
Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Online Guide

WinRunner ® 7.0
Testing Java Applications
and Applets

put name of
book here

Table of Contents

Testing Java Applications and Applets Page 2

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

0
Table of Contents

Chapter 1: Introduction... 4
Using the Java Add-in .. 5
How the Java Add-in Identifies Java Objects 6
Activating the Java Add-in .. 7

Chapter 2: Testing Standard Java Objects 10
About Testing Standard Java Objects .. 11
Recording Context Sensitive Tests .. 11
Enhancing Your Script with TSL... 13
Setting the Value of a Java Bean Property....................................... 14
Activating a Java Edit Object.. 16
Finding the Location of a List Item.. 17
Selecting an Item from a Java Pop-up Menu 18
Configuring How WinRunner Learns Object Descriptions

 and Runs Tests .. 20

Table of Contents

Testing Java Applications and Applets Page 3

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Chapter 3: Working with Java Methods and Events 25
About Working with Java Methods and Events 26
Invoking Java Methods... 27
Viewing Object Methods in Your Application or Applet 29
Working with Non-GUI Java Objects (Advanced)............................. 34
Firing Java Events .. 41

Chapter 4: Configuring Custom Java Objects............................ 43
About Configuring Custom Java Objects.. 44
Adding Custom Java Objects to the GUI Map.................................. 45
Configuring Custom Java Objects with the Custom Object Wizard.. 47

Chapter 5: Using Java Direct Call (JDC) 54
About Java Direct Call Mechanism... 55
Using the JDC Mechanism... 56
Preparing a TSL Script for Use with JDC ... 58
Using JDC: An Example... 59

Chapter 6: Troubleshooting Java Add-in Recording
Problems63

Handling General Problems Testing Applets.................................... 64
Handling Specific Java Add-in Problems.. 65

Index .. 67

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Introduction

Testing Java Applications and Applets Chapter 1, page 4

�

Introduction
Welcome to WinRunner with add-in support for Java. This guide explains how to
use WinRunner to successfully test Java applications and applets. It should be
used in conjunction with the WinRunner User’s Guide and the TSL Online
Reference.

This chapter describes:

• Using the Java Add-in

• How the Java Add-in Identifies Java Objects

• Activating the Java Add-in

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Introduction

Testing Java Applications and Applets Chapter 1, page 5

In

Using the Java Add-in

The Java Add-in is an add-in to WinRunner, Mercury Interactive’s automated
GUI testing tool for Microsoft Windows applications. The Java Add-in enables
you to test cross-platform Java applets and applications.

To create a test for a Java applet or application, use WinRunner to record the
operations you perform on the applet or applications. As you click on Java
objects, WinRunner generates a test script in TSL, Mercury Interactive’s C-like
test script language.

With the Java Add-in you can:

• Record operations on standard Java objects just as you would any other
Windows object.

• Configure the GUI map to recognize custom Java objects as push buttons,
check buttons, static text or text fields.

• Use the java_activate_method function to specify a Java method to execute
from the TSL script.

• Use the java_fire_event function to simulate a Java event on the specified
object.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Introduction

Testing Java Applications and Applets Chapter 1, page 6

In

How the Java Add-in Identifies Java Objects

WinRunner learns a set of default properties for each object you operate on while
recording a test. These properties enable WinRunner to obtain a unique
identification for every object that you test. This information is stored in the GUI
map. WinRunner uses the GUI map to help it locate frames and objects during a
test run.

WinRunner identifies standard java objects as push button, check button, static
text box, or text field classes, and stores the relevant physical properties in the
GUI Map just like the corresponding classes of Windows objects. If you record an
action on a custom or unsupported java object, WinRunner maps the object to the
general object class in the WinRunner GUI map unless you configure the GUI
map to identify the object as a custom java object, by choosing Tools > GUI Map
Configuration. A custom java object can be configured as a push button, check
button, static text box, text field, etc. and you can configure the physical properties
that will be used to identify the object. For more information on GUI maps, refer
to the “Configuring the GUI Map” chapter in the WinRunner User’s Guide.

You can view the contents of your GUI map files in the GUI Map Editor, by
choosing Tools > GUI Map Editor. The GUI Map Editor displays the logical
names and the physical descriptions of objects. For more information on GUI
maps, refer to the “Understanding the GUI Map” section in the WinRunner User’s
Guide.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Introduction

Testing Java Applications and Applets Chapter 1, page 7

In

Activating the Java Add-in

Before you begin testing your Java application or applet, make sure that you have
installed all the necessary files and made any necessary configuration changes.
For more information, refer to the Java Add-in Installation Guide.

Note: The RapidTest Script wizard option is not available when the Java Add-in
is loaded. For more information about the RapidTest Script wizard, refer to the
WinRunner User’s Guide.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Introduction

Testing Java Applications and Applets Chapter 1, page 8

In

To activate the Java Add-in:

 1 Select Programs > WinRunner > WinRunner in the Start menu. The Add-in
Manager dialog box opens.

 2 Select Java.

 3 Click OK. WinRunner opens with the Java Add-in loaded.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Introduction

Testing Java Applications and Applets Chapter 1, page 9

In

Note:

If the Add-In Manager dialog box does not open:

 1 Start WinRunner.

 2 In Settings > General Options > Environment tab, check Show Add-in
Manager dialog for ___ seconds and fill in a comfortable amount of time in
seconds. (The default value is 10 seconds.)

 3 Click OK.

 4 Close WinRunner. A WinRunner Message dialog opens asking “Would you like
to save changes made in the configuration?” Click Yes.

 5 Repeat the procedure described in “To activate the Java Add-in,” on page 8.

For more information on the Add-in Manager, refer to the WinRunner User’s
Guide.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Standard Java Objects

Testing Java Applications and Applets Chapter 2, page 10

�

Testing Standard Java Objects
This chapter describes how to record standard Java objects and enhance scripts
that test Java applets and applications.

