
HP Universal CMDB

for the Windows and Linux operating systems

Software Version: 9.04
Developer Reference Guide
Document Release Date: September 2011

Software Release Date: September 2011

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Copyright Notices

© Copyright 2005 - 2011 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe® and Acrobat® are trademarks of Adobe Systems Incorporated.

AMD and the AMD Arrow symbol are trademarks of Advanced Micro Devices, Inc.

Google™ and Google Maps™ are trademarks of Google Inc.

Intel®, Itanium®, Pentium®, and Intel® Xeon® are trademarks of Intel Corporation in the
U.S. and other countries.

Java is a registered trademark of Oracle and/or its affiliates.

Microsoft®, Windows®, Windows NT®, Windows® XP, and Windows Vista® are U.S.
registered trademarks of Microsoft Corporation.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

UNIX® is a registered trademark of The Open Group.

Acknowledgements

• This product includes software developed by Apache Software Foundation (http://
www.apache.org/licenses).
2

• This product includes OpenLDAP code from OpenLDAP Foundation (http://
www.openldap.org/foundation/).

• This product includes GNU code from Free Software Foundation, Inc. (http://www.fsf.org/).

• This product includes JiBX code from Dennis M. Sosnoski.

• This product includes the XPP3 XMLPull parser included in the distribution and used
throughout JiBX, from Extreme! Lab, Indiana University.

• This product includes the Office Look and Feels License from Robert Futrell (http://
sourceforge.net/projects/officelnfs).

• This product includes JEP - Java Expression Parser code from Netaphor Software, Inc.
(http://www.netaphor.com/home.asp).
3

Documentation Updates

The title page of this document contains the following identifying information:

• Software Version number, which indicates the software version.

• Document Release Date, which changes each time the document is updated.

• Software Release Date, which indicates the release date of this version of the software.

To check for recent updates, or to verify that you are using the most recent edition of a
document, go to:

http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign-in. To register for an HP
Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

Or click the New users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product
support service. Contact your HP sales representative for details.
4

Support

Visit the HP Software Support web site at:

http://www.hp.com/go/hpsoftwaresupport

This web site provides contact information and details about the products, services, and
support that HP Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and
efficient way to access interactive technical support tools needed to manage your business. As
a valued support customer, you can benefit by using the support web site to:

• Search for knowledge documents of interest

• Submit and track support cases and enhancement requests

• Download software patches

• Manage support contracts

• Look up HP support contacts

• Review information about available services

• Enter into discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many
also require a support contract. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp
5

6

Table of Contents

Welcome to This Guide ...11
How This Guide Is Organized ...11
Who Should Read This Guide ...12
HP Universal CMDB Online Documentation12
Additional Online Resources...15
Documentation Updates ...16

PART I: CREATING DISCOVERY AND INTEGRATION ADAPTERS

Chapter 1: Adapter Development and Writing19
Adapter Development and Writing Overview20
Content Creation ..21
The Adapter Development Cycle ..21
Data Flow Management and Integration ..24
Associating Business Value with Discovery Development26
Researching Integration Requirements ...28
Developing Integration Content...31
Developing Discovery Content ...34
Implement a Discovery Adapter..37
Step 1: Create an Adapter ..40
Step 2: Assign a Job to the Adapter ...49
Step 3: Create Jython Code ...51

Chapter 2: Discovery Content Migration Guidelines53
Discovery Content Migration Guidelines Overview...........................54
Version 9.0x New Infrastructure Features ...54
Guidelines for Developing Cross-Data Model Scripts.........................59
Implementation Tips...59
Access BTO Data Model Documentation Online................................60
Package Migration Utility..61
Troubleshooting and Limitations ...62
7

Table of Contents
Chapter 3: Developing Jython Adapters...63
HP Data Flow Management API Reference ...64
Create Jython Code ...65
Support Localization in Jython Adapters..79
Work with Discovery Analyzer ...90
Run Discovery Analyzer from Eclipse ...99
Record DFM Code ...109
Jython Libraries and Utilities ..112

Chapter 4: Error Messages ..117
Error Messages Overview...118
Error-Writing Conventions ...119
Error Severity Levels ..122

Chapter 5: Developing Generic Database Adapters.........................125
Generic Database Adapter Overview...127
TQL Queries for the Generic Database Adapter127
Reconciliation..128
Hibernate as JPA Provider..129
Prepare for Adapter Creation ..132
Prepare the Adapter Package ...137
Upgrade the Generic DB Adapter from 9.00 or 9.01

to 9.02 and Later ...141
Configure the Adapter – Minimal Method141
Adapter Configuration – Advanced Method.....................................145
Implement a Plugin...151
Deploy the Adapter ...155
Edit the Adapter ..155
Create an Integration Point...155
Create a View...156
Calculate the Results ...156
View the Results ..157
View Reports..157
Enable Log Files ...157
Use Eclipse to Map Between CIT Attributes and Database Tables158
Adapter Configuration Files ..169
Out-of-the-Box Converters..194
Plugins ...199
Configuration Examples ...199
Adapter Log Files ...211
External References ...213
Troubleshooting and Limitations ...213
8

Table of Contents
Chapter 6: Developing Java Adapters...215
Federation Framework Overview ..216
Adapter and Mapping Interaction with the Federation Framework 222
Federation Framework Flow for Federated TQL Queries...................223
Federation Framework Flow for Population......................................239
Adapter Interfaces..241
Debug Adapter Resources ..244
Add an Adapter for a New External Data Source244
Implement the Mapping Engine...253
Create a Sample Adapter ...255
XML Configuration Tags and Properties...257

Chapter 7: Developing Push Adapters..259
Developing Push Adapters Overview ..260
Differential Synchronization...260
Prepare the Mapping Files ...261
Write Jython Scripts ..263
Support Differential Synchronization...267
Build an Adapter Package ..269
Mapping File Schema ..271
Mapping Results Schema...286

PART II: USING APIS

Chapter 8: Introduction to APIs ...295
APIs Overview..296

Chapter 9: HP Universal CMDB API ..297
Conventions ..298
Using the HP Universal CMDB API...298
General Structure of an Application ...300
Put the API Jar File in the Classpath ...302
Create an Integration User ..302
HP Universal CMDB API Reference...305
Use Cases ...305
Examples..306
9

Table of Contents
Chapter 10: HP Universal CMDB Web Service API309
Conventions ..310
HP Universal CMDB Web Service API Overview310
HP Universal CMDB Web Service API Reference312
Call the Web Service ...313
Query the CMDB...313
Update the UCMDB ..318
Query the UCMDB Class Model ...320
Query for Impact Analysis...322
UCMDB General Parameters ..323
UCMDB Output Parameters ...326
UCMDB Query Methods ...328
UCMDB Update Methods ...342
UCMDB Impact Analysis Methods ...345
Use Cases ...348
Examples..349

Chapter 11: Data Flow Management API ...387
Data Flow Management API Overview ...388
Conventions ..388
Discovery and Dependency Mapping Web Service389
Call the Web Service ...390
Discovery and Dependency Mapping Methods................................391
Code Sample..404
10

Welcome to This Guide

This guide explains how to create and manage adapters that enable you to
send and receive data from external data repositories and other CMDBs

This chapter includes:

➤ How This Guide Is Organized on page 11

➤ Who Should Read This Guide on page 12

➤ HP Universal CMDB Online Documentation on page 12

➤ Additional Online Resources on page 15

➤ Documentation Updates on page 16

How This Guide Is Organized

The guide contains the following chapters:

 Part I Creating Discovery and Integration Adapters

Describes how to create adapters.

 Part II Using APIs

Describes how to work with the APIs to extract configuration data from
HP Universal CMDB.
11

Welcome to This Guide
Who Should Read This Guide

This guide is intended for the following users of HP Universal CMDB:

➤ HP Universal CMDB administrators

➤ HP Universal CMDB platform administrators

➤ HP Universal CMDB application administrators

➤ HP Universal CMDB data management administrators

Readers of this guide should be knowledgeable about enterprise system
administration, have familiarity with ITIL concepts, and be knowledgeable
about HP Universal CMDB.

HP Universal CMDB Online Documentation

HP Universal CMDB includes the following online documentation:

Readme. Provides a list of version limitations and last-minute updates. From
the HP Universal CMDB DVD root directory, double-click readme.html. You
can also access the most updated readme file from the HP Software Support
Web site.

What’s New. Provides a list of new features and version highlights. In
HP Universal CMDB, select Help > What’s New.

Printer-Friendly Documentation. Choose Help > UCMDB Help. The
following guides are published in PDF format only:

➤ the HP Universal CMDB Deployment Guide PDF. Explains the hardware and
software requirements needed to set up HP Universal CMDB, how to
install or upgrade HP Universal CMDB, how to harden the system, and
how to log in to the application.

➤ the HP Universal CMDB Database Guide PDF. Explains how to set up the
database (MS SQL Server or Oracle) needed by HP Universal CMDB.

➤ the HP Universal CMDB Discovery and Integration Content Guide PDF.
Explains how to run discovery to discover applications, operating
systems, and network components running on your system. Also explains
how to discover data on other data repositories through integration.
12

http://www.hp.com/go/hpsoftwaresupport
http://www.hp.com/go/hpsoftwaresupport

Welcome to This Guide
HP Universal CMDB Online Help includes:

➤ Modeling. Enables you to manage the content of your IT Universe model.

➤ Data Flow Management. Explains how to integrate HP Universal CMDB
with other data repositories and how to set up HP Universal CMDB to
discover network components.

➤ UCMDB Administration. Explains how to work with HP Universal CMDB.

➤ Developer Reference. For users with an advanced knowledge of
HP Universal CMDB. Explains how to define and use adapters and how to
use APIs to access data.

Online Help is also available from specific HP Universal CMDB windows
by clicking in the window and clicking the Help button.

Online books can be viewed and printed using Adobe Reader, which can
be downloaded from the Adobe Web site (www.adobe.com).

Topic Types
Within this guide, each subject area is organized into topics. A topic
contains a distinct module of information for a subject. The topics are
generally classified according to the type of information they contain.

This structure is designed to create easier access to specific information by
dividing the documentation into the different types of information you
may need at different times.
13

http://www.adobe.com

Welcome to This Guide
Three main topic types are in use: Concepts, Tasks, and Reference. The topic
types are differentiated visually using icons.

Topic Type Description Usage

Concepts Background, descriptive, or
conceptual information.

Learn general information
about what a feature does.

Tasks Instructional Tasks. Step-by-
step guidance to help you
work with the application and
accomplish your goals. Some
task steps include examples,
using sample data.

Task steps can be with or
without numbering:

➤ Numbered steps. Tasks that
are performed by following
each step in consecutive
order.

➤ Non-numbered steps. A list
of self-contained operations
that you can perform in any
order.

➤ Learn about the overall
workflow of a task.

➤ Follow the steps listed in
a numbered task to
complete a task.

➤ Perform independent
operations by
completing steps in a
non-numbered task.

Use-case Scenario Tasks.
Examples of how to perform a
task for a specific situation.

Learn how a task could be
performed in a realistic
scenario.
14

Welcome to This Guide
Additional Online Resources

Troubleshooting & Knowledge Base accesses the Troubleshooting page on
the HP Software Support Web site where you can search the Self-solve
knowledge base. Choose Help > Troubleshooting & Knowledge Base. The
URL for this Web site is http://h20230.www2.hp.com/troubleshooting.jsp.

HP Software Support accesses the HP Software Support Web site. This site
enables you to browse the Self-solve knowledge base. You can also post to
and search user discussion forums, submit support requests, download
patches and updated documentation, and more. Choose Help > HP Software
Support. The URL for this Web site is www.hp.com/go/hpsoftwaresupport.

Most of the support areas require that you register as an HP Passport user
and sign in. Many also require a support contract.

Reference General Reference. Detailed
lists and explanations of
reference-oriented material.

Look up a specific piece of
reference information
relevant to a particular
context.

User Interface Reference.
Specialized reference topics
that describe a particular user
interface in detail. Selecting
Help on this page from the
Help menu in the product
generally open the user
interface topics.

Look up specific
information about what to
enter or how to use one or
more specific user interface
elements, such as a
window, dialog box, or
wizard.

Troubleshooting
and Limitations

Troubleshooting and
Limitations. Specialized
reference topics that describe
commonly encountered
problems and their solutions,
and list limitations of a feature
or product area.

Increase your awareness of
important issues before
working with a feature, or
if you encounter usability
problems in the software.

Topic Type Description Usage
15

http://h20230.www2.hp.com/troubleshooting.jsp
http://www.hp.com/go/hpsoftwaresupport

Welcome to This Guide
To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

To register for an HP Passport user ID, go to:

http://h20229.www2.hp.com/passport-registration.html

HP Software Web site accesses the HP Software Web site. This site provides
you with the most up-to-date information on HP Software products. This
includes new software releases, seminars and trade shows, customer support,
and more. Choose Help > HP Software Web site. The URL for this Web site
is www.hp.com/go/software.

Documentation Updates

HP Software is continually updating its product documentation with new
information.

To check for recent updates, or to verify that you are using the most recent
edition of a document, go to the HP Software Product Manuals Web site
(http://h20230.www2.hp.com/selfsolve/manuals).
16

http://h20230.www2.hp.com/new_access_levels.jsp
http://h20229.www2.hp.com/passport-registration.html
http://www.hp.com/go/software
http://h20230.www2.hp.com/selfsolve/manuals

Part I

Creating Discovery and Integration
Adapters

18

1
Adapter Development and Writing

This chapter includes:

Concepts

➤ Adapter Development and Writing Overview on page 20

➤ Content Creation on page 21

➤ The Adapter Development Cycle on page 21

➤ Data Flow Management and Integration on page 24

➤ Associating Business Value with Discovery Development on page 26

➤ Researching Integration Requirements on page 28

➤ Developing Integration Content on page 31

➤ Developing Discovery Content on page 34

Tasks

➤ Implement a Discovery Adapter on page 37

➤ Step 1: Create an Adapter on page 40

➤ Step 2: Assign a Job to the Adapter on page 49

➤ Step 3: Create Jython Code on page 51
19

Chapter 1 • Adapter Development and Writing
Concepts

Adapter Development and Writing Overview

Prior to beginning actual planning for development of new adapters, it is
important for you to understand the processes and interactions commonly
associated with this development.

The following sections can help you understand what you need to know
and do, to successfully manage and execute a discovery development
project.

This chapter:

➤ Assumes a working knowledge of HP Universal CMDB and some basic
familiarity with the elements of the system. It is meant to assist you in the
learning process and does not provide a complete guide.

➤ Covers the stages of planning, research, and implementation of new
discovery content for HP Universal CMDB, together with guidelines and
considerations that need to be taken into account.

➤ Provides information on the key APIs of the Data Flow Management
Framework. For full documentation on the available APIs, see the
HP Universal CMDB Data Flow Management API Reference. (Other
non-formal APIs exist but even though they are used on out-of-the-box
adapters, they may be subject to change.)
20

Chapter 1 • Adapter Development and Writing
Content Creation

This section includes:

➤ "The Adapter Development Cycle" on page 21

➤ "Data Flow Management and Integration" on page 24

➤ "Associating Business Value with Discovery Development" on page 26

➤ "Researching Integration Requirements" on page 28

The Adapter Development Cycle

The following illustration shows a flowchart for adapter writing. Most of the
time is spent in the middle section, which is the iterative loop of
development and testing.

Each phase of adapter development builds on the last one.

Once you are satisfied with the way the adapter looks and works, you are
ready to package it. Using either the UCMDB Package Manager or manual
exporting of the components, create a package *.zip file. As a best practice,
you should deploy and test this package on another UCMDB system before
releasing it to production, to ensure that all the components are accounted
for and successfully packaged. For details on packaging, see "Package
Manager" in the HP Universal CMDB Administration Guide.
21

Chapter 1 • Adapter Development and Writing
The following sections expand on each of the phases showing the most
critical steps and best practices:

➤ Research and Preparation Phase

➤ Adapter Development and Testing

➤ Adapter Packaging and Productization

Research and Preparation Phase

The Research and Preparation phase encompasses the driving business
needs and use cases, and also accounts for securing the necessary facilities to
develop and test the adapter.

 1 When planning to modify an existing adapter, the first technical step is to
make a backup of that adapter and ensure you can return it to its pristine
state. If you plan to create a new adapter, copy the most similar adapter
and save it under an appropriate name. For details, see "Resources Pane"
in the HP Universal CMDB Data Flow Management Guide.

 2 Research how the adapter should collect data:

➤ Use External tools/protocols to obtain the data

➤ Develop how the adapter should create CIs based on the data

➤ You now know what a similar adapter should look like

 3 Determine most similar adapter based on:

➤ Same CIs created

➤ Same Protocols used (SNMP)

➤ Same kind of targets (by OS type, versions, and so on)

 4 Copy entire package.
22

Chapter 1 • Adapter Development and Writing
 5 Unzip into work space and rename the adapter (XML) and Jython (.py)
files.

Adapter Development and Testing
The Adapter Development and Testing phase is a highly iterative process.
As the adapter begins to take shape, you begin testing against the final use
cases, make changes, test again, and repeat this process until the adapter
complies with the requirements.

Startup and Preparation of Copy

➤ Modify XML parts of the adapter: Name (id) in line 1, Created CI Types,
and Called Jython script name.

➤ Get the copy running with identical results to the original adapter.

➤ Comment out most of the code, especially the critical result-producing
code.

Development and Testing

➤ Use other sample code to develop changes

➤ Test adapter by running it

➤ Use a dedicated view to validate complex results, search to validate simple
results
23

Chapter 1 • Adapter Development and Writing
Adapter Packaging and Productization
The Adapter Packaging and Productization phase accounts for the last
phase of development. As a best practice, a final pass should be made to
clean up debugging remnants, documents, and comments, to look at
security considerations, and so on, before moving on to packaging. You
should always have at least a readme document to explain the inner
workings of the adapter. Someone (maybe even you) may need to look at
this adapter in the future and will be aided greatly by even the most limited
documentation.

Cleanup and Document

➤ Remove debugging

➤ Comment all functions and add some opening comments in the main
section

➤ Create sample TQL and view for the user to test

Create Package

➤ Export adapters, TQL, and so on with the Package Manager. For details,
see "Package Manager" in the HP Universal CMDB Administration Guide.

➤ Check any dependencies your package has on other packages, for
example, if the CIs created by those packages are input CIs to your
adapter.

➤ Use Package Manager to create a package zip. For details, see "Package
Manager" in the HP Universal CMDB Administration Guide.

➤ Test deployment by removing parts of the new content and redeploying,
or deploying on another test system.

Data Flow Management and Integration

DFM adapters are capable of integration with other products. Consider the
following definitions:

➤ DFM collects specific content from many targets.

➤ Integration collects multiple types of content from one system.
24

Chapter 1 • Adapter Development and Writing
Note that these definitions do not distinguish between the methods of
collection. Neither does DFM. The process of developing a new adapter is
the same process for developing new integration. You do the same research,
make the same choices for new vs. existing adapters, write the adapters the
same way, and so on. Only a few things change:

➤ The final adapter’s scheduling. Integration adapters may run more
frequently than discovery, but it depends on the use cases.

➤ Input CIs:

➤ Integration: non-CI trigger to run with no input: a file name or source
is passed through the adapter parameter.

➤ Discovery: uses regular, CMDB CIs for input.

For integration projects, you should almost always reuse an existing adapter.
The direction of the integration (from HP Universal CMDB to another
product, or from another product to HP Universal CMDB) may affect your
approach to development. There are field packages available for you to copy
for your own uses, using proven techniques.

From HP Universal CMDB to another project:

➤ Create a TQL that produces the CIs and relations to be exported.

➤ Use a generic wrapper adapter to execute the TQL and write the results to
an XML file for the external product to read.

Note: For examples of field packages, contact HP Software Support.
25

Chapter 1 • Adapter Development and Writing
To integrate another product to HP Universal CMDB, depending on how the
other product exposes its data, the integration adapter acts differently:

Associating Business Value with Discovery Development

The use case for developing new discovery content should be driven by a
business case and plan to produce business value. That is, the goal of
mapping system components to CIs and adding them to the CMDB is to
provide business value.

The content may not always be used for application mapping, although this
is a common intermediate step for many use cases. Regardless of the end
usage of the content, your plan should answer these questions of this
approach:

➤ Who is the consumer? How should the consumer act on the information
provided by the CIs (and the relationships between them)? What is the
business context in which the CIs and relationships are to be viewed? Is
the consumer of these CIs a person or a product or both?

➤ Once the perfect combination of CIs and relationships exists in the
CMDB, how do I plan on using them to produce business value?

➤ What should the perfect mapping look like?

➤ What term would most meaningfully describe the relationships
between each CI?

➤ What types of CIs would be most important to include?

➤ What is the end usage and end user of the map?

➤ What would be the perfect report layout?

Integration Type Reference Example to Be Reused

Access the product’s
database directly

HP ED

Read in a csv or xml file
produced by an export

HP ServiceCenter

Access a product’s API BMC Atrium/Remedy
26

Chapter 1 • Adapter Development and Writing
Once the business justification is established, the next step is to embody the
business value in a document. This means picturing the perfect map using a
drawing tool and understanding the impact and dependencies between CIs,
reports, how changes are tracked, what change is important, monitoring,
compliance, and additional business value as required by the use cases.

This drawing (or model) is referred as the blueprint.

For example, if it is critical for the application to know when a certain
configuration file has changed, the file should be mapped and linked to the
appropriate CI (to which it relates) in the drawn map.

Work with an SME (Subject Matter Expert) of the area, who is the end user of
the developed content. This expert should point out the critical entities (CIs
with attributes and relationships) that must exist in the CMDB to provide
business value.

One method could be to provide a questionnaire to the application owner
(also the SME in this case). The owner should be able to specify the above
goals and blueprint. The owner must at least provide a current architecture
of the application.

You should map critical data only and no unnecessary data: you can always
enhance the adapter later. The goal should be to set up a limited discovery
that works and provides value. Mapping large quantities of data gives more
impressive maps but can be confusing and time consuming to develop.

Once the model and business value is clear, continue to the next stage. This
stage can be revisited as more concrete information is provided from the
next stages.
27

Chapter 1 • Adapter Development and Writing
Researching Integration Requirements

The prerequisite of this stage is a blueprint of the CIs and relationships
needed to be discovered by DFM, which should include the attributes that
are to be discovered. For details, see "Adapter Development and Writing
Overview" on page 20.

This section includes the following topics:

➤ "Modifying an Existing Adapter" on page 28

➤ "Writing a New Adapter" on page 29

➤ "Model Research" on page 29

➤ "Technology Research" on page 29

➤ "Guidelines for Choosing Ways to Access Data" on page 30

➤ "Summary" on page 31

Modifying an Existing Adapter
You modify an existing adapter when an out-of-the-box or field adapter
exists, but:

➤ it does not discover specific attributes that are needed

➤ a specific type of target (OS) is not being discovered or is being incorrectly
discovered

➤ a specific relationship is not being discovered or created

If an existing adapter does some, but not all, of the job, your first approach
should be to evaluate the existing adapters and verify if one of them almost
does what is needed; if it does, you can modify the existing adapter.

You should also evaluate if an existing field adapter is available. Field
adapters are discovery adapters that are available but are not out-of-the-box.
Contact HP Software Support to receive the current list of field adapters.
28

Chapter 1 • Adapter Development and Writing
Writing a New Adapter
A new adapter needs to be developed:

➤ When it is faster to write an adapter than to insert the information
manually into the CMDB (generally, from about 50 to 100 CIs and
relationships) or it is not a one-time effort.

➤ When the need justifies the effort.

➤ If out-of-the-box or field adapters are not available.

➤ If the results can be reused.

➤ When the target environment or its data is available (you cannot discover
what you cannot see).

Model Research

➤ Browse the UCMDB class model (CI Type Manager) and match the
entities and relations from your blueprint to existing CITs. It is highly
recommended to adhere to the current model to avoid possible
complications during version upgrade. If you need to extend the model,
you should create new CITs since an upgrade may overwrite
out-of-the-box CITs.

➤ If some entities, relations, or attributes are lacking from the current
model, you should create them. It is preferable to create a package with
these CITs (which will also later hold all the discovery, views, and other
artifacts relating to this package) since you need to be able to deploy these
CITs on each installation of HP Universal CMDB.

Technology Research
Once you have verified that the CMDB holds the relevant CIs, the next stage
is to decide how to retrieve this data from the relevant systems.

Retrieving data usually involves using a protocol to access a management
part of the application, actual data of the application, or configuration files
or databases that are related to the application. Any data source that can
provide information on a system is valuable. Technology research requires
both extensive knowledge of the system in question and sometimes
creativity.
29

Chapter 1 • Adapter Development and Writing
For home-grown applications, it may be helpful to provide a questionnaire
form to the application owner. In this form the owner should list all the
areas in the application that can provide information needed for the
blueprint and business values. This information should include (but does
not have to be limited to) management databases, configuration files, log
files, management interfaces, administration programs, Web services,
messages or events sent, and so on.

For off-the-shelf products, you should focus on documentation, forums, or
support of the product. Look for administration guides, plug-ins and
integrations guides, management guides, and so on. If data is still missing
from the management interfaces, read about the configuration files of the
application, registry entries, log files, NT event logs, and any artifacts of the
application that control its correct operation.

Guidelines for Choosing Ways to Access Data
Relevance: Select sources or a combination of sources that provide the most
data. If a single source supplies most information whereas the rest of the
information is scattered or hard to access, try to assess the value of the
remaining information by comparison with the effort or risk of getting it.
Sometimes you may decide to reduce the blueprint if the value or cost does
not warrant the invested effort.

Reuse: If HP Universal CMDB already includes a specific connection
protocol support it is a good reason to use it. It means the DFM Framework
is able to supply a ready made client and configuration for the connection.
Otherwise, you may need to invest in infrastructure development. You can
view the currently supported HP Universal CMDB connection protocols:
Data Flow Management > Data Flow Probe Setup > Domains and Probes
pane. For details, see "Domains and Probes Pane" in the HP Universal CMDB
Data Flow Management Guide.

You can add new protocols by adding new CIs to the model. For details,
contact HP Software Support.

Note: To access Windows Registry data, you can use either WMI or NTCmd.
30

Chapter 1 • Adapter Development and Writing
Security: Access to information usually requires credentials (user name,
password), which are entered in the CMDB and are kept secure throughout
the product. If possible, and if adding security does not conflict with other
principles you have set, choose the least sensitive credential or protocol that
still answers access needs. For example, if information is available both
through JMX (standard administration interface, limited) and Telnet, it is
preferable to use JMX since it inherently provides limited access and
(usually) no access to the underlying platform.

Comfort: Some management interfaces may include more advanced
features. For example, it might be easier to issue queries (SQL, WMI) than to
navigate information trees or build regular expressions for parsing.

Developer Audience: The people who will eventually develop adapters may
have an inclination towards a certain technology. This can also be
considered if two technologies provide almost the same information at an
equal cost in other factors.

Summary
The outcome of this stage is a document describing the access methods and
the relevant information that can be extracted from each method. The
document should also contain a mapping from each source to each relevant
blueprint data.

Each access method should be marked according to the above instructions.
Finally you should now have a plan of which sources to discover and what
information to extract from each source into the blueprint model (which
should by now have been mapped to the corresponding UCMDB model).

Developing Integration Content

Before creating a new integration, you must understand what the
integration’s requirements are:

➤ Should the integration copy data into the CMDB? Should the data be
tracked by history? Is the source unreliable?

Population is needed.
31

Chapter 1 • Adapter Development and Writing
➤ Should the integration federate data on the fly for views and TQL queries?
Is the accuracy of changes to data critical? Is the amount of data too large
to copy to the CMDB, but the requested amount of data is usually small?

Federation is needed.

➤ Should the integration push data in to remote data sources?

Data Push is needed.

Note: Federation and Population flows may be configured for the same
integration, for maximum flexibility.

For details about the different types of integrations, see "Integration Studio"
in the HP Universal CMDB Data Flow Management Guide.

Four different options are available for creating integration adapters:

➤ Jython Adapter

➤ The classic discovery pattern

➤ Written in Jython

➤ Used for population

For details, see "Developing Jython Adapters" on page 63.

➤ Java Adapter

➤ An adapter that implements one of the adapter interfaces in the
Federation SDK Framework.

➤ May be used for one or more of Federation, Population, or Data Push
(depending on the required implementation).

➤ Written from scratch in Java, which allows writing code that will
connect to any possible source or target.

➤ Suitable for jobs that each connect a single data source or target.

For details, see "Developing Java Adapters" on page 215.
32

Chapter 1 • Adapter Development and Writing
➤ Generic DB Adapter

➤ An abstract adapter based on the Java Adapter and uses the Federation
SDK Framework).

➤ Allows creation of adapters that connect to external data repositories.

➤ Supports both Federation and Population (with a Java plugin
implemented for changes support).

➤ Relatively easy to define, as it is based mainly on XML and property
configuration files.

➤ Main configuration is based on an orm.xml file that maps between
UCMDB classes and database columns.

➤ Suitable for jobs that each connect a single data source.

For details, see "Developing Generic Database Adapters" on page 125.

➤ Generic Push Adapter

➤ An abstract adapter based on the Java Adapter (the Federation SDK
Framework) and the Jython Adapter.

➤ Allows creation of adapters that push data to remote targets.

➤ Relatively easy to define, as you need only to define the mapping
between UCMDB classes and XML, and a Jython script that pushes the
data to the target.

➤ Suitable for jobs that each connect a single data target.

➤ Used for Data Push.

For details, see "Developing Push Adapters" on page 259.

The following table displays the capabilities of each adapter:

Flow/Adapter Jython Adapter Java Adapter GDB Adapter Push Adapter

Population X X X

Federation X X

Data Push X X
33

Chapter 1 • Adapter Development and Writing
Developing Discovery Content

This section includes:

➤ "Discovery Adapters and Related Components" on page 34

➤ "Separating Adapters" on page 35

Discovery Adapters and Related Components
The following diagram shows an adapter’s components and the components
they interact with to execute discovery. The components in green are the
actual adapters, and the components in blue are components that interact
with adapters.

Note that the minimum notion of an adapter is two files: an XML document
and a Jython script. The Discovery Framework, including input CIs,
credentials, and user-supplied libraries, is exposed to the adapter at run
time. Both discovery adapter components are administered through Data
Flow Management. They are stored operationally in the CMDB itself;
although the external package remains, it is not referred to for operation.
The Package Manager enables preservation of the new discovery and
integration content capability.

Input CIs to the adapter are provided by a TQL, and are exposed to the
adapter script in system-supplied variables. Adapter parameters are also
supplied as destination data, so you can configure the adapter’s operation
according to an adapter’s specific function.
34

Chapter 1 • Adapter Development and Writing
The DFM application is used to create and test new adapters. You use the
Discovery Control Panel, Adapter Management, and Data Flow Probe Setup
pages during adapter writing.

Adapters are stored and transported as packages. The Package Manager
application and the JMX console are used to create packages from newly
created adapters, and to deploy adapters on new systems.

Separating Adapters
Technically, an entire discovery could be defined in a single adapter. But
good design demands that a complex system be separated into simpler,
more manageable components.

The following are guidelines and best practices for dividing the adapter
process:

➤ Discovery should be done in stages. Each stage should be represented by
an adapter that should map an area or tier of the system. Adapters should
rely on the previous stage or tier to be discovered, to continue discovery
of the system. For example, Adapter A is triggered by an application server
TQL result and maps the application server tier. As part of this mapping, a
JDBC connection component is mapped. Adapter B registers a JDBC
connection component as a trigger TQL and uses the results of adapter A
to access the database tier (for example, through the JDBC URL attribute)
and maps the database tier.

➤ The two-phase connect paradigm: Most systems require credentials to
access their data. This means that a user/password combination needs to
be tried against these systems. The DFM administrator supplies
credentials information in a secure way to the system and can give
several, prioritized login credentials. This is referred to as the Protocol
Dictionary. If the system is not accessible (for whatever reason) there is no
point in performing further discovery. If the connection is successful,
there needs to be a way to indicate which credential set was successfully
used, for future discovery access.
35

Chapter 1 • Adapter Development and Writing
These two phases lead to a separation of the two adapters in the following
cases:

➤ Connection Adapter: This is an adapter that accepts an initial trigger
and looks for the existence of a remote agent on that trigger. It does so
by trying all entries in the Protocol Dictionary which match this
agent's type. If successful, this adapter provides as its result a remote
agent CI (SNMP, WMI, and so on), which also points to the correct
entry in the Protocol Dictionary for future connections. This agent CI
is then part of a trigger for the content adapter.

➤ Content Adapter: This adapter's precondition is the successful
connection of the previous adapter (preconditions specified by the
TQLs). These types of adapters no longer need to look through all of
the Protocol Dictionary since they have a way to obtain the correct
credentials from the remote agent CI and use them to log in to the
discovered system.

➤ Different scheduling considerations can also influence discovery division.
For example, a system may only be queried during off hours, so even
though it would make sense to join the adapter to the same adapter
discovering another system, the different schedules mean that you need
to create two adapters.

➤ Discovery of different management interfaces or technologies to discover
the same system should be placed in separate adapters. This is so that you
can activate the access method appropriate for each system or
organization. For example, some organizations have WMI access to
machines but do not have SNMP agents installed on them.
36

Chapter 1 • Adapter Development and Writing
Tasks

Implement a Discovery Adapter

A DFM task has the aim of accessing remote (or local) systems, modeling
extracted data as CIs, and saving the CIs to the CMDB. The task consists of
the following steps:

 1 Create a DFM adapter.

You configure an adapter file that holds the context, parameters, and
result types by selecting the scripts that are to be part of the adapter. For
details, see the following section.

 2 Create a Discovery job.

You configure a job with scheduling information and a trigger TQL. For
details, see "Step 2: Assign a Job to the Adapter" on page 49.

 3 Edit Discovery code.

You can edit the Jython or Java code that is contained in the adapter files
and that refers to the DFM Framework. For details, see "Step 3: Create
Jython Code" on page 51.

To write new adapters, you create each of the above components, each one
of which is automatically bound to the component in the previous step. For
example, once you create a job and select the relevant adapter, the adapter
file binds to the job.
37

Chapter 1 • Adapter Development and Writing
Adapter Code
The actual implementation of connecting to the remote system, querying its
data, and mapping it as CMDB data is performed by the Jython code. For
example, the code contains the logic for connecting to a database and
extracting data from it. In this case, the code expects to receive a JDBC URL,
a user name, a password, a port, and so on. These parameters are specific for
each instance of the database that answers the TQL query. You define these
variables in the adapter (in the Trigger CI data) and when the job runs, these
specific details are passed to the code for execution.

The adapter can refer to this code by a Java class name or a Jython script
name. In this section we discuss writing DFM code as Jython scripts.

An adapter can contain a list of scripts to be used when running discovery.
When creating a new adapter, you usually create a new script and assign it
to the adapter. A new script includes basic templates, but you can use one of
the other scripts as a template by right-clicking it and selecting Save as:
38

Chapter 1 • Adapter Development and Writing
For details on writing new Jython scripts, see "Step 3: Create Jython Code"
on page 51. You add scripts through the Resources pane:

The list of scripts are run one after the other, in the order in which they are
defined in the adapter:
39

Chapter 1 • Adapter Development and Writing
Note: A script must be specified even though it is being used solely as a
library by another script. In this case, the library script must be defined
before the script using it. In this example, the processdbutils.py script is a
library used by the last host_processes.py script. Libraries are distinguished
from regular runable scripts by the lack of the DiscoveryMain() function.

Step 1: Create an Adapter

An adapter can be considered as the definition of a function. This function
defines an input definition, runs logic on the input, defines the output, and
provides a result.

Each adapter specifies input and output: Both input and output are Trigger
CIs that are specifically defined in the adapter. The adapter extracts data
from the input Trigger CI and passes this data as parameters to the code.
(Data from related CIs is sometimes passed to the code too. For details, see
"Related CIs Window" in the HP Universal CMDB Data Flow Management
Guide.) An adapter’s code is generic, apart from these specific input Trigger
CI parameters that are passed to the code.

For details on input components, see "Trigger CIs and Trigger Queries" in the
HP Universal CMDB Data Flow Management Guide.

This section includes the following topics:

➤ "Define Adapter Input (Trigger CIT and Input Query)" on page 41

➤ "Define Adapter Output" on page 46

➤ "Override Adapter Parameters" on page 48
40

Chapter 1 • Adapter Development and Writing
 1 Define Adapter Input (Trigger CIT and Input Query)

You use the Trigger CIT and Input Query components to define specific
CIs as adapter input:

➤ The Trigger CIT defines which CIT is used as the input for the adapter. For
example, for an adapter that is going to discover IPs, the input CIT is
Network.

➤ The Input query is a regular, editable query that defines the query against
the CMDB. The Input Query defines additional constraints on the CIT
(for example, if the task requires a hostID or application_ip attribute), and
can define more CI data, if needed by the adapter.

If the adapter requires additional information from the CIs that are
related to the Trigger CI, you can add additional nodes to the input TQL.
For details, see "Example of Input Query Definition" on page 43 and "Add
Query Nodes and Relationships to a TQL Query" in the HP Universal
CMDB Modeling Guide.

➤ The Trigger CI data contains all the required information on the Trigger
CI as well as information from the other nodes in the Input TQL, if they
are defined. DFM uses variables to retrieve data from the CIs. When the
task is downloaded to the Probe, the Trigger CI data variables are replaced
with actual values that exist on the attributes for real CI instances.
41

Chapter 1 • Adapter Development and Writing
Example of Trigger CIT Definition:

In this example, a Trigger CIT defines that IP CIs are permitted in the adapter.

1 Access Data Flow Management > Adapter Management. Select the
HostProcesses adapter (Packages > Host_Resources_Basic > Adapters >
HostProcesses).

2 Locate the Input CI Type box. For details, see "Triggered CI Data" in the
HP Universal CMDB Data Flow Management Guide.

3 Click the button to open the Choose Discovered Class dialog box. For details,
see "Choose Discovered Class Dialog Box" in the HP Universal CMDB Data Flow
Management Guide.

4 Select the CIT.

In this example, the IP CI (Host) is permitted in the adapter:
42

Chapter 1 • Adapter Development and Writing
Example of Input Query Definition

In this example, the Input TQL query defines that the IpAddress CI (configured in
the previous example as the Trigger CIT) must be connected to a Node CI.

1 Access Data Flow Management > Adapter Management. Locate the Input TQL
box. Click the Edit button to open the Input TQL Editor. For details, see "Input
Query Editor Window" in the HP Universal CMDB Data Flow Management Guide.

2 In the Input TQL Editor, name the Trigger CI node SOURCE: right-click the
node and choose Query Node Properties. In the Element Name box, change
the name to SOURCE.

3 Add a Node CI and a Containment relationship to the IpAddress CI. For details
on working with the Input TQL Editor, see "Input Query Editor Window" in the
HP Universal CMDB Data Flow Management Guide.

The IpAddress CI is connected to a Node CI. The input TQL consists of two nodes,
Node and IpAddress, with a link between them. The IpAddress CI is named
SOURCE.
43

Chapter 1 • Adapter Development and Writing
Example of Adding Variables to the Input TQL Query:

Example of Replacing Variables with Actual Data:

In this example, variables replace the IpAddress CI data with actual values
that exist on real IpAddress CI instances in your system.

The Triggered CI data for the IpAddress CI includes a fileName variable.
This variable enables the replacement of the
CONFIGURATION_DOCUMENT node in the Input TQL with the actual
values of the configuration file located on a host:

In this example, you add DIRECTORY and CONFIGURATION_FILE variables to
the Input TQL query created in the previous example. These variables help to
define what must be discovered, in this case, to find the configuration files
residing on the hosts that are linked to the IPs you need to discover.

1 Display the Input TQL created in the previous example.

Access Data Flow Management > Adapter Management. Locate the Triggered
CI Data pane. For details, see "Triggered CI Data" in the HP Universal CMDB
Data Flow Management Guide.

2 Add variables to the Input TQL. For details, access Data Flow Management >
Adapter Management. Locate the Triggered CI Data pane. For details, see the
Variables field in "Triggered CI Data" in the HP Universal CMDB Data Flow
Management Guide.
44

Chapter 1 • Adapter Development and Writing
The Trigger CI data is uploaded to the Probe with all variables replaced by
actual values. The adapter script includes a command to use the DFM
Framework to retrieve the actual values of the defined variables:

The fileName and path variables use the data_name and document_path
attributes from the CONFIGURATION_DOCUMENT node (defined in the
Input Query Editor – see previous example).

Framework.getTriggerCIData ('ip_address')
45

DDM_JavaDoc/com/hp/ucmdb/discovery/library/execution/BaseFramework.html
DDM_JavaDoc/com/hp/ucmdb/discovery/library/execution/BaseFramework.html

Chapter 1 • Adapter Development and Writing
The Protocol, credentialsId, and ip_address variables use the root_class,
credentials_id, and application_ip attributes:

 2 Define Adapter Output

The output of the adapter is a list of discovered CIs (Data Flow
Management > Adapter Management > Adapter Definition tab >
Discovered CITs) and the links between them:

You can also view the CITs as a topology map, that is, the components
and the way in which they are linked together (click the View Discovered
CITs as Map button):
46

Chapter 1 • Adapter Development and Writing
The discovered CIs are returned by the DFM code (that is, the Jython
script) in the format of UCMDB's ObjectStateHolderVector. For details, see
"Results Generation by the Jython Script" on page 71.

Example of Adapter Output:

In this example, you define which CITs are to be part of the IP CI output.

1 Access Data Flow Management > Adapter Management.

2 In the Resources pane, select Network > Adapters > NSLOOKUP_on_Probe.

3 In the Adapter Definition tab, locate the Discovered CITs pane.

4 The CITs that are to be part of the adapter output are listed. Add CITs to, or
remove from, the list. For details, see "Discovered CITs Pane" in the HP Universal
CMDB Data Flow Management Guide.
47

Chapter 1 • Adapter Development and Writing
 3 Override Adapter Parameters

To configure an adapter for more than one job, you can override adapter
parameters. For example, the adapter SQL_NET_Dis_Connection is used
by both the MSSQL Connection by SQL and the Oracle Connection by SQL
jobs.

Example of Overriding an Adapter Parameter:

This example illustrates overriding an adapter parameter so that one adapter can
be used to discover both Microsoft SQL Server and Oracle databases.

1 Access Data Flow Management > Adapter Management.

2 In the Resources pane, select Database Basic > Adapters >
SQL_NET_Dis_Connection.

3 In the Adapter Definition tab, locate the Discovery Pattern Parameters pane.
The protocolType parameter has a value of all:

4 Right-click the SQL_NET_Dis_Connection_MsSql adapter and choose Go to
Discovery Job > MSSQL Connection by SQL.

5 Display the Properties tab. Locate the Parameters pane:

The all value is overwritten with the MicrosoftSQLServer value.

Note: The Oracle Connection by SQL job includes the same parameter but the
value is overwritten with an Oracle value.

For details on adding, deleting, or editing parameters, see "Adapter Parameters
Pane" in the HP Universal CMDB Data Flow Management Guide.

DFM begins looking for Microsoft SQL Server instances according to this
parameter.
48

Chapter 1 • Adapter Development and Writing
Step 2: Assign a Job to the Adapter

Each adapter has one or more associated jobs that define the execution
policy. Jobs enable scheduling the same adapter differently over different set
of Triggered CIs and also enable supplying different parameters for each set.

The jobs appear in the Discovery Modules tree, and this is the entity that the
user activates.

Choose a Trigger TQL
Each job is associated with Trigger TQLs. These Trigger TQLs publish results
that are used as Input Trigger CIs for the adapter of this job.

A Trigger TQL can add constraints to an Input TQL. For example, if an input
TQL’s results are IPs connected to SNMP, a trigger TQL’s results can be IPs
connected to SNMP within the range 195.0.0.0-195.0.0.10.
49

Chapter 1 • Adapter Development and Writing
Note: A trigger TQL must refer to the same objects that the input TQL refers
to. For example, if an input TQL queries for IPs running SNMP, you cannot
define a trigger TQL (for the same job) to query for IPs connected to a host,
because some of the IPs may not be connected to an SNMP object, as
required by the input TQL.

Set Scheduling Information
The scheduling information for the Probe specifies when to run the code on
Trigger CIs. If the Invoke on new triggered CIs Immediately check box is
selected, the code also runs once on each Trigger CI when it reaches the
Probe, regardless of future schedule settings.

For each scheduled occurrence for each job, the Probe runs the code against
all Trigger CIs accumulated for that job. For details, see "Discovery Scheduler
Dialog Box" in the HP Universal CMDB Data Flow Management Guide.

Override Parameters
When configuring a job you can override the adapter parameters. For
details, see "Override Adapter Parameters" on page 48.
50

Chapter 1 • Adapter Development and Writing
Step 3: Create Jython Code

HP Universal CMDB uses Jython scripts for adapter-writing. For example,
the SNMP_Connection.py script is used by the SNMP_NET_Dis_Connection
adapter to try and connect to machines using SNMP. Jython is a language
based on Python and powered by Java.

For details on how to work in Jython, you can refer to these Web sites:

➤ http://www.jython.org

➤ http://www.python.org

For details, see "Create Jython Code" on page 65.
51

Chapter 1 • Adapter Development and Writing
52

2
Discovery Content Migration Guidelines

This chapter includes:

Concepts

➤ Discovery Content Migration Guidelines Overview on page 54

➤ Version 9.0x New Infrastructure Features on page 54

➤ Guidelines for Developing Cross-Data Model Scripts on page 59

➤ Implementation Tips on page 59

Tasks

➤ Access BTO Data Model Documentation Online on page 60

Reference

➤ Package Migration Utility on page 61

Troubleshooting and Limitations on page 62
53

Chapter 2 • Discovery Content Migration Guidelines
Concepts

Discovery Content Migration Guidelines Overview

In HP Universal CMDB version 9.0x, the data model has significantly
evolved, forcing correlated changes in the former Discovery and
Dependency Mapping (DDM) content code. Consequently, some core
mechanisms of the DDM content have changed. Thus, content developed
for UCMDB prior to version 9.0x has to be upgraded to correspond with the
9.0x data model (BDM: BTO Data Model). This section guides you through
the process of adopting DDM content and aligning it with BDM.

For details on upgrading HP Universal CMDB, see "Upgrading HP Universal
CMDB from Version 8.0x to 9.04" in the HP Universal CMDB Deployment
Guide PDF.

Version 9.0x New Infrastructure Features

Note: For details on accessing the BDM documentation online, see "Access
BTO Data Model Documentation Online" on page 60.

This section includes:

➤ "The BTO Data Model (BDM)" on page 55

➤ "Differences Between UCMDB 8.0x Class Model and UCMDB 9.0x Data
Model" on page 55

➤ "New CIT Identification Mechanism" on page 55

➤ "Running Software Mechanism" on page 56

➤ "Probe Side Identification" on page 57

➤ "Transformation Layer" on page 58
54

Chapter 2 • Discovery Content Migration Guidelines
The BTO Data Model (BDM)

➤ For details on the BTO Data Model (BDM) see the Conceptual Data Model
document. This document is a map of the concepts being modeled, as
well as the scope of the model. This conceptual data model provides a
starting point for understanding the semantics of the modeled domain.

➤ For details on the BDM classes, see the HP Software BTO Data Model
Reference document. This document covers all BDM classes, including
class description and attribute, qualifier, and hierarchy information.

Differences Between UCMDB 8.0x Class Model and
UCMDB 9.0x Data Model
Changes made between the UCMDB version 8.0x class model and BDM are
downloaded to the Probe in the following Discovery configuration file:
C:\hp\UCMDB\DataFlowProbe\runtime\probeManager\
discoveryConfigFiles\flat-class-model-changes.xml.

bdm_changes.xml. This XML file holds information regarding changes
made to class names, attributes names, removed classes, attributes,
qualifiers, and so on.

➤ For details on mapping between the UCMDB version 8.0x class model
and BDM, see the Mapping of UCMDB 9.0x (BTO Data Model) to UCMDB
8.0x Class Model document.

➤ For details on changes to the class model between version 8.0x and 9.0x,
see the UCMDB Class Model Changes Report document.

New CIT Identification Mechanism
In UCMDB versions prior to version 9.0x, key attributes are used to identify
CIs. In UCMDB version 9.0x, this concept has been generalized and the
identification is now done in a server component named Reconciliation
Engine. The Reconciliation Engine is capable of identifying CIs by logical
rules called DDA (Data Definition Algorithm) rules.
55

../../pdfs/core-dm-1.1-conceptual-model.pdf
../../pdfs/hp-software-core-dm-1.1-final.html
../../pdfs/hp-software-core-dm-1.1-final.html
../../pdfs/core-dm-1.1-ucmdb-mapping.pdf
../../pdfs/core-dm-1.1-ucmdb-mapping.pdf
../../pdfs/ClassModelChanges_903.pdf

Chapter 2 • Discovery Content Migration Guidelines
This new mechanism is mostly useful for CITs where the related topology is
important for their identification (for example, the Node CIT—Host in prior
versions—is identified by its name and the related topology, such as the IP
Address and Interface CITs). Some CITs are still identified by key attributes;
for those CITs, a DDA rule is not defined.

For details about the Reconciliation Engine, see "Reconciliation Overview"
in the HP Universal CMDB Data Flow Management Guide.

Running Software Mechanism
The version 8.0x Software Element CI is called Running Software in version
9.0x BDM. This CIT is identified in version 9.0x by a DDA rule and not by
key attributes.

