
HP Universal CMDB  

for the Windows and Red Hat Enterprise Linux operating systems 

Software Version: 10.00 

Upgrader Reference 

Document Release Date: June 2012 

Software Release Date: June 2012 

 



Legal Notices 

Warranty 

The only warranties for HP products and services are set forth in the express warranty statements accompanying 

such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not 

be liable for technical or editorial errors or omissions contained herein. 

The information contained herein is subject to change without notice. 

Restricted Rights Legend 

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 

12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for 

Commercial Items are licensed to the U.S. Government under vendor's standard commercial license. 

Copyright Notices 

© Copyright 2002 - 2012 Hewlett-Packard Development Company, L.P 

 

  



Introduction 
 

This document describes each step in the UCMDB upgrade process. 

For each step, the following is described: 

 A description of the step. 

 Whether the step is critical. A step is considered critical in the following cases: 

o Skipping it would prevent the UCMDB server from starting after upgrade. 

o Skipping it would induce critical configuration or data loss that cannot be restored after upgrade. 

o Skipping it would prevent a critical component from operating properly after the upgrade. 

 Whether the step can be re-run. In case of failure during the upgrade, whether or not this step can be re-

run over the same schemas. 

 Implications of failure. If this upgrade step fails, what is the effect on the UCMDB? If the step can be re-

run, what can be done to resolve the issues? 

 Log files: Important messages from the log file that are typical to this upgrade step, and the meaning of 

each message. Unless otherwise specified, all messages appear in the following log file: 

C:\hp\UCMDB\UCMDBServer\runtime-upgrade\log\upgrade.short.log 

 



 

Upgrader Description C
ri

ti
c
a

l 

C
a
n

 b
e
 

re
ru

n
 

Implications of Failure Log Files 

SchemaAdditionsUpgrader Adds the new required tables and 
columns to the UCMDB. 

  UCMDB server cannot function 
properly if this upgrader fails. 

upgrade.detailed.log 

Global Settings Resources Upgrader 

 

Upgrades all global settings from the old 
settings table (CCM_SETTINGS) to the 
new table: (URM_RESOURCES). 

  Upgrade: UCMDB server will not 
function properly 

Cleanup: CCM settings table will not 
be dropped.  

Note: This step cannot be rerun if the 
cleanup has already taken place 
because the old table is dropped the 
first time round. 

 upgrade.detailed.log 

 urm.log 

 urm_detailed.log 

 urm_audit.log 

 urm_detailed_audit.log 

 

Customer Settings Resources Upgrader 

 

Upgrades all customer specific settings 
from the old settings table 
(CCM_SETTINGS) to the new table: 
(URM_RESOURCES). 

  Upgrade: UCMDB server will not 
function properly 

Cleanup: CCM settings table will not 
be dropped.  

Note: This step cannot be rerun if the 
cleanup has already taken place 
because the old table is dropped the 
first time round. 

 upgrade.detailed.log 

 urm.log 

 urm_detailed.log 

 urm_audit.log 

 urm_detailed_audit.log 

 

Database Privileges Upgrader 

 

Checks if the mandatory „create type‟ 
grant exists. 

  Fails the upgrade process with the 
following error message: 

"The following privilege is 
missing: 'GRANT CREATE TYPE 
TO <USER_NAME>" 

 upgrade.log  

 upgrade.detailed.log 

 error.log 

Class Model Resources Upgrader Migrates all the class model resources 
from the old format (held in CCM_* tables 
in version 9.x) into the URM (Unified 
Resource Manager). 

  Upgrade: Old class model is not 
imported into the URM, runs once 
per customer. 