This chapter describes:

• Recording Context Sensitive Tests

• Enhancing Your Script with TSL

• Setting the Value of a Java Bean Property

• Activating a Java Edit Object

• Finding the Location of a List Item

• Selecting an Item from a Java Pop-up Menu

• Configuring How WinRunner Learns Object Descriptions and Runs Tests

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Standard Java Objects

Testing Java Applications and Applets Chapter 2, page 11

In

About Testing Standard Java Objects

With the Java Add-in, you can record or write context sensitive scripts on all
standard Java objects from the supported toolkits in Netscape, Internet Explorer,
AppletViewer, or a standalone Java application.

Recording Context Sensitive Tests

Whenever you start WinRunner with the Java Add-in loaded, support for the Java
environments you installed will always be loaded. For more information about
selecting Java environments refer to the Java Add-in Installation Guide.

You can confirm that your Java environment has opened properly by checking the
Java console for the following confirmation message: "Loading Mercury
Support (version x.xxx)".

Note: You cannot open two Java consoles simultaneously if one has a Java
plug-in and the other does not. If this happens, close the browser and console
and then re-open the browser before running the tests.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Standard Java Objects

Testing Java Applications and Applets Chapter 2, page 12

In

If your Java application or applet uses standard Java objects from any of the
supported toolkits, then you can use WinRunner to record a Context Sensitive test
in Netscape, Internet Explorer, AppletViewer or a standalone Java application,
just as you would with any Windows application.

As you record, WinRunner adds standard Context Sensitive TSL statements into
the script. If you try to record an action on an unsupported or custom Java object,
WinRunner records a generic obj_mouse_click or win_mouse_click
statement. You can configure WinRunner to recognize your custom objects as
push buttons, check buttons, static text, edit fields, etc. by using the Java Custom
Objects wizard. For more information, refer to Chapter 1, Configuring Custom
Java Objects.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Standard Java Objects

Testing Java Applications and Applets Chapter 2, page 13

In

Enhancing Your Script with TSL

WinRunner includes several TSL functions that enable you to add Java-specific
statements to your script. Specifically, you can use TSL functions to:

• Set the value of a Java bean property.

• Activate the specified Java edit field.

• Find the dimensions and coordinates of list and tree objects in JFC

• Select an item from a Java pop-up menu

• Configure the way WinRunner learns object descriptions and runs tests on Java
applets and applications.

You can also use TSL functions to activate the public methods of both GUI and
non-GUI Java objects and to simulate events on Java objects. These are
covered in Chapter 1, Working with Java Methods and Events.

For more information about TSL functions and how to use TSL, refer to the TSL
Reference Guide or the TSL Online Reference.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Standard Java Objects

Testing Java Applications and Applets Chapter 2, page 14

In

Setting the Value of a Java Bean Property

You can set the value of a Java bean property with the obj_set_info function.
This function works on all properties that have a set method. The function has the
following syntax:

obj_set_info (object, property, value);

The object parameter is the logical name of the object. The object may belong to
any class. The property parameter is the object property you want to set and can
be any of the properties displayed when using the WinRunner GUI Spy. Refer to
the WinRunner Users Guide for more information on the GUI Spy or for a list of
properties. The value parameter is the value that is assigned to the property.

Note: When writing the property parameter name in the function, convert the
capital letters of the property to lowercase, and add an underscore before letters
that are capitalized within the Java bean property name. Therefore a Java bean
property called MyProp becomes my_prop in the TSL statement.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Standard Java Objects

Testing Java Applications and Applets Chapter 2, page 15

In

For example, for a property called MyProp, which has method setMyProp(String),
you can use the function as follows:

obj_set_info(object, "my_prop", "Mercury");

The obj_set_info function will return ATTRIBUTE_NOT_SUPPORTED for the
property, my_prop if one of the following statements is true:

• The object does not have a method called setMyProp.

• The method setMyProp() exists, but it has more than one parameter, or the
parameter does not belong to one of following Java classes: String, int, boolean,
Integer or Boolean.

• The value parameter is not convertible to one of the above Java classes. For
example, the method gets an integer number as a parameter, but the function’s
value parameter was a non-numeric value.

• The setMyprop() method throws a Java exception.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Standard Java Objects

Testing Java Applications and Applets Chapter 2, page 16

In

Activating a Java Edit Object

You can activate an edit field with the edit_activate function. This is the
equivalent of a user pressing the ENTER key on an edit field. This function has
the following syntax:

edit_activate (object);

The object parameter is the logical name of the edit object on which you want to
perform the action.

For example, if you want to enter John Smith into the edit field, "Text_Fields_0",
then you can set the text in the edit field and then use edit_activate to send the
activate event as in the following script:

set_window("swingsetapplet.html", 8);
edit_set("Text Fields:_0", "John Smith 2");
edit_activate("Text Fields:_0");

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Standard Java Objects

Testing Java Applications and Applets Chapter 2, page 17

In

Finding the Location of a List Item

You can find the dimensions and coordinates of list and tree objects in JFC with
the list_get_item_coord function. This function has the following syntax:

list_get_item_coord (list, item, out_x, out_y, out_width, out_height);

The list parameter is the name of the list. The item parameter is the item string.
The out_x and out_y parameters are the output variables that store the x- and y-
coordinates of the item rectangle. The out_width and out_height parameters are
the output variables that store the width and height of the item rectangle.

For example, for a list called "ListPanel$1" containing an item called "Cola", you
can use the function as follows to find the location of the Cola item:

set_window("swingsetapplet.html");
tab_select_item("JTabbedPane", "ListBox");
list_select_item("ListPanel$1", " Cola");
rc = list_get_item_coord("ListPanel$1", " Cola", x_list_src, y_list_src,

width_list_src, height_list_src);

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Standard Java Objects

Testing Java Applications and Applets Chapter 2, page 18

In

Selecting an Item from a Java Pop-up Menu

You can select an item from a Java pop-up menu using the popup_select_item
function. This function has the following syntax:

popup_select_item ("menu;item");

The menu;item parameter indicates the logical name of the component
containing the menu and the name of the item.

