click the Java tab.

Testing Java Applications and Applets Chapter 3, page 38

Working with Java Methods and Events

4	 Click Spy and point to an object on the screen. The object is highlighted and the
active window name, object name, and all of the object’s Java methods appear
in the appropriate fields. The object’s methods are listed first, followed by a
listing of methods inherited from the object’s superclasses.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 3, page 39

Working with Java Methods and Events

5	 To capture the object methods in the GUI Spy dialog box, point to the desired
object and press the STOP softkey. (The default softkey combination is Ctrl Left +
F3.)

To generate the TSL statement for invoking a Java method:

1 Activate the GUI Spy as described on page 37.

2	 Select the method that you want to invoke from the list of methods. The
appropriate java_activate_method is displayed in the TSL statement box.

Note: If you run a Java application on a virtual machine earlier than JDK version
1.2, the java_activate_method function cannot invoke Protected, Default, or
Private method types.

3 Copy the statement displayed in the box and paste it into your script.

4	 Input parameters are identified as Param1, Param2, etc. Replace the input
parameters in the statement with the parameter values you want to send to the
method.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 3, page 40

Working with Java Methods and Events

For example, if you want to change the text on the button labeled "One" to "Yes",
highlight the setText method and copy the statement in the box:

rc = java_activate_method("One","setText",retValue,param1);

and replace Param1 with "Yes" as shown below:

rc = java_activate_method("One","setText",retValue,"Yes");

Using the Java Method Wizard
You can use the Java Method wizard to view the methods associated with Java
objects and to generate the appropriate java_activate_method statement for
one of the displayed methods.

To view the methods for an object in your application or applet:

1	 Open the Java application or applet that contains the object for which you want
to view the methods.

2	 Enter a method_wizard statement to activate the Method wizard using the
syntax:

method_wizard (object);

where object is the logical name of the object for which you want to view the

methods, or an object returned from a previous java_activate_method function,

or any of the other functions described in this chapter.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 3, page 41

Working with Java Methods and Events

3	 Choose Run > Step, or click the Step button to run the statement. The Java
Method wizard opens and displays a list with the object’s class and all of its
superclasses.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 3, page 42

Working with Java Methods and Events

4 Double-click a class element to view a summary of available methods by type.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 3, page 43

Working with Java Methods and Events

5 Double-click a method type to view the related methods.

To generate the TSL statement for invoking a Java method:

1 Activate the Java Method wizard as described on page 41.

2	 Select the method that you want to invoke from the list of methods under the
appropriate object class. A TSL statement is displayed in the TSL statement box.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 3, page 44

Working with Java Methods and Events

Note: If you run a Java application on a virtual machine earlier than JDK version
1.2, the java_activate_method function cannot invoke Protected, Default, or
Private method types.

3	 Copy the statement displayed in the TSL statement box and paste it into your
script.

4	 Replace the * symbols in the statement with the parameter values you want to
send to the method.

For example, if you created a Rectangle object, and you want to enlarge it by
one pixel in each direction, copy the TSL statement displayed in the TSL
statement box:

rc = java_activate_method(newRectangle, "add", retValue, *, *);

and replace each * symbol with 1 as shown below:

rc = java_activate_method(newRectangle, "add", retValue, 1, 1);

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 3, page 45

Working with Java Methods and Events

Firing Java Events

You can simulate an event on a Java object during a test run with the
java_fire_event function. This function has the following syntax:

java_fire_event (object , class [, constructor_param1,..., contructor_paramn
]);

The object parameter is the logical name of the Java object. The class
parameter is the name of the Java class representing the event to be activated.
The constructor_paramn parameters are the required parameters for the object
constructor (excluding the object source, which is specified in the object
parameter).

Note: The constructor’s Event ID argument may be entered as the ID number or
the final field string that represents the Event ID.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 3, page 46

Working with Java Methods and Events

For example, you can use the java_fire_event function to fire a
MOUSE_CLICKED event using the following script:

set_window("mybuttonapplet.htm", 2);
java_fire_event ("MyButton", "java.awt.event.MouseEvent",
"MOUSE_CLICKED", get_time(), "BUTTON1_MASK", 4, 4, 1, "false");

In the example above, the constructor has the following parameters: int id, long
when, int modifiers, int x, int y, int clickCount, boolean popupTrigger, where id =
"MOUSE_CLICKED" , when = get_time() , modifiers = "BUTTON1_MASK" ,
x = 4, y = 4, clickCount = 1, popupTrigger = "false".