Cleanup: Deletes the CCM tables 
that are used in version 9.x to store 
the class model, runs once per 
schema 

 upgrade.log 

 error.log 

 urm.log 

 urm_detailed.log 

 urm_audit.log 

 urm_detailed_audit.log 



Upgrader Description C
ri

ti
c
a

l 

C
a
n

 b
e
 

re
ru

n
 

Implications of Failure Log Files 

Class Model Extensions Upgrader Copies the meta-data of class model 
extensions from the table where it was 
stored in version 9.x (table name 
CLASS_EXTENSION) into the (Unified 
Resource Manager). 

  Upgrade: Class model meta data will 
not be imported into the URM, runs 
once per customer. 

Cleanup: Drops the 
CLASS_EXTENSION table, runs 
once per schema. 

 upgrade.log 

 error.log 

Consolidate Mode Upgrader Consolidated mode is not supported as of 
ver. 10 of  UCMDB. This upgrader 
„isolates‟ consolidated customers. 

 

  Upgrade: The customer that was in 
consolidated mode in 9.x will not be 
isolated. 

Cleanup: The data (tables, views) 
about the consolidated customer will 
remain in the database 

upgrade.detailed.log 

Check cp and sp version are correct for 
upgrade 

Ensures that the Content Pack and the 
service pack of the version from which the 
upgrade is being run are correct for the 
upgrade. It is meant to prevent upgrades 
on systems of unsupported versions of 
content and service packs. The upgrader 
does not actually make any modifications, 
it only performs a check.  

If the criteria are not satisfied, the upgrade 
fails. 

  The system configuration of the 
upgraded UCMDB is not correct. In 
this case, the upgrade cannot 
continue. 

upgrade.log 

Offline Resources Retriever Extracts queries, views, reports, 
enrichments, correlations, folders and 
bundles from the database and stores 
them to disk. The resources are stored in 
C:\hp\UCMDB\UCMDBServer\runtime\<
Customer ID>\<resource type>\ 

  Upgrade: The failed resources will 
not be included in the environment 
after the upgrade. 

Cleanup: The resources will remain 
as garbage in the Model.  

 upgrade.short.log 

 upgrade.detailed.log 

 urm.log 

 urm_detailed.log 

 urm_audit.log 

 urm_detailed_audit.log 

 

Will contain the number of resources 
per type that were stored on disk, 
and warning and error messages in 
case there is a problem with a 
resource. 



Upgrader Description C
ri

ti
c
a

l 

C
a
n

 b
e
 

re
ru

n
 

Implications of Failure Log Files 

Update internal class model from resources Updates the internal class model from the 
xml resources  

  Varies, depending on what exact 
resource has failed 

 cmdb.classmodel.log 

 error.log 

Upgrade reconciliation resources Upgrades CIT identification rules and 
reconciliation priority definitions of 
external data sources. 

  CI reconciliation will not work 
properly when data is populating 
UCMDB. 

 upgrade.detailed.log 

 urm.log 

 urm_detailed.log 

 urm_audit.log 

 urm_detailed_audit.log 

 

History Upgrader  Runs the following steps for every CI 

type that is audited in the history.  

o Creates all the necessary monthly 
history tables (HDM/HDML) 
depending on the dates of the 
events for this CI type in the old 
history and the 
history.purging.months.to.save.bac
k setting.  

o Upgrades each event that should 
not have been purged from the old 
history to the new history tables.  

o Inserts into the history root table a 

record for every CI that had at least 

one history event upgraded to the 

new history.  

 Purges the data while executing based 

on the 

history.purging.months.to.save.back 

setting, meaning that history events 

that should be purged would not be 

copied to the new history tables. 

 The history.purging.days.to.save.back 

setting from 9.0x is converted to 

months (rounding up) and is saved in 

the 

history.purging.months.to.save.back 

  If a CI type's history is not upgraded: 

 Model update and history 

operations will fail since history 

tables will not be created for this 

CI type. 

 No history events from the old 

history will be upgraded to the 

new history for this CI type. 

After the upgrade is finished and the 
server is running, you can run the 
alignHistoryForType operation from 
the history JMX services to create 
the history tables for a specific CI 
type that the history upgrader failed 
to upgrade or for all the CI types. 

