
HP TransactionVision

Software Version: 7.50
Sensor Installation and Configuration Guide
Software Release Date: May 2008

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent
with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and
Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard
commercial license.

Copyright Notices

© Copyright 2008 Hewlett-Packard Development Company, L.P.

Trademark Notices

Java™ is a U.S. trademark of Sun Microsystems, Inc.

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.

Oracle® is a registered trademark of Oracle Corporation and/or its affiliates.

UNIX® is a registered trademark of The OpenGroup.
2

Documentation Updates

This guide’s title page contains the following identifying information:

• Software Version number, which indicates the software version.

• Document Release Date, which changes each time the document is updated.

• Software Release Date, which indicates the release date of this version of the software.

To check for recent updates, or to verify that you are using the most recent edition of a document, go to:

http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign-in. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

Or click the New users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support service.
Contact your HP sales representative for details.
3

Support

You can visit the HP Software Support Online web site at:

http://www.hp.com/go/hpsoftwaresupport

This web site provides contact information and details about the products, services, and support that HP
Software offers.

HP Software Support Online provides customer self-solve capabilities. It provides a fast and efficient way to
access interactive technical support tools needed to manage your business. As a valued support customer, you
can benefit by using the HP Software Support web site to:

• Search for knowledge documents of interest

• Submit and track support cases and enhancement requests

• Download software patches

• Manage support contracts

• Look up HP support contacts

• Review information about available services

• Enter into discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a
support contract.

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html
4

Contents
1 TransactionVision Sensor Overview. 9

Available Sensor Types . 9
WebSphere MQ (WMQ) Sensors . 10
Java Sensors . 11
CICS Sensor . 12

Installation Overview . 12
Upgrading from Previous Sensor Releases. 12
Additional TransactionVision Resources . 12

2 Installing and Configuring Java Agent . 15

About Installing and Configuring the Java Agent . 15
Installation Files. 16

Installing and Configuring the Java Agent on Windows. 16
Launching the Installer on Windows. 16
Running the Installation on Windows. 17
Configuring the Java Agent to Work as a TransactionVision Java Sensor on Windows 18

Post Configuration Options. 24
Enable Java Agent in Applications on Windows . 24
Enable Java Agent in Applications on UNIX. 25

Installing and Configuring the Java Agent on UNIX . 26
Downloading the Installer on UNIX . 26
Running the Installation on UNIX . 26
Configuring the Java Agent to Work as a TransactionVision Java Sensor on UNIX 27

Configuring the Java Agent on UNIX in Graphical Mode . 27
Configuring the Java Agent on UNIX in Console Mode . 28

Silent Installation of the Java Agent . 32
Running the JRE Instrumenter . 33

JRE Instrumenter Processing . 34
Running the JRE Instrumenter Manually . 34

Running the JRE Instrumenter on a Windows Machine . 34
Running the JRE Instrumenter on a UNIX Machine . 37

Configuring the Application Servers. 40
About Configuring the Application Server . 40
Configuring WebSphere Application Servers . 41

WebSphere 5.x and 6.0 . 41
WebSphere 6.1 . 44
Running the JRE Instrumenter for WebSphere IDE . 45
Using the JMS Sensor with the WebSphere Application Server . 46
Adding Interceptors for Sensors . 46
 5

Configuring WebLogic Application Servers. 46
WebLogic 8.1 . 46
WebLogic 9.2 . 50
Configuring Remote-Started WebLogic Managed Servers . 51

Configuring Messaging System Providers . 52
IBM WebSphere MQ. 52
TIBCO EMS . 53
Progress SonicMQ. 53
BEA WebLogic JMS . 53

3 Installing WebSphere MQ and User Event Sensors on UNIX Platforms . 55

Installing Sensors . 55
Installation Files. 55
Installation Steps . 55
Rebinding the WebSphere MQ Sensor on AIX . 56

Uninstalling Sensors . 57

4 Installing WebSphere MQ and User Event Sensors on Windows . 59

Initial Installation . 59
Upgrade Installation . 60
Modifying the Installation. 62
Uninstalling Sensors . 63

5 Installing Sensors on i5/OS. 65

6 Installing Sensors on z/OS . 67

Installing the CICS, WebSphere MQ Batch, and WebSphere MQ IMS Sensors on IBM z/OS 68
Installing the WebSphere MQ CICS and WebSphere MQ IMS Bridge Sensors on IBM z/OS 74

Before You Install the WebSphere MQ Sensor for CICS . 74
SMPE Installation Procedure . 74

Configuring SLMC for CICS . 81
Additional Setup for the WebSphere MQ IMS Bridge Sensor. 83

7 Configuring WebSphere MQ Sensors. 85

Configuring the WebSphere MQ Sensor Library . 85
Distributed Platforms. 85
z/OS Batch, IMS, and WebSphere MQ-IMS Bridge . 86

z/OS CICS. 87
i5/OS . 87

Configuring Sensor Logging. 88
Setting the Configuration Queue Name . 88

UNIX, Windows, and i5/OS. 88
IBM z/OS Batch, IMS and WebSphere MQ-IMS Bridge . 88
Setting the Configuration Queue Check Interval . 91

Configuring the WebSphere MQ Messaging System Provider. 91
Configuring the WebSphere MQ API Exit Sensor . 91

Configuring the API Exit Sensor on Distributed and i5/OS Platforms . 92
Linking the WebSphere MQ API Exit Sensor . 92
6

New Stanzas . 93
Stanza Attributes and Values . 93

Configuring the API Exit Sensor on Windows Platforms. 94
Identifying Programs to Monitor . 94
Discarding WebSphere MQ Events on TransactionVision Queues . 95

WebSphere MQ Sensors and FASTPATH_BINDING . 96
Using Sensors with WebSphere MQ Samples . 96
WebSphere MQ Client Application Monitoring . 96

Distributed Monitoring. 96
Centralized Monitoring . 97
Installation and Configuration Considerations . 99

Using the WebSphere MQ-IMS Bridge Sensor. 99
Sensor Setup . 100
WebSphere MQ-IMS Bridge Sensor Operation. 100
The TVISIONB Buffer Queue . 101
Event Data . 101

Beans.xml. 102
IMSBridgeObject.xml . 102

Data Collection Filters and Queries . 103
Using the WebSphere Business Integration Sensor . 103

Message Brokers Toolkit for WebSphere Studio Integration . 104
TransactionVision User-Defined Node Installation for WBIMB . 104
Node Insertion. 104

8 Configuring the Proxy Sensor . 105

Application Requirements . 105
Enabling the Proxy Sensor . 105
Configuring the Proxy Definition File . 106

Subelements . 106
Optional Attributes for the Proxy Element . 107

Configuring the User Interface . 107

9 Configuring Sensor Logging . 109

Log Files . 109
Java Sensors . 109
WebSphere MQ Sensors . 109

Circular Logging . 109
Maximum Log File Size . 110
Maximum Number of Backup Log Files . 110
Changing from Circular to Linear Logging. 110

Trace Logging. 111
Configuring Separate Log Files for Multiple Sensor Instances . 111
Using Windows and UNIX System Logs . 112

Windows Event Appender . 112
UNIX Event Appender . 113
7

A Utilities Reference. 115

SetupModule . 115
Description . 115
Options . 115

MigrateConfig . 116
Location . 116
Description . 116

rebind_sensor . 117
Location . 117
Description . 117
Syntax . 117
Options . 117

B Configuration Files. 119

License.properties . 119
Performance.properties . 119
Sensor.properties . 119
SensorConfiguration.xml. 120
Setup.properties . 120
tvision-wl-sensorconfig.properties. 121
tvision-ws-sensorconfig.properties . 121

C Additional z/OS Settings. 123

RACF Authorizations. 123
For the TransactionVision CICS Sensor . 123
For the TransactionVision CICS WebSphere MQ (WMQ) Sensor . 124
For the TransactionVision IMS WebSphere MQ (WMQ) Sensor . 124

Firewall Settings . 125
MIPS Required. 125

Index . 127
8

1 TransactionVision Sensor Overview
TransactionVision Sensors collect transactional events from the various applications involved
in your distributed transactions. Sensors are lightweight libraries or exit programs that are
installed on each computer in your environment. Each Sensor monitors calls made by
supporting technologies on that system and compares them against filter conditions. If the
call matches the filter conditions, the Sensor collects entry information about the call, then
passes the call on to the appropriate library for processing. When the call returns, the Sensor
collects exit information about the call. It then combines the entry and exit information into a
TransactionVision event, which it forwards to the Analyzer by placing it on a designated
event queue.