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 3, page 47

Configuring Custom Java Objects

This chapter explains how to add Java objects to the GUI map and to configure
custom Java objects as standard GUI objects.

This chapter describes:

• Adding Custom Java Objects to the GUI Map

• Configuring Custom Java Objects with the Custom Object Wizard

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 4, page 48

Configuring Custom Java Objects

About Configuring Custom Java Objects

With the Java Add-in you can use WinRunner to record test scripts on most Java
applications and applets, just like you would in any other Windows application. If
you record an action on a custom or unsupported Java object, however,
WinRunner maps the object to the general object class in the WinRunner GUI
map. When this occurs, you can use the Custom Object wizard to configure the
GUI map to recognize these Java objects as a push button, check button, static
text or text field. This makes the test script easier to read and makes it easier for
you to perform checks on relevant object properties.

After using the wizard to configure a custom object, you can add it to the GUI map,
record actions and run it as you would any other WinRunner test.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 4, page 49

Configuring Custom Java Objects

Adding Custom Java Objects to the GUI Map

Once the Java Add-in is loaded, you can add custom Java objects to the GUI map
by recording an action or by using the GUI Map Editor to learn the objects. By
default, however, these objects will each be mapped to the general object class,
and activities performed on those objects will generally result in generic
obj_mouse_click or win_mouse_click statements. The objects will usually be
identified in the GUI map by their label property, or if WinRunner does not
recognize the label, by a numbered class_index property.

For example, suppose you wish to record a test on a sophisticated subway routing
Java application. This application lets you select your starting location and
destination, and then suggests the best subway route to take. The application
allows you to select which train line(s) you prefer to use for your travels.

Since WinRunner cannot recognize the custom Java check boxes in the subway
application as GUI objects, when you check one of the options, the GUI map
defines the objects as:

{

class: object,

label: "M (Nassau St Express)"

}

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 4, page 50

Configuring Custom Java Objects

If you were to record a test in which you selected the “M”, “A” and “Six” lines as
your preferred lines, WinRunner would create a test script similar to the
following:

set_window("Line Selection", 1);
obj_mouse_click("M (Nassau St Express)", 6, 32, LEFT);
obj_mouse_click("A (Far Rockaway) (Eighth Av...", 10, 30, LEFT);
obj_mouse_click("Six (Lexington Ave Local)", 5, 27, LEFT);

The test script above is difficult to understand. If, instead, you use the Custom
Object wizard in order to associate the custom objects with the check button
class, WinRunner records a script similar to the following:

set_window("Line Selection", 8);

button_set("M (Nassau St Express)", ON);

button_set("A (Far Rockaway) (Eighth Av...", ON);

button_set("Six (Lexington Ave Local)", ON);

Now it is easy to see that the objects in the script are check buttons and that the
user selected (turned ON) the three check buttons.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 4, page 51

Configuring Custom Java Objects

Configuring Custom Java Objects with the Custom Object
Wizard

You configure a custom Java object in WinRunner using the Custom Object
wizard in order to assign the object to a standard GUI class and to object
properties that will uniquely identify the object.

Note: The GUI Map Configuration tool does not support configuring Java
objects. The Custom Object wizard (Java GUI Map Configuration option) serves
a similar purpose for Java objects to that which the regular GUI Map
Configuration tool serves for Windows objects. Because Java objects do not
have a handle or window (and therefore no MSW class), the regular GUI Map
Configuration tool is unable to perform a set_class_map type mapping. Thus,
when you want to map a custom Java object to a standard class, always use the
Java GUI Map Configuration option. For more information about the GUI Map
Configuration tool, refer to the WinRunner User’s Guide.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

To configure a Java object using the Custom Object wizard:

1 Open your Java application containing custom Java objects.

2 Open a new test in WinRunner.

3	 Choose Tools > Java GUI Map Configuration. The Custom Object wizard
Welcome screen opens. Click Next.

Testing Java Applications and Applets Chapter 4, page 52

Configuring Custom Java Objects

4	 Click the Mark Object button. Point to an object in the Java application. The
object is highlighted. Click any mouse button to select the object. A default name
appears in the Object class field.