You can also run 
initializeHistoryDBFromModel 
using the JMX console to create 
baseline records for all classes, 
based on current data model state. 
This operation ensures that queries 
return correct previous values and 
data of removed CIs. It may take 
several minutes and creates baseline 
events even for classes that 
upgraded properly (does not affect 
the history data correctness). 

upgrade.detailed.log 

Logs the following:  

1. Upgrade progress 

2. History table creations 

3. For every CI type, the number 

of CIs that will be upgraded and 

the progress of their upgrade. 

(debug mode) 



Upgrader Description C
ri

ti
c
a

l 

C
a
n

 b
e
 

re
ru

n
 

Implications of Failure Log Files 

setting. 
In this case, the Model update and 
history operations will not fail, but the 
new history will not contain any 
history events for this CI type. 

View Archive Upgrader Copies view archive tables 
(VIEW_ARCHIVE and 
ARCHIVE_CHUNK) from the old history 
schema to the UCMDB schema. Archives 
are copied in bulks as they contain their 
TQL result. 

  Upgrade: The archive will not be 
copied to the new schema and will 
not be available in the upgraded 
system. 

Cleanup: The archives will remain as 
garbage in the old schema. 

 upgrade.short.log 

 upgrade.detailed.log 

 

Will contain information about the 
archive being copied and the copy 
progress per-table. 

Removed CIs History Upgrader For every CI type that is audited in the 
new history, all the CIs that were removed 
in the time frame for saving removed CIs 
will be upgraded to the removed CIs 
tables (HDMR\HDMRL) of this CI type.  

The time frame for saving removed CIs is 
based on the 
history.purging.months.to.save.back and 
history.purging.extra.months.to.save.back
.removed.data settings (new setting in 
10.0, default value: 1 month). 

The time frame is from the date of the 
upgrade minus the number of months the 
purging saves date to the same date 
minus the number of months to save 
removed CIs. 

For example, . if 
<history.purging.months.to.save.back>  is 
3 months and 
history.purging.extra.months.to.save.back
.removed.data is 2 months and the 
upgrade runs at 15.7.2012, the time frame 
will be from 15.2.2012 to 15.4.2012. 

  Upgrade: If a CI type's removed data 
history was not upgraded, the 
removed data history table will not be 
created or the removed data events 
from the old history will be missing in 
table. If the removed CIs history table 
was not created for a CI type, 
purging will not save removed CIs . 

When the upgrade is finished and the 
server is running, you can run the 
alignHistoryForType operation from 
the history JMX services to create 
the history tables for a specific CI 
type that the history upgrader failed 
to upgrade or for all the CI types. 

In this case, the removed CIs tables 
for all the CI types that the operation 
ran for will not contain any events 
from the old history. 

Cleanup: Old history tables will not 
be deleted from the old history 
schema 

upgrade.detailed.log 

Logs the following:  

1. Upgrade progress 

2. Removed CIs History table 

creation 

3. Each class number of removed 

CIs found in the time frame 

Authorization Upgrader Upgrades 9.0x roles and users, as 
follows: 

  Upgrade:  

 If failed while upgrading the roles: 

security.authorization.management.lo
g: Logs every modification to the 
authorization model, such as roles 



Upgrader Description C
ri

ti
c
a

l 

C
a
n

 b
e
 

re
ru

n
 

Implications of Failure Log Files 

1. Upgrades roles: 
o Each 9.x role is converted to a 

10.0 role (there is specific 
conversion for each internal 
permission) 

o If 9.x role1 is associated with 9.x 
role2, the corresponding upgraded 
role1 in 10.0 will contain the 
permissions of both role1 and 
role2 (because in 10.0  the are no 
role associations). 