Available Sensor Types

TransactionVision provides the following types of Sensors:

• WebSphere MQ (WMQ) Sensors

• Java Sensors

— Servlet Sensor

— JMS Sensor

— EJB Sensor

— JDBC Sensor

• CICS Sensor

In the following diagram, shaded areas represent the parts of a web application for which
TransactionVision can track events:
9

WebSphere MQ (WMQ) Sensors

• The WebSphere MQ Sensor tracks MQ API calls. These API calls include the entire MQ
API set, the major APIs being MQPUT, MQGET, MQCONN, MQDISC, MQOPEN,
MQCLOSE, etc. There are two types of WebSphere MQ Sensors provided by
TransactionVision on distributed platforms: the WebSphere MQ Library Sensor and the
WebSphere MQ API Exit Sensor. Both of these Sensors report the same information from
an MQ API call. They differ primarily in the mechanism by which they intercept MQ API
calls, their usage, and the amount of data they collect from the system.

• The WebSphere MQ Library Sensor intercepts a WebSphere MQ API call by the
shared library (or DLL) interception method on distributed platforms. This involves
placing the TransactionVision Sensor libraries before the WebSphere MQ libraries in the
application library path. This method is useful if you need to track MQ APIs for specific
applications.

• The WebSphere MQ API Exit Sensor uses the WebSphere MQ API exit support
available on distributed platforms in WebSphere MQ v5.3 and later. This Sensor is
registered as an exit to the queue manager and invoked when any program connecting to
the queue manager invokes a WebSphere MQ API. This method is recommended to collect
MQ events from all applications on a queue manager and in particular the listener and
the channel agents.

• z/OS WebSphere MQ Sensors are provided for tracking MQI API calls in the CICS,
batch and IMS environments on the IBM z/OS system. In the CICS environment, the API
crossing exit provided by the CICS adapter for WebSphere MQ is used to intercept the MQ
API. In the batch and IMS environments, the application has to be re-bound with the
Sensor to intercept MQ API calls.

The following supplemental Sensors are available for WebSphere MQ:
10 Chapter 1

• The Proxy Sensor correlates business transactions into processes that are not monitored
using the TransactionVision Sensor libraries (for example, events between a Sensored
application and an application running on a system where no Sensor is installed such as
an external partner system).

• The WebSphere Business Integration Sensor (previously known as the MQSI Sensor)
distinguishes the various message flows and identifies individual logical transaction
paths within WBI. This Sensor is a WBI plugin that provides a trace node, which is
inserted into the normal execution path of a message flow, and a failure node, that is
inserted into the failure path of a message flow. These nodes generate a MQSI2TRACE
event that allows tracking of the message flow within WBI.

• The WebSphere MQ-IMS Bridge Sensor tracks WebSphere MQ-IMS bridge messages
rather than the WebSphere MQ API calls made by the calling applications. The MQ-IMS
Bridge is a component that enables WebSphere MQ applications to invoke IMS
transactions and receive their reply messages. The MQ-IMS Bridge Sensor tracks MQ
messages coming into the bridge and correlates them with the reply received from IMS.
Two events, MQIMS_BRIDGE_ENTRY and MQIMS_BRIDGE_EXIT are generated for
every message coming in and going out of the bridge. These events contain the MQ
message header and information about which IMS transaction is invoked.

Java Sensors

The capabilities of the TransactionVision Java Sensors (JMS, Servlet, EJB and JDBC) and
the Diagnostics Java Probe are combined into a single component, HP Diagnostics/
TransactionVision Java Agent. The Java Agent instruments and captures events from
applications and sends the information to a Diagnostics Server and/or to a TransactionVision
Analyzer. In this release the Java Agent can be configured to serve as a Java Probe in a
Diagnostics environment or as a Java Sensor in a TransactionVision environment. For
combined environments, the agent can simultaneously serve as both the Probe and the
Sensor. See Chapter 2, Installing and Configuring Java Agent for details.

• The Servlet Sensor tracks servlet methods in a J2EE application server. This Sensor
tracks HTTP calls such as HTTP_POST, HTTP_GET, HTTP_PUT, etc., which result in
method calls into the J2EE container. The Servlet Sensor tracks these method invocations
by instrumenting the servlet to collect events at the entry and exit of each call.

• The JMS Sensor tracks WebSphere MQ Java Message Service or TIBCO EMS events
from standalone Java applications as well as from J2EE application servers. This Sensor
tracks JMS interface methods such as send, receive, etc. These methods are tracked by
instrumenting the JMS library to collect events at the entry and exit of each call.

• The EJB Sensor tracks transactions through business logic within a J2EE application
server. This Sensor tracks all public business methods in an entity bean, session bean or
message driven bean. In addition to the business methods, this Sensor tracks the
ejbCreate, ejbPostCreate, ejbRemove, ejbLoad, ejbStore and onMessage methods. These
methods are instrumented by the Sensor to collect events at the entry and exit of each
call.

• The JDBC Sensor allows users to collect and analyze API and timing information on
SQL calls and transactions made to a relational database through the JDBC API.
TransactionVision Sensor Overview 11

CICS Sensor

The CICS Sensor collects non-WebSphere MQ CICS events to track transactions in a
mainframe environment. The CICS Sensor collects data for five types of events: file control,
temporary storage, transient data, interval control, and program control. For all types, it
tracks information such as Transaction ID, User ID, Terminal ID and SYSID. Other
information collected depends on the event type.

Installation Overview

The TransactionVision installation consists of the following three TransactionVision
packages:

• The Analyzer binaries and configuration files. Install this package on all hosts where you
want the Analyzer service to run. For instructions on installing and configuring the
Analyzer, see the TransactionVision Analyzer Installation and Configuration Guide.

• The TransactionVision Web User Interface, which consists of WebSphere or WebLogic
related files such as the .ear file, JSPs, servlets, and so on. Install this package on the
hosts that users and administrators will access via web browsers to use and manage
TransactionVision. For instructions on installing and configuring the Web User Interface,
see the TransactionVision Web Application Installation and Configuration Guide.

• TransactionVision Sensors. Install these packages on all hosts running applications that
you wish to collect information about. This guide provides instructions for installing
Sensors.

Installation steps vary for the different TransactionVision components on different platforms.

Before installing Sensors, make sure the systems you are installing on meet the software
requirements for TransactionVision. Requirements vary for each package (Sensors, Analyzer,
and Web User Interface). See the TransactionVision Release Notes for detailed software
requirements.

Upgrading from Previous Sensor Releases

The Java Servlet, JMS and EJB Sensors from TransactionVision 5.00 can be used with the
TransactionVision 7.50 Analyzer. TransactionVision 7.50 Sensors may not be used with older
versions of the TransactionVision Analyzer.

Additional TransactionVision Resources

The following documents are provided with TransactionVision:

• The TransactionVision Planning Guide provides information to help you plan the
TransactionVision implementation in your environment.

• The TransactionVisionWeb Application Installation and Configuration Guide provides
instructions for installing and configuring the TransactionVision web user interface. This
file is also available from the TransactionVision Help menu.
12 Chapter 1

• The TransactionVision Analyzer Installation and Configuration Guide provides
instructions for installing and configuring the TransactionVision Analyzer, and setting up
your database for the Analyzer. This file is also available from the TransactionVision Help
menu.

• The TransactionVision Administration Guide provides instructions managing user
accounts and communication links, configuring projects and data collection filters, and
managing services and schemas. This file is also available from the TransactionVision
Help menu.

• The TransactionVision User’s Guide provides instructions using TransactionVision
analysis views. This file is also available from the TransactionVision Help menu.

• The TransactionVision Advanced Customization Guide provides information for creating
custom beans and reports for use with TransactionVision.

• The TransactionVision Security Guide provides an overview of the security features and
setup procedures of TransactionVision. These features and procedures ensure that data
collected by TransactionVision is secure and accessible to the appropriate people.
TransactionVision Sensor Overview 13

14 Chapter 1

2 Installing and Configuring Java Agent
This chapter provides instructions on installing and configuring the HP Diagnostics/
TransactionVision Java Agent on Windows and UNIX.

This chapter includes:

• About Installing and Configuring the Java Agent

• Installing and Configuring the Java Agent on Windows

• Installing and Configuring the Java Agent on UNIX

• Silent Installation of the Java Agent

• Running the JRE Instrumenter

• Configuring the Application Servers

• Configuring Messaging System Providers

About Installing and Configuring the Java Agent

The Java Agent combines the capabilities of the TransactionVision Java Sensors (JMS,
Servlet, JDBC and EJB) and the Diagnostics Java Probe into a single component. The Java
Agent can be configured to serve as a J2EE Probe in a Diagnostics environment or as a Java
Sensor in a TransactionVision environment and for combined environments, the agent can
simultaneously serve as both the Probe and the Sensor.

To use the Java Agent as a TransactionVision Java Sensor, you need to perform the following
operations:

1 Install the HP Diagnostics/TransactionVision Java Agent.

The Java Agent is installed on the machine hosting the application that you want to
monitor. See Installing and Configuring the Java Agent on Windows on page 16 and
Installing and Configuring the Java Agent on UNIX on page 26.

