

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Online Guide

WinRunner ® 7.0
Testing Terminal Emulator
Applicationsput name of book here

Table of Contents

Testing Terminal Emulator Applications page 2

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

0
Table of Contents

Chapter 1: Introduction... 5
Configuring Terminal Emulator Settings... 6
Creating Test Scripts .. 6
Synchronizing Test Execution .. 8
Checking Your Application ... 8
Testing VT100 and Text Applications... 9
Analyzing Results ... 9
Learning the Application with BMS Files .. 9
Using Default Command Softkeys.. 10
Sample Application... 16
Typographical Conventions .. 17

Chapter 2: Context Sensitive Testing.. 18
About Context Sensitive Testing .. 19
Physical Descriptions .. 22
Logical Names ... 23
Object Classes for Terminal Emulators .. 23
Properties ... 25
Changing the Way Operations are Recorded................................... 27

Table of Contents

Testing Terminal Emulator Applications page 3

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Chapter 3: Synchronizing Test Execution 29
About Synchronizing Tests... 30
Waiting for a Response from the Host.. 30
Waiting for a Specific String ... 31
Waiting for a Specific Field ... 33
Setting the Synchronization Time... 34
Synchronizing Screen Changes ... 37

Chapter 4: Checking Screens and Fields.................................... 38
About Checking Screens and Fields .. 39
Checking a Single Field or a Screen .. 40
Checking Two or More Fields... 41
Checking All Fields in a Screen at Once .. 43
Properties for Screens and Fields .. 44

Chapter 5: Checking Text ... 46
About Checking Text .. 47
Checking Text Automatically .. 48
Checking Text Using Softkeys.. 52
Using Filters when Checking Text .. 54
Reading Text from the Screen.. 59
Searching for Text .. 60

Table of Contents

Testing Terminal Emulator Applications page 4

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Chapter 6: Testing VT100 and Text Applications 61
About Testing VT100 and Text Applications 62
Creating Test Scripts .. 63
Synchronizing Test Execution .. 65
Checking Text... 68
TSL Functions .. 71

Chapter 7: Analyzing Results... 75
About Viewing Test Results.. 76
Viewing Results of a GUI Checkpoint... 76
Viewing Results of a Text Checkpoint .. 78

Chapter 8: Learning the Application with BMS Files 81
About Learning the Application with BMS Files................................ 82
Learning the Application the First Time.. 83
Relearning the Application.. 85

Index .. 91

Introduction

Testing Terminal Emulator Applications Chapter 1, page 5

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

1
Introduction

Welcome to WinRunner with add-in support for terminal emulator applications.
You can use WinRunner to test mainframe, AS/400, and VAX/HP/UNIX
applications running on 3270, 5250, and VT100 protocol terminal emulators,
respectively.

When using WinRunner to test terminal emulator applications, you work in
WinRunner’s Context Sensitive recording mode. In Context Sensitive mode,
WinRunner records the operations you perform in the context of the screens,
fields, and PF keys of your mainframe, or AS/400 application.

As you work with your application, WinRunner inserts TSL statements
representing your actions into a test script. Among these statements are the
checkpoints that define the success criteria for your test.

WinRunner distinguishes between the window of the terminal emulator and
screens in the host application. For the purposes of testing, the terminal emulator
window consists of the frame and menus of the terminal emulator itself. The
terminal emulator window remains constant throughout each terminal emulator
session.

The screen refers to the area of the window in which the application appears.
Each time the host responds to user input to the application, the screen changes.

This guide explains how to use WinRunner to test terminal emulator applications.
It is recommended that you review the WinRunner User’s Guide before you read
this guide. If you are performing Year 2000 testing, also read the Testing for Year
2000 guide.

Introduction

Testing Terminal Emulator Applications Chapter 1, page 6

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Configuring Terminal Emulator Settings

You configure the terminal emulator settings when you install WinRunner. If,
however, you need to modify any of the settings, select Programs > WinRunner
> Terminal Emulator Configuration on the Start menu.

Creating Test Scripts

A test script consists of statements coded in Mercury Interactive’s Test Script
Language (TSL). These statements are generated automatically when you
record, in response to input to the application. You can program statements
manually, or mix recorded and programmed statements in the same test script.

By default, WinRunner records in Context Sensitive mode, meaning that the script
reflects the objects on which you operate (such as screens and fields), and the
type of operation you perform (such as pressing PF keys or typing in fields). Each
object has a defined set of properties that determine its behavior and appearance.
WinRunner learns these properties and uses them to identify and locate objects
during a test run. For more information, see Chapter 2, Context Sensitive
Testing.

Introduction

Testing Terminal Emulator Applications Chapter 1, page 7

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

The following is a sample of a WinRunner test script recorded on a terminal
emulator application. The user presses the Enter key in the first screen of an
application. WinRunner waits for the screen to change, and the user types the
name “Minnie” in the appropriate field. The recorded statements show how
WinRunner ensures that input is directed to the correct window. The comment (#)
lines describe the statements.

Activate the Terminal Emulator window
win_activate("RUMBA - DEMO");

Press the Enter key
TE_send_key(TE_ENTER);

Wait for the next screen to refresh
TE_wait_sync();

Direct input to the Logon screen
set_window("LOGON");

Type in the user id (“Minnie”)
TE_edit_field("USERID","Minnie");

For information on TSL functions, refer to the TSL Online Reference (Help >
TSL Online).

Introduction

Testing Terminal Emulator Applications Chapter 1, page 8

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Synchronizing Test Execution

When you record a test script, WinRunner inserts synchronization points
automatically so that during a test run, execution will be delayed until the
application is ready to receive input. You can also add synchronization points
manually. For more information, see Chapter 3, Synchronizing Test Execution.

Checking Your Application

WinRunner verifies the behavior of your application by comparing the expected
results, captured when you created your test, to the actual results appearing when
you run the test.

You can use two different kinds of checkpoints to verify your application:

• GUI Checkpoints

GUI checkpoints compare information about the screens and fields in your
application interface disregarding their location on screen. You can add a GUI
checkpoint that checks a single object, two or more objects, or an entire screen.
For more information, see Chapter 4, Checking Screens and Fields.

• Text Checkpoints

Text checkpoints compare on-screen text according to its physical location on the
screen. WinRunner can capture the entire screen of the active terminal emulator
window, or only the portion of the screen that you specify. For more information,
see Chapter 5, Checking Text.

Introduction

Testing Terminal Emulator Applications Chapter 1, page 9

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing VT100 and Text Applications

You can use WinRunner to test terminal emulator applications that do not support
the EHLLAPI protocol. This includes terminal applications such as VT100, VAX,
UNIX, HP, and text applications. For more information, see Chapter 6, Testing
VT100 and Text Applications.

Analyzing Results

After you execute a test, you can view a report of all the major events that
occurred during the test run in order to determine its success or failure. For more
information, see Chapter 7, Analyzing Results.

Learning the Application with BMS Files

Before you can begin Context Sensitive testing, WinRunner must learn the
properties of each object in your application. If you are testing a 3270 mainframe
application, you can learn your application directly from a BMS file containing
descriptions of the screens and fields in your application. For more information,
see Chapter 8, Learning the Application with BMS Files.

Introduction

Testing Terminal Emulator Applications Chapter 1, page 10

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Using Default Command Softkeys

Some WinRunner commands can be activated using softkeys. WinRunner reads
input from softkeys even when the WinRunner window is not the active window
on your screen, or when it is minimized.

The following tables show the softkey configurations available for RUMBA, Extra!,
and NetSoft Elite. All other terminal emulator applications use the RUMBA
default.

WinRunner Terminal Emulator Softkeys
The following table shows the softkeys available for testing a terminal emulator
application.

Command
Softkey for
3270
(RUMBA)

Softkey for
5250
(RUMBA)

Softkey for
VT100
(RUMBA)

Softkey for
3270 and
5250
(Extra!)

Softkey for
3270 and
5250
(NetSoft)

CHECK
PARTIAL
TEXT

PgDown
Left Ctrl +
F3

Left Ctrl +
F3

Left Ctrl +
F4

Right Alt +
PgUp

CHECK
TEXT

Left Alt +
PgUp

Left Ctrl +
F1

Left Ctrl +
F1

Left Ctrl +
F2

Left Alt +
F1

Introduction

Testing Terminal Emulator Applications Chapter 1, page 11

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

CHECK
PARTIAL
DATE

Left Alt +
End

Left Ctrl +
F8

Left Ctrl +
F8

Left Ctrl +
F9

Left Alt +
PgUp

CHECK
DATE

Left Ctrl +
PgDown

Left Ctrl +
F2

Left Ctrl +
F2

Left Ctrl +
F3

Right Alt +
PgDown

GET TEXT Left Ctrl +
End

Left Ctrl +
F5

Left Ctrl +
F5

Left Ctrl +
F6

Left Alt +
F4

EXCLUDE
FILTER

Left Alt +
PgDown

Right Ctrl +
F7

Right Ctrl +
F7

Left Ctrl +
F7

Left Alt +
F6

INCLUDE
FILTER

Right Alt +
PgDown

Left Ctrl +
F7

Left Ctrl +
F7

Left Ctrl +
F8

Left Alt +
F7

WAIT
STRING

Right Ctrl +
End

Left Ctrl +
F12

Left Ctrl +
F12

Left Ctrl +
F5

Left Alt +
End

Command
Softkey for
3270
(RUMBA)

Softkey for
5250
(RUMBA)

Softkey for
VT100
(RUMBA)

Softkey for
3270 and
5250
(Extra!)