Say you have added a custom CIT derived from the Running Software CIT.
In previous versions this custom CIT was identified by its key attributes.
However, in version 9.0x it is identified by an inherited DDA rule, and thus
defined key attributes are ignored.

So if you add a derived CIT, consider the following:

➤ To identify the new CIT by the same DDA rule as all the Running Software
CITs, you should keep the current configuration.

➤ To identify the new CIT by key attributes, you should create a new DDA
rule, defining the identification by key attributes. Following is an
example for such a DDA rule, defined for the object CIT:

<identification-config type="object">
<identification-criteria>

<identification-criterion targetType="root">
<key-attributes-condition/>

</identification-criterion>
</identification-criteria>
</identification-config>
56

Chapter 2 • Discovery Content Migration Guidelines
Probe Side Identification
DDM_ID_ATTRIBUTE. The version 9.0x Data Flow Probe identifies CIs only
by their key attributes (that is, ID_ATTRIBUTE). If a CIT includes a DDA rule
(that is, a reconciliation rule), the CIT may not include a key attribute. In
this case, the CIT main attributes are marked with a DDM_ID_ATTRIBUTE
qualifier. Therefore, for the purposes of identifying a CI, the Probe considers
all DDM_ID_ATTRIBUTE as well as ID_ATTRIBUTE qualifiers.

DDM_REQUIRED_TOPOLOGY. A DDA rule for a specific CIT may depend on
different CIs reported in the same bulk, together with the examined CI. For
example, J2EE Domain CIT identification is carried out not only by the
domain name attribute but also by the J2EE Application Server CIT
connected to it with a membership link.

To ensure that all the required CIs are reported with the examined CI, you
should mark each one of the examined CIs with the
DDM_REQUIRED_TOPOLOGY qualifier that contains a data item specifying
the required link type. For example, in the above example, the J2EE Domain
CIT is marked with the DDM_REQUIRED_TOPOLOGY qualifier and with a
member link data item, so that when Discovery reports a J2EE domain, the
servers are also reported. Data item name which specifies link types is
LINK_TYPES.

As an example, to identify the Node CIT by interfaces and IPs connected to
it, then the following qualifier should be added to the Node CIT definition:

where

➤ LINK_TYPES (mandatory) indicates the link types of the current CIT
topology.

<Class-Qualifier name="DDM_REQUIRED_TOPOLOGY">
<Data-Items>

<Data-Item name="LINK_TYPES" type="string">containment,composition</Data-Item>
<Data-Item name="LINK_ENDS" type="string">ip_address,interface</Data-Item>
<Data-Item name="LINK_DIRECTIONS" type="string">OUT,OUT</Data-Item>
<Data-Item name="APPLY_TO_CHILD_TYPES" type="string">true</Data-Item>

</Data-Items>
</Class-Qualifier>
57

Chapter 2 • Discovery Content Migration Guidelines
➤ LINK_ENDS (optional) provides definitions for the CITs on the opposite
ends of the specified link types according to their appearance in the
LINK_TYPES list. These “opposite” ends are always applied hierarchically.

Omitting the LINK_ENDS data item or leaving one end as an empty string
in the list means that the opposite end can be of any CIT.

➤ LINK_DIRECTION (optional) indicates the link direction, “OUT”, “IN” or
“BOTH”, to check from the current CIT.

Omitting the LINK_DIRECTION data item or leaving an empty entry in
the list means that both directions are checked.

➤ APPLY_TO_CHILD_TYPES (optional) indicates that the qualifier will be
applied recursively to all children of the current CIT.

Omitting the APPLY_TO_CHILD_TYPES data item means that the
qualifier is applied only to the current CIT.

If DDM_REQUIRED_TOPOLOGY is defined for a specific CIT, this will
override the qualifier defined for its parent.

For details on qualifiers, see "Qualifiers Page" in the HP Universal CMDB
Modeling Guide.

Transformation Layer
To ensure backward compatibility, a new transformation mechanism is
introduced in version 9.0x on the Probe. The new mechanism is capable of
converting version 8.0x topologies to 9.0x topologies at runtime. It enables
the Probe to continue running tasks, such as Jython scripts, which report
topologies compatible with version 8.0x.

The new transformation mechanism uses the data kept in the
bdm_changes.xml file, and performs the required changes (class and
attributes name changes, attribute removal, hierarchy changes, and so on)
to make the 8.0x topologies compatible with the BDM. Concurrently (and
independently of the topologies reported by the tasks executed by the
Probe), the UCMDB Server receives topologies compatible with BDM.
58

Chapter 2 • Discovery Content Migration Guidelines
Guidelines for Developing Cross-Data Model Scripts

The following guidelines are applicable for both version 8.0x and 9.0x.

Discovery Scripts API Library
The Discovery API library is fully backward compatible and therefore all
version 8.0x libraries and APIs are supported. For details, see "Jython
Libraries and Utilities" on page 112.

The 9.0x API includes more elements and methods. For example, a Jython
script now reports an error code (integer) instead of a string error message,
thus enabling localized discovery error messages. For details, see
"Error-Writing Conventions" on page 119.

Implementation Tips

➤ Use the modeling module for creating a Running Software CIT or any
descendant for which the relevant method is present.

➤ Use HostBuilder for creating CIT of type Node.

➤ Use the modeling.createOshByCmdbIdString to restore OSH by its ID.

➤ Use the ShellUtils instance of the shellutils module for all shell-based
connections.

➤ Use the built-in mechanism to retrieve the UCMDB version:
logger.Version().getVersion(framework). For example, if an additional
attribute application_ip is added only for UCMDB version 9.0x or later:

➤ Use wmiutils for creating a WMI-based discovery.

➤ Use snmputils for creating a SNMP-based discovery.

versionAsDouble = logger.Version().getVersion(Framework)
if versionAsDouble >= 9:

appServerOSH.setAttribute('application_ip', ip)
59

Chapter 2 • Discovery Content Migration Guidelines
Tasks

Access BTO Data Model Documentation Online

To access the BDM documentation:

 1 Log on to HP Universal CMDB.

 2 Click Help > UCMDB Help.

 3 On the Home page, click the Modeling link under Applications to access
the Modeling portal.

 4 Click the Data Model tab.
60

Chapter 2 • Discovery Content Migration Guidelines
Reference

Package Migration Utility

The UCMDB 9.0x installation includes an external Package Migration Utility
that enables content developers to convert a content package from the 8.0x
class model to the 9.0x data model. The Package Migration Utility converts
package resources, subsystem by subsystem, so that they are compatible
with the new class model. CIT definitions, queries, jobs, adapters, and
modules are transformed according to the data held in the
bdm_changes.xml file. As a result, they can be deployed and used by a
UCMDB 9.0x Server.

For details, see "Upgrading Packages from Version 8.0x (8.04 and Higher)
to 9.04" in the HP Universal CMDB Deployment Guide PDF.

Package Migration Utility Limitations

➤ Jython scripts are not upgraded by the Package Migration Utility. For
supporting scripts that are designed to correspond with the UCMDB
version 8.0x class model, a new Transformation layer module is
introduced in UCMDB 9.0x. For details, see "Transformation Layer" on
page 58.

➤ Discovery Adapters of type Integration are not upgraded by the Package
Migration Utility and thus should be upgraded manually.

➤ The Layer 2 Topology discovery job (and its corresponding resources, such
as Discovery Adapter, TQL, and so on) has significantly changed and is
removed by the Package Migration Utility instead of being upgraded.
61

Chapter 2 • Discovery Content Migration Guidelines
Troubleshooting and Limitations

➤ The ip_address value is not passed by default to the pattern. It should be
added explicitly to the pattern as Trigger CI Data.

➤ If a non-out-of-the-box Jython script requires an external jar or resource
in the classpath, it should be located in the relevant package under a
sub-folder named discoveryResources.

➤ While working with attributes of type List such as StringVector and
IntegerVector (inherited from BaseVector), you cannot use both the add
element and remove element operations on the same list object.
62

3
Developing Jython Adapters

This chapter includes:

Concepts

➤ HP Data Flow Management API Reference on page 64

Tasks

➤ Create Jython Code on page 65

➤ Support Localization in Jython Adapters on page 79

➤ Work with Discovery Analyzer on page 90

➤ Run Discovery Analyzer from Eclipse on page 99

➤ Record DFM Code on page 109

Reference

➤ Jython Libraries and Utilities on page 112
63

Chapter 3 • Developing Jython Adapters
Concepts

HP Data Flow Management API Reference

For full documentation on the available APIs, see HP Universal CMDB Data
Flow Management API Reference. These files are located in the following
folder:

C:\hp\UCMDB\UCMDBServer\deploy\ucmdb-docs\docs\eng\doc_lib\
DevRef_guide\DDM_JavaDoc\index.html
64

Chapter 3 • Developing Jython Adapters
Tasks

Create Jython Code

HP Universal CMDB uses Jython scripts for adapter-writing. For example,
the SNMP_Connection.py script is used by the SNMP_NET_Dis_Connection
adapter to try and connect to machines using SNMP. Jython is a language
based on Python and powered by Java.

For details on how to work in Jython, you can refer to these Web sites:

➤ http://www.jython.org

➤ http://www.python.org

The following section describes the actual writing of Jython code inside the
DFM Framework. This section specifically addresses those contact points
between the Jython script and the Framework that it calls, and also describes
the Jython libraries and utilities that should be used whenever possible.

Note:

➤ Scripts written for DFM should be compatible with Jython version 2.1.

➤ For full documentation on the available APIs, see the HP Universal CMDB
Data Flow Management API Reference.

This section includes the following topics:

➤ "Use External Java JAR Files within Jython" on page 66

➤ "Execution of the Code" on page 66

➤ "Modifying Out-of-the-Box Scripts" on page 66

➤ "Structure of the Jython File" on page 68

➤ "Results Generation by the Jython Script" on page 71

➤ "The Framework Instance" on page 73
65

Chapter 3 • Developing Jython Adapters
➤ "Finding the Correct Credentials (for Connection Adapters)" on page 77

➤ "Handling Exceptions from Java" on page 79

Use External Java JAR Files within Jython
When developing new Jython scripts, external Java Libraries (JAR files) or
third-party executable files are sometimes needed as either Java utility
archives, connection archives such as JDBC Driver JAR files, or executable
files (for example, nmap.exe is used for credential-less discovery).

These resources should be bundled in the package under the External
Resources folder. Any resource put in this folder is automatically sent to any
Probe that connects to your HP Universal CMDB server.

In addition, when discovery is launched, any JAR file resource is loaded into
the Jython's classpath, making all the classes within it available for import
and use.

Execution of the Code
After a job is activated, a task with all the required information is
downloaded to the Probe.

The Probe starts running the DFM code using the information specified in
the task.

The Jython code flow starts running from a main entry in the script,
executes code to discover CIs, and provides results of a vector of
discovered CIs.

Modifying Out-of-the-Box Scripts
When making out-of-the-box script modifications, make only minimal
changes to the script and place any necessary methods in an external script.
You can track changes more efficiently and, when moving to a newer
HP Universal CMDB version, your code is not overwritten.
66

Chapter 3 • Developing Jython Adapters
For example, the following single line of code in an out-of-the-box script
calls a method that calculates a Web server name in an application-specific
way:

The more complex logic that decides how to calculate this name is
contained in an external script:

Save the external script in the External Resources folder. For details, see
"Resources Pane" in the HP Universal CMDB Data Flow Management Guide. If
you add this script to a package, you can use this script for other jobs, too.
For details on working with Package Manager, see "Package Manager" in the
HP Universal CMDB Administration Guide.

serverName = iplanet_cspecific.PlugInProcessing(serverName, transportHN,
mam_utils)

implement customer specific processing for 'servername' attribute of httpplugin

#

def PlugInProcessing(servername, transportHN, mam_utils_handle):

support application-specific HTTP plug-in naming

if servername == "appsrv_instance":

servername is supposed to match up with the j2ee server name,
however some groups do strange things with their

iPlanet plug-in files. this is the best work-around we could find. this join
can't be done with IP address:port

because multiple apps on a web server share the same IP:port for
multiple websphere applications

logger.debug('httpcontext_webapplicationserver attribute has been
changed from [' + servername + '] to [' + transportHN[:5] + '] to facilitate websphere
enrichment')

servername = transportHN[:5]

return servername
67

Chapter 3 • Developing Jython Adapters
During upgrade, the change you make to the single line of code is
overwritten by the new version of the out-of-the-box script, so you will need
to replace the line. However, the external script is not overwritten.

Structure of the Jython File
The Jython file is composed of three parts in a specific order:

 1 Imports

 2 Main Function - DiscoveryMain

 3 Functions definitions (optional)

The following is an example of a Jython script:

Imports

Jython classes are spread across hierarchical namespaces. In version 7.0 or
later, unlike in previous versions, there are no implicit imports, and so every
class you use must be imported explicitly. (This change was made for
performance reasons and to enable an easier understanding of the Jython
script by not hiding necessary details.)

➤ To import a Jython script:

imports section
from appilog.common.system.types import ObjectStateHolder
from appilog.common.system.types.vectors import ObjectStateHolderVector

Function definition
def foo:

do something

Main Function
def DiscoveryMain(Framework):

OSHVResult = ObjectStateHolderVector()

Write implementation to return new result CIs here...

return OSHVResult

import logger
68

DDM_JavaDoc/com/hp/ucmdb/discovery/library/execution/BaseFramework.html

Chapter 3 • Developing Jython Adapters
➤ To import a Java class:

Main Function – DiscoveryMain

Each Jython runable script file contains a main function: DiscoveryMain.

The DiscoveryMain function is the main entry into the script; it is the first
function that runs. The main function may call other functions that are
defined in the scripts:

The Framework argument must be specified in the main function definition.
This argument is used by the main function to retrieve information that is
required to run the scripts (such as information on the Trigger CI and
parameters) and can also be used to report on errors that occur during the
script run.

You can create a Jython script without any main method. Such scripts are
used as library scripts that are called from other scripts.

Functions Definition

Each script can contain additional functions that are called from the main
code. Each such function can call another function, which either exists in
the current script or in another script (use the import statement). Note that
to use another script, you must add it to the Scripts section of the package:

from appilog.collectors.clients import ClientsConsts

def DiscoveryMain(Framework):
69

DDM_JavaDoc/com/hp/ucmdb/discovery/library/execution/BaseFramework.html

Chapter 3 • Developing Jython Adapters
Example of a Function Calling Another Function:

In the following example, the main code calls the doQueryOSUsers(..)
method which calls an internal method doOSUserOSH(..):

If this script is a global library that is relevant to many adapters, you can add
it to the list of scripts in the jythonGlobalLibs.xml configuration file, instead
of adding it to each adapter (Adapter Management > Resources Pane >
AutoDiscoveryContent > Configuration Files).

def doOSUserOSH(name):
sw_obj = ObjectStateHolder('winosuser')

sw_obj.setAttribute('data_name', name)
return the object
return sw_obj

def doQueryOSUsers(client, OSHVResult):
_hostObj = modeling.createHostOSH(client.getIpAddress())
data_name_mib = '1.3.6.1.4.1.77.1.2.25.1.1,1.3.6.1.4.1.77.1.2.25.1.2,string'
resultSet = client.executeQuery(data_name_mib)
while resultSet.next():

UserName = resultSet.getString(2)
########## send object ##############
OSUserOSH = doOSUserOSH(UserName)
OSUserOSH.setContainer(_hostObj)
OSHVResult.add(OSUserOSH)

def DiscoveryMain(Framework):
OSHVResult = ObjectStateHolderVector()
try:

client =
Framework.getClientFactory(ClientsConsts.SNMP_PROTOCOL_NAME).createClie
nt()

except:
Framework.reportError('Connection failed')

else:
doQueryOSUsers(client, OSHVResult)
client.close()

return OSHVResult
70

Chapter 3 • Developing Jython Adapters
Results Generation by the Jython Script
Each Jython script runs on a specific Trigger CI, and ends with results that
are returned by the return value of the DiscoveryMain function.

The script result is actually a group of CIs and links that are to be inserted or
updated in the CMDB. The script returns this group of CIs and links in the
format of ObjectStateHolderVector.

The ObjectStateHolder class is a way to represent an object or link defined in
the CMDB. The ObjectStateHolder object contains the CIT name and a list of
attributes and their values. The ObjectStateHolderVector is a vector of
ObjectStateHolder instances.

The ObjectStateHolder Syntax

This section explains how to build the DFM results into a UCMDB model.

Example of Setting Attributes on the CIs:

The ObjectStateHolder class describes the DFM result graph. Each CI and link
(relationship) is placed inside an instance of the ObjectStateHolder class as in the
following Jython code sample:

siebel application server
1 appServerOSH = ObjectStateHolder('siebelappserver')
2 appServerOSH.setStringAttribute('data_name', sblsvrName)
3 appServerOSH.setStringAttribute ('application_ip', ip)
4 appServerOSH.setContainer(appServerHostOSH)

➤ Line 1 creates a CI of type siebelappserver.

➤ Line 2 creates an attribute called data_name with a value of sblsvrName which
is a Jython variable set with the value discovered for the server name.

➤ Line 3 sets a non-key attribute that is updated in the CMDB.

➤ Line 4 is the building of containment (the result is a graph). It specifies that this
application server is contained inside a host (another ObjectStateHolder class in
the scope).

Note: Each CI being reported by the Jython script must include values for all the
key attributes of the CI’s CI Type.
71

Chapter 3 • Developing Jython Adapters
Example of Relationships (Links):

Example of Vector (Gathering CIs):

After creating objects with attributes, and links with objects at their ends,
you must now group them together. You do this by adding them to an
ObjectStateHolderVector instance, as follows:

For details on reporting this composite result to the Framework so it can
be sent to the CMDB server, see the sendObjects method.

Once the result graph is assembled in an ObjectStateHolderVector instance,
it must be returned to the DFM Framework to be inserted into the CMDB.
This is done by returning the ObjectStateHolderVector instance as the
result of the DiscoveryMain() function.

Note: For details on creating OSH for common CITs, see modeling.py in
"Jython Libraries and Utilities" on page 112.

The following link example explains how the graph is represented:

1 linkOSH = ObjectStateHolder('route')
2 linkOSH.setAttribute('link_end1', gatewayOSH)
3 linkOSH.setAttribute('link_end2', appServerOSH)

➤ Line 1 creates the link (that is also of the ObjectStateHolder class. The only
difference is that route is a link CI Type).

➤ Lines 2 and 3 specify the nodes at the end of each link. This is done using the
end1 and end2 attributes of the link which must be specified (because they are
the minimal key attributes of each link). The attribute values are
ObjectStateHolder instances. For details on End 1 and End 2, see "Link" in the
HP Universal CMDB Data Flow Management Guide.

Caution: A link is directional. You should verify that End 1 and End 2 nodes
correspond to valid CITs at each end. If the nodes are not valid, the result object
fails validation and is not reported correctly. For details, see "CI Type
Relationships" in the HP Universal CMDB Modeling Guide.

oshvMyResult = ObjectStateHolderVector()
oshvMyResult.add(appServerOSH)
oshvMyResult.add(linkOSH)
72

DDM_JavaDoc/com/hp/ucmdb/discovery/library/execution/BaseFramework.html#sendObjects(appilog.common.system.types.vectors.ObjectStateHolderVector)

Chapter 3 • Developing Jython Adapters
The Framework Instance
The Framework instance is the only argument that is supplied in the main
function in the Jython script. This is an interface that can be used to retrieve
information required to run the script (for example, information on
trigger CIs and adapter parameters), and is also used to report on errors that
occur during the script run. For details, see "HP Data Flow Management API
Reference" on page 64.

The correct usage of Framework instance is to pass it as argument to each
method that uses it.

Example:

This section describes the most important Framework usages:

➤ "Framework.getTriggerCIData(String attributeName)" on page 74

➤ "Framework.createClient(credentialsId, props)" on page 74

➤ "Framework.getParameter (String parameterName)" on page 76

➤ "Framework.reportError(String message) and
Framework.reportWarning(String message)" on page 76

def DiscoveryMain(Framework):
 OSHVResult = helperMethod (Framework)

return OSHVResult

def helperMethod (Framework):
….
 probe_name = Framework.getDestinationAttribute('probe_name')
 …
 return result
73

Chapter 3 • Developing Jython Adapters
Framework.getTriggerCIData(String attributeName)

This API provides the intermediate step between the Trigger CI data defined
in the adapter and the script.

Example of Retrieving Credential Information:

You request the following Trigger CI data information:

To retrieve the credential information from the task, use this API:

Framework.createClient(credentialsId, props)

You make a connection to a remote machine by creating a client object and
executing commands on that client. To create a client, retrieve the
ClientFactory class. The getClientFactory() method receives the type of the
requested client protocol. The protocol constants are defined in the
ClientsConsts class. For details on credentials and supported protocols, see
"Domain Credential References" in the HP Universal CMDB Data Flow
Management Guide.

Example of Creating a Client Instance for the Credentials ID:

To create a Client instance for the credentials ID:

You can now use the Client instance to connect to the relevant machine or
application.

credId = Framework.getTriggerCIData('credentialsId')

properties = Properties()
codePage = Framework.getCodePage()
properties.put(BaseAgent.ENCODING, codePage)
client = Framework.createClient(credentailsID ,properties)
74

DDM_JavaDoc/com/hp/ucmdb/discovery/library/clients/ClientFactory.html
DDM_JavaDoc/com/hp/ucmdb/discovery/library/clients/ClientsConsts.html

Chapter 3 • Developing Jython Adapters
Example of Creating a WMI Client and Running a WMI Query:

To create a WMI client and run a WMI query using the client:

Note: To make the createClient() API work, add the following parameter to
the Trigger CI data parameters: credentialsId = ${SOURCE.credentials_id}
in the Triggered CI Data pane. Or you can manually add the credentials
ID when calling the function:
wmiClient = clientFactory().createClient(credentials_id).

The following diagram illustrates the hierarchy of the clients, with their
commonly-supported APIs:

For details on the clients and their supported APIs, see BaseClient,
ShellClient, and QueryClient in the HP Discovery and Dependency Mapping
Schema Reference. These files are located in the following folder:

<UCMDB root directory>\UCMDBServer\deploy\ucmdb-
docs\docs\eng\doc_lib\
DevRef_guide\DDM_Schema\webframe.html

wmiClient = Framework.createClient(credential)
resultSet = wmiClient. executeQuery("SELECT TotalPhysicalMemory
 FROMWin32_LogicalMemoryConfiguration")
75

DDM_JavaDoc/com/hp/ucmdb/discovery/library/clients/BaseClient.html
DDM_JavaDoc/com/hp/ucmdb/discovery/library/clients/shell/ShellClient.html
DDM_JavaDoc/com/hp/ucmdb/discovery/library/clients/query/QueryClient.html

Chapter 3 • Developing Jython Adapters
Framework.getParameter (String parameterName)

In addition to retrieving information on the Trigger CI, you often need to
retrieve an adapter parameter value. For example:

Example of Retrieving the Value of the protocolType Parameter:

To retrieve the value of the protocolType parameter from the Jython script,
use the following API:

Framework.reportError(String message) and
Framework.reportWarning(String message)

Some errors (for example, connection failure, hardware problems, timeouts)
can occur during a script run. When such errors are detected, Framework
can report on the problem. The message that is reported reaches the server
and is displayed for the user.

Example of a Report Error and Message:

The following example illustrates the use of the reportError(<Error Msg>)
API:

protocolType = Framework.getParameterValue('protocolType')

try:
client =

Framework.getClientFactory(ClientsConsts.SNMP_PROTOCOL_NAME)
createClient()

except:
strException = str(sys.exc_info()[1]).strip()
Framework. reportError ('Connection failed: %s' % strException)
76

Chapter 3 • Developing Jython Adapters
You can use either one of the APIs—Framework.reportError(String message),
Framework.reportWarning(String message)—to report on a problem. The
difference between the two APIs is that when reporting an error, the Probe
saves a communication log file with the entire session’s parameters to the
file system. In this way you are able to track the session and better
understand the error.

For details on error messages, see "Error Messages" on page 117.

Finding the Correct Credentials (for Connection
Adapters)
An adapter trying to connect to a remote system needs to try all possible
credentials. One of the parameters needed when creating a client (through
ClientFactory) is the credentials ID. The connection script gains access to
possible credential sets and tries them one by one using the
clientFactory.getAvailableProtocols() method. When one credential set
succeeds, the adapter reports a CI connection object on the host of this
trigger CI (with the credentials ID that matches the IP) to the CMDB.
Subsequent adapters can use this connection object CI directly to connect to
the credential set (that is, the adapters do not have to try all possible
credentials again).

The following example shows how to obtain all entries of the SNMP
protocol. Note that here the IP is obtained from the Trigger CI data (# Get
the Trigger CI data values).
77

Chapter 3 • Developing Jython Adapters
The connection script requests all possible protocol credentials (# Go over all
the protocol credentials) and tries them in a loop until one succeeds
(resultVector). For details, see the two-phase connect paradigm entry in
"Separating Adapters" on page 35.

import logger
from appilog.collectors.clients import ClientsConsts
from appilog.common.system.types.vectors import ObjectStateHolderVector

def mainFunction(Framework):
resultVector = ObjectStateHolderVector()

Get the Trigger CI data values
ip_address = Framework.getDestinationAttribute('ip_address')
ip_domain = Framework.getDestinationAttribute('ip_domain')

Create the client factory for SNMP
clientFactory = framework.getClientFactory(ClientsConsts.SNMP_PROTOCOL_NAME)
protocols = clientFactory.getAvailableProtocols(ip_address, ip_domain)

connected = 0
Go over all the protocol credentials
for credentials_id in protocols:

client = None
try:

try to connect to the snmp agent
client = clientFactory.createClient(credentials_id)

// Query the agent
….

connection succeed
connected = 1

except:
if client != None:

client.close()
if (not connected):

logger.debug('Failed to connect using all credentials')
else:

// return the results as OSHV
return resultVector
78

Chapter 3 • Developing Jython Adapters
Handling Exceptions from Java
Some Java classes throw an exception upon failure. It is recommended to
catch the exception and handle it, otherwise it causes the adapter to
terminate unexpectedly.

When catching a known exception, in most cases you should print its stack
trace to the log and issue a proper message to the UI, for example:

If the exception is not fatal and the script can continue, you should omit
the call for the reportError() method and enable the script to continue.

Support Localization in Jython Adapters

The multi-lingual locale feature enables DFM to work across different
operating system (OS) languages, and to enable appropriate customizations
at runtime.

Previously, before Content Pack 3.00, DFM used statically-specified
encoding to treat output from all network targets. However, this approach
does not suit a multi-lingual IT network: to discover hosts with different OS
languages, Probe administrators had to re-run DFM jobs manually several
times with different job parameters each time. This procedure produced a
serious overhead on network load but, even more, it avoided several key
features of DFM, such as immediate job invocation on a trigger CI or
automatic data refreshing in UCMDB by the Schedule Manager.

try:
client = Framework.getClientFactory().createClient()

except Exception, msg:
Framework.reportError('Connection failed')
logger.debugException('Exception while connecting: %s' % (msg))
return
79

Chapter 3 • Developing Jython Adapters
The following locale languages are supported by default: Japanese, Russian,
and German. The default locale is English.

This section includes:

➤ "Add Support for a New Language" on page 80

➤ "Change the Default Language" on page 82

➤ "Determine the Character Set for Encoding" on page 82

➤ "Define a New Job to Operate With Localized Data" on page 83

➤ "Decode Commands Without a Keyword" on page 84

➤ "Work with Resource Bundles" on page 85

➤ "API Reference" on page 86

Add Support for a New Language
This task describes how to add support for a new language.

This task includes the following steps:

➤ "Add a Resource Bundle (*.properties Files)" on page 80

➤ "Declare and Register the Language Object" on page 81

 1 Add a Resource Bundle (*.properties Files)

Add a resource bundle according to the job that is to be run. The
following table lists the DFM jobs and the resource bundle that is used by
each job:

Job Base Name of Resource Bundle

File Monitor by Shell langFileMonitoring

Host Resources and Applications by Shell langHost_Resources_By_TTY,
langTCP

Hosts by Shell using NSLOOKUP in DNS
Server

langNetwork

Host Connection by Shell langNetwork
80

Chapter 3 • Developing Jython Adapters
For details on bundles, see "Work with Resource Bundles" on page 85.

 2 Declare and Register the Language Object

To define a new language, add the following two lines of code to the
shellutils.py script, that currently contains the list of all supported
languages. The script is included in the AutoDiscoveryContent package. To
view the script, access the Adapter Management window. For details, see
"Adapter Management Window" in the HP Universal CMDB Data Flow
Management Guide.

 a Declare the language, as follows:

For details on class language, see "API Reference" on page 86. For
details on the Class Locale object, see
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Locale.html. You can
use an existing locale or define a new locale.

 b Register the language by adding it to the following collection:

Collect Network Data by Shell or SNMP langTCP

Host Resources and Applications by SNMP langTCP

Microsoft Exchange Connection by
NTCMD, Microsoft Exchange Topology by
NTCMD

msExchange

MS Cluster by NTCMD langMsCluster

LANG_RUSSIAN = Language(LOCALE_RUSSIAN, 'rus', ('Cp866', 'Cp1251'),
(1049,), 866)

LANGUAGES = (LANG_ENGLISH, LANG_GERMAN, LANG_SPANISH,
LANG_RUSSIAN, LANG_JAPANESE)

Job Base Name of Resource Bundle
81

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Locale.html

Chapter 3 • Developing Jython Adapters
Change the Default Language
If the OS language cannot be determined, the default one is used. The
default language is specified in the shellutils.py file.

To change the default language, you initialize the DEFAULT_LANGUAGE
variable with a different language. For details, see "Add Support for a New
Language" on page 80.

Determine the Character Set for Encoding
The suitable character set for decoding command output is determined at
runtime. The multi-lingual solution is based on the following facts and
assumptions:

 1 It is possible to determine the OS language in a locale-independent way,
for example, by running the chcp command on Windows or the locale
command on Linux.

 2 Relation Language-Encoding is well known and can be defined statically.
For example, the Russian language has two of the most popular encoding:
Cp866 and Windows-1251.

 3 One character set for each language is preferable, for example, the
preferable character set for Russian language is Cp866. This means that
most of the commands produce output in this encoding.

 4 Encoding in which the next command output is provided is
unpredictable, but it is one of the possible encoding for a given language.
For example, when working with a Windows machine with a Russian
locale, the system provides the ver command output in Cp866, but the
ipconfig command is provided in Windows-1251.

 5 A known command produces known key words in its output. For
example, the ipconfig command contains the translated form of the IP-
Address string. So the ipconfig command output contains IP-Address for
the English OS, for the Russian OS, IP-Adresse for the German
OS, and so on.

#default language for fallback
DEFAULT_LANGUAGE = LANG_ENGLISH
82

Chapter 3 • Developing Jython Adapters
Once it is discovered in which language the command output is produced
(# 1), possible character sets are limited to one or two (# 2). Furthermore, it
is known which key words are contained in this output (# 5).

The solution, therefore, is to decode the command output with one of the
possible encoding by searching for a key word in the result. If the key word
is found, the current character set is considered the correct one.

Define a New Job to Operate With Localized Data
This task describes how to write a new job that can operate with localized
data.

Jython scripts usually execute commands and parse their output. To receive
this command output in a properly decoded manner, you use the API for the
ShellUtils class. For details, see "HP Universal CMDB Web Service API
Overview" on page 310.

This code usually takes the following form:

 1 Create a client:

 2 Create an instance of the ShellUtils class and add the operating system
language to it. If the language is not added, the default language is used
(usually English):

client = Framework.createClient(protocol, properties)
shellUtils = shellutils.ShellUtils(client)
languageBundle = shellutils.getLanguageBundle (’langNetwork’, shellUtils.osLanguage,
Framework)
strWindowsIPAddress = languageBundle.getString(’windows_ipconfig_str_ip_address’)
ipconfigOutput = shellUtils.executeCommandAndDecode(’ipconfig /all’,
strWindowsIPAddress)
#Do work with output here

client = Framework.createClient(protocol, properties)

shellUtils = shellutils.ShellUtils(client)
83

Chapter 3 • Developing Jython Adapters
During object initialization, DFM automatically detects machine
language and sets preferable encoding from the predefined Language
object. Preferable encoding is the first instance appearing in the encoding
list.

 3 Retrieve the appropriate resource bundle from shellclient using the
getLanguageBundle method:

 4 Retrieve a keyword from the resource bundle, suitable for a particular
command:

 5 Invoke the executeCommandAndDecode method and pass the keyword
to it on the ShellUtils object:

The ShellUtils object is also needed to link a user to the API reference
(where this method is described in detail).

 6 Parse the output as usual.

Decode Commands Without a Keyword
The current approach for localization uses a keyword to decode all of the
command output. For details, see step 4 on page 84 in "Define a New Job to
Operate With Localized Data" on page 83.

However, another approach uses a keyword to decode the first command
output only, and then decodes further commands with the character set
used to decode the first command. To do this, you use the getCharsetName
and useCharset methods of the ShellUtils object.

languageBundle = shellutils.getLanguageBundle (’langNetwork’,
shellUtils.osLanguage, Framework)

strWindowsIPAddress =
languageBundle.getString(’windows_ipconfig_str_ip_address’)

ipconfigOutput = shellUtils.executeCommandAndDecode(’ipconfig /all’,
strWindowsIPAddress)
84

DDM_JavaDoc/jython/shellutils.Shell-class.html

Chapter 3 • Developing Jython Adapters
The regular use case works as follows:

 1 Invoke the executeCommandAndDecode method once.

 2 Obtain the most recently used character set name through the
getCharsetName method.

 3 Make shellUtils use this character set by default, by invoking the
useCharset method on the ShellUtils object.

 4 Invoke the execCmd method of ShellUtils one or more times. The output
is returned with the character set specified in step 3. No additional
decoding operations occur.

Work with Resource Bundles
A resource bundle is a file that takes a properties extension (*.properties). A
properties file can be considered a dictionary that stores data in the format
of key = value. Each row in a properties file contains one key = value
association. The main functionality of a resource bundle is to return a value
by its key.

Resource bundles are located on the Probe machine: C:\hp\UCMDB\
DataFlowProbe\runtime\probeManager\discoveryConfigFiles. They are
downloaded from the UCMDB Server as any other configuration file. They
can be edited, added, or removed, in the Resources window. For details, see
"Configuration File Pane" in the HP Universal CMDB Data Flow Management
Guide.
85

Chapter 3 • Developing Jython Adapters
When discovering a destination, DFM usually needs to parse text from
command output or file content. This parsing is often based on a regular
expression. Different languages require different regular expressions to be
used for parsing. For code to be written once for all languages, all language-
specific data must be extracted to resource bundles. There is a resource
bundle for each language. (Although it is possible that a resource bundle
contain data for different languages, in DFM one resource bundle always
contains data for one language.)

The Jython script itself does not include hard coded, language-specific data
(for example, language-specific regular expressions). The script determines
the language of the remote system, loads the proper resource bundle, and
obtains all language-specific data by a specific key.

In DFM, resource bundles take a specific name format:
<base_name>_<language_identifier>.properties, for example,
langNetwork_spa.properties. (The default resource bundle takes the following
format: <base_name>.properties, for example, langNetwork.properties.)

The base_name format reflects the intended purpose of this bundle. For
example, langMsCluster means the resource bundle contains language-
specific resources used by the MS Cluster jobs.

The language_identifier format is a 3-letter acronym used to identify the
language. For example, rus stands for the Russian language and ger for the
German language. This language identifier is included in the declaration of
the Language object.

API Reference
This section includes:

➤ "The Language Class" on page 87

➤ "The executeCommandAndDecode Method" on page 88

➤ "The getCharsetName Method" on page 88

➤ "The useCharset Method" on page 89

➤ "The getLanguageBundle Method" on page 89

➤ "The osLanguage Field" on page 89
86

Chapter 3 • Developing Jython Adapters
The Language Class
This class encapsulates information about the language, such as resource
bundle postfix, possible encoding, and so on.

Fields

Name Description

locale Java object which represents locale.

bundlePostfix Resource bundle postfix. This postfix is used in
resource bundle file names to identify the language.
For example, the langNetwork_ger.properties
bundle includes a ger bundle postfix.

charsets Character sets used to encode this language. Each
language can have several character sets. For
example, the Russian language is commonly
encoded with the Cp866 and Windows-1251
encoding.

wmiCodes The list of WMI codes used by the Microsoft
Windows OS to identify the language. All possible
codes are listed at http://msdn.microsoft.com/en-
us/library/aa394239(VS.85).aspx (the OSLanguage
section). One of the methods for identifying the OS
language is to query the WMI class OS for the
OSLanguage property.

codepage Code page used with a specific language. For
example, 866 is used for Russian machines and 437
for English machines. One of the methods for
identifying the OS language is to retrieve its default
codepage (for example, by the chcp command).
87

Chapter 3 • Developing Jython Adapters
The executeCommandAndDecode Method
This method is intended to be used by business logic Jython scripts. It
encapsulates the decoding operation and returns a decoded command
output.

Arguments

The getCharsetName Method
This method return the name of the most recently used character set.

Name Description

cmd The actual command to be executed.

keyword The keyword to be used for the decoding operation.

framework The Framework object passed to every executable
Jython script in DFM.

timeout The command timeout.

waitForTimeout Specifies if client should wait when timeout is
exceeded.

useSudo Specifies if sudo should be used (relevant only for
UNIX machine clients).

language Enables specifying the language directly instead of
automatically detecting a language.
88

Chapter 3 • Developing Jython Adapters
The useCharset Method
This method sets the character set on the ShellUtils instance, which uses this
character set for initial data decoding.

Arguments

See also "The getCharsetName Method" on page 88.

The getLanguageBundle Method
This method should be used to obtain the correct resource bundle. This
replaces the following API:

Arguments

The osLanguage Field
This field contains an object that represents the language.

Name Description

charsetName The name of the character set, for example,
windows-1251 or UTF-8.

Framework.getEnvironmentInformation().getBundle(…)

Name Description

baseName The name of the bundle without the language
suffix, for example, langNetwork.

language The language object. The ShellUtils.osLanguage
should be passed here.

framework The Framework, common object which is passed to
every executable Jython script in DFM.
89

Chapter 3 • Developing Jython Adapters
Work with Discovery Analyzer

The Discovery Analyzer tool is intended for debugging purposes when
developing packages, scripts, or any other content. The tool runs a job
against a remote destination and returns logs containing information,
warning, and error details and results of discovered CIs.

Note that results are not always reported to the UI. This is because the
results are reported in two ways and only one of them is supported. Also, the
communication log is not supported from Eclipse.

When executing the tool from Eclipse, the DiscoveryProbe.properties file
(C:\hp\UCMDB\DataFlowProbe\conf\DiscoveryProbe.properties) must
contain the following parameter set to true:

For details, see "Run Discovery Analyzer from Eclipse" on page 99.

In all other cases (when the tool is executed from the cmd file or while the
Probe is running) this flag must be set to false:

Tasks and Records

A task file contains data regarding a task to be executed. The task consists of
information such as the job’s name and required parameters that define the
trigger CI, for example, the remote destination address.

A record file contains task information as well as the results of a specific
execution, that is, the detailed communication (including a response)
between the Probe or Discovery Analyzer (whichever module executed the
task) and the remote destination.

A task that is defined by a task file can be executed against a remote
destination, whereas a task that is defined by a record file (that contains
extra data regarding a specific execution) can be executed and can also be
played back (that is, can reproduce the same execution documented in the
record file).

appilog.agent.local.discoveryAnalyzerFromEclipse = true

appilog.agent.local.discoveryAnalyzerFromEclipse = false
90

Chapter 3 • Developing Jython Adapters
Logs

Logs provide information about the latest run, as follows:

➤ General Log. This log includes all information data, errors, and warnings
that occurred during the run.

➤ Communication Log. This log contains the detailed communication
between the Discovery Analyzer and the remote destination (including its
response). After the execution, the log can be saved as a record file.

➤ Results Log. Displays a list of discovered CIs. The appearance time of each
CI depends on the design of the adapters and scripts.

You can save all logs together or each log separately. When you save all the
logs, they are saved together under one name.

If you replay a record file, the same data is displayed in the communication
log, the only difference being the time of execution.

Limitation: The Communication and Results logs are not available when
running Discovery Analyzer through Eclipse.

This section includes the following steps:

➤ "Prerequisites" on page 92

➤ "Access Discovery Analyzer" on page 92

➤ "Define a Task" on page 93

➤ "Define a New Task" on page 94

➤ "Retrieve a Record" on page 95

➤ "Open a Task File" on page 95

➤ "Import a Task from the Database" on page 95

➤ "Edit a Task" on page 95

➤ "Save the Task and Logs" on page 96

➤ "Run the Task" on page 96
91

Chapter 3 • Developing Jython Adapters
➤ "Send a Task Result to the Server" on page 97

➤ "Import Settings" on page 97

➤ "Breakpoints" on page 98

➤ "Configure Eclipse" on page 98

 1 Prerequisites

➤ The Probe must be installed. (The Discovery Analyzer is installed as
part of the Probe installation process and shares resources with it.)

➤ The Probe does not need to be running while you are working with
Discovery Analyzer.

However, if the Probe has already run against a UCMDB Server, all the
required resources are already downloaded to the file system. If the
Probe has not run, you can upload resources needed by Discovery
Analyzer through the Settings menu. For details, see "Import Settings"
on page 97.

➤ The CMDB Server does not need to be installed.

 2 Access Discovery Analyzer

You access Discovery Analyzer either:

➤ When working with Eclipse.

The Probe installation comes with a default Eclipse workspace located
at C:\hp\UCMDB\DataFlowProbe\tools\
discoveryAnalyzerWorkspace. This workspace includes a Jython script
to start Discovery Analyzer (startDiscoveryAnalyzerScript.py) as well as
a link to all DFM scripts. If you start the tool in this way, you can
locate breakpoints within the Jython scripts for debugging purposes.

➤ Directly, by double-clicking the file in the following folder:
C:\hp\UCMDB\DataFlowProbe\tools\discoveryAnalyzer.cmd. For
details, see the following section.
92

Chapter 3 • Developing Jython Adapters
The Discovery Analyzer window opens:

 3 Define a Task

You define a task using one of the following methods:

➤ By defining a new task. For details, see "Define a New Task" on page 94.

➤ By importing a task from a record file. For details, see "Retrieve a
Record" on page 95.

➤ By importing a saved task from a task file. For details, see "Open a Task
File" on page 95.

➤ By retrieving a job from the Probe’s internal database. For details, see
"Import a Task from the Database" on page 95.
93

Chapter 3 • Developing Jython Adapters
 4 Define a New Task

 a Display the Task Editor: click the New Task button.

The Task Editor displays a list of jobs that currently exist in the file
system. This list is updated each time the Probe receives tasks from the
server, or packages are deployed manually from the Settings menu.

 b Select a job.

 c Enter values for all parameters.

The parameters displayed here are DFM adapter parameters. They can
be viewed in the Discovery Pattern Parameters pane in the Pattern
Signature tab. For details, see "Adapter Parameters Pane" in the
HP Universal CMDB Data Flow Management Guide.

All fields are mandatory (unless a job’s script demands that the field be
empty).

For parameters that require an ID or credentials ID input value, you
can use randomly created IDs: right-click the value box and select
Generate random CMDB ID or Credential Chooser.

The task is now active and the name of the open task is displayed in
the title bar:
94

Chapter 3 • Developing Jython Adapters
 d Continue with the procedure for defining a task. For details, see "Save
the Task and Logs" on page 96.

 5 Retrieve a Record

You can define a task by opening a record file containing data regarding a
specific execution. If a task is defined in this way, you can reproduce the
specific execution by selecting the playback option. (If a task is replayed,
responses are received from the data stored in the record file and not from
the remote destination.)

Select File > Open Record. Browse to the folder where you saved the
record. The record is now active and the name of the task is displayed in
the title bar.

For details on acquiring a record file, see "Record DFM Code" on page 109.

 6 Open a Task File

You can define a task from a task file: Select File > Open Task.

 7 Import a Task from the Database

You can retrieve a task from the Probe database on condition that the
Probe has already run and has active tasks in its internal database. You
can use the parameter values to define the task.

 a Select File > Import Task from Probe Database.

 b In the dialog box that opens, select the task to run and click OK.

 c Continue with the procedure for defining a task. For details, see "Save
the Task and Logs" on page 96.

 8 Edit a Task

After a task is defined, the name of the task (or the file) is displayed in the
title bar. Now the file can be edited.

 a Select Edit > Edit Task.

 b Make any changes to the task and click OK.
95

Chapter 3 • Developing Jython Adapters
 9 Save the Task and Logs

You can save task parameters: Select File > Save Task.

The following options are available only after a task is executed.

➤ Save a record of the task. You can save the task parameters and the
results of the task run: Select File > Save Record.

➤ Save a log of the task: Select File > Save General Log.

➤ Save results: Select File > Save Results.

 10 Run the Task

The next step in the procedure is to run the task you created.

 a Import the credentials/ranges configuration file. For details, see
"Import Settings" on page 97.

 b To execute the task only against a remote destination, click the Run
Task button.

Discovery Analyzer executes the job and displays information in the
three log files: General, Communication, and Results.

 c You can save the log files, either together or separately: Select File >
Save General Log, Save Record, Save Results, or Save All Logs. For
details on the log files, see "Logs" on page 91.

 d If a task is retrieved from a record file, the execution that is
documented in this file can be reproduced by clicking the Playback
button. The same Communication log is displayed, but the execution
time is updated.
96

Chapter 3 • Developing Jython Adapters
 11 Send a Task Result to the Server

If a task’s execution ends with results (that is, the Results Log tab displays
a list of discovered CIs), you can send the results to the UCMDB Server.
This is useful if, for example, you were previously testing a script when
the server was down.

Note: You can send results only to a UCMDB Server that receives tasks
from the Probe that is installed on the same machine as Discovery
Analyzer.

 12 Import Settings

To run tasks or the playback record file, you must import the
domainScopeDocument.bin file. During import, you enter a password.

 a Launch a Web browser and enter the following URL:
http://localhost:8080/jmx-console. You may have to log in with a user
name and password.

 b Click UCMDB:service=DiscoveryManager to open the JMX MBEAN
View page.

 c Locate the exportCredentialsAndRangesInformation operation. Do the
following:

➤ Enter the customer ID (the default is 1).

➤ Enter a name for the exported file.

➤ Enter the password.

➤ Set isEncrypted to False.
97

Chapter 3 • Developing Jython Adapters
 d Click Invoke to export the domainScopeDocument.bin file.

When the export process completes successfully, the file is saved to the
following location:
C:\hp\UCMDB\UCMDBServer\conf\discovery\<customer_dir>.

 e Copy the domainScopeDocument.bin file to the Data Flow Probe file
system and import it by selecting: Settings > Import
domainScopeDocument.

Note: During the domainScopeDocument file import, you are
requested to provide a password. This request is also displayed
following each Discovery Analyzer restart and before the first task or
record is executed.

 13 Breakpoints

If you run Discovery Analyzer from the Python script, you can add
breakpoints to your script.

 14 Configure Eclipse

For details on running your Jython scripts in debug mode, see "Run
Discovery Analyzer from Eclipse" on page 99.
98

Chapter 3 • Developing Jython Adapters
Run Discovery Analyzer from Eclipse

This task explains how to configure Eclipse so that you can run your Jython
scripts in debug mode, thus enabling better visibility to job threads, trigger
CIs, and results.

This section includes the following steps:

➤ "Prerequisites" on page 99

➤ "Unpack Eclipse and start it" on page 100

➤ "Configure the default workspace" on page 100

➤ "Configure the PyDev Extensions" on page 101

➤ "Configure the Discovery Analyzer Workspace" on page 103

➤ "Configure the classpath and interpreter" on page 106

➤ "Run Discovery Analyzer" on page 109

 1 Prerequisites

➤ Install the latest Eclipse version on your computer. The application is
available at www.eclipse.org.

➤ Verify that the Data Flow Probe is installed on the same computer.

➤ Verify that the appilog.agent.local.discoveryAnalyzerFromEclipse
parameter in the DiscoveryProbe.properties file is set to true.
99

Chapter 3 • Developing Jython Adapters
 2 Unpack Eclipse and start it

 3 Configure the default workspace

Configure the default workspace where Eclipse saves and stores all
projects and the related data.
100

Chapter 3 • Developing Jython Adapters
 4 Configure the PyDev Extensions

 a Access Help > Install New Software, click Add, type a name for the
PyDev plugin and in the Location field, add the URL of the site where
pydev can be downloaded: http://pydev.org/updates. Click OK.

Note: PyDev and PyDev Extensions are now merged into one plugin
since PyDev Extensions are now open source. For additional
information visit http://pydev.org.

 b In the window that opens, select Pydev. The second plugin is a plugin
for task-focused UI. Click Next, check the installation details, and click
Next again.
101

Chapter 3 • Developing Jython Adapters
 c Accept the license agreement and click Next.

 d Pydev is installed. If you are asked to install unsigned content, confirm
by clicking OK.

 e Restart Eclipse.