Note that menu and item are represented as a single string, and are separated by
a semicolon.

When an item is selected from a submenu, each consecutive level of the menu is
separated by a semicolon in the format "menu; sub_menu1;
sub_menu2;...sub_menun; item." The selected item must be the last item in a
menu tree, for example: popup_select_item ("Copy"); is not legal, while
popup_select_item ("MyEdit;Copy"); is legal.

Note: When using the popup_select_item function, confirm that you are using
the correct EVENT_MODEL setting (OLD or NEW). For more information about
this setting, see page 20.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Standard Java Objects

Testing Java Applications and Applets Chapter 2, page 19

In

The popup_select_item statement does not open the pop-up menu: you
can open the menu by a preceding TSL statement. For example:

obj_mouse_click ("MyEdit", 1, 1, RIGHT);

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Standard Java Objects

Testing Java Applications and Applets Chapter 2, page 20

In

Configuring How WinRunner Learns Object Descriptions
 and Runs Tests

You can configure how WinRunner learns descriptions of objects, records tests,
and runs tests on a Java applet or application with the set_aut_var function. The
function has the following syntax:

set_aut_var (variable, value);

The following variables and corresponding values are available:

EDIT_REPLAY_MODE Controls how WinRunner performs actions on
edit fields. Use one or more of the following
values:

“S”-uses the setValue () method to set a value of
the edit object.

“P”-sends KeyPressed event to the object for
every character from the input string.

“T”-sends KeyTyped events to the object for
every character from the input string.

“R”-sends KeyReleased event to the object for
every character from the input string.

“F”-generates a FocusLost event at the end of
function execution.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Standard Java Objects

Testing Java Applications and Applets Chapter 2, page 21

In

“E”-generates a FocusGained event at the
beginning of function execution.

Default value: “PTR”.

Note that the default action sends a triple event
to the edit field (KeyPressed-KeyTyped-
KeyReleased).

EVENT_MODEL Sets the event model that will be used to send
events to the AUT objects. Use one of the
following values:

“NEW”-for applications written in the new event
model.

“OLD”-for applications written in the old event
model.

“DEFAULT”- Uses the OLD event model for
AWT objects and NEW for all other toolkit
objects.

Default value: "DEFAULT"

MAX_TEXT_DISTANCE Sets the maximum distance in pixels, to look for
attached text.

Default value: 100

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Standard Java Objects

Testing Java Applications and Applets Chapter 2, page 22

In

REPLAY_INTERVAL Sets the processing time in milliseconds
between the execution of two functions.

Default value: 200

RETRY_DELAY Sets the maximum time in milliseconds to wait
before retrying to execute a command.

Default value: 1000

SKIP_ON_LEARN Controls how WinRunner learns a window.
Mercury Interactive classes listed in the variable
are ignored. May contain a list of Mercury
Interactive classes, separated by spaces. By
default, only non-“object" objects are learned.

Default value: "object"

TABLE_RECORD_MODE Sets the record mode for a table object (CS or
ANALOG).

“CS”: indicates that the record mode is Context
Sensitive.

“ANALOG”: records only low-level (Analog)
table functions: tbl_click_cell,
tbl_dbl_click_cell, and tbl_drag. (JFC JTable
object only).

Default value: “CS”

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Standard Java Objects

Testing Java Applications and Applets Chapter 2, page 23

In

COLUMN_NUMBER Minimum number of columns for a table to be
considered a table object. Otherwise the edit
fields are treated as separate objects.
(Oracle only)

Default value: 2

MAX_COLUMN_GAP The maximum number of pixels between objects
in a table to be considered a column.
(Oracle only)

Default value: 12

MAX_LINE_DEVIATION The maximum number of pixels between objects
to be considered to be on a single line.
(Oracle only)

Default value: 8

MAX_LIST_COLUMNS The maximum number of columns in an Oracle
LOV object to be considered a list. A larger
number constitutes a table.
(Oracle only)

Default value: 99

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Testing Standard Java Objects

Testing Java Applications and Applets Chapter 2, page 24

In

MAX_ROW_GAP The maximum number of pixels between objects
to be considered one table row.
(Oracle only)

Default value: 12

RECORD_BY_NUM Controls how items in list, combo box, and tree
view objects are recorded. The variable can be
one of the following values: list, combo, tree, or
a combination separated by a space. If one of
these objects has been detected, numbers are
recorded instead of the item names.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Working with Java Methods and Events

Testing Java Applications and Applets Chapter 3, page 25

�

Working with Java Methods and Events
This chapter describes how activate the public methods of both GUI and non-GUI
Java objects and to simulate events on Java objects.

This chapter describes:

• Invoking Java Methods

• Viewing Object Methods in Your Application or Applet

• Working with Non-GUI Java Objects (Advanced)

• Firing Java Events

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Working with Java Methods and Events

Testing Java Applications and Applets Chapter 3, page 26

In

About Working with Java Methods and Events

You can view the methods of Java objects in your application and activate object
methods during your test using the java_activate_method function.

When working with GUI Java objects, you use the GUI Spy to view the object’s
methods and to generate the appropriate TSL statement for activating the method
you select.

A non-GUI Java object may be returned from a previous method activation or you
can create non-GUI objects within your application or applet. When working with
non-GUI objects you use the Java Method wizard to view the object’s methods
and to generate the appropriate TSL statement for activating the method you
select.

You can also simulate events on Java objects using the fire_java_event function.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Working with Java Methods and Events

Testing Java Applications and Applets Chapter 3, page 27

In

Invoking Java Methods

You can invoke a public Java method for any Java object using the
java_activate_method function.