Softkey for
3270 and
5250
(NetSoft)

Introduction

Testing Terminal Emulator Applications Chapter 1, page 12

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Standard WinRunner Softkeys
The following table shows the default softkeys for standard WinRunner functions.
Note that the default configurations for these softkeys are unique to WinRunner
with support for terminal emulator applications.

Command
Softkey for
3270
(RUMBA)

Softkey for
5250
(RUMBA)

Softkey for
VT100
(RUMBA)

Softkey for
3270 and
5250
(Extra!)

Softkey for
3270 and
5250
(NetSoft)

RUN
FROM
ARROW

Left Ctrl +
7

Left Ctrl +
7

Left Ctrl +
7

Left Ctrl +
7

Right Alt +
7

RUN
FROM
TOP

Left Ctrl +
5

Left Ctrl +
5

Left Ctrl +
5

Left Ctrl +
5

Right Alt +
5

STEP
Left Ctrl +
6

Left Ctrl +
6

Left Ctrl +
6

Left Ctrl +
6

Right Alt +
6

STEP
INTO

Left Ctrl +
8

Left Ctrl +
8

Left Ctrl +
8

Left Ctrl +
8

Right Alt +
8

STOP
Left Ctrl +
3

Left Ctrl +
3

Left Ctrl +
3

Left Ctrl +
3

Right Alt +
3

PAUSE Pause Pause Pause Pause Pause

Introduction

Testing Terminal Emulator Applications Chapter 1, page 13

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

STEP TO
CURSOR

Left Ctrl +
F9

Left Ctrl +
F9

Left Ctrl +
F9

Left Alt + 9
Left Alt +
F10

RECORD Scroll Lock Left Alt + 2 Scroll Lock Scroll Lock Scroll Lock

MARK
LOCATOR

Right Ctrl +
6

Right Ctrl +
6

Right Ctrl +
6

Left Alt + 6 Left Alt + 6

WAIT
BITMAP

Left Ctrl +
0

Left Ctrl +
0

Left Ctrl +
0

Left Ctrl +
0

Right Alt +
0

CHECK
BITMAP

Left Ctrl +
PgUp

Right Ctrl +
0

Right Ctrl +
0

Left Ctrl +
PageUp

Left Alt +
F11

CHECK
GUI

Right Ctrl +
2

Right Ctrl +
2

Right Ctrl +
2

Right Ctrl +
2

Left Alt + 2

GUI
CHECK
LIST

Right Ctrl +
F12

Right Ctrl +
F12

Right Ctrl +
F12

Right Ctrl +
F12

Right Alt +
End

Command
Softkey for
3270
(RUMBA)

Softkey for
5250
(RUMBA)

Softkey for
VT100
(RUMBA)

Softkey for
3270 and
5250
(Extra!)

Softkey for
3270 and
5250
(NetSoft)

Introduction

Testing Terminal Emulator Applications Chapter 1, page 14

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

WAIT
BITMAP
AREA

Left Ctrl +
4

Left Ctrl +
4

Left Ctrl +
4

Left Ctrl +
4

Right Alt +
4

CHECK
BITMAP
AREA

Left Ctrl +
2

Left Ctrl +
2

Left Ctrl +
2

Left Ctrl +
2

Right Alt +
2

GET TEXT
AREA

Left Ctrl+1 Left Ctrl+1 Left Ctrl+1 Left Ctrl+1
Right Alt +
1

GET TEXT
OBJECT

Left Ctrl +
9

Left Ctrl +
9

Left Ctrl +
9

Left Ctrl +
9

Right Alt +
9

INSERT
FUNCTION
FROM
LIST

Left Alt + 7 Left Alt + 7 Left Alt + 7 Left Alt + 7 Left Alt + 7

INSERT

FUNCTION
Left Alt + 8 Left Alt + 8 Left Alt + 8 Left Alt + 8 Left Alt + 8

Command
Softkey for
3270
(RUMBA)

Softkey for
5250
(RUMBA)

Softkey for
VT100
(RUMBA)

Softkey for
3270 and
5250
(Extra!)

Softkey for
3270 and
5250
(NetSoft)

Introduction

Testing Terminal Emulator Applications Chapter 1, page 15

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Softkey assignments are configurable. If the application you are testing uses one
of the default softkeys preconfigured for WinRunner, you can redefine the
softkey by using the Softkey Configuration utility. Select Programs >
WinRunner > Softkey Configuration on the Start menu. For more details, refer
to the WinRunner User’s Guide.

WAIT
WINDOW

Left Alt + 9 Left Alt + 9 Left Alt + 9
Left Alt +
F9

Left Alt +
F9

GET TEXT
Left Ctrl +
F10

Left Ctrl +
F10

Left Ctrl +
F10

Left Ctrl +
F10

Right Alt +
F10

Command
Softkey for
3270
(RUMBA)

Softkey for
5250
(RUMBA)

Softkey for
VT100
(RUMBA)

Softkey for
3270 and
5250
(Extra!)

Softkey for
3270 and
5250
(NetSoft)

Introduction

Testing Terminal Emulator Applications Chapter 1, page 16

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Sample Application

WinRunner includes a sample application you can use to experiment with testing
terminal emulator applications. To start the Flight Reservation system, select
Programs > WinRunner > Sample Applications > Year2000 Demo Server on
the Start menu. For more information, refer to the Year2000 Demo Server Read
Me.

Introduction

Testing Terminal Emulator Applications Chapter 1, page 17

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Typographical Conventions

This book uses the following typographical conventions:

Bold Bold text indicates function names and the elements of
the functions that are to be typed in literally.

Italics Italic text indicates variable names.

Helvetica The Helvetica font is used for examples and statements
that are to be typed in literally.

[] Square brackets enclose optional parameters.

{ } Curly brackets indicate that one of the enclosed values
must be assigned to the current parameter.

... In a line of syntax, three dots indicate that more items of
the same format may be included. In a program example,
three dots are used to indicate lines of a program that
were intentionally omitted.

| A vertical bar indicates that either of the two options
separated by the bar should be selected.

Context Sensitive Testing

Testing Terminal Emulator Applications Chapter 2, page 18

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

2
Context Sensitive Testing

You can use WinRunner’s Context Sensitive features to test your terminal
emulators applications. For general information on Context Sensitive testing with
WinRunner, refer to the section “Understanding the GUI Map”, in the WinRunner
User’s Guide.

This chapter describes:

• Physical Descriptions

• Logical Names

• Object Classes for Terminal Emulators

• Properties

• Changing the Way Operations are Recorded

Context Sensitive Testing

Testing Terminal Emulator Applications Chapter 2, page 19

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

About Context Sensitive Testing

Context Sensitive testing ensures that non-essential changes in your application
do not affect test execution. WinRunner can handle changes in window size
between testing sessions, or modifications in the positioning of fields in an
application screen. WinRunner records your operations in terms of the screens
and fields on which you operate, and the types of operation you perform (such as
pressing PF keys or typing in fields). It ignores the physical location of fields on
the screen.

To perform Context Sensitive testing, WinRunner must uniquely identify each
screen and field and be able to locate it in the application under test.

During Context Sensitive testing, WinRunner learns an accurate description of
each object as it is identified by the terminal emulator application. If you have
access to the BMS files of your application, WinRunner can learn your application
by reading these files directly. See Chapter 8, Learning the Application with
BMS Files for more information. Otherwise, WinRunner learns a description of
each object using the RapidTest Script Wizard, recording, or the GUI Map Editor.
For more information on these methods, refer to the WinRunner User’s Guide.

The description of each screen or field (called the physical description) contains
a detailed list of properties. WinRunner places this list in a GUI map file. In the test
script, WinRunner uses a logical name for each screen or field as it appears in the
application.

Context Sensitive Testing

Testing Terminal Emulator Applications Chapter 2, page 20

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

The following example illustrates the connection between the logical name and
the physical description. Assume that you record a test in which you type your
user ID in the Login screen of your application.

Context Sensitive Testing

Testing Terminal Emulator Applications Chapter 2, page 21

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

WinRunner learns the actual description, or list of properties, of both the screen
and field you operated on:

Screen {class:mic_if_win, label:VIRTUAL MACHINE/SYSTEM
PRODUCT, mic_if_handles_windows:1}

Field {class:field, attached_text:"USERID"}

WinRunner identifies the screen as the class mic_if_win (a host application
window), and its label as VIRTUAL MACHINE/SYSTEM PRODUCT;
mic_if_handles_windows is an internal property used by WinRunner.