2 Configure the Java Agent.

The Java Agent is configured to function as a TransactionVision Java Sensor, a J2EE
Probe or both. This guide provides instructions for configuring the Java Agent as a
TransactionVision Java Sensor. See Configuring the Java Agent to Work as a
TransactionVision Java Sensor on Windows on page 18 and Configuring the Java Agent to
Work as a TransactionVision Java Sensor on UNIX on page 27.

3 Configure the application server.

To allow the Java Sensor to monitor an application, you need to instrument the JRE (see
Running the JRE Instrumenter on page 33) and configure the application server (see
Configuring the Application Servers on page 40).
15

Installation Files

The following table shows the installation file names for the TransactionVision Java Agent for
each platform.

Installing and Configuring the Java Agent on Windows

The following steps provide detailed instructions for installing the Java Agent on a Windows
machine. These instructions also apply when you are installing the Java Agent on a UNIX
machine using the graphical installer.

If there is a pre-existing installation of the Java Agent, the legacy J2EE Probe, or the legacy
TransactionVision 5.0 Sensors on the host machine, you must uninstall it before you install
the Java Agent.

This section includes:

• Launching the Installer on Windows

• Running the Installation on Windows

• Configuring the Java Agent to Work as a TransactionVision Java Sensor on Windows

Launching the Installer on Windows

You may launch the Java Agent installer from the HP Software web site, from the Diagnostics
or TransactionVision product disk, or from the Downloads page in Business Availability
Center.

You must be a user in the Administrators group to install the Java Agent.

To launch the installer from the HP Software Web site:

1 Go to the HP Software Web site’s Download Center.

2 In the Quick Search section, in the Products list, click Diagnostics and click Search.

3 Under Software Trial, select the appropriate link.

4 Follow the download instructions on the Web site.

5 Continue with Running the Installation on Windows on page 17.

To launch the installer from the Diagnostics product installation disk:

1 Run the setup.exe file in the root directory of the installation disk. The Diagnostics
Setup program begins and displays the installation menu page.

Platform Files

Windows JavaAgentSetup_win_7_50.exe

AIX JavaAgentSetup_ibm_7_50.bin

Linux JavaAgentSetup_linux_7_50.bin

Solaris JavaAgentSetup_sol_7_50.bin
16 Chapter 2

2 From the installation menu page, select Diagnostics/TransactionVision Agent for
Java to launch the installer.

To launch the installer from the TransactionVision product installation disk:

1 From the <HP TransactionVision Installation Disk>\TransactionVision directory,
run the executable file JavaAgentSetup_win_750.exe.

2 Continue with “Running the Installation on Windows” on page 17.

To launch the installer from Business Availability Center:

1 Select Admin > Platform from the top menu in Business Availability Center, and click
the Setup and Maintenance tab.

2 On the Downloads page, click the appropriate link to download the Java Agent installer
for Windows.

3 Continue with Running the Installation on Windows on page 17.

Running the Installation on Windows

After you have launched the installer, the software license agreement opens and you are ready
to run the installation.

To install the Java Agent on a Windows machine:

1 Accept the end user license agreement.

Read the agreement and select I accept the terms of the license agreement.

Click Next to proceed.

2 Specify the location where you want to install the agent.

Accept the default directory or select a different location either by typing the path to the
installation directory into the Installation Directory Name box, or by clicking Browse to
navigate to the installation directory.

Click Next to proceed.

3 Review the summary information.

The installation directory and size requirement are listed.

Click Next to proceed.

4 Review the installation summary information. If the summary information
panel indicates no errors, click Next to proceed.

The Java Agent Setup Module is started. This begins the Java Agent configuration.

The Java Agent installers are available in Business Availability Center only if you
provided the path to the Java Agent installers directory during the installation of
the Diagnostics Server in Command mode.
Installing and Configuring Java Agent 17

Configuring the Java Agent to Work as a TransactionVision Java Sensor on
Windows

This section provides detailed instructions on how to configure the Java Agent to work as a
TransactionVision Java Sensor using the Java Agent Setup Module user interface.

The Java Agent Setup Module starts automatically at the end of the Java Agent Installation.
You can start the setup module at any time by choosing Start > All Programs > HP Java Agent >
Setup Module.

Perform the following steps to configure the Java Agent to work with a TransactionVision
Java Sensor:

1 Select the TransactionVision Java Agent working with an HP
TransactionVision Server option.

You can also choose from the following options:

• Configure the Java Agent to work as a Diagnostics Profiler only. If you are configuring the
Java Agent as a Diagnostics Profiler only, see “Configuring the Java Agent as a
Profiler Only” in the HP Diagnostics Installation and Configuration Guide.

• Configure the Java Agent as a Diagnostics Java Agent working with an HP Diagnostics
Server. If you are configuring the Java Agent to work as a J2EE Probe with a
Diagnostics Server, See “Configuring the Probe to Work with a Diagnostics Server” in
the HP Diagnostics Installation and Configuration Guide.

• Configure the Java Agent as both a Diagnostics Java Agent and a TransactionVision Java
Agent. If you are configuring the Java Agent to work as a J2EE Probe with a
Diagnostics Server and also as a TransactionVision Java Sensor, select both check
boxes and continue to step2. After this step, you first configure the Java Agent as the
J2EE Probe (described in “Configuring the Java Agent to Work with a Diagnostics
Server” in the HP Diagnostics Installation and Configuration Guide), then you
configure the Java Agent as the J2EE TransactionVision Java Sensor starting with
step 3.

Click Next to proceed.
18 Chapter 2

2 Assign a name to the Java Agent and specify the group to which it belongs.

• For the Java Agent name, enter a name that uniquely identifies the agent within
TransactionVision. The following characters can be used in the name: - , _ , and all
alphanumeric characters. The agent name is assigned to be the Java Sensor name.

When assigning a name to an agent, choose a name that will help you recognize the
application that the agent is monitoring, and the type of Java Sensor.

• For the Java Agent group name, enter a name for an existing group or for a new group
to be created. The agent group name is case-sensitive.

Click Next to proceed.

3 Set the application server to be monitored and its installation directory.
Choose the JMS vendor to be used for the communication link transport.
Installing and Configuring Java Agent 19

• You can right-click inside the text box to open a file selection dialog.

• Change the name of the configuration queue if you use a different queue.

• Enter the user name and password for the JMS provider if they are required.

• Click Next to continue.

4 Configure what JMS and JDBC implementation you want to monitor.

Enter the installation directory path of the corresponding implementation. You can
right-click inside the text box to open the file selection dialog,
20 Chapter 2

5 Configure your JMS transport settings.

• If you choose WebSphere MQ as your communication link transport, configure the
transport settings using WebSphere MQ JMS server binding or client connection.

— Enter the configuration queue manager name.

— If you choose the client connection, enter the client queue manager configuration
information: host, port and channel.

— Enter or browse for the WebSphere MQ installation location.

BEA JMS for WebLogic 8.1.x is monitored automatically, and no additional
configuration is necessary since it is integrated with WebLogic Application Server

On 64-bit Windows with WebSphere MQ 6.0, if you want to monitor a 64-bit JVM,
you must choose client instead of server. WebSphere MQ 6.0 does not support
server binding on 64-bit Windows platforms.
Installing and Configuring Java Agent 21

• If you choose TIBCO EMS as your communication link transport, configure the
transport settings for TIBCO EMS.

— Enter the host name. You can change the default port if you wish.

— Enter or browse for the TIBCO EMS installation location.

— You can add and define EMS servers. Click Add to open the add dialog.

Enter the server definitions and click OK. To change the definitions, select the
server and click Edit. To see what the definitions are for a selected server, click
List.
22 Chapter 2

• If you choose SonicMQ as your communication link transport, configure the transport
settings for SonicMQ.

— Use the default tcp protocol unless a different protocol is used.

— Enter the host name. You can change the default port if you wish.

— Enter or browse for the SonicMQ installation location.

• If you choose WebLogic JMS as your communication link transport, configure the
transport settings for WebLogic JMS.

.

— Enter the host name. You can change the default port if you wish.

— Enter the queue connection factory.

— Enter or browse for the WebLogic JMS installation location. It is typically the
same as your WebLogic application server installation location.

You can go to any page to make changes any time you want.

6 Save the configuration.

When you finish all the settings, click Finish to save the configuration. This action
modifies both Diagnostics and TransactionVision configuration files.
Installing and Configuring Java Agent 23

Post Configuration Options

After modifying the configuration files, the Java Agent Setup Module automatically generates
a master instrumentation file based on the version of various software installed on your
system. This process takes several minutes. A wait dialog displays during the process.