PyDev is now installed in your Eclipse IDE. You have new perspectives
in Eclipse and the IDE is able to interpret Python scripts (text
highlighting, additional configuration options, and so on).
102

Chapter 3 • Developing Jython Adapters
 5 Configure the Discovery Analyzer Workspace

 a Import necessary files: Right-click in the white area in Package
Explorer and click Import to import the pre-configured
discoveryAnalyzerWorkspace, included with the Probe installation.
103

Chapter 3 • Developing Jython Adapters
 b Under General, select Existing projects into Workspace to import the
project into the Eclipse workspace.

 c Under Select root directory, select the Analyzer workspace, usually
located under:

C:\hp\UCMDB\DataFlowProbe\tools\discoveryAnalyzerWorkspace.

 d Select Copy projects into workspace to create a real copy of the
existing workspace. This is an important step: In case of failure, you
can re-import the original discoveryAnalyserWorkspace.
104

Chapter 3 • Developing Jython Adapters
 e Click Finish to start the import.
105

Chapter 3 • Developing Jython Adapters
 6 Configure the classpath and interpreter

 a Right-click discoveryAnalyzerWorkspace and select Properties to
display the Project specific settings.

 b Go to Pydev > Interpreter/Grammar and click Please configure an
interpreter in the related preferences before proceeding.

This step configures the same Jython interpreter as the Probe is using
to ensure that scripts are not interpreted by a different Jython version.
106

Chapter 3 • Developing Jython Adapters
 c Click New, type a name for the interpreter, and select the file from the
following folder: C:\hp\UCMDB\DataFlowProbe\jython\jython.jar.

 d Click OK. If a window is displayed, asking you to select the folders that
should be imported into your Python system path, do not change
anything (should be C:\hp\UCMDB\DataFlowProbe\jython and
C:\hp\UCMDB\DataFlowProbe\jython\lib) and click OK.

 e Click Apply and then OK.
107

Chapter 3 • Developing Jython Adapters
 f Click Interpreter and select the interpreter just created.

 g Click Apply and then OK.

The Jython interpreter is now the same as the one the Probe is using.
108

Chapter 3 • Developing Jython Adapters
 7 Run Discovery Analyzer

 a Add a breakpoint in the Jython script to be debugged.

 b To start Discovery Analyzer, select startDiscoveryAnalyzerScript.py in
the discoveryAnalyzerWorkspace\src project. Right-click the file and
choose Debug as > Jython run.

Record DFM Code

It can be very useful to record an entire execution, including all parameters,
for example, when debugging and testing code. This task describes how to
record an entire execution with all relevant variables. Furthermore, you can
view extra debug information that is usually not printed to log files even at
the debug level.

To record DFM code:

 1 Access Data Flow Management > Discovery Control Panel. Right-click the
job whose run must be logged and select Edit adapter to open the Adapter
Management application.
109

Chapter 3 • Developing Jython Adapters
 2 Locate the Execution Options pane in the Adapter Configuration tab:

 3 Change the Create communication log box to Always. For details on
setting logging options, see "Execution Options Pane" in the HP Universal
CMDB Data Flow Management Guide.

The following example is the XML log file that is created when the Host
Connection by Shell job is run and the Create communication logs box is
set to Always or On Failure:
110

Chapter 3 • Developing Jython Adapters
The following example shows the message and stacktrace parameters:
111

Chapter 3 • Developing Jython Adapters
Reference

Jython Libraries and Utilities

Several utility scripts are used widely in adapters. These scripts are part of
the AutoDiscovery package and are located under:
C:\hp\UCMDB\DataFlowProbe\runtime\probeManager\discoveryScripts
with the other scripts that are downloaded to the Probe.

Note: The discoveryScript folder is created dynamically when the Probe
begins working.

To use one of the utility scripts, add the following import line to the import
section of the script:

The AutoDiscovery Python library contains Jython utility scripts. These
library scripts are considered DFM’s external library. They are defined in the
jythonGlobalLibs.xml file (located in the Configuration Files folder).

import <script name>
112

Chapter 3 • Developing Jython Adapters
Each script that appears in the jythonGlobalLibs.xml file is loaded by default
at Probe startup, so there is no need to use them explicitly in the adapter
definition.

This section includes the following topics:

➤ "logger.py" on page 113

➤ "modeling.py" on page 114

➤ "netutils.py" on page 114

➤ "shellutils.py" on page 115

logger.py
The logger.py script contains log utilities and helper functions for error
reporting. You can call its debug, info, and error APIs to write to the log files.
Log messages are recorded in C:\hp\UCMDB\DataFlowProbe\runtime\log.

Messages are entered in the log file according to the debug level defined for
the PATTERNS_DEBUG appender in the
C:\hp\UCMDB\DataFlowProbe\conf\log\probeMgrLog4j.properties file.
(By default, the level is DEBUG.) For details, see "Error Severity Levels" on
page 122.

The info and error messages also appear in the Command Prompt console.

###
################ PATTERNS_DEBUG log ####################
###
log4j.category.PATTERNS_DEBUG=DEBUG, PATTERNS_DEBUG
log4j.appender.PATTERNS_DEBUG=org.apache.log4j.RollingFileAppender
log4j.appender.PATTERNS_DEBUG.File=C:\hp\UCMDB\DataFlowProbe\runtime\log/pr
obeMgr-patternsDebug.log
log4j.appender.PATTERNS_DEBUG.Append=true
log4j.appender.PATTERNS_DEBUG.MaxFileSize=15MB
log4j.appender.PATTERNS_DEBUG.Threshold=DEBUG
log4j.appender.PATTERNS_DEBUG.MaxBackupIndex=10
log4j.appender.PATTERNS_DEBUG.layout=org.apache.log4j.PatternLayout
log4j.appender.PATTERNS_DEBUG.layout.ConversionPattern=<%d> [%-5p] [%t] -
%m%n
log4j.appender.PATTERNS_DEBUG.encoding=UTF-8
113

Chapter 3 • Developing Jython Adapters
There are two sets of APIs:

➤ logger.<debug/info/warn/error>

➤ logger.<debugException/infoException/warnException/errorException>

The first set issues the concatenation of all its string arguments at the
appropriate log level and the second set issues the concatenation as well as
issuing the stack trace of the most recently-thrown exception, to provide
more information, for example:

modeling.py
The modeling.py script contains APIs for creating hosts, IPs, process CIs, and
so on. These APIs enable the creation of common objects and make the code
more readable. For example:

netutils.py
The netutils.py library is used to retrieve network and TCP information,
such as retrieving operating system names, checking if a MAC address is
valid, checking if an IP address is valid, and so on. For example:

logger.debug('found the result')
logger.errorException('Error in discovery')

ipOSH= modeling.createIpOSH(ip)
host = modeling.createHostOSH(ip_address)
member1 = modeling.createLinkOSH('member', ipOSH, networkOSH)

dnsName = netutils.getHostName(ip, ip)
isValidIp = netutils.isValidIp(ip_address)
address = netutils.getHostAddress(hostName)
114

Chapter 3 • Developing Jython Adapters
shellutils.py
The shellutils.py library provides an API for executing shell commands and
retrieving the end status of an executed command, and enables running
multiple commands based on that end status. The library is initialized with
a Shell Client, and uses the client to run commands and retrieve results. For
example:

ttyClient = clientFactory.createClient(Props)
clientShUtils = shellutils.ShellUtils(ttyClient)
if (clientShUtils.isWinOs()):

logger.debug ('discovering Windows..')
115

Chapter 3 • Developing Jython Adapters
116

4
Error Messages

This chapter includes:

Concepts

➤ Error Messages Overview on page 118

Reference

➤ Error-Writing Conventions on page 119

➤ Error Severity Levels on page 122
117

Chapter 4 • Error Messages
Concepts

Error Messages Overview

During discovery, many errors may be uncovered, for example, connection
failures, hardware problems, exceptions, time-outs, and so on. DFM displays
these errors in Discovery Control Panel, in both Basic and Advanced Mode,
whenever the regular discovery flow does not succeed. You can drill down
from the Trigger CI that caused the problem to view the error message itself.

DFM differentiates between errors that can sometimes be ignored (for
example, an unreachable host) and errors that must be dealt with (for
example, credentials problems or missing configuration or DLL files).
Moreover, DFM reports errors once, even if the same error occurs on
successive runs, and reports an error even it if occurs once only.

When creating a package, you can add appropriate messages as resources to
the package. During package deployment, the messages are also deployed in
the correct location. Messages must conform to conventions, as described in
"Error-Writing Conventions" on page 119.

DFM supports multi-language error messages. You can localize the messages
you write so that they appear in the local language.

For details on searching for errors, see "Discovery Status Pane" in the
HP Universal CMDB Data Flow Management Guide.

For details on setting communication logs, see "Execution Options Pane" in
the HP Universal CMDB Data Flow Management Guide.
118

Chapter 4 • Error Messages
Reference

Error-Writing Conventions

➤ Each error is identified by an error message code and an array of
arguments (int, String[]). A combination of a message code and an array
of arguments defines a specific error. The array of parameters can be null.

➤ Each error code is mapped to a short message which is a fixed string and
a detailed message which is a template string contains zero or more
arguments. Matching is assumed between the number of arguments in
the template and the actual number of parameters.

Example of Error Message Code:

10234 may represent an error with the short message:

and the detailed message:

where

{0} = the first argument: a protocol name

{1} = the second argument: the timeout length in msec

This section also includes the following topics:

➤ "Property File Content" on page 120

➤ "Error Messages Property File" on page 120

➤ "Locale Naming Conventions" on page 120

➤ "Error Message Codes" on page 120

➤ "Unclassified Content Errors" on page 121

➤ "Changes in Framework" on page 122

Connection Error

Could not connect via {0} protocol due to timeout of {1} msec
119

Chapter 4 • Error Messages
Property File Content
A property file should contain two keys for each error message code. For
example, for error 45:

➤ DDM_ERROR_MESSAGE_SHORT_45. Short error description.

➤ DDM_ERROR_MESSAGE_LONG_45. Long error description (can contain
parameters, for example, {0},{1}).

Error Messages Property File
A property file contains a map between an error message code and two
messages (short and detailed).

Once a property file is deployed, its data is merged with existing data, that
is, new message codes are added while old message codes are overridden.

Infrastructure property files are part of the AutoDiscoveryInfra package.

Locale Naming Conventions

➤ For the default locale: <file name>.properties.errors

➤ For a specific locale: <file name>_xx.properties.errors

where xx is the locale (for example, infraerr_fr.properties.errors or
infraerr_en_us.properties.errors).

Error Message Codes
The following error codes are included by default with HP Universal CMDB.
You can add your own error messages to this list.

Error Name Error Code Description

Internal 100-199 Mostly resolved from exceptions thrown
during Jython script runs

Connection 200-299 Connection failed, no agent on target
machine, destination unreachable, and so
on
120

Chapter 4 • Error Messages
Unclassified Content Errors
To support old content without causing a regression, the application and
SDK relevant methods handle errors of message code 100 (that is,
unclassified script error) differently.

These errors are not grouped (that is, they are not considered as being errors
of the same type) by their message code but are grouped by the content of
the message. That is, if a script reports an error by the old, deprecated
methods (with a message string and without an error code), all messages
receive the same error code, but in the application or in the SDK relevant
methods, different messages are displayed as different errors.

Credential Related 300-399 Permission denied, connection attempt
blocked due to a lack of credentials

Timeout 400-499 Time-out during connection/command

Unexpected or
Invalid Behavior

500-599 Missing configuration files, unexpected
interruptions, and so on

Information
Retrieval

600-699 Missing information on target machines,
failure querying agent for information, and
so on

Resources Related 700-799 Errors relating to out-of-memory or clients
not released properly

Parsing 800-899 Error parsing text

Encoding 900 Error in input, unsupported encoding

SQL Related 901-903,
924

Errors received from SQL operations

HTTP Related 904-909 Errors generated during HTTP connections,
parsed from HTTP error codes.

Specific
Application

 910-923 Error reported due to application-
specific problems, for example, wrong
LSOF version, No Queue Managers
found, and so on

Error Name Error Code Description
121

Chapter 4 • Error Messages
Changes in Framework
(com.hp.ucmdb.discovery.library.execution.BaseFramework)

The following methods are added to the interface:

➤ void reportError(int msgCode, String[] params);

➤ void reportWarning(int msgCode, String[] params);

➤ void reportFatal(int msgCode, String[] params);

The following old methods are still supported for backward compatibility
purposes but are marked as deprecated:

➤ void reportError(String message);

➤ void reportWarning (String message);

➤ void reportFatal (String message);

Error Severity Levels

When an adapter finishes running against a trigger CI, it returns a status. If
no error or warning is reported, the status is Success.

Severity levels are listed here from the narrowest to widest scope:

Fatal Errors
This level reports serious errors such as a problem with the infrastructure,
missing DLL files, or exceptions:

➤ Failed generating the task (Probe is not found, variables are not found,
and so on)

➤ It is not possible to run the script

➤ Processing of the results fails on the Server and the data is not written to
the CMDB
122

Chapter 4 • Error Messages
Errors
This level reports problems that cause DFM not to retrieve data. Look
through these errors as they usually require some action to be taken (for
example, to increase time-out, to change a range, to change a parameter, to
add another user credential, and so on).

➤ In cases where user intervention may help, an error is reported, either a
credentials or network problem that may need further investigation.
(These are not errors in discovery but in configuration.)

➤ Internal failure, usually because of unexpected behavior from the
discovered machine or application, for example, missing configuration
files, and so on

Warning
When a run is successful but there may be non-serious problems that you
should be aware of, DFM marks the severity as Warning. You should look at
these CIs to see whether data is missing, before beginning a more detailed
debugging session. Warning can include messages about the lack of an
installed agent on a remote host, or that invalid data caused an attribute not
to be properly calculated.

➤ Missing connection agent (SNMP, WMI)

➤ Discovery succeeds, but not all available information is discovered
123

Chapter 4 • Error Messages
124

125

5
Developing Generic Database Adapters

This chapter includes:

Concepts

➤ Generic Database Adapter Overview on page 127

➤ TQL Queries for the Generic Database Adapter on page 127

➤ Reconciliation on page 128

➤ Hibernate as JPA Provider on page 129

Tasks

➤ Prepare for Adapter Creation on page 132

➤ Prepare the Adapter Package on page 137

➤ Upgrade the Generic DB Adapter from 9.00 or 9.01 to 9.02 and Later
on page 141

➤ Configure the Adapter – Minimal Method on page 141

➤ Adapter Configuration – Advanced Method on page 145

➤ Implement a Plugin on page 151

➤ Deploy the Adapter on page 155

➤ Edit the Adapter on page 155

➤ Create an Integration Point on page 155

➤ Create a View on page 156

➤ Calculate the Results on page 156

➤ View the Results on page 157

➤ View Reports on page 157

Chapter 5 • Developing Generic Database Adapters

126

➤ Enable Log Files on page 157

➤ Use Eclipse to Map Between CIT Attributes and Database Tables
on page 158

Reference

➤ Adapter Configuration Files on page 169

➤ Out-of-the-Box Converters on page 194

➤ Plugins on page 199

➤ Configuration Examples on page 199

➤ Adapter Log Files on page 211

➤ External References on page 213

Troubleshooting and Limitations on page 213

Chapter 5 • Developing Generic Database Adapters

127

Concepts

Generic Database Adapter Overview

The purpose of the generic database adapter platform is to create adapters
that can integrate with relational database management systems (RDBMS)
and run TQL queries and population jobs against the database. The RDBMS
supported by the generic database adapter are Oracle, Microsoft SQL Server,
and MySQL.

This version of the database adapter implementation is based on a JPA (Java
Persistence API) standard with the Hibernate ORM library as the persistence
provider.

TQL Queries for the Generic Database Adapter

For population jobs, every required layout of a CI must be checked in the
Layout Settings Dialog Box in the Modeling Studio. For details, see "Query
Node/Relationship Properties Dialog Box" in the HP Universal CMDB
Modeling Guide. It is important to note that a CI might require an attribute to
be identified, and without those attributes the CI will fail to be added to
UCMDB.

The following limitations exist on the TQL queries calculated by the Generic
Database Adapter only:

➤ Subgraphs are not supported

➤ Compound relationships are not supported

➤ Cycles or cycle parts are not supported

Chapter 5 • Developing Generic Database Adapters

128

The following TQL query is an example of a cycle:

➤ Function layout is not supported.

➤ 0..0 cardinality is not supported.

➤ The Join relationship is not supported.

➤ Qualifier conditions are not supported.

➤ To connect between two CIs, a relationship in the form of a table or
foreign key must exist in the external database source.

Reconciliation

Reconciliation is carried out as part of the TQL calculation on the adapter
side. For reconciliation to occur, the CMDB side is mapped to a federated
entity called reconciliation CIT.

Mapping. Each attribute in the CMDB is mapped to a column in the data
source.

Chapter 5 • Developing Generic Database Adapters

129

Although mapping is done directly, transformation functions on the
mapping data are also supported. You can add new functions through the
Java code (for example, lowercase, uppercase). The purpose of these
functions is to enable value conversions (values that are stored in the CMDB
in one format and in the federated database in another format).

Note:

➤ To connect the CMDB and external database source, an appropriate
association must exist in the database. For details, see "Prerequisites" on
page 132.

➤ Reconciliation with the CMDB id is also supported.

Hibernate as JPA Provider

Hibernate is an object-relational (OR) mapping tool, which enables
mapping Java classes to tables over several types of relational databases (for
example, Oracle and Microsoft SQL Server). For details, see "Functional
Limitations" on page 214.

In an elementary mapping, each Java class is mapped to a single table. More
advanced mapping enables inheritance mapping (as can occur in the CMDB
database).

Other supported features include mapping a class to several tables, support
for collections, and associations of types one-to-one, one-to-many, and
many-to-one. For details, see "Associations" on page 131.

For our purposes, there is no need to create Java classes. The mapping is
defined from the CMDB class model CITs to the database tables.

This section also includes the following topics:

➤ "Examples of Object-Relational Mapping" on page 130

➤ "Associations" on page 131

Chapter 5 • Developing Generic Database Adapters

130

➤ "Usability" on page 131

Examples of Object-Relational Mapping
The following examples describe object-relational mapping:

Example of 1 CMDB Class Mapped to 1 Database Table:

Class M1, with attributes A1, A2, and A3, is mapped to table 1 columns c1,
c2, and c3. This means that any M1 instance has a matching row in
table 1.

Example of 1 CMDB Class Mapped to 2 Database Tables:

Example of Inheritance:

This case is used in the CMDB, where each class has its own database
table.

Chapter 5 • Developing Generic Database Adapters

131

Example of Single Table Inheritance with Discriminator:

An entire hierarchy of classes is mapped to a single database table, whose
columns comprise a super-set of all attributes of the mapped classes. The
table also contains an additional column (Discriminator), whose value
indicates which specific class should be mapped to this entry.

When you use discriminator capabilities, you cannot skip a class in the
hierarchy; that is, since C3 inherits from C2 and C2 inherits from C1, you
cannot just define C1 and C3, you must define all three classes.

Associations
There are three types of associations: one-to-many, many-to-one and
many-to-many. To connect between the different database objects, one of
these associations must be defined by using a foreign key column (for the
one-to-many case) or a mapping table (for the many-to-many case).

Usability
As the JPA schema is very extensive, a streamlined XML file is provided to
ease definitions.

The use case for using this XML file is as follows: Federated data is modeled
into one federated class. This class has many-to-one relations to a
non-federated CMDB class. In addition, there is only one possible relation
type between the federated class and the non-federated class.

Chapter 5 • Developing Generic Database Adapters

132

Tasks

Prepare for Adapter Creation

This task describes the preparations that are necessary for creating an
adapter.

Note: You can view samples for the Generic DB adapter in the UCMDB API.
Specifically, the DDMi Adapter sample contains a complicated orm.xml file,
as well as the implementations for some plugin interfaces.

This task includes the following steps:

➤ "Prerequisites" on page 132

➤ "Create a CI Type" on page 135

➤ "Create a Relationship" on page 135

 1 Prerequisites

To validate that you can use the database adapter with your database,
check the following:

➤ The reconciliation classes and their attributes (also known as
multinodes) exist in the database. For example, if the reconciliation is
run by node name, verify that there is a table that contains a column
with node names. If the reconciliation is run according to node
cmdb_id, verify that there is a column with CMDB IDs that matches
the CMDB IDs of the nodes in the CMDB. For details on reconciliation,
see "Reconciliation" on page 128.

ID NAME IP_ADDRESS

31 BABA 16.59.33.60

33 ext3.devlab.ad 16.59.59.116

Chapter 5 • Developing Generic Database Adapters

133

➤ To correlate two CITs with a relationship, there must be correlation
data between the CIT tables. The correlation can be either by a foreign
key column or by a mapping table. For example, to correlate between
node and ticket, there must be a column in the ticket table that
contains the node ID, a column in the node table with the ticket ID
that is connected to it, or a mapping table whose end1 is the node ID
and end2 is the ticket ID. For details on correlation data, see "Hibernate
as JPA Provider" on page 129.

The following table shows the foreign key NODE_ID column:

➤ Each CIT can be mapped to one or more tables. To map one CIT to
more than one table, check that there is a primary table whose primary
key exists in the other tables, and is a unique value column.

46 LABM1MAM15 16.59.58.188

72 cert-3-j2ee 16.59.57.100

102 labm1sun03.devlab.ad 16.59.58.45

114 LABM2PCOE73 16.59.66.79

116 CUT 16.59.41.214

117 labm1hp4.devlab.ad 16.59.60.182

NODE_ID CARD_ID CARD_TYPE CARD_NAME

2015 1 Serial Bus
Controller

Intel ® 82801EB USB Universal
Host Controller

3581 2 System Intel ® 631xESB/6321ESB/3100
Chipset LPC

3581 3 Display ATI ES1000

3581 4 Base System
Peripheral

HP ProLiant iLO 2 Legacy
Support Function

ID NAME IP_ADDRESS

Chapter 5 • Developing Generic Database Adapters

134

For example, a ticket is mapped to two tables: ticket1 and ticket2. The
first table has columns c1 and c2 and the second table has columns c3
and c4. To enable them to be considered as one table, both must have
the same primary key. Alternatively, the first table primary key can be a
column in the second table.

In the following example, the tables share the same primary key called
CARD_ID:

CARD_ID CARD_TYPE CARD_NAME

1 Serial Bus Controller Intel ® 82801EB USB Universal Host
Controller

2 System Intel ® 631xESB/6321ESB/3100
Chipset LPC

3 Display ATI ES1000

4 Base System
Peripheral

HP ProLiant iLO 2 Legacy Support
Function

CARD_ID CARD_VENDOR

1 Hewlett-Packard Company

2 (Standard USB Host Controller)

3 Hewlett-Packard Company

4 (Standard system devices)

5 Hewlett-Packard Company

Chapter 5 • Developing Generic Database Adapters

135

 2 Create a CI Type

In this step you create a CIT that represents the data in the RDBMS (the
external data source).

 a In UCMDB, access the CI Type Manager and create a new CI Type. For
details, see "Create a CI Type" in the HP Universal CMDB Modeling
Guide.

 b Add the necessary attributes to the CIT, such as last access time,
vendor, and so on. These are the attributes that the adapter will
retrieve from the external data source and bring into CMDB views.

 3 Create a Relationship

In this step you add a relationship between the UCMDB CIT and the new
CIT that represents the data from the external data source.

Add appropriate, valid relationships to the new CIT. For details, see "Add/
Remove Relationship Dialog Box" in the HP Universal CMDB Modeling
Guide.

Note: At this stage, you cannot yet view the federated data or populate
the external data, as you have not yet defined the method for bringing in
the data.

Chapter 5 • Developing Generic Database Adapters

136

Example of Creating a Containment Relationship:

1 In the CIT Manager, select the two CITs:

2 Create a Containment relationship between the two CITs:

Chapter 5 • Developing Generic Database Adapters

137

Prepare the Adapter Package

In this step, you locate and configure the Generic DB adapter package.

 1 Locate the db-adapter.zip package in the C:\hp\UCMDB\UCMDBServer\
content\adapters folder.

 2 Extract the package to a local temporary directory.

 3 Edit the adapter XML file:

➤ Open the discoveryPatterns\db_adapter.xml file in a text editor.

➤ Locate the adapter id attribute and replace the name:

If the adapter supports population, the following capability should be
added to the <adapter-capabilities> element:

The display label or ID appears in the list of adapters in the Integration
Point pane in HP Universal CMDB.

If the plug-in for FcmdbPluginForSyncGetChangesTopology has not
been implemented, only the following should be added:

This will return the full topology and perform auto-delete according to
the returned CIs.

<pattern id="MyAdapter" displayLabel="My Adapter"
xsi:noNamespaceSchemaLocation="../../Patterns.xsd" description="Discovery
Pattern Description"
 schemaVersion="9.0" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" displayName="UCMDB API Population">

<support-replicatioin-data>
<source>

<changes-source/>
</source>

</support-replicatioin-data>

 <support-replicatioin-data>
 <source>
 <!--<changes-source/>-->
 </source>
 </support-replicatioin-data>

Chapter 5 • Developing Generic Database Adapters

138

For details about populating the CMDB with data, see "Integration
Studio Page" in the HP Universal CMDB Data Flow Management Guide.

➤ If the adapter is using the mapping engine from version 8.x (meaning
that it is not using the new reconciliation mapping engine), replace
the following element:

with

To revert to the new mapping engine, return the element to the
following value:

➤ Locate the category definition:

Change the Generic category name to the category of your choice.

Note: Adapters whose categories are specified as Generic are not listed
in the Integration Studio when you create a new integration point.

➤ The connection to the database can be described using a user name
(schema), password, database type, database host machine name, and
database name or SID.

<default-mapping-engine/>

<default-mapping-engine>com.hp.ucmdb.federation.mappingEngine.AdapterMa
ppingEngine</default-mapping-engine>

<default-mapping-engine/>

<category>Generic</category>

Chapter 5 • Developing Generic Database Adapters

139

For this type of connection, parameters have the following elements in
the parameter section of the adapter's XML file:

Note: This is the default configuration. Therefore, the db_adapter.xml file,
already contains this definition.

There are situations in which the connection to the database cannot
be configured in this way. For example, connecting to Oracle RAC or
connecting using a database driver other than the one supplied with
the CMDB.

For these situations, you can describe the connection using user name
(schema), password, and a connection URL string.

<parameters>
 <!--The description attribute may be written in simple text or HTML.-->
 <!--The host attribute is treated as a special case by UCMDB-->
 <!--and will automatically select the probe name (if possible)-->
 <!--according to this attribute's value.-->
 <!--Display name and description may be overwritten by I18N values-->

<parameter name="host" display-name="Hostname/IP" type="string"
description="The host name or IP address of the remote machine"
mandatory="false" order-index="10"/>

<parameter name="port" display-name="Port" type="integer"
description="The remote machine's connection port" mandatory="false"
order-index="11"/>

<parameter name="dbtype" display-name="DB Type" type="string"
description="The type of database" valid-values="Oracle;SQLServer;MySQL;BO"
mandatory="false" order-index="13">Oracle</parameter>

<parameter name="dbname" display-name="DB Name/SID" type="string"
description="The name of the database or its SID (in case of Oracle)"
mandatory="false" order-index="13"/>

<parameter name="credentialsId" display-name="Credentials ID"
type="integer" description="The credentials to be used" mandatory="true"
order-index="12"/>
</parameters>

Chapter 5 • Developing Generic Database Adapters

140

To define this, edit the adapter's XML parameters section as follows:

An example of a URL that connects to an Oracle RAC using the
out-of-the- box Data Direct driver is: jdbc:mercury:oracle://
labm3amdb17:1521;ServiceName=RACQA;AlternateServers=(labm3a
mdb18:1521);LoadBalancing=true.

 4 In the temporary directory, open the adapterCode folder and rename
GenericDBAdapter to the value of adapter id that was used in step 3.

This folder contains the adapter’s configuration, for example, the adapter
name, the queries and classes in the CMDB, and the fields in the RDBMS
that the adapter supports.

 5 Configure the adapter as required. For details, see "Configure the Adapter
– Minimal Method" on page 141.

 6 Create a *.zip file with the same name as you gave to the adapter id
attribute, as described in step 3 on page 137.

Note: The descriptor.xml file is a default file that exists in every package.

 7 Save the new package that you created in the previous step. The default
directory for adapters is: C:\hp\UCMDB\UCMDBServer\content\
adapters.

<parameters>
 <!--The description attribute may be written in simple text or HTML.-->
 <!--The host attribute is treated as a special case by CMDBRTSM-->
 <!--and will automatically select the probe name (if possible)-->
 <!--according to this attribute's value.-->
 <!--Display name and description may be overwritten by I18N values-->

<parameter name="url" display-name="Connection String" type="string"
description="The connection string to connect to the database" mandatory="true"
order-index="10"/>

<parameter name="credentialsId" display-name="Credentials ID"
type="integer" description="The credentials to be used" mandatory="true"
order-index="12"/>
</parameters>

Chapter 5 • Developing Generic Database Adapters

141

Upgrade the Generic DB Adapter from 9.00 or 9.01
to 9.02 and Later

 1 Copy your adapter package to a local temporary directory.

 2 Extract the files.

 3 Remove the following files from the adapterCode\<Your Adapter Name>
folder:

➤ asm.jar

➤ asm-attrs.jar

➤ cglib.jar

➤ db-adapter.jar

➤ jboss-archive-browsing.jar

➤ saxon-b.jar

 4 Recreate your adapter package.

Note: For any deployed Generic DB adapters that you may have, the
UCMDB installer will remove the necessary files from the UCMDB and
Probe file system. However, you still need to fix the package yourself, in
order to re-deploy it when necessary.

Configure the Adapter – Minimal Method

The following procedure describes a method of mapping the class model in
the CMDB to an RDBMS.

These configuration files are located in the db-adapter.zip package in the
C:\hp\UCMDB\UCMDBServer\content\adapters folder that you extracted
in step 2 of "Prepare the Adapter Package" on page 137.

Chapter 5 • Developing Generic Database Adapters

142

Note: The orm.xml file that is automatically generated as a result of running
this method is a good example that you can use when working with the
advanced method.

You would use this minimal method when you need to:

➤ Federate/populate a single node such as a node attribute.

➤ Demonstrate the Generic Database Adapter capabilities.

This method:

➤ supports one-node federation\population only

➤ supports many-to-one virtual relationships only

This task includes the following steps:

➤ "Configure the adapter.conf File" on page 142

➤ "Configure the simplifiedConfiguration.xml File" on page 142

Configure the adapter.conf File

In this step, you change the settings in the adapter.conf file so that the
adapter uses the simplified configuration method.

 1 Open the adapter.conf file in a text editor.

 2 Locate the following line: use.simplified.xml.config=<true/false>.

 3 Change it to use.simplified.xml.config=true.

Configure the simplifiedConfiguration.xml File

In this step, you configure the simplifiedConfiguration.xml file by mapping
the CIT in the CMDB to the fields in the RDBMS table.

 1 Open the simplifiedConfiguration.xml file in a text editor.

This file includes a template that you use for each entity to be mapped.

Chapter 5 • Developing Generic Database Adapters

143

Note: Do not edit the simplifiedConfiguration.xml file in any version of
Notepad from Microsoft Corporation. Use Notepad++, UltraEdit, or some
other third-party text editor.

 2 Make changes to the following attributes:

➤ The CIT name in UCMDB (cmdb-class-name) and the corresponding
table name in the RDBMS (default-table-name):

The cmdb-class-name attribute is taken from the node CIT:

The default-table-name attribute is taken from the Device table:

 <cmdb-class cmdb-class-name="node" default-table-name="Device">

Chapter 5 • Developing Generic Database Adapters

144

➤ The unique identifier in the RDBMS:

➤ The reconciliation rule (reconciliation-by-two-nodes):

➤ The reconciliation attribute in UCMDB (cmdb-attribute-name) and in
the RDBMS (column-name):

➤ The name of the CIT (cmdb-class-name) and the name of the
corresponding table in the RDBMS (default-table-name). Also the
CMDB relationship (connected-cmdb-class-name) and the CIT
relationship (link-class-name):

➤ The primary key and the foreign key:

➤ The unique identifier in the RDBMS:

➤ The mapping between the CMDB attribute (cmdb-attribute-name) and
the column name in the RDBMS (column-name):

 3 Save the file.

 <primary-key column-name="Device_ID"/>

<reconciliation-by-two-nodes connected-node-cmdb-class-name="ip_address"
cmdb-link-type="containment">

<connected-node-attribute cmdb-attribute-name="name"
column-name="[column_name]"/>

<class cmdb-class-name="sw_sub_component"
default-table-name="SWSubComponent" connected-cmdb-class-name="node"
link-class-name="composition">

<foreign-primary-key column-name="Device_ID"
cmdb-class-primary-key-column="Device_ID"/>

 <primary-key column-name="Device_ID"/>

 <attribute cmdb-attribute-name="last_access_time"
column-name="SWSubComponent_LastAccess TimeStamp"/>

Chapter 5 • Developing Generic Database Adapters

145

Adapter Configuration – Advanced Method

These configuration files are located in the db-adapter.zip package in the
C:\hp\UCMDB\UCMDBServer\content\adapters folder that you extracted
in step 2 of "Prepare the Adapter Package" on page 137.

This task includes the following steps:

➤ "Configure the orm.xml File" on page 145

➤ "Configure the reconciliation_types.txt File" on page 150

➤ "Configure the reconciliation_rules.txt File" on page 150

Configure the orm.xml File

In this step, you map the CITs and relationships in the CMDB to the tables
in the RDBMS.

 1 Open the orm.xml file in a text editor.

This file, by default, contains a template that you use to map as many
CITs and relationships as needed.

Note: Do not edit the orm.xml file in any version of Notepad from
Microsoft Corporation. Use Notepad++, UltraEdit, or some other
third-party text editor.

 2 Make changes to the file according to the data entities to be mapped. For
details, see the following examples.

Chapter 5 • Developing Generic Database Adapters

146

The following types of relationships may be mapped in the orm.xml file:

➤ One to one:

The code for this type of relationship is:

➤ Many to one:

The code for this type of relationship is:

<one-to-one name="end1" target-entity="node">
<join-column name=“Device_ID" />

</one-to-one>
<one-to-one name="end2" target-entity=“sw_sub_component">

<join-column name=“Device_ID" />
<join-column name=“Version_ID" />

</one-to-one>

<many-to-one name="end1" target-entity="node">
<join-column name=“Device_ID" />

</many-to-one>
<one-to-one name="end2" target-entity=“sw_sub_component">

<join-column name=“Device_ID" />
<join-column name=“Version_ID" />

</one-to-one>

Chapter 5 • Developing Generic Database Adapters

147

➤ Many to many:

The code for this type of relationship is:

For details about naming conventions, see "Naming Conventions" on
page 179.

Example of Entity Mapping Between the Data Model and the RDBMS:

Note: Attributes that do not have to be configured are omitted from the
following examples.

➤ The class of the CMDB CIT:

➤ The name of the table in the RDBMS:

<many-to-one name="end1" target-entity="node">
<join-column name=“Device_ID" />

</many-to-one>
<many-to-one name="end2" target-entity=“sw_sub_component">

<join-column name=“Device_ID" />
<join-column name=“Version_ID" />

</many-to-one>

<entity class="generic_db_adapter.node">

<table name="Device"/>

Chapter 5 • Developing Generic Database Adapters

148

➤ The column name of the unique identifier in the RDBMS table:

➤ The name of the attribute in the CMDB CIT:

➤ The name of the table field in the external data source:

➤ The name of the new CIT you created in "Create a CI Type" on
page 135:

➤ The name of the corresponding table in the RDBMS:

➤ The unique identity in the RDBMS:

➤ The attribute name in the CMDB CIT and the name of the
corresponding attribute in the RDBMS:

<column name="Device ID"/>

<basic name="name">

<column name="Device_Name"/>

<entity class="generic_db_adapter.MyAdapter">

<table name="SW_License"/>

<id name="id1">
<column updatable="false" insertable="false" name="Device_ID"/>
<generated-value strategy="TABLE"/>

</id>
<id name="id2">

<column updatable="false" insertable="false" name="Version_ID"/>
<generated-value strategy="TABLE"/>

</id>

<basic name="license_required">
<column updatable="false" insertable="false"

name="MyAdapter_LicenseRequired"/>

Chapter 5 • Developing Generic Database Adapters

149

Example of Relationship Mapping Between the Data Model and the
RDBMS:

➤ The class of the CMDB relationship:

➤ The name of the RDBMS table where the relationship is performed:

➤ The unique ID in the RDBMS:

➤ The relationship type and the CMDB CIT:

➤ The primary key and foreign key fields in the RDBMS:

<entity class="generic_db_adapter.node_containment_MyAdapter">

<table name="MyAdapter"/>

<id name="id1">
<column updatable="false" insertable="false" name="Device_ID"/>
<generated-value strategy="TABLE"/>

</id>
<id name="id2">

<column updatable="false" insertable="false" name="Version_ID"/>
<generated-value strategy="TABLE"/>

</id>

<many-to-one target-entity="node" name="end1">

<join-column updatable="false" insertable="false"
referenced-column-name="[column_name]" name="Device_ID"/>

Chapter 5 • Developing Generic Database Adapters

150

Configure the reconciliation_types.txt File

Open the reconciliation_types.txt file in a text editor.

For details, see "The reconciliation_types.txt file" on page 187.

Configure the reconciliation_rules.txt File

In this step you define the rules by which the adapter reconciles the CMDB
and the RDBMS (only if Mapping Engine is used, for backward compatibility
with version 8.x):

 1 Open META-INF\reconciliation_rules.txt in a text editor.

 2 Make changes to the file according to the CIT you are mapping. For
example, to map a node CIT, use the following expression:

Note:

➤ If the data in the database is case sensitive, do not delete the control
character (^).

➤ Check that each opening square bracket has a matching closing
bracket.

For details, see "The reconciliation_rules.txt File (for backwards
compatibility)" on page 187.

multinode[node] ordered expression[^name]

Chapter 5 • Developing Generic Database Adapters

151

Implement a Plugin

This task describes how to implement and deploy a Generic DB Adapter
with plugins.

Note: Before writing a plugin for an adapter, make sure you have completed
all the necessary steps in "Prepare the Adapter Package" on page 137.

 1 Copy the following jar files from the UCMDB server installation directory
to your development class path:

➤ Copy the db-interfaces.jar file and db-interfaces-javadoc.jar file from
the tools\adapter-dev-kit\db-adapter-framework folder.

➤ Copy the federation-api.jar file and federation-api-javadoc.jar file
from the \tools\adapter-dev-kit\SampleAdapters\production-lib
folder.

Note: More information about developing a plugin can be found in the
db-interfaces-javadoc.jar and federation-api-javadoc.jar files and in the
online documentation at:

➤ C:\hp\UCMDB\UCMDBServer\deploy\ucmdb-docs\docs\eng\doc_lib\
DevRef_guide\DBAdapterFramework_JavaAPI\index.html

➤ C:\hp\UCMDB\UCMDBServer\deploy\ucmdb-docs\docs\eng\doc_lib\
DevRef_guide\Federation_JavaAPI\index.html

Chapter 5 • Developing Generic Database Adapters

152

 2 Write a Java class implementing the plugin’s Java interface. The interfaces
are defined in the db-interfaces.jar file. The table below specifies the
interface that must be implemented for each plugin:

The plugin's class must have a public default constructor. Also, all of the
interfaces expose a method called initPlugin. This method is guaranteed
to be called before any other method and is used to initialize the adapter
with the containing adapter's environment object.

Plugin Type Interface Name Method

Synchronize Full
Topology

FcmdbPluginForSyncGetFull
Topology

getFullTopology

Synchronize
Changes

FcmdbPluginForSyncGet
ChangesTopology

getChangesTopology

Synchronize Layout FcmdbPluginForSyncGet
Layout

getLayout

Retrieve Supported
Queries

FcmdbPluginForSyncGet
SupportedQueries

getSupportedQueries

Alter TQL query
definition and
results

FcmdbPluginGetTopology
CmdbFormat

getTopologyCmdbFormat

Alter layout request
for CIs

FcmdbPluginGetCIsLayout getCisLayout

Alter layout request
for links

FcmdbPluginGetRelations
Layout

getRelationsLayout

Chapter 5 • Developing Generic Database Adapters

153

If FcmdbPluginForSyncGetChangesTopology is implemented, there are
two different ways to report the changes:

➤ Report the entire root topology at all times. According to this
topology, the auto-delete function finds which CIs should be removed.
In this case, the auto-delete function should be enabled by using the
following:

➤ Report each CI instance that was removed/updated. In this case the
auto-delete mechanism should be disabled by using the following:

 3 Make sure you have the Federation SDK JAR and the Generic DB Adapter
JARs in your class path before compiling your Java code. The Federation
SDK is the federation_api.jar file, which can be found in the
C:\hp\UCMDB\UCMDBServer\lib directory.

 4 Pack your class into a jar file and put it under the adapterCode\<Your
Adapter Name> folder in the adapter package, prior to deploying it.

The plug-ins are configured using the plugins.txt file, located in the
\META-INF folder of the adapter.

<autoDeleteCITs isEnabled="true">
 <CIT>link</CIT>
 <CIT>object</CIT>
 </autoDeleteCITs>

 <autoDeleteCITs isEnabled="false">
 <CIT>link</CIT>
 <CIT>object</CIT>
 </autoDeleteCITs>

Chapter 5 • Developing Generic Database Adapters

154

The following is an example of the file from the DDMi adapter:

Legend:

- A comment line.

[<Adapter Type>] – Start of the definition section for a specific adapter
type.

There can be an empty line under each [<Adapter Type>], meaning that
there is no plugin class associated, or the fully qualified name of your
plugin class can be listed.

 5 Pack your adapter with the new jar file and the updated plugins.xml file.
The remainder of the files in the package should be the same as in any
adapter based on the Generic DB adapter.

mandatory plugin to sync full topology
[getFullTopology]
com.hp.ucmdb.adapters.ed.plugins.replication.EDReplicationPlugin

mandatory plugin to sync changes in topology
[getChangesTopology]
com.hp.ucmdb.adapters.ed.plugins.replication.EDReplicationPlugin

mandatory plugin to sync layout
[getLayout]
com.hp.ucmdb.adapters.ed.plugins.replication.EDReplicationPlugin

plugin to get supported queries in sync. If not defined return all tqls names
[getSupportedQueries]

internal not mandatory plugin to change tql definition and tql result
[getTopologyCmdbFormat]

internal not mandatory plugin to change layout request and CIs result
[getCisLayout]

internal not mandatory plugin to change layout request and relations result
[getRelationsLayout]

Chapter 5 • Developing Generic Database Adapters

155

Deploy the Adapter

 1 In UCMDB, access the Package Manager. For details, see "Package Manager
Page" in the HP Universal CMDB Administration Guide.

 2 Click the Deploy Packages to Server (from local disk) icon and browse to
your adapter package. Select the package and click Open, then click
Deploy to display the package in the Package Manager.

 3 Select your package in the list and click the View package resources icon
to verify that the package contents are recognized by Package Manager.

Edit the Adapter

Once you have created and deployed the adapter, you can then edit it
within UCMDB. For details, see "Adapter Management" on page 127.

Create an Integration Point

In this step you check that the federation is working, that is, that the
connection is valid and that the XML file is valid. However, this check does
not verify that the XML is mapping to the correct fields in the RDBMS.

 1 In UCMDB, access the Integration Studio (Data Flow Management >
Integration Studio).

 2 Create an integration point. For details, see "New Integration Point/Edit
Integration Point Dialog Box" in the HP Universal CMDB Data Flow
Management Guide.

The Federation tab displays all CITs that can be federated using this
integration point. For details, see "Federation Tab" in the HP Universal
CMDB Data Flow Management Guide.

Chapter 5 • Developing Generic Database Adapters

156

Create a View

In this step you create a view that enables you to view instances of the CIT.

 1 In UCMDB, access the Modeling Studio (Modeling > Modeling Studio).

 2 Create a view. For details, see "Create a Pattern View" in the HP Universal
CMDB Modeling Guide.

 3 You can add conditions to the TQL, for example, the last access time is
greater than six months:

Calculate the Results

In this step you check the results.

 1 In UCMDB, access the Modeling Studio (Modeling > Modeling Studio).

 2 Open a view.

 3 Calculate results by clicking the Calculate Query Result Count button.

 4 Click the Preview button to view the CIs in the view.

Chapter 5 • Developing Generic Database Adapters

157

View the Results

In this step you view the results and debug problems in the procedure. For
example, if nothing is shown in the view, check the definitions in the
orm.xml file; remove the relationship attributes and reload the adapter.

 1 In UCMDB, access the IT Universe Manager (Modeling > IT Universe
Manager).

 2 Select a CI. The Properties tab displays the results of the federation.

View Reports

In this step you view Topology reports. For details, see "Topology Reports
Overview" in the HP Universal CMDB Modeling Guide.

Enable Log Files

To understand the calculation flows, adapter lifecycle, and to view debug
information, you can consult the log files. For details, see "Adapter Log Files"
on page 211.

Chapter 5 • Developing Generic Database Adapters

158

Use Eclipse to Map Between CIT Attributes and Database
Tables

Caution: This procedure is intended for users with an advanced knowledge
of content development. For any questions, contact HP Software Support.

This task describes how to install and use the JPA plugin, provided with the
J2EE edition of Eclipse, to:

➤ Enable graphical mapping between CMDB class attributes and database
table columns.

➤ Enable manual editing of the mapping file (orm.xml), while providing
correctness. The correctness check includes a syntax check as well as
verification that the class attributes and mapped database table columns
are stated correctly.

➤ Enable deployment of the mapping file to the CMDB server and to view
the errors, as a further correctness check.

➤ Define a sample query on the CMDB server and run it directly from
Eclipse, to test the mapping file.

Version 1.1 of the plugin is compatible with UCMDB version 9.01 or later
and Eclipse IDE for Java EE Developers, version 1.2.2.20100217-2310 or
later.

This task includes the following steps:

➤ "Prerequisites" on page 159

➤ "Installation" on page 159

➤ "Prepare the Work Environment" on page 160

➤ "Create an Adapter" on page 161

➤ "Configure the CMDB Plugin" on page 161

➤ "Import the UCMDB Class Model" on page 162

Chapter 5 • Developing Generic Database Adapters

159

➤ "Build the ORM File – Map UCMDB Classes to Database Tables" on
page 162

➤ "Map IDs" on page 163

➤ "Map Attributes" on page 163

➤ "Map a Valid Link" on page 164

➤ "Build the ORM File – Use Secondary Tables" on page 165

➤ "Define a Secondary Table" on page 165

➤ "Map an Attribute to a Secondary Table" on page 166

➤ "Use an Existing ORM File as a Base" on page 166

➤ "Importing an Existing ORM File from an Adapter" on page 166

➤ "Check the Correctness of the orm.xml File – Built-in Correctness Check"
on page 167

➤ "Create a New Integration Point" on page 167

➤ "Deploy the ORM File to the CMDB" on page 167

➤ "Run a Sample TQL Query" on page 168

 1 Prerequisites

Install the latest update for Java Runtime Environment (JRE) 6 on the
machine where you will run Eclipse from the following site:
http://java.sun.com/javase/downloads/index.jsp.

 2 Installation

 a Download and extract Eclipse IDE for Java EE Developers from
http://www.eclipse.org/downloads to a local folder, for example,
C:\Program Files\eclipse.

 b Copy com.hp.plugin.import_cmdb_model_1.0.jar from
C:\hp\UCMDB\UCMDBServer\tools\db-adapter-eclipse-plugin\bin
to C:\Program Files\Eclipse\plugins.

Chapter 5 • Developing Generic Database Adapters

160

 c Launch C:\Program Files\Eclipse\eclipse.exe. If a message is displayed
that the Java virtual machine is not found, launch eclipse.exe with the
following command line:

 3 Prepare the Work Environment

In this step, you set up the workspace, database, connections, and driver
properties.

 a Extract the file workspaces_gdb.zip from C:\hp\UCMDB\
UCMDBServer\tools\db-adapter-eclipse-plugin\workspace into
C:\Documents and Settings\All Users.

Note: You must use the exact folder path. If you unzip the file to the
wrong path or leave the file unzipped, the procedure will not work.

 b In Eclipse, choose File > Switch Workspace > Other:

If you are working with:

➤ SQL Server, select the following folder: C:\Documents and
Settings\All Users\workspace_gdb_sqlserver.

➤ MySQL, select the following folder: C:\Documents and Settings\All
Users\workspace_gdb_mysql.

➤ Oracle, select the following folder: C:\Documents and Settings\All
Users\workspace_gdb_oracle.

 c Click OK.

 d In Eclipse, display the Project Explorer view and select
<Active project> > JPA Content > persistence.xml > <active project
name> > orm.xml.

 e In the Data Source Explorer view (the bottom left pane), right-click the
database connection and select the Properties menu.

"C:\Program Files\eclipse\eclipse.exe" -vm "<JRE installation folder>\bin"

Chapter 5 • Developing Generic Database Adapters

161

 f In the Properties for <Connection name> dialog box, select Common
and select the Connect every time the workbench is started check box.
Select Driver Properties and fill in the connection properties. Click
Test Connection and verify that the connection is working. Click OK.

 g In the Data Source Explorer view, right-click the database connection
and click Connect. A tree containing the database schemas and tables
is displayed under the database connection icon.

 4 Create an Adapter

Create an adapter using the guidelines in "Step 1: Create an Adapter" on
page 40.