The USERID field is recognized as the class field with the attached text
“USERID”. In the test script, WinRunner inserts intuitive logical names for the
objects. If you start recording and type the user name “Carmen”, the script
segment might look like this:

set_window ("VIRTUAL MACHINE/SYSTEM PRODUCT");
TE_edit_field("USERID","Carmen");

When the test is run, WinRunner reads the logical name of each object from the
script and refers to its physical description in the GUI map file. It uses this
description to find the object in the terminal emulator application.

Context Sensitive Testing

Testing Terminal Emulator Applications Chapter 2, page 22

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Physical Descriptions

The physical description of an object contains a list of property–value pairs, as
follows:

{property1:value1, property2:value2, property3:value3, ...}

For example, the description of the “Login” screen presented above contains
three properties, listed below together with their values:

class: mic_if_win
label: VIRTUAL MACHINE/SYSTEM PRODUCT
mic_if_handles_windows: 1

WinRunner always learns the class property. This indicates the type of the GUI
object, such as the terminal emulator window, host application screen, or field.
For each class, WinRunner learns a set of default properties.

For more information on properties that are unique to WinRunner for terminal
emulators, see Properties on page 25. For information on other properties used
by WinRunner, refer to the WinRunner User’s Guide.

Note that WinRunner learns the physical description of an object in the context of
the window in which it appears. This creates a unique physical description for
each object.

Context Sensitive Testing

Testing Terminal Emulator Applications Chapter 2, page 23

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Logical Names

The logical name is the name WinRunner uses for objects in the test script. Once
the name is assigned, you can modify it in the GUI map file.

The logical name assigned to an object depends on the class of the object. For
example, the logical name of a window is the value of its label property. The
logical name of a field is the value of its attached_text property.

Object Classes for Terminal Emulators

WinRunner with add-in support for terminal emulators identifies two types of
objects for terminal emulators: screens and fields. The screen is the application
area. It changes each time input is received from the host. Fields include
unprotected fields, which can receive input, and protected fields which contain
fixed text.

Context Sensitive Testing

Testing Terminal Emulator Applications Chapter 2, page 24

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

WinRunner also identifies the window of the terminal emulator, the outer frame of
the terminal emulator including its menus and buttons. The class property of this
window is always mic_if_window. For more information on this class, refer to the
WinRunner User’s Guide.

field

Application
screen

Terminal
emulator
window

Context Sensitive Testing

Testing Terminal Emulator Applications Chapter 2, page 25

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Properties

The following table shows the properties for application screens and fields. For a
full list of properties for all standard Windows objects, refer to the WinRunner
User’s Guide.

Screens
A screen can have the following properties:

Property Description

class
The prime property that WinRunner uses to identify the type of
GUI object. All screens belong to the class “mic_if_win”.

label
The title of the screen. If there is no title, WinRunner assigns a
unique number.

protected_fields_
number

The number of protected fields in this screen.

input_fields_
number

The number of unprotected fields in this screen.

id A number that WinRunner uses to identify the screen.

mic_if_handles_
windows

An internal property that WinRunner uses. The value of this
property is always 1.

Context Sensitive Testing

Testing Terminal Emulator Applications Chapter 2, page 26

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Fields
A field can have the following properties:

Property Description

class
The prime property that WinRunner uses to identify the type of
GUI object. All fields belong to the class “field”.

attached_text The text that is closest to the field.

protected
A value that indicates whether the field is protected. This value
is “yes” if the field is protected; otherwise it is “no”.

visible
A value that indicates whether the contents of the field can be
seen: 1 if they are visible, 0 if not.

numeric_only
A value that indicates whether the field is numeric. This value is
“yes” if the field is numeric; otherwise the value is “no”.

id A number that WinRunner uses to identify the field.

x
The x coordinate of the top left corner of a field, relative to the
screen origin.

y
The y coordinate of the top left corner of a field, relative to the
screen origin.

length The length of the field, in characters.

color
A value indicating the color of the field. This can be 0, 1, 2, or 3,
depending on the terminal emulator’s color definitions.

Context Sensitive Testing

Testing Terminal Emulator Applications Chapter 2, page 27

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Changing the Way Operations are Recorded

When working with 3270 and 5250 protocol terminal emulators that support the
EHLLAPI protocol, WinRunner records operations using the field or position
method. The field method (default), enables WinRunner to record screens, fields,
and PF keys using functions such as TE_edit_field and TE_send_key.

When the position method is used, WinRunner records keyboard and mouse
input only. The operations on objects in your application are recorded as
win_type, obj_type, win_mouse_click, and win_mouse_drag statements.

Note: The record method (field or position) is not the same as the WinRunner
record mode (Context Sensitive or Analog). Note also that you must always use
the Context Sensitive record mode.

Context Sensitive Testing

Testing Terminal Emulator Applications Chapter 2, page 28

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

You use the TE_set_record_method function to change the record method. This
function has the following syntax:

TE_set_record_method (method);

The method can be one of the following:

• FIELD_METHOD, or (2) (the default): enables full Context Sensitive recording.

• POSITION_METHOD, or (1): keyboard and mouse input only is recorded.

The current record method remains valid until you change it, even after you exit
WinRunner and start it again. For more information on TSL, refer to the TSL
Online Reference.

Synchronizing Test Execution

Testing Terminal Emulator Applications Chapter 3, page 29

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

3
Synchronizing Test Execution

WinRunner provides complete synchronization between the host and the
application under test (AUT) during test execution. Synchronization ensures that
test execution is delayed until the application is ready to receive new input. This
prevents incidental differences in host response time from affecting successive
test runs.

This chapter describes:

• Waiting for a Response from the Host

• Waiting for a Specific String

• Waiting for a Specific Field

• Setting the Synchronization Time

• Synchronizing Screen Changes

Synchronizing Test Execution

Testing Terminal Emulator Applications Chapter 3, page 30

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

About Synchronizing Tests

When using a terminal emulator, many factors can affect the speed of operation
and therefore interfere with test execution. Host response time varies depending
on the system load. The screen refresh rate of your terminal emulator can also
vary. WinRunner provides different types of synchronization points to pace test
execution with the system. These points can be inserted into the test script
automatically, using a softkey, or by programming.

Waiting for a Response from the Host

During recording, WinRunner automatically generates the following statement
each time the terminal emulator waits for a response from the host:

TE_wait_sync ();

During a test run, this statement ensures that test execution is delayed until the
host responds and the new screen is completely redrawn.

Note: The TE_wait_sync function is only available for 3270 and 5250 terminal
emulators that support the EHLLAPI protocol.

Synchronizing Test Execution

Testing Terminal Emulator Applications Chapter 3, page 31

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Waiting for a Specific String

Using the TE_wait_string function, you can instruct WinRunner to wait for a
specific string to appear on the screen before continuing test execution. You can
specify an area of the screen, or WinRunner can search the entire screen for the
string.

To record a TE_wait_string statement in your test script:

 1 During recording, press the WAIT STRING softkey. WinRunner is minimized to an
icon and a dialog box displays instructions for capturing the string.

 2 Enclose the text you want WinRunner to look for during test execution in a
rectangle: press and hold down the left mouse button and drag the mouse until
the rectangle encloses the area.

 3 To capture the string, click the right mouse button. WinRunner is restored and a
TE_wait_string statement with the following syntax is inserted into your test
script:

TE_wait_string (string, [start_column, start_row, end_column, end_row],
 [timeout]);

Synchronizing Test Execution

Testing Terminal Emulator Applications Chapter 3, page 32

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

The string parameter is the text enclosed in the rectangle. If the text you
captured exceeds one line, string includes the first line only. The start_column
and start_row parameters indicate the column/row at which the captured text
starts. The end_column and end_row parameters represent the column and row,
respectively, at which the text ends. The timeout parameter is the number of
seconds that WinRunner waits for the specified string to appear before
continuing test execution.

The following example shows the statement recorded when the text of a menu
option is captured using the WAIT STRING softkey:

TE_wait_string("Open the mail", 8, 4, 20, 4, 60);

The first parameter, “Open the mail” is the string that WinRunner searches for on
the screen; WinRunner will look for this string in row 4, columns 8 through 20.
The default timeout is 60 seconds.

When you program this statement, you can eliminate the coordinates. In this
case, WinRunner searches the entire screen for the specified string. You can also
change or eliminate the timeout parameter. If there is no timeout parameter, then
the system timeout is used.

Synchronizing Test Execution

Testing Terminal Emulator Applications Chapter 3, page 33

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Waiting for a Specific Field

Using the TE_wait_field function, you can instruct WinRunner to wait for a
specific field to appear on the screen before continuing test execution. When the
field appears, WinRunner resumes test execution. The syntax for this function is:

TE_wait_field (field_logical_name, content, timeout);

The field_logical_name parameter is the name of the field. The content
parameter is the string contained in the field. The timeout is the number of
seconds that WinRunner waits for the specified field to appear before continuing
test execution.

Note: The TE_wait_field function is only available for 3270 and 5250 terminal
emulators that support the EHLLAPI protocol.

Synchronizing Test Execution

Testing Terminal Emulator Applications Chapter 3, page 34

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Setting the Synchronization Time

Two factors that can affect proper test execution are the response time of the host
and the screen refresh rate of your terminal. The following functions allow you to
configure WinRunner to handle these variations.