If you are not sure which methods your object uses or which parameters you need
to send to the method, you can use the GUI Spy (for GUI objects) or the Java
Method wizard (for non-GUI objects) to view the methods of any object in your
application. For more information, see Viewing Object Methods in Your
Application or Applet on page 29 and Viewing the Object Methods of non-
GUI Java objects on page 36.

The java_activate_method function has the following syntax:

java_activate_method (object, method, retval [, param1, ... param8]);

The object parameter is the logical name of the object. The method parameter
indicates the name of the Java method to invoke. The retval parameter is an
output variable that holds a return value from the invoked method. Note that this
parameter is required even for void Java methods. param1...8 are the
parameters to be passed to the Java method.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Working with Java Methods and Events

Testing Java Applications and Applets Chapter 3, page 28

In

The Java method parameters, including retval, may belong to one of the following
simple Java types: Boolean, boolean, Integer, int, or String, or they may be any
other Java object. Note, however, that if you use a Java object other than the
simple types listed above, you must free the object from memory when you are
finished using the object in your script. For more information about using returned
objects in your script, see Invoking Methods of Non-GUI Java Objects below.

Note: If the function returns Boolean or boolean output, the retval parameter will
return the string representation of the output: “true” or “false”.

For example, you can use the java_activate_method function to perform actions
on a list:

Add item to the list at position 2:
java_activate_method("list", "add", retval, "new item", 2);

Get number of visible rows in a list:
java_activate_method("list", "getRows", rows);

Check if an item is selected:
java_activate_method("list", "isIndexSelected", isSelected, 2);

The TSL return value for the java_activate_method function can be any of the
TSL general return values. For more information on TSL return values, refer to
the TSL Reference Guide.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Working with Java Methods and Events

Testing Java Applications and Applets Chapter 3, page 29

In

Viewing Object Methods in Your Application or Applet

You can view all public methods associated with GUI Java objects in your
application or applet and generate the appropriate java_activate_method
function for a selected method using the Java tab of the GUI Spy.

Note: As with any other GUI object, you can view all properties or just the
recorded properties of a Java object in the All Standard or Recorded tabs of the
GUI Spy. For more information on these elements of the GUI Spy, refer to the
WinRunner User’s Guide.

To view object methods in your application or applet:

 1 Open the Java application or applet that contains the object for which you want
to view the methods.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Working with Java Methods and Events

Testing Java Applications and Applets Chapter 3, page 30

In

 2 Choose Tools > GUI Spy. The GUI Spy opens.

 3 Click the Java tab.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Working with Java Methods and Events

Testing Java Applications and Applets Chapter 3, page 31

In

 4 Click Spy and point to an object on the screen. The object is highlighted and the
active window name, object name, and all of the object’s public Java methods
appear in the appropriate fields. The object’s methods are listed first, followed by
a listing of methods inherited from the object’s superclasses.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Working with Java Methods and Events

Testing Java Applications and Applets Chapter 3, page 32

In

 5 To capture the object methods in the GUI Spy dialog box, point to the desired
object and press the STOP softkey. (The default softkey combination is Ctrl Left +
F3.)

To generate the TSL statement for invoking an object method:

 1 Activate the GUI Spy as described on page 29.

 2 Select the method that you want to invoke from the list of Public methods. The
appropriate java_activate_method is displayed in the TSL statement box.

Note: The java_activate_method function cannot invoke Protected, Default, or
Private method types.

 3 Copy the statement displayed in the box and paste it into your script.

 4 Input parameters are identified as Param1, Param2, etc. Replace the input
parameters in the statement with the parameter values you want to send to the
method.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Working with Java Methods and Events

Testing Java Applications and Applets Chapter 3, page 33

In

For example, if you want to change the text on the button labeled "One" to "Yes",
highlight the setText method and copy the statement in the box:

rc = java_activate_method("One","setText",retValue,param1);

and replace Param1 with "Yes" as shown below:

rc = java_activate_method("One","setText",retValue,"Yes");

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Working with Java Methods and Events

Testing Java Applications and Applets Chapter 3, page 34

In

Working with Non-GUI Java Objects (Advanced)

Invoking Methods of Non-GUI Java Objects
If a Java object is returned from a prior java_activate_method statement, you
can use the returned object in order to activate its methods.

You can also use the jco_create function to create a Java object within your
application, applet, or within the context of an existing object in your application
or applet.

The jco_create function has the following syntax:

jco_create (object , jco , class , [param1 , ... , param8])

The object parameter specifies the object whose classloader will be used to
create the new object. This can be the main application or applet window, or any
other Java object within the application or applet. The jco parameter is the new
object to be returned. The class parameter is the Java class name.
Param1...Param8 are the required parameters for that object constructor. These
parameters can be of type: int, float, boolean, string, or jco.

You invoke the methods of a returned object just as you would any other Java
object, using the java_activate_method syntax described above.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Working with Java Methods and Events

Testing Java Applications and Applets Chapter 3, page 35

In

Note: You can use the "_jco_null" object as a parameter in order to represent a
null object.

When a Java object is returned from a java_activate_method or jco_create
statement, the object is stored in memory. When you have finished using the
returned object in your script, you should free it from memory using the jco_free
function to free the individual object, or jco_free_all function to release all objects
currently in memory.

These two functions have the following syntax:

jco_free (object_name);
jco_free_all();

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Working with Java Methods and Events

Testing Java Applications and Applets Chapter 3, page 36

In

Note: You can use the returned object only to activate the methods of that object
or as an input parameter for another java_activate_method statement. The
returned objects do not behave like standard objects. For example, you cannot
view the properties of an object that was returned from a java_activate_method
statement.