 5 Configure the CMDB Plugin

 a In Eclipse, click UCMDB > Settings to open the CMDB Settings dialog
box.

 b If not already selected, select the newly created JPA project as the
Active project.

 c Enter the CMDB host name, for example, localhost or labm1.itdep1.
There is no need to include the port number or http:// prefix in the
address.

 d Fill in the user name and password for accessing the CMDB API,
usually admin/admin.

 e Make sure that the C:\hp folder on the CMDB server is mapped as a
network drive.

 f Select the base folder of the relevant adapter under C:\hp. The base
folder is the one that contains the dbAdapter.jar file and the META-INF
subfolder. Its path should be C:\hp\UCMDB\UCMDBServer\runtime\
fcmdb\CodeBase\<adapter name>. Verify that there is no backslash
(\) at the end.

Chapter 5 • Developing Generic Database Adapters

162

 6 Import the UCMDB Class Model

In this step, you select the CITs to be mapped as JPA entities.

 a Click UCMDB > Import CMDB Class Model to open the CI Types
Selection dialog box.

 b Select the CI types that you intend to map as JPA entities. Click OK.
The CI types are imported as Java classes. Verify that they appear under
the src folder of the active project.

 7 Build the ORM File – Map UCMDB Classes to Database Tables

In this step, you map the Java classes (that you imported in the previous
step) to the database tables.

 a Make sure the DB connection is connected. Right-click the active
project (called myProject by default) in Project Explorer. Select the JPA
view, select the Override default schema from connection check box,
and select the relevant database schema. Click OK.

 b Map a CIT: In the JPA Structure view, right-click the Entity Mappings
branch and select Add Class. The Add Persistent Class dialog box
opens. Do not change the Map as field (Entity).

 c Click Browse and select the UCMDB class to be mapped (all UCMDB
classes belong to the generic_db_adapter package).

 d Click OK in both dialog boxes. The selected class is displayed under the
Entity Mappings branch in the JPA Structure view.

Note: If the entity appears without an attribute tree, right-click the
active project in the Project Explorer view. Choose Close and then
Open.

 e In the JPA Details view, select the primary database table to which the
UCMDB class should be mapped. Leave all other fields unchanged.

Chapter 5 • Developing Generic Database Adapters

163

 8 Map IDs

According to JPA standards, each persistent class must have at least one ID
attribute. For UCMDB classes, you can map up to three attributes as IDs.
Potential ID attributes are called id1, id2, and id3. To map an ID attribute:

 a Expand the corresponding class under the Entity Mappings branch in
the JPA Structure view, right-click the relevant attribute (for example,
id1), and select Add Attribute to XML and Map….

 b The Add Persistent Attribute dialog box opens. Select Id in the Map as
field and click OK.

 c In the JPA Details view, select the database table column to which the
ID field should be mapped.

 9 Map Attributes

In this step, you map attributes to the database columns.

 a Expand the corresponding class under the Entity Mappings branch in
the JPA Structure view, right-click the relevant attribute (for example,
host_hostname), and select Add Attribute to XML and Map….

 b The Add Persistent Attribute dialog box opens. Select Basic in the Map
as field and click OK.

 c In the JPA Details view, select the database table column to which the
attribute field should be mapped.

Chapter 5 • Developing Generic Database Adapters

164

 10 Map a Valid Link

Perform the steps described in step b on page 162 for mapping a UCMDB
class denoting a valid link. The name of each such class takes the
following structure: <end1 entity name>_<link name>_<end 2 entity
name>. For example, a Contains link between a host and a location is
denoted by a Java class whose name is
generic_db_adapter.host_contains_location. For details, see "The
reconciliation_rules.txt File (for backwards compatibility)" on page 187.

 a Map the ID attributes of the link class as described in "Map IDs" on
page 163. For each ID attribute, expand the Details check box group in
the JPA Details view and clear the Insertable and Updateable check
boxes.

 b Map the end1 and end2 attributes of the link class as follows: For each
of the end1 and end2 attributes of the link class:

➤ Expand the corresponding class under the Entity Mappings branch
in the JPA Structure view, right-click the relevant attribute (for
example, end1), and select Add Attribute to XML and Map….

➤ In the Add Persistent Attribute dialog box, select Many to One or
One to One in the Map as field.

➤ Select Many to One if the specified end1 or end2 CI can have
multiple links of this type. Otherwise, select One to One. For
example, for a host_contains_ip link the host end should be mapped
as Many to One, since one host can have multiple IPs, and the ip
end should be mapped as One to One, since one IP can have only a
single host.

➤ In the JPA Details view, select Target entity, for example,
generic_db_adapter.host.

Chapter 5 • Developing Generic Database Adapters

165

➤ In the Join Columns section of the JPA Details view, check Override
Default. Click Edit. In the Edit Join Column dialog box, select the
foreign key column of the link database table that points to an entry
in the end1/end2 target entity’s table. If the referenced column
name in the end1/end2 target entity’s table is mapped to its ID
attribute, leave the Referenced Column Name unchanged.
Otherwise, select the name of the column to which the foreign key
column points. Clear the Insertable and Updatable check boxes and
click OK.

➤ If the end1/end2 target entity has more than one ID, click the Add
button to add additional join columns and map them in the same
way as described in the previous step.

 11 Build the ORM File – Use Secondary Tables

JPA enables a Java class to be mapped to more than one database table.
For example, Host can be mapped to the Device table to enable
persistence of most of its attributes and to the NetworkNames table to
enable persistence of host_hostName. In this case, Device is the primary
table and NetworkNames is the secondary table. Any number of
secondary tables can be defined. The only condition is that there must be
a one-to-one relationship between the entries of the primary and
secondary tables.

 12 Define a Secondary Table

Select the appropriate class in the JPA Structure view. In the JPA Details
view, access the Secondary Tables section and click Add. In the Add
Secondary Table dialog box, select the appropriate secondary table. Leave
the other fields unchanged.

If the primary and the secondary table do not have the same primary
keys, configure the join columns in the Primary Key Join Columns section
of the JPA Details view.

Chapter 5 • Developing Generic Database Adapters

166

 13 Map an Attribute to a Secondary Table

You map a class attribute to a field of a secondary table as follows:

 a Map the attribute as described in "Map Attributes" on page 163.

 b In the Column section of the JPA Details view, select the secondary
table name in the Table field, to replace the default value.

 14 Use an Existing ORM File as a Base

To use an existing orm.xml file as a basis for the one you are developing,
perform the following steps:

 a Verify that all CITs mapped in the existing orm.xml file are imported
into the active Eclipse project.

 b Select and copy all or part of the entity mappings from the existing
file.

 c Select the Source tab of the orm.xml file in the Eclipse JPA perspective.

 d Paste all copied entity mappings under the <entity-mappings> tag of
the edited orm.xml file, beneath the <schema> tag. Make sure that the
schema tag is configured as described in step b on page 162. All pasted
entities now appear in the JPA Structure view. From now on, mappings
can be edited both graphically and manually through the xml code of
the orm.xml file.

 e Click Save.

 15 Importing an Existing ORM File from an Adapter

If an adapter already exists, the Eclipse Plugin can be used to edit its ORM
file graphically. Import the orm.xml file into Eclipse, edit it using the
plugin and then deploy it back to the UCMDB machine. To import the
ORM file, press the button on the Eclipse toolbar. A confirmation dialog is
displayed. Click OK. The ORM file is copied from the UCMDB machine to
the active Eclipse project and all relevant classes are imported from the
UCMDB class model.

If the relevant classes do not appear in the JPA Structure view, right-click
the active project in the Project Explorer view, choose Close and then
Open.

Chapter 5 • Developing Generic Database Adapters

167

From now on, the ORM file can be edited graphically using Eclipse, and
then deployed back to the UCMDB machine as described in "Deploy the
ORM File to the CMDB" on page 167.

 16 Check the Correctness of the orm.xml File – Built-in
Correctness Check

The Eclipse JPA plugin checks if any errors are present and marks them in
the orm.xml file. Both syntax (for example, wrong tag name, unclosed
tag, missing ID) and mapping errors (for example, wrong attribute name
or database table field name) are checked. If there are errors, their
description appears in the Problems view:

 17 Create a New Integration Point

If no integration point exists in the CMDB for this adapter, you can create
it in the Integration Studio. For details, see "Integration Studio" in the
HP Universal CMDB Data Flow Management Guide.

Fill in the integration point name in the dialog box that opens. The
orm.xml file is copied to the adapter folder. An integration point is
created with all the imported CI types as its supported classes, except for
multinode CITs, if they are configured in the reconciliation_rules.txt file.
For details, see "The reconciliation_rules.txt File (for backwards
compatibility)" on page 187.

 18 Deploy the ORM File to the CMDB

Save the orm.xml file and deploy it to the UCMDB server by clicking
UCMDB > Deploy ORM. The orm.xml file is copied to the adapter folder
and the adapter is reloaded. The operation result is shown in an
Operation Result dialog box. If any error occurs during the reload process,
the Java exception stack trace is displayed in the dialog box. If no
integration point has yet been defined using the adapter, no mapping
errors are detected upon deployment.

Chapter 5 • Developing Generic Database Adapters

168

 19 Run a Sample TQL Query

 a Define a query (not a view) in the Modeling Studio. For details, see
"Modeling Studio" in the HP Universal CMDB Modeling Guide.

 b Create an integration point using the adapter that you created in
step 17 on page 167. For details, see "New Integration Point/Edit
Integration Point Dialog Box" in the HP Universal CMDB Data Flow
Management Guide.

 c During the creation of the adapter, verify that the CI types that should
participate in the query are supported by this integration point.

 d When configuring the CMDB plugin, use this sample query name in
the Settings dialog box. For details, see "Configure the CMDB Plugin"
on page 161.

 e Click the Run TWL button to run a sample TQL and verify whether it
returns the required results using the newly created orm.xml file.

Chapter 5 • Developing Generic Database Adapters

169

Reference

Adapter Configuration Files

The files discussed in this section are located in the db-adapter.zip package
in the C:\hp\UCMDB\UCMDBServer\content\adapters folder.

This section includes the following topics:

➤ "The adapter.conf File" on page 171

➤ "The simplifiedConfiguration.xml File" on page 172

➤ "The orm.xml File" on page 174

➤ "The reconciliation_types.txt file" on page 187

➤ "The reconciliation_rules.txt File (for backwards compatibility)" on
page 187

➤ "The transformations.txt File" on page 189

➤ "The persistence.xml File" on page 190

➤ "The discriminator.properties File" on page 192

➤ "The replication_config.txt File" on page 194

➤ "The fixed_values.txt File" on page 194

General Configuration

➤ adapter.conf. The adapter configuration file. For details, see "The
adapter.conf File" on page 171.

Chapter 5 • Developing Generic Database Adapters

170

Advanced Configuration

➤ orm.xml. The object-relational mapping file in which you map between
CMDB CITs and database tables. For details, see "The orm.xml File" on
page 174.

➤ reconciliation_types.txt. Contains the rules that are used to configure the
reconciliation types. For details, see "The reconciliation_types.txt file" on
page 187.

➤ reconciliation_rules.txt. Contains the reconciliation rules. For details, see
"The reconciliation_rules.txt File (for backwards compatibility)" on
page 187.

➤ transformations.txt. Transformations file in which you specify the
converters to apply to convert from the CMDB value to the database
value, and vice versa. For details, see "The transformations.txt File" on
page 189.

➤ Discriminator.properties. This file maps each supported CI type to a
comma-separated list of possible corresponding values. For details, see
"The discriminator.properties File" on page 192.

➤ Replication_config.txt. This file contains a comma-separated list of CI and
relationship types whose property conditions are supported by the
replication plugin. For details, see "The replication_config.txt File" on
page 194.

➤ Fixed_values.txt. This file enables you to configure fixed values for
specific attributes of certain CITs. For details, see "The fixed_values.txt
File" on page 194.

Hibernate Configuration

➤ persistence.xml. Used to override out-of-the-box Hibernate
configurations. For details, see "The persistence.xml File" on page 190.

Simple Configuration

➤ simplifiedConfiguration.xml. Configuration file that replaces orm.xml,
transformations.txt, and reconciliation_rules.txt with less capabilities. For
details, see "The simplifiedConfiguration.xml File" on page 172.

Chapter 5 • Developing Generic Database Adapters

171

The adapter.conf File
This file contains the following settings:

➤ use.simplified.xml.config=false. true: uses simplifiedConfiguration.xml.

Note: Usage of this file means that orm.xml, transformations.txt, and
reconciliation_rules.txt are replaced with fewer capabilities.

➤ dal.ids.chunk.size=300. Do not change this value.

➤ dal.use.persistence.xml=false. true: the adapter reads the Hibernate
configuration from persistence.xml.

Note: It is not recommended to override the Hibernate configuration.

➤ performance.memory.id.filtering=true. When the GDBA executes TQLS,
in some cases, a large number of IDs may be retrieved and sent back to the
database using SQL. To avoid this excessive work and improve
performance, the GDBA attempts to read the entire view/table and filters
the results in-memory.

➤ id.reconciliation.cmdb.id.type=string/bytes. When mapping the Generic
DB adapter using ID Reconciliation (for information, see step 1 in
"Implement the Mapping Engine" on page 251), you can either map the
cmdb_id to a string or bytes/raw column type by changing the
META-INF/ adapter.conf property.

Chapter 5 • Developing Generic Database Adapters

172

The simplifiedConfiguration.xml File
This file is used for simple mapping of UCMDB classes to database tables. To
access the template for editing the file, navigate to Adapter Management >
db-adapter > Configuration files.

This section includes the following topics:

➤ "The simplifiedConfiguration.xml File Template" on page 172

➤ "Limitations" on page 174

The simplifiedConfiguration.xml File Template

The CMDB-class-name property is the multinode type (the node to which
federated CITs connect in the TQL):

reconciliation-by-two-nodes. Reconciliation can be done using one node or
two nodes. In this case example, reconciliation uses two nodes.

connected-node-CMDB-class-name. The second class type needed in the
reconciliation TQL.

CMDB-link-type. The relationship type needed in the reconciliation TQL.

link-direction. The direction of the relationship in the reconciliation TQL
(from node to ip_address or from ip_address to node):

The reconciliation expression is in the form of ORs and each OR includes
ANDs.

<?xml version="1.0" encoding="UTF-8"?>
<generic-DB-adapter-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../META-CONF/simplifiedConfiguration.xsd">

<CMDB-class CMDB-class-name="node" default-table-name="[table_name]">
<primary-key column-name="[column_name]"/>

<reconciliation-by-two-nodes connected-node-CMDB-class-name="ip_address"
CMDB-link-type="containment" link-direction="main-to-connected">

Chapter 5 • Developing Generic Database Adapters

173

is-ordered. Determines if reconciliation is done in order form or by a regular
OR comparison.

If the reconciliation property is retrieved from the main class (the
multinode), use the attribute tag, otherwise use the
connected-node-attribute tag.

ignore-case. true: when data in the UCMDB class model is compared with
data in the RDBMS, case does not matter:

The column name is the name of the foreign key column (the column with
values that point to the multinode primary key column).

If the multinode primary key column is composed of several columns, there
needs to be several foreign key columns, one for each primary key column.

If there are few primary key columns, duplicate this column.

The from-CMDB-converter and to-CMDB-converter properties are Java
classes that implement the following interfaces:

➤ com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.FcmdbDalTrans
formerFromExternalDB

➤ com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.FcmdbDalTrans
formerToExternalDB

Use these converters if the value in the CMDB and in the database are not
the same.

<or is-ordered="true">

<attribute CMDB-attribute-name="name"
column-name="[column_name]" ignore-case="true"/>

<foreign-primary-key column-name="[column_name]"
CMDB-class-primary-key-column="[column_name]"/>

<primary-key column-name="[column_name]"/>

Chapter 5 • Developing Generic Database Adapters

174

In this example, GenericEnumTransformer is used to convert the enumerator
according to the XML file that is written inside the parenthesis
(generic-enum-transformer-example.xml):

Limitations

➤ Can be used to map only TQL queries containing one node (in the
database source). For example, you can run a node > ticket and a ticket TQL
query. To bring the hierarchy of nodes from the database, you must use
the advanced orm.xml file.

➤ Only one-to-many relations are supported. For example, you can bring
one or more tickets on each node. You cannot bring tickets that belong to
more than one node.

➤ You cannot connect the same class to different types of CMDB CITs. For
example, if you define that ticket is connected to node, it cannot be
connected to application as well.

The orm.xml File
This file is used for mapping CMDB CITs to database tables.

A template to use for creating a new file is located in the C:\hp\UCMDB\
UCMDBServer\runtime\fcmdb\CodeBase\GenericDBAdapter\META-INF
 directory.

<attribute CMDB-attribute-name="[CMDB_attribute_name]"
column-name="[column_name]"
from-CMDB-converter="com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.i
mpl.GenericEnumTransformer(generic-enum-transformer-example.xml)"
to-CMDB-converter="com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.
GenericEnumTransformer(generic-enum-transformer-example.xml)"/>

<attribute CMDB-attribute-name="[CMDB_attribute_name]"
column-name="[column_name]"/>

<attribute CMDB-attribute-name="[CMDB_attribute_name]"
column-name="[column_name]"/>

</class>
</generic-DB-adapter-config>

Chapter 5 • Developing Generic Database Adapters

175

To edit the XML file for a deployed adapter, navigate to Adapter
Management > db-adapter > Configuration files.

This section includes the following topics:

➤ "The orm.xml File Template" on page 175

➤ "Multiple ORM files" on page 179

➤ "Naming Conventions" on page 179

➤ "Using Inline SQL Statements Instead of Table Names" on page 180

➤ "The orm.xml Schema" on page 181

The orm.xml File Template

Do not change the package name.

entity. The CMDB CIT name. This is the multinode entity.

Make sure that class includes a generic_db_adapter. prefix.

Use a secondary table if the entity is mapped to more than one table.

<?xml version="1.0" encoding="UTF-8"?>
<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" version="1.0" xsi:schemaLocation="http://
java.sun.com/xml/ns/persistence/orm http://java.sun.com/xml/ns/persistence/
orm_1_0.xsd">

<description>Generic DB adapter orm</description>

<package>generic_db_adapter</package>

<entity class="generic_db_adapter.node">
<table name="[table_name]"/>

<secondary-table name=""/>
<attributes>

Chapter 5 • Developing Generic Database Adapters

176

For a single table inheritance with discriminator, use the following code:

Attributes with tag id are the primary key columns. Make sure that the
naming convention for these primary key columns are idX (id1, id2, and so
on) where X is the column index in the primary key.

Change only the column name of the primary key.

basic. Used to declare the CMDB attributes. Make sure to edit only name
and column_name properties.

<inheritance strategy="SINGLE_TABLE"/>
<discriminator-value>node</discriminator-value>
<discriminator-column name="[column_name]"/>

<id name="id1">

<column updatable="false" insertable="false" name="[column_name]"/>
<generated-value strategy="TABLE"/>

</id>

<basic name="name">
<column updatable="false" insertable="false" name="[column_name]"/>

</basic>

Chapter 5 • Developing Generic Database Adapters

177

For a single table inheritance with discriminator, map the extending classes
as follows:

The following example shows a CMDB attribute name with no prefix:

<entity name="[cmdb_class_name]" class="generic_db_adapter.nt" name="nt">

<discriminator-value>nt</discriminator-value>
<attributes/>

</entity>
<entity class="generic_db_adapter.unix" name="unix">

<discriminator-value>unix</discriminator-value>
<attributes/>

</entity>
<entity name="[CMDB_class_name]"

class="generic_db_adapter.[CMDB[cmdb_class_name]">
<table name="[default_table_name]"/>
<secondary-table name=""/>
<attributes>

<id name="id1">
<column updatable="false" insertable="false" name="[column_name]"/>
<generated-value strategy="TABLE"/>

</id>
<id name="id2">

<column updatable="false" insertable="false" name="[column_name]"/>
<generated-value strategy="TABLE"/>

</id>
<id name="id3">

<column updatable="false" insertable="false" name="[column_name]"/>
<generated-value strategy="TABLE"/>

</id>

<basic name="[CMDB_attribute_name]">
<column updatable="false" insertable="false" name="[column_name]"/>

</basic>
<basic name="[CMDB_attribute_name]">

<column updatable="false" insertable="false" name="[column_name]"/>
</basic>
<basic name="[CMDB_attribute_name]">

<column updatable="false" insertable="false" name="[column_name]"/>
</basic>

</attributes>
</entity>

Chapter 5 • Developing Generic Database Adapters

178

This is a relationship entity. The naming convention is
end1Type_linkType_end2Type. In this example end1Type is node and the
linkType is composition.

The target entity is the entity that this property is pointing to. In this
example, end1 is mapped to node entity.

many-to-one. Many relationships can be connected to one node.

join-column. The column that contains end1 IDs (the target entity IDs).

referenced-column-name. The column name in the target entity (node) that
contain the IDs that are used in the join column.

one-to-one. One relationship can be connected to one [CMDB_class_name].

<entity name="node_composition_[CMDB_class_name]"
class="generic_db_adapter.node_composition_[CMDB_class_name]">

<table name="[default_table_name]"/>
<attributes>

<id name="id1">
<column updatable="false" insertable="false" name="[column_name]"/>
<generated-value strategy="TABLE"/>

</id>

<many-to-one target-entity="node" name="end1">
<join-column updatable="false" insertable="false"

referenced-column-name="[column_name]" name="[column_name]"/>
</many-to-one>

<one-to-one target-entity="[CMDB_class_name]" name="end2">
<join-column updatable="false" insertable="false"

referenced-column-name="" name="[column_name]"/>
</one-to-one>

</attributes>
</entity>

</entity-mappings>

Chapter 5 • Developing Generic Database Adapters

179

node attribute. This is an example of how to add a node attribute.

Multiple ORM files

Multiple mapping files are supported. Each mapping file name should end
with orm.xml. All mapping files should be placed under the META-INF
folder of the adapter.

Naming Conventions

➤ In each entity, the class property must match the name property with the
prefix of generic_db_adapter.

➤ Primary key columns must take names of the form idX where X = 1, 2, ...,
according to the number of primary keys in the table.

➤ Attribute names must match class attribute names even as regards case.

➤ The relationship name takes the form end1Type_linkType_end2Type.

➤ CMDB CITs, which are also reserved words in Java, should be prefixed by
gdba_. For example, for the CMDB CIT goto, the ORM entity should be
named gdba_goto.

<entity class="generic_db_adapter.host_node">
<discriminator-value>host_node</discriminator-value>

 <attributes/>
</entity>
<entity class="generic_db_adapter.nt">

<discriminator-value>nt</discriminator-value>
 <attributes>

<basic name="nt_servicepack">
<column updatable="false" insertable="false" name="specific_type_value"/>

</basic>
</attributes>

</entity>

Chapter 5 • Developing Generic Database Adapters

180

Using Inline SQL Statements Instead of Table Names

You can map entities to inline select clauses instead of to database tables.
This is equivalent to defining a view in the database and mapping an entity
to this view. For example:

In this example, the node attributes should be mapped to columns id1,
name, and host_os, rather than id, name, and os.

The following limitations apply:

➤ The inline SQL statement is available only when using Hibernate as the
JPA provider.

➤ Round brackets around the inline SQL select clause are mandatory.

➤ The <schema> element should not be present in the orm.xml file. In the
case of Microsoft SQL Server 2005, this means that all table names should
be prefixed with dbo., rather than defining them globally by
<schema>dbo</schema>.

<entity class="generic_db_adapter.node">
<table name="(select d.id as id1, d.name as name , d.os as host_os from

Device d)"/>

Chapter 5 • Developing Generic Database Adapters

181

The orm.xml Schema

The following table explains the common elements of the orm.xml file. The
complete schema can be found at http://java.sun.com/xml/ns/persistence/
orm_1_0.xsd. The list is not complete, and it mostly explains the specific
behavior of the standard Java Persistence API for the Generic Database
Adapter.

Element Attributes

Name and Path Description

entity-mappings The root element for the
entity mapping
document. This element
should be exactly the
same as the one given in
the GDBA sample files.

description

(entity-mappings)

A free text description of
the entity mapping
document. Optional.

http://java.sun.com/xml/ns/persistence/orm_1_0.xsd
http://java.sun.com/xml/ns/persistence/orm_1_0.xsd

Chapter 5 • Developing Generic Database Adapters

182

package

(entity-mappings)

The name of the Java
package that will contain
the mapping classes.
Should always contain
the text
generic_db_adapter.

Name. name

Description. The name of the UCMDB CI
type to which this entity is mapped. If this
is entity is mapped to a link in the CMDB,
the name of the entity should be in the
format <end_1>_<link_name>_<end_2>. For
example, node_composition_cpu defines an
entity that will be mapped to the
composition link between a node and a
CPU. If the name of the CI type is the same
as the name of the Java class without the
package prefix, this field can be omitted.

Is required. Optional

Type. String

Name. class

Description. The fully qualified name of the
Java class that will be created for this DB
entity. The name of the Java class’ package
should be the same as the name given in
the package element. You may not use Java
reserved words, such as interface or switch,
as the class name. Instead, add the prefix
gdba_ to the name (so interface will be
generic_db_adapter.gdba_interface.

Is required. Required

Type. String

Element Attributes

Name and Path Description

Chapter 5 • Developing Generic Database Adapters

183

table

(entity-mappings >
entity)

This element defines the
primary table of the DB
entity. Can only appear
once. Required.

Name. name

Description. The name of the primary table.
If the name of the table does not contain
the schema to which it belongs, the table
will be searched only in the schema of the
user that was used to create the integration
point. This can also be any a valid SELECT
statement. If this is a SELECT statement, it
must be encapsulated with parentheses.

Is required. Required

Type. String

secondary-table

(entity-mappings >

entity)

This element may be
used to define a
secondary table for the
DB entity. This table
must be connected to
the primary table with a
1-to-1 relationship. You
may define more than
one secondary table.
Optional.

Name. name

Description. The name of the secondary
table. If the name of the table does not
contain the schema to which it belongs, the
table will be searched only in the schema of
the user that was used to create the
integration point. This can also be any a
valid SELECT statement. If this is a SELECT
statement, it must be encapsulated with
parentheses.

Is required. Required

Type. String

primary-key-join-
column

(entity-mappings >
entity >
secondary-table)

If the secondary table
and primary table are
not connected using
fields with the same
name, this element
defines the name of the
primary key field in the
secondary table that
needs to be connected to
the primary key field of
the primary table.

Name. name

Description. The name of the primary key
field in the secondary table. If this element
does not exist, it is assumed that the
primary key field has the same name as the
primary key field of the primary table.

Is required. Optional

Type. String

Element Attributes

Name and Path Description

Chapter 5 • Developing Generic Database Adapters

184

inheritance

(entity-mappings >
entity)

If the current entity is
the parent entity for a
family of DB entities,
then use this element to
mark it as such.
Optional.

Name. strategy

Description. Defines the way the
inheritance is implemented in your DB.

Is required. Required

Type. One of the following values:

➤ SINGLE_TABLE – This entity and all
child entities exist in the same table.

➤ JOINED – The child entities are in joined
tables.

➤ TABLE_PER_CLASS – Each entity is
completely defined by a separate table.

discriminator-column

(entity-mappings >
entity)

If the inheritance is of
type SINGLE_TABLE, this
element is used to define
the name of the field
used to determine the
type of entity for each
row.

Name. name

Description. The name of the discriminator
column.

Is required. Required

Type. String

discriminator-value

(entity-mappings >
entity)

This element defines the
type of the specific entity
in the inheritance tree.
This name needs to be
the same as the name
defined in the
discriminator.properties
file for the value group of
this specific entity type.

attributes

(entity-mappings >
entity)

The root element for all
of the attribute
mappings for an entity.

Element Attributes

Name and Path Description

Chapter 5 • Developing Generic Database Adapters

185

id

(entity-mappings >
entity attributes)

This element defines the
key field for the entity.
There must be at least
one id field defined. If
more than one id
element exists, its fields
create a compound key
for the entity. You
should try and avoid
compound keys for CI
entities (not for links).

Name. name

Description. A string of type idX, where X is
a number between 1 and 9. The first id
should be marked as id1, the second as id2
and so on. This is NOT the name of the key
attribute in UCMDB.

Is required. Required

Type. String

basic

(entity-mappings >
entity attributes)

This element defines a
mapping between a field
in the table, which is not
part of the table’s
primary key, and a
UCMDB attribute.

Name. name

Description. The name of the UCMDB
attribute to which the field is mapped. This
attribute must exist in the UCMDB CI type
to which the current entity is mapped.

Is required. Required

Type. String

column

(entity-mappings >
entity > attributes > id

-OR-

(entity-mappings >
entity > attributes >
basic)

Defines the name of the
column in the table for
basic mapping or an id
field.

Name. name

Description. The name of the field.

Is required. Required

Type. String

Name. table

Description. The name of the table to
which the field belongs. This must be either
the primary table or one of the secondary
tables defined for the entity. If this attribute
is omitted, it is assumed that the field
belongs to the primary table.

Is required. Optional

Type. String

Element Attributes

Name and Path Description

Chapter 5 • Developing Generic Database Adapters

186

one-to-one

(entity-mappings >
entity > attributes)

Defines a column whose
value is in another table,
and the two tables are
connected using a
one-to-one relationship.
This element is only
supported for link entity
mappings and not for
other CI types. This is
the only way to define a
mapping between a table
and a UCMDB link.

Name. name

Description. Which of the two ends this
field represents.

Is required. Required

Type. Either end1 or end2

Name. target-entity

Description. The name of the entity to
which the end refers.

Is required. Required

Type. One of the entity names defined in
the entity mapping document

join-column

(entity-mappings >
entity attributes >
one-to-one)

Defines the way to join
the target-entity defined
in the parent one-to-one
element and the current
entity.

Name. name

Description. The name of the field in the
current table that will be used to perform
the one-to-one join.

Is required. Required

Type. String

Name. name

Description. The name of a field in the joint
entity by which to perform the join. If this
attribute is omitted, it is assumes that the
joint table has a column with the same
name as the field defined in the name
attribute.

Is required. Optional

Type. String

Element Attributes

Name and Path Description

Chapter 5 • Developing Generic Database Adapters

187

The reconciliation_types.txt file
This file is used to configure the reconciliation types.

Each row in the file represents a CMDB CIT that is connected to a federated
database CIT in the TQL query.

The reconciliation_rules.txt File (for backwards
compatibility)
This file is used to configure the reconciliation rules if you want to perform
reconciliation when the DBMappingEngine is configured in the adapter. If
you do not use the DBMappingEngine, the generic UCMDB reconciliation
mechanism is used and there is no need to configure this file.

Each row in the file represents a rule. For example:

The multinode is filled with the multinode name (the CMDB CIT that is
connected to the federated database CIT in the TQL query).

This expression includes the logic that decides whether two multinodes are
equal (one multinode in the CMDB and the other in the database source).

The expression is composed of ORs or ANDs.

The convention regarding attribute names in the expression part is
[className].[attributeName]. For example, attributeName in the ip_address
class is written ip_address.name.

For an ordered match (if the first OR sub-expression returns an answer that
the multinodes are not equal, the second OR sub-expression is not
compared), then use ordered expression instead of expression.

To ignore case during a comparison, use the control (^) sign.

The parameters end1_type, end2_type and link_type are used only if the
reconciliation TQL query contains two nodes and not just a multinode. In
this case, the reconciliation TQL query is end1_type > (link_type) >
end2_type.

multinode[node] expression[^node.name OR ip_address.name] end1_type[node]
end2_type[ip_address] link_type[containment]

Chapter 5 • Developing Generic Database Adapters

188

There is no need to add the relevant layout as it is taken from the
expression.

Types of Reconciliation Rules

Reconciliation rules take the form of OR and AND conditions. You can
define these rules on several different nodes (for example, node is identified
by name from node AND/OR name from ip_address).

The following options find a match:

➤ Ordered match. The reconciliation expression is read from left to right.
Two OR sub-expressions are considered equal if they have values and they
are equal. Two OR sub-expressions are considered not equal if both have
values and they are not equal. For any other case there is no decision, and
the next OR sub-expression is tested for equality.

name from node OR from ip_address. If both the CMDB and the data
source include name and they are equal, the nodes are considered as
equal. If both have name but they are not equal, the nodes are considered
not equal without testing the name of ip_address. If either the CMDB or
the data source is missing name of node, the name of ip_address is
checked.

➤ Regular match. If there is equality in one of the OR sub-expressions, the
CMDB and the data source are considered equal.

name from node OR from ip_address. If there is no match on name of
node, name of ip_address is checked for equality.

For complex reconciliations, where the reconciliation entity is modeled in
the class model as several CITs with relationships (such as node), the
mapping of a superset node includes all relevant attributes from all modeled
CITs.

Note: As a result, there is a limitation that all reconciliation attributes in the
data source should reside in tables that share the same primary key.

Chapter 5 • Developing Generic Database Adapters

189

Another limitation states that the reconciliation TQL query should have no
more than two nodes. For example, the node > ticket TQL query has a node
in the CMDB and a ticket in the data source.

To reconcile the results, name must be retrieved from the node and/or
ip_address.

If the name in the CMDB is in the format of *.m.com, a converter can be
used from CMDB to the federated database, and vice versa, to convert these
values.

The node_id column in the database ticket table is used to connect between
the entities (the defined association can also be made in a node table):

Note: The three tables must be part of the federated RDBMS source and not
the CMDB database.

The transformations.txt File
This file contains all the converter definitions.

The format is that each line contains a new definition.

Chapter 5 • Developing Generic Database Adapters

190

The transformations.txt File Template

entity. The entity name as it appears in the orm.xml file.

attribute. The attribute name as it appears in the orm.xml file.

to_DB_class. The full, qualified name of a class that implements the
interface
com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.FcmdbDalTra
nsformerToExternalDB. The elements in the parenthesis are given to this
class constructor. Use this converter to transform CMDB values to database
values, for example, to append the suffix of .com to each node name.

from_DB_class. The full, qualified name of a class that implements the
com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.
FcmdbDalTransformerFromExternalDB interface. The elements in the
parenthesis are given to this class constructor. Use this converter to
transform database values to CMDB values, for example, to append the
suffix of .com to each node name.

For details, see "Out-of-the-Box Converters" on page 194.

The persistence.xml File
This file is used to override the default Hibernate settings and to add support
for database types that are not out of the box (OOB database types are
Oracle Server, Microsoft MSSQL Server, and MySQL).

If you need to support a new database type, make sure that you supply a
connection pool provider (the default is c3p0) and a JDBC driver for your
database (put the *.jar files in the adapter folder).

To see all available Hibernate values that can be changed, check the
org.hibernate.cfg.Environment class (for details, refer to http://
www.hibernate.org.)

entity[[CMDB_class_name]] attribute[[CMDB_attribute_name]]
to_DB_class[com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.
transform.impl.GenericEnumTransformer(generic-enum-transformer-example.xml)]
from_DB_class[com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.
GenericEnumTransformer(generic-enum-transformer-example.xml)]

http://www.hibernate.org
http://www.hibernate.org

Chapter 5 • Developing Generic Database Adapters

191

Example of the persistence.xml File:

<persistence xmlns="http://java.sun.com/xml/ns/persistence" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/
xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd" version="1.0">

<!-- Don't change this value -->
<persistence-unit name="GenericDBAdapter">

<properties>
<!-- Don't change this value -->
<property name="hibernate.archive.autodetection" value="class, hbm"/>
<!--The driver class name"/-->
<property name="hibernate.connection.driver_class"

value="com.mercury.jdbc.MercOracleDriver"/>
<!--The connection url"/-->
<property name="hibernate.connection.url" value="jdbc:mercury:oracle://

artist:1521;sid=cmdb2"/>
<!--DB login credentials"/-->
<property name="hibernate.connection.username" value="CMDB"/>
<property name="hibernate.connection.password" value="CMDB"/>
<!--connection pool properties"/-->
<property name="hibernate.c3p0.min_size" value="5"/>
<property name="hibernate.c3p0.max_size" value="20"/>
<property name="hibernate.c3p0.timeout" value="300"/>
<property name="hibernate.c3p0.max_statements" value="50"/>
<property name="hibernate.c3p0.idle_test_period" value="3000"/>
<!--The dialect to use-->
<property name="hibernate.dialect"

value="org.hibernate.dialect.OracleDialect"/>
</properties>

</persistence-unit>
</persistence>

Chapter 5 • Developing Generic Database Adapters

192

The discriminator.properties File
This file maps each supported CI type (that is also used as a discriminator
value in orm.xml) to a comma-separated list of possible corresponding
values of the discriminator column, or a condition to match possible values
of the discriminator column.

If a condition is used, use the syntax: like(condition), where condition is a
string that can contain the following wildcards:

➤ % (percent sign) - allows you to match any string of any length (including
a zero length string)

➤ _ (underscore) - allows you to match a single character

For example, like(%unix%) will match unix, linux, unix-aix, and so on. Like
conditions may only be applied to string columns.

You can also have a single discriminator value mapped to any value that
does not belong to another discriminator by stating 'all-other'.

If the adapter you are creating uses discriminator capabilities, you must
define all the discriminator values in the discriminator.properties file.

Example of Discriminator Mapping:

For example, the adapter supports the CI types node, nt, and unix, and the
database contains a single table named t_nodes that contains a column
called type. If the type is 10001, the row represents a node; if the type is
10004, it represents a unix machine, and so on. The discriminator.properties
file might look like this:

node=10001, 10005
nt=10002,10003
unix=2%
mainframe=all-other

Chapter 5 • Developing Generic Database Adapters

193

The orm.xml file includes the following code:

The discriminator_column attribute is then calculated as follows:

➤ If type contains 10002 or 10003 for a certain entry, the entry is mapped to
the nt CIT.

➤ If type contains 10001 or 10005 for a certain entry, the entry is mapped to
the node CIT.

➤ If type starts with 2 for a certain entry, the entry is mapped to the unix
CIT.

➤ Any other value in the type column is mapped to the mainframe CIT.

Note: The node CIT is also the parent of nt and unix.

<entity class="generic_db_adapter.node" >
<table name="t_nodes"/>
…
<inheritance strategy="SINGLE_TABLE"/>
<discriminator-value>node</discriminator-value>
<discriminator-column name="type"/>
…

</entity>
<entity class="generic_db_adapter.nt" name="nt">

<discriminator-value>nt</discriminator-value>
<attributes/>

</entity>
<entity class="generic_db_adapter.unix" name="unix">

<discriminator-value>unix</discriminator-value>
<attributes/>

</entity>

Chapter 5 • Developing Generic Database Adapters

194

The replication_config.txt File
This file contains a comma-separated list of CI and relationship types whose
property conditions are supported by the replication plugin. For details, see
"Plugins" on page 199.

The fixed_values.txt File
This file enables you to configure fixed values for specific attributes of
certain CITs. In this way, each of these attributes can be assigned a fixed
value that is not stored in the database.

The file should contain zero or more entries of the following format:

For example:

The file also supports a list of constants. To define a constants list, use the
following syntax:

Out-of-the-Box Converters

You can use the following converters (transformers) to convert federated
queries and replication jobs to and from database data.

This section includes the following topics:

➤ "The enum-transformer Converter" on page 195

➤ "The SuffixTransformer Converter" on page 197

➤ "The PrefixTransformer Converter" on page 198

➤ "The BytesToStringTransformer Converter" on page 198

entity[<entityName>] attribute[<attributeName>] value[<value>]

entity[ip_address] attribute[ip_domain] value[DefaultDomain]

entity[<entityName>] attribute[<attributeName>] value[{<Val1>, <Val2>, <Val3>, … }]

Chapter 5 • Developing Generic Database Adapters

195

The enum-transformer Converter
This converter uses an XML file that is given as an input parameter.

The XML file maps between hard-coded CMDB values and database values
(enums). If one of the values does not exist, you can choose to return the
same value, return null, or throw an exception.

The transformer performs a comparison between two strings using a case
sensitive, or a case insensitive method. The default behavior is case
sensitive. To define it as case insensitive use: case-sensitive="false" in the
enum-transformer element.

Use one XML mapping file for each entity attribute.

Note: This converter can be used for both the to_DB_class and
from_DB_class fields in the transformations.txt file.

Input File XSD:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:element name="enum-transformer">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="value" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="db-type" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="integer"/>
 <xs:enumeration value="long"/>
 <xs:enumeration value="float"/>
 <xs:enumeration value="double"/>
 <xs:enumeration value="boolean"/>
 <xs:enumeration value="string"/>
 <xs:enumeration value="date"/>
 <xs:enumeration value="xml"/>
 <xs:enumeration value="bytes"/>
 </xs:restriction>
 </xs:simpleType>

Chapter 5 • Developing Generic Database Adapters

196

 </xs:attribute>
 <xs:attribute name="cmdb-type" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="integer"/>
 <xs:enumeration value="long"/>
 <xs:enumeration value="float"/>
 <xs:enumeration value="double"/>
 <xs:enumeration value="boolean"/>
 <xs:enumeration value="string"/>
 <xs:enumeration value="date"/>
 <xs:enumeration value="xml"/>
 <xs:enumeration value="bytes"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="non-existing-value-action" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="return-null"/>
 <xs:enumeration value="return-original"/>
 <xs:enumeration value="throw-exception"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="case-sensitive" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:boolean">
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 <xs:element name="value">
 <xs:complexType>
 <xs:attribute name="cmdb-value" type="xs:string" use="required"/>
 <xs:attribute name="external-db-value" type="xs:string" use="required"/>
 <xs:attribute name="is-cmdb-value-null" type="xs:boolean" use="optional"/>
 <xs:attribute name="is-db-value-null" type="xs:boolean" use="optional"/>
 </xs:complexType>
 </xs:element>
</xs:schema>

Chapter 5 • Developing Generic Database Adapters

197

Example of Converting ’sys’ Value to ’System’ Value:

In this example, sys value in the CMDB is transformed into System value
in the federated database, and System value in the federated database is
transformed into sys value in the CMDB.

If the value does not exist in the XML file (for example, the string demo),
the converter returns the same input value it receives.

The SuffixTransformer Converter
This converter is used to add or remove suffixes from the CMDB or federated
database source value.

There are two implementations:

➤ com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.AdapterT
oCmdbAddSuffixTransformer. Adds the suffix (given as input) when
converting from federated database value to CMDB value and removes
the suffix when converting from CMDB value to federated database value.

➤ com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.AdapterT
oCmdbRemoveSuffixTransformer. Removes the suffix (given as input)
when converting from federated database value to CMDB value and adds
the suffix when converting from CMDB value to federated database value.

<enum-transformer CMDB-type="string" DB-type="string" non-existing-value-action="return-original"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../
META-CONF/generic-enum-transformer.xsd">

<value CMDB-value="sys" external-DB-value="System"/>
</enum-transformer>

Chapter 5 • Developing Generic Database Adapters

198

The PrefixTransformer Converter
This converter is used to add or remove a prefix from the CMDB or federated
database value.

There are two implementations:

➤ com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.AdapterT
oCmdbAddPrefixTransformer. Adds the prefix (given as input) when
converting from federated database value to CMDB value and removes
the prefix when converting from CMDB value to federated database
value.

➤ com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.AdapterT
oCmdbRemovePrefixTransformer. Removes the prefix (given as input)
when converting from federated database value to CMDB value and adds
the prefix when converting from CMDB value to federated database
value.

The BytesToStringTransformer Converter
This converter is used to convert byte arrays in the CMDB to their string
representation in the federated database source.

The converter is:
com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.CmdbTo
AdapterBytesToStringTransformer.

The StringDelimitedListTransformer Converter
This converter is used to transform a single string list to an integer/string list
in CMDB.

The converter is:
com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.
StringDelimitedListTransformer.

Chapter 5 • Developing Generic Database Adapters

199

Plugins

The generic database adapter supports the following plugins:

➤ An optional plugin for full topology synchronization.

➤ An optional plug-in for synchronizing changes in topology. If no plug-in
for synchronizing changes is implemented, it is possible to perform a
differential synchronization, but that synchronization will actually be a
full one.

➤ An optional plugin for synchronizing layout.

➤ An optional plugin to retrieve supported queries for synchronization. If
this plugin is not defined, all TQL names are returned.

➤ An internal, optional plugin to change the TQL definition and TQL result.

➤ An internal, optional plugin to change a layout request and CIs result.

➤ An internal, optional plugin to change a layout request and relationships
result.

For details about implementing and deploying plugins, see "Implement a
Plugin" on page 151.

Configuration Examples

This section gives examples of configurations.

This section includes the following topics:

➤ "Use Case" on page 200

➤ "Single Node Reconciliation" on page 201

➤ "Two Node Reconciliation" on page 203

➤ "Using a Primary Key that Contains More Than One Column" on
page 207

➤ "Using Transformations" on page 209

Chapter 5 • Developing Generic Database Adapters

200

Use Case
Use case. A TQL query is:

node > (composition) > card

where:

node is the CMDB entity

card is the federated database source entity

composition is the relationship between them

The example is run against the ED database. ED nodes are stored in the
Device table and card is stored in the hwCards table. In the following
examples, card is always mapped in the same manner.

Chapter 5 • Developing Generic Database Adapters

201

Single Node Reconciliation
In this example the reconciliation is run against the name property.

Simplified Definition

The reconciliation is done by node and it is emphasized by the special tag
CMDB-class.

Advanced Definition

The orm.xml File

Pay attention to the addition of the relationship mapping. For details, see
the definition section in "The orm.xml File" on page 174.

<?xml version="1.0" encoding="UTF-8"?>
<generic-DB-adapter-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../META-CONF/simplifiedConfiguration.xsd">

<CMDB-class CMDB-class-name="node" default-table-name="Device">
<primary-key column-name="Device_ID"/>
<reconciliation-by-single-node>

<or>
<attribute CMDB-attribute-name="name" column-name="Device_Name"/>

</or>
</reconciliation-by-single-node>

</CMDB-class>
<class CMDB-class-name="card" default-table-name="hwCards"

connected-CMDB-class-name="node" link-class-name="composition">
<foreign-primary-key column-name="Device_ID" CMDB-class-primary-key-column="Device_ID"/>
<primary-key column-name="hwCards_Seq"/>
<attribute CMDB-attribute-name="card_class" column-name="hwCardClass"/>
<attribute CMDB-attribute-name="card_vendor" column-name="hwCardVendor"/>
<attribute CMDB-attribute-name="card_name" column-name="hwCardName"/>

</class>
</generic-DB-adapter-config>

Chapter 5 • Developing Generic Database Adapters

202

Example of the orm.xml File:

<?xml version="1.0" encoding="UTF-8"?>
<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/
persistence/orm http://java.sun.com/xml/ns/persistence/orm_1_0.xsd" version="1.0">

<description>Generic DB adapter orm</description>
<package>generic_db_adapter</package>
<entity class="generic_db_adapter.node" >

<table name="Device"/>
<attributes>

<id name="id1">
<column name="Device_ID" insertable="false" updatable="false"/>
<generated-value strategy="TABLE"/>

</id>
<basic name="name">

<column name="Device_Name"/>
</basic>

</attributes>
</entity>
<entity class="generic_db_adapter.card" >

<table name="hwCards"/>
<attributes>

<id name="id1">
<column name="hwCards_Seq" insertable="false" updatable="false"/>
<generated-value strategy="TABLE"/>

</id>
<basic name="card_class">

<column name="hwCardClass" insertable="false" updatable="false"/>
</basic>
<basic name="card_vendor">

<column name="hwCardVendor" insertable="false" updatable="false"/>
</basic>
<basic name="card_name">

<column name="hwCardName" insertable="false" updatable="false"/>
</basic>

</attributes>
</entity>
<entity class="generic_db_adapter.node_composition_card" >

<table name="hwCards"/>
<attributes>

<id name="id1">
<column name="hwCards_Seq" insertable="false" updatable="false"/>
<generated-value strategy="TABLE"/>

</id>
<many-to-one name="end1" target-entity="node">

Chapter 5 • Developing Generic Database Adapters

203

<join-column name="Device_ID" insertable="false" updatable="false"/>
</many-to-one>
<one-to-one name="end2" target-entity="card">

<join-column name="hwCards_Seq" referenced-column-name="hwCards_Seq"
insertable="false" updatable="false"/>

</one-to-one>
</attributes>

</entity>
</entity-mappings>

The reconciliation_types.txt File

For details, see "The reconciliation_types.txt file" on page 187.

The reconciliation_rules.txt File

For details, see "The reconciliation_rules.txt File (for backwards
compatibility)" on page 187.

The transformation.txt File

This file remains empty as no values need to be converted in this example.

Two Node Reconciliation
In this example, reconciliation is calculated according to the name property
of node and of ip_address with different variations.