5	 Click the Highlight button if you want to confirm that the correct option was
selected. The object you selected is highlighted.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 4, page 53

Configuring Custom Java Objects

6	 If you want to select a different object, repeat steps 4 and 5. When you are
satisfied with your selection, click Next.

7 Select a standard class object for the object you selected. Click Next.
Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 4, page 54

Configuring Custom Java Objects

8	 Select an appropriate custom property and corresponding property value from
the property list on the right to uniquely identify the object, or accept the
suggested property and value.

If you selected check_button as the standard object, two custom properties are
necessary. After selecting the first property, click Next Property to select the
second property for the object.

Click Next.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 4, page 55

Configuring Custom Java Objects

9	 The Congratulations screen opens. If you want to learn another custom Java
object, click Yes. The wizard returns to the Mark Custom Object screen. Repeat
steps 4-8 for each custom object you want to configure. If you are finished
configuring custom Java options, click No.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 4, page 56

Configuring Custom Java Objects

10	 The Finish screen opens. Click the Finish button to close the Custom Object
wizard.

11	 Close and reopen your Java application or applet in order to activate the new
configuration for the object(s).

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 4, page 57

Configuring Custom Java Objects

Note: The new object configuration settings will not take effect until the Java
application or applet is restarted.

Once you have configured a custom Java option using the Custom Object
wizard, you can add the objects to the GUI map or record a test as you would in
any Windows application. For more information on the GUI map and recording
scripts, refer to the WinRunner User’s Guide.

Note: When you configure custom Java objects in WinRunner, the Program
Files\Common Files\Mercury
Interactive\SharedFiles\JavaAddin\classes\customization.properties file is
created and contains information about the custom Java objects. If you no longer
want to use your custom Java configurations, delete the custom Java objects in
the GUI Map and delete the customization.properties file. Then restart your Java
application or applet.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 4, page 58

Using Java Direct Call (JDC)

This chapter explains how to use the Java Direct Call (JDC) Mechanism to call
Java functions from TSL scripts.

This chapter describes

• Using the JDC Mechanism

• Preparing a TSL Script for Use with JDC

• Using JDC: An Example

Note: You can use the java_activate_method function to call Java functions
from TSL scripts. For all new scripts, it is recommended to use the
java_activate_method function.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 5, page 59

Using Java Direct Call (JDC)

About Java Direct Call Mechanism

JDC enables you to specify a Java function to execute from the TSL script. This
user-defined Java function may contain any standard Java code.

Unlike the java_activate_method function described in Chapter 2, Testing
Standard Java Objects, JDC functions work on Java applications that do not
have any Java User Interface object bound to them. These functions can retrieve
string parameters provided in TSL.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 5, page 60

Using Java Direct Call (JDC)

Using the JDC Mechanism

You can use standard Java code to call a Java function from a TSL script.

To enable the JDC mechanism:

1	 Create a Java class listing and implementing all methods to be called from the
TSL script.

All methods must follow the prototype convention:

static int jdc_< func_name >(String [] params);

func_name a name of the function

params an array of parameters passed from WinRunner

2	 Register JDC class(es) with WinRunner by using the following TSL statement:

set_aut_var("JDC_CLASSES", "foo.bar.class1;foo.bar.class2");

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Note: You can create as many JDC classes as required. JDC classes must be
found in the CLASSPATH.

Testing Java Applications and Applets Chapter 5, page 61

Using Java Direct Call (JDC)

3	 Provide an "extern" definition for the JDC function in TSL.

For example, if you have defined a JDC function in your Java class as:

static int jdc_print_strings(String[] param);

make the following declaration in TSL:

extern int jdc_print_strings(in string p1, in string p2);

When calling Java, param[0] will contain p1 and param[1] will contain p2.