Changing the Screen Refresh Time
The TE_set_refresh_time function determines how long WinRunner waits for the
screen to refresh after the host has responded.

The syntax for this function is:

TE_set_refresh_time (time);

The default time is 1 second. You can increase this if needed to ensure that
WinRunner waits until the screen is completely redrawn before continuing test
execution.

Note: The TE_set_refresh_time function is only available for 3270 and 5250
terminal emulators that support the EHLLAPI protocol.

Synchronizing Test Execution

Testing Terminal Emulator Applications Chapter 3, page 35

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Changing the Timeout
The TE_set_timeout function determines the maximum amount of time that
WinRunner waits for a response from the host before continuing test execution.

This statement has the following syntax:

TE_set_timeout (timeout);

The default timeout is 60 seconds. You can modify this if needed.

Setting the System Synchronization Time
The TE_set_sync_time function determines the minimum number of seconds
that WinRunner waits for the host to respond. WinRunner uses this information to
determine whether synchronization has been achieved before continuing test
execution.

This statement has the following syntax:

TE_set_sync_time (time);

Note: The TE_set_sync_time function is only available for 3270 and 5250
terminal emulators that support the EHLLAPI protocol.

Synchronizing Test Execution

Testing Terminal Emulator Applications Chapter 3, page 36

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Getting the System Synchronization Time
The TE_get_sync_time function returns the minimum number of seconds that
WinRunner will wait for the host to respond. WinRunner uses this information in
order to determine that synchronization has been achieved before continuing test
execution.

This statement has the following syntax:

TE_get_sync_time (time);

Note: The TE_get_sync_time function is only available for 3270 and 5250
terminal emulators that support the EHLLAPI protocol.

Synchronizing Test Execution

Testing Terminal Emulator Applications Chapter 3, page 37

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Synchronizing Screen Changes

In some AS/400 applications, you might have a case where typing a key in a
specific field causes the screen to change. In such a case, WinRunner does not
recognize that the screen has changed and does not generate the TE_wait_sync
function.

In such cases, you can use the TE_force_send_key function and place it in your
startup test. This function causes WinRunner to recognize that the screen has
changed and to automatically generate TE_wait_sync. This function has the
following syntax:

TE_force_send_key (in_screen, in_field, [in_key]);

The in_screen parameter defines the screen in which the field exists. The
in_field parameter defines the field. The in_key parameter defines the input key
which causes the screen to change (optional). You can use a key mnemonic
(such as @E for Enter) or the WinRunner macros (such as TE_Enter for Enter).

The TE_reset_all_force_send_key resets the execution of the
TE_force_send_key function. For more information about these functions, refer
to the TSL Online Reference.

Checking Screens and Fields

Testing Terminal Emulator Applications Chapter 4, page 38

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

4
Checking Screens and Fields

WinRunner sees the terminal emulator application window as a screen containing
fields. You can capture information about each screen and its contents and store
the information as a basis for comparison.

This chapter describes:

• Checking a Single Field or a Screen

• Checking Two or More Fields

• Checking All Fields in a Screen at Once

• Properties for Screens and Fields

Checking Screens and Fields

Testing Terminal Emulator Applications Chapter 4, page 39

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

About Checking Screens and Fields

GUI checkpoints allow you to check screens and fields in your application. For
example, you can check the number of protected or input fields in a screen. Or
you can check the content of a specific field, whether it is protected or visible.

To create a GUI checkpoint, you point to a screen or field and define the checks
you want to perform. Information about the screens and fields as well as the
checks is saved in a checklist. WinRunner captures the current state of these
screens and fields and saves this information as expected results. A GUI
checkpoint is automatically inserted into the test script. This checkpoint appears
as an obj_check_gui or win_check_gui statement.

When you run the test, WinRunner compares the current state of the application
to the expected results. If the expected results and the current results do not
match, the GUI checkpoint fails. The results of the checkpoint can be viewed in
the WinRunner Test Results window.

The information in this chapter applies specifically to GUI checks on terminal
emulator applications. For additional information about GUI checkpoints, refer to
the WinRunner User’s Guide.

Checking Screens and Fields

Testing Terminal Emulator Applications Chapter 4, page 40

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Checking a Single Field or a Screen

You can check a single field or screen by pointing at it and specifying the type of
checks you want to perform.

To check a single field or a screen:

 1 Choose Create > GUI Checkpoint > For Object/Window, or click the
GUI Checkpoint for Object/Window button on the User toolbar.

 2 Double-click on the field or screen you want to check. (To check the screen,
double-click on an empty area of the screen.)

Note: You can perform WinRunner’s default checks by clicking once on the field
or screen. The default check for a field is Date. The default checks for a screen
are ‘Number of protected fields’ and ‘Number of input fields’.

 3 Select the checks you want to perform from the Check GUI dialog box. For more
information, see Properties for Screens and Fields on page 44.

 4 Click OK. WinRunner captures the screen or field information, stores it in the
test’s expected results folder, and inserts a obj_check_gui or a win_check_gui
statement in your test script.

Checking Screens and Fields

Testing Terminal Emulator Applications Chapter 4, page 41

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Checking Two or More Fields

You check two or more fields by creating a checklist while clicking on the fields
you want to check.

To check two or more fields in a screen:

 1 Choose Create > GUI Checkpoint > For Multiple Objects, or click the
GUI Checkpoint for Multiple Objects button on the User toolbar. The Create
GUI Checkpoint window opens.

 2 Click the Add button.

 3 Click once on each field you want to check.

Checking Screens and Fields

Testing Terminal Emulator Applications Chapter 4, page 42

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

 4 Click the right mouse button to stop the selection process. The Create GUI
Checkpoint window opens.

The Objects column lists the name of the screen and the fields you checked.
The Properties column lists the properties for the selected field.

 5 To modify a check, select the field in the Objects column and select the
properties to be checked in the Properties column.

 6 To save the checklist and perform the checks, click OK. WinRunner captures the
information about the fields and stores it in the expected results folder. A
win_check_gui statement is inserted in the test script.

Checking Screens and Fields

Testing Terminal Emulator Applications Chapter 4, page 43

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Checking All Fields in a Screen at Once

You can check all fields in a screen at once. WinRunner creates a checklist
containing the default check (‘Date’) for all fields in the screen.

To check all the fields in a screen:

 1 Choose Create > GUI Checkpoint > For Object/Window, or click the
GUI Checkpoint for Object/Window button on the User toolbar.

 2 Click once on an empty area of the screen.

The Add All dialog box opens.

 3 Select Objects, Menus, or both to indicate the types of objects to include in the
checklist. When you select only Objects (the default setting), all objects in the
window except for menus are included in the checklist. To include menus in the
checklist, select Menus.

 4 Click OK to close the dialog box.

WinRunner captures the information about the fields and stores it in the test’s
expected results folder. (This may take several seconds.) The WinRunner
window is restored and a win_check_gui statement is inserted into the test
script.

Checking Screens and Fields

Testing Terminal Emulator Applications Chapter 4, page 44

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Properties for Screens and Fields

When you create a GUI checkpoint, you can determine the types of checks to
perform on screens and fields in your application.

Screen Checks
For a screen you can check the following properties:

Number of protected fields: checks the number of protected fields in the screen
(default check).

Number of input fields: checks the number of unprotected fields in the screen
(default check).

Label: checks the label (title) of the screen.

Checking Screens and Fields

Testing Terminal Emulator Applications Chapter 4, page 45

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Field Checks
For a field you can check the following properties:

x and y: checks the x and y coordinates of the top left corner of the field, relative
to the screen origin.

Length: checks the length of the field, in characters.

Color: checks the color of the field.

Numeric only: checks whether the field is numeric only.

Protected: checks whether the field is protected.

Visible: checks whether the field is visible.

Attached text: checks the attached text of the field.

Content: checks the content of the field.

Date: checks the date of the field (default check)

Checking Text

Testing Terminal Emulator Applications Chapter 5, page 46

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

5
Checking Text

You can use WinRunner to check the text in the screen of your terminal emulator
application.

This chapter describes:

• Checking Text Automatically

• Checking Text Using Softkeys

• Using Filters when Checking Text

• Reading Text from the Screen

• Searching for Text

Checking Text

Testing Terminal Emulator Applications Chapter 5, page 47

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

About Checking Text

WinRunner provides different methods of checking the text in your host
application screen. You can:

• capture all or part of the screen contents while recording a test.

• instruct WinRunner to automatically capture all or part of the screen contents of
the active terminal emulator window.

While creating a test, you indicate the text that you want to check. WinRunner
inserts a checkpoint in the script, captures the specified text, and stores it in the
expected results directory (exp) of the test. When you run the test, WinRunner
recaptures the text and compares it to the expected text captured earlier. You
can view both the expected and the actual test results. In the case of a
mismatch, you can also view any differences between them.

You can also use WinRunner to read text from a selected portion of the screen
and store it in a variable. The screen coordinates of the text you indicated are
inserted into the test script. You could use this feature, for example, to change the
logical flow of a test run during test execution according to the text found in the
indicated area.