The reconciliation TQL query is node > (containment) > ip_address.

node

multinode[node] expression[node.name]

Chapter 5 • Developing Generic Database Adapters

204

Simplified Definition

The reconciliation is by name of node OR of ip_address:

<?xml version="1.0" encoding="UTF-8"?>
<generic-DB-adapter-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../META-CONF/simplifiedConfiguration.xsd">

<CMDB-class CMDB-class-name="node" default-table-name="Device">
<primary-key column-name="Device_ID"/>
<reconciliation-by-two-nodes connected-node-CMDB-class-name="ip_address"

CMDB-link-type="containment">
<or>

<attribute CMDB-attribute-name="name" column-name="Device_Name"/>
<connected-node-attribute CMDB-attribute-name="name"

column-name="Device_PreferredIPAddress"/>
</or>

</reconciliation-by-two-nodes>
</CMDB-class>
<class CMDB-class-name="card" default-table-name="hwCards"

connected-CMDB-class-name="node" link-class-name="containment">
<foreign-primary-key column-name="Device_ID" CMDB-class-primary-key-column="Device_ID"/>
<primary-key column-name="hwCards_Seq"/>
<attribute CMDB-attribute-name="card_class" column-name="hwCardClass"/>
<attribute CMDB-attribute-name="card_vendor" column-name="hwCardVendor"/>
<attribute CMDB-attribute-name="card_name" column-name="hwCardName"/>

</class>
</generic-DB-adapter-config>

Chapter 5 • Developing Generic Database Adapters

205

The reconciliation is name of node AND of ip_address:

<?xml version="1.0" encoding="UTF-8"?>
<generic-DB-adapter-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../META-CONF/simplifiedConfiguration.xsd">

<CMDB-class CMDB-class-name="node" default-table-name="Device">
<primary-key column-name="Device_ID"/>
<reconciliation-by-two-nodes connected-node-CMDB-class-name="ip_address"

CMDB-link-type="containment">
<and>

<attribute CMDB-attribute-name="name" column-name="Device_Name"/>
<connected-node-attribute CMDB-attribute-name="name"

column-name="Device_PreferredIPAddress"/>
</and>

</reconciliation-by-two-nodes>
</CMDB-class>
<class CMDB-class-name="card" default-table-name="hwCards"

connected-CMDB-class-name="node" link-class-name="containment">
<foreign-primary-key column-name="Device_ID" CMDB-class-primary-key-column="Device_ID"/>
<primary-key column-name="hwCards_Seq"/>
<attribute CMDB-attribute-name="card_class" column-name="hwCardClass"/>
<attribute CMDB-attribute-name="card_vendor" column-name="hwCardVendor"/>
<attribute CMDB-attribute-name="card_name" column-name="hwCardName"/>

</class>
</generic-DB-adapter-config>

Chapter 5 • Developing Generic Database Adapters

206

The reconciliation is by name of ip_address:

Advanced Definition

The orm.xml File

Since the reconciliation expression is not defined in this file, the same
version should be used for any reconciliation expression.

The reconciliation_types.txt File

For details, see "The reconciliation_types.txt file" on page 187.

<?xml version="1.0" encoding="UTF-8"?>
<generic-DB-adapter-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../META-CONF/simplifiedConfiguration.xsd">

<CMDB-class CMDB-class-name="node" default-table-name="Device">
<primary-key column-name="Device_ID"/>
<reconciliation-by-two-nodes connected-node-CMDB-class-name="ip_address"

CMDB-link-type="containment">
<or>

<connected-node-attribute CMDB-attribute-name="name"
column-name="Device_PreferredIPAddress"/>

</or>
</reconciliation-by-two-nodes>

</CMDB-class>
<class CMDB-class-name="card" default-table-name="hwCards"

connected-CMDB-class-name="node" link-class-name="containment">
<foreign-primary-key column-name="Device_ID" CMDB-class-primary-key-column="Device_ID"/>
<primary-key column-name="hwCards_Seq"/>
<attribute CMDB-attribute-name="card_class" column-name="hwCardClass"/>
<attribute CMDB-attribute-name="card_vendor" column-name="hwCardVendor"/>
<attribute CMDB-attribute-name="card_name" column-name="hwCardName"/>

</class>
</generic-DB-adapter-config>

node

Chapter 5 • Developing Generic Database Adapters

207

The reconciliation_rules.txt File

For details, see "The reconciliation_rules.txt File (for backwards
compatibility)" on page 187.

The transformation.txt File

This file remains empty as no values need to be converted in this example.

Using a Primary Key that Contains More Than One
Column
If the primary key is composed of more than one column, the following
code is added to the XML definitions:

Simplified Definition

There is more than one primary key tag and for each column there is a tag.

multinode[node] expression[ip_address.name OR node.name] end1_type[node]
end2_type[ip_address] link_type[containment]

multinode[node] expression[ip_address.name AND node.name] end1_type[node]
end2_type[ip_address] link_type[containment]

multinode[node] expression[ip_address.name] end1_type[node] end2_type[ip_address]
link_type[containment]

<class CMDB-class-name="card" default-table-name="hwCards"
connected-CMDB-class-name="node" link-class-name="containment">

<foreign-primary-key column-name="Device_ID"
CMDB-class-primary-key-column="Device_ID"/>

<primary-key column-name="Device_ID"/>
<primary-key column-name="hwBusesSupported_Seq"/>
<primary-key column-name="hwCards_Seq"/>
<attribute CMDB-attribute-name="card_class" column-name="hwCardClass"/>
<attribute CMDB-attribute-name="card_vendor"

column-name="hwCardVendor"/>
<attribute CMDB-attribute-name="card_name" column-name="hwCardName"/>

</class>

Chapter 5 • Developing Generic Database Adapters

208

Advanced Definition

The orm.xml File

A new id entity is added that maps to the primary key columns. Entities that
use this id entity must add a special tag.

If you use a foreign key (join-column tag) for such a primary key, you must
map between each column in the foreign key to a column in the primary
key.

For details, see "The orm.xml File" on page 174.

Example of the orm.xml File:

< <entity class="generic_db_adapter.card" >
<table name="hwCards"/>
<attributes>

<id name="id1">
<column name="Device_ID" insertable="false" updatable="false"/>
<generated-value strategy="TABLE"/>

</id>
<id name="id2">

<column name="hwBusesSupported_Seq" insertable="false" updatable="false"/>
<generated-value strategy="TABLE"/>

</id>
<id name="id3">

<column name="hwCards_Seq" insertable="false" updatable="false"/>
<generated-value strategy="TABLE"/>

</id>
.
.
.

<entity class="generic_db_adapter.node_containment_card" >
<table name="hwCards"/>
<attributes>

<id name="id1">
<column name="Device_ID" insertable="false" updatable="false"/>
<generated-value strategy="TABLE"/>

</id>
<id name="id2">

<column name="hwBusesSupported_Seq" insertable="false" updatable="false"/>
<generated-value strategy="TABLE"/>

</id>
<id name="id3">

<column name="hwCards_Seq" insertable="false" updatable="false"/>

Chapter 5 • Developing Generic Database Adapters

209

<generated-value strategy="TABLE"/>
</id>
<many-to-one name="end1" target-entity="node">

<join-column name="Device_ID" insertable="false" updatable="false"/>
</many-to-one>
<one-to-one name="end2" target-entity="card">

<join-column name="Device_ID" referenced-column-name="Device_ID" insertable="false"
updatable="false"/>

<join-column name="hwBusesSupported_Seq"
referenced-column-name="hwBusesSupported_Seq" insertable="false" updatable="false"/>

<join-column name="hwCards_Seq" referenced-column-name="hwCards_Seq"
insertable="false" updatable="false"/>

</one-to-one>
</attributes>

</entity>
</entity-mappings>

Using Transformations
In the following example, the generic enum transformer is converted from
values 1, 2, 3 to values a, b, c respectively in the name column.

The mapping file is generic-enum-transformer-example.xml.

<enum-transformer CMDB-type="string" DB-type="string"
non-existing-value-action="return-original" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" xsi:noNamespaceSchemaLocation="../META-CONF/
generic-enum-transformer.xsd">

<value CMDB-value="1" external-DB-value="a"/>
<value CMDB-value="2" external-DB-value="b"/>
<value CMDB-value="3" external-DB-value="c"/>

</enum-transformer>

Chapter 5 • Developing Generic Database Adapters

210

Simplified Definition

Advanced Definition

There is a change only to the transformation.txt file.

The transformation.txt File

Make sure that the attribute names and entity names are the same as in the
orm.xml file.

<CMDB-class CMDB-class-name="node" default-table-name="Device">
<primary-key column-name="Device_ID"/>
<reconciliation-by-two-nodes connected-node-CMDB-class-name="ip_address"

CMDB-link-type="containment">
<or>

<attribute CMDB-attribute-name="name" column-name="Device_Name"
from-CMDB-converter="com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.i
mpl.GenericEnumTransformer(generic-enum-transformer-example.xml)"
to-CMDB-converter="com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.
GenericEnumTransformer(generic-enum-transformer-example.xml)"/>

<connected-node-attribute CMDB-attribute-name="name"
column-name="Device_PreferredIPAddress"/>

</or>
</reconciliation-by-two-nodes>

</CMDB-class>
.
.
.

entity[node] attribute[name]
to_DB_class[com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.Generic
EnumTransformer(generic-enum-transformer-example.xml)]
from_DB_class[com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.Gene
ricEnumTransformer(generic-enum-transformer-example.xml)]

Chapter 5 • Developing Generic Database Adapters

211

Adapter Log Files

To understand the calculation flows and adapter lifecycle, and to view debug
information, you can consult the following log files.

This section includes the following topics:

➤ "Log Levels" on page 211

➤ "Log Locations" on page 212

Log Levels
You can configure the log level for each of the logs.

In a text editor, open the C:\hp\UCMDB\UCMDBServer\conf\log\
fcmdb.gdba.properties file.

The default log level is ERROR:

➤ To increase the log level for all log files, change loglevel=ERROR to
loglevel=DEBUG or loglevel=INFO.

➤ To change the log level for a specific file, change the specific log4j
category line accordingly. For example, to change the log level of
fcmdb.gdba.dal.sql.log to INFO, change

to:

#loglevel can be any of DEBUG INFO WARN ERROR FATAL
loglevel=ERROR

log4j.category.fcmdb.gdba.dal.SQL=${loglevel},fcmdb.gdba.dal.SQL.appender

log4j.category.fcmdb.gdba.dal.SQL=INFO,fcmdb.gdba.dal.SQL.appender

Chapter 5 • Developing Generic Database Adapters

212

Log Locations
The log files are located in the C:\hp\UCMDB\UCMDBServer\runtime\log
directory.

➤ Fcmdb.gdba.log

The adapter lifecycle log. Gives details about when the adapter started or
stopped, and which CITs are supported by this adapter.

Consult for initiation errors (adapter load/unload).

➤ fcmdb.log

Consult for exceptions.

➤ cmdb.log

Consult for exceptions.

➤ Fcmdb.gdba.mapping.engine.log

The mapping engine log. Gives details about the reconciliation TQL query
that the mapping engine uses, and the reconciliation topologies that are
compared during the connect phase.

Consult this log when a TQL query gives no results even though you
know there are relevant CIs in the database, or the results are unexpected
(check the reconciliation).

➤ Fcmdb.gdba.TQL.log

The TQL log. Gives details about the TQL queries and their results.

Consult this log when a TQL query does not return results and the
mapping engine log shows that there are no results in the federated data
source.

➤ Fcmdb.gdba.dal.log

The DAL lifecycle log. Gives details about CIT generation and database
connection details.

Consult this log when you cannot connect to the database or when there
are CITs or attributes that are not supported by the query.

Chapter 5 • Developing Generic Database Adapters

213

➤ Fcmdb.gdba.dal.command.log

The DAL operations log. Gives details about internal DAL operations that
are called. (This log is similar to cmdb.dal.command.log).

➤ Fcmdb.gdba.dal.SQL.log

The DAL SQL queries log. Gives details about called JPAQLs (object
oriented SQL queries) and their results.

Consult this log when you cannot connect to the database or when there
are CITs or attributes that are not supported by the query.

➤ Fcmdb.gdba.hibrnate.log

The Hibernate log. Gives details about the SQL queries that are run, the
parsing of each JPAQL to SQL, the results of the queries, data regarding
Hibernate caching, and so on. For details on Hibernate, see "Hibernate as
JPA Provider" on page 129.

External References

For details on the JavaBeans 3.0 specification, see http://jcp.org/aboutJava/
communityprocess/final/jsr220/index.html.

Troubleshooting and Limitations

This section describes troubleshooting and limitations for the generic
database adapter.

General Limitations

➤ SQL Server NTLM authentication is not supported.

➤ When you update an adapter package, use Notepad++, UltraEdit, or some
other third-party text editor rather than Notepad (any version) from
Microsoft Corporation to edit the template files. This prevents the use of
special symbols, which cause the deployment of the prepared package to
fail.

http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html

Chapter 5 • Developing Generic Database Adapters

214

JPA Limitations

➤ All tables must have a primary key column.

➤ CMDB class attribute names must follow the JavaBeans naming
convention (for example, names must start with lower case letters).

➤ Two CIs that are connected with one relationship in the class model must
have direct association in the database (for example, if node is connected
to ticket there must be a foreign key or linkage table that connects them).

➤ Several tables that are mapped to the same CIT must share the same
primary key table.

Functional Limitations

➤ You cannot create a manual relationship between the CMDB and
federated CITs. To be able to define virtual relationships, a special
relationship logic must be defined (it can be based on properties of the
federated class).

➤ Federated CITs cannot be trigger CITs in an impact rule, but they can be
included in an impact analysis TQL query.

➤ A federated CIT can be part of an enrichment TQL, but cannot be used as
the node on which enrichment is performed (you cannot add, update, or
delete the federated CIT).

➤ Using a class qualifier in a condition is not supported.

➤ Subgraphs are not supported.

➤ Compound relationships are not supported.

➤ The external CI CMDB id is composed from its primary key and not its
key attributes.

➤ A column of type bytes cannot be used as a primary key column in
Microsoft SQL Server.

➤ TQL query calculation fails if attribute conditions that are defined on a
federated node have not had their names mapped in the orm.xml file.

➤ The Generic DB Adapter does not support Windows Authentication for
SQL Server.

6
Developing Java Adapters

This chapter includes:

Concepts

➤ Federation Framework Overview on page 216

➤ Adapter and Mapping Interaction with the Federation Framework
on page 222

➤ Federation Framework Flow for Federated TQL Queries on page 223

➤ Federation Framework Flow for Population on page 239

➤ Adapter Interfaces on page 241

Tasks

➤ Debug Adapter Resources on page 244

➤ Add an Adapter for a New External Data Source on page 244

➤ Implement the Mapping Engine on page 253

➤ Create a Sample Adapter on page 255

Reference

➤ XML Configuration Tags and Properties on page 257
215

Chapter 6 • Developing Java Adapters
Concepts

Federation Framework Overview

Note:

➤ The term relationship is equivalent to the term link.

➤ The term CI is equivalent to the term object.

➤ A graph is a collection of nodes and links.

➤ For a glossary of definitions and terms, see "Glossary" in the HP Universal
CMDB Administration Guide.

The Federation Framework functionality uses an API to retrieve information
from federated sources. The Federation Framework provides three main
capabilities:

➤ Federation on the fly. All queries are run over original data repositories
and results are built on the fly in the CMDB.

➤ Population. Populates data (topological data and CI properties) to the
CMDB from an external data source.

➤ Data Push. Pushes data (topological data and CI properties) from the local
CMDB to a remote data source.

All action types require an adapter for each data repository, which can
provide the specific capabilities of the data repository and retrieve and/or
update the required data. Every request to the data repository is made
through its adapter.
216

Chapter 6 • Developing Java Adapters
This section also includes the following topics:

➤ "Federation on the Fly" on page 217

➤ "Data Push" on page 219

➤ "Population" on page 220

Federation on the Fly
Federated TQL queries enables data retrieval from any external data
repository without replicating its data.

A federated TQL query uses adapters that represent external data
repositories, to create appropriate external relationships between CIs from
different external data repositories and the UCMDB CIs.
217

Chapter 6 • Developing Java Adapters
Example of Federation-on-the-Fly Flow:

1 The Federation Framework splits a federated TQL query into several subgraphs,
where all nodes in a subgraph refer to the same data repository. Each subgraph
is connected to the other subgraphs by a virtual relationship (but itself contains
no virtual relationships).

2 After the federated TQL query is split into subgraphs, the Federation Framework
calculates each subgraph’s topology and connects two appropriate subgraphs
by creating virtual relationships between the appropriate nodes.
218

Chapter 6 • Developing Java Adapters
Data Push
You use the data push flow to synchronize data from your current local
CMDB to a remote service or target data repository.

In data push, data repositories are divided into two categories: source (local
CMDB) and target. Data is retrieved from the source data repository and
updated to the target data repository. The data push process is based on
query names, meaning that data is synchronized between the source (local
CMDB) and target data repositories, and is retrieved by a TQL query name
from the local CMDB.

The data push process flow includes the following steps:

 1 Retrieving the topology result with signatures from the source data
repository.

 2 Comparing the new results with the previous results.

 3 Retrieving a full layout (that is, all CI properties) of CIs and relationships,
for changed results only.

 4 Updating the target data repository with the received full layout of CIs
and relationships. If any CIs or relationships are deleted in the source data
repository and the query is exclusive, the replication process removes the
CIs or relationships in the target data repository as well.

3 After the federated TQL topology is calculated, the Federation Framework
retrieves a layout for the topology result.
219

Chapter 6 • Developing Java Adapters
The CMDB has 2 hidden data sources (hiddenRMIDataSource and
hiddenChangesDataSource), which are always the ‘source’ data source in
data push flows. To implement a new adapter for data push flows, you only
have to implement the ‘target’ adapter.

Population
You use the population flow to populate the CMDB with data from external
sources.

The flow always uses one 'source' data source to retrieve the data, and pushes
the retrieved data to the Probe in a similar process to the flow of a discovery
job.

To implement a new adapter for population flows, you only have to
implement the source adapter, sine the Data Flow Probe acts as the target.

The adapter in the population flow is executed on the Probe. Debugging and
logging should be done on the Probe and not on the CMDB.

The population flow is based on query names, that is, data is synchronized
between the source data repository and the Data Flow Probe, and is retrieved
by a query name in the source data repository. For example, in UCMDB, the
query name is the name of the TQL query. However, in another data
repository the query name can be a code name that returns data. The
adapter is designed to correctly handle the query name.

Each job can be defined as an exclusive job. This means that the CIs and
relationships in the job results are unique in the local CMDB, and no other
query can bring them to the target. The adapter of the source data repository
supports specific queries, and can retrieve the data from this data repository.
The adapter of the target data repository enables the update of retrieved data
on this data repository.

SourceDataAdapter Flow

➤ Retrieves the topology result with signatures from the source data
repository.

➤ Compares the new results with the previous results.
220

Chapter 6 • Developing Java Adapters
➤ Retrieves a full layout (that is, all CI properties) of CIs and relationships,
for changed results only.

➤ Updates the target data repository with the received full layout of CIs and
relationships. If any CIs or relationships are deleted in the source data
repository and the query is exclusive, the replication process removes the
CIs or relationships in the target data repository as well.

SourceChangesDataAdapter Flow

➤ Retrieves the topology result that occurred since the last date given.

➤ Retrieves a full layout (that is, all CI properties) of CIs and relationships,
for changed results only.

➤ Updates the target data repository with the received full layout of CIs and
relationships. If any CIs or relationships are deleted in the source data
repository and the query is exclusive, the replication process removes the
CIs or relationships in the target data repository as well.

PopulateDataAdapter Flow

➤ Retrieves the full topology with requested layout result.

➤ Uses the topology chunk mechanism to retrieve the data in chunks.

➤ The probe filters out any data that was already brought in earlier runs

➤ Updates the target data repository with the received layout of CIs and
relationships. If any CIs or relationships are deleted in the source data
repository and the query is exclusive, the replication process removes the
CIs or relationships in the target data repository as well.

PopulateChangesDataAdapter Flow

➤ Retrieves the topology with requested layout result that has changes since
the last run.

➤ Uses the topology chunk mechanism to retrieve the data in chunks.

➤ The probe filters out any data that was already brought in earlier runs
(including this flow).
221

Chapter 6 • Developing Java Adapters
➤ Updates the target data repository with the received layout of CIs and
relationships. If any CIs or relationships are deleted in the source data
repository and the query is exclusive, the replication process removes the
CIs or relationships in the target data repository as well.

Adapter and Mapping Interaction with the Federation
Framework

An adapter is an entity in UCMDB that represents external data (data that is
not saved in UCMDB). In federated flows, all interactions with external data
sources are performed through adapters. The Federation Framework
interaction flow and adapter interfaces are different for replication and for
federated TQL queries.

This section also includes the following topics:

➤ "Adapter Lifecycle" on page 222

➤ "Adapter assist Methods" on page 223

Adapter Lifecycle
An adapter instance is created for each external data repository. The adapter
begins its lifecycle with the first action applied to it (such as, calculate TQL
or retrieve/update data). When the start method is called, the adapter
receives environmental information, such as the data repository
configuration, logger, and so on. The adapter lifecycle ends when the data
repository is removed from the configuration, and the shutdown method is
called. This means that the adapter is stateful and can contain the
connection to the external data repository if it is required.
222

Chapter 6 • Developing Java Adapters
Adapter assist Methods
The adapter has several assist methods that can add external data repository
configurations. These methods are not part of the adapter lifecycle and
create a new adapter each time they are called.

➤ The first method tests the connection to the external data repository for a
given configuration. testConnection can be executed either on the
UCMDB server or the Data Flow Probe, depending on the type of adapter.

➤ The second method is relevant only for the source adapter and returns the
supported queries for replication. (This method is executed on the Probe
only.)

➤ The third method is relevant only for federation and population flows,
and returns supported external classes by the external data repository.
(This method is executed on the UCMDB server.)

All these methods are used when you create or view integration
configurations.

Federation Framework Flow for Federated TQL Queries

This section includes the following topics:

➤ "Definitions and Terms" on page 224

➤ "Mapping Engine" on page 225

➤ "Federated Adapter" on page 225

➤ "Flow Diagrams" on page 226
223

Chapter 6 • Developing Java Adapters
Definitions and Terms
Reconciliation data. The rule for matching CIs of the specified type that are
received from the CMDB and the external data repository. The
reconciliation rule can be of three types:

➤ ID reconciliation. This can be used only if the external data repository
contains the CMDB ID of reconciliation objects.

➤ Property reconciliation. This is used when the matching can be done by
properties of the reconciliation CI type only.

➤ Topology reconciliation. This is used when you need the properties of
additional CITs (not only of the reconciliation CIT) to perform a match
on reconciliation CIs. For example, you can perform reconciliation of the
node type by the name property that belongs to the ip_address CIT.

Reconciliation object. The object is created by the adapter according to
received reconciliation data. This object should refer to an external CI and is
used by the Mapping Engine to connect between the external CIs and the
CMDB CIs.

Reconciliation CI type. The type of CIs that represent reconciliation objects.
These CIs must be stored in both the CMDB and in the external data
repositories.

Mapping engine. A component that identifies relations between CIs from
different data repositories that have a virtual relationship between them.
The identification is performed by reconciling CMDB reconciliation objects
and external CI reconciliation objects.
224

Chapter 6 • Developing Java Adapters
Mapping Engine
Federation Framework uses the Mapping Engine to calculate the federated
TQL query. The Mapping Engine connects between CIs that are received
from different data repositories and are connected by virtual relationships.
The Mapping Engine also provides reconciliation data for the virtual
relationship. One end of the virtual relationship must refer to the CMDB.
This end is a reconciliation type. For the calculation of the two subgraphs, a
virtual relationship can start from any end node.

Federated Adapter
The Federated adapter brings two kinds of data from external data
repositories: external CI data and reconciliation objects that belong to
external CIs.

➤ External CI data. The external data that does not exist in the CMDB. It is
the target data of the external data repository.

➤ Reconciliation object data. The auxiliary data that is used by the
federation framework to connect between CMDB CIs and external data.
Each reconciliation object should refer to an External CI. The type of
reconciliation object is the type (or subtype) of one of the virtual
relationship ends from which data is retrieved. Reconciliation objects
should fit the adapter received to reconciliation data. The reconciliation
object can be one of three types: IdReconciliationObject,
PropertyReconciliationObject, or TopologyReconciliationObject.

In the DataAdapter-based interfaces (DataAdapter, PopulateDataAdapter,
and PopulateChangesDataAdapter), the reconciliation is requested as part of
the query definition.
225

Chapter 6 • Developing Java Adapters
Flow Diagrams
The following diagrams illustrate the interactions between the Federation
Framework, UCMDB, the adapter, and the Mapping Engine. The federated
TQL query in the example diagrams has only one virtual relationship, so
that only UCMDB and one external data repository are involved in the
federated TQL query.

In the first diagram the calculation begins in UCMDB and in the second
diagram in the external adapter. Each step in the diagram includes
references to the appropriate method call of the adapter or mapping engine
interface.
226

Chapter 6 • Developing Java Adapters
The Calculation Starts at the HP Universal CMDB End

The following sequence diagram illustrates the interaction between the
Federation Framework, UCMDB, the adapter, and the Mapping Engine. The
federated TQL query in the example diagram has only one virtual
relationship, so that only UCMDB and one external data repository are
involved in the federated TQL query.
227

Chapter 6 • Developing Java Adapters
The numbers in this image are explained below:

Number Explanation

1 The Federation Framework receives a call for a federated TQL
calculation.

2 The Federation Framework analyzes the adapter, finds the virtual
relationship, and divides the original TQL into two sub-adapters–one
for UCMDB and one for the external data repository.

3 The Federation Framework requests the topology of the sub-TQL
from UCMDB.

4 After receiving the topology results, the Federation Framework calls
the appropriate Mapping Engine for the current virtual relationship
and requests reconciliation data. The reconciliationObject parameter
is empty at this stage, that is, no condition is added to reconciliation
data in this call. The returned reconciliation data defines which data
is needed to match the reconciliation CIs in UCMDB to the external
data repository. The reconciliation data can be one of the following
types:

➤ IdReconciliationData. CIs are reconciled according to their ID.

➤ PropertyReconciliationData. CIs are reconciled according to the
properties of one of the CIs.

➤ TopologyReconciliationData. CIs are reconciled according to the
topology (for example, to reconcile node CIs, the IP address of IP
is required too).

5 The Federation Framework requests reconciliation data for the CIs of
the virtual relationship ends that were received in step 3 from
UCMDB.

6 The Federation Framework calls the Mapping Engine to retrieve the
reconciliation data. In this state (by contrast with step 3), the
Mapping Engine receives the reconciliation objects from step 5 as
parameters. The Mapping Engine translates the received
reconciliation object to the condition on the reconciliation data.

7 The Federation Framework requests the topology of the sub-TQL
from the external data repository. The external adapter receives the
reconciliation data from step 6 as a parameter.
228

Chapter 6 • Developing Java Adapters
8 The Federation Framework calls the Mapping Engine to connect
between the received results. The firstResult parameter is the external
topology result received from UCMDB in step 5 and the
secondResult parameter is the external topology result received from
the External Adapter in step 7. The Mapping Engine returns a map
where External CI ID from the first data repository (UCMDB in this
case) is mapped to the External CI IDs from the second (external)
data repository.

9 For each mapping, the Federation Framework creates a virtual
relationship.

10 After the calculation of the federated TQL query results (only at the
topology stage), the Federation Framework retrieves the original TQL
layout for the resulting CIs and relationships from the appropriate
data repositories.

Number Explanation
229

Chapter 6 • Developing Java Adapters
The Calculation Starts at the External Adapter End
230

Chapter 6 • Developing Java Adapters
The numbers in this image are explained below:

Number Explanation

1 The Federation Framework receives a call for an federated TQL
calculation.

2 The Federation Framework analyzes the adapter, finds the virtual
relationship, and divides the original TQL into two sub-adapters –
one for UCMDB and one for the external data repository.

3 The Federation Framework requests the topology of the sub-TQL
from the External Adapter. The returned ExternalTopologyResult is
not supposed to contain any reconciliation object, since the
reconciliation data is not part of the request.

4 After receiving the topology results, the Federation Framework calls
the appropriate Mapping Engine with the current virtual
relationship and requests reconciliation data. The
reconciliationObjects parameter is empty at this state, that is, no
condition is added to the reconciliation data in this call. The
returned reconciliation data defines what data is needed to match
the reconciliation CIs in UCMDB to the external data repository. The
reconciliation data can be one of three following types:

➤ IdReconciliationData. CIs are reconciled according to their ID.

➤ PropertyReconciliationData. CIs are reconciled according to the
properties of one of the CIs.

➤ TopologyReconciliationData. CIs are reconciled according to the
topology (for example, to reconcile node CIs, the IP address of IP
is required too).

5 The Federation Framework requests reconciliation objects for the CIs
that were received in step 3 from the external data repository. The
Federation Framework calls the
getTopologyWithReconciliationData() method in the External
Adapter, where the requested topology is a one-node topology with
CIs received in step 3 as the ID condition and reconciliation data
from step 4.
231

Chapter 6 • Developing Java Adapters
6 The Federation Framework calls the Mapping Engine to retrieve the
reconciliation data. In this state (by contrast with step 3), the
Mapping Engine receives the reconciliation objects from step 5 as
parameters. The Mapping Engine translates the received
reconciliation object to the condition on the reconciliation data.

7 The Federation Framework requests the topology of the sub-TQL
with reconciliation data from step 6 from UCMDB.

8 The Federation Framework calls the Mapping Engine to connect
between the received results. The firstResult parameter is the external
topology result received from the External Adapter at step 5 and the
secondResult parameter is the external topology result received from
UCMDB at step 7. The Mapping Engine returns a map where the
External CI ID from the first data repository (the external data
repository in this case) is mapped to the External CI IDs from the
second data repository (UCMDB).

9 For each mapping, the Federation Framework creates a virtual
relationship.

10 After the calculation of the federated TQL query results (only at the
topology stage), the Federation Framework retrieves the original TQL
layout for the resulting CIs and relationships from the appropriate
data repositories.

Number Explanation
232

Chapter 6 • Developing Java Adapters
Example of Federation Framework Flow for Federated TQL
Queries

This example explains how to view all open incidents on specific nodes. The
ServiceCenter data repository is the external data repository. The node
instances are stored in UCMDB, and the incident instances are stored in
ServiceCenter. It is assumed that to connect the incident instances to the
appropriate node, the node and ip_address properties of the host and IP are
needed. These are reconciliation properties that identify the nodes from
ServiceCenter in UCMDB.
233

Chapter 6 • Developing Java Adapters
Note: For attribute federation, the adapter’s getTopology method is called.
The reconciliation data is adapted in the user TQL (in this case, the CI
element).

 1 After analyzing the adapter, the Federation Framework recognizes the
virtual relationship between Node and Incident and splits the federated
TQL query into two subgraphs:

 2 The Federation Framework runs the UCMDB subgraph to request the
topology, and receives the following results:
234

Chapter 6 • Developing Java Adapters
 3 The Federation Framework requests, from the appropriate Mapping
Engine, the reconciliation data for the first data repository (UCMDB) that
contains the information to connect between received data from two data
repositories. The reconciliation data in this case is:
235

Chapter 6 • Developing Java Adapters
 4 The Federation Framework creates a one-node topology query with the
Node and ID conditions on it from the previous result (node in H1, H2,
H3), and runs this query with the required reconciliation data on
UCMDB. The result includes Node CIs that are relevant to the ID
condition and the appropriate reconciliation object for each CI:
236

Chapter 6 • Developing Java Adapters
 5 The reconciliation data for ServiceCenter should contain a condition for
node and ip that is derived from the reconciliation objects received from
UCMDB:
237

Chapter 6 • Developing Java Adapters
 6 The Federation Framework runs the ServiceCenter subgraph with the
reconciliation data to request the topology and appropriate reconciliation
objects, and receives the following results:
238

Chapter 6 • Developing Java Adapters
 7 The result after connection in Mapping Engine and creating virtual
relationships is:

 8 The Federation Framework requests the original TQL layout for received
instances from UCMDB and ServiceCenter.

Federation Framework Flow for Population

This section includes the following topics:

➤ "Definitions and Terms" on page 239

➤ "Flow Diagram" on page 240

Definitions and Terms
Signature. Denotes the state of properties in the CI. If changes are made to
property values in a CI, the CI signature must also be changed. The CI
signature helps to detect whether a CI has changed without retrieving and
comparing all CI properties. Both the CI and the CI signature are provided
by the appropriate adapter. The adapter is responsible for changing the CI
signature when the CI properties are altered.
239

Chapter 6 • Developing Java Adapters
Flow Diagram
The following sequence diagram illustrates the interaction between the
Federation Framework and the source and target adapters in a population
flow:

 1 The Federation Framework receives the topology for the query result from
the source adapter. The adapter recognizes the query by its name and runs
it on the external data repository. The topology result contains the ID and
signature for each CI and relationship in the result. The ID is the logical
ID that defines the CI as unique in the external data repository. The
signature should be modified if the CI or relationship is modified.

 2 The Federation Framework uses signatures to compare the newly received
topology query results with the saved ones, and to determine which CIs
have changed.

 3 After the Federation Framework finds the CIs and relationships that have
changed, it calls the source adapter with the IDs of the changed CIs and
relationships as a parameter to retrieve their full layout.

 4 The Federation Framework sends the update to the target adapter. The
target adapter updates the external data source with the received data.

 5 After the update, the Federation Framework saves the last query result.
240

Chapter 6 • Developing Java Adapters
Adapter Interfaces

This section includes the following topics:

➤ "Definitions and Terms" on page 241

➤ "Adapter Interfaces for Federated TQL Queries" on page 241

Definitions and Terms
The external relation. The relation between two external CI types that are
supported by the same adapter.

Adapter Interfaces for Federated TQL Queries
Use the appropriate adapter interface for each adapter, as follows.

A one Node topology interface is used when the adapter does not support
any external relations; that is, the adapter is never meant to receive a
request with more than one external CI. All OneNode interfaces are created
to simplify the workflow; for those cases where you need to use a more
extensive query, use the DataAdapter interface.

Deprecated as of UCMDB 9.00: Pattern topology interface

A DataAdapter interface is used to define adapters that support complex
federated queries. The reconciliation request in these adapters is part of the
single QueryDefinition parameter. These adapters may also be used for
Population.

OneNode Interfaces

The following interfaces have different types of reconciliation data:

➤ OneNodeTopologyIdReconciliationDataAdapter. Use if the adapter
supports a single-node TQL and the reconciliation between data
repositories is calculated by the ID.

➤ OneNodeTopologyPropertyReconciliationDataAdapter. Use if the adapter
supports a single-node TQL and the reconciliation between data
repositories is done by the properties of one CI.
241

Chapter 6 • Developing Java Adapters
➤ OneNodeTopologyDataAdapter. Use if the adapter supports a single-node
TQL and the reconciliation between data repositories is done by topology.

Data Adapter Interfaces

➤ DataAdapter. Use this adapter to support complex federated TQL queries.
Allows the most diversity.

➤ PopulateDataAdapter. Use this adapter to support complex federated TQL
queries and population flows. In a population flow, this adapter retrieves
the entire data set, and lets the probe filter the difference since the last
execution of the job.

➤ PopulateChangesDataAdapter. Use this adapter to support complex
federated TQL queries and population flows. In a population flow, this
adapter supports the retrieval of only the changes that occurred since the
last execution of the job.

Pattern Topology Interfaces (Deprecated as of UCMDB 9.00)

The following interfaces have different types of reconciliation data:

➤ PatternTopologyIdReconciliationDataAdapter. Use if the adapter supports
a complex TQL and the reconciliation between data repositories is done
by the ID.

➤ PatternTopologyPropertyReconciliationDataAdapter. Use if the adapter
supports a complex TQL and the reconciliation between data repositories
is done by single-node properties.

➤ PatternTopologyDataAdapter. Use if the adapter supports a complex TQL
and the reconciliation between data repositories is done by topology.

Additional Interfaces

➤ SortResultDataAdapter. Use if you can sort the resulting CIs in the
external data repository.

➤ FunctionalLayoutDataAdapter. Use if you can calculate the functional
layout in the external data repository.
242

Chapter 6 • Developing Java Adapters
Adapter Interfaces for Synchronization

➤ SourceDataAdapter. Use for source adapters in population flows.

➤ TargetDataAdapter. Use for target adapters in data push flows.
243

Chapter 6 • Developing Java Adapters
Tasks

Debug Adapter Resources

This task describes how to use the JMX console to create, view, and delete
adapter state resources (any resources created using the resource
manipulation methods in the DataAdapterEnvironment interface, which are
saved in the UCMDB database or the Probe database) for debugging and
development purposes.

 1 Launch the Web browser and enter the server address, as follows:

➤ For the UCMDB server: http://localhost:8080/jmx-console

➤ For the Probe: http://localhost:1977

You may have to log in with a user name and password (the defaults are
sysadmin/sysadmin).

 2 To open the JMX MBEAN View page, do one of the following:

➤ On the UCMDB server: click
UCMDB:service=FCMDB Adapter State Resource Services

➤ On the Probe: click type=AdapterStateResources

 3 Enter values in the operations that you want to use, and click Invoke.

Add an Adapter for a New External Data Source

This task explains how to define an adapter to support a new external data
source.

This task includes the following steps:

➤ "Prerequisites" on page 245

➤ "Define Valid Relationships for Virtual Relationships" on page 246

➤ "Define an Adapter Configuration" on page 246

➤ "Define Supported Classes" on page 250
244

Chapter 6 • Developing Java Adapters
➤ "Implement the Adapter" on page 250

➤ "Define Reconciliation Rules or Implement the Mapping Engine" on
page 251

➤ "Add Jars Required for Implementation to the Class Path" on page 251

➤ "Deploy the Adapter" on page 251

➤ "Update the Adapter" on page 252

 1 Prerequisites

Model-supported adapter classes for CIs and relationships in the UCMDB
Data Model. As an adapter developer, you should:

➤ have knowledge of the hierarchy of the UCMDB CI types to
understand how external CITs are related to the UCMDB CITs

➤ model the external CITs in the UCMDB class model

➤ add the definitions for new CI types and their relationships

➤ define valid relationships in the UCMDB class model for the valid
relationships between adapter inner classes. (The CITs can be placed at
any level of the UCMDB class model tree.)

Modeling should be the same regardless of federation type (on the fly or
replication). For details on adding new CIT definitions to the UCMDB
class model, see "Working with the CI Selector" in the HP Universal CMDB
Modeling Guide.

For the adapter to support federated attributes on CITs, add this CIT to
the supported classes with supported attributes and the reconciliation
rule for this CIT.
245

Chapter 6 • Developing Java Adapters
 2 Define Valid Relationships for Virtual Relationships

Note: This section is relevant only for federation.

To retrieve federated CITs that are connected to local CMDB CITs, a valid
link definition must exist between the two CITs in the CMDB.

 a Create a valid links XML file that contains these links (if they do not
already exist).

 b Add the links XML file to the adapter package in the \validlinks folder.
For details, see "Package Manager" in the HP Universal CMDB
Administration Guide.

Example of Valid Relationship Definition:

In the following example, the relation of type containment between
instances of type node to instances of type myclass1 is a valid relationship
definition.

 3 Define an Adapter Configuration

 a Navigate to Adapter Management.

 b Click the Create new resource button.

 c In the New adapter dialog box, select Integration and Java Adapter.

 d Right-click on the adapter that you created and select Edit Adapter
Source from the shortcut menu.

<Valid-Links>
<Valid-Link>

<Class-Ref class-name="containment"/>
<End1 class-name="node"/>
<End2 class-name="myclass1"/>
<Valid-Link-Qualifiers/>

</Valid-Link>
</Valid-Links>
246

Chapter 6 • Developing Java Adapters
 e Edit the following XML tags:

<pattern xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" id="newAdapterIdName"
xsi:noNamespaceSchemaLocation="../../Patterns.xsd" description="Adapter Description"
schemaVersion="9.0" displayName="New Adapter Display Name">

<deletable>true</deletable>
<discoveredClasses>

<discoveredClass>link</discoveredClass>
<discoveredClass>object</discoveredClass>

</discoveredClasses>
<taskInfo className="com.hp.ucmdb.discovery.probe.services.dynamic.core.AdapterService">

<params
className="com.hp.ucmdb.discovery.probe.services.dynamic.core.AdapterServiceParams"
enableAging="true" enableDebugging="false" enableRecording="false" autoDeleteOnErrors="success"
recordResult="false" maxThreads="1" patternType="java_adapter" maxThreadRuntime="25200000">

<className >com.yourCompany.adapter.MyAdapter.MyAdapterClass</className>
</params>
247

Chapter 6 • Developing Java Adapters
<destinationInfo className="com.hp.ucmdb.discovery.probe.tasks.BaseDestinationData">
<!-- check -->
<destinationData name="adapterId" description="">${ADAPTER.adapter_id}</

destinationData>
<destinationData name="attributeValues" description="">${SOURCE.attribute_values}</

destinationData>
<destinationData name="credentialsId" description="">${SOURCE.credentials_id}</

destinationData>
<destinationData name="destinationId" description="">${SOURCE.destination_id}</

destinationData>
</destinationInfo>
<resultMechanism isEnabled="true">

<autoDeleteCITs isEnabled="true">
<CIT>link</CIT>
<CIT>object</CIT>

</autoDeleteCITs>
</resultMechanism>

</taskInfo>
<adapterInfo>

<adapter-capabilities>
<support-federated-query>

<!--<supported-classes/> <!—see the section about supported classes-->
<topology>

<pattern-topology /> <!—or <one-node-topology> -->
</topology>
</support-federated-query>
<!--<support-replicatioin-data>
<source>

<changes-source/>
</source>

<target/>
</adapter-capabilities>
<default-mapping-engine />

<queries />
<removedAttributes />

<full-population-days-interval>-1</full-population-days-interval>
</adapterInfo>
<inputClass>destination_config</inputClass>
<protocols />
248

Chapter 6 • Developing Java Adapters
For details about the XML tags, see "XML Configuration Tags and
Properties" on page 257.

<parameters>
<!--The description attribute may be written in simple text or HTML.-->
<!--The host attribute is treated as a special case by UCMDB-->
<!--and will automatically select the probe name (if possible)-->
<!--according to this attribute’s value.-->
<parameter name="credentialsId" description="Special type of property, handled by UCMDB for

credentials menu" type="integer" display-name="Credentials ID" mandatory="true" order-index="12" />
<parameter name="host" description="The host name or IP address of the remote machine"

type="string" display-name="Hostname/IP" mandatory="false" order-index="10" />
<parameter name="port" description="The remote machine's connection port" type="integer"

display-name="Port" mandatory="false" order-index="11" />
</parameters>

<parameter name="myatt" description="is my att true?" type="string" display-name="My Att"
mandatory="false" order-index="15" valid-values=”True;False”/>True</parameters>

<collectDiscoveredByInfo>true</collectDiscoveredByInfo>
<integration isEnabled="true">

<category >My Category</category>
</integration>
<overrideDomain>${SOURCE.probe_name}</overrideDomain>
<inputTQL>

<resource:XmlResourceWrapper xmlns:resource="http://www.hp.com/ucmdb/1-0-0/
ResourceDefinition" xmlns:ns4="http://www.hp.com/ucmdb/1-0-0/ViewDefinition" xmlns:tql="http://
www.hp.com/ucmdb/1-0-0/TopologyQueryLanguage">

<resource xsi:type="tql:Query" group-id="2" priority="low" is-live="true" owner="Input TQL"
name="Input TQL">

<tql:node class="adapter_config" id="-11" name="ADAPTER" />
<tql:node class="destination_config" id="-10" name="SOURCE" />
<tql:link to="ADAPTER" from="SOURCE" class="fcmdb_conf_aggregation" id="-12"

name="fcmdb_conf_aggregation" />
</resource>

</resource:XmlResourceWrapper>
</inputTQL>
<permissions />

</pattern>
249

Chapter 6 • Developing Java Adapters
 4 Define Supported Classes

Define supported classed either the adapter code by implementing the
getSupportedClasses() method, or by using the pattern XML file.

 5 Implement the Adapter

Select the correct adapter implementation class according to its defined
capabilities. The adapter implementation class implements the
appropriate interfaces according to defined capabilities.

<supported-classes>
<supported-class name="HistoryChange" is-derived="false"

is-reconciliation-supported=”false” federation-not-supported=”false”
is-id-reconciliation-supported=”false”>

<supported-conditions>
<attribute-operators attribute-name="change_create_time">

<operator>GREATER</operator>
<operator>LESS</operator>
<operator>GREATER_OR_EQUAL</operator>
<operator>LESS_OR_EQUAL</operator>
<operator>CHANGED_DURING</operator>

</attribute-operators>
</supported-conditions>

 </supported-class>

name The name of the CI type

is-derived Specifies whether this definition includes all
inheriting children

is-reconciliation-supported Specifies whether this class is used for
reconciliation

is-id-reconciliation-supported Specifies whether this class is used for
id-reconciliation

federation-not-supported Specifies whether this CIT should not be
allowed for federation (blocking certain CITs,
for example, a CIT defined solely for
federation)

<supported-conditions> Specifies the supported conditions on each
attribute
250

Chapter 6 • Developing Java Adapters
 6 Define Reconciliation Rules or Implement the Mapping
Engine

If your adapter supports federated TQL queries, you have three options for
defining your Mapping Engine:

➤ Use the default CMDB 9.0x default mapping engine, which uses the
CMDB’s internal reconciliation rules for mapping. To use it, leave the
<default-mapping-engine/> XML tag empty.

For details, see "The reconciliation_types.txt file" on page 187.

➤ Use the CMDB 8.0x mapping engine. To do this, use the following
XML Tag:
<default-mapping-engine>com.hp.ucmdb.federation.mappingEngine.
AdapterMappingEngine</default-mapping-engine>

For details, see "The reconciliation_rules.txt File (for backwards
compatibility)" on page 187.

➤ Write your own mapping engine by implementing the mapping
engine interface and placing the JAR with the rest of the adapter code.
To do this, use the following XML tag:
<default-mapping-engine>com.yourcompany.map.MyMappingEngine
</default-mapping-engine>

 7 Add Jars Required for Implementation to the Class Path

To implement your classes, add the federation_api.jar file to your code
editor class path.

 8 Deploy the Adapter

Deploy the adapter package. For general details on deploying a package,
see "Package Manager" in the HP Universal CMDB Administration Guide.

The package should contain the following entities:

➤ New CIT definition (optional):

➤ Used only if the adapter supports new CI types that do not yet exist in
UCMDB.

➤ The new CIT definitions are located in the class folder in the package.
251

Chapter 6 • Developing Java Adapters
➤ New data type definition (optional):

➤ Used only if the new CITs require new data types.

➤ The new data type definitions are located in the typedef folder in the
package.

➤ New valid relationships definition (optional):

➤ Used only if the adapter supports the federated TQL.

➤ The new valid relationships definitions are located in the validlinks
folder in the package.

➤ The pattern configuration XML file should be located in the
discoveryPatterns folder in the package.

➤ Descriptor. Defines the package definitions.

➤ Place your compiled classes (normally a jar file) in the package under
the adapterCode\<adapter id> folder.

Note: The adapter id folder name has the same value as in the adapter
configuration.

➤ If you create your own configuration file, you should place the file in
the package under the adapterCode\<adapter id> folder.

 9 Update the Adapter

Changes to any of the adapter's non-binary files may be made in the
Adapter Management module. Making changes to configuration files in
the Adapter management module causes the adapter to reload with the
new configurations.

Updates may also be made by editing the files in the package (both binary
and non-binary files), and then redeploying the package by using the
Package Manager. For details, see "Deploy a Package" in the HP Universal
CMDB Administration Guide.
252

Chapter 6 • Developing Java Adapters
Implement the Mapping Engine

The configuration of the mapping engine depends on which mapping
engine you are using.

This task includes the following steps:

➤ "Configure the reconciliation_types.txt File (for the UCMDB 9.0x default
mapping engine)" on page 253

➤ "Configure the reconciliation_rules.txt File (for the UCMDB 8.0x mapping
engine)" on page 253

 1 Configure the reconciliation_types.txt File (for the UCMDB
9.0x default mapping engine)

The file is used to define which CI types are used for reconciliation in the
adapter.

Write each CI types used for reconciliation on a single line, as follows:

Place the file in the adapter package in the adapterCode\<AdapterID>\
META-INF\ folder.

To support ID reconciliation (reconciliation based on ID mapping
between the CMDB ID in the CMDB to a value on the remote database),
you should map a special CMDB attribute called cmdb_id to a column in
the database of either the string (char, varchar) or byte[] (raw/bytes) type.

 2 Configure the reconciliation_rules.txt File (for the UCMDB
8.0x mapping engine)

This file is used to configure the reconciliation rules. Each row in the file
represents a rule. For example:

node
business_application

reconcilition_type[node] expression[^node.name OR ip_address.name]
end1_type[node] end2_type[ip_address] link_type[containment]
253

Chapter 6 • Developing Java Adapters
The reconcilition_type parameter is filled with the type of CI on which
the reconciliation is performed (the UCMDB class name that is connected
to the federated class in the TQL).

The expression parameter is the logic that decides whether two
reconciliation objects are equal (one reconciliation object from the
UCMDB side and the other from the Federated adapter side).

The expression is composed of ORs and ANDs.

The convention regarding attributes names in the expression part is
[className].[attributeName]. For example, the attribute ip_address in
the ip class is written ip.ip_address.

You can define ordered matches. The ordered match checks the first OR
sub expression. If two reconciliation objects have the value on the
attributes of the sub expression and it returns that false (the
reconciliation objects are not equal) then the second OR sub expression is
not compared.

For an ordered match, use ordered expression instead of expression.

The circumflex sign (^) is used to ignore case during comparisons.

The other parameters (end1_type, end2_type, and link_type) are used
only if the reconciliation data contains two nodes and not just the node
of the reconciliation type (the topological reconciliation data). In this
case, the reconciliation data is end1_type -(link_type)> end2_type.

There is no need to add the relevant layout as it is retrieved from the
expression.

To perform reconciliation by UCMDB ID, use cmdb_id as the attribute
name in expression.

Place the file in the adapter package in the adapterCode\<AdapterID>\
META-INF\ folder.

Examples:

➤ You can add a reconciliation rule for a node CIT only. This is because
only node CITs have valid relationships with external CITs. For
example, a node CI in the CMDB is matched to a node CI in
ServiceCenter through the node.name attribute or through the
ip_address.name attribute.
254

Chapter 6 • Developing Java Adapters
➤ The reconciliation rule in this case is a topology rule and the
expression is ordered. The rule performs the following checks on the
CIs under comparison:

➤ If the node.name attribute is equal, the rule matches the nodes.