4	 Call the JDC function from TSL:

jdc_print_strings("str1", "str2");

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 5, page 62

Using Java Direct Call (JDC)

Preparing a TSL Script for Use with JDC

The jdc_aut_connect function must appear in your script prior to any jdc
operation. This function establishes a connection between WinRunner and Java
applications and must be executed at least once. Your java application or applet
must be loaded before running this function. You use this function as follows:

jdc_aut_connect (in_timeout);

timeout	 time (in seconds) that is added to the regular timeout for
checkpoints and CS statements (Settings > General
Options > Run Tab), resulting in the maximum interval
before the next statement is executed.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 5, page 63

Using Java Direct Call (JDC)

Using JDC: An Example

The example below shows how a user prepares the Java source file with
definitions for two Java functions. Then the user registers the Java functions with
WinRunner so that he can call the Java functions from the TSL script.

Preparing the Java Source File
The following sample Java source file defines 2 Java functions for later use in the
TSL script.

// Sample File of JDC calling mechanism.

public class JdcExample {

/**
This function will print the first parameter that it
receives to the console
*/
public static int jdc_simple_call(String[] params) {
String first_param = params[0];
System.out.println("jdc_simple_call called: Got parameter: " +
first_param);

return 0;
}
/**

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 5, page 64

Using Java Direct Call (JDC)

This function will return the upper case version of the first
parameter string in the second parameter.

*/
public static int jdc_out_par_call(String[] params) {
// Convert input parameters
String in_par = params[0];
String out_par = params[1];

System.out.println("jdc_out_par_call called: Got parameter: " +
in_par);

out_par = in_par.toUpperCase();
// Prepare output parameters
params[1] = out_par;
return 0;

}
}

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 5, page 65

Using Java Direct Call (JDC)

Registering JDC with WinRunner and calling Java functions in
the TSL Script
The TSL script segment below shows how to define the “extern” declaration, to
load and register the JDC classes defined in the Java source code, and then to
call the Java functions.

define "extern" declaration
extern int jdc_simple_call(in string str);
extern int jdc_out_par_call(in string str1, out string str2<256>);

register JDC classes

make sure the classes are in the classpath
set_aut_var("JDC_CLASSES", "JdcExample");

connect to the AUT
rc=jdc_aut_connect(10);
if (rc != E_OK)

pause ("Error: Couldn’t connect to AUT\n Check that the AUT is loaded
!");

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 5, page 66

Using Java Direct Call (JDC)

call JDC functions - this will print the parameter to the Java console
r1=jdc_simple_call("my string");
r2=jdc_simple_call(256);

this will put the Upper Case form of the parameter in the UpperCaseParam
var.
r3=jdc_out_par_call("my string", UpperCaseParam);

pause(UpperCaseParam);

Note: You must start WinRunner with Java Add-in support before you start your
Java application or applet. Otherwise, WinRunner may not record and run your
test script properly.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 5, page 67

Troubleshooting Java Add-in Recording Problems

Once you complete the Java Add-in installation process, you should be able to
successfully record from Netscape, Internet Explorer, AppletViewer, or a
standalone Java application. This chapter offers some guidance if you have
difficulty recording tests on Java Applets or Applications.

This chapter describes:

• Handling General Problems Testing Applets or Applications

• Handling Java Add-in Problems

Note: For more troubleshooting information, as well as the latest known issues
and limitations, refer to the Java Add-in Read Me file.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 6, page 68

Troubleshooting Java Add-in Recording Problems

Handling General Problems Testing Applets or Applications

To analyze problems testing Java applets or applications, try the relevant
solutions from the following list:

•	 View the Java console and confirm that the following confirmation messages
appear: “Loading Mercury Support (version 7.50.700.0)”.

• Confirm that you are able to test your applet with the AppletViewer.

•	 View the install.log file located in the <WinRunner Installation Folder>\dat
folder.

• If you encounter any problem working with:

•	 JDK 1.1.x, verify that you have the following environment variable:
_CLASSLOAD_HOOK=micsupp

•	 JDK 1.2 or higher, verify that you have the following environment variable:
_JAVA_OPTIONS=-xrunmicsupp -xbootclasspath/a:path;path\mic.jar

•	 IBM JDK, verify that you have the following environment variable:
IBM_JAVA_OPTIONS=-xrunmicsupp ­
xbootclasspath/a:path;path\mic.jar

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 6, page 69

Troubleshooting Java Add-in Recording Problems

Notes: If the environment variable is missing, add it as shown above.