Checking Text

Testing Terminal Emulator Applications Chapter 5, page 48

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Checking Text Automatically

You can instruct WinRunner to automatically capture the contents of the active
terminal emulator window each time a new screen appears. The three main
options for automatic text checkpoints are:

• check full screen

• check partial screen

• check partial screen using the previous “check partial screen” coordinates

Checking Full Screens
When full screen automatic text check is active, all of the text in the active window
is captured each time a new screen is displayed.

To activate a full screen automatic text check, execute the following statement in
your test script:

TE_set_auto_verify (ON);

To deactivate automatic full screen text check, execute the following statement:

TE_set_auto_verify (OFF);

Checking Text

Testing Terminal Emulator Applications Chapter 5, page 49

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Each time a new full screen text screen is displayed in the window, a
TE_check_text statement like the following is automatically inserted into the test
script.

TE_check_text ("Trm1");

Note: The TE_set_auto_verify function is only available for 3270 and 5250
terminal emulators that support the EHLLAPI protocol.

Checking Partial Screens
When partial screen automatic text check is active, the text in the specified area
of the active window is captured each time a new screen appears.

To activate a partial screen automatic text check, program and execute a
statement with the following syntax in your test script:

TE_set_auto_verify (ON, start_column, start_row, end_column, end_row);

ON activates the automatic check; start_column indicates the column at which
the captured text starts; start_row indicates the row at which the captured text
starts; and end_column and end_row represent the column and row,
respectively, at which the text ends.

Checking Text

Testing Terminal Emulator Applications Chapter 5, page 50

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

The example below shows the statement you would execute to automatically
check the text in columns 22 through 31, rows 10 through 14.

TE_set_auto_verify (ON, 22, 10, 31, 14);

Each time a new screen appears in the window, a TE_check_text statement
similar to the following is automatically inserted into the test script.

TE_check_text ("Prt1", 22, 10, 31, 14);

To deactivate automatic partial text check, execute the following statement:

TE_set_auto_verify (OFF);

Note: The TE_set_auto_verify function is only available for 3270 and 5250
terminal emulators that support the EHLLAPI protocol.

Checking Text

Testing Terminal Emulator Applications Chapter 5, page 51

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Checking Partial Screens Using Previous Coordinates
When you choose the first/last partial text option, the coordinates for the partial
screen automatic text check are taken from a previous TE_check_text statement
in the test run.

To activate first/last partial screen automatic text check, execute a statement with
the following syntax in your test script:

TE_set_auto_verify (ON, FIRST|LAST);

If you use the FIRST parameter, the coordinates for the automatic partial screen
text check will be taken from the first TE_check_text statement in the test run. If
you use the LAST parameter, the coordinates will be taken from the last
TE_check_text statement in the test run. The coordinates are updated during
the test run with each TE_check_text statement.

Note that if there is no TE_check_text statement in the test script, then the entire
screen is captured.

To deactivate first/last partial screen automatic text check, execute the following
statement in your test script:

TE_set_auto_verify (OFF);

Note: The TE_set_auto_verify function is only available for 3270 and 5250
terminal emulators that support the EHLLAPI protocol.

Checking Text

Testing Terminal Emulator Applications Chapter 5, page 52

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Checking Text Using Softkeys

During recording, you can use softkeys to check text. You can check the entire
contents of the terminal emulator screen or you can check a specific portion of the
screen. All captured text is stored as ASCII text.

Checking a Full Screen
Use a full screen text check to capture the entire contents of the active terminal
emulator screen.

To capture the contents of the screen:

 1 During recording, make sure that the terminal emulator window you want to
check is active.

 2 Press the CHECK TEXT softkey. A TE_check_text statement is generated in your
test script.

The entire contents of the active terminal emulator screen are captured (even if
not all of the text is visible in the window). A TE_check_text statement such as
the following is inserted into the test script:

TE_check_text ("Trm1");

The default name that WinRunner assigns to the first incidence of a full screen
text checkpoint in a test script is called Trm1. The text is stored as an ASCII file
in the expected results folder of the test.

Checking Text

Testing Terminal Emulator Applications Chapter 5, page 53

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

When you run the test, WinRunner compares the text currently displayed on the
screen with the expected text captured earlier (the contents of the file Trm1,
stored in the expected results folder). In the event of a mismatch, WinRunner
captures the actual text and generates a difference file that shows the
discrepancy between the expected and the actual results. Both files are stored in
the current verification results folder.

Checking a Partial Screen
Use a partial text checkpoint when you want to capture only part of the text on the
screen.

To capture text in an area of the screen:

 1 Press the CHECK PARTIAL TEXT softkey. WinRunner is minimized to an icon and a
dialog box displays instructions for capturing the text.

 2 Enclose the text to be captured within a rectangle. Press and hold down the left
mouse button and drag the mouse until the rectangle encloses the desired area.

 3 Click the right mouse button: WinRunner is restored and a TE_check_text
statement such as the following is inserted in the test script:

TE_check_text ("Prt1", 51, 13, 60, 13);

The example shows the statement recorded when the text in line 13, columns 51
through 60 is captured. The default file name “Prt1” indicates the first incidence
of captured partial text in any test script.

For more information on TE_check_text, refer to the TSL Online Reference.

Checking Text

Testing Terminal Emulator Applications Chapter 5, page 54

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Using Filters when Checking Text

WinRunner lets you use filters to include or exclude regions of a terminal emulator
window when checking text. In cases where you do not want to check an entire
window, you can define parts of the window that will be filtered during the
comparison. You can use two types of filters: exclude and include.

Note: You can also create filters to check dates on your screen.

Exclude and Include Filters
An exclude filter defines the area to be ignored during the comparison. For
example, you can create an exclude filter on a region of a window containing the
current date and time.

AUT window

Exclude filter

AUT window with exclude filter

Checking Text

Testing Terminal Emulator Applications Chapter 5, page 55

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

An include filter is used in combination with an exclude filter. In the diagram
below, the white areas are included in the comparison and the shaded area is
excluded. This is achieved by defining an exclude filter and then defining a
smaller include filter on top of it. The result is a “ring” that is excluded from
comparison.

Note that when you combine exclude and include filters, the order in which the
filters are activated in the test script determines the actual area of interest. For
example, if an exclude filter that fully or partially overlaps an include filter is
activated after the include filter, the overlapped region is excluded from the area
of interest.

AUT window

Exclude filter

Include filter

AUT window with exclude filter
and include filter

Checking Text

Testing Terminal Emulator Applications Chapter 5, page 56

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Creating Filters
You use the EXCLUDE FILTER and INCLUDE FILTER softkeys to create a filter during
recording.

To create a filter during recording:

 1 During recording, press the appropriate softkey (FILTER EXCLUDE or FILTER
INCLUDE). WinRunner is minimized to an icon and a dialog box displays
instructions for defining the filter area.

 2 Enclose the area to be filtered inside a rectangle. Press and hold down the left
mouse button and drag the mouse until the rectangle encloses the area.

 3 To record the filter, click the right button.

WinRunner is restored. The filter is added to the test’s db folder and a
TE_set_filter statement is inserted into your test script.

The following example shows what WinRunner records when an exclude filter is
defined on row 23, columns 1 through 30 of all the screens in the terminal
emulator application.

TE_set_filter ("Filter0",1, 23, 30, 23, EXCLUDE, "ALL_SCREENS");

When a TE_set_filter statement is executed during a test run, the filter is
activated. For more information on TE_set_filter, refer to the TSL Online
Reference.

Note: You can set up to 256 filters using TE_set_filter.

Checking Text

Testing Terminal Emulator Applications Chapter 5, page 57

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Deactivating and Deleting Filters
When you deactivate an existing filter, it remains in the test’s db folder but is
inactive for the test. To deactivate a filter, execute a statement with the following
syntax in your test script:

TE_reset_filter (filter_name);

You can also define the filter to be deactivated using its coordinates and type,
instead of its name. Execute a statement with the following syntax:

TE_reset_filter (start_column, start_row, end_column, end_row,
EXCLUDE | INCLUDE, screen_name);

To deactivate all active filters, execute the following statement:

TE_reset_all_filters();

To delete a filter from the test database, execute a statement with the following
syntax in your test script:

TE_delete_filter (filter_name);

Checking Text

Testing Terminal Emulator Applications Chapter 5, page 58

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Creating and Activating Filters Separately
In some cases you may wish to create a filter and store it in the test’s db folder for
later use. Use the TE_create_filter function to create a filter; activate it by
executing a TE_set_filter statement containing only the name of the filter.

To create a filter, execute a statement with the following syntax in your test script:

TE_create_filter (filter_name, start_column, start_row, end_column, end_row,
EXCLUDE | INCLUDE, screen_name);

The filter_name can be up to 16 characters long.

To activate a filter, execute the following statement in the script:

TE_set_filter (filter_name);

The filter_name must be the name of an existing filter for the current test.

Checking Text

Testing Terminal Emulator Applications Chapter 5, page 59

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Reading Text from the Screen

Using the TE_get_text function, you can instruct WinRunner to read the text in a
specified area of the screen and store it in a variable. During recording, you use
the mouse to define the area of the screen to be read. You can also program the
TE_get_text function.