2. Upgrades users: 
o Upgrades each user‟s properties 
o If the 9.x user is associated with 

the „admin‟ role, or with a role that 
is associated with „admin‟ – 
creates an association between 
the corresponding 10.0 user and 
the SuperAdmin role. 

o In all other cases 
 Creates an association between 

the 10.0 user and the 10.0 
upgraded roles, according to the 
role associations it had in 9.x 

 If the 9.x user had permission 
assigned directly to the user, then 
a new role is created in 10.0 with 
these permissions, and an 
association is created between 
the 10.0 converted user and this 
new role. The new role is named 
ConvertedRole1/2/3.... This name 
may be used by several 10.0 
users that had the same 
permissions in 9.x. 

 If a 9.x user had at least one 
discovery-related permission 
(whether directly assigned or via 
a role), then this user is granted 
the Discovery and Integrations 
Admin role in 10.00. 

some of the roles that existed in 9.x 
will not exist in 10.0; no user will 
exist in 10.0 (except for the out-of-
the-box users) 

 If failed while upgrading the users: 
some of the users that existed in 
9.x will not exist in 10.0; others 
may have only some of the 
permissions they had in 9.x 

Cleanup:  

 Old CI types may remain in the 
class model: user, 
integration_user, acl_role, 
acl_attachment, together with the 
9.x CIs representing the users and 
roles. This does not have any 
effect on the 10.0 security 
management. 

 The obsolete Basic_Security.zip 
package may remain in the 
Package Manager. 

creation (with the exact permissions), 
user creation, user role assignments, 
and so on. 

Users and Roles moves resources to 
the URM and writes to these log files: 

 upgrade.detailed.log 

 urm.log 

 urm_detailed.log 

 urm_audit.log 

 urm_detailed_audit.log 

 



Upgrader Description C
ri

ti
c
a

l 

C
a
n

 b
e
 

re
ru

n
 

Implications of Failure Log Files 

 

3. Upgrades integration users: 
o Upgrades each integration user‟s 

properties 
o Assigns SuperAdmin role to each 

integration user 

Authorization System 

 Users Upgrader 

Upgrades system users (sysadmin, 
UISysadmin, and possibly others that 
were created by the user). The following 
steps are performed: 

1. Upgrades the properties of the system 
user. 

2. Marks the 10.0 converted user as 
“server administrator” 

3. Assigns the 
SuperAdmin/NonUISuperAdmin role to 
the system user. The 
NonUISuperAdmin role is a new role 
created in 10.0, that is used for system 
users that did not have permission to 
access the UI in 9.x (like sysadmin). 

Note: 9.x system users are converted to 
10.0 “regular” users. There is no “system 
user” concept in 10.0. 

  Upgrade: System users will not be 
upgraded.  

sysadmin and UISysadmin will exist 
in 10.0, because they are taken from 
the Basic_Authorization.zip package. 
But if the user created other system 
users in 9.x, they may not exist in 
10.0 

Cleanup: The SYS_USERS table 
will remain in the database; old 9.x 
system users will remain. This will 
have no effect on 10.0 security 
management. 

 Upgrade.log: Logs the upgrade 
steps 
 

 security.authorization.management
.log: Logs every modification to the 
authorization model, such as role 
creation (with the exact 
permissions), user creation, user 
role assignments, and so on. 

 upgrade.detailed.log 

 urm.log 

 urm_detailed.log 

 urm_audit.log 

 urm_detailed_audit.log 
 

LDAP Group Mapping Upgrader Upgrades LDAP mappings. In 9.x each 
LDAP user was mapped to a role. In 10.0, 
each user is mapped to a user group, and 
the user group is mapped to a role. The 
upgrader performs the following: 

1. Collects all 9.x roles assigned to LDAP 
users. 

2. For each 9.x role, creates a user 
group in 10.0, and assigns it to the 
corresponding 10.0 role. 

3. Assigns each 10.0 user to a 10.0 user 
group. 

  LDAP users will not belong to user 
groups, and thus will have no 
permissions 

 Upgrade.log: Logs the upgrade 
steps 

 security.authorization.management
.log: Logs every modification to the 
authorization model, such as role 
creation (with the exact 
permissions), user creation, user 
role assignments, and so on. 