At the end, the Java Agent Setup Module tests if the transport settings are valid.

If any validation fails, check your transport settings and make sure that your JMS server or
queue manager is running with proper settings.

If validation is successful, you can choose to run the JRE Instrumenter automatically by
checking Run the JRE Instrumenter to instrument the JRE used by the application server to be
monitored. By default, the JRE Instrumenter option is not selected. If your JRE version is
prior to 1.5, you must select this check box or run the JRE Instrumenter manually. For a
complete description of the JRE Instrumenter and how to run it manually, see Running the
JRE Instrumenter on page 33.

Enable Java Agent in Applications on Windows

For Java 1.5+

• To enable the Java Agent to monitor an application running on JRE 1.5 +, add the
following JVM option to the java command line that starts the application:

java -javaagent:<java_agent_install_dir>\DiagnosticsAgent\lib\probeagent.jar

where <java_agent_install_dir> refers to the path of your Java Agent installation
directory. The default path is C:\MercuryDiagnostics\JavaAgent.

• To enable Java Agent for application servers, see Configuring the Application Servers on
page 40.
24 Chapter 2

For Java 1.4

For any applications or application servers running with JRE version 1.4 (such as WebSphere
5.1, 6.0 or WebLogic 8.1), you need to run Java Agent’s JRE Instrumenter tool to instrument
the JRE that your application or application server is using. See Running the JRE
Instrumenter on page 33 for complete details.

Enable Java Agent in Applications on UNIX

For Java 1.5+

• To enable the Java Agent to monitor an application running on JRE 1.5 +, add the
following JVM option to the java command line that starts the application:

java -javaagent:<java_agent_install_dir>/DiagnosticsAgent/lib/
probeagent.jar

where <java_agent_install_dir> refers to the path of your Java Agent installation
directory. The default path is /opt/MercuryDiagnostics/JavaAgent.

• To enable Java Agent for application servers, see Configuring the Application Servers on
page 40.

For Java 1.4

For any applications or application servers running with JRE version 1.4 (such as WebSphere
5.1, 6.0 or WebLogic 8.1), you need to run Java Agent’s JRE Instrumenter tool to instrument
the JRE that your application or application server is using. See Running the JRE
Instrumenter on page 33 for complete details.

Regarding WebSphere MQ

If you use WebSphere MQ as your communication transport and you choose the connection
type as server (default) in the Java Agent setup, you also need to add the path to WebSphere
MQ java/lib to your system's library path environment variable. For example:

On AIX, add:

set LIBPATH=$LIBPATH:/usr/mqm/java/lib

export LIBPATH

On Solaris or Linux, add:

set LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/mqm/java/lib

export LD_LIBRARY_PATH

Replace lib with lib64 if your JVM is 64-bit.

On Windows, you typically do not need such settings because this path has been added to your
PATH environment variable when you installed WebSphere MQ.
Installing and Configuring Java Agent 25

Installing and Configuring the Java Agent on UNIX

Java Agent installers have been provided for several UNIX platforms. The following
instructions provide you with the steps necessary to install the Java Agent in most UNIX
environments using either a graphical mode installation or a console mode installation.

The instructions and screen shots that follow are for an agent installation on an AIX machine.
These same instructions should apply for the other certified UNIX platforms.

If there is a pre-existing installation of the Java Agent, the legacy J2EE Probe, or the legacy
TransactionVision 5.0 Sensors on the host machine, you must uninstall it before you install
the Java Agent.

Downloading the Installer on UNIX

You may download the Java Agent installer from the HP Software web site, from the
Diagnostics or TransactionVision product disk, or from the Downloads page in Business
Availability Center.

You must be the root user to install the Java Agent.

To copy the installer from the product installation disk:

1 From the <HP TransactionVision Installation Disk>/
TransactionVision_Installers directory, copy the installer
JavaAgentSetup<platform>_7_50.bin to the machine where the TransactionVision
Server is to be installed.

2 Continue with Running the Installation on UNIX on page 26.

To download the installer from the Downloads page (for Business Availability Center users):

1 Select Admin > Platform from the top menu in Business Availability Center, and click the
Setup Maintenance tab.

2 On the Downloads page, click the link to the installer that is appropriate for your
environment and save it to the machine where the agent is to be installed.

Running the Installation on UNIX

After you have copied the installer to the machine where the Java Agent is to be installed, you
are ready to run the installation.

To install the Java Agent on a UNIX machine:

1 Run the installer.

Where necessary, change the mode of the installer file to make it executable.

• Ensure that you are logged in as a root user.

• To run the installer in console mode, enter the following at the UNIX command
prompt:

./JavaAgentSetup_<platform>_7_50.bin -console

The installer displays the installation prompts in console mode as shown in the steps
that follow.
26 Chapter 2

• To run the installer in the graphical mode enter the following at the UNIX command
prompt:

xhost + #allows you to display the UI on the console

export DISPLAY=<hostname>:0.0

./JavaAgentSetup_<platform>_7_50.bin

The installer displays the same screens that are displayed for the Windows installer,
as shown in Installing and Configuring the Java Agent on Windows on page 16.

2 Accept the end user license agreement.

The end user software license agreement is displayed.

Read the agreement. As you read, you can press Enter to move to the next page of text, or
type q to jump to the end of the license agreement.

Accept the terms of the agreement by typing the number 1 and pressing Enter.

Type 0 (zero) and press Enter, then type the number 1 and press Enter to continue with the
installation.

3 Specify the location where you want to install the agent.

At the Installation Directory Name prompt, accept the default installation location shown in
brackets, or enter the path to a different location.

Type the number 1 and press Enter to continue with the installation.

4 Verify the installation location.

The installation location and the estimated size are listed.

If these are acceptable, type the number 1 and press Enter to start the installation.

The installation may take a few minutes.

The Java Agent Setup Module is launched.

Configuring the Java Agent to Work as a TransactionVision Java Sensor on UNIX

The following instructions provide you with the steps necessary to configure the Java Agent
as a TransactionVision Java Sensor in most UNIX environments using the Java Agent Setup
Module in either a graphical mode or a console mode.

The Java Agent Setup Module starts automatically at the end of the Installation program.
You can start the Java Agent Setup Module at any time by running:

<java_agent_install_dir>/DiagnosticsAgent/bin/setupModule.sh

<java_agent_install_dir> refers to the path of your Java Agent installation directory. The
default path is /opt/MercuryDiagnostics/JavaAgent.

Configuring the Java Agent on UNIX in Graphical Mode

To configure the Java Agent with a Java Sensor in graphical mode:

1 Set up the graphical interface.

Export your display back to your terminal.

xhost + #allows you to display the UI on the console
Installing and Configuring Java Agent 27

export DISPLAY=<hostname>:0.0

2 Run the Java Agent Setup Module.

<java_agent_install_dir>/DiagnosticsAgent/bin/setupModule.sh

The Java Agent Setup Module displays the same screens that are displayed for the
Windows Java Agent Setup Module, as shown in Configuring the Java Agent to Work as a
TransactionVision Java Sensor on Windows on page 18.

Configuring the Java Agent on UNIX in Console Mode

To configure the Java Agent with a Java Sensor in console mode:

1 Select the TransactionVision Java Agent working with an HP
TransactionVision Server option by entering X for this option.

• Enter O (capital letter O) to skip the Diagnostics Profile Only option and again to skip
the Diagnostics Java Agent working with an HP Diagnostics Server option.

• If you want to configure the Java Agent to work as both a J2EE Probe with a
Diagnostics Server and as a TransactionVision Java Sensor, enter O for both options
and continue to step2.

Press Enter to continue.

2 Assign a name to the Java Agent and specify the group to which it belongs.

• For the Java Agent name, enter a name that uniquely identifies the agent within
TransactionVision. The following characters can be used in the name: - , _ , and all
alphanumeric characters. The agent name is assigned to be the Java Sensor name.

When assigning a name to an agent, choose a name that will help you recognize the
application that the agent is monitoring, and the type of Java Sensor.
28 Chapter 2

• For the Java Agent group name, enter a name for an existing group or for a new group
to be created. The agent group name is case-sensitive.

Press Enter to continue.

3 Set the application server to be monitored and enter its installation directory.
Choose the JMS vendor to be used for the communication link transport.

s

• Change the name of the configuration queue if you use a different queue.

• Enter the user name and password for the JMS provider if they are required.

• Press Enter to continue.

4 Configure what JMS and JDBC implementation you want to monitor.

• Press Enter at the Additional TransactionVision Properties prompt.

• Select one or more JMS properties by entering capital X for yes or capital O for no
next to each transport (if you wish, you can enter no for all properties).

• If you specify yes for any transport, you need to enter the installation path for that
transport.