If you add a returned object, such as the Dimention object that is returned from
the getMinimumSize method, to the Watch List, the object would appear only as
follows:

_jco_java.awt.Dimention

Viewing the Object Methods of non-GUI Java objects
You can use the Java Method wizard to view the methods associated with non-
GUI Java objects returned from a previous java_activate_method or jco_create
statement and to generate the appropriate java_activate_method statement for
one of the displayed methods.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Working with Java Methods and Events

Testing Java Applications and Applets Chapter 3, page 37

In

To view the methods for a jco object in your application or applet:

 1 Open the Java application or applet that contains the object for which you want
to view the methods.

 2 Enter a method_wizard statement to activate the Method wizard using the
syntax:

method_wizard (jco_object);
where jco_object is the object for which you want to view the methods.

 3 Choose Run > Step, or click the Step button to run the statement. The Java
Method wizard opens and displays a list with the object’s class and of all its
superclasses.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Working with Java Methods and Events

Testing Java Applications and Applets Chapter 3, page 38

In

 4 Double-click a class element to view a summary of available methods by type.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Working with Java Methods and Events

Testing Java Applications and Applets Chapter 3, page 39

In

 5 Double-click a method type to view the related methods.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Working with Java Methods and Events

Testing Java Applications and Applets Chapter 3, page 40

In

To generate the TSL statement for invoking a jco method:

 1 Activate the Java Method wizard as described on page 37.

 2 Select the method that you want to invoke from the list of Public methods under
the appropriate object class. A TSL statement is displayed in the TSL statement
box.

Note: The java_activate_method function cannot invoke Protected, Default, or
Private method types.

 3 Copy the statement displayed in the TSL statement box and paste it into your
script.

 4 Replace the * symbol(s) in the statement with the parameter values you want to
send to the method.

For example, if you want to enlarge a Rectangle object that you created using
jco_create by one pixel in each direction, copy the TSL statement displayed in
the TSL statement box:

rc = java_activate_method("_jco_java.awt.Rectangle", "add", retValue, *, *);

and replace the * symbols with 1,1 as shown below:

rc = java_activate_method(newRectangle, "add", retValue, 1, 1);

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Working with Java Methods and Events

Testing Java Applications and Applets Chapter 3, page 41

In

Firing Java Events

You can simulate an event on a Java object during a test run with the
java_fire_event function. This function has the following syntax:

java_fire_event (object , class [, constructor_param1,..., contructor_paramn
]);

The object parameter is the logical name of the Java object. The class
parameter is the name of the Java class representing the event to be activated.
The constructor_paramn parameters are the required parameters for the object
constructor (excluding the object source, which is specified in the object
parameter).

Note: The constructor’s Event ID may be entered as the ID number or the final
field string that represents the Event ID.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Working with Java Methods and Events

Testing Java Applications and Applets Chapter 3, page 42

In

For example, you can use the java_fire_event function to fire a
MOUSE_CLICKED event using the following script:

set_window("mybuttonapplet.htm", 2);
java_fire_event ("MyButton", "java.awt.event.MouseEvent",
"MOUSE_CLICKED", get_time(), "BUTTON1_MASK", 4, 4, 1, "OFF");

In the example above, the constructor has the following parameters: int id, long
when, int modifiers, int x, int y, int clickCount, boolean popupTrigger, where id =
"MOUSE_CLICKED" , when = get_time() , modifiers = "BUTTON1_MASK" ,
x = 4, y = 4, clickCount = 1, popupTrigger = "OFF".

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Configuring Custom Java Objects

Testing Java Applications and Applets Chapter 4, page 43

�

Configuring Custom Java Objects
This chapter explains how to add Java objects to the GUI map and to configure
custom Java objects as standard GUI objects.

This chapter describes:

• Adding Custom Java Objects to the GUI Map

• Configuring Custom Java Objects with the Custom Object Wizard

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Configuring Custom Java Objects

Testing Java Applications and Applets Chapter 4, page 44

In

About Configuring Custom Java Objects

With the Java Add-in you can use WinRunner to record test scripts on most Java
applications and applets, just like you would in any other Windows application. If
you record an action on a custom or unsupported Java object, however,
WinRunner maps the object to the general object class in the WinRunner GUI
map. When this occurs, you can use the Custom Object wizard to configure the
GUI map to recognize these Java objects as a push button, check button, static
text or text field. This makes the test script easier to read and makes it easier for
you to perform checks on relevant object properties.

After using the wizard to configure a custom object, you can add it to the GUI map,
record actions and run it as you would any other WinRunner test.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Configuring Custom Java Objects

Testing Java Applications and Applets Chapter 4, page 45

In

Adding Custom Java Objects to the GUI Map

Once the Java Add-in is loaded, you can add custom Java objects to the GUI map
by recording an action or by using the Rapid Test Script Wizard or GUI Map Editor
to learn the objects. By default, however, these objects will each be mapped to
the general object class, and activities performed on those objects will generally
result in generic obj_mouse_click or win_mouse_click statements. The objects
will usually be identified in the GUI map by their label property, or if WinRunner
does not recognize the label, by a numbered class_index property.

For example, suppose you wish to record a test on a sophisticated subway routing
Java application. This application lets you select your starting location and
destination, and then suggests the best subway route to take. The application
allows you to select which train line(s) you prefer to use for your travels.

Since WinRunner cannot recognize the custom Java check boxes in the subway
application as GUI objects, when you check one of the options, the GUI map
defines the objects as:

{
class: object,
label: "M (Nassau St Express)"
}

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Configuring Custom Java Objects

Testing Java Applications and Applets Chapter 4, page 46

In

If you were to record a test in which you selected the “M”, “A” and “Six” lines as
your preferred lines, WinRunner would create a test script similar to the
following:

set_window("Line Selection", 1);
obj_mouse_click("M (Nassau St Express)", 6, 32, LEFT);
obj_mouse_click("A (Far Rockaway) (Eighth Av...", 10, 30, LEFT);
obj_mouse_click("Six (Lexington Ave Local)", 5, 27, LEFT);

The test script above is difficult to understand. If, instead, you use the Custom
Object wizard in order to associate the custom objects with the check button
class, WinRunner records a script similar to the following:

set_window("Line Selection", 8);
button_set("M (Nassau St Express)", ON);
button_set("A (Far Rockaway) (Eighth Av...", ON);
button_set("Six (Lexington Ave Local)", ON);

Now it is easy to see that the objects in the script are check buttons and that the
user selected (turned ON) the three check buttons.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Configuring Custom Java Objects

Testing Java Applications and Applets Chapter 4, page 47

In

Configuring Custom Java Objects with the Custom Object
Wizard

You configure a custom Java object in WinRunner using the Custom Object
wizard in order to assign the object to a standard GUI class and to object
properties that will uniquely identify the object.