Upgrader Description C
ri

ti
c
a

l 

C
a
n

 b
e
 

re
ru

n
 

Implications of Failure Log Files 

LDAP Default Role Upgrader Creates a new user group in UCMDB and 
assigns the previously upgraded role that 
was configured as the LDAP default role 
to this group. 

  LDAP default role will be assigned 
when authenticating with an LDAP 
user that is part of an LDAP group 
that has no group mapping in the 
UCMDB. 

upgrade.detailed.log 

Offline Resource Loader Loads the upgraded resources created in 
the “Offline Resource Retriever” step from 
the disk to the database. 

  Upgrade: The failed resources will 
not be included in the environment 
after the upgrade. However, factory 
resources will be included as they 
are deployed in a different step. Only 
the user resources are missing. 

Cleanup: The CI types that 
represent the old resources in the 
Model will remain in the Class Model. 

 upgrade.short.log  

 upgrade.detailed.log 

Contains the number of resources 
per type that are stored on disk, and 
warning and error messages if  there 
is a problem with a resource. 

Note: If you need to rerun this step 
you will get a warning for each 
resource that was already deployed 
the first time the step ran. 

CIs Tenants Upgrader Handles CI tenant assignments in a multi-
tenant environment as follows: 

1. Collects all tenant names from the 
TenantOwner and TenantsUses 
properties of all 9.x CIs. 

2. Creates tenants with these names 
3. For CIs that do not have these 

properties, sets the system default 
tenant as their tenant “TenantOwner” 
and “TenantsUses” 

   Tenants that were defined on CIs 
in 9.x may not be created as “real 
tenants” in 10.0 

 Some CIs may remain with no 
tenant owner – illegal state 

 Upgrade log: Logs the upgrade 
steps 

 security.authorization.management
.log: Logs tenant assignments to 
resources 

 upgrade.detailed.log 

 urm.log 

 urm_detailed.log 

 urm_audit.log 

 urm_detailed_audit.log 

Note: CI tenant assignments are not 
logged 

Resources Tenants Upgrader In a multi-tenant environment, sets default 
tenant owner and consumers, as well as 
user owner, for all resources in 10.0. 

1. For every 10.0 resource, sets its 
tenant owner and tenant consumer to 
be the system default tenant. 

2. For every 10.0 resource, sets its user 
owner to be admin user. 

  Some resources may not have tenant 
owner or user owner – illegal state. 

 Upgrade log: Logs the upgrade 
steps 

 security.authorization.management
.log: Logs tenant assignments to 
resources 



Upgrader Description C
ri

ti
c
a

l 

C
a
n

 b
e
 

re
ru

n
 

Implications of Failure Log Files 

Tenants Information History Upgrader For multi tenancy environments,  for all 
the events that were upgraded, tenant 
owner/user will be entered: 

Tenant information (tenant owner and 
tenant user) was not tracked in version 
9.x but is tracked in 10.0.  

Since there is no information from 9.x to 
enter in the tenant owner/tenant user 
columns in the 10.0 model, the upgrader 
does the following:  

 If there was any tenant information for 

the CIs that existed in the model, the 

tenant information is copied from the 

model. 

 For CIs that were removed and do not 

exist in the model, the tenant owner 

and tenant user columns will be 

populated with the default tenant in the 

system.   

Note:  

 Even if these attributes were set to 

being tracked by the history they will 

not be taken into account during the 

upgrade. 

 For single tenancy system the 

upgrade does not do anything. 

  Tenant information will be missing in 
the history events. 

 

upgrade.detailed.log: 

 Logs upgrade progress 

 Logs all the CIs that were not found 
in the model and enters the default 
tenant for them (debug mode). 