Use the TransactionVision Startup Properties field to define additional properties for
TransactionVision Java Sensor. The com.bristol.tvision.sensor.disableApps
property disables the Sensor for any application name listed. Delimit multiple
applications with a comma. The default value is shown in the screen shot.
Installing and Configuring Java Agent 29

• Select the JDBC database if you wish.

5 Configure your JMS transport settings.

• If you choose WebSphere MQ as your communication link transport, configure the
transport settings using WebSphere MQ JMS server binding or client connection.

— Enter the configuration queue manager name and press Enter.

— If you choose the client connection, enter the client queue manager configuration
information: host, port and channel.

— Enter the WebSphere MQ installation location and press Enter.

• If you choose SonicMQ as your communication link transport, configure the transport
settings for SonicMQ.

— Enter the name of the protocol and press Enter.

— Enter the host name and press Enter.

— Press Enter to choose the default port, or enter a different one and press Enter.

— Enter the SonicMQ installation location and press Enter.

• If you choose TIBCO EMS as your communication link transport, configure the
transport settings for TIBCO EMS.

BEA JMS for WebLogic 8.1.x is monitored automatically, and no additional
configuration is necessary since it is integrated with WebLogic Application Server
30 Chapter 2

— Enter the host name and press Enter.

— Press Enter to choose the default port, or enter a different one and press Enter.

— Enter the TIBCO EMS installation location.

— You can add and define EMS servers:

Type A and press Enter. Enter each server definition and press Enter after each one
you enter.

• If you choose WebLogic JMS as your communication link transport, configure the
transport settings for WebLogic JMS.

— Enter the host name and press Enter.

— Press Enter to choose the default port, or enter a different one and press Enter.

— Enter the queue connection factory and press Enter.

— Enter the WebLogic JMS installation location and press Enter. It is typically the
same as your WebLogic application server installation location.

6 When prompted to save your changes to the Java Agent Setup Module, enter Y.

7 Instrument the JRE.
Installing and Configuring Java Agent 31

Enter the instrumentation commands as described in Running the JRE Instrumenter on
a UNIX Machine on page 37.

8 Enter 0 (zero) to complete the setup.

Once you have installed the agent, configured it as a Java Probe and instrumented the
JRE, you need to perform post-installation tasks.

9 Modify the startup script for the application server so that the probe is started
together with the monitored application.

For detailed instructions, see Configuring the Application Servers on page 40.

10 Verify the Java Agent installation.

Silent Installation of the Java Agent

A silent installation is an installation that is performed automatically, without the need for
user interaction. In place of user input, the silent installation accepts input from a response
file for each step of the installation.

For example, a system administrator who needs to deploy a component on multiple machines
can create a response file that contains all the prerequisite configuration information, and
then perform a silent installation on multiple machines. This eliminates the need to provide
any manual input during the installation procedure.

Before you perform silent installations on multiple machines, you need to generate a response
file that will provide input during the installation procedure. This response file can be used in
all silent installations that require the same input during installation.

The silent installation uses two response files: one for the Java Agent installation and one for
the Java Agent Setup module.

To generate a response file for the Java Agent installation:

Perform a regular installation with the following command-line option:

 <installer> -options-record <installResponseFileName>
32 Chapter 2

This creates a response file that includes all the information submitted during the
installation.

To generate a response file for the Java Agent Setup program:

Run the Java Agent Setup program with the following command-line option.

• On Windows:

 <java_agent_install_dir>\bin\setupModule.cmd -createBackups -console
-recordFile <JASMResponseFileName>

• On UNIX:

 <java_agent_install_dir>/bin/setupModule.sh -createBackups -console
-recordFile <JASMResponseFileName>

Either command creates a response file that includes all the information submitted during
the installation.

To perform a silent installation or configuration:

Perform a silent installation or configuration using the relevant response files.

You set an environment variable and use the -silent command-line option as follows.

set HP_JAVA_AGENT_SETUP=-DoNotRun
<installer> -options <installResponseFileName> -silent

Followed by:

set HP_JAVA_AGENT_SETUP=
cd <setupModule> -createBackups -console -installFile <JASMResponseFileName>

Note that on UNIX systems you need quotes around "-DoNotRun."

Running the JRE Instrumenter

The JRE Instrumenter instruments the ClassLoader class for the JVM that the application is
using and places the instrumented ClassLoader in a folder under the
<java_agent_install_dir>/DiagnosticsAgent/classes directory. It also provides you
with the JVM parameter that must be used when an application or application server is
started so that the application server will use the instrumented class loader.

If the JDK (java.exe executable) used by the application server changes, you must run the
JRE Instrumenter again so that the Java Agent can continue to monitor the processing.

NOTES:

• If you want to instrument IBM's 1.4.2 J9 JRE, you must instrument the correct
ClassLoader and add the -Xj9 option on the application's command line. The correct
ClassLoader is located in the <java dir>\jre\lib\jclSC14 directory (for example,
jreinstrumenter.sh -i \usr\java14_64\jre\lib\jclSC14).

• If the Java Agent is being used to monitor multiple JVMs, the JRE Instrumenter must be
run once for each JVM so that the Java Agent can be prepared to instrument the
applications that are running on each JVM. For details, see “Configuring the Probes for
Multiple Application Server JVM Instances” in the HP Diagnostics Installation and
Configuration Guide.
Installing and Configuring Java Agent 33

JRE Instrumenter Processing

The JRE Instrumenter performs the following functions:

• Identifies JVMs that are available to be instrumented.

• Searches for additional JVMs in directories that you specify.

• Instruments the JVMs that you specify and provides the parameter that you must add to
the startup script for the JVM to point to the location of the instrumented ClassLoader
class.

The Instrumenter puts the instrumented ClassLoader in different places depending on
how it is executed.

— When the Instrumenter is run from the Java Agent installer, the Instrumenter places
the instrumented ClassLoader in a folder under the <java_agent_install_dir>/
DiagnosticsAgent/classes/boot directory.

— When the Instrumenter is run using the graphical interface in a Windows or UNIX
environment, the Instrumenter places the instrumented ClassLoader in a folder
under the <java_agent_install_dir>/DiagnosticsAgent/classes/
<JVM_vendor>/<JVM_version> directory.

— When the Instrumenter is run in a UNIX environment in console mode, the
Instrumenter places the instrumented ClassLoader in either a folder under the
<java_agent_install_dir>/DiagnosticsAgent/classes/boot directory or the
<java_agent_install_dir>/DiagnosticsAgent/classes/<JVM_vendor>/
<JVM_version> directory depending on the processing option specified. For more
information on the UNIX processing options see Instrumenting a Listed JVM on
page 39.

Running the JRE Instrumenter Manually

Instructions for running the JRE Instrumenter in a Windows environment and in a UNIX
environment in console mode are provided below.

This section includes:

• Running the JRE Instrumenter on a Windows Machine on page 34

• Running the JRE Instrumenter on a UNIX Machine on page 37

Running the JRE Instrumenter on a Windows Machine

When the JRE Instrumenter is run in a Windows environment, the Instrumenter displays the
dialogs of its graphical user interface. The same dialogs are displayed when running the
installer on a UNIX machine when the Instrumenter is running in graphical mode.

Starting the JRE Instrumenter on a Windows Machine

1 Go to <java_agent_install_dir>\DiagnosticsAgent\bin to locate the JRE
Instrumenter executable.

2 Run the command:

jreinstrumenter.cmd
34 Chapter 2

When the Instrumenter starts, it displays the JRE Instrumentation Tool dialog.

The Instrumenter lists the JVMs that were discovered by the Instrumenter and are
available for instrumentation. The JVMs that have already been instrumented are listed
with a green square preceding the name of the JVM.

From the JRE Instrumentation Tool dialog you can perform the following tasks:

• If the JVM that you want to instrument is not listed in the Available JVMs list in the
dialog, you can add JVMs to the list as described in Adding JVMs to the Available JVMs
List on page 35.

• If the JVM that you want to instrument is listed but has not yet been instrumented, you
can instrument the JVM as described in Instrumenting a Selected JVM on page 37.

• If the JVM that you want to instrument is listed and has already be instrumented, you
can copy the JVM parameter that must be inserted into the start script for the JVM to
activate the Probe’s monitoring as described in Including the JVM Parameter in the
Application Server’s Startup Script on page 37.

• If you have finished using the JRE Instrumenter you can click Exit to close the JRE
Instrumentation Tool.

Adding JVMs to the Available JVMs List

1 In the JRE Instrumentation Tool dialog, click Add JVM(s) to search for other JVMs and
add them to the Available JVMs list.