Note: The Custom Object wizard (Java CUI Map Configuration option) serves a
similar purpose for Java objects to that which the regular GUI Map Configuration
tool serves for Windows objects. Because Java objects do not have a handle or
window (and therefore no MSW class), the regular GUI Map Configuration tool is
unable to perform a set_class_map type mapping. Thus, when you want to map
a custom Java object to a standard class, always use the Java GUI Map
Configuration option. For more information about the GUI Map Configuration
tool, refer to the WinRunner User’s Guide.

To configure a Java object using the Custom Object wizard:

 1 Open your Java application containing custom Java objects.

 2 Open a new test in WinRunner.

 3 Choose Tools > Java GUI Map Configuration. The Custom Object Welcome
screen opens. Click Next.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Configuring Custom Java Objects

Testing Java Applications and Applets Chapter 4, page 48

In

 4 Click the Mark Object button. Point to an object in the Java application. The
object is highlighted. Click any mouse button to select the object. A default name
appears in the Object class field.

 5 Click the Highlight button if you want to confirm that the correct option was
selected. The object you selected is highlighted.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Configuring Custom Java Objects

Testing Java Applications and Applets Chapter 4, page 49

In

 6 If you want to select a different object, repeat steps 4 and 5. When you are
satisfied with your selection, click Next.

 7 Select a standard class object for the object you selected. Click Next.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Configuring Custom Java Objects

Testing Java Applications and Applets Chapter 4, page 50

In

 8 Select an appropriate custom property and corresponding property value from
the property list on the right to uniquely identify the object, or accept the
suggested property and value.

If you selected check_button as the standard object, two custom properties are
necessary. After selecting the first property, click Next Property to select the
second property for the object.

Click Next.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Configuring Custom Java Objects

Testing Java Applications and Applets Chapter 4, page 51

In

 9 If you want to learn another custom Java object, click Yes. The wizard returns to
the Mark Custom Object screen. Repeat steps 4-8 for each custom object you
want to configure. If you are finished configuring custom Java options, click No.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Configuring Custom Java Objects

Testing Java Applications and Applets Chapter 4, page 52

In

 10 The Finish screen opens. Click the Finish button to close the Custom Object
wizard.

 11 Close and reopen your Java application or applet in order to activate the new
configuration for the object(s).

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Configuring Custom Java Objects

Testing Java Applications and Applets Chapter 4, page 53

In

Note: The new object configuration settings will not take effect until the Java
application or applet is restarted.

Once you have configured a custom Java option using the Custom Object
wizard, you can add the objects to the GUI map or record a test as you would in
any Windows application. For more information on the GUI map and recording
scripts, refer to the WinRunner User’s Guide.

Note: When you configure custom Java objects in WinRunner, the Program
Files\Common Files\Mercury
Interactive\SharedFiles\JavaAddin\classes\customization.properties file is
created and contains information about the custom Java objects. If you no longer
want to use your custom Java configurations, delete the custom Java objects in
the GUI Map and delete the customization.properties file. Then restart your Java
application or applet.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Using Java Direct Call (JDC)

Testing Java Applications and Applets Chapter 5, page 54

�

Using Java Direct Call (JDC)
This chapter explains how to use the Java Direct Call (JDC) Mechanism to call
Java functions from TSL scripts.

This chapter describes

• Using the JDC Mechanism

• Preparing a TSL Script for Use with JDC

• Using JDC: An Example

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Using Java Direct Call (JDC)

Testing Java Applications and Applets Chapter 5, page 55

In

About Java Direct Call Mechanism

JDC enables you to specify a Java function to execute from the TSL script. This
user-defined Java function may contain any standard Java code.

Unlike the java_activate_method function described in Chapter 1, Testing
Standard Java Objects, JDC functions work on Java applications that do not
have any Java User Interface object bound to them. These functions can retrieve
string parameters provided in TSL.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Using Java Direct Call (JDC)

Testing Java Applications and Applets Chapter 5, page 56

In

Using the JDC Mechanism

You can use standard Java code to call a Java function from a TSL script.

To enable the JDC mechanism:

 1 Create a Java class listing and implementing all methods to be called from the
TSL script.

All methods must follow the prototype convention:

static int jdc_< func_name >(String [] params);

func_name a name of the function

params an array of parameters passed from WinRunner.

 2 Register JDC class(es) with WinRunner by using the following TSL statement:

set_aut_var("JDC_CLASSES", "foo.bar.class1;foo.bar.class2");

Note: You can create as many JDC classes as required. JDC classes must be
found in the CLASSPATH.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Using Java Direct Call (JDC)

Testing Java Applications and Applets Chapter 5, page 57

In

 3 Provide an "extern" definition for the JDC function in TSL.

For example, if you have defined a JDC function in your Java class as:

static int jdc_print_strings(String[] param);

make the following declaration in TSL:

extern int jdc_print_strings(in string p1, in string p2);

When calling Java, param[0] will contain p1 and param[1] will contain p2.