➤ If the node.name attribute is not equal, the rule does not match the
nodes.

➤ If the node.name attribute is null in one of the compared CIs, the
rule checks the ip_address.name attribute. If the ip_address.name
attribute is equal, the rule matches the nodes.

Create a Sample Adapter

This example illustrates how to create a sample adapter.

This task includes the following steps:

➤ "Select Adapter Logic" on page 255

➤ "Load the Project" on page 256

 1 Select Adapter Logic

When you implement an adapter, you must choose how to handle the
condition logic in the implementation (property conditions,
ID conditions, reconciliation conditions, and link conditions).

 a Retrieve the entire data into the adapter memory and let it select or
filter the needed CI Instances.

 b Convert all the conditions into the data source language and let it
filter and select the data. For example:

➤ Convert the condition into a SQL query.

➤ Convert the condition into a Java API filter object.

 c The middle road is to filter some of the data on the remote service, and
have the adapter select and filter the remainder.

In the MyAdapter example, the logic in step a is used.
255

Chapter 6 • Developing Java Adapters
 2 Load the Project

Copy the files from the C:\hp\UCMDB\UCMDBServer\tools\
adapter-dev-kit\SampleAdapters folder and follow the instructions in the
readme files.

Note: If you use an adapter with large data sets, you may need to use
caching and indexing to improve performance for Federation.

Online javadocs documentation is available at:

C:\hp\UCMDB\UCMDBServer\deploy\ucmdb-docs\docs\eng\doc_lib\
DevRef_guide\DBAdapterFramework_JavaAPI\index.html
256

Chapter 6 • Developing Java Adapters
Reference

XML Configuration Tags and Properties

id="newAdapterIdName" Defines the adapter’s real name. Used for logs and folder
lookups

displayName="New Adapter
Display Name"

Defines the adapter’s display name, as it appears in the UI.

<className>…</className> Defines the adapter’s interface implementing the Java class.

<category >My Category</
category>

Defines the adapter’s category.

<parameters> Defines the properties for the configuration that are available
in the UI when setting up a new integration point.

name The name of the property (used mostly by code)

description The display hint of the property

type String or integer (use valid values with string for Boolean).

display-name The name of the property in the UI.

mandatory Specifies whether this configuration property is mandatory for
the user.

order-index The placing order of the property (small = up)

valid-values A list of possible valid values separated by ‘;’ characters (for
example, valid-values="Oracle;SQLServer;MySQL” or
valid-values=”True;False”).

<adapterInfo> Contains the definition of the adapter’s static settings and
capabilities.

<support-federated-query> Defines this adapter as capable of federation.

<one-node-topology> The ability to federated queries with one federated query node.

<pattern-topology> The ability to federate complex queries.

<support-replicatioin-data> Defines the capability to run data push and population flows.
257

Chapter 6 • Developing Java Adapters
<source> This adapter may be used for population flows.

<changes-source/> This adapter may be used for population changes flows.

<target> This adapter may be used for data push flows.

<default-mapping-engine> Allows definition of a mapping engine for the adapter (by
default, the adapter uses the default mapping engine). For any
other mapping engine, enter the implementing class name of
the mapping engine (for the UCMDB 8.0x mapping engine use:
com.hp.ucmdb.federation.mappingEngine.AdapterMappingEn
gine)

<removedAttributes> Forces the removal of specific attributes from the result.

<full-population-days-
interval>

Specifies when to execute a full population job instead of a
differential job (every ‘x’ days). Uses the aging mechanism
together with the changes flow.
258

7
Developing Push Adapters

This chapter includes:

Concepts

➤ Developing Push Adapters Overview on page 260

➤ Differential Synchronization on page 260

Tasks

➤ Prepare the Mapping Files on page 261

➤ Write Jython Scripts on page 263

➤ Support Differential Synchronization on page 267

➤ Build an Adapter Package on page 269

Reference

➤ Mapping File Schema on page 271

➤ Mapping Results Schema on page 286
259

Chapter 7 • Developing Push Adapters
Concepts

Developing Push Adapters Overview

The Generic Push Adapter provides a platform that enables rapid
development of integrations that push UCMDB 9.0x data to external data
repositories (databases and third-party applications). Developing a custom
integration based on Generic Push Adapter requires:

➤ an XML mapping file between the UCMDB CI link types and the external
data items.

➤ a Jython script to push the data items into the external data repository.

Differential Synchronization

For the Push adapter to support differential synchronization, the
DiscoveryMain function must return an object implementing the
DataPushResults interface, which contains the mappings between the IDs
that the Jython script receives from the XML and the IDs that the Jython
script creates on the remote machine. The latter IDs are of the type
ExternalId.

The ExternalIdUtil.restoreExternal command, which receives the ID of the
CI in the CMDB as a parameter, restores the external ID from the ID of the
CI in the CMDB. This command can be used, for example, while performing
differential synchronization, and a link is received where one of its ends is
not in the bulk (it was already synchronized).

If the DiscoveryMain method in the Jython script on which the Push
adapter is based returns an empty ObjectStateHolderVector instance, the
adapter will not support differential synchronization. This means that even
when a differential synchronization job is run, in actuality, a full
synchronization is being performed. Therefore, no data can be updated or
removed on the remote system, since all data is added to the CMDB during
each synchronization.
260

Chapter 7 • Developing Push Adapters
Tasks

Prepare the Mapping Files

There are two different ways to prepare mapping files:

➤ You can prepare a single, global mapping file.

All mappings are placed in a single file named mappings.xml.

➤ You can prepare a separate file for each push query.

Each each mapping file is called <query name>.xml.

For details, see "Mapping File Schema" on page 271.

This task includes the following steps:

➤ "Create the Mapping File" on page 261

➤ "Map CIs" on page 262

➤ "Map Links" on page 263

 1 Create the Mapping File

The mapping file structure is as follows

<?xml version="1.0" encoding="UTF-8"?>
<integration>

<info>
<source name="UCMDB" versions="9.x" vendor="HP" />
<!-- for example: -->
<target name="Oracle" versions="11g" vendor="Oracle" />

</info>
<targetcis>

<!--- CI Mappings --->
</targetcis>
<targetrelations>

<!--- Link Mappings --->
</ targetrelations>

</integration>
261

Chapter 7 • Developing Push Adapters
 2 Map CIs

There are two ways to map CMDB CI types:

➤ Map a CI type so that CIs of that type and all inherited types are
mapped in the same way:

➤ Map a CI type so that only CIs of that type will be processed. CIs of
inherited types will not be processed unless their type is also mapped
(in one of the two ways):

A CI type which is mapped indirectly (one of its ancestors is mapped
using source_ci_type_tree), can also override its parent's map by having it
appear in its own source_ci_type_tree or source_ci_type.

It is recommended to use source_ci_type_tree wherever possible.
Otherwise, resulting CIs of a CI type that do not appear in the mapping
files will not be transferred to the Jython script.

<source_ci_type_tree name="node" mode="update_else_insert">
<apioutputseq>1</apioutputseq>
<target_ci_type name="host">

<targetprimarykey>
<pkey>name</pkey>

</targetprimarykey
<target_attribute name=" name" datatype="STRING">

<map type="direct" source_attribute="name" />
</target_attribute>
<!-- more target attributes --->

</target_ci_type>
</source_ci_type_tree>

<source_ci_type name="node" mode="update_else_insert">
<apioutputseq>1</apioutputseq>
<target_ci_type name="host">

<targetprimarykey>
<pkey>name</pkey>

</targetprimarykey
<target_attribute name=" name" datatype="STRING">

<map type="direct" source_attribute="name" />
</target_attribute>
<!-- more target attributes --->

</target_ci_type>
</source_ci_type>
262

Chapter 7 • Developing Push Adapters
 3 Map Links

There are two ways to map links:

➤ Map a link which will also map all of the link types that inherit from
that specific link:

➤ Map a link which will also map only that specific link type and not the
link types which inherit from it:

Write Jython Scripts

The mapping script is a regular Jython script, and should follow the rules for
Jython scripts. For details, see "Developing Jython Adapters" on page 63.

The script should contain the DiscoveryMain function, which may return
either an empty OSHVResult or a DataPushResults instance upon success.

<source_link_type_tree name="dependency" target_link_type="dependency"
mode="update_else_insert" source_ci_type_end1="webservice"
source_ci_type_end2="sap_gateway">

<target_ci_type_end1 name="webservice" />
<target_ci_type_end2 name="sap_gateway" />

<target_attribute name="name" datatype="STRING">
<map type="direct" source_attribute="name" />

</target_attribute>
</source_link_type_tree>

<link source_link_type="dependency" target_link_type="dependency"
mode="update_else_insert" source_ci_type_end1="webservice"
source_ci_type_end2="sap_gateway">

<target_ci_type_end1 name="webservice" />
<target_ci_type_end2 name="sap_gateway" />
<target_attribute name="name" datatype="STRING">

<map type="direct" source_attribute="name" />
</target_attribute>

</link>
263

Chapter 7 • Developing Push Adapters
To report any failure, the script should raise an exception, for example:

In the DiscoveryMain function, the data items to be pushed to or deleted
from the external application can be obtained as follows:

The client object to the external application can be obtained as follows:

This client object automatically uses the credentials ID, host name and port
number passed by the adapter through the Framework.

If you need to use the connection parameters that you defined for the
adapter (for details, see step 2 in "Build an Adapter Package" on page 269),
use the following code:

For example:

This section also includes:

➤ "Working with the Mapping's Results" on page 265

➤ "Handling Test Connection in the Script" on page 266

raise Exception('Failed to insert to remote UCMDB using TopologyUpdateService. See
log of the remote UCMDB')

get add/update/delete result objects (in XML format) from the Framework
addResult = Framework.getTriggerCIData('addResult')
updateResult = Framework.getTriggerCIData('updateResult')
deleteResult = Framework.getTriggerCIData('deleteResult')

oracleClient = Framework.createClient()

propValue = str(Framework.getDestinationAttribute('<Connection Property Name'))

serverName = Framework.getDestinationAttribute('ip_address')
264

Chapter 7 • Developing Push Adapters
Working with the Mapping's Results
The Generic Push Adapter creates XML strings that describe the data to be
added, updated, or deleted from the target system. The Jython script needs
to analyze this XML, and then performs the add, update, or delete operation
on the target.

In the XML of the add operation that the Jython script receives, the mamId
attribute for the objects and links is always the UCMDB identifier of the
original object or link before its type, attribute or other information was
changed to the schema of the remote system.

In the XML of the update or remove operations, the mamId attribute of
each object or link contains the string representation of the same ExternalId
that was returned from the Jython script from the previous synchronization.
265

Chapter 7 • Developing Push Adapters
Example of the XML result

Handling Test Connection in the Script
A Jython script can be invoked to test the connection with an external
application. In this case, the testConnection destination attribute will be true.
This attribute can be obtained from the Framework as follows:

<data>
<objects>

<Object mode="update_else_insert" name="UCMDB_NODE"
operation="add" mamId="6ebafa5b84ab54c0e3155b762aec3e71">

<field name="ID" key="true" datatype="char" length="">nt2</field>
<<field name="NAME" key="false" datatype="char"

length="255">NT2</field>>
</Object>
<Object mode="update_else_insert" name="UCMDB_ NODE"

operation="add" mamId="f682342fa70aebc73ad525ce10721462">
<field name="ID" key="true" datatype="char" length="">node_nt2</

field>
<field name="NAME" key="false" datatype="char"

length="255">NODE_NT2</field>
</Object>

</objects>
</links>

</link targetRelationshipClass="dependency" targetParent="node"
targetChild="node" operation="add" mode="update_else_insert"
mamId="end1id%5BUCMDB%0Ant%0A1%0Ainternal_id%3DSTRING%3D6ebafa5
b84ab54c0e3155b762aec3e71%0A%5D%0Aend2id%5BUCMDB%0Anode%0A1%
0Ainternal_id%3DSTRING%3Df682342fa70aebc73ad525ce10721462%0A%5D%0
AUCMDB%0Adependency%0A0%0A">

<field
name="DiscoveryID1">6ebafa5b84ab54c0e3155b762aec3e71</field>

<field
name="DiscoveryID2">f682342fa70aebc73ad525ce10721462</field>

<field name="ID" key="true" datatype="char"
length="255">DEPENDENCY_NT2</field>

<field name="NAME" key="false" datatype="char"
length="255">DEPENDENCY_NT2</field>

</link>
</links>

<data>

testConnection = Framework.getTriggerCIData('testConnection')
266

Chapter 7 • Developing Push Adapters
When run in test connection mode, a script should raise an exception if a
connection to the external application cannot be established. Otherwise, if
the connection is successful, the DiscoveryMain function should return an
empty OSHVResult.

Support Differential Synchronization

Important: If you are implementing differential synchronization on an
existing adapter that was created in version 9.00 or 9.01, you must use the
push-adapter.zip file from version 9.02 or later to recreate your adapter
package. For details, see "Build an Adapter Package" on page 269.

This task enables the Push adapter to perform differential synchronization.
For details, see "Differential Synchronization" on page 260.

The Jython script returns the DataPushResults object which contains two
Java maps - one for object ID mappings (keys and values are ExternalCiId
type objects) and one for link IDs (keys and values are ExternalRelationId
type objects).

➤ Add the following from statements to your Jython script:

➤ Use the DataPushResultsFactory factory class to obtain the
DataPushResults object from the DiscoveryMain function.

from com.hp.ucmdb.federationspi.data.query.types import ExternalIdFactory
from com.hp.ucmdb.adapters.push import DataPushResults
from com.hp.ucmdb.adapters.push import DataPushResultsFactory
from com.mercury.topaz.cmdb.server.fcmdb.spi.data.query.types import
ExternalIdUtil

Create the UpdateResult object
updateResult = DataPushResultsFactory.createDataPushResults(objectMappings,
linkMappings);
267

Chapter 7 • Developing Push Adapters
➤ Use the following commands to create Java maps for the DataPushResults
object:

➤ Use the ExternalIdFactory class to create the following ExternalId IDs:

➤ ExternalId for objects or links originating in a CMDB (for example, all
of the CIs in an add operation are from the CMDB):

➤ ExternalId for objects or links not originating in a CMDB (usually,
every update and remove operation contains such objects):

Note: If the Jython script updated existing information and the ID of the
object (or link) changes, you must return a mapping between the previous
external ID and the new one.

➤ Use the restoreCmdbCiIDString or restoreCmdbRelationIDString
methods from the ExternalIdFactory class to retrieve the UCMDB ID
string from an External ID of an object or link that originated in the
UCMDB.

➤ Use the restoreExternalCiId and restoreExternalRelationId methods from
the ExternalIdUtil class to restore the ExternalId object from the mamId
attribute value of the XML of the update or remove operations.

Prepare the maps to store the mappings if IDs
objectMappings = HashMap()
linkMappings = HashMap()

externaCIlId = ExternalIdFactory.createExternalCmdbCiId(ciType, ciIDAsString)
externalRelationId = ExternalIdFactory.createExternalCmdbRelationId(linkType,
end1ExternalCIId, end2ExternalCIId, linkIDAsString)

myIDField = TypesFactory.createProperty("systemID", "1")
myExternalId = ExternalIdFactory.createExternalCiId(type, myIDField)
268

Chapter 7 • Developing Push Adapters
Note: ExternalId objects are actually an array of properties. This means
that you can use an ExternalId object to store any information you may
need that will identify the data on the remote system.

Build an Adapter Package

 1 Extract the content of C:\hp\UCMDB\UCMDBServer\content\
adapters\push-adapter.zip into a temporary folder. In the adapter
package, the sql_queries file located in adapterCode > PushAdapter >
sqlTablesCreation, contains the queries needed to create tables in a new
schema in Oracle for testing the adapter. The tables correspond to the
adapterCode\<adapter ID>\mappings\mappings.xml file.

Note: The sql_queries file is not needed for the adapter. It is only an
example.

 2 Edit the discoveryPatterns\push_adapter.xml file.

 a Modify the <pattern> tag with a new id and display label. Replace:

with

<pattern id="PushAdapter" xsi:noNamespaceSchemaLocation="../../
Patterns.xsd" description="Discovery Pattern Description" schemaVersion="9.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<pattern id="MyPushAdapter" displayLabel="My Push Adapter"
xsi:noNamespaceSchemaLocation="../../Patterns.xsd" description="Discovery
Pattern Description" schemaVersion="9.0" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance">
269

Chapter 7 • Developing Push Adapters
 b Update the parameter list, so that the list of parameters reflects the
required connection attributes. Do not remove the probeName
attribute.

 3 Rename the adapterCode\PushAdapter folder with the adapter ID used
in step 2 (for example, adapterCode\MyPushAdapter).

 4 In the discoveryScript file, there is a script pushScript.py script which
inserts the CIs and links to an external Oracle database. Replace
discoveryScripts\pushScript.py with the script you wrote (for details, see
"Write Jython Scripts" on page 263). If you rename the script, the
jythonScript.name property in adapterCode\<adapter ID>\
push.properties should be updated accordingly.

 5 The adapterCode\<adapter ID>\mappings\mappings.xml file, located in
adapterCode\<adapter ID>\mappings, is a sample mapping file which
contains a mapping of the:

➤ Node CI type with all the CI types that inherit from it

➤ UNIX CI type without the CI types that inherit from it

➤ Dependency link with all of the link types that inherit from it

➤ Talk link type without the inherited link types that inherit from it

This mapping example corresponds to the example of the tables created
in ORACLE in the sql_queries file (see step 1).

Replace the adapterCode\<adapter ID>\mappings\mappings.xml file
with the mapping files you prepared (for details, see "Prepare the Mapping
Files" on page 261.

If you want to use a mapping file for each TQL method, assign the name
of the corresponding TQL to each XML file, followed by .xml. In this case,
the mappings.xml file will be used as a default, if no specific mapping file
is found for the current TQL name. The name of the default mapping file
can be modified by changing the mappingFile.default property in
adapterCode\<adapter ID>\push.properties.
270

Chapter 7 • Developing Push Adapters
Reference

Mapping File Schema

Element Attributes

Name and Path Description

integration Defines the mapping
contents of the file. Must
be the outermost block
in the file except for the
beginning line and any
comments.

info

(integration)

Defines information
about the data
repositories being
integrated

source

(integration > info)

Defines information
about the source data
repository

Name. type

Description. Name of the source data
repository.

Is required. Required

Type. String

Name. versions

Description. Version(s) of the source data
repositories.

Is required. Required

Type. String

Name. vendor

Description. Vendor of the source data
repository.

Is required. Required

Type. String
271

Chapter 7 • Developing Push Adapters
target

(integration > info)

Defines information
about the target data
repository

Name. type

Description. Name of the source data
repository.

Is required. Required

Type. String

Name. versions

Description. Version(s) of the source data
repository.

Is required. Required

Type. String

Name. vendor

Description. Vendor of the source data
repository.

Is required. Required

Type. String

targetcis

(integration)

Container element for all
CIT mappings

Element Attributes

Name and Path Description
272

Chapter 7 • Developing Push Adapters
source_ci_type_tree

(integration > targetcis)

Defines a source CIT and
all of the CI types which
inherit from it.

Name. name

Description. Name of the source CIT.

Is required. Required

Type. String

Name. mode

Description. The type of update required for
the current CI type.

Is required. Required

Type. One of the following strings:

➤ insert – Use this only if the CI does not
already exist.

➤ update – Use this only if the CI is known
to exist.

➤ update_else_insert – If the CI exists,
update it; otherwise, create a new CI.

➤ ignore – Do nothing with this CI type.

Element Attributes

Name and Path Description
273

Chapter 7 • Developing Push Adapters
source_ci_type

(integration > targetcis)

Defines a source CIT
without the CI types
which inherit from it.

Name. name

Description. Name of the source CIT.

Is required. Required

Type. String

Name. mode

Description. The type of update required for
the current CI type.

Is required. Required

Type. One of the following strings:

➤ insert – Use this only if the CI does not
already exist.

➤ update – Use this only if the CI is known
to exist.

➤ update_else_insert – If the CI exists,
update it; otherwise, create a new CI.

➤ ignore – Do nothing with this CI type.

Element Attributes

Name and Path Description
274

Chapter 7 • Developing Push Adapters
target_ci_type

(integration >
targetcis >
source_ci_type

-OR-

integration >
targetcis >
source_ci_type_tree)

Defines a target CIT Name. name

Description. Target CI type name.

Is required. Required

Type. String

Name. schema

Description. The name of the schema that
will be used to store this CI type at the
target.

Is required. Not Required

Type. String

Name. namespace

Description. Indicates the namespace of
this CI type on the target

Is required. Not Required

Type. String

Element Attributes

Name and Path Description
275

Chapter 7 • Developing Push Adapters
targetprimarykey

(integration >
targetcis >
source_ci_type)

-OR-

(integration >
targetcis >
source_ci_type_tree

-OR-

(integration >
targetrelations >
link)

-OR-

(integration >
targetrelations >
source_link_type_
tree)

Identifies target CIT
primary key attributes

Element Attributes

Name and Path Description
276

Chapter 7 • Developing Push Adapters
pkey

(integration >
targetcis >
source_ci_type >
targetprimarykey

-OR-

integration >
targetcis >
source_ci_type_tree >
targetprimarykey

-OR-

(integration >
targetrelations >
link > targetprimarykey

-OR-

integration >
targetrelations >
source_link_type_tree >
targetprimarykey)

Identifies one primary
key attribute

Required only if mode is
update or
insert_else_update

Element Attributes

Name and Path Description
277

Chapter 7 • Developing Push Adapters
target_attribute

(integration >
targetcis >
source_ci_type

-OR-

integration >
targetcis >
source_ci_type_tree

-OR-

integration >
targetrelations > link

-OR-

integration >
targetrelations >
source_link_type_tree)

Defines the target CIT’s
attribute

Name. name

Description. Name of the target CIT’s
attribute.

Is required. Required

Type. String

Name. datatype

Description. Data type of the target CIT’s
attribute.

Is required. Required

Type. String

Name. length

Description. For string/char data types,
integer size of target attribute.

Is required. Not Required

Type. Integer

Name. option

Description. The conversion function to be
applied to the value.

Is required. False

Type. One of the following strings:

➤ uppercase – Convert to uppercase

➤ lowercase – Convert to lowercase

➤ If this attribute is empty, no conversion
function will be applied.

Element Attributes

Name and Path Description
278

Chapter 7 • Developing Push Adapters
map

(integration >
targetcis >
source_ci_type >
target_attribute

-OR-

integration >
targetcis >
source_ci_type_tree >
target_attribute)

-OR-

(integration >
targetrelations > link >
target_attribute

-OR-

integration >
targetrelations >
source_link_type_tree >
target_attribute)

Specifies how to obtain
the source CIT’s attribute
value

Name. type

Description. The type of mapping between
the source and target values.

Is required. Required

Type. One of the following strings:

➤ direct – Specifies a 1-to-1 mapping from
source attribute’s value to target
attribute’s value

➤ compoundstring – Sub-elements are
joined into a single string and the target
attribute value is set

➤ childattr – Sub-elements are one or more
child CIT’s attributes. Child CITs are
defined as those with container_f or
contained relationship.

➤ constant – Static string

Name. value

Description. Constant string for
type=constant

Is required. Only required when
type=constant

Type. String

Name. attr

Description. Source attribute name for
type=direct

Is required. Only required when
type=direct

Type. String

Element Attributes

Name and Path Description
279

Chapter 7 • Developing Push Adapters
aggregation

(integration >
targetcis >
source_ci_type >
target_attribute > map

-OR-

integration >
targetcis >
source_ci_type_tree >
target_attribute > map

-OR-

(integration >
targetrelations >
link > target_attribute >
map

-OR-

integration >
targetrelations >
source_link_type_tree >
target_attribute > map)

Only valid when the
map’s type is childattr

Specifies how the source
CI’s child CI attribute
values are combined into
a single value to map to
the target CI attribute.
Optional.

Name. type

Description. The type of aggregation
function

Is required. Required

Type. One of the following strings:

➤ csv – Concatenates all included values
into a comma-separated list (numeric or
string/character).

➤ count – Returns a numeric count of all
included values.

➤ sum – Returns a numeric count of all
included values.

➤ average – Returns a numeric average of
all included values.

➤ min – Returns the lowest numeric/
character included value.

➤ max – Returns the highest numeric/
character included value.

Element Attributes

Name and Path Description
280

Chapter 7 • Developing Push Adapters
validation

(integration >
targetcis >
source_ci_type >
target_attribute > map

-OR-

integration > targetcis >
source_ci_type_tree >
target_attribute > map

-OR-

(integration >
targetrelations > link >
target_attribute > map

-OR-

integration >
targetrelations >
source_link_type_tree >
target_attribute > map)

Only valid when the
map’s type is childatt

Allows exclusion
filtering of the source
CI’s child CIs based on
attribute values. Used
with the aggregation
sub-element to achieve
granularity of exactly
which children attributes
are mapped to the target
CIT’s attribute value.
Optional.

Name. minlength

Description. Excludes strings shorter than
the given value.

Required. Not required

Type. Integer

Name. maxlength

Description. Excludes strings longer than
the given value.

Required. Not required

Type. Integer

Name. minvalue

Description. Excludes numbers smaller than
the specified value.

Required. Not required

Type. Numeric

Name. maxvalue

Description. Excludes numbers greater than
the specified value.

Required. Not required

Type. Numeric

targetrelations

(integration)

Container element for all
relationship mappings.
Optional.

Element Attributes

Name and Path Description
281

Chapter 7 • Developing Push Adapters
source_link_type_tree

(integration >
targetrelations)

Maps a source
Relationship type
without the types which
inherit from it to a target
Relationship. Mandatory
only if targetrelation is
present.

Name. name

Description. Source relationship name.

Is required. Required

Type. String

Name. target_link_type

Description. Target relationship name.

Is required. Required

Type. String

Name. nameSpace

Description. The namespace for the link
that will be created on the target.

Is required. Not required

Type. String

Name. mode

Description. The type of update required for
the current link.

Is required. Required

Type. On the following strings:

➤ insert – Use this only if the CI does not
already exist.

➤ update – Use this only if the CI is known
to exist.

➤ update_else_insert – If the CI exists,
update it; otherwise, create a new CI.

➤ ignore – Do nothing with this CI type.

Element Attributes

Name and Path Description
282

Chapter 7 • Developing Push Adapters
source_link_type_tree

(continued)

Name. source_ci_type_end1

Description. Source relationship’s End1 CI
type

Is required. Required

Type. String

Name. source_ci_type_end2

Description. Source relationship’s End2 CI
type

Is required. Required

Type. String

Element Attributes

Name and Path Description
283

Chapter 7 • Developing Push Adapters
link

(integration >
targetrelations)

Maps a source
Relationship to a target
Relationship. Mandatory
only if targetrelation is
present.

Name. source_link_type

Description. Source relationship name.

Is required. Required

Type. String

Name. target_link_type

Description. Target relationship name.

Is required. Required

Type. String

Name. nameSpace

Description. The namespace for the link
that will be created on the target.

Is required. Not required

Type. String

Name. mode

Description. The type of update required for
the current link.

Is required. Required

Type. On the following strings:

➤ insert – Use this only if the CI does not
already exist.

➤ update – Use this only if the CI is known
to exist.

➤ update_else_insert – If the CI exists,
update it; otherwise, create a new CI.

➤ ignore – Do nothing with this CI type.

Element Attributes

Name and Path Description
284

Chapter 7 • Developing Push Adapters
link

(continued)

Name. source_ci_type_end1

Description. Source relationship’s End1 CI
type

Is required. Required

Type. String

Name. source_ci_type_end2

Description. Source relationship’s End2 CI
type

Is required. Required

Type. String

target_ci_type_end1

(integration >
targetrelations > link

-OR-

integration >
targetrelations >
source_link_type_tree)

Target relationship’s
End1 CI type

Name. name

Description. Name of the target
relationship’s End1 CI type.

Is required. Required

Type. String

Name. superclass

Description. Name of the End1 CI type’s
super-class.

Is required. Not required

Type. String

Element Attributes

Name and Path Description
285

Chapter 7 • Developing Push Adapters
Mapping Results Schema

target_ci_type_end2

(integration >
targetrelations > link

-OR-

integration >
targetrelations >
source_link_type_tree)

Target relationship’s
End2 CI type

Name. name

Description. Name of the target
relationship’s End2 CI type.

Is required. Required

Type. String

Name. superclass

Description. Name of the End2 CI type’s
super-class.

Is required. Not required

Type. String

Element Attributes

Name and Path Description

root The root of the result
document

data

(root)

The root of the data itself

objects

(root > data)

The root element for the
objects to update

Element Attributes

Name and Path Description
286

Chapter 7 • Developing Push Adapters
Object

(root > data > objects)

Describes the update
operation for a single
object and all of its
attributes

Name. name

Description. Name of the CI type

Is required. Required

Type. String

Name. mode

Description. The type of update required for
the current CI type.

Is required. Required

Type. One of the following strings:

➤ insert – Use this only if the CI does not
already exist.

➤ update – Use this only if the CI is known
to exist.

➤ update_else_insert – If the CI exists,
update it; otherwise, create a new CI.

➤ ignore – Do nothing with this CI type.

Element Attributes

Name and Path Description
287

Chapter 7 • Developing Push Adapters
Object

(continued)

Name. operation

Description. The operation to perform with
this CI.

Is required. Required

Type. One of the following strings:

➤ add – The CI should be added

➤ update – The CI should be updated

➤ delete – The CI should be deleted

If no value is set, then the default value of
add is used.

Name. mamId

Description. The ID of the object on the
source CMDB.

Is required. Required

Type. String

Element Attributes

Name and Path Description
288

Chapter 7 • Developing Push Adapters
field

(root > data > objects >
Object

-OR-

root > data > links >
link)

Describes the value of a
single field for an object.
The field’s text is the new
value in the field, and if
the field contains a link,
the value is the ID of one
of the ends. Each end ID
appears as an object
(under <objects>).

Name. name

Description. Name of the field.

Is required. Required

Type. String

Name. key

Description. Specifies whether this field is a
key for the object.

Is required. Required

Type. Boolean

Name. datatype

Description. The type of the field.

Is required. Required

Type. String

Name. length

Description. For string/character data types,
this is the integer size of the target attribute.

Is required. Not Required

Type. Integer

Element Attributes

Name and Path Description
289

Chapter 7 • Developing Push Adapters
links

(root > data)

The root element for the
links to update

Name. targetRelationshipClass

Description. The name of the relationship
(link) in the target system.

Is required. Required

Type. String

Name. targetParent

Description. The type of first end of the link
(parent).

Is required. Required

Type. String

Name. targetChild

Description. The type of the second end of
the link (child).

Is required. Required

Type. String

Element Attributes

Name and Path Description
290

Chapter 7 • Developing Push Adapters
links

(continued)

Name. mode

Description. The type of update required for
the current CI type.

Is required. Required

Type. One of the following strings:

➤ insert – Use this only if the CI does not
already exist.

➤ update – Use this only if the CI is known
to exist.

➤ update_else_insert – If the CI exists,
update it; otherwise, create a new CI.

➤ ignore – Do nothing with this CI type.

Name. operation

Description. The operation to perform with
this CI.

Is required. Required

Type. One of the following strings:

➤ add – The CI should be added

➤ update – The CI should be updated

➤ delete – The CI should be deleted

If no value is set, then the default value of
add is used.

Name. mamId

Description. The ID of the object on the
source CMDB.

Is required. Required

Type. String

Element Attributes

Name and Path Description
291

Chapter 7 • Developing Push Adapters
292

Part II

Using APIs

294

8
Introduction to APIs

This chapter includes:

Concepts

➤ APIs Overview on page 296
295

Chapter 8 • Introduction to APIs
Concepts

APIs Overview

The following APIs are included with HP Universal CMDB:

➤ UCMDB Web Service API. Enables writing configuration item definitions
and topological relations to the UCMDB (Universal Configuration
Management database), and querying the information with TQL and ad
hoc queries. For details, see "HP Universal CMDB Web Service API" on
page 309.

➤ UCMDB Java API. Explains how third-party or custom tools can use the
Java API to extract data and calculations and to write data to the UCMDB
(Universal Configuration Management database). For details, see
"HP Universal CMDB API" on page 297.

➤ Data Flow Management (Discovery and Dependency Mapping) Web
Service API. Enables managing probes, jobs, triggers and credentials for
Data Flow Management. For details, see "Data Flow Management API" on
page 387.

Note: To gain the full value of the API documentation, it is recommended to
access the online documentation. The PDF version does not have the links
into the API documentation that is generated in html format.
296

9
HP Universal CMDB API

This chapter includes:

Concepts

➤ Conventions on page 298

➤ Using the HP Universal CMDB API on page 298

➤ General Structure of an Application on page 300

Tasks

➤ Put the API Jar File in the Classpath on page 302

➤ Create an Integration User on page 302

Reference

➤ HP Universal CMDB API Reference on page 305

➤ Use Cases on page 305

➤ Examples on page 306
297

Chapter 9 • HP Universal CMDB API
Concepts

Conventions

This chapter uses the following conventions:

➤ UCMDB refers to the Universal Configuration Management database
itself. HP Universal CMDB refers to the application.

➤ UCMDB elements and method arguments are spelled in the case in which
they are specified in the interfaces.

For full documentation on the available APIs, refer to the HP UCMDB API
Reference.

These files are located in the following folder:

\\<UCMDB root
directory>\hp\UCMDB\UCMDBServer\deploy\ucmdb-docs\docs\eng\
doc_lib\
DevRef_guide\UCMDB_JavaAPI\index.html

Using the HP Universal CMDB API

Use this chapter in conjunction with the API Javadoc, available in the
online Documentation Library.

The HP Universal CMDB API is used to integrate applications with the
Universal CMDB (CMDB). The API provides methods to:

➤ add, remove, and update CIs and relations in the CMDB

➤ retrieve information about the class model

➤ retrieve information from the UCMDB history

➤ run what-if scenarios

➤ retrieve information about configuration items and relationships
298

UCMDB_JavaAPI/index.html
UCMDB_JavaAPI/index.html

Chapter 9 • HP Universal CMDB API
Methods for retrieving information about configuration items and
relationships generally use the Topology Query Language (TQL). For details,
see "Topology Query Language" in the HP Universal CMDB Modeling Guide.

Users of the HP Universal CMDB API should be familiar with:

➤ The Java programming language

➤ HP Universal CMDB

This section includes the following topics:

➤ "Uses of the API" on page 299

➤ "Permissions" on page 299

Uses of the API
The API is used to fulfill a number of business requirements. For example, a
third-party system can query the class model for information about
available configuration items (CIs). For more use cases, see "Use Cases" on
page 305.

Permissions
The administrator provides login credentials for connecting with the API.
The API client needs the user name and password of an integration user
defined in the CMDB. These users do not represent human users of the
CMDB, but rather applications that connect to the CMDB.

Caution: The API client can also work with regular users as long as they have
API authentication permission. However, this option is not recommended.

For details, see "Create an Integration User" on page 302.
299

Chapter 9 • HP Universal CMDB API
General Structure of an Application

There is only one static factory, the UcmdbServiceFactory. This factory is the
entry point for an application. The UcmdbServiceFactory exposes
getServiceProvider methods. These methods return an instance of the
UcmdbServiceProvider interface.

The client creates other objects using interface methods. For example, to
create a new query definition, the client:

 1 gets the query service from the main CMDB service object

 2 gets a query factory object from the service object

 3 gets a new query definition from the factory

The services available from UcmdbService are:

UcmdbServiceProvider provider =
UcmdbServiceFactory.getServiceProvider(HOST_NAME, PORT);

UcmdbService ucmdbService =
provider.connect(provider.createCredentials(USERNAME,
PASSWORD), provider.createClientContext("Test"));

TopologyQueryService queryService = ucmdbService.getTopologyQueryService();
TopologyQueryFactory factory = queryService.getFactory();
QueryDefinition queryDefinition = factory.createQueryDefinition("Test Query");
queryDefinition.addNode("Node").ofType("host");
Topology topology = queryService.executeQuery(queryDefinition);
System.out.println("There are " + topology.getAllCIs().size() + " hosts in uCMDB");

Service Methods Use

getClassModelService Information about types of CIs and relations

getConfigurationService Infrastructure settings management, for server
configuration

getDDMConfigurationService Configure the Discovery and Dependency
Management system

getDDMManagementService Analyze and view the progress, results, and
errors of the Discovery and Dependency
Management system
300

Chapter 9 • HP Universal CMDB API
The client communicates with the server over HTTP.

getHistoryService Information about history of monitored CIs
(chages, removals, and so on)

getImpactAnalysisService Run impact analysis scenario (also known as
correlation).

getQueryManagementService Manage access to queries - save, delete, list
existing. Also provides query validation and
queries dependencies discovery.

getResourceBundleManagement
Service

Resource tagging ("bundling" services. Allows
explicit creation of new tags and removal of
tags from all tagged resources.

getStateService Provide services for managing states (list, add,
remove, and so on)

getSoftwareSignatureService Define software items to be discovered by the
Discovery and Dependency Management
system

getSnapshotService Provide services for managing snapshots (get,
save, compare, and so on)

getTopologyQueryService Get information about the IT universe

getTopologyUpdateService Change information in the IT universe

getViewService View execution service (execute definition,
execute saved) and management service (save,
delete, list existing). Also provides view
validation and dependencies discovery.

getViewArchiveService View result archiving services. Allows saving
the current view result and retrieving
previously saved results.

SystemHealthService Provide system health services (basic system
performance indicators, capacity and
availability metrics)

Service Methods Use
301

Chapter 9 • HP Universal CMDB API
Tasks

Put the API Jar File in the Classpath

The use of this API set requires the file ucmdb-api.jar. You can download the
file by entering http://<localhost>:8080 in a Web browser where localhost is
the machine where UCMDB is installed and clicking the API Client
Download link.

Put the jar file in the classpath before compiling or running your
application.

Note: Usage of the UCMDB Java API Jar requires you to have JRE version 6
or later installed.

Create an Integration User

You can create a dedicated user for integrations between other products and
UCMDB. This user enables a product that uses the UCMDB client SDK to be
authenticated in the server SDK and execute the APIs. Applications written
with this API set must log on with integration user credentials.

Caution: It is also possible to connect with a regular UCMDB user, (for
instance, admin); however, this option is not recommended. To connect
with a UCMDB user, you must grant it API authentication permission.
302

Chapter 9 • HP Universal CMDB API
To create an integration user:

 1 Launch the Web browser and enter the server address, as follows.

http://localhost:8080/jmx-console.

You may have to log in with a user name and password (the defaults are
sysadmin/sysadmin).

 2 Under UCMDB, click service=UCMDB Security Services.

 3 Locate the CreateIntegrationUser operation. This method accepts the
following parameters:

➤ customerId. The customer ID.

➤ username. The integration user's name.

➤ password. The integration user's password.

➤ dataStoreOrigin. The name of the product that is going to use this
integration user.

The following operations are useful for integration user management:

➤ DeleteIntegrationUser. Deletes the given integration user.

➤ ExportIntegrationUser. Exports the integration user to an XML file in
the given path (on the server machine).

➤ getIntegrationUser. Displays the integration user information.

➤ changeIntegrationUserPassword. Changes the integration user's
password.

➤ canUserAuthenticate. isIntegrationUser is true: can the integration
user authenticate with the given credentials?

 4 Click Invoke.

Either create more users, or close the JMX console.

 5 Log on to UCMDB as an administator.

 6 From the Administration tab, run Package Manager.

 7 Click the New icon.

 8 Enter a name for the new package, and click Next.
303

Chapter 9 • HP Universal CMDB API
 9 In the Resource Selection tab, under Administration, click Integration
Users.

 10 Select a user or users that you created using the JMX console.

 11 Click Next and then Finish. Your new package appears in the Package
Name list in Package Manager.

 12 Deploy the package to the users who will run the API applications.

For details, see "Deploy a Package" in the HP Universal CMDB
Administration Guide.

Note:

The integration user is per customer. To create a stronger integration user for
cross-customer usage, use a systemUser with the isSuperIntegrationUser flag
set to true. Use the systemUser methods (createSystemUser,
removeSystemUser, showAllSystemUsers, changeSystemUserPassword,
canSuperIntegrationUserAuthenticate, and so on).

There are two out-of-the-box system users; it is recommended to change
their passwords after installation using the changeSystemUserPassword
method.

➤ sysadmin/sysadmin

➤ UISysadmin/UISysadmin (This user is also the Super Integration User
SuperIntegrationUser).

If you change the UISysadmin password using changeSystemUserPassword,
you must execute the following method: in the JMX Console, locate the
UCMDB-UI:name=UCMDB Integration service. Run
setCMDBSuperIntegrationUser with the user name and new password of
the integration user.
304

Chapter 9 • HP Universal CMDB API
Reference

HP Universal CMDB API Reference

These files are located in the following folder:

\\<UCMDB root
directory>\hp\UCMDB\UCMDBServer\deploy\ucmdb-docs\docs\eng\
doc_lib\DevRef_guide\UCMDB_JavaAPI\index.html

Use Cases

The following use cases assume two systems:

➤ HP Universal CMDB server

➤ A third-party system that contains a repository of configuration items

This section includes the following topics:

➤ "Populating the CMDB" on page 305

➤ "Querying the CMDB" on page 306

➤ "Querying the Class Model" on page 306

➤ "Analyzing Change Impact" on page 306

Populating the CMDB
Use cases:

➤ A third-party asset management updates the CMDB with information
available only in asset management

➤ A number of third-party systems populate the CMDB to create a central
CMDB that can track changes and perform impact analysis

➤ A third-party system creates Configuration Items and Relations according
to third-party business logic, to leverage the UCMDB query capabilities
305

Chapter 9 • HP Universal CMDB API
Querying the CMDB
Use cases:

➤ A third-party system gets the Configuration Items and Relations that
represent the SAP system by retrieving the results of the SAP TQL

➤ A third-party system gets the list of Oracle servers that have been added or
changed in the last five hours

➤ A third-party system gets the list of servers whose host name contains the
lab substring

➤ A third-party system finds the elements related to a given CI by getting its
neighbors

Querying the Class Model
Use cases:

➤ A third-party system enables users to specify the set of data to be retrieved
from the CMDB. A user interface can be built over the class model to
show users the possible properties and prompt them for required data.
The user can then choose the information to be retrieved.

➤ A third-party system explores the class model when the user cannot
access the UCMDB user interface.

Analyzing Change Impact
Use case:

A third-party system outputs a list of the business services that could be
impacted by a change on a specified host.

Examples

See the following code samples:

➤ Create a Connection

➤ Create and Execute an Ad-Hoc Query
306

JavaSDK_Samples/Ucmdb_JSdk_CreateSDKConnection.html
JavaSDK_Samples/Ucmdb_JSdk_CreateAndExecAdHocQryEx.html

Chapter 9 • HP Universal CMDB API
➤ Create and Execute a View

➤ Add and Delete Data

➤ Execute an Impact Analysis

➤ Query the Class Model

➤ Query a History Sample

These files are located in the following directory:

\\<UCMDB root
directory>\hp\UCMDB\UCMDBServer\deploy\ucmdb-docs\docs\eng\
doc_lib\DevRef_guide\JavaSDK_Samples\
307

JavaSDK_Samples/Ucmdb_JSdk_CreateAndExecViewEx.html
JavaSDK_Samples/Ucmdb_JSdk_DataInSampleExample.html
JavaSDK_Samples/Ucmdb_JSdk_ExecImpactAnalSampleEx.html
JavaSDK_Samples/Ucmdb_JSdk_QueryClassModelExample.html
JavaSDK_Samples/Ucmdb_JSdk_QueryHistorySampleEx.html

Chapter 9 • HP Universal CMDB API
308

10
HP Universal CMDB Web Service API

This chapter includes:

Concepts

➤ Conventions on page 310

➤ HP Universal CMDB Web Service API Overview on page 310

➤ HP Universal CMDB Web Service API Reference on page 312

Tasks

➤ Call the Web Service on page 313

➤ Query the CMDB on page 313

➤ Update the UCMDB on page 318

➤ Query the UCMDB Class Model on page 320

➤ Query for Impact Analysis on page 322

Reference

➤ UCMDB General Parameters on page 323

➤ UCMDB Output Parameters on page 326

➤ UCMDB Query Methods on page 328

➤ UCMDB Update Methods on page 342

➤ UCMDB Impact Analysis Methods on page 345

➤ Use Cases on page 348

➤ Examples on page 349
309

Chapter 10 • HP Universal CMDB Web Service API
Concepts

Conventions

This chapter uses the following conventions:

➤ UCMDB refers to the Universal Configuration Management database
itself. HP Universal CMDB refers to the application.

➤ UCMDB elements and method arguments are spelled in the case in which
they are specified in the schema. An element or argument to a method is
not capitalized. For example, a relation is an element of type Relation
passed to a method.

For full documentation on the request and response structures, refer to the
HP UCMDB Web Service API Reference. These files are located in the
following folder:

<UCMDB root
directory>\UCMDBServer\deploy\ucmdb-docs\docs\eng\doc_lib\
DevRef_guide\CMDB_Schema\webframe.html

HP Universal CMDB Web Service API Overview

Use this chapter in conjunction with the UCMDB schema documentation,
available in the online Documentation Library.

The HP Universal CMDB Web Service API is used to integrate applications
with the HP Universal CMDB (UCMDB). The API provides methods to:

➤ add, remove, and update CIs and relations in the CMDB

➤ retrieve information about the class model

➤ retrieve impact analyses
310

CMDB_Schema/webframe.html

Chapter 10 • HP Universal CMDB Web Service API
➤ retrieve information about configuration items and relationships

➤ manage credentials: view, add, update, and remove

➤ manage jobs: view status, activate, and deactivate

➤ manage Probe ranges: view. add, and update

➤ manage triggers: add or remove a trigger CI, and add, remove, or disable a
trigger TQL

➤ view general data on domains and Probes

Methods for retrieving information about configuration items and
relationships generally use the Topology Query Language (TQL). For details,
see "Topology Query Language" in the HP Universal CMDB Modeling Guide.

Users of the HP Universal CMDB Web Service API should be familiar with:

➤ The SOAP specification

➤ An object-oriented programming language such as C++, C# or Java

➤ HP Universal CMDB

➤ Data Flow Management

This section includes the following topics:

➤ "Uses of the API" on page 311

➤ "Permissions" on page 312

Uses of the API
The API is used to fulfill a number of business requirements. For example:

➤ A third-party system can query the class model for information about
available configuration items (CIs).

➤ A third-party asset management tool can update the CMDB with
information available only to that tool, thereby unifying its data with
data collected by HP applications.

➤ A number of third-party systems can populate the CMDB to create a
central CMDB that can track changes and perform impact analysis.
311

Chapter 10 • HP Universal CMDB Web Service API
➤ A third-party system can create entities and relations according to its
business logic, and then write the data to the CMDB to take advantage of
the CMDB query capabilities.

➤ Other systems, such as the Release Control (CCM) system, can use the
Impact Analysis methods for change analysis.

Permissions
The administrator provides login credentials for connecting with the Web
Service. The required credentials depend on whether you are using
HP Universal CMDB as a standalone application or from within Business
Service Management:

➤ HP Universal CMDB standalone. Log in using the credentials of a UCMDB
user who has been granted permissions on the discovery and integration
resources.

For details, see "Security Manager Page" in the HP Universal CMDB
Administration Guide.

➤ HP Universal CMDB embedded in Business Service Management. Log in
using the credentials of a Business Service Management user. The user
must have been granted the relevant permissions on the HP Universal
CMDB resource in Business Service Management.

When permissions are assigned through HP Universal CMDB, the
permission levels are View, Update, and Execute. When they are assigned
using Business Service Management, the levels are View and Update, where
Update also includes Execution. To view the permissions required for each
operation, see each operation’s request documentation.

HP Universal CMDB Web Service API Reference

For full documentation on the request and response structures, refer to the
HP UCMDB Web Service API Reference. These files are located in the
following folder:

<UCMDB root
directory>\UCMDBServer\deploy\ucmdb-docs\docs\eng\doc_lib\
DevRef_guide\CMDB_Schema\webframe.html
312

CMDB_Schema/webframe.html

Chapter 10 • HP Universal CMDB Web Service API
Tasks

Call the Web Service

You use standard SOAP programming techniques in the HP Universal CMDB
Web Service to enable calling server-side methods. If the statement cannot
be parsed or if there is a problem invoking the method, the API methods
throw a SoapFault exception. When a SoapFault exception is thrown,
UCMDB populates one or more of the error message, error code, and
exception message fields. If there is no error, the results of the invocation are
returned.

SOAP programmers can access the WSDL at:

http://<server>[:port]/axis2/services/UcmdbService?wsdl

The port specification is only necessary for non-standard installations.
Consult your system administrator for the correct port number.

The URL for calling the service is:

http://<server>[:port]/axis2/services/UcmdbService

For examples of connecting to the CMDB, see "Use Cases" on page 348.

Query the CMDB

The CMDB is queried using the APIs described in "UCMDB Query Methods"
on page 328.

The queries and the returned CMDB elements always contain real
UMDB IDs.