The Instrumenter displays the Choose the Directory dialog box.
Installing and Configuring Java Agent 35

2 Enter the directory location where you would like the Instrumenter to begin searching for
JVMs.

3 Click Update to list all the folders in this directory in the Folders list.

4 Select the folder where you would like to begin the search so that its name appears in the
File name box.

5 Click Search from here to start searching for JVMs.

The Instrumenter closes the dialog box and displays the JRE Instrumentation tool dialog
box once more. The command buttons on the dialog are disabled while the Instrumenter
searches for JVMs. A progress bar at the bottom of the dialog indicates that the
Instrumenter is searching and shows how far along it is in the search process.

As the tool locates JVMs, it lists them in the Available JVMs list.

When the Instrumenter has completed the search, it enables the command buttons on the
dialog. If the selected row is a JVM that has already been instrumented, the Instrument
button is disabled. The green square indicates that the JVM has been instrumented.
36 Chapter 2

Instrumenting a Selected JVM

Select a JVM that has not been instrumented from the Available JVMs list and click Instrument.

The JRE Instrumenter instruments the ClassLoader class for the selected JVM and places
the instrumented ClassLoader in a folder under the <java_agent_install_dir>/
DiagnosticsAgent/classes directory. It also displays the JVM parameter in the box below
the Available JVMs list, which must be used when the application server is started.

Including the JVM Parameter in the Application Server’s Startup Script

When the JRE Instrumenter instruments a JVM it also creates the JVM parameter that you
must include in the startup script for the application server in order to cause your application
to use the instrumented class loader. When you select an instrumented JVM from the
Available JVMs list the JVM parameter is displayed in the box below the list. You can copy
and paste one or more instrumented JVMs (one at a time) to the appropriate location for the
application server to pick up.

To copy the JVM parameter displayed in this box to the clipboard, click Copy Parameter. The
JVM parameter is copied to the clipboard so that you can paste it into the location that allows
it to be picked up when your application server starts.

Running the JRE Instrumenter on a UNIX Machine

The following instructions provide you with the steps necessary to run the JRE Instrumenter
using either a graphical mode installation or a console mode installation.

Be s

When all the JVM parameters have been copied and pasted to the appropriate application
server location, be sure to stop and restart the application server for the settings to take
affect. If copy does not work, manually type them in. WebLogic JVM is usually located at the
%bea_home% directory. WebSphere JVM is usually in the %WebSphere_home%\java
directory.
Installing and Configuring Java Agent 37

The JRE Instrumenter screens that are displayed in a graphical mode are the same as those
documented for Windows installer in Running the JRE Instrumenter on a Windows Machine
on page 34.

Starting the JRE Instrumenter on a UNIX Machine

Open <java_agent_install_dir>/DiagnosticsAgent/bin to locate the JRE
Instrumenter executable. Run the following command:

./jreinstrumenter.sh -console

When the Instrumenter starts, it displays a list of the processing options that are available as
shown in the following table:

You can redisplay the list of options by specifying the -x option when you run the
jreinstrumenter.sh command:

./jreinstrumenter.sh -x

Displaying the List of Instrumented JVMs

To display a list of the JVMs that are known to the JRE Instrumenter enter the following
command:

./jreinstrumenter.sh -l

The Instrumenter lists the JVMs that it is aware of in rows containing the JVM vendor, JVM
version, and the location where the JVM is located.

Adding JVMs to the Available JVMs List

To search for JVMs within a specific directory and add any JVMs that are found to the list of
the JVMs that are known to the JRE Instrumenter enter the following command:

./jreinstrumenter.sh -a DIR

If you are installing this agent to work with WebSphere in an Integrated
Development Environment (IDE), you must run the JRE Instrumenter using a
slightly different procedure than is described here. See Running the JRE
Instrumenter for WebSphere IDE on page 45.

Instrumenter Function Description

jreinstrumenter -1 Display the list of known JVMs. See Displaying the
List of Instrumented JVMs on page 38 for details.

jreinstrumenter -a DIR Look for JVMs below the DIR directory. See Adding
JVMs to the Available JVMs List on page 38 for
details.

jreinstrumenter -i JVM_DIR Instrument the JVM in JVM_DIR. See
Instrumenting a Listed JVM on page 39 for details.

jreinstrumenter -b JVM_DIR Instrument the JVM in JVM_DIR and put the
ClassLoader in <java_agent_install_dir>/
DiagnosticsAgent/classes/boot. See
Instrumenting a Listed JVM on page 39 for details.
38 Chapter 2

Replace DIR with the path to the location where you would like the Instrumenter to begin
searching.

The Instrumenter searches the directories from the location specified including the directories
and subdirectories. When it has completed its search, it displays the updated list of Available
JVMs.

Instrumenting a Listed JVM

To instrument a JVM listed in the Available JVMs list, use one of the following two
commands:

• Explicit path to ClassLoader

./jreinstrumenter.sh -i JVM_DIR

Replace JVM_DIR with the path to the location of the JVM as specified in the Available
JVM list.

This command instructs the JRE Instrumenter to instrument the ClassLoader class for
the selected JVM and places the instrumented ClassLoader in a folder under the
<java_agent_install_dir>/DiagnosticsAgent/classes/<JVM_vendor>/
<JVM_version> directory.

This is the command that you should use; especially if you want to instrument multiple
JVM to be monitored by a single Java Agent.

• Generic path to ClassLoader

./jreinstrumenter.sh -b JVM_DIR

Replace JVM_DIR with the path to the location of the JVM as specified in the Available
JVM list.

This command instructs the JRE Instrumenter to instrument the ClassLoader class for
the selected JVM and places the instrumented ClassLoader in a folder under the
<java_agent_install_dir>/DiagnosticsAgent/classes/boot directory.

You should only use this command if you are monitoring a single JVM with the Java
Agent and there is some reason that you do not want to use the more explicit path
generated when you use the -i command option.

When the Instrumenter has finished instrumenting the JVM, it displays the JVM
parameter that must be used to activate the instrumentation and enable the Java Agent
to monitor your application. Following the JVM parameter, the Instrumenter lists the
Available JVM list again as shown in the following example:
Installing and Configuring Java Agent 39

Including the JVM Parameter in the Application Server’s Startup Script

When the JRE Instrumenter instruments a JVM it also creates the JVM parameter that you
must include in the startup script for the application server in order to cause your application
to use the instrumented class loader. When the Instrumenter has finished instrumenting the
JVM, it displays the JVM parameter.

Copy the JVM parameter to the clipboard and paste it into the location that allows it to be
picked up when your application server starts.

Configuring the Application Servers

Important: If you have the legacy TransactionVision 5.0 Sensors installed on your
application server, you must remove them from the application server. You should uninstall
the TransactionVision 5.0 Sensors from the host machine.

This section provides instructions on how to configure the application server to allow the Java
Agent to monitor the application. This section includes:

• About Configuring the Application Server

• Configuring WebSphere Application Servers

• Configuring WebLogic Application Servers

About Configuring the Application Server

Once you have executed the JRE Instrumenter for the Java Agent, you must modify the
startup script for the application so that the Java Agent that is to monitor the application will
be started when the application is started.

You can configure the application servers by updating the application server startup scripts
manually. The following sections provide instructions for updating the application servers
manually.

It is possible that your site administrator has site-specific methods for making configuration
modifications. In this case, the generic procedure described in “Configuring a Generic
Application Server” on page 211 should provide the information that the site administrator
needs to implement the required configuration changes.

The process for configuring the Java Agent and the application servers when there are
multiple JVMs on a single machine is described in For details, see “Configuring the Probes for
Multiple Application Server JVM Instances” in the HP Diagnostics Installation and
Configuration Guide.

Notes:

In this section, <java_agent_install_dir> is used to indicate the directory where the Java
Agent was installed.

When modifying the -Xbootclasspath or -javaagent parameter, be sure to use quotes if there
are spaces in the path that you specify.

Example procedures are shown for a given version of the application server. For details on
what application server versions are supported on what platforms, contact HP customer
support.
40 Chapter 2

Configuring WebSphere Application Servers

WebSphere servers are controlled using the WebSphere Application Server Administrative
Console. The Console has control over the JVM command line and allows you to add classpath
elements, define runtime variables (-D variables), and configure the bootclasspath or
javaagent for WebSphere. You use the Administrative Console for most of the configurations.

The appearance of the Console may differ for different versions of WebSphere. The way that
changes are implemented in each version of WebSphere may vary slightly. As a result, the
examples shown in this section may not correspond exactly to your WebSphere version. The
examples should provide the information that you need to enter the required parameters in
the appropriate location in the Console.

This section includes the following topics:

• WebSphere 5.x and 6.0

• WebSphere 6.1

• Running the JRE Instrumenter for WebSphere IDE

• Using the JMS Sensor with the WebSphere Application Server

• Adding Interceptors for Sensors

WebSphere 5.x and 6.0

To configure a WebSphere 5.x and 6.0 application server:

1 Use your Web browser to access the WebSphere Application Server Administrative
Console for the application server instance for which the Java Agent was installed:

http://<App_Server_Host>:9090/admin

Replace <App_Server_Host> with the machine name for the application server host.