Federation URM Resources Upgrader Upgrades the adapter, integration point 
and data push job resources to the URM 
and removes the Cmdb8xAdapter 

  All saved integration points and jobs 
will be lost and there will be no 
adapters available. 

 upgrade.detailed.log 

 urm.log 

 urm_detailed.log 

 urm_audit.log 

 urm_detailed_audit.log 

 

Basic Packages Deployer Deploys packages related to the UCMDB   Varies, depending on what exact  log\package_reports\customer_1\



Upgrader Description C
ri

ti
c
a

l 

C
a
n

 b
e
 

re
ru

n
 

Implications of Failure Log Files 

infrastructure. resource has failed deployReports 

 Mam.packaging.log 

 error.log 

 cmdb.classmodel.log 

CP Deployer Deploys the Content Pack provided with 

the new version 

  Varies very much on what exact 
resource has failed 

 log\package_reports\customer_1\
deployReports  

 Mam.packaging.log 

 error.log 

 cmdb.classmodel.log                             

CmdbAdapter Integration upgrader Updates the CmdbAdapter integration and 
population jobs to suitable for the 
Cmdb9xAdapter. 

  The saved integrations and jobs that 
were defined for the CmdbAdapter 
will be lost. 

upgrade.detailed.log 

Consistency Upgrader Fixes consistency issues in the database.   Database may contain inconsistent 
data (links with missing ends, IDs 
which exist only in the root table, or 
IDs which exist only in the CIT‟s data 
table) 

cmdb.db.tool 

OIDToHostClass upgrader Upgrades oidToHostClass user-defined 
rules to the new rule format and saves the 
new rules in the UserDefinedRules 
package with the name, 
userDefinedOidToHostClassRules.  

Removes the old oidToHostClass 
resource from the Network package. 

Notes: 

 Part of the oidToHostClass upgrade is 
to recognize the user-defined rules and 
transform only them to the new 
discovery rules format (the out-of-the-
box rules are not taken into 
consideration in this specific process). 
This recognition is done by comparing 
the oidToHostClass.xml content under 
CP.zip with the oidToHostClass 
resource deployed. The upgrader 
removes all of the out-of the box content 

   Upgrade: User-defined 
oidToHostClass rules will not be 
changed to the new normalization 
rule format and will not be part of 
the discovery rule engine. 

 Cleanup: The old 
oidToHostClass resource will not 
be removed. 

upgrade.detailed.log: 

Messages logged: 

 “Start upgrading 
oidToHostClass.xml” 

 “DONE upgrading 
oidToHostClass.xml” 

 Errors that will be logged during the 
upgrade: 
o “Previous CP.zip was not found 

under  
<defaultCpFile.getAbsolutePath
>. using default file from CP10.” 

o “oidToHostClass resource was 
not found in CP.zip. using 
default file from CP10.” 

o “FAILED Upgrading 
oidToHostClass.xml” 



Upgrader Description C
ri

ti
c
a

l 

C
a
n

 b
e
 

re
ru

n
 

Implications of Failure Log Files 

from the deployed data, and works only 
on what is left. 
The 9.x CP.zip file is not available when 
doing the upgrade - since the upgrade 
process is done by installing UCMDB 
10.00 from scratch without configuring a 
new schema and upgrading only the 
schema, and the CP.zip used for 
UCMDB 10.00 does not contain the 
oidToHostClass.xml file. 
To solve this issue: As part of the 
upgrade, the oidToHostClass.xml is 
taken from CP10.zip. If the 9.x server 
that is being upgraded used a more 
newer Content Pack, you should put the 
Content Pack used under:  
<server content dir>\content_packs_9x. 
The upgrader first looks for the Content 
Pack in the folder specified above. If it is 
not there, it uses the saved file from 
Content Pack 10.00. 
 