To read text from the screen:

 1 Make sure that you are in recording mode and that the terminal emulator window
you want to read from is in focus.

 2 Press the GET TEXT softkey. WinRunner is minimized to an icon and a dialog box
displays instructions for capturing the string.

 3 Enclose the text to be read within a rectangle. Press and hold down the left
mouse button and drag the mouse until the rectangle encloses the desired area.

 4 Click the right mouse button to read the text. A TE_get_text statement is
inserted in the test script. This statement has the following syntax:

t = TE_get_text (x1, y1, x2, y2);

For more information on TE_get_text, refer to the TSL Online Reference.

Each new line of text that is captured is preceded by the characters “\n” in the
variable. The following example shows how two lines of text appear in the variable
t:

t = "Fill in your User ID and press Enter \n(Your password will not appear
 when you type it)"

Checking Text

Testing Terminal Emulator Applications Chapter 5, page 60

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Searching for Text

You can search for text in a terminal emulator screen using the TE_find_text
function. This function looks for a specified text string and returns its location on
the screen as an x coordinate and a y coordinate. Using an optional parameter,
you can restrict the search to a rectangular area of the screen that you define
using pairs of x, y coordinates.

The TE_find_text function has the following syntax:

TE_find_text (string, out_x_location, out_y_location [x1, y1, x2, y2]);

For more information on TE_find_text, refer to the TSL Online Reference.

Testing VT100 and Text Applications

Testing Terminal Emulator Applications Chapter 6, page 61

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

6
Testing VT100 and Text Applications

You can use WinRunner to test terminal emulator applications that do not support
the EHLLAPI protocol. These include terminal emulator applications such as
VT100, VAX, UNIX, HP, and text applications.

This chapter describes:

• Creating Test Scripts

• Synchronizing Test Execution

• Checking Text

• TSL Functions

Testing VT100 and Text Applications

Testing Terminal Emulator Applications Chapter 6, page 62

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

About Testing VT100 and Text Applications

When working with VT100 terminal emulators, the text method is used. The text
method is similar to the position method which can be used in 3270 and 5250
terminal emulators that support the EHLLAPI protocol. In both methods,
WinRunner records keyboard and mouse input only. The operations on objects in
your application are recorded as win_type, obj_type, win_mouse_click, and
win_mouse_drag statements.

However, unlike the position method, the text method does not insert
synchronization statements into your test script automatically. You need to insert
synchronization statements using softkeys or by programming.

Testing VT100 and Text Applications

Testing Terminal Emulator Applications Chapter 6, page 63

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Creating Test Scripts

When using VT100 terminal emulator applications, WinRunner records keyboard
and mouse input only. The operations on objects in your application are recorded
as win_type, obj_type, win_mouse_click, and win_mouse_drag statements.

The following is a sample of a WinRunner test script recorded on a VT100
terminal emulator application. The comment (#) lines describe the statements.

Activate the Terminal Emulator window
win_activate ("RUMBA - DEMO");

Direct input to the screen
set_window ("RUMBA - DEMO", 1);

Type in the user id “Minnie”
obj_type ("AfxWnd40","minnie");

Press the Enter key
obj_type ("AfxWnd40","<kReturn>");

Wait for a string to appear on the next screen.
TE_wait_string(" MENU ", 1, 1, 53, 1, 60);

Type a menu option.
obj_type ("AfxWnd40","90");

Testing VT100 and Text Applications

Testing Terminal Emulator Applications Chapter 6, page 64

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

In the above example, the user clicks on the terminal emulator window to
activate it. WinRunner records that action to ensure that the input is directed to
the correct window. Then the user types the user name “Minnie” in the
appropriate field and presses the Enter key.

A wait statement is added to ensure that WinRunner waits for the string to appear
on the next screen. The user types an option.

For information on TSL functions, refer to the TSL Online Reference.

Testing VT100 and Text Applications

Testing Terminal Emulator Applications Chapter 6, page 65

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Synchronizing Test Execution

When using VT100 terminal emulator applications, you can insert synchronization
points to your test script in order to pace test execution with the system.

Waiting for a Specific String
Using the TE_wait_string function, you can instruct WinRunner to wait for a
specific string to appear on the screen before continuing test execution. You can
specify an area of the screen, or WinRunner can search the entire screen for the
string. This function has the following syntax:

TE_wait_string (string, [start_column, start_row, end_column, end_row],
 [timeout]);

The string parameter lists the text enclosed in the rectangle. If the text you
captured exceeds one line, string includes the first line only. The start_column
and start_row parameters indicate the column/row at which the captured text
starts. The end_column and end_row parameters represent the column and row,
respectively, at which the text ends. The timeout parameter is the number of
seconds that WinRunner waits for the specified string to appear before
continuing test execution.

For more information, see the “Waiting for a Specific String” section in
Chapter 3, Synchronizing Test Execution.

Testing VT100 and Text Applications

Testing Terminal Emulator Applications Chapter 6, page 66

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Changing the Timeout
The TE_set_timeout function determines the maximum amount of time that
WinRunner waits for a response from the host before continuing test execution.
This function has the following syntax:

TE_set_timeout (timeout);

The default timeout is 60 seconds. You can modify this if needed.

Returning the Current Synchronization Time
The TE_get_timeout function returns the maximum time, in seconds, that
WinRunner waits for response from the mainframe before continuing test
execution. This function has the following syntax:

TE_get_timeout (timeout);

The default timeout is 60 seconds.

Testing VT100 and Text Applications

Testing Terminal Emulator Applications Chapter 6, page 67

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Setting Synchronization Keys
Using the TE_define_sync_keys function you can set keys that enable
automatic synchronization in type, win_type and obj_type functions. When
WinRunner executes a type, win_type or obj_type statement that includes a
synchronization key, WinRunner waits for a specified string to either appear or
disappear from the screen. This function has the following syntax:

TE_define_sync_keys (keys, string, mode [, x1, y1, x2, y2]);

The keys parameter is the keys that will enable synchronization. Use a comma
as the delimiter between keys. The string parameter is the string that WinRunner
waits for to appear or disappear on the screen. The mode parameter is one of
the following: SYNC_WHILE (waits until the string disappears), SYNC_UNTIL
(waits until the string appears), SYNC_DEFAULT (waits the default
synchronization time). The parameters x1, y1, x2, y2 define a rectangle in which
to search for the string (optional). If these parameters are missing, WinRunner
searches the entire screen.

Testing VT100 and Text Applications

Testing Terminal Emulator Applications Chapter 6, page 68

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Checking Text

While creating a test, you indicate the text that you want to check from a selected
portion of the screen and store it in a file. The screen coordinates of the text you
indicated are inserted into your test script.

Checking Text of a Terminal Emulator Screen
The TE_check_text function statement captures and compares the text in a
terminal emulator window. This function has the following syntax:

TE_check_text (file_name [,start_column, start_row, end_column, end_row]);

The file_name parameter is a string expression given by WinRunner that
identifies the captured window. The start_column and the start_row parameters
are the column and row at which the captured text begins.

The end_column and end_row parameters are the column and row at which the
captured text ends.

For more information, see the “Checking Text Using Softkeys” section in
Chapter 5, Checking Text.

Testing VT100 and Text Applications

Testing Terminal Emulator Applications Chapter 6, page 69

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Searching for Text
You can search for text in a terminal emulator screen using the TE_find_text
function. This function looks for a specified text string and returns its location on
the screen as an x coordinate and a y coordinate. Using an optional parameter,
you can restrict the search to a rectangular area of the screen that you define
using pairs of x, y coordinates.

This function has the following syntax:

TE_find_text (string, out_x_location, out_y_location [x1, y1, x2, y2]);

The string parameter is the text that you want to locate. The out_x_location
parameter is the output variable that stores the x coordinate of the test string.
The out_y_location parameter is the output variable that stores the y coordinate
of the text string. The x1, y1, x2, y2 parameters describe a rectangle that defines
the limits of the search area.

For more information on TE_find_text, refer to the TSL Online Reference.

Testing VT100 and Text Applications

Testing Terminal Emulator Applications Chapter 6, page 70

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Reading Text from the Screen
Using the TE_get_text function, you can instruct WinRunner to read the text in a
specified area of the screen and store it in a variable. This function has the
following syntax:

t = TE_get_text (x1, y1, x2, y2);

The x1, y1, x2, y2 parameters describe a rectangle that encloses the text to be
read. The pairs of coordinates can designate any two diagonally opposite
corners of the rectangle.

For more information, see the “Reading Text from the Screen” section in
Chapter 5, Checking Text.

Using Filters
You can create filters to include or exclude regions of a terminal emulator window
when checking text. In cases where you do not want to check an entire window,
you can define parts of the window that will be filtered during the comparison. For
more information, see the “Using Filters when Checking Text“ section in
Chapter 5, Checking Text.

Testing VT100 and Text Applications

Testing Terminal Emulator Applications Chapter 6, page 71

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

TSL Functions

The following are TSL functions that you can use when testing your VT100
terminal emulator application. For more information on TSL functions, refer to the
TSL Online Reference.