The WebSphere Application Server Administrative Console opens.

2 In the left panel, select Servers > Application Servers.

3 From the list of application servers in the right panel, select the name of the server that
you want to configure so that it will be monitored by the Java Agent.

The Configuration tab for the selected application server is displayed.

WebSphere applies the changes that are made on each tab only when you click Apply on the
tab. Your changes will not be applied until you click Apply.
Installing and Configuring Java Agent 41

4 Scroll down in the Configuration tab, and in the General Properties column, look for the
Process Definition property.

5 Click Process Definition.

6 Scroll down in the right panel, and look for Java Virtual Machine.

7 Click Java Virtual Machine.

The Configuration tab for the Java Virtual Machine is displayed.
42 Chapter 2

8 In the Boot Classpath box, type the path to the boot directory for the Java Agent as follows:

<java_agent_install_dir>\classes\IBM\1.4.2_06;<java_agent_install_dir
>\classes\boot

where <java_agent_install_dir> is the path to the location where the Java Agent was
installed.

9 Scroll to the bottom of the Configuration tab until the command buttons are visible.

10 Click Apply.

A message confirms that your changes have been applied.

11 Click Save to apply the changes to the master configuration.

12 In the Save to Master Configuration area, click Save.
Installing and Configuring Java Agent 43

13 If you use WebSphere MQ as your communication transport in the Java Agent setup, you
should also change the MQ_INSTALL_ROOT variable using the Administrative Console:

a Navigate to the WebSphere Variables setting page as follows:

Environment > Manage WebSphere Variables > MQ_INSTALL_ROOT

b On the WebSphere Variables > MQ_INSTALL_ROOT setting page, in the Value box, enter
the WebSphere MQ installation location. You may refer to the location that you
entered when you installed and configured Java Agent.

c Apply and Save your changes.

14 Restart the WebSphere application server. You do not need to restart the host for the
application server.

15 To verify that the Java Agent was configured correctly, check for entries in the
<java_agent_install_dir>\log\<java_agent_id>.log file. If there are no entries
in the file, this indicates that either you did not run the JRE Instrumenter or you did not
enter the Xbootclasspath correctly. For details on running the JRE Instrumenter, see
Running the JRE Instrumenter on page 33.

WebSphere 6.1

To configure a WebSphere 6.1 application server:

1 Open the WebSphere Application Server Administrative Console.

2 Navigate to the Java Virtual Machine page as follows:

Servers > Application servers > Application server instance name (for example, server1) >
Process Definition > Java Virtual Machine page
44 Chapter 2

3 On the Java Virtual Machine page, in the Generic JVM Arguments box, enter the following
JVM parameter:

-javaagent:<java_agent_install_dir>\DiagnosticsAgent\lib\probeagent.jar

where <java_agent_install_dir> is the path to the location where the Java Agent
was installed.

4 Apply and Save your changes.

5 If you use WebSphere MQ as your communication transport in the Java Agent setup, you
should also change the MQ_INSTALL_ROOT variable using the Administrative Console:

a Navigate to the WebSphere Variables setting page as follows:

Environment > Manage WebSphere Variables > MQ_INSTALL_ROOT

b On the WebSphere Variables > MQ_INSTALL_ROOT setting page, in the Value box, enter
the WebSphere MQ installation location. You may refer to the location that you
entered when you installed and configured Java Agent.

c Apply and Save your changes.

6 Restart the WebSphere application server. You do not need to restart the host for the
application server.

7 To verify that the Java Agent was configured correctly, check for entries in the
<java_agent_install_dir>\DiagnosticsAgent\log\<java_agent_id>\probe.log
file. If there are no entries in the file, it indicates that Java Agent was not started
correctly.

Running the JRE Instrumenter for WebSphere IDE

If you are using WebSphere IDE, you must run the JRE Instrumenter manually in order to
make sure that the correct JAVA executable for the WSAD IDE has been instrumented.

The WSAD IDE has 10 different java.exe executables to choose from. You must make sure to
instrument the one that is used to run the IDE.

To instrument the correct java.exe:

1 Determine the version of WebSphere that you are using.

2 Determine the location of the appropriate java.exe. See the table below.

3 Run the JRE Instrumenter as described in Running the JRE Instrumenter on page 33.

Notes:

Before you can capture data, you must modify the Xbootclasspath for the application’s JVM
startup parameters per your IDE's instructions.

If you are NOT running the application inside the IDE, follow the instructions below to
configure the JVM parameters using the WebSphere Administrative Console.

Version Executable

WAS 5.0 IDE
INSTALL\runtimes\base_v5\java\bin\java.exe

WAS 5.1 IDE
INSTALL\runtimes\base_v51\java\bin\java.exe
Installing and Configuring Java Agent 45

Using the JMS Sensor with the WebSphere Application Server

The JMS Sensor does not support the WebSphere Application Server embedded JMS
implementation, which is also referred to as the Default Messaging Provider. The embedded
JMS implementation is only meant to be used internally by applications running on
WebSphere Application Server; messaging into or out of the WebSphere environment is not
supported. The full WebSphere MQ product is needed for this purpose.

Adding Interceptors for Sensors

If you want to track business transactions that include cross-application server EJB calls, you
need to add the interceptors for Sensors to the application servers by adding the following
lines to the server.xml file of your WebSphere application servers:

<interceptors xmi:id="Interceptor_X"
name="com.bristol.tvision.sensor.ejb.ORB.TVClientInterceptor"/>

<interceptors xmi:id="Interceptor_X"
name="com.bristol.tvision.sensor.ejb.ORB.TVServerInterceptor"/>

In "Interceptor X," the X is a unique number that is one higher than the existing Interceptor
values in your server.xml file. For example, Interceptor_18, and Interceptor_19 could be the
two names that you give if 18 and 19 are not currently in use.

Configuring WebLogic Application Servers

WebLogic application servers are configured by adding the Xbootclasspath or javaagent
JVM parameter to the script that is used to start the application server. WebLogic is started
by running shell scripts in a UNIX environment, or command scripts in a Windows
environment. Because the startup scripts that WebLogic provides are frequently customized
by a site administrator, it is not possible to provide detailed configuration instructions that
apply to all situations. Instead, the following sections provide instructions for each of the
certified versions of the WebLogic application server for a generic implementation. Your site
administrator should be able to use these instructions to show you how to make these changes
in your customized environment.

This section includes the following topics:

• WebLogic 8.1

• WebLogic 9.2

• Configuring Remote-Started WebLogic Managed Servers

WebLogic 8.1

To configure a WebLogic 8.1 application server for the Sun JVM:

1 Run the JRE Instrumenter and add the Sun JVM that WebLogic is using.

2 Once the JVM is added, click on the Copy Parameter button. This will copy the
Xbootclasspath parameter into the clipboard. For example:

Make sure you understand the structure of the startup scripts, how the property values are
set, and how to use environment variables before you make any configuration changes for the
Java Agent. Always create a backup copy of any file that you are going to update prior to
making the changes.
46 Chapter 2

JAVA_OPTIONS="-Xbootclasspath/
p:<java_agent_install_dir>\classes\Sun\1.4.2_04;<java_agent_install_d
ir>\classes\boot"

where <java_agent_install_dir> is the path to the directory where the Java Agent
was installed.

3 Locate the startup script used to start WebLogic for your domain. This file is typically
located in a path similar to this example:

D:\bea\weblogic81\config\<Dom_Name>\start<Dom_Name>.cmd

Replace <Dom_Name> by the name of the script that starts the application.

For example, if your domain name is medrec, the path looks like this:

D:\bea\weblogic81\samples\domains\medrec\startMedRecServer.cmd

4 Create a backup copy of the startup script prior to making any changes to the script.

5 Use your editor to open the startup script.

6 Paste the Xbootclasspath parameter saved in the clipboard to the Java command line
that starts the application server. The parameter must be placed at the beginning of the
Java parameters following any JIT options, such as -hotspot or -classic.

Following is an example of a WebLogic startup script before adding the Xbootclasspath
parameter:

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m"-Xbootclasspath/
p:<java_agent_install_dir>\DiagnosticsAgent\classes\Sun\1.4.2_04;<java_ag
ent_install_dir>\DiagnosticsAgent\classes\boot" -classpath "%CLASSPATH%"
-Dweblogic.Domain=petstore -Dweblogic.Name=petstoreServer
-Dbea.home="C:\\bea"
-Dweblogic.management.password=%WLS_PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Dcloudscape.system.home=./samples/eval/cloudscape/data
-Djava.security.policy=="C:\bea\weblogic81/lib/weblogic.policy"
weblogic.Server

Following is an example of a WebLogic startup script after adding the Xbootclasspath
parameter:

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m -Xbootclasspath/p:"C:\Program
Files\Hewlett-Packard\common\<java_agent_install_dir>\DiagnosticsAgent\classes\boo
t"-classpath "%CLASSPATH%"-Dweblogic.Domain=petstore
-Dweblogic.Name=petstoreServer
-Dbea.home="C:\bea"
-Dweblogic.management.password=%WLS_PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Dcloudscape.system.home=./samples/eval/cloudscape/data
-Djava.security.policy=="C:\bea\weblogic81/lib/weblogic.policy" weblogic.Server

7 Save the changes to the startup script.

In rare cases, if you also deploy the TransactionVision Web Application on this
WebLogic server, you should modify the tvStartMedRecServer.cmd instead.