 The upgrader will add to each output 
attribute in the user defined rules the 
prefix “discovered_” (for example, 
discovered_vendor, discovered_model) 
This does not happen in the out-of-the- 
box rules since the values there are 
already normalized. 
If the user wants to have the rules insert 
values to real attributes and not 
“discovered” attributes – he should open 
the userDefinedOidToHostClass file, 
check that output values (that he 
defined on the 9.x server) are 
normalized and change the rule to use 
real output attributes (for example, 
change “discovered_vendor” to be 
“vendor”) 

 



Upgrader Description C
ri

ti
c
a

l 

C
a
n

 b
e
 

re
ru

n
 

Implications of Failure Log Files 

SysObjectIdUpgrader Adds a "." (period) to the beginning of the 
sys_object_id attribute of the Node CIs.  

This is necessary for consistency with 
newly discovered sys_object_id 
attributes which start with a "." (period). 

Note: If the sys_object_id attribute is 
empty or already starts with a "." (period), 
it is not changed. 

  The value of the sys_object_id 
attribute will not be consistent with 
the new discovered Nodes. 

upgrade.detailed.log 

 Reports upgrader start 

 Reports the number of CIs to 
upgrade 

 Reports upgrader finish 

 In case of failure, reports the 
cause of failure 

High Availability Upgrader Upgrades the high availability related data 
in UCMDB 

 

  The high availability related data 
tables will not be consistent with the 
new UCMDB codebase. The high 
availability feature will not work. 

upgrade.detailed.log 

HistoryAutoCompletionUpgrader Completes history changes data in the 
history tables, for changes made during 
other upgrade steps. 

  May cause low performance the first 
time a user gets history data for 
specific CIs. 

 upgrade.detailed.log: Upgrader 
progress data log 

 history.log: History operation log 

UndeployOldAdaptersUpgrader Undeploys the old RMI and Changes 
adapters and updates the data push jobs 
that used these adapters as a source to 
use a dummy source. In addition, data 
push jobs that used the old data push 
engine and were configured to have the 
RMI adapter as the source (jobs that were 
saved as RMI/topology) are marked to run 
data push jobs with a full layout TQL. 

  The old saved data push integrations 
that were configured will not be 
available. 

upgrade.detailed.log 

Reconciliation priorities cleanup upgrader 
(LOA table cleanup) 

In UCMDB 9.x the reconciliation priorities 
of some of the deleted CIs were left in 
persistence (database table “LOA”). This 
upgrader removes obsolete reconciliation 
priorities. 

  Obsolete reconciliation priorities may 
cause failures when data is 
populating UCMDB. 

upgrader.detailed.log 

CleanupRemoveColumnsUpgrader Removes the old and obsolete tables and 
columns from the CMDB. 

   Garbage will be left in the database 
and the system will not be cleaned 
properly. 

upgrade.detailed.log 

Search Configuration Upgrader New search-engine configurations are 
saved in URM, while configurations for 

  Out-of-the-box search-configuration upgrade.detailed.log  



Upgrader Description C
ri

ti
c
a

l 

C
a
n

 b
e
 

re
ru

n
 

Implications of Failure Log Files 

versions of UCMDB Browser prior to 
version 1.7 were defined through 
qualifiers in the class model. 

This upgrader upgrades the search 
configuration to support the new search 
engine. 

Actions taken: 

Any CI Type with qualifier 
CMS_BROWSER_SEARCH / 
MODELING_ENABLED is added to 
search-ranking-configuration with 
Ranking-Priority 2 . 

Any attribute with qualifier 
CMS_SEARCHABLE_ATTRIBUTE is 
added to search-indexer-configuration 
and to search-ranking-configuration with 
Ranking-Priority 2. 

Notes: 

Runs only if the Enable search option 
was selected during upgrade 
(cmdb.search.enabled is set to TRUE). 

Class model does not change following 
this upgrader, the qualifier used for 
versions of the UCMDB Browser prior to 
1.7 remains. 

is used.  