Synchronization Functions
You can insert synchronization points to your test script in order to pace test
execution with the system.

• The TE_define_sync_keys function sets keys that enable automatic
synchronization in win_type and obj_type commands. It has the following
syntax:

TE_define_sync_keys (keys, string, mode [, x1, y1, x2, y2]);

• The TE_get_timeout function returns the current synchronization time. It has
the following syntax:

TE_get_timeout ();

Testing VT100 and Text Applications

Testing Terminal Emulator Applications Chapter 6, page 72

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

• The TE_set_timeout function sets the maximum time WinRunner waits for a
response from the server. It has the following syntax:

TE_set_timeout (timeout);

• The TE_wait_string function waits for a string to appear on screen. It has the
following syntax:

TE_wait_string (string, [start_column, start_row, end_column, end_row],
[timeout]);

Text Functions
You can check the text in the screen of your terminal emulator application.

• The TE_check_text function captures and compares the text in a terminal
emulator window. It has the following syntax:

TE_check_text (file_name [,start_column, start_row, end_column,
end_row]);

• The TE_find_text function returns the location of a specified string. It has the
following syntax:

TE_find_text (string, out_x_location, out_y_location [x1, y1, x2, y2]);

• The TE_get_text function reads text from screen and stores it in a string. It has
the following syntax:

TE_get_text (x1, y1, x2, y2);

Testing VT100 and Text Applications

Testing Terminal Emulator Applications Chapter 6, page 73

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Filter Functions
You can create filters to check text and dates on your terminal emulator screen.

• The TE_create_filter function creates a filter in the test database. It has the
following syntax:

TE_create_filter (filter_name, start_column, start_row, end_column, end_row,
EXCLUDE | INCLUDE, screen_name);

• The TE_delete_filter deletes a specified filter from the test database. It has the
following syntax:

TE_delete_filter (filter_name);

• The TE_get_active_filter function returns the coordinates of a specified active
filter. It has the following syntax:

TE_get_active_filter (filter_num [out_start_column, out_start_row,
out_end_column, out_end_row], screen_name);

• The TE_get_auto_reset_filter function indicates whether or not filters are
automatically deactivated at the end of a test run. It has the following syntax:

TE_get_auto_reset_filters ();

• The TE_get_filter function returns the properties of a specified filter. It has the
following syntax:

TE_get_filter (filter_name [,out_start_column, out_start_row, out_end_column,
out_end_row, out_type, out_active, screen_name]);

Testing VT100 and Text Applications

Testing Terminal Emulator Applications Chapter 6, page 74

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

• The TE_reset_all_filters function deactivates all filters in a test. It has the
following syntax:

TE_reset_all_filters ();

• The TE_reset_filter function deactivates a specified filter. It has the following
syntax:

TE_reset_filter (filter);

• The TE_set_filter function creates and activates a filter. It has the following
syntax:

TE_set_filter (filter_name [,start_column, start_row, end_column, end_row,
EXCLUDE | INCLUDE, screen_name]);

• The TE_set_auto_reset_filters function deactivates the automatic reset of
filters when a test run is completed. It has the following syntax:

TE_set_auto_reset_filters (ON | OFF);

• The TE_set_filter_mode function specifies whether to assign filters to all
screens or to the current screen. It has the following syntax:

TE_set_filter_mode (mode);

Analyzing Results

Testing Terminal Emulator Applications Chapter 7, page 75

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

7
Analyzing Results

After you execute a test, you can view a report of all the major events that
occurred during the test run in order to determine its success or failure.

This chapter describes:

• Viewing Results of a GUI Checkpoint

• Viewing Results of a Text Checkpoint

Analyzing Results

Testing Terminal Emulator Applications Chapter 7, page 76

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

About Viewing Test Results

When a test run is completed, you can view detailed test results in the WinRunner
Test Results window. To open the dialog box, select Tools > Test Results or click
the Test Results button. The Test Results window opens and displays the results
of the current test. You can view expected, debug, and verification results in the
Test Results window. By default, the Test Results window displays the results of
the most recently executed test run. For more information, refer to the WinRunner
User’s Guide.

Viewing Results of a GUI Checkpoint

A GUI checkpoint compares expected and actual results in your application. You
can view the expected and actual results through the Test Results window. If a
mismatch is detected during a verification run, you can view the differences
between the expected and actual results.

Analyzing Results

Testing Terminal Emulator Applications Chapter 7, page 77

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

To view the results of a GUI checkpoint:

 1 Open the Test Results window. In the test log, look for entries that list “end GUI
checkpoint” in the Event column. Failed GUI checkpoints appear in red; passed
GUI checkpoints appear in green.

 2 Double-click an “end GUI checkpoint” entry in the log. Alternatively, highlight the
entry and choose Options > Display or click the Display button. The GUI
Checkpoint Results dialog box opens.

Analyzing Results

Testing Terminal Emulator Applications Chapter 7, page 78

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

 3 Click an object in the Objects column.

 4 Select a property from the Properties column.

If the property is a field_date, click the Compare expected and actual values
button. The Check Date Results dialog box opens.

Viewing Results of a Text Checkpoint

A text checkpoint compares expected and actual text in your application. You can
view the expected and actual results using the Test Results window. If a mismatch
is detected during a verification run, you can also view a file showing the
differences between the expected and actual results.

Analyzing Results

Testing Terminal Emulator Applications Chapter 7, page 79

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

To view the results of a text checkpoint:

 1 Open the Test Results window. In the test log, look for entries that list “check
text” in the Event column. Failed text checkpoints appear in red; passed text
checkpoints appear in green.

 2 Double-click a “check text” entry in the log. Alternatively, highlight the entry and
choose Options > Display or click the Display button.

For an entry with no mismatch, the Terminal Display Dialog opens. For an entry
with a mismatch, the Check Text Verify Viewer opens.

Analyzing Results

Testing Terminal Emulator Applications Chapter 7, page 80

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

 3 To view the results in a mainframe view, double-click the row entry. The Terminal
Display Dialog opens.

 4 Click OK to close the Terminal Display Dialog.

mismatch

Learning the Application with BMS Files

Testing Terminal Emulator Applications Chapter 8, page 81

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

8
Learning the Application with BMS Files

The Learn BMS Files feature can teach WinRunner your 3270 mainframe
application by inserting information about screens and fields directly into a GUI
map file. This chapter describes:

• Learning the Application the First Time

• Relearning the Application

Learning the Application with BMS Files

Testing Terminal Emulator Applications Chapter 8, page 82

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

About Learning the Application with BMS Files

If you have access to the BMS file of your 3270 mainframe application, you can
use the Learn BMS Files feature. This feature enables WinRunner to learn your
application directly from a BMS file containing descriptions of the screens and
fields in your application. When you use Learn BMS File, WinRunner learns these
descriptions and inserts them into a GUI map file. You can change the names or
descriptions as desired, as with any other GUI map file. You use the TSL function
TE_bms2gui to learn the BMS file.

The RELEARN option lets you update the GUI map file you created earlier as your
application changes during the development cycle. An interactive user interface
guides you through the process. It helps you retain desired modifications to the
descriptions in the GUI map file while changing others as needed.

It is recommended that you be familiar with Chapter 2, Context Sensitive
Testing, as well as the “Understanding the GUI Map” section in the WinRunner
User’s Guide before you use the Learn BMS Files feature.

Learning the Application with BMS Files

Testing Terminal Emulator Applications Chapter 8, page 83

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Learning the Application the First Time

You use the TE_bms2gui function to learn (and to relearn) your BMS file. This
function has the following syntax:

TE_bms2gui ("bms_file_name", "gui_file_name", learn_mode);

The bms_file_name parameter is the full path of the BMS file of your application.
The gui_file_name parameter is the full path of the GUI map file in which
WinRunner inserts the descriptions of the objects in your application. If no
parameter is specified, the temporary GUI map file is used.

The learn_mode parameter determines how WinRunner handles the BMS file.
Use the LEARN option the first time that you learn a BMS file. Do not perform
LEARN twice for the same GUI map file. Use RELEARN when you have made
changes to your application and updated the BMS file. When RELEARN is
specified, WinRunner compares the descriptions in the current BMS file with
those in the specified GUI map file. It notifies you of any inconsistencies and
allows you to make changes as desired.

Learning the Application with BMS Files

Testing Terminal Emulator Applications Chapter 8, page 84

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

To learn the BMS files, execute the TE_bms2gui function in a WinRunner script.
In the following example, TE_bms2gui is used to teach WinRunner object
descriptions from a BMS file called Mail_app.txt and place them into a GUI map
file called Mail_1.gui:

TE_bms2gui ("Mail_app.txt", "Mail_1.gui", LEARN);

You can edit names or descriptions in the GUI map file created by TE_bms2gui
and make any other desired changes, using the GUI Map Editor. For more
information on the GUI Map Editor, refer to the WinRunner User’s Guide.