For examples of the use of the query methods, see "Query Example" on
page 353.
313

Chapter 10 • HP Universal CMDB Web Service API
This section includes the following topics:

➤ "Just In Time Response Calculation" on page 314

➤ "Processing Large Responses" on page 314

➤ "Specifying Properties to Return" on page 315

➤ "Concrete Properties" on page 316

➤ "Derived Properties" on page 316

➤ "Naming Properties" on page 317

➤ "Other Property Specification Elements" on page 317

Just In Time Response Calculation
For all query methods, the UMDB server calculates the values requested by
the query method when the request is received, and returns results based on
the latest data. The result is always calculated at the time the request is
received, even if the TQL query is active and there exists a previously
calculated result. Therefore, the results of running a query returned to the
client application may be different to the results of the same query
displayed on the user interface.

Tip: If your application uses the results of a given query more than once and
the data is not expected to change significantly between uses of the result
data, you can improve performance by having the client application store
the data rather than repeatedly running the query.

Processing Large Responses
The response to a query always includes the structures for the data requested
by the query method, even if no actual data is being transmitted. For many
methods where the data is a collection or map, the response also includes
the ChunkInfo structure, comprised of chunksKey and numberOfChunks. The
numberOfChunks field indicates the number of chunks containing data that
must be retrieved.
314

Chapter 10 • HP Universal CMDB Web Service API
The maximum transmission size of data is set by the system administrator. If
the data returned from the query is larger than the maximum size, the data
structures in the first response contain no meaningful information, and the
value of the numberOfChunks field is 2 or greater. If the data is not larger
than the maximum, the numberOfChunks field is 0 (zero), and the data is
transmitted in the first response. Therefore, in processing a response, check
the numberOfChunks value first. If it is greater than 1, discard the data in the
transmission and request the chunks of data. Otherwise, use the data in the
response.

For information on handling chunked data, see "pullTopologyMapChunks"
on page 340 and "releaseChunks" on page 341.

Specifying Properties to Return
CIs and relations generally have many properties. Some methods that return
collections or graphs of these items accept input parameters that specify
which property values to return with each item that matches the query. The
CMDB does not return empty properties. Therefore, the response to a query
may have fewer properties than requested in the query.

This section describes the types of sets used to specify the properties to
return.

Properties can be referenced in two ways:

➤ By their names

➤ By using names of predefined properties rules. Predefined properties rules
are used by the CMDB to create a list of real property names.

When an application references properties by name, it passes a PropertiesList
element.

Tip: Whenever possible, use PropertiesList to specify the names of the
properties in which you are interested, rather than a rule-based set. The use
of predefined properties rules nearly always results in returning more
properties than needed, and bears a performance price.
315

Chapter 10 • HP Universal CMDB Web Service API
There are two types of predefined properties: qualifier properties and simple
properties.

➤ Qualifier properties. Use when the client application should pass a
QualifierProperties element (a list of qualifiers that can be applied to
properties). The CMDB converts the list of qualifiers passed by the client
application to the list of the properties to which at least one of the
qualifiers applies. The values of these properties are returned with the CI
or Relation elements.

➤ Simple properties. To use simple rule-based properties, the client
application passes a SimplePredefinedProperty or
SimpleTypedPredefinedProperty element. These elements contain the
name of the rule by which the CMDB generates the list of properties to
return. The rules that can be specified in a SimplePredefinedProperty or
SimpleTypedPredefinedProperty element are CONCRETE, DERIVED, and
NAMING.

Concrete Properties
Concrete properties are the set of properties defined for the specified CIT.
The properties added by derived classes are not returned for instances of
those derived classes.

A collection of instances returned by a method may consist of instances of a
CIT specified in the method invocation and instances of CITs that inherit
from that CIT. The derived CITs inherit the properties of the specified CIT.
In addition, the derived CITs extend the parent CIT by adding properties.

Example of Concrete Properties:

CIT T1 has properties P1 and P2. CIT T11 inherits from T1 and extends T1
with properties P21 and P22.

The collection of CIs of type T1 includes the instances of T1 and T11. The
concrete properties of all instances in this collection are P1 and P2.

Derived Properties
Derived properties are the set of properties defined for the specified CIT and,
for each derived CIT, the properties added by the derived CIT.
316

Chapter 10 • HP Universal CMDB Web Service API
Example of Derived Properties:

Continuing the example from concrete properties, the derived properties
of instances of T1 are P1 and P2. The derived properties of instances of
T11 are P1, P2, P21, and P22.

Naming Properties
The naming properties are display_label and data_name.

Other Property Specification Elements

➤ PredefinedProperties

PredefinedProperties can contain a QualifierProperties element and a
SimplePredefinedProperty element for each of the other possible rules. A
PredefinedProperties set does not necessarily contain all types of lists.

➤ PredefinedTypedProperties

PredefinedTypedProperties is used to apply a different set of properties to
each CIT. PredefinedTypedProperties can contain a QualifierProperties
element and a SimpleTypedPredefinedProperty element for each of the
other applicable rules. Because PredefinedTypedProperties is applied to
each CIT individually, derived properties are not relevant. A
PredefinedProperties set does not necessarily contain all applicable types
of lists.

➤ CustomProperties

CustomProperties can contain any combination of the basic PropertiesList
and the rule-based property lists. The properties filter is the union of all
the properties returned by all the lists.

➤ CustomTypedProperties

CustomTypedProperties can contain any combination of the basic
PropertiesList and the applicable rule-based property lists. The properties
filter is the union of all the properties returned by all the lists.
317

Chapter 10 • HP Universal CMDB Web Service API
➤ TypedProperties

TypedProperties is used to pass a different set of properties for each CIT.
TypedProperties is a collection of pairs composed of type names and
properties sets of all types. Each properties set is applied only to the
corresponding type.

Update the UCMDB

You update the CMDB with the update APIs.

For details of the API methods, see "UCMDB Update Methods" on page 342.

For examples of the use of the update methods, see "Update Example" on
page 370.

This task includes the following steps:

➤ "UCMDB Update Parameters" on page 318

➤ "Use of ID Types with Update Methods" on page 319

UCMDB Update Parameters
This topic describes the parameters used only by the service’s update
methods. For details, see the schema documentation.

CIsAndRelationsUpdates

The CIsAndRelationsUpdates type consists of CIsForUpdate,
relationsForUpdate, referencedRelations, and referencedCIs. A
CIsAndRelationsUpdates instance does not necessarily include all three
elements.

CIsForUpdate is a CIs collection. relationsForUpdate is a Relations collection.
The CI and relation elements in the collections have a props element. When
creating a CI or relation, properties that have either the required attribute or
the key attribute in the CI Type definition must be populated with values.
The items in these collections are updated or created by the method.
318

CMDB_Schema/webframe.html

Chapter 10 • HP Universal CMDB Web Service API
referencedCIs and referencedRelations are collections of CIs that are already
defined in the CMDB. The elements in the collection are identified with a
temporary ID in conjunction with all the key properties. These items are
used to resolve the identities of CIs and relations for update. They are never
created or updated by the method.

Each of the CI and relation elements in these collections has a properties
collection. New items are created with the property values in these
collections.

Use of ID Types with Update Methods
The following describes ID CITs, and CIs and relations. When the ID is not a
real CMDB ID, the type and key attributes are required.

Deleting or Updating Configuration Items

A temporary or empty ID may be used by the client when calling a method
to delete or update an item. In this case, the CI type and the key attributes
that identify the CI must be set.

Deleting or Updating Relations

When deleting or updating relations, the relation ID can be empty,
temporary, or real.

If a CI’s ID is temporary, the CI must be passed in the referencedCIs
collection and its key attributes must be specified. For details, see
referencedCIs in "CIsAndRelationsUpdates" on page 318.

Inserting New Configuration Items into the CMDB

It is possible to use either an empty ID or a temporary ID to insert a new CI.
However, if the ID is empty, the server cannot return the real CMDB ID in
the structure createIDsMap because there is no clientID. For details, see
"addCIsAndRelations" on page 342 and "UCMDB Query Methods" on
page 328.
319

Chapter 10 • HP Universal CMDB Web Service API
Inserting New Relations into the CMDB

The relation ID can be either temporary or empty. However, if the relation is
new but the configuration items on either end of the relation are already
defined in the CMDB, then those CIs that already exist must be identified by
a real CMDB ID or be specified in a referencedCIs collection.

Query the UCMDB Class Model

The class model methods return information about CITs and relations. The
class model is configured using the CI Type Manager. For details, see "CI
Type Manager" in the HP Universal CMDB Modeling Guide.

For examples of the use of the class model methods, see "Class Model
Example" on page 374.

This section provides information on the following methods that return
information about CITs and relations:

➤ "getClassAncestors" on page 320

➤ "getAllClassesHierarchy" on page 321

➤ "getCmdbClassDefinition" on page 321

getClassAncestors
The getClassAncestors method retrieves the path between the given CIT and
its root, including the root.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 323.

className The type name. For details, see "Type Name" on
page 325.
320

Chapter 10 • HP Universal CMDB Web Service API
Output

getAllClassesHierarchy
The getAllClassesHierarchy method retrieves the entire class model tree.

Input

Output

getCmdbClassDefinition
The getCmdbClassDefinition method retrieves information about the
specified class.

If you use getCmdbClassDefinition to retrieve the key attributes, you must
also query the parent classes up to the base class. getCmdbClassDefinition
identifies as key attributes only those attributes with the ID_ATTRIBUTE set
in the class definition specified by className. Inherited key attributes are
not recognized as key attributes of the specified class. Therefore, the
complete list of key attributes for the specified class is the union of all the
keys of the class and of all its parents, up to the root.

Parameter Comment

classHierarchy A collection of pairs of class names and parent class
name.

comments For internal use only.

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 323.

Parameter Comment

classesHierarchy A collection of pairs of class name and parent class
name.

comments For internal use only.
321

Chapter 10 • HP Universal CMDB Web Service API
Input

Output

Query for Impact Analysis

The Identifier in the impact analysis methods points to the service’s response
data. It is unique for the current response and is discarded from the server’s
memory cache after 10 minutes of non-use.

For examples of the use of the impact analysis methods, see "Impact
Analysis Example" on page 376.

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 323.

className The type name. For details, see "Type Name" on
page 325.

Parameter Comment

cmdbClass The class definition, consisting of name, classType,
displayLabel, description, parentName, qualifiers, and
attributes.

comments For internal use only.
322

Chapter 10 • HP Universal CMDB Web Service API
Reference

UCMDB General Parameters

This section describes the most common parameters of the service’s
methods. For details, refer to the schema documentation.

This section includes the following topics:

➤ "CmdbContext" on page 323

➤ "ID" on page 323

➤ "Key Attributes" on page 323

➤ "ID Types" on page 324

➤ "CIProperties" on page 324

➤ "Type Name" on page 325

➤ "Configuration Item (CI)" on page 325

➤ "Relation" on page 325

CmdbContext
All UCMDB Web Service API service invocations require a CmdbContext
argument. CmdbContext is a callerApplication string that identifies the
application that invokes the service. CmdbContext is used for logging and
troubleshooting.

ID
Every CI and Relation has an ID field. It consists of a case-sensitive ID string
and an optional temp flag, indicating whether the ID is temporary.

Key Attributes
For identifying a CI or Relation in some contexts, key attributes can be used
in place of a CMDB ID. Key attributes are those attributes with the
ID_ATTRIBUTE set in the class definition.
323

CMDB_Schema/webframe.html

Chapter 10 • HP Universal CMDB Web Service API
In the user interface, the key attributes have a key icon next to them in the
list of Configuration Item Type attributes in the user interface. For details,
see "Add/Edit Attribute Dialog Box" in the HP Universal CMDB Modeling Guide.
For information about identifying the key attributes from within the API
client application, see "getCmdbClassDefinition" on page 321.

ID Types
An ID element can contain a real ID, or a temporary ID.

A real ID is a string assigned by the CMDB that identifies an entity in the
database. A temporary ID can be any string that is unique in the current
request.

A temporary ID can be assigned by the client and often represents the ID of
the CI as stored by the client. It does not necessarily represent an entity
already created in the CMDB. When a temporary ID is passed by the client,
if the CMDB can identify an existing data configuration item using the CI
key properties, that CI is used as appropriate for the context as though it
had been identified with a real ID.

CIProperties
A CIProperties element is composed of collections, each containing a
sequence of name-value elements that specify properties of the type
indicated by the collection name. None of the collections are required, so
the CIProperties element can contain any combination of collections.

CIProperties are used by CI and Relation elements. For details, see
"Configuration Item (CI)" on page 325 and "Relation" on page 325.

The properties collections are:

➤ dateProps - collection of DateProp elements

➤ doubleProps - collection of DoubleProp elements

➤ floatProps - collection of FloatProp elements

➤ intListProps - collection of intListProp elements

➤ intProps - collection of IntProp elements

➤ strProps - collection of StrProp elements
324

Chapter 10 • HP Universal CMDB Web Service API
➤ strListProps - collection of StrListProp elements

➤ longProps - collection of LongProp elements

➤ bytesProps - collection of BytesProp elements

➤ xmlProps - collection of XmlProp elements

Type Name
The type name is the class name of a configuration item type or relation
type. The type name is used in code to refer to the class. It should not be
confused with the display name, which is seen on the user interface where
the class is mentioned, but which is meaningless in code.

Configuration Item (CI)
A CI element is composed of an ID, a type, and a props collection.

When using UCMDB Update Methods to update a CI, the ID element can
contain a real CMDB ID or a client-assigned temporary ID. If a temporary ID
is used, set the temp flag to true. When deleting an item, the ID can be
empty. UCMDB Query Methods take real IDs as input parameters and return
real IDs in the query results.

The type can be any type name defined in the CI Type Manager. For details,
see "CI Type Manager" in the HP Universal CMDB Modeling Guide.

The props element is a CIProperties collection. For details, see
"CIProperties" on page 324.

Relation
A Relation is an entity that links two configuration items. A Relation element
is composed of an ID, a type, the identifiers of the two items being linked
(end1ID and end2ID), and a props collection.

When using UCMDB Update Methods to update a Relation, the value of the
Relation’s ID can be a real CMDB ID or a temporary ID. When deleting an
item, the ID can be empty. UCMDB Query Methods take real IDs as input
parameters and return real IDs in the query results.
325

Chapter 10 • HP Universal CMDB Web Service API
The relation type is the Type Name of the UCMDB class from which the
relation is instantiated. The type can be any of the relation types defined in
the CMDB. For further information on classes or types, see "Query the
UCMDB Class Model" on page 320.

For details, see "CI Type Manager" in the HP Universal CMDB Modeling Guide.

The two relation end IDs must not be empty IDs because they are used to
create the ID of the current relation. However, they both can have
temporary IDs assigned to them by the client.

The props element is a CIProperties collection. For details, see
"CIProperties" on page 324.

UCMDB Output Parameters

This section describes the most common output parameters of the service
methods. For details, refer to the schema documentation.

This section includes the following topics:

➤ "CIs" on page 326

➤ "ShallowRelation" on page 327

➤ "Topology" on page 327

➤ "CINode" on page 327

➤ "RelationNode" on page 327

➤ "TopologyMap" on page 327

➤ "ChunkInfo" on page 328

CIs
CIs is a collection of CI elements.
326

CMDB_Schema/webframe.html

Chapter 10 • HP Universal CMDB Web Service API
ShallowRelation
A ShallowRelation is an entity that links two configuration items, composed
of an ID, a type, and the identifiers of the two items being linked (end1ID
and end2ID). The relation type is the Type Name of the CMDB class from
which the relation is instantiated. The type can be any of the relation types
defined in the CMDB.

Topology
Topology is a graph of CI elements and relations. A Topology consists of a CIs
collection and a Relations collection containing one or more Relation
elements.

CINode
CINode is composed of a CIs collection with a label. The label in the CINode
is the label defined in the node of the TQL used in the query.

RelationNode
RelationNode is a set of Relations collections with a label. The label in the
RelationNode is the label defined in the node of the TQL used in the query.

TopologyMap
TopologyMap is the output of a query calculation that matches a TQL query.
The labels in the TopologyMap are the node labels defined in the TQL used in
the query.

The data of TopologyMap is returned in the following form:

➤ CINodes. This is one or more CINode (see "CINode" on page 327).

➤ relationNodes. This is one or more RelationNode (see "RelationNode" on
page 327).

The labels in these two structures order the lists of configuration items and
relations.
327

Chapter 10 • HP Universal CMDB Web Service API
ChunkInfo
When a query returns a large amount of data, the server stores the data,
divided into segments called chunks. The information the client uses to
retrieve the chunked data is located in the ChunkInfo structure returned by
the query. ChunkInfo is composed of the numberOfChunks that must be
retrieved and the chunksKey. The chunksKey is a unique identifier of the
data on the server for this specific query invocation.

For more information, see "Processing Large Responses" on page 314.

UCMDB Query Methods

This section provides information on the following methods:

➤ "executeTopologyQueryByNameWithParameters" on page 328

➤ "executeTopologyQueryWithParameters" on page 329

➤ "getChangedCIs" on page 330

➤ "getCINeighbours" on page 331

➤ "getCIsByID" on page 332

➤ "getCIsByType" on page 333

➤ "getFilteredCIsByType" on page 333

➤ "getQueryNameOfView" on page 338

➤ "getTopologyQueryExistingResultByName" on page 338

➤ "getTopologyQueryResultCountByName" on page 339

➤ "pullTopologyMapChunks" on page 340

➤ "releaseChunks" on page 341

executeTopologyQueryByNameWithParameters
The executeTopologyQueryByNameWithParameters method retrieves a
topologyMap element that matches the specified parameterized query.
328

Chapter 10 • HP Universal CMDB Web Service API
The values for the query parameters are passed in the parameterizedNodes
argument. The specified TQL must have unique labels defined for each
CINode and each relationNode or the method invocation fails.

Input

Output

executeTopologyQueryWithParameters
The executeTopologyQueryWithParameters method retrieves a topologyMap
element that matches the parameterized query.

The query is passed in the queryXML argument. The values for the query
parameters are passed in the parameterizedNodes argument. The TQL must
have unique labels defined for each CINode and each relationNode.

The executeTopologyQueryWithParameters method is used to pass ad-hoc
queries, rather than accessing a query defined in the CMDB. You can use this
method when you do not have access to the UCMDB user interface to define
a query, or when you do not want to save the query to the database.

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 323.

queryName The name of the parameterized TQL in the CMDB
for which to get the map.

parameterizedNodes The conditions each node must meet to be included
in the query results.

queryTypedProperties A collection of sets of properties to retrieve to items
of a specific Configuration Item Type.

Parameter Comment

topologyMap For details, see "TopologyMap" on page 327.

chunkInfo For details, see: "ChunkInfo" on page 328,
"Processing Large Responses" on page 314.
329

Chapter 10 • HP Universal CMDB Web Service API
To use an exported TQL as the input to this method, do the following:

 1 Launch the Web browser and enter the following address:
http://localhost:8080/jmx-console.

You may have to log in with a user name and password. The default is
sysadmin/sysadmin

 2 Click UCMDB:service=TQL Services.

 3 Locate the exportTql operation.

➤ In the customerId parameter box, enter 1 (the default).

➤ In the patternName parameter box, enter a valid TQL name.

 4 Click Invoke.

Input

Output

getChangedCIs
The getChangedCIs method returns the change data for all CIs related to the
specified CIs.

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 323.

queryXML An XML string representing a TQL without resource
tags.

parameterizedNodes The conditions each node must meet to be included
in the query results.

Parameter Comment

topologyMap For details, see "TopologyMap" on page 327.

chunkInfo For details, see "ChunkInfo" on page 328 and
"Processing Large Responses" on page 314.
330

Chapter 10 • HP Universal CMDB Web Service API
Input

Output

getCINeighbours
The getCINeighbours method returns the immediate neighbors of the
specified CI.

For example, if the query is on the neighbors of CI A, and CI A contains CI B
which uses CI C, CI B is returned, but CI C is not. That is, only neighbors of
the specified type are returned.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 323.

ids The list of the IDs of the root CIs whose related CIs
are checked for changes.

Only real CMDB IDs are valid in this collection.

fromDate The beginning of the period in which to check if CIs
changed.

toDate The end of the period in which to check if CIs
changed.

Parameter Comment

changeDataInfo Zero or more collections of ChangedDataInfo
elements.

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 323.

ID The ID of the CI with which to retrieve the
neighbors. This must be a real CMDB ID.
331

Chapter 10 • HP Universal CMDB Web Service API
Output

getCIsByID
The getCIsByID method retrieves configuration items by their CMDB IDs.

Input

neighbourType The CIT name of the neighbors to retrieve.
Neighbors of the specified type and of types derived
from that type are returned. For details, see "Type
Name" on page 325.

CIProperties The data to be returned on each configuration item,
called the Query Layout in the user interface. For
details, see "TypedProperties" on page 318.

relationProperties The data to be returned on each relation (called the
Query Layout in the user interface). For details, see
"TypedProperties" on page 318

Parameter Comment

topology For details, see "Topology" on page 327.

comments For internal use only.

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 323.

CIsTypedProperties A typed properties collection. For details, see "Other
Property Specification Elements" on page 317.

IDs Only real CMDB IDs are valid in this collection.

Parameter Comment
332

Chapter 10 • HP Universal CMDB Web Service API
Output

getCIsByType
The getCIsByType method returns the collection of configuration items of
the specified type and of all types that inherit from the specified type.

Input

Output

getFilteredCIsByType
The getFilteredCIsByType method retrieves the CIs of the specified type that
meet the conditions used by the method. A condition is comprised of:

➤ a name field containing the name of a property

➤ an operator field containing a comparison operator

Parameter Comment

CIs Collection of CI elements.

chunkInfo For details, see: "ChunkInfo" on page 328,
"Processing Large Responses" on page 314.

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 323.

type The class name. For details, see "Type Name" on
page 325.

properties The data to be returned on each configuration item.
For details, see "CustomProperties" on page 317.

Parameter Comment

CIs Collection of CI elements.

chunkInfo For details, see: "ChunkInfo" on page 328,
"Processing Large Responses" on page 314.
333

Chapter 10 • HP Universal CMDB Web Service API
➤ an optional value field containing a value or list of values

Together, they form a Boolean expression:

For example, if the condition name is root_actualdeletionperiod, the
condition value is 40 and the operator is Equal, the Boolean statement is:

The query returns all items whose root_actualdeletionperiod is 40, assuming
there are no other conditions.

If the conditionsLogicalOperator argument is AND, the query returns the
items that meet all conditions in the conditions collection. If
conditionsLogicalOperator is OR, the query returns the items that meet at
least one of the conditions in the conditions collection.

The following table lists the comparison operators:

<item>.property.value [operator] <condition>.value

<item>.root_actualdeletionperiod.value = = 40

Operator Type of Condition/Comments

ChangedDuring Date

This is a range check. The condition value is
specified in hours. If the value of the date property
lies in the range of the time the method is invoked
plus or minus the condition value, the condition is
true.

For example, if the condition value is 24, the
condition is true if the value of the date property is
between yesterday at this time and tomorrow at this
time.

Note: The name ChangedDuring is kept to preserve
backward compatibility. In previous versions, the
operator was used only with create and modify time
properties.

Equal String and numerical

EqualIgnoreCase String
334

Chapter 10 • HP Universal CMDB Web Service API
Greater Numerical

GreaterEqual Numerical

In String, numerical, and list

The condition’s value is a list. The condition is true
if the value of the property is one of the values in
the list.

InList List

The condition’s value and the property’s value are
lists.

The condition is true if all the values in the
condition's list also appear in the item's property
list. There can be more property values than
specified in the condition without affecting the
truth of the condition.

IsNull String, numerical, and list

The item's property has no value. When operator
IsNull is used, the value of the condition is ignored,
and in some cases can be nil.

Less Numerical

LessEqual Numerical

Like String

The condition’s value is a substring of the value of
the property’s value. The condition’s value must be
bracketed with percentage signs (%). For example,
%Bi% matches Bismark and Bay of Biscay, but not
biscuit.

LikeIgnoreCase String

Use the LikeIgnoreCase operator as you use the Like
operator. The match, however is not case-sensitive.
Therefore, %Bi% matches biscuit.

Operator Type of Condition/Comments
335

Chapter 10 • HP Universal CMDB Web Service API
Example of Setting Up a Condition:

NotEqual String and numerical

UnchangedDuring Date

This is a range check. The condition value is
specified in hours. If the value of the date property
is in the range of the time the method is invoked
plus or minus the condition value, the condition is
false. If it lies outside that range, the condition is
true.

For example, if the condition value is 24, the
condition is true if the value of the date property is
before yesterday at this time or after tomorrow at
this time.

Note: The name UnchangedDuring is kept to
preserve backward compatibility. In previous
versions, the operator was used only with create and
modify time properties.

FloatCondition fc = new FloatCondition();
FloatProp fp = new FloatProp();
fp.setName("attr_name");
fp.setValue(11);
fc.setCondition(fp);
fc.setFloatOperator(FloatCondition.floatOperatorEnum.Equal);

Operator Type of Condition/Comments
336

Chapter 10 • HP Universal CMDB Web Service API
Example of Querying for Inherited Properties:

The target CI is sample which has two attributes, name and size. sampleII
extends the CI with two attributes, level and grade. This example sets up a
query for the properties of sampleII that were inherited from sample by
specifying them by name.

Input

GetFilteredCIsByType request = new GetFilteredCIsByType()
request.setCmdbContext(cmdbContext)
request.setType("sampleII")
CustomProperties customProperties = new CustomProperties();
PropertiesList propertiesList = new PropertiesList();
propertiesList.addPropertyName("name");
propertiesList.addPropertyName("size");
customProperties.setPropertiesList(propertiesList);
request.setProperties(customProperties)

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 323.

type The class name. For details, see "Type Name" on
page 325. The type can be any of the types defined
using the CI Type Manager. For details, see "CI Type
Manager" in the HP Universal CMDB Modeling Guide.

properties The data to be returned on each CI (called the
Query Layout in the user interface). For details, see
"CustomProperties" on page 317.

conditions A collection of name-value pairs and the operators
that relate one to the other. For example,
host_hostname like QA.

conditionsLogicalOperator ➤ AND. All the conditions must be met.

➤ OR. At least one of the conditions must be met.
337

Chapter 10 • HP Universal CMDB Web Service API
Output

getQueryNameOfView
The getQueryNameOfView method retrieves the name of the TQL on which
the specified view is based.

Input

Output

getTopologyQueryExistingResultByName
The getTopologyQueryExistingResultByName method retrieves the most
recent result of running the specified TQL. The call does not run the TQL. If
there are no results from a previous run, nothing is returned.

Parameter Comment

CIs Collection of CI elements.

chunkInfo For details, see "ChunkInfo" on page 328 and
"Processing Large Responses" on page 314.

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 323.

viewName The name of a view, that is, a sub-set of the class
model in the CMDB.

Parameter Comment

queryName The name of the TQL in the CMDB on which the
view is based.
338

Chapter 10 • HP Universal CMDB Web Service API
Input

Output

getTopologyQueryResultCountByName
The getTopologyQueryResultCountByName method retrieves the number of
instances of each node that matches the specified query.

Input

Output

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 323.

queryName The name of a TQL.

queryTypedProperties A collection of sets of properties to retrieve for items
of a specific Configuration Item Type.

Parameter Comment

queryName The name of the TQL in the CMDB on which the
view is based.

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 323.

queryName The name of a TQL.

countInvisible If true, the output includes CIs defined as invisible
in the query.

Parameter Comment

queryName The name of the TQL in the CMDB on which the
view is based.
339

Chapter 10 • HP Universal CMDB Web Service API
pullTopologyMapChunks
The pullTopologyMapChunks method retrieves one of the chunks that
contain the response to a method.

Each chunk contains a topologyMap element that is part of the response. The
first chunk is numbered 1, so the retrieval loop counter iterates from 1 to
<response object>.getChunkInfo().getNumberOfChunks().

For details, see "ChunkInfo" on page 328 and "Query the CMDB" on
page 313.

The client application must be able to handle the partial maps. See the
following example of handling a CI collection and the example of merging
chunks to a map in "Query Example" on page 353.

Input

Output

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 323.

ChunkRequest The number of the chunk to retrieve and the
ChunkInfo that is returned by the query method.

Parameter Comment

topologyMap For details, see "TopologyMap" on page 327.

comments For internal use only.
340

Chapter 10 • HP Universal CMDB Web Service API
Example of Handing Chunks:

releaseChunks
The releaseChunks method frees the memory of the chunks that contain the
data from the query.

Tip: The server discards the data after ten minutes. Calling this method to
discard the data as soon as it has been read conserves server resources.

GetCIsByType request =
new GetCIsByType(cmdbContext, typeName, customProperties);

GetCIsByTypeResponse response =
ucmdbService.getCIsByType(request);

ChunkRequest chunkRequest = new ChunkRequest();
chunkRequest.setChunkInfo(response.getChunkInfo());
for(int j=1 ; j < response.getChunkInfo().getNumberOfChunks() ; j++) {

chunkRequest.setChunkNumber(j);
PullTopologyMapChunks req = new PullTopologyMapChunks(cmdbContext,

chunkRequest);
PullTopologyMapChunksResponse res =

ucmdbService.pullTopologyMapChunks(req);
for(int m=0 ;

m < res.getTopologyMap().getCINodes().sizeCINodeList() ;
m++) {
CIs cis =

res.getTopologyMap().getCINodes().getCINode(m).getCIs();
for(int i=0 ; i < cis.sizeCIList() ; i++) {

// your code to process the CIs
}

}

}

341

Chapter 10 • HP Universal CMDB Web Service API
Input

UCMDB Update Methods

This section provides information on the following methods:

➤ "addCIsAndRelations" on page 342

➤ "addCustomer" on page 343

➤ "deleteCIsAndRelations" on page 344

➤ "removeCustomer" on page 344

➤ "updateCIsAndRelations" on page 344

addCIsAndRelations
The addCIsAndRelations method adds or updates CIs and relations.

If the CIs or relations do not exist in the CMDB, they are added and their
properties are set according to the contents of the CIsAndRelationsUpdates
argument.

If the CIs or relations do exist in the CMDB, they are updated with the new
data, if updateExisting is true.

If updateExisting is false, CIsAndRelationsUpdates cannot reference existing
configuration items or relations. Any attempt to reference existing items
when updateExisting is false results in an exception.

If updateExisting is true, the add or update operation is performed without
validating the CIs, regardless of the value of ignoreValidation.

If updateExisiting is false and ignoreValidation is true, the add operation is
performed without validating the CIs.

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 323.

chunksKey The identifier of the data on the server that was
chunked. The key is an element of ChunkInfo.
342

Chapter 10 • HP Universal CMDB Web Service API
If updateExisiting is false and ignoreValidation is false, the CIs are validated
before the add operation.

Relations are never validated.

CreatedIDsMap is a map or dictionary of type ClientIDToCmdbID that
connects the client’s temporary IDs with the corresponding real CMDB IDs.

Input

Output

addCustomer
The addCustomer method adds a customer.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 323.

updateExisting Set to true to update items that already exist in the
CMDB. Set to false to throw an exception if any item
already exists.

CIsAndRelationsUpdates The items to update or create. For details, see
"CIsAndRelationsUpdates" on page 318.

ignoreValidation If true, no check is performed before updating the
CMDB.

Parameter Comment

CreatedIDsMap The map of client IDs to CMDB IDs. For details, see
"addCIsAndRelations" on page 342.

comments For internal use only.

Parameter Comment

CustomerID The numeric ID of the customer.
343

Chapter 10 • HP Universal CMDB Web Service API
deleteCIsAndRelations
The deleteCIsAndRelations method removes the specified configuration
items and relations from the CMDB.

When a CI is deleted and the CI is one end of one or more Relation items,
those Relation items are also deleted.

Input

removeCustomer
The removeCustomer method deletes a customer record.

Input

updateCIsAndRelations
The updateCIsAndRelations method updates the specified CIs and relations.

Update uses the property values from the CIsAndRelationsUpdates argument.
If any of the CIs or relations do not exist in the CMDB, an exception is
thrown.

CreatedIDsMap is a map or dictionary of type ClientIDToCmdbID that
connects the client’s temporary IDs with the corresponding real CMDB IDs.

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 323.

CIsAndRelationsUpdates The items to delete. For details, see
"CIsAndRelationsUpdates" on page 318

Parameter Comment

CustomerID The numeric ID of the customer.
344

Chapter 10 • HP Universal CMDB Web Service API
Input

Output

UCMDB Impact Analysis Methods

This section provides information on the following methods:

➤ "calculateImpact" on page 345

➤ "getImpactPath" on page 346

➤ "getImpactRulesByNamePrefix" on page 347

calculateImpact
The calculateImpact method calculates which CIs are affected by a given CI
according to the rules defined in the CMDB.

This shows the effect of an event triggering of the rule. The identifier output
of calculateImpact is used as input for getImpactPath.

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 323.

CIsAndRelationsUpdates The items to update. For details, see
"CIsAndRelationsUpdates" on page 318.

ignoreValidation If true, no check is performed before updating the
CMDB.

Parameter Comment

CreatedIDsMap The map of client IDs to CMDB IDs. For details, see
"addCIsAndRelations" on page 342.
345

Chapter 10 • HP Universal CMDB Web Service API
Input

Output

getImpactPath
The getImpactPath method retrieves the topology graph of the path between
the affected CI and the CI that affects it.

The identifier output of calculateImpact is used as the identifier input
argument of getImpactPath.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 323.

impactCategory The type of event that would trigger the rule being
simulated.

IDs A collection of ID elements.

impactRulesNames A collection of ImpactRuleName elements.

severity The severity of the triggering event.

Parameter Comment

impactTopology For details, see "Topology" on page 327.

identifier The key to the server response.

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 323.

identifier The key to the server response that was returned by
calculateImpact.

relation A Relation based on one of the ShallowRelations
returned by calculateImpact in the impactTopology
element.
346

Chapter 10 • HP Universal CMDB Web Service API
Output

An ImpactRelations element consists of an ID, type, end1ID, end2ID, a rule,
and an action.

getImpactRulesByNamePrefix
The getImpactRulesByNamePrefix method retrieves rules using a prefix filter.

This method applies to impact rules that are named with a prefix that
indicates the context to which they apply, for example, SAP_myrule,
ORA_myrule, and so on. This method filters all impact rule names for those
beginning with the prefix specified by the ruleNamePrefixFilter argument.

Input

Output

Parameter Comment

impactPathTopology A CIs collection and an ImpactRelations collection.

comments For internal use only.

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 323.

ruleNamePrefixFilter A string containing the first letters of the rule names
to match.

Parameter Comment

impactRules impactRules is composed of zero or more
impactRule. An impactRule, which specifies the
effect of a change, is composed of ruleName,
description, queryName, and isActive.
347

Chapter 10 • HP Universal CMDB Web Service API
Use Cases

The following use cases assume two systems:

➤ HP Universal CMDB server

➤ A third-party system that contains a repository of configuration items

This section includes the following topics:

➤ "Populating the CMDB" on page 348

➤ "Querying the CMDB" on page 348

➤ "Querying the Class Model" on page 349

➤ "Analyzing Change Impact" on page 349

Populating the CMDB
Use cases:

➤ A third-party asset management updates the CMDB with information
available only in asset management

➤ A number of third-party systems populate the CMDB to create a central
CMDB that can track changes and perform impact analysis

➤ A third-party system creates Configuration Items and Relations according
to third-party business logic to leverage the CMDB query capabilities

Querying the CMDB
Use cases:

➤ A third-party system gets the Configuration Items and Relations that
represent the SAP system by getting the results of the SAP TQL

➤ A third-party system gets the list of Oracle servers that have been added or
changed in the last five hours

➤ A third-party system gets the list of servers whose host name contains the
substring lab

➤ A third-party system finds the elements related to a given CI by getting its
neighbors
348

Chapter 10 • HP Universal CMDB Web Service API
Querying the Class Model
Use cases:

➤ A third-party system enables users to specify the set of data to be retrieved
from the CMDB. A user interface can be built over the class model to
show users the possible properties and prompt them for required data.
The user can then choose the information to be retrieved.

➤ A third-party system explores the class model when the user cannot
access the UCMDB user interface.

Analyzing Change Impact
Use case:

A third-party system outputs a list of the business services that could be
impacted by a change on a specified host.

Examples

This section includes the following topics:

➤ "The Example Base Class" on page 350

➤ "Query Example" on page 353

➤ "Update Example" on page 370

➤ "Class Model Example" on page 374

➤ "Impact Analysis Example" on page 376

➤ "Adding Credentials Example" on page 381
349

Chapter 10 • HP Universal CMDB Web Service API
The Example Base Class

package com.hp.ucmdb.demo;

import com.hp.ucmdb.generated.services.UcmdbService;
import com.hp.ucmdb.generated.services.UcmdbServiceStub;
import com.hp.ucmdb.generated.types.CmdbContext;
import org.apache.axis2.AxisFault;
import org.apache.axis2.transport.http.HTTPConstants;

import org.apache.axis2.transport.http.HttpTransportProperties;

import java.net.MalformedURLException;
import java.net.URL;

/**
* User: hbarkai
* Date: Jul 12, 2007
*/
abstract class Demo {

UcmdbService stub;
CmdbContext context;

public void initDemo() {
try {

setStub(createUcmdbService("admin", "admin"));
setContext();

} catch (Exception e) {
//handle exception

}
}

public UcmdbService getStub() {
return stub;

}

350

Chapter 10 • HP Universal CMDB Web Service API
public void setStub(UcmdbService stub) {
this.stub = stub;

}

public CmdbContext getContext() {
return context;

}

public void setContext() {
CmdbContext context = new CmdbContext();
context.setCallerApplication("demo");
this.context = context;

}

//connection to service - for axis2/jibx client

private static final String PROTOCOL = "http";
private static final String HOST_NAME = "host_name";
private static final int PORT = 8080;
private static final String FILE = "/axis2/services/UcmdbService";

protected UcmdbService createUcmdbService
(String username, String password) throws Exception{

URL url;
UcmdbServiceStub serviceStub;

try {
 url = new URL

(Demo.PROTOCOL, Demo.HOST_NAME,
Demo.PORT, Demo.FILE);

 serviceStub = new UcmdbServiceStub(url.toString());
 HttpTransportProperties.Authenticator auth =

new HttpTransportProperties.Authenticator();
 auth.setUsername(username);
 auth.setPassword(password);

serviceStub._getServiceClient().getOptions().setProperty
(HTTPConstants.AUTHENTICATE,auth);
351

Chapter 10 • HP Universal CMDB Web Service API
} catch (AxisFault axisFault) {
throw new Exception
("Failed to create SOAP adapter for "

+ Demo.HOST_NAME , axisFault);

} catch (MalformedURLException e) {

throw new Exception
("Failed to create SOAP adapter for "

+ Demo.HOST_NAME, e);
}
return serviceStub;

 }
}

352

Chapter 10 • HP Universal CMDB Web Service API
Query Example

package com.hp.ucmdb.demo;

import com.hp.ucmdb.generated.params.query.*;
import com.hp.ucmdb.generated.services.UcmdbFaultException;
import com.hp.ucmdb.generated.services.UcmdbService;
import com.hp.ucmdb.generated.types.*;
import com.hp.ucmdb.generated.types.props.*;

import java.rmi.RemoteException;

public class QueryDemo extends Demo{

UcmdbService stub;
CmdbContext context;

public void getCIsByTypeDemo() {
GetCIsByType request = new GetCIsByType();
//set cmdbcontext
CmdbContext cmdbContext = getContext();
request.setCmdbContext(cmdbContext);
//set CIs type
request.setType("anyType");
//set CIs propeties to be retrieved
CustomProperties customProperties = new CustomProperties();
PredefinedProperties predefinedProperties =

new PredefinedProperties();
SimplePredefinedProperty simplePredefinedProperty =

new SimplePredefinedProperty();
simplePredefinedProperty.setName

(SimplePredefinedProperty.nameEnum.DERIVED);
SimplePredefinedPropertyCollection

simplePredefinedPropertyCollection =
new SimplePredefinedPropertyCollection();
353

Chapter 10 • HP Universal CMDB Web Service API
simplePredefinedPropertyCollection.addSimplePredefinedProperty
(simplePredefinedProperty);

predefinedProperties.setSimplePredefinedProperties
(simplePredefinedPropertyCollection);

customProperties.setPredefinedProperties(predefinedProperties);
request.setProperties(customProperties);
try {

GetCIsByTypeResponse response =
getStub().getCIsByType(request);

TopologyMap map =
getTopologyMapResultFromCIs

(response.getCIs(), response.getChunkInfo());
} catch (RemoteException e) {

//handle exception
} catch (UcmdbFaultException e) {

//handle exception
}

}

public void getCIsByIdDemo() {
GetCIsById request = new GetCIsById();
CmdbContext cmdbContext = getContext();
//set cmdbcontext
request.setCmdbContext(cmdbContext);
//set ids
ID id1 = new ID();
id1.setBase("cmdbobjectidCIT1");
ID id2 = new ID();
id2.setBase("cmdbobjectidCIT2");
IDs ids = new IDs();
ids.addID(id1);
ids.addID(id2);
request.setIDs(ids);
//set CIs properties to be retrieved
TypedPropertiesCollection properties =

new TypedPropertiesCollection();

TypedProperties typedProperties1 =
new TypedProperties();

typedProperties1.setType("CIT1");
354

Chapter 10 • HP Universal CMDB Web Service API
CustomTypedProperties customProperties1 =
new CustomTypedProperties();

PredefinedTypedProperties predefinedProperties1 =
new PredefinedTypedProperties();

SimpleTypedPredefinedProperty simplePredefinedProperty1 =
new SimpleTypedPredefinedProperty();

simplePredefinedProperty1.setName
(SimpleTypedPredefinedProperty.nameEnum.CONCRETE);

SimpleTypedPredefinedPropertyCollection
simplePredefinedPropertyCollection1 =

new SimpleTypedPredefinedPropertyCollection();
simplePredefinedPropertyCollection1

.addSimpleTypedPredefinedProperty
(simplePredefinedProperty1);

predefinedProperties1.
setSimpleTypedPredefinedProperties

(simplePredefinedPropertyCollection1);
customProperties1.

setPredefinedTypedProperties
(predefinedProperties1);

typedProperties1.setProperties(customProperties1);
properties.addTypedProperties(typedProperties1);

TypedProperties typedProperties2 =
new TypedProperties();

typedProperties2.setType("CIT2");
CustomTypedProperties customProperties2 =

new CustomTypedProperties();
PredefinedTypedProperties predefinedProperties2 =

new PredefinedTypedProperties();
SimpleTypedPredefinedProperty simplePredefinedProperty2 =

new SimpleTypedPredefinedProperty();
simplePredefinedProperty2.setName

(SimpleTypedPredefinedProperty.nameEnum.NAMING);
SimpleTypedPredefinedPropertyCollection

simplePredefinedPropertyCollection2 =
new SimpleTypedPredefinedPropertyCollection();
355

Chapter 10 • HP Universal CMDB Web Service API
simplePredefinedPropertyCollection2.
addSimpleTypedPredefinedProperty

(simplePredefinedProperty2);

predefinedProperties2.setSimpleTypedPredefinedProperties
(simplePredefinedPropertyCollection2);

customProperties2.setPredefinedTypedProperties
(predefinedProperties2);

typedProperties2.setProperties(customProperties2);
properties.addTypedProperties(typedProperties2);

request.setCIsTypedProperties(properties);
try {

GetCIsByIdResponse response =
getStub().getCIsById(request);

CIs cis = response.getCIs();
} catch (RemoteException e) {

//handle exception
} catch (UcmdbFaultException e) {

//handle exception
}

}

public void getFilteredCIsByTypeDemo() {
GetFilteredCIsByType request = new GetFilteredCIsByType();
CmdbContext cmdbContext = getContext();
//set cmdbcontext
request.setCmdbContext(cmdbContext);
//set CIs type
request.setType("anyType");
//sets Filter conditions
Conditions conditions = new Conditions();
IntConditions intConditions = new IntConditions();
IntCondition intCondition = new IntCondition();
IntProp intProp = new IntProp();
intProp.setName("int_attr1");
356

Chapter 10 • HP Universal CMDB Web Service API
intProp.setValue(100);
intCondition.setCondition(intProp);
intCondition.setIntOperator

(IntCondition.intOperatorEnum.Greater);
intConditions.addIntCondition(intCondition);

conditions.setIntConditions(intConditions);
request.setConditions(conditions);
//set logical operator for conditions
request.setConditionsLogicalOperator

(GetFilteredCIsByType.conditionsLogicalOperatorEnum.AND);
//set CIs properties to be retrieved
CustomProperties customProperties =

new CustomProperties();
PredefinedProperties predefinedProperties =

new PredefinedProperties();
SimplePredefinedProperty simplePredefinedProperty =

new SimplePredefinedProperty();
simplePredefinedProperty.setName

(SimplePredefinedProperty.nameEnum.NAMING);

SimplePredefinedPropertyCollection
simplePredefinedPropertyCollection =

new SimplePredefinedPropertyCollection();
simplePredefinedPropertyCollection.

addSimplePredefinedProperty
(simplePredefinedProperty);

predefinedProperties.setSimplePredefinedProperties
(simplePredefinedPropertyCollection);

customProperties.setPredefinedProperties
(predefinedProperties);

request.setProperties(customProperties);
try {

GetFilteredCIsByTypeResponse response =
getStub().getFilteredCIsByType(request);

TopologyMap map =
getTopologyMapResultFromCIs

(response.getCIs(), response.getChunkInfo());
357

Chapter 10 • HP Universal CMDB Web Service API
} catch (RemoteException e) {
//handle exception

} catch (UcmdbFaultException e) {
//handle exception

}

}

public void executeTopologyQueryByNameDemo() {
ExecuteTopologyQueryByName request = new

ExecuteTopologyQueryByName();
CmdbContext cmdbContext = getContext();
//set cmdbcontext
request.setCmdbContext(cmdbContext);
//set query name
request.setQueryName("queryName");

try {
ExecuteTopologyQueryByNameResponse response =

getStub().executeTopologyQueryByName(request);
TopologyMap map =

getTopologyMapResult
(response.getTopologyMap(), response.getChunkInfo());

} catch (RemoteException e) {
//handle exception

} catch (UcmdbFaultException e) {
//handle exception

}

}

358

Chapter 10 • HP Universal CMDB Web Service API
// assume the follow query was defined at UCMDB
// Query Name: exampleQuery
// Query sketch:
// Host
// / \
// ip Disk
// Query Parameters:
// Host-
// host_os (like)
// Disk-
// disk_failures (equal)

public void executeTopologyQueryByNameWithParametersDemo() {
ExecuteTopologyQueryByNameWithParameters request =

new ExecuteTopologyQueryByNameWithParameters();
CmdbContext cmdbContext = getContext();
//set cmdbcontext
request.setCmdbContext(cmdbContext);
//set query name
request.setQueryName("queryName");
//set parameters
ParameterizedNode hostParametrizedNode =

new ParameterizedNode();
hostParametrizedNode.setNodeLabel("Host");
CIProperties parameters = new CIProperties();
StrProps strProps = new StrProps();
StrProp strProp = new StrProp();
strProp.setName("host_os");
strProp.setValue("%2000%");
strProps.addStrProp(strProp);
parameters.setStrProps(strProps);
hostParametrizedNode.setParameters(parameters);
request.addParameterizedNodes(hostParametrizedNode);
ParameterizedNode diskParametrizedNode =

new ParameterizedNode();

diskParametrizedNode.setNodeLabel("Disk");
CIProperties parameters1 = new CIProperties();
IntProps intProps = new IntProps();
359

Chapter 10 • HP Universal CMDB Web Service API
IntProp intProp = new IntProp();
intProp.setName("disk_failures");
intProp.setValue(30);
intProps.addIntProp(intProp);
parameters1.setIntProps(intProps);
diskParametrizedNode.setParameters(parameters1);

request.addParameterizedNodes(diskParametrizedNode);
try {

ExecuteTopologyQueryByNameWithParametersResponse
response =
getStub().executeTopologyQueryByNameWithParameters

(request);
TopologyMap map =

getTopologyMapResult
(response.getTopologyMap(), response.getChunkInfo());

} catch (RemoteException e) {
//handle exception

} catch (UcmdbFaultException e) {
//handle exception

}

}

/ // assume the follow query was defined at UCMDB
// Query Name: exampleQuery
// Query sketch:
// Host
// / \
// ip Disk
// Query Parameters:
// Host-
// host_os (like)
// Disk-
// disk_failures (equal)
360

Chapter 10 • HP Universal CMDB Web Service API
public void executeTopologyQueryWithParametersDemo() {
ExecuteTopologyQueryWithParameters request =

new ExecuteTopologyQueryWithParameters();
CmdbContext cmdbContext = getContext();
//set cmdbcontext
request.setCmdbContext(cmdbContext);
//set query definition
String queryXml = "<xml that represents the query above>";
request.setQueryXml(queryXml);
//set parameters
ParameterizedNode hostParametrizedNode =

new ParameterizedNode();

hostParametrizedNode.setNodeLabel("Host");
CIProperties parameters = new CIProperties();
StrProps strProps = new StrProps();
StrProp strProp = new StrProp();
strProp.setName("host_os");
strProp.setValue("%2000%");
strProps.addStrProp(strProp);
parameters.setStrProps(strProps);
hostParametrizedNode.setParameters(parameters);
request.addParameterizedNodes(hostParametrizedNode);
ParameterizedNode diskParametrizedNode =

new ParameterizedNode();
diskParametrizedNode.setNodeLabel("Disk");
CIProperties parameters1 = new CIProperties();
IntProps intProps = new IntProps();
IntProp intProp = new IntProp();
intProp.setName("disk_failures");
intProp.setValue(30);
intProps.addIntProp(intProp);
parameters1.setIntProps(intProps);
diskParametrizedNode.setParameters(parameters1);
request.addParameterizedNodes(diskParametrizedNode);
361