"Path" is the DOS (8.3 notation) short path for the Java Add-in folder. For
example:
C:\PROGRA~1\COMMON~1\MERCUR~1\SHARED~1\JAVAAD~1\class
es

The Java Add-in setup sets the environment variable "mic_classes" folder to the
short path for the Java Add-in folder. You can examine the value of this variable
by typing the command echo %mic_classes% in a command prompt window.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

•	 If the Java Support Switching Tool is disabled, click the icon to enable Mercury
Java support.

•	 If the Java Support Switching Tool does not appear in the task bar tray, run the
Java Add-in Switching Tool (available from the WinRunner Start menu program
group). For more information, refer to the Java Add-in Read Me file.

Note: If any of the above checks are not successful, close WinRunner and all
browsers and re-install the Java Add-in. If you still have problems testing applets
from Netscape or Internet Explorer, please contact Mercury Support.

Testing Java Applications and Applets Chapter 6, page 70

Troubleshooting Java Add-in Recording Problems

Handling Java Add-in Problems

If you are having specific problems installing or recording, try the relevant
solutions from the following list:

•	 If the Java console and a Java plug-in are open simultaneously, the Java add-in
support will not function properly as this scenario results in two virtual machines
and WinRunner cannot distinguish between them.

Close the browser and Java console, then re-open the browser and try again.

•	 If you were using a previous version of the Java Add-in, and you added
command line parameters, you may experience some problems.

Remove the command line parameters that you added.

•	 If you are upgrading from a previous version of the WinRunner Java Add-in (from
a version prior to 7.5), you may still have remnants of the old version on your
computer. If this is the case, you will receive a warning when you try to run a
supported Java application with Mercury Java support enabled.

Run the Java Add-in Backward Compatibility Tool (available from the WinRunner
Start menu program group).

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Java Applications and Applets Chapter 6, page 71

Index

A

accessing an object field 30, 31, 32, 34

activate changes 57

Add-in Manager 8

adding custom Java objects to the GUI map

50–51

check button 54, 55

configuring custom Java objects 48–58

configuring the way WinRunner learns 19

Custom Object wizard 52–58

custom property 55

customization.properties file 58

E

edit field 54

edit objects, activating 16

edit_activate function 16

extern definition 62

F

firing Java events 19, 46

G

GUI Map Configuration tool 52

GUI Map Editor 6

GUI Spy 37–41

H

highlight 53

I

invoking a Java method 27, 29

invoking a Java method from a returned object

35

J

Java Add-in, starting the 8

Java bean properties, setting the value of 14

Java Direct Call Mechanism 59–67

Java events, simulating 19, 46

Java method

invoking 27, 29

invoking from a returned object 35

Java Method wizard 37–41

Java objects, working with 35–45

Java pop-up menu, selecting an item from 18

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Testing Java Applications and Applets Page 72

C

Index

Java wizard 52–58
java_activate_method function 27

invoking a Java method 40, 44
viewing the methods for an object 41

java_activate_static function 29

java_fire_event function 19, 46

java_get_field function 30

java_get_static function 32

java_set_field function 31

java_set_static function 34

jco_create function 35

jco_free function 36

jco_free_all function 36

JDC 59–67

list items, finding the location of 17

list_get_item_coord function 17

M

mark object 53
method_wizard statement 41

O

obj_mouse_click function 12
obj_mouse_click statement 50
obj_set_info function 14
object configuration, activate changes in 57
object field, accessing 30, 31, 32, 34
object methods, viewing 37–41

P

popup_select_item function 18

push button 54

R

registering JDC classes with WinRunner 61

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Testing Java Applications and Applets Page 73