 4 Call the JDC function from TSL:

jdc_print_strings("str1", "str2");

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Using Java Direct Call (JDC)

Testing Java Applications and Applets Chapter 5, page 58

In

Preparing a TSL Script for Use with JDC

The jdc_aut_connect function must appear in your script prior to any jdc
operation. This function establishes a connection between WinRunner and Java
applications and must be executed at least once. Your java application or applet
must be loaded before running this function. You use this function as follows:

jdc_aut_connect (in_timeout);

timeout time (in seconds) that is added to the regular timeout for
checkpoints and CS statements (Settings > General
Options > Run Tab), resulting in the maximum interval
before the next statement is executed.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Using Java Direct Call (JDC)

Testing Java Applications and Applets Chapter 5, page 59

In

Using JDC: An Example

The example below shows how a user prepares the Java source file with
definitions for two Java functions. Then the user registers the Java functions with
WinRunner so that he can call the Java functions from the TSL script.

Preparing the Java Source File
The following sample Java source file defines 2 Java functions for later use in the
TSL script.

// Sample File of JDC calling mechanism.

public class JdcExample {

/**
 This function will print the first parameter that it
receives to the console
 */
 public static int jdc_simple_call(String[] params) {
 String first_param = params[0];
 System.out.println("jdc_simple_call called: Got parameter: " +

first_param);
 return 0;
 }
 /**

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Using Java Direct Call (JDC)

Testing Java Applications and Applets Chapter 5, page 60

In

 This function will return the upper case version of the first
parameter string in the second parameter.

 */
 public static int jdc_out_par_call(String[] params) {
 // Convert input parameters
 String in_par = params[0];
 String out_par = params[1];

 System.out.println("jdc_out_par_call called: Got parameter: " +

in_par);
 out_par = in_par.toUpperCase();
 // Prepare output parameters
 params[1] = out_par;
 return 0;
 }
}

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Using Java Direct Call (JDC)

Testing Java Applications and Applets Chapter 5, page 61

In

Registering JDC with WinRunner and calling Java functions in
the TSL Script
The TSL script segment below shows how to define the “extern” declaration, to
load and register the JDC classes defined in the Java source code, and then to
call the Java functions.

define "extern" declaration
extern int jdc_simple_call(in string str);
extern int jdc_out_par_call(in string str1, out string str2<256>);

register JDC classes

make sure the classes are in the classpath
set_aut_var("JDC_CLASSES", "JdcExample");

connect to the AUT
rc=jdc_aut_connect(10);
if (rc != E_OK)

pause ("Error: Couldn’t connect to AUT\n Check that the AUT is loaded
!");

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Using Java Direct Call (JDC)

Testing Java Applications and Applets Chapter 5, page 62

In

call JDC functions - this will print the parameter to the Java console
r1=jdc_simple_call("my string");
r2=jdc_simple_call(256);

this will put the Upper Case form of the parameter in the UpperCaseParam
var.
r3=jdc_out_par_call("my string", UpperCaseParam);

pause(UpperCaseParam);

Note: You must start WinRunner with Java Add-in support before you start your
Java application or applet. Otherwise, WinRunner may not record and run your
test script properly.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Troubleshooting Java Add-in Recording Problems

Testing Java Applications and Applets Chapter 6, page 63

�

Troubleshooting Java Add-in Recording
Problems

Once you complete the Java Add-in installation process, you should be able to
successfully record from Netscape, Internet Explorer, AppletViewer, or a
standalone Java application. This chapter offers some guidance if you have
difficulty recording tests on Java Applets or Applications.

This chapter describes:

• Handling General Problems Testing Applets

• Handling Specific Java Add-in Problems

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Troubleshooting Java Add-in Recording Problems

Testing Java Applications and Applets Chapter 6, page 64

In

Handling General Problems Testing Applets

To analyze problems testing applets from Netscape or Internet Explorer:

 1 Perform each of the following checks:

• View the Java console and confirm that one of the following confirmation
messages appears: “Mercury Java support is active” or “Init Mercury
support”.

• Confirm that you are able to test your applet with the AppletViewer.

• View the install.log file located in the <WinRunner Installation Folder>\dat
folder.

 2 If any of the above checks are not successful, close WinRunner and all browsers
and re-install the Java Add-in.

 3 If you still have problems testing applets from Netscape or Internet Explorer,
please contact Mercury Support.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Troubleshooting Java Add-in Recording Problems

Testing Java Applications and Applets Chapter 6, page 65

In

Handling Specific Java Add-in Problems

If you are having specific problems installing or recording, try the relevant
solutions from the following list:

• If the Java console and a Java plug-in are open simultaneously, the Java add-in
support will not function properly as this scenario results in two virtual machines
and WinRunner cannot distinguish between them.

Close the browser and Java console, then re-open the browser and try again.

• The Multi-JDK support enables you to work with several versions of JDK without
modifying your Java Add-in installation. The Multi-JDK feature supports JDK
versions 1.1.6-1.1.8, 1.2.-1.2.2, and 1.3. It does not support 1.1.5 as this version
is not Year 2000 compliant.

• If you have JDK 1.1.x installed and you want to test an applet, enter:

AppletViewer <URL address>

• If you have JRE installed and you want to test an application, enter:

jre -cp %classpath% <Application class>
Then check the classpath and verify that it contains the %mic_classes% folder.

• If you encounter any problem working with the multi-JDK support with JDK 1.1.x,
verify that you have the environment variable:

_CLASSLOAD_HOOK=mic_supp
If the environment variable is missing, add it as shown above.

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

Troubleshooting Java Add-in Recording Problems

Testing Java Applications and Applets Chapter 6, page 66

In

• If you have JDK 1.2.x or 1.3 installed and you want to test an applet with
AppletViewer, enter:

AppletViewer -J-Xbootclasspath:%mic_classes%;
<Java installation folder>\jre\lib\rt.jar;.;%classpath% -J-Xrunmic_supp
<URL address>

• If you have JDK 1.2.x or 1.3 installed and you want to test an application, enter:

java -Xbootclasspath:%mic_classes%;<Java installation
folder>\jre\lib\rt.jar;.;%classpath% -Xrunmic_supp <Application class>

• If you have Microsoft JView and you want to set the classpath, use only the
classpath environment variable. Do not use the /cp /cp:p or /cp:a options.