Search Indexer Upgrader Indexes all relevant CI attributes to the 
new search engine, based on the 
upgraded configuration. 

Runs only if the Enable search option 
was selected during upgrade 
(cmdb.search.enabled is set to TRUE). 

Is performed in two phases: 
(1) writing DB tables content to CSV files 
in the  <UCMDB Installation 
directory>\search\index_csvs\customer<c
ustomer-ID>\ folder. 

  CIs will not be indexed to Solr 
(search will not work) 

search.log 

Progress is reported in logs only 
during CSV files writing and not 
during indexing. 

 



Upgrader Description C
ri

ti
c
a

l 

C
a
n

 b
e
 

re
ru

n
 

Implications of Failure Log Files 

(2) indexing the CSV files content to the 
new search engine. 

May take time to complete: approximately 
1 hour per 1million CIs. 

Disable Aging Upgrader Sets the model.aging.is.aging.enabled 
settings to false for all the customers 

  The model.aging.is.aging.enabled 
setting will be true after the upgrade. 
This could cause the deletion of CIs if 
the server is not used after the 
upgrade. 

 

Run database statistics Runs database statistics to optimize 
performance 

  Database statistics will not be run; 
might have performance implications 

upgrade.detailed.log 

 

 



Troubleshooting and Warning Logs for Resource Upgrade 
The following issues can occur during resource upgrade. Be aware that none of these issues cause the upgrade 

to fail but might impact which resources are upgraded.  

 If a TQL was created in a previous version with an invalid layout, it is inserted during upgrade and does 

not fail the upgrade. Rather a warning is added to the log. These TQLs could have been created by 

copy/pasting a valid TQL and their xml then manually edited. You may see the following error message 

in the error logs:  

Pattern: <pattern name> has invalid layout: <stack trace>. 

 You cannot define a grouping on a contact node of a perspective. However, there was no validation to 

prevent such a grouping prior to version 10.00. A view created in this way does not work correctly and is 

removed during the upgrade process. You may see the following error message in the 

cmdb.upgrade.short and cmdb.upgrade.detailed logs:  

You cannot define grouping on a contact query node.  

Failed to add CMDB_VIEW <view name> You cannot define grouping on a contact query node. 

This would appear in cmdb.upgrade.short and cmdb.upgrade.detailed logs. 

 You cannot define a TQL, view, impact analysis rule, or enrichment with an empty space in its suffix. 

However, there was no validation to prevent creating such TQLs prior to version 10.00.  A TQL that 

contains spaces in its suffix is not upgraded, an error appears in the log, and you must define the TQL 

again using a valid name. You can perform this step prior to upgrade. If these names are not fixed prior 

to upgrade, you may see the following error message in the cmdb.upgrade.short and 

cmdb.upgrade.detailed logs:  

Resource name is not valid. 

Failed to add <resource type> <resource name> Resource name is not valid.  

 In multi-tenancy implementations, you cannot define TQLs with an @ character because the @ 

character is used internally in MT environments. If you are upgrading a single tenant environment to a 

multi-tenant environment and you have TQLs with the @ character, these tqls are not upgraded and are 

lost and a warning is added to the log. You will have to define these TQLs again using a new name.  You 

can perform this step prior to upgrade. 

If these names are not fixed prior to upgrade, you may see the following error message in the 

cmdb.upgrade.short and cmdb.upgrade.detailed logs: 

Resource <resource name> contains the @ character, which is forbidden for multi tenant 

environment. The  resource will be removed from the upgraded system. Please create it again 

with different name.  

 If you have any folders that contain both a resource and a subfolder with the same name, the resource 

does not upgrade and a warning is added to the log. It is recommended to rename the sub folder or save 

the resource with different name prior to performing the upgrade. You may see the following message in 

the error logs:  

WARN: Failed to add <resource type> <resource name> duplicate subfolder or resource 

[<resource name>] in [<folder name>] 

 

 