Learning the Application with BMS Files

Testing Terminal Emulator Applications Chapter 8, page 85

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Relearning the Application

You use the RELEARN option each time you want to update the GUI map file to
reflect changes in your application. RELEARN enables you to add new screens
and fields to the GUI map file while maintaining or changing the names and
descriptions that appear in the existing GUI map file, as desired.

To relearn a BMS file, you execute the TE_bms2gui function using RELEARN as
the learn_mode parameter. For example, to relearn a BMS file called Mail_app.txt
into an existing GUI map file called Mail_1.gui, execute the following statement:

TE_bms2gui ("Mail_app.txt", "Mail_1.gui", RELEARN);

As WinRunner converts the BMS file into the GUI map file, it looks for
discrepancies between the BMS file learned using the LEARN option and the
current file, on which RELEARN is performed. Each time it finds a mismatch, a
dialog box appears on screen and asks your how to proceed.

Learning the Application with BMS Files

Testing Terminal Emulator Applications Chapter 8, page 86

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

In most cases, accepting the default option ensures that the intentional changes
made to your application are reflected accurately in the GUI map file. However,
WinRunner always gives you the option of changing the name of the relevant
screen or field.

The following paragraphs describe the different Relearn forms that may be
displayed during the RELEARN process and the options they provide.

Note: The forms are identical for fields and for screens, with the exception of the
word “field” or “screen” in the relevant location.

Learning the Application with BMS Files

Testing Terminal Emulator Applications Chapter 8, page 87

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Object Exists in the GUI Map File with Different Attributes

WinRunner found a screen in the BMS file with the same name as a screen in
the existing GUI map file, but with different properties. The current name of the
screen is displayed in the list on the left side of the Relearn dialog box. The list
on the right shows all the properties of the selected object, according to the new
BMS file. By default, WinRunner updates the GUI map to include the new
properties.

Learning the Application with BMS Files

Testing Terminal Emulator Applications Chapter 8, page 88

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Click OK. The following message appears: “Screen BG112AF is now changed
and gets new properties”. Click OK.

To use a different name for the screen, select it from the list or type in another
name.

To continue the RELEARN operation without making changes, click Cancel.

To choose a new name for the object, type it in or select the name of an existing
object from the list.

Learning the Application with BMS Files

Testing Terminal Emulator Applications Chapter 8, page 89

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Object Is Not in the Original GUI Map File

WinRunner found a field that it recognizes as a new one: no other field with the
same name or properties exists in the GUI map file. The name of the field is
displayed in the list on the left side of the Relearn dialog box. The list on the right
shows all the properties of the selected field, according to the new BMS file.

By default, WinRunner adds the object to the GUI map file with the name
specified. The Relearn dialog box closes and a message box is displayed:
“WinRunner added a new field with the name ‘DATAOO1.’”

To continue the Relearn operation without making changes, click Cancel.

To choose a new name for the object, type it in or select the name of another
screen from the list.

Learning the Application with BMS Files

Testing Terminal Emulator Applications Chapter 8, page 90

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Object Appears in the GUI Map File with a Different Name

WinRunner found a field with the same properties as an existing field, but with a
different name. By default, WinRunner retains the original name for the field as it
appears in the GUI map. This ensures that you can replay existing tests
containing the original name for the field without changing them.

Click OK to retain the original name for the field. The Relearn dialog box closes
and the following message appears: ”WinRunner uses the existing field
‘DATA002’”.

To use the name in the new BMS file or to select a new name, select it from the
list or type it in.

Index

Testing Terminal Emulator Applications page 91

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

B

BMS files 81–90
learning the application 83
relearning the application 85

C

checking screens and fields 38–45
all fields at once 43
default checks 40
field checks 45
screen checks 44
single screen/field 40
two or more fields 41

checking text automatically 48
full screen 48
partial screen 49
using previous coordinates 51

checking text using softkeys
full screen 52
partial screen 53

configuring terminal emulator settings 6
Context Sensitive testing 18–28

F

filters 54–59
exclude 54
include 55

finding text 60, 69

G

GUI checkpoints 8, 38–45
default checks 40
properties for screens and fields 44

L

Learn BMS Files 81
logical names 23

O

obj_type function 27
object classes 23

0
Index

Index

Testing Terminal Emulator Applications page 92

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

P

physical description 22
properties

field 25
screen 25

R

reading text 59, 70
record

field method 27
position method 27
text method 62

results, viewing 75

S

sample application 16
screen refresh time, setting 34
scripts, creating 6
scripts, creating VT100 and text applications

63
searching for text 60, 69
softkeys 10
synchronizing tests 29–37

T

TE_bms2gui function 83
TE_check_text function 52, 68, 72
TE_create_filter function 58, 73
TE_define_sync_keys function 67, 71
TE_delete_filter function 57, 73
TE_edit_field function 27
TE_find_text function 60, 69, 72
TE_force_send_key function 37
TE_get_active_filter function 73
TE_get_auto_reset_filter function 73
TE_get_filter function 73
TE_get_sync_time function 36
TE_get_text function 59, 70, 72
TE_get_timeout function 66, 71
TE_reset_all_filters function 57, 74
TE_reset_all_force_send_key function 37
TE_reset_filter function 57, 74
TE_send_key function 27
TE_set_auto_reset_filters function 74
TE_set_auto_verify function 48
TE_set_filter function 56, 58, 74
TE_set_filter_mode function 74
TE_set_record_method function 28
TE_set_refresh_time function 34
TE_set_sync_time function 35
TE_set_timeout function 35, 66, 72
TE_wait_field function 33

Index

Testing Terminal Emulator Applications page 93

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

TE_wait_string function 31, 65, 72
TE_wait_sync function 30, 37
terminal emulator configuration 6
text

checking 46–60, 68
finding 60, 69
reading 59, 70

text checkpoints 8, 46–60, 68
text method testing, see VT100 and text

applications
timeout, setting 35, 66

V

VT100 and text applications 61–74
checking text 68
filter functions 73
record method 62
synchronization functions 71
synchronizing test execution 65
text functions 72

W

win_mouse_click 27
win_mouse_drag 27
win_type function 27

Y

Year2000 Demo Server 16

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

In

WinRunner Testing Terminal Emulator Applications, Version 7.0

© Copyright 1994 - 2001 by Mercury Interactive Corporation

All rights reserved. All text and figures included in this publication are the exclusive property of Mercury
Interactive Corporation, and may not be copied, reproduced, or used in any way without the express
permission in writing of Mercury Interactive. Information in this document is subject to change without notice
and does not represent a commitment on the part of Mercury Interactive.

Mercury Interactive may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents except as
expressly provided in any written license agreement from Mercury Interactive.

WinRunner, XRunner, LoadRunner, TestDirector, TestSuite, and WebTest are registered trademarks of
Mercury Interactive Corporation in the United States and/or other countries. Astra, Astra SiteManager, Astra
SiteTest, RapidTest, QuickTest, Visual Testing, Action Tracker, Link Doctor, Change Viewer, Dynamic Scan,
Fast Scan, and Visual Web Display are trademarks of Mercury Interactive Corporation in the United States
and/or other countries.

This document also contains registered trademarks, trademarks and service marks that are owned by their
respective companies or organizations. Mercury Interactive Corporation disclaims any responsibility for
specifying which marks are owned by which companies or organizations.

If you have any comments or suggestions regarding this document, please send them via e-mail to
documentation@mercury.co.il.

Mercury Interactive Corporation
1325 Borregas Avenue
Sunnyvale, CA 94089
Tel. (408) 822-5200 (800) TEST-911
Fax. (408) 822-5300

WRTEUG7.0/01

	Testing Terminal Emulator Applications
	Table of Contents
	Introduction
	Configuring Terminal Emulator Settings
	Creating Test Scripts
	Synchronizing Test Execution
	Checking Your Application
	Testing VT100 and Text Applications
	Analyzing Results
	Learning the Application with BMS Files
	Using Default Command Softkeys
	Sample Application
	Typographical Conventions

	Context Sensitive Testing
	About Context Sensitive Testing
	Physical Descriptions
	Logical Names
	Object Classes for Terminal Emulators
	Properties
	Changing the Way Operations are Recorded

	Synchronizing Test Execution
	About Synchronizing Tests
	Waiting for a Response from the Host
	Waiting for a Specific String
	Waiting for a Specific Field
	Setting the Synchronization Time
	Synchronizing Screen Changes

	Checking Screens and Fields
	About Checking Screens and Fields
	Checking a Single Field or a Screen
	Checking Two or More Fields
	Checking All Fields in a Screen at Once
	Properties for Screens and Fields

	Checking Text
	About Checking Text
	Checking Text Automatically
	Checking Text Using Softkeys
	Using Filters when Checking Text
	Reading Text from the Screen
	Searching for Text

	Testing VT100 and Text Applications
	About Testing VT100 and Text Applications
	Creating Test Scripts
	Synchronizing Test Execution
	Checking Text
	TSL Functions

	Analyzing Results
	About Viewing Test Results
	Viewing Results of a GUI Checkpoint
	Viewing Results of a Text Checkpoint

	Learning the Application with BMS Files
	About Learning the Application with BMS Files
	Learning the Application the First Time
	Relearning the Application

	Index