Index

Testing Java Applications and Applets Page 67

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

A

activate changes 52
Add-in Manager 8
adding custom Java objects to the GUI map

45–46

C

check button 49, 50
configuring custom Java objects 43–53
configuring the way WinRunner learns 20
Custom Object wizard 47–53
custom property 50
customization.properties file 53

E

edit field 49
edit objects, activating 16
edit_activate function 16
extern definition 57

F

firing Java events 20, 41

G

GUI Map Editor 6
GUI Spy 29–33
GUI spy 45

H

highlight 48

I

invoking a Java method 27
invoking a Java method from a returned object

34

J

Java Add-in, starting the 8
Java bean properties, setting the value of 27
Java Direct Call Mechanism 54–62
Java events, simulating 20, 41
Java Method wizard 29–33, 37
Java method, invoking 27
Java method, invoking from a returned object

34
Java pop-up menu, selecting an item from 18
Java wizard 47–53

0
Index

Index

Testing Java Applications and Applets Page 68

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

java_activate_method function 27
invoking a jco method 32, 40
viewing the methods for a non-GUI object

37
java_fire_event function 20, 41
jco objects 34–40
jco_create function 34
jco_free function 35
jco_free_all function 35
JDC 54–62
JView 66

L

list items, finding the location of 17
list_get_item_coord function 17

M

mark object 48
method_wizard statement 37
methods, public 32, 40

N

non-GUI Java objects, working with 34–40

O

obj_mouse_click function 12
obj_mouse_click statement 45
obj_set_info function 27
object configuration, activate changes in 52
object methods, viewing 29–33

P

popup_select_item function 18
public methods 32, 40
push button 49

R

registering JDC classes with WinRunner 56

Index

Testing Java Applications and Applets Page 69

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

S

set_aut_var function 20
COLUMN_NUMBER variable 23
EDIT_REPLAY_MODE variable 20
EVENT_MODEL variable 21
MAX_COLUMN_GAP variable 23
MAX_LINE_DEVIATION variable 23
MAX_LIST_COLUMNS variable 23
MAX_ROW_GAP variable 24
MAX_TEXT_DISTANCE variable 21
RECORD_BY_NUM variable 24
REPLAY_INTERVAL variable 22
RETRY_DELAY variable 22
SKIP_ON_LEARN variable 22
TABLE_RECORD_MODE variable 22

setting the value of a Java bean property 27
simulating Java events 20, 41
standard class object 49
static text 49

T

troubleshooting
handling specific Java Add-in problems 65
Java Add-in recording problems 63–66
Java console 65
JDK/JRE 65
JView 66
testing applets 64

TSL functions for standard Java objects
10–24

V

variables, for set_aut_var 20–24

W

win_mouse_click function 12
win_mouse_click statement 45

In

Books
Online

Find�

� Books
Online

Find
Again

Help�

��

�

Top of
Chapter

➜
➥

Back

WinRunner - Testing Java Applications and Applets, Version 7.0

© Copyright 1994 - 2001 by Mercury Interactive Corporation

All rights reserved. All text and figures included in this publication are the exclusive property of Mercury
Interactive Corporation, and may not be copied, reproduced, or used in any way without the express
permission in writing of Mercury Interactive. Information in this document is subject to change without notice
and does not represent a commitment on the part of Mercury Interactive.

Mercury Interactive may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents except as
expressly provided in any written license agreement from Mercury Interactive.

WinRunner, XRunner, LoadRunner, TestDirector, TestSuite, and WebTest are registered trademarks of
Mercury Interactive Corporation in the United States and/or other countries. Astra SiteManager, Astra
SiteTest, Astra QuickTest, Astra LoadTest, Topaz, RapidTest, QuickTest, Visual Testing, Action Tracker, Link
Doctor, Change Viewer, Dynamic Scan, Fast Scan, and Visual Web Display are trademarks of Mercury
Interactive Corporation in the United States and/or other countries.

This document also contains registered trademarks, trademarks and service marks that are owned by their
respective companies or organizations. Mercury Interactive Corporation disclaims any responsibility for
specifying which marks are owned by which companies or organizations.

If you have any comments or suggestions regarding this document, please send them via e-mail to
documentation@mercury.co.il.

Mercury Interactive Corporation
1325 Borregas Avenue
Sunnyvale, CA 94089
Tel. (408) 822-5200 (800) TEST-911
Fax. (408) 822-5300

WRJAVA263UG7.0/01

	WinRunner - Testing Java Applications and Applets, Version 7.0
	Table of Contents
	Introduction
	Using the Java Add-in
	How the Java Add-in Identifies Java Objects
	Activating the Java Add-in

	Testing Standard Java Objects
	About Testing Standard Java Objects
	Recording Context Sensitive Tests
	Enhancing Your Script with TSL
	Setting the Value of a Java Bean Property
	Activating a Java Edit Object
	Finding the Location of a List Item
	Selecting an Item from a Java Pop-up Menu
	Configuring How WinRunner Learns Object Descriptions and Runs Tests

	Working with Java Methods and Events
	About Working with Java Methods and Events
	Invoking Java Methods
	Viewing Object Methods in Your Application or Applet
	Working with Non-GUI Java Objects (Advanced)
	Firing Java Events

	Configuring Custom Java Objects
	About Configuring Custom Java Objects
	Adding Custom Java Objects to the GUI Map
	Configuring Custom Java Objects with the Custom Object Wizard

	Using Java Direct Call (JDC)
	About Java Direct Call Mechanism
	Using the JDC Mechanism
	Preparing a TSL Script for Use with JDC
	Using JDC: An Example

	Troubleshooting Java Add�in Recording Problems
	Handling General Problems Testing Applets
	Handling Specific Java Add-in Problems

	Index