Chapter 10 • HP Universal CMDB Web Service API
try {
ExecuteTopologyQueryWithParametersResponse
response = getStub().executeTopologyQueryWithParameters

(request);
TopologyMap map =

getTopologyMapResult
(response.getTopologyMap(), response.getChunkInfo());

 } catch (RemoteException e) {
 //handle exception

} catch (UcmdbFaultException e) {
//handle exception

}

}

public void getCINeighboursDemo() {
GetCINeighbours request = new GetCINeighbours();
//set cmdbcontext
CmdbContext cmdbContext = getContext();
request.setCmdbContext(cmdbContext);
// set CI id
ID id = new ID();
id.setBase("cmdbobjectidCIT1");
request.setID(id);
//set neighbour type
request.setNeighbourType("neighbourType");
//set Neighbours CIs propeties to be retrieved
TypedPropertiesCollection properties =

new TypedPropertiesCollection();
TypedProperties typedProperties1 = new TypedProperties();
typedProperties1.setType("neighbourType");
CustomTypedProperties customProperties1 =

new CustomTypedProperties();
PredefinedTypedProperties predefinedProperties1 =

new PredefinedTypedProperties();
362

Chapter 10 • HP Universal CMDB Web Service API
QualifierProperties qualifierProperties =
new QualifierProperties();

qualifierProperties.addQualifierName("ID_ATTRIBUTE");
predefinedProperties1.setQualifierProperties(qualifierProperties);
customProperties1.setPredefinedTypedProperties

(predefinedProperties1);
typedProperties1.setProperties(customProperties1);
properties.addTypedProperties(typedProperties1);
request.setCIProperties(properties);

TypedPropertiesCollection relationsProperties =
new TypedPropertiesCollection();

TypedProperties typedProperties2 = new TypedProperties();
typedProperties2.setType("relationType");
CustomTypedProperties customProperties2 =

new CustomTypedProperties();

PredefinedTypedProperties predefinedProperties2 =
new PredefinedTypedProperties();

SimpleTypedPredefinedProperty simplePredefinedProperty2 =
new SimpleTypedPredefinedProperty();

simplePredefinedProperty2.setName

(SimpleTypedPredefinedProperty.nameEnum.CONCRETE);
SimpleTypedPredefinedPropertyCollection

simplePredefinedPropertyCollection2 =
new SimpleTypedPredefinedPropertyCollection();

simplePredefinedPropertyCollection2.
addSimpleTypedPredefinedProperty

(simplePredefinedProperty2);
predefinedProperties2.

setSimpleTypedPredefinedProperties
(simplePredefinedPropertyCollection2);

customProperties2.setPredefinedTypedProperties
(predefinedProperties2);

typedProperties2.setProperties(customProperties2);
relationsProperties.addTypedProperties(typedProperties2);
request.setRelationProperties(relationsProperties);
363

Chapter 10 • HP Universal CMDB Web Service API
try {
GetCINeighboursResponse response =

getStub().getCINeighbours(request);
Topology topology = response.getTopology();

 } catch (RemoteException e) {
//handle exception

} catch (UcmdbFaultException e) {
 //handle exception

}

}

//get Topology Map for chunked/non-chunked result

private TopologyMap getTopologyMapResult(TopologyMap topologyMap, ChunkInfo
chunkInfo) {

if(chunkInfo.getNumberOfChunks() == 0) {
return topologyMap;

} else {

topologyMap = new TopologyMap();
for(int i=1 ; i <= chunkInfo.getNumberOfChunks() ; i++) {

ChunkRequest chunkRequest = new ChunkRequest();
chunkRequest.setChunkInfo(chunkInfo);
chunkRequest.setChunkNumber(i);
PullTopologyMapChunks req =

new PullTopologyMapChunks();
req.setChunkRequest(chunkRequest);
req.setCmdbContext(getContext());
PullTopologyMapChunksResponse res = null;
364

Chapter 10 • HP Universal CMDB Web Service API
try {
res = getStub().pullTopologyMapChunks(req);
TopologyMap map = res.getTopologyMap();
topologyMap = mergeMaps(topologyMap, map);

} catch (RemoteException e) {
//handle exception

} catch (UcmdbFaultException e) {
//handle exception

}
}

}
return topologyMap;

}

private TopologyMap getTopologyMapResultFromCIs(CIs cis, ChunkInfo chunkInfo)
{

TopologyMap topologyMap = new TopologyMap();
if(chunkInfo.getNumberOfChunks() == 0) {

CINode ciNode = new CINode();
ciNode.setLabel("");
ciNode.setCIs(cis);
CINodes ciNodes = new CINodes();
ciNodes.addCINode(ciNode);
topologyMap.setCINodes(ciNodes);

} else {

for(int i=1 ; i <= chunkInfo.getNumberOfChunks() ; i++) {
ChunkRequest chunkRequest =

new ChunkRequest();
chunkRequest.setChunkInfo(chunkInfo);
chunkRequest.setChunkNumber(i);
PullTopologyMapChunks req =

new PullTopologyMapChunks();
req.setChunkRequest(chunkRequest);
req.setCmdbContext(getContext());
PullTopologyMapChunksResponse res = null;
365

Chapter 10 • HP Universal CMDB Web Service API
try {
res = getStub().pullTopologyMapChunks(req);

} catch (RemoteException e) {
//handle exception

} catch (UcmdbFaultException e) {
//handle exception

}
TopologyMap map = res.getTopologyMap();
topologyMap = mergeMaps(topologyMap, map);

}

//release chunks
ReleaseChunks req = new ReleaseChunks();
req.setChunksKey(chunkInfo.getChunksKey());
req.setCmdbContext(getContext());

try {
getStub().releaseChunks(req);

} catch (RemoteException e) {
//handle exception

} catch (UcmdbFaultException e) {
//handle exception

}
}
return topologyMap;

}

//===
/* WARNING merge will be correct only if a each node is given

a unique name. This applies to both CI and Relation nodes .*/
//===

private TopologyMap mergeMaps(TopologyMap topologyMap, TopologyMap
newMap) {

for(int i=0 ; i < newMap.getCINodes().sizeCINodeList() ; i++) {
CINode ciNode = newMap.getCINodes().getCINode(i);
boolean alreadyExist = false;
if(topologyMap.getCINodes() == null) {

topologyMap.setCINodes(new CINodes());
}

366

Chapter 10 • HP Universal CMDB Web Service API
for(int j=0 ; j < topologyMap.getCINodes().sizeCINodeList() ; j++) {
CINode ciNode2 = topologyMap.getCINodes().getCINode(j);
if(ciNode2.getLabel().equals(ciNode.getLabel())){

CIs cisTOAdd = ciNode.getCIs();
CIs cis =

mergeCIsGroups
(topologyMap.getCINodes().getCINode(j).getCIs(),

cisTOAdd);
topologyMap.getCINodes().getCINode(j).setCIs(cis);
alreadyExist = true;

}
}
if(!alreadyExist) {

topologyMap.getCINodes().addCINode(ciNode);
}

}

for(int i=0 ; i < newMap.getRelationNodes().sizeRelationNodeList() ; i++) {
RelationNode relationNode =

newMap.getRelationNodes().getRelationNode(i);
boolean alreadyExist = false;
if(topologyMap.getRelationNodes() == null) {

topologyMap.setRelationNodes(new RelationNodes());
}

367

Chapter 10 • HP Universal CMDB Web Service API
for(int j=0 ;
j < topologyMap.getRelationNodes().sizeRelationNodeList() ;
j++) {

RelationNode relationNode2 =
topologyMap.getRelationNodes().getRelationNode(j);

if(relationNode2.getLabel().equals(relationNode.getLabel())){
Relations relationsTOAdd = relationNode.getRelations();
Relations relations =

mergeRelationsGroups
(topologyMap.getRelationNodes().

getRelationNode(j).getRelations(),
relationsTOAdd);

topologyMap.getRelationNodes().
getRelationNode(j).setRelations(relations);

alreadyExist = true;
}

}

if(!alreadyExist) {
topologyMap.getRelationNodes().addRelationNode(relationNode);

}
}

return topologyMap;

}

private Relations mergeRelationsGroups(Relations relations1, Relations relations2)
{

for(int i=0 ; i < relations2.sizeRelationList() ; i++) {
relations1.addRelation(relations2.getRelation(i));

}
return relations2;

}

368

Chapter 10 • HP Universal CMDB Web Service API
private CIs mergeCIsGroups(CIs cis1, CIs cis2) {
for(int i=0 ; i < cis2.sizeCIList() ; i++) {

cis1.addCI(cis2.getCI(i));
}
return cis1;

}

}

369

Chapter 10 • HP Universal CMDB Web Service API
Update Example

package com.hp.ucmdb.demo;

import com.hp.ucmdb.generated.params.update.AddCIsAndRelations;
import com.hp.ucmdb.generated.params.update.AddCIsAndRelationsResponse;
import com.hp.ucmdb.generated.params.update.UpdateCIsAndRelations;
import com.hp.ucmdb.generated.params.update.DeleteCIsAndRelations;
import com.hp.ucmdb.generated.services.UcmdbFaultException;
import com.hp.ucmdb.generated.types.*;
import com.hp.ucmdb.generated.types.update.CIsAndRelationsUpdates;
import com.hp.ucmdb.generated.types.update.ClientIDToCmdbID;

import java.rmi.RemoteException;

public class UpdateDemo extends Demo{

public void getAddCIsAndRelationsDemo() {
AddCIsAndRelations request = new AddCIsAndRelations();
request.setCmdbContext(getContext());
request.setUpdateExisting(true);
CIsAndRelationsUpdates updates = new CIsAndRelationsUpdates();
CIs cis = new CIs();
CI ci = new CI();
ID id = new ID();
id.setBase("temp1");
id.setTemp(true);

ci.setID(id);
ci.setType("host");

CIProperties props = new CIProperties();
StrProps strProps = new StrProps();
StrProp strProp = new StrProp();
strProp.setName("host_key");
String value = "blabla";
strProp.setValue(value);
370

Chapter 10 • HP Universal CMDB Web Service API
strProps.addStrProp(strProp);
props.setStrProps(strProps);
ci.setProps(props);
cis.addCI(ci);
updates.setCIsForUpdate(cis);
request.setCIsAndRelationsUpdates(updates);

try {
AddCIsAndRelationsResponse response =

getStub().addCIsAndRelations(request);
for(int i = 0 ; i < response.sizeCreatedIDsMapList() ; i++) {

ClientIDToCmdbID idsMap = response.getCreatedIDsMap(i);
//do something

}
} catch (RemoteException e) {

//handle exception
} catch (UcmdbFaultException e) {

//handle exception
}

}

public void getUpdateCIsAndRelationsDemo() {
UpdateCIsAndRelations request = new UpdateCIsAndRelations();
request.setCmdbContext(getContext());

CIsAndRelationsUpdates updates =
new CIsAndRelationsUpdates();

CIs cis = new CIs();
CI ci = new CI();
ID id = new ID();

id.setBase("temp1");
id.setTemp(true);
ci.setID(id);
ci.setType("host");
CIProperties props = new CIProperties();
StrProps strProps = new StrProps();
371

Chapter 10 • HP Universal CMDB Web Service API
StrProp hostKeyProp = new StrProp();
hostKeyProp.setName("host_key");
String hostKeyValue = "blabla";
hostKeyProp.setValue(hostKeyValue);
strProps.addStrProp(hostKeyProp);

StrProp hostOSProp = new StrProp();
hostOSProp.setName("host_os");
String hostOSValue = "winXP";
hostOSProp.setValue(hostOSValue);
strProps.addStrProp(hostOSProp);

StrProp hostDNSProp = new StrProp();
hostDNSProp.setName("host_dnsname");
String hostDNSValue = "dnsname";
hostDNSProp.setValue(hostDNSValue);
strProps.addStrProp(hostDNSProp);

props.setStrProps(strProps);
ci.setProps(props);
cis.addCI(ci);
updates.setCIsForUpdate(cis);
request.setCIsAndRelationsUpdates(updates);

try {
getStub().updateCIsAndRelations(request);

} catch (RemoteException e) {
//handle exception

} catch (UcmdbFaultException e) {
//handle exception

}

}

372

Chapter 10 • HP Universal CMDB Web Service API
public void getDeleteCIsAndRelationsDemo() {
DeleteCIsAndRelations request =

new DeleteCIsAndRelations();
request.setCmdbContext(getContext());
CIsAndRelationsUpdates updates =

new CIsAndRelationsUpdates();
CIs cis = new CIs();
CI ci = new CI();
ID id = new ID();
id.setBase("stam");
id.setTemp(true);
ci.setID(id);
ci.setType("host");

CIProperties props = new CIProperties();
StrProps strProps = new StrProps();
StrProp strProp1 = new StrProp();
strProp1.setName("host_key");
String value1 = "for_delete";
strProp1.setValue(value1);
strProps.addStrProp(strProp1);
props.setStrProps(strProps);
ci.setProps(props);
cis.addCI(ci);
updates.setCIsForUpdate(cis);
request.setCIsAndRelationsUpdates(updates);

try {
getStub().deleteCIsAndRelations(request);

} catch (RemoteException e) {
//handle exception

} catch (UcmdbFaultException e) {
//handle exception

}

}

}

373

Chapter 10 • HP Universal CMDB Web Service API
Class Model Example

package com.hp.ucmdb.demo;

import com.hp.ucmdb.generated.params.classmodel.*;
import com.hp.ucmdb.generated.services.UcmdbFaultException;
import com.hp.ucmdb.generated.types.classmodel.UcmdbClassModelHierarchy;
import com.hp.ucmdb.generated.types.classmodel.UcmdbClass;

import java.rmi.RemoteException;

public class ClassmodelDemo extends Demo{

public void getClassAncestorsDemo() {
GetClassAncestors request =

new GetClassAncestors();
request.setCmdbContext(getContext());
request.setClassName("className");

try {
GetClassAncestorsResponse response =

getStub().getClassAncestors(request);
UcmdbClassModelHierarchy hierarchy =

response.getClassHierarchy();
} catch (RemoteException e) {

//handle exception
} catch (UcmdbFaultException e) {

//handle exception
}

}

374

Chapter 10 • HP Universal CMDB Web Service API
public void getAllClassesHierarchyDemo() {
GetAllClassesHierarchy request =

new GetAllClassesHierarchy();
request.setCmdbContext(getContext());
try {

GetAllClassesHierarchyResponse response =
getStub().getAllClassesHierarchy(request);

UcmdbClassModelHierarchy hierarchy =
response.getClassesHierarchy();

} catch (RemoteException e) {
//handle exception

} catch (UcmdbFaultException e) {
//handle exception

}

}

public void getCmdbClassDefinitionDemo() {
GetCmdbClassDefinition request =

new GetCmdbClassDefinition();
request.setCmdbContext(getContext());
request.setClassName("className");

try {
GetCmdbClassDefinitionResponse response =
getStub().getCmdbClassDefinition(request);
UcmdbClass ucmdbClass = response.getUcmdbClass();

} catch (RemoteException e) {
//handle exception

} catch (UcmdbFaultException e) {
//handle exception

}

}

}

375

Chapter 10 • HP Universal CMDB Web Service API
Impact Analysis Example

package com.hp.ucmdb.demo;

import com.hp.ucmdb.generated.params.impact.*;
import com.hp.ucmdb.generated.services.UcmdbFaultException;
import com.hp.ucmdb.generated.types.*;
import com.hp.ucmdb.generated.types.impact.*;

import java.rmi.RemoteException;

/**
* Date: Jul 17, 2007
*/

public class ImpactDemo extends Demo{

//Impact Rule Name : impactExample
//Impact Query:
// Network
// |
// Host
// |
// IP
//Impact Action: network affect on ip ;severity 100% ; category: change
//
public void calculateImpactAndGetImpactPathDemo() {

CalculateImpact request = new CalculateImpact();
request.setCmdbContext(getContext());
//set root cause ids
IDs ids = new IDs();
ID id = new ID();
id.setBase("rootCauseCmdbID");
ids.addID(id);
376

Chapter 10 • HP Universal CMDB Web Service API
request.setIDs(ids);
//set impact category
request.setImpactCategory("change");
//set rule Names
ImpactRuleNames impactRuleNames = new ImpactRuleNames();
ImpactRuleName impactRuleName = new ImpactRuleName();
impactRuleName.setBase("impactExample");
impactRuleNames.addImpactRuleName(impactRuleName);
request.setImpactRuleNames(impactRuleNames);
//set severity
request.setSeverity(100);
CalculateImpactResponse response =

new CalculateImpactResponse();

request.setIDs(ids);
//set impact category
request.setImpactCategory("change");
//set rule Names
ImpactRuleNames impactRuleNames = new ImpactRuleNames();
ImpactRuleName impactRuleName = new ImpactRuleName();
impactRuleName.setBase("impactExample");
impactRuleNames.addImpactRuleName(impactRuleName);
request.setImpactRuleNames(impactRuleNames);
//set severity
request.setSeverity(100);
CalculateImpactResponse response =

new CalculateImpactResponse();

try {
response = getStub().calculateImpact(request);

} catch (RemoteException e) {
//handle exception
377

Chapter 10 • HP Universal CMDB Web Service API
} catch (UcmdbFaultException e) {
//handle exception

}
Identifier identifier= response.getIdentifier();
Topology topology = response.getImpactTopology();
Relation relation = topology.getRelations().getRelation(0);
GetImpactPath request2 = new GetImpactPath();
//set cmdb context
request2.setCmdbContext(getContext());
//set impact identifier
request2.setIdentifier(identifier);
//set shallowRelation
ShallowRelation shallowRelation = new ShallowRelation();
shallowRelation.setID(relation.getID());
shallowRelation.setEnd1ID(relation.getEnd1ID());
shallowRelation.setEnd2ID(relation.getEnd2ID());
shallowRelation.setType(relation.getType());
request2.setRelation(shallowRelation);

try {
GetImpactPathResponse response2 =

getStub().getImpactPath(request2);
ImpactTopology impactTopology =

response2.getImpactPathTopology();
} catch (RemoteException e) {

//To change body of catch statement
// use File | Settings | File Templates.
e.printStackTrace();

} catch (UcmdbFaultException e) {
//To change body of catch statement
// use File | Settings | File Templates.
e.printStackTrace();

}
}

378

Chapter 10 • HP Universal CMDB Web Service API
public void getImpactRulesByGroupName() {
GetImpactRulesByGroupName request =

new GetImpactRulesByGroupName();
//set cmdb context
request.setCmdbContext(getContext());
//set group names list
request.addRuleGroupNameFilter("groupName1");
request.addRuleGroupNameFilter("groupName2");

try {
GetImpactRulesByGroupNameResponse response =

getStub().getImpactRulesByGroupName(request);
ImpactRules impactRules = response.getImpactRules();

} catch (RemoteException e) {
//handle exception

} catch (UcmdbFaultException e) {
//handle exception

}

}

public void getImpactRulesByNamePrefix() {
GetImpactRulesByNamePrefix request =

new GetImpactRulesByNamePrefix();
//set cmdb context
request.setCmdbContext(getContext());
//set prefixes list
request.addRuleNamePrefixFilter("prefix1");
379

Chapter 10 • HP Universal CMDB Web Service API
try {
GetImpactRulesByNamePrefixResponse response =

getStub().getImpactRulesByNamePrefix(request);
ImpactRules impactRules = response.getImpactRules();

} catch (RemoteException e) {
//handle exception

} catch (UcmdbFaultException e) {
//handle exception

}
}

}

380

Chapter 10 • HP Universal CMDB Web Service API
Adding Credentials Example

import java.net.URL;

import org.apache.axis2.transport.http.HTTPConstants;
import org.apache.axis2.transport.http.HttpTransportProperties;

import com.hp.ucmdb.generated.params.discovery.*;
import com.hp.ucmdb.generated.services.DiscoveryService;
import com.hp.ucmdb.generated.services.DiscoveryServiceStub;
import com.hp.ucmdb.generated.types.BytesProp;
import com.hp.ucmdb.generated.types.BytesProps;
import com.hp.ucmdb.generated.types.CIProperties;
import com.hp.ucmdb.generated.types.CmdbContext;
import com.hp.ucmdb.generated.types.StrList;
import com.hp.ucmdb.generated.types.StrProp;
import com.hp.ucmdb.generated.types.StrProps;

public class test {
static final String HOST_NAME = "hostname";

 static final int PORT = 8080;

private static final String PROTOCOL = "http";
private static final String FILE = "/axis2/services/DiscoveryService";

private static final String PASSWORD = "admin";
private static final String USERNAME = "admin";

private static CmdbContext cmdbContext = new CmdbContext("ws tests");
381

Chapter 10 • HP Universal CMDB Web Service API
public static void main(String[] args) throws Exception {
// Get the stub object
DiscoveryService discoveryService = getDiscoveryService();

// Activate Job
discoveryService.activateJob(new ActivateJobRequest("Range IPs by ICMP",

cmdbContext));

// Get domain & probes info
getProbesInfo(discoveryService);

// Add credentilas entry for ntcmd protcol
addNTCMDCredentialsEntry();

}

382

Chapter 10 • HP Universal CMDB Web Service API
public static void addNTCMDCredentialsEntry() throws Exception {
DiscoveryService discoveryService = getDiscoveryService();

// Get domain name
StrList domains =

discoveryService.getDomainsNames(new
GetDomainsNamesRequest(cmdbContext)).getDomainNames();

if (domains.sizeStrValueList() == 0) {
System.out.println("No domains were found, can't create credentials");
return;

}
String domainName = domains.getStrValue(0);

// Create propeties with one byte param
CIProperties newCredsProperties = new CIProperties();

// Add password property - this is of type bytes
newCredsProperties.setBytesProps(new BytesProps());
setPasswordProperty(newCredsProperties);

// Add user & domain properties - these are of type string
newCredsProperties.setStrProps(new StrProps());
setStringProperties("protocol_username", "test user", newCredsProperties);
setStringProperties("ntadminprotocol_ntdomain", "test doamin",

newCredsProperties);

// Add new credentials entry
discoveryService.addCredentialsEntry(new

AddCredentialsEntryRequest(domainName, "ntadminprotocol", newCredsProperties,
cmdbContext));

System.out.println("new credentials craeted for domain: " + domainName + " in
ntcmd protocol");

}

private static void setPasswordProperty(CIProperties newCredsProperties) {
BytesProp bProp = new BytesProp();
bProp.setName("protocol_password");
bProp.setValue(new byte[] {101,103,102,104});
newCredsProperties.getBytesProps().addBytesProp(bProp);

}

383

Chapter 10 • HP Universal CMDB Web Service API
private static void setStringProperties(String propertyName, String value,
CIProperties newCredsProperties) {

StrProp strProp = new StrProp();
strProp.setName(propertyName);
strProp.setValue(value);
newCredsProperties.getStrProps().addStrProp(strProp);

}

private static void getProbesInfo(DiscoveryService discoveryService) throws
Exception {

GetDomainsNamesResponse result =
discoveryService.getDomainsNames(new GetDomainsNamesRequest(cmdbContext
));

// Go over all the domains
if (result.getDomainNames().sizeStrValueList() > 0) {

String domainName = result.getDomainNames().getStrValue(0);
GetProbesNamesResponse probesResult =

discoveryService.getProbesNames(new
GetProbesNamesRequest(domainName, cmdbContext));

// Go over all the probes
for (int i=0; i<probesResult.getProbesNames().sizeStrValueList(); i++) {

String probeName = probesResult.getProbesNames().getStrValue(i);

// Check if connected
IsProbeConnectedResponce connectedRequest =

discoveryService.isProbeConnected(new
IsProbeConnectedRequest(domainName, probeName, cmdbContext));

Boolean isConnected = connectedRequest.getIsConnected();

// Do something …
System.out.println("probe " + probeName + " isconnect=" +

isConnected);
}

}
}

384

Chapter 10 • HP Universal CMDB Web Service API
private static DiscoveryService getDiscoveryService() throws Exception {
DiscoveryService discoveryService = null;
try {

// Create service
URL url = new URL(PROTOCOL,HOST_NAME,PORT, FILE);
DiscoveryServiceStub serviceStub = new

DiscoveryServiceStub(url.toString());

// Authenticate info
HttpTransportProperties.Authenticator auth = new

HttpTransportProperties.Authenticator();
auth.setUsername(USERNAME);
auth.setPassword(PASSWORD);

serviceStub._getServiceClient().getOptions().setProperty(HTTPConstants.AUTHENTIC
ATE,auth);

discoveryService = serviceStub;
} catch (Exception e) {

throw new Exception("cannot create a connection to service ", e);
}

return discoveryService;

}
} // End class
385

Chapter 10 • HP Universal CMDB Web Service API
386

11
Data Flow Management API

This chapter includes:

Concepts

 ➤ Data Flow Management API Overview on page 388

 ➤ Conventions on page 388

 ➤ Discovery and Dependency Mapping Web Service on page 389

Tasks

 ➤ Call the Web Service on page 390

Reference

 ➤ Discovery and Dependency Mapping Methods on page 391

 ➤ Code Sample on page 404
387

Chapter 11 • Data Flow Management API
Concepts

Data Flow Management API Overview

This chapter explains how third-party or custom tools can use the
HP Discovery and Dependency Mapping Web Service to manage Data Flow
Management.

For full documentation on the available operations, see HP Discovery and
Dependency Mapping Schema Reference. These files are located in the following
folder:

<UCMDB root
directory>\UCMDBServer\deploy\ucmdb-docs\docs\eng\doc_lib\
DevRef_guide\DDM_Schema\webframe.html

Conventions

This chapter uses the following conventions:

➤ This style Element indicates that an item is an entity in the database or an
element defined in the schema, including structures passed to or returned
by methods. Plain text indicates that the item is being discussed in a general
context.

➤ DDM elements and method arguments are spelled in the case in which they
are specified in the schema. This usually means that a class name or generic
reference to an instance of the class is capitalized. An element or argument
to a method is not capitalized. For example, a credential is an element of
type Credential passed to a method.
388

Chapter 11 • Data Flow Management API
Discovery and Dependency Mapping Web Service

The HP Discovery and Dependency Mapping Web Service is an API used to
integrate applications with HP Universal CMDB. The API provides methods
to:

➤ Manage credentials. View, add, update, and remove.

➤ Manage jobs. View status, activate, and deactivate.

➤ Manage probe ranges. View, add, and update.

➤ Manage triggers. Add or remove a trigger CI, and add, remove, or disable a
trigger TQL.

➤ View general data. Data on domains and probes.

Users of the HP Discovery and Dependency Mapping Web Service should be
familiar with:

➤ The SOAP specification

➤ An object-oriented programming language such as C++, C# or Java

➤ HP Universal CMDB

➤ Discovery and Dependency Mapping

Permissions
The administrator provides login credentials for connecting with the Web
service. The permission levels are View, Update, and Execute. To view the
permissions required for each operation, see each operation’s request
documentation in the HP Discovery and Dependency Mapping Schema
Reference.
389

Chapter 11 • Data Flow Management API
Tasks

**Tasks

Call the Web Service

The HP Discovery and Dependency Mapping Web Service enables calling
server-side methods using standard SOAP programming techniques. If the
statement cannot be parsed or if there is a problem invoking the method,
the API methods throw a SoapFault exception. When a SoapFault exception
is thrown, the service populates one or more of the error message, error
code, and exception message fields. If there is no error, the results of the
invocation are returned.

To call the service, use:

Protocol: http or https (depending on server configuration)
URL: <UCMDB server>:8080/axis2/services/DiscoveryService

Default password: "admin"
Default username: "admin"

SOAP programmers can access the WSDL at:

axis2/services/DiscoveryService?wsdl
390

Chapter 11 • Data Flow Management API
Reference

Discovery and Dependency Mapping Methods

This section contains a list of the Web service operations and a brief
summary of their use. For full documentation of the request and response
for each operation, see HP Discovery and Dependency Mapping Schema
Reference.

This section includes the following topics:

➤ “Data Structures” on page 391

➤ “Managing Discovery Job Methods” on page 392

➤ “Managing Trigger Methods” on page 394

➤ “Domain and Probe Data Methods” on page 396

➤ “Credentials Data Methods” on page 399

➤ “Data Refresh Methods” on page 401

Data Structures
These are some of the data structures used in the DDM Web Service API.

CIProperties

CIProperties is a collection of collections. Each collection contains properties
of a different data type. For example, there can be a dateProps collection, a
strListProps collection, an xmlProps collection, and so on.

Each type collection contains individual properties of the given type. The
names of these properties elements is the same as the container, but in
singular. For example, dateProps contains dateProp elements. Each property
is a name-value pair.

See CIProperties in the HP Discovery and Dependency Mapping Schema
Reference.
391

Chapter 11 • Data Flow Management API
IPList

A list of IP elements, each of which contains an IPv4 Address.

See IPList in the HP Discovery and Dependency Mapping Schema Reference.

IPRange

An IPRange has two elements, the Start and the End elements. Each contains
an Address element which is an IPv4 Address.

See IPLRange in the HP Discovery and Dependency Mapping Schema Reference.

Scope

Two IPRanges. Exclude is a collection of IPRanges to exclude from the job.
Include is a collection of IPRanges to include in the job.

See Scope in the HP Discovery and Dependency Mapping Schema Reference

Managing Discovery Job Methods

activateJob

Activates the specified job.

See example activateJob

Input

deactivateJob

Deactivates the specified job.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 323.

JobName The name of the job.
392

Chapter 11 • Data Flow Management API
Input

dispatchAdHocJob

Dispatches a job on the probe ad-hoc. The job must be active and contain
the specified trigger CI.

Input

getDiscoveryJobsNames

Returns the list of job names.

Input

Output

isJobActive

Checks whether the job is active.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 323.

JobName The name of the job.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 323.

JobName The name of the job.

CIID The ID of the trigger CI.

ProbeName The name of the probe.

Timeout In milliseconds

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 323.

Parameter Comment

strList The list of job names.
393

Chapter 11 • Data Flow Management API
Input

Output

Managing Trigger Methods

addTriggerCI

Adds a new trigger CI to the specified job.

Input

addTriggerTQL

Adds a new trigger TQL to the specified job.

Input

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 323.

JobName The name of the job to check.

Parameter Comment

JobState True if the job is active.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 323.

JobName The name of the job.

CIID The ID of the trigger CI.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 323.

JobName The name of the job.

TqlName The name of the TQL to add.
394

Chapter 11 • Data Flow Management API
disableTriggerTQL

Prevents the TQL from triggering the job, but does not permanently remove
it from the list of queries that trigger the job.

Input

removeTriggerCI

Removes the specified CI from the list of CIs that trigger the job.

Input

removeTriggerTQL

Removes the specified TQL from the list of queries that trigger the job.

Input

setTriggerTQLProbesLimit

Restrict the probes in which the TQL is active in the job to the specified list.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 323.

JobName The name of the job.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 323.

JobName The job name.

CIID The ID of the trigger CI.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 323.

JobName Collection of job names to check.

CIID The ID of the TQL to remove.
395

Chapter 11 • Data Flow Management API
Input

Domain and Probe Data Methods

getDomainType

Returns the domain type.

Input

Output

getDomainsNames

Returns the names of the current domains.

See example getDomainsNames

Input

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 323.

JobName The name of the job.

tqlName The TQL name.

probesLimit The list of probes for which the TQL is active.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 323.

domainName The name of the domain.

Parameter Comment

domainType The domain type.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 323.
396

Chapter 11 • Data Flow Management API
Output

getProbeIPs

Returns the IP addresses of the specified probe.

Input

Output

getProbesNames

Returns the names of the probes in the specified domain.

See example getProbesNames

Input

Output

Parameter Comment

domainNames The list of domain names.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 323.

domainName The domain to check.

probeName The name of the probe used on that domain.

Parameter Comment

probeIPs The IPList of the addresses in the probe.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 323.

domainName The domain to check.

Parameter Comment

probesName The list of probes on the domain.
397

Chapter 11 • Data Flow Management API
getProbeScope

Returns the scope definition of the specified probe.

Input

Output

isProbeConnected

Checks whether the specified probe is connected.

See example isProbeConnected

Input

Output

updateProbeScope

Sets the scope of the specified probe, overriding the existing scope.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 323.

domainName The domain to check.

probeName The name of the probe.

Parameter Comment

probeScope The Scope of the probe.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 323.

domainName The domain to check.

probeName The probe to check

Parameter Comment

isConnected True if the probe is connected.
398

Chapter 11 • Data Flow Management API
Input

Credentials Data Methods

addCredentialsEntry

Adds a credentials entry to the specified protocol for the specified domain.

See example addCredentialsEntry

Input

Output

getCredentialsEntriesIDs

Returns the IDs of the credentials defined for the specified protocol.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 323.

domainName The domain.

probeName The probe to update.

newScope The Scope to set for the probe.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 323.

domainName The domain to update.

protocolName The name of the protocol.

credentialsEntryParameter
s

The CIProperties collection of the new credentials.

Parameter Comment

credentialsEntryID The CI ID of the new credential entry.
399

Chapter 11 • Data Flow Management API
Input

Output

getCredentialsEntry

Returns the credentials defined for the specified protocol. Encrypted
attributes are returned empty.

Input

Output

removeCredentialsEntry

Removes the specified credentials from the protocol.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 323.

domainName The domain to get the credentials for.

protocolName The name of a protocol used on that domain.

Parameter Comment

credentialsEntryIDs The list of credential IDs for the protocol on the
domain.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 323.

domainName The domain to get the credentials for.

protocolName A protocol used on that domain.

credentialsEntryID The credential ID to get.

Parameter Comment

credentialsEntryParameter
s

The CIProperties collection of the credentials.
400

Chapter 11 • Data Flow Management API
Input

updateCredentialsEntry

Sets new values for properties of the specified credentials entry.

The existing properties are deleted and these properties are set. Any property
whose value is not set in this call is left undefined.

Input

Data Refresh Methods

rediscoverCIs

Locates the triggers that discovered the specified CI objects and reruns those
triggers.

rediscoverCIs runs asynchronously. Call checkDiscoveryProgress to
determine when the rediscovery is complete.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 323.

domainName The domain.

protocolName A protocol used on the domain.

credentialsEntryID The ID of the credential to remove.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 323.

domainName The domain to update credentials in.

protocolName A protocol used on the domain.

credentialsEntryID The ID of the credentials to update.

credentialsEntryParameter
s

The CIProperties collection to set as properties for
the credentials.
401

Chapter 11 • Data Flow Management API
Input

Output

checkDiscoveryProgress

Returns the progress of the most recent rediscoverCIs call on the specified
IDs. The response is a value from 0 to 1. When the response is 1, the
rediscoverCIs call has completed.

Input

Output

rediscoverViewCIs

Locates the triggers that created the data to populate the specified view, and
reruns those triggers.

rediscoverViewCIs runs asynchronously. Call checkViewDiscoveryProgress
to determine when the rediscovery is complete.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 323.

CmdbIDs Collection of IDs of the objects to rediscover.

Parameter Comment

isSucceed True if the CIs rediscovery succeeded.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 323.

CmdbIDs Collection of IDs of the objects in the rediscover call
to track.

Parameter Comment

progress A completed job has a progress of 1. Jobs that have
not completed have a fraction less than 1.
402

Chapter 11 • Data Flow Management API
Input

Output

checkViewDiscoveryProgress

Returns the progress of the most recent rediscoverViewCIs call on the
specified view. The response is a value from 0 to 1. When the response is 1,
the rediscoverCIs call has completed.

Input

Output

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 323.

viewName The views to check.

Parameter Comment

isSucceed True if CIs rediscovery succeeded.

Parameter Comment

cmdbContext For details, see “CmdbContext” on page 323.

viewName The collection of views to check.

Parameter Comment

progress A completed job has a progress of 1. Jobs that have
not completed have a fraction less than 1.
403

Chapter 11 • Data Flow Management API
Code Sample

import java.net.URL;

import org.apache.axis2.transport.http.HTTPConstants;
import org.apache.axis2.transport.http.HttpTransportProperties;

import com.hp.ucmdb.generated.params.discovery.*;
import com.hp.ucmdb.generated.services.*;
import com.hp.ucmdb.generated.types.*;

public class test {
static final String HOST_NAME = "<my_hostname>";
static final int PORT = 8080;

private static final String PROTOCOL = "http";
private static final String FILE = "/axis2/services/DiscoveryService";

private static final String PASSWORD = "<my_password>";
private static final String USERNAME = "<my_username>";

private static CmdbContext cmdbContext = new CmdbContext("ws tests");

public static void main(String[] args) throws Exception {
// Get the stub object
DiscoveryService discoveryService = getDiscoveryService();

// Activate Job
discoveryService.activateJob(new ActivateJobRequest(

"Range IPs by ICMP", cmdbContext));

// Get domain & probes info
getProbesInfo(discoveryService);

// Add credentilas entry for ntcmd protcol
addNTCMDCredentialsEntry();

}

404

Chapter 11 • Data Flow Management API
public static void addNTCMDCredentialsEntry() throws Exception {
DiscoveryService discoveryService = getDiscoveryService();

// Get domain name
StrList domains =

discoveryService.getDomainsNames(
new GetDomainsNamesRequest(cmdbContext)).
getDomainNames();

if (domains.sizeStrValueList() == 0) {
System.out.println("No domains were found, can't create credentials");
return;

}
String domainName = domains.getStrValue(0);

// Create propeties with one byte param
CIProperties newCredsProperties = new CIProperties();

// Add password property - this is of type bytes
newCredsProperties.setBytesProps(new BytesProps());
setPasswordProperty(newCredsProperties);

// Add user & domain properties - these are of type string
newCredsProperties.setStrProps(new StrProps());
setStringProperties("protocol_username", "test user", newCredsProperties);
setStringProperties("ntadminprotocol_ntdomain",

"test doamin", newCredsProperties);

// Add new credentials entry
discoveryService.addCredentialsEntry(

new AddCredentialsEntryRequest(domainName,
"ntadminprotocol", newCredsProperties, cmdbContext));

System.out.println("new credentials craeted for domain: " + domainName + "
in ntcmd protocol");
}

405

Chapter 11 • Data Flow Management API
private static void setPasswordProperty(CIProperties newCredsProperties) {
BytesProp bProp = new BytesProp();
bProp.setName("protocol_password");
bProp.setValue(new byte[] {101,103,102,104});
newCredsProperties.getBytesProps().addBytesProp(bProp);

}

private static void setStringProperties(String propertyName, String value,
CIProperties newCredsProperties) {

StrProp strProp = new StrProp();
strProp.setName(propertyName);
strProp.setValue(value);
newCredsProperties.getStrProps().addStrProp(strProp);

}

406

Chapter 11 • Data Flow Management API
private static void getProbesInfo(DiscoveryService discoveryService) throws
Exception {

GetDomainsNamesResponse result =
discoveryService.getDomainsNames(new
GetDomainsNamesRequest(cmdbContext));

// Go over all the domains
if (result.getDomainNames().sizeStrValueList() > 0) {

String domainName =
result.getDomainNames().getStrValue(0);
GetProbesNamesResponse probesResult =

discoveryService.getProbesNames(
new GetProbesNamesRequest(domainName, cmdbContext));

// Go over all the probes
for (int i=0; i<probesResult.getProbesNames().sizeStrValueList(); i++) {

String probeName = probesResult.getProbesNames().getStrValue(i);

// Check if connected
IsProbeConnectedResponce connectedRequest =

discoveryService.isProbeConnected(
new IsProbeConnectedRequest(
domainName, probeName, cmdbContext));

Boolean isConnected = connectedRequest.getIsConnected();

// Do something …
System.out.println("probe " + probeName + " isconnect=" +

isConnected);
}

}
}

407

Chapter 11 • Data Flow Management API
private static DiscoveryService getDiscoveryService() throws Exception {
DiscoveryService discoveryService = null;
try {

// Create service
URL url = new URL(PROTOCOL,HOST_NAME,PORT, FILE);
DiscoveryServiceStub serviceStub =

new DiscoveryServiceStub(url.toString());

// Authenticate info
HttpTransportProperties.Authenticator auth =

new HttpTransportProperties.Authenticator();
auth.setUsername(USERNAME);
auth.setPassword(PASSWORD);
serviceStub._getServiceClient().getOptions().setProperty(

HTTPConstants.AUTHENTICATE,auth);

discoveryService = serviceStub;
} catch (Exception e) {

throw new Exception("cannot create a connection to service ", e);
}

return discoveryService;

}
}

408

	Developer Reference Guide
	Table of Contents
	Welcome to This Guide
	How This Guide Is Organized
	Who Should Read This Guide
	HP Universal CMDB Online Documentation
	Topic Types

	Additional Online Resources
	Documentation Updates

	Creating Discovery and Integration Adapters
	Adapter Development and Writing
	Concepts
	Adapter Development and Writing Overview
	Content Creation
	The Adapter Development Cycle
	Research and Preparation Phase
	Adapter Development and Testing
	Adapter Packaging and Productization

	Data Flow Management and Integration
	Associating Business Value with Discovery Development
	Researching Integration Requirements
	Modifying an Existing Adapter
	Writing a New Adapter
	Model Research
	Technology Research
	Guidelines for Choosing Ways to Access Data
	Summary

	Developing Integration Content
	Developing Discovery Content
	Discovery Adapters and Related Components
	Separating Adapters

	Tasks
	Implement a Discovery Adapter
	Adapter Code

	Step 1: Create an Adapter
	Step 2: Assign a Job to the Adapter
	Choose a Trigger TQL
	Set Scheduling Information
	Override Parameters

	Step 3: Create Jython Code

	Discovery Content Migration Guidelines
	Concepts
	Discovery Content Migration Guidelines Overview
	Version 9.0x New Infrastructure Features
	The BTO Data Model (BDM)
	Differences Between UCMDB 8.0x Class Model and UCMDB 9.0x Data Model
	New CIT Identification Mechanism
	Running Software Mechanism
	Probe Side Identification
	Transformation Layer

	Guidelines for Developing Cross-Data Model Scripts
	Discovery Scripts API Library

	Implementation Tips

	Tasks
	Access BTO Data Model Documentation Online

	Reference
	Package Migration Utility
	Package Migration Utility Limitations

	Troubleshooting and Limitations

	Developing Jython Adapters
	Concepts
	HP Data Flow Management API Reference

	Tasks
	Create Jython Code
	Use External Java JAR Files within Jython
	Execution of the Code
	Modifying Out-of-the-Box Scripts
	Structure of the Jython File
	Results Generation by the Jython Script
	The Framework Instance
	Finding the Correct Credentials (for Connection Adapters)
	Handling Exceptions from Java

	Support Localization in Jython Adapters
	Add Support for a New Language
	Change the Default Language
	Determine the Character Set for Encoding
	Define a New Job to Operate With Localized Data
	Decode Commands Without a Keyword
	Work with Resource Bundles
	API Reference
	The Language Class
	The executeCommandAndDecode Method
	The getCharsetName Method
	The useCharset Method
	The getLanguageBundle Method
	The osLanguage Field

	Work with Discovery Analyzer
	Run Discovery Analyzer from Eclipse
	Record DFM Code

	Reference
	Jython Libraries and Utilities
	logger.py
	modeling.py
	netutils.py
	shellutils.py

	Error Messages
	Concepts
	Error Messages Overview

	Reference
	Error-Writing Conventions
	Property File Content
	Error Messages Property File
	Locale Naming Conventions
	Error Message Codes
	Unclassified Content Errors
	Changes in Framework

	Error Severity Levels
	Fatal Errors
	Errors
	Warning

	Developing Generic Database Adapters
	Concepts
	Generic Database Adapter Overview
	TQL Queries for the Generic Database Adapter
	Reconciliation
	Hibernate as JPA Provider
	Examples of Object-Relational Mapping
	Associations
	Usability

	Tasks
	Prepare for Adapter Creation
	Prepare the Adapter Package
	Upgrade the Generic DB Adapter from 9.00 or 9.01 to 9.02 and Later
	Configure the Adapter - Minimal Method
	Adapter Configuration - Advanced Method
	Implement a Plugin
	Deploy the Adapter
	Edit the Adapter
	Create an Integration Point
	Create a View
	Calculate the Results
	View the Results
	View Reports
	Enable Log Files
	Use Eclipse to Map Between CIT Attributes and Database Tables

	Reference
	Adapter Configuration Files
	General Configuration
	Advanced Configuration
	Hibernate Configuration
	Simple Configuration
	The adapter.conf File
	The simplifiedConfiguration.xml File
	The orm.xml File
	The reconciliation_types.txt file
	The reconciliation_rules.txt File (for backwards compatibility)
	The transformations.txt File
	The persistence.xml File
	The discriminator.properties File
	The replication_config.txt File
	The fixed_values.txt File

	Out-of-the-Box Converters
	The enum-transformer Converter
	The SuffixTransformer Converter
	The PrefixTransformer Converter
	The BytesToStringTransformer Converter
	The StringDelimitedListTransformer Converter

	Plugins
	Configuration Examples
	Use Case
	Single Node Reconciliation
	Two Node Reconciliation
	Using a Primary Key that Contains More Than One Column
	Using Transformations

	Adapter Log Files
	Log Levels
	Log Locations

	External References
	Troubleshooting and Limitations
	General Limitations
	JPA Limitations
	Functional Limitations

	Developing Java Adapters
	Concepts
	Federation Framework Overview
	Federation on the Fly
	Data Push
	Population

	Adapter and Mapping Interaction with the Federation Framework
	Adapter Lifecycle
	Adapter assist Methods

	Federation Framework Flow for Federated TQL Queries
	Definitions and Terms
	Mapping Engine
	Federated Adapter
	Flow Diagrams

	Federation Framework Flow for Population
	Definitions and Terms
	Flow Diagram

	Adapter Interfaces
	Definitions and Terms
	Adapter Interfaces for Federated TQL Queries

	Tasks
	Debug Adapter Resources
	Add an Adapter for a New External Data Source
	Implement the Mapping Engine
	Create a Sample Adapter

	Reference
	XML Configuration Tags and Properties

	Developing Push Adapters
	Concepts
	Developing Push Adapters Overview
	Differential Synchronization

	Tasks
	Prepare the Mapping Files
	Write Jython Scripts
	Working with the Mapping's Results
	Handling Test Connection in the Script

	Support Differential Synchronization
	Build an Adapter Package

	Reference
	Mapping File Schema
	Mapping Results Schema

	Using APIs
	Introduction to APIs
	Concepts
	APIs Overview

	HP Universal CMDB API
	Concepts
	Conventions
	Using the HP Universal CMDB API
	Uses of the API
	Permissions

	General Structure of an Application

	Tasks
	Put the API Jar File in the Classpath
	Create an Integration User

	Reference
	HP Universal CMDB API Reference
	Use Cases
	Populating the CMDB
	Querying the CMDB
	Querying the Class Model
	Analyzing Change Impact

	Examples

	HP Universal CMDB Web Service API
	Concepts
	Conventions
	HP Universal CMDB Web Service API Overview
	Uses of the API
	Permissions

	HP Universal CMDB Web Service API Reference

	Tasks
	Call the Web Service
	Query the CMDB
	Just In Time Response Calculation
	Processing Large Responses
	Specifying Properties to Return
	Concrete Properties
	Derived Properties
	Naming Properties
	Other Property Specification Elements

	Update the UCMDB
	UCMDB Update Parameters
	Use of ID Types with Update Methods

	Query the UCMDB Class Model
	getClassAncestors
	getAllClassesHierarchy
	getCmdbClassDefinition

	Query for Impact Analysis

	Reference
	UCMDB General Parameters
	CmdbContext
	ID
	Key Attributes
	ID Types
	CMDBCIProperties
	Type Name
	Configuration Item (CI)
	Relation

	UCMDB Output Parameters
	CIs
	ShallowRelation
	Topology
	CINode
	RelationNode
	TopologyMap
	ChunkInfo

	UCMDB Query Methods
	executeTopologyQueryByNameWithParameters
	Input
	Output
	executeTopologyQueryWithParameters
	Input
	Output
	getChangedCIs
	Input
	Output
	getCINeighbours
	Input
	Output
	getCIsByID
	Input
	Output
	getCIsByType
	Input
	Output
	getFilteredCIsByType
	Input
	Output
	getQueryNameOfView
	Input
	Output
	getTopologyQueryExistingResultByName
	Input
	Output
	getTopologyQueryResultCountByName
	Input
	Output
	pullTopologyMapChunks
	Input
	Output
	releaseChunks
	Input

	UCMDB Update Methods
	addCIsAndRelations
	addCustomer
	deleteCIsAndRelations
	removeCustomer
	updateCIsAndRelations

	UCMDB Impact Analysis Methods
	calculateImpact
	getImpactPath
	getImpactRulesByNamePrefix

	Use Cases
	Populating the CMDB
	Querying the CMDB
	Querying the Class Model
	Analyzing Change Impact

	Examples
	The Example Base Class
	Query Example
	Update Example
	Class Model Example
	Impact Analysis Example
	Adding Credentials Example

	Data Flow Management API
	Data Flow Management API Overview
	Conventions
	Discovery and Dependency Mapping Web Service
	Permissions

	Call the Web Service
	Discovery and Dependency Mapping Methods
	Data Structures
	Managing Discovery Job Methods
	Managing Trigger Methods
	Domain and Probe Data Methods
	Credentials Data Methods
	Data Refresh Methods

	Code Sample

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /JPXEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG2000
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /JPXEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG2000
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings when submitting to HP. These settings require font embedding.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