L

Index

S

set_aut_var function 19

COLUMN_NUMBER variable 22

EDIT_REPLAY_MODE variable 19

EVENT_MODEL variable 20

EXCLUDE_CONTROL_CHARS variable

24

MAX_COLUMN_GAP variable 22

MAX_LINE_DEVIATION variable 22

MAX_LIST_COLUMNS variable 22

MAX_ROW_GAP variable 22

MAX_TEXT_DISTANCE variable 20

RECORD_BY_NUM variable 23

REPLAY_INTERVAL variable 21

RETRY_DELAY variable 21

SKIP_ON_LEARN variable 21

TABLE_RECORD_MODE variable 21

USE_LOW_LEVEL_EVENTS variable 23

setting the value of a Java bean property 14

simulating Java events 19, 46

standard class object 54

static text 54

T

troubleshooting

handling Java Add-in problems 71

Java Add-in recording problems 68–71

Java console 71

testing applets 69

TSL functions for standard Java objects
10–24

V

variables, for set_aut_var 19–24

W

win_mouse_click function 12

win_mouse_click statement 50

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Testing Java Applications and Applets Page 74

WinRunner - Testing Java Applications and Applets, Version 7.5

This manual, and the accompanying software and other documentation, is protected by U.S. and

international copyright laws, and may be used only in accordance with the accompanying license

agreement. Features of the software, and of other products and services of Mercury Interactive

Corporation, may be covered by one or more of the following patents: U.S. Patent Nos. 5,701,139;

5,657,438; 5,511,185; 5,870,559; 5,958,008; 5,974,572; 6,138,157; 6,144,962; 6,205,122; 6,237,006;

6,341,310; and 6,360,332. Other patents are pending in the U.S. and other countries.

WinRunner, XRunner, LoadRunner, TestDirector, TestSuite, and WebTest are registered trademarks of

Mercury Interactive Corporation in the United States and/or other countries.TestDirector, TestRunner,

TestSuite, WebTest, WinRunner and XRunner are registered trademarks in the United States and select

foreign countries.

Astra SiteManager, Astra SiteTest, Astra QuickTest, Astra LoadTest, Topaz, RapidTest, QuickTest, Visual

Testing, Action Tracker, Link Doctor, Change Viewer, Dynamic Scan, Fast Scan, and Visual Web Display

are trademarks of Mercury Interactive Corporation in the United States and/or other countries.Topaz

Diagnostics, Topaz Observer, Topaz Open DataSource, Topaz Prism, Topaz Rent-a-POP, Topaz

Weathermap, Turboload, Twinlook, Visual Testing, Visual Web Display and WebTrace are trademarks of

Mercury Interactive in the United States and/or select foreign countries.

All other company, brand and product names are registered trademarks or trademarks of their respective

holders. Mercury Interactive Corporation disclaims any responsibility for specifying which marks are owned

by which companies or which organizations.

Mercury Interactive Corporation

1325 Borregas Avenue

Sunnyvale, CA 94089

Tel. (408) 822-5200 (800) TEST-911

Fax. (408) 822-5300

© 1994 - 2002 Mercury Interactive Corporation, All rights reserved

If you have any comments or suggestions regarding this document, please send them via e-mail to

documentation@mercury.co.il.

WRJAVAUG7.5/01

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

	WinRunner - Testing Java Applications and Applets
	Table of Contents
	Introduction
	Using the Java Add-in
	How the Java Add-in Identifies Java Objects
	Activating the Java Add-in

	Testing Standard Java Objects
	About Testing Standard Java Objects
	Recording Context Sensitive Tests
	Enhancing Your Script with TSL
	Setting the Value of a Java Bean Property
	Configuring How WinRunner Learns Object Descriptions and Runs Tests

	Working with Java Methods and Events
	About Working with Java Methods and Events
	Invoking Java Methods
	Accessing Object Fields
	Working with Return Values (Advanced)
	Viewing Object Methods in Your Application or Applet
	Firing Java Events

	Configuring Custom Java Objects
	About Configuring Custom Java Objects
	Adding Custom Java Objects to the GUI Map
	Configuring Custom Java Objects with the Custom Object Wizard

	Using Java Direct Call (JDC)
	About Java Direct Call Mechanism
	Using the JDC Mechanism
	Preparing a TSL Script for Use with JDC
	Using JDC: An Example

	Troubleshooting Java Add-in Recording Problems
	Handling General Problems Testing Applets or Applications
	Handling Java Add-in Problems

	Index