The startup script examples are shown with line breaks. The actual scripts do not
have line breaks and the text of the commands will wrap on your screen as
necessary.
Installing and Configuring Java Agent 47

8 Restart the WebLogic application server. You do not need to restart the application server
host machine.

9 To verify that the Java Agent was configured correctly, check for entries in the
<java_agent_install_dir>\log\<java_agent_id>\probe.log file. If there are no
entries in the file, this indicates that you did not run the JRE Instrumenter, or did not
enter the Xbootclasspath correctly.

For details on running the JRE Instrumenter, Running the JRE Instrumenter on page 33.

To configure a WebLogic 8.1 application server for the JRockit JVM:

1 Run the JRE Instrumenter and add the JRockit JVM that WebLogic is using.

2 Once the JVM is added, click on the Copy Parameter button. This will copy the
Xbootclasspath parameter into the clipboard.

Following is an example of the Xbootclasspath parameter:

-Xbootclasspath/p:<java_agent_install_dir>\DiagnosticsAgent\classes\boot

where <java_agent_install_dir> is the path to the directory where the Java Agent
was installed.

3 Locate the command file that invokes the WebLogic application server (for example,
startWLS.cmd). This file is typically located in a path similar to the following example:

C:\bea\weblogic81\server\bin\startWLS.cmd

4 Create a backup copy of the command file prior to making any changes to the script. You
may want to give the new copy a name such as startWLSWithJRockit.cmd, and use this
as the new version of the command file that will be manipulated in the following steps.

5 Use your editor to open the startup script.

6 Set the JAVA executable invoked by WebLogic to JRockit.

a Locate the line in the command file where the value of the JAVA_VENDOR parameter is
set.

b Change the value of the JAVA_VENDOR variable to point to the JRockit folder as
follows:

set JAVA_VENDOR=<BEA_HOME_DIR>\jrockit

For example:

set JAVA_VENDOR=BEA

7 Modify the Java command line that starts the application server.

a Locate the line in the command file which begins as follows:

%JAVA_HOME%\bin\java %JAVA_VM% %JAVA_OPTIONS%

b Indicate the JRockit management URL by specifying the Xmanagement:class
parameter immediately following the %JAVA_OPTIONS% variable.

The following is an example of the Xmanagement:class parameter:

-Xmanagement:class=com.mercury.opal.capture.proxy.JRockitManagement

In rare cases, if you also deploy the TransactionVision Web Application on this
WebLogic server, you should modify tvStartWLS.cmd instead.
48 Chapter 2

c Allow the Java Agent to hook into the application server process by adding the
Xbootclasspath parameter you saved in the clipboard to immediately following the
%JAVA_OPTIONS% variable.

The following is an example of a WebLogic startup script before adding the
Xmanagement:class and Xbootclasspath parameters:

"%JAVA_HOME%\bin\java" %JAVA_VM% %MEM_ARGS% %JAVA_OPTIONS%
-Dweblogic.Name=%SERVER_NAME%
-Dweblogic.management.username=%WLS_USER%
-Dweblogic.management.password=%WLS_PW%
-Dweblogic.management.server=%ADMIN_URL%
-Dweblogic.ProductionModeEnabled=%PRODUCTION_MODE%
-Djava.security.policy="%WL_HOME%\server\lib\weblogic.policy"
weblogic.Server

The following is an example of a WebLogic startup script after adding the
Xbootclasspath parameter:

"%JAVA_HOME%\bin\java" %JAVA_VM% %MEM_ARGS% %JAVA_OPTIONS%
-Xmanagement:class=com.mercury.opal.capture.proxy.JRockitManagement
-Xbootclasspath/p:"C:\Program Files\Hewlett-Packard\common\JavaAgent\
classes\boot"
-Dweblogic.Name=%SERVER_NAME%
-Dweblogic.management.username=%WLS_USER%
-Dweblogic.management.password=%WLS_PW%
-Dweblogic.management.server=%ADMIN_URL%
-Dweblogic.ProductionModeEnabled=%PRODUCTION_MODE%
-Djava.security.policy="%WL_HOME%\server\lib\weblogic.policy"
weblogic.Server

8 If you use WebSphere MQ as your communication transport and you choose the
connection type as server (default) in the Java Agent setup, you also need to add the path
to WebSphere MQ java/lib to your system's library path environment variable. For
example:

On AIX, add:

set LIBPATH=$LIBPATH:/usr/mqm/java/lib

export LIBPATH

On Solaris or Linux, add:

set LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/mqm/java/lib

export LD_LIBRARY_PATH

Replace lib with lib64 if your JVM is 64-bit.

On Windows, you typically do not need such settings because this path has been added to
your PATH environment variable when you installed WebSphere MQ.

9 Save the changes to the command file.

10 Restart the WebLogic application server (not the computer; just the application server).

These startup script examples are shown with line breaks. The actual scripts do
not have line breaks and the text of the commands will wrap on your screen as
necessary.
Installing and Configuring Java Agent 49

11 To verify that the Java Agent was configured correctly, check for entries in the
<java_agent_install_dir>\log\<java_agent_id>\probe.log file. If there are no
entries in the file, this indicates that you did not run the JRE Instrumenter or did not
enter the Xbootclasspath parameter correctly.

For details on running the JRE Instrumenter, see Running the JRE Instrumenter on
page 33.

WebLogic 9.2

To configure a WebLogic 9.2 application server:

1 Run the JRE Instrumenter and add the JVM that WebLogic 9.2 is using.

2 Once the JVM is added, click on the Copy Parameter button. This will copy the JVM
parameter into the clipboard. For example:

JAVA_OPTIONS="-javaagent:<java_agent_install_dir>\DiagnosticsAgent\lib\probe
agent.jar"

where <java_agent_install_dir> is the path to the directory where the Java Agent
was installed.

3 Locate the startup script used to start WebLogic for your domain. For example, if your
domain name is Medrec, the path looks like this:

D:\bea\weblogic92\samples\domains\medrec\bin\startWebLogic.cmd

4 Create a backup copy of the startup script prior to making any changes to the script.

5 Use your editor to open the startup script.

6 Paste the JVM parameter saved in the clipboard to the Java command line that starts the
application server. The parameter must be placed at the beginning of the Java parameters
following any JIT options, such as -hotspot or -classic.

Following is an example of a WebLogic startup script after adding the JVM parameter:

set JAVA_OPTIONS=
"-javaagent:C:\MercuryDiagnostics\JAVAProbe\DiagnosticsAgent\lib\probeagent.
jar" %SAVE_JAVA_OPTIONS%

7 If you use WebSphere MQ as your communication transport and you choose the
connection type as server (default) in the Java Agent setup, you also need to add the path
to WebSphere MQ java/lib to your system's library path environment variable. For
example:

On AIX, add:

set LIBPATH=$LIBPATH:/usr/mqm/java/lib

export LIBPATH

On Solaris or Linux, add:

set LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/mqm/java/lib

export LD_LIBRARY_PATH

Replace lib with lib64 if your JVM is 64-bit.

In rare cases, if you also deploy the TransactionVision Web Application (UI) on
this WebLogic server, you should modify tvStartWebLogic.cmd instead.
50 Chapter 2

On Windows, you typically do not need such settings because this path has been added to
your PATH environment variable when you installed WebSphere MQ.

8 Save the changes to the startup script.

9 Restart the WebLogic application server. You do not need to restart the application server
host machine.

10 To verify that the Java Agent was configured correctly, check for entries in the
<java_agent_install_dir>\log\<java_agent_id>\probe.log file. If there are no
entries in the file, this indicates that you did not run the JRE Instrumenter, or did not
enter the JVM parameter correctly.

For details on running the JRE Instrumenter, see Running the JRE Instrumenter on
page 33.

Configuring Remote-Started WebLogic Managed Servers

For a WebLogic server using Node Manager to start, follow the same steps in the previous
sections to run jreinstruenter to instrument the JRE your application server is using. Then
copy and paste the output from the jreinstrumenter to corresponding <arguments> tag for
your server in the config.xml file. The config.xml file is usually located in the <your_domain>/
config directory.

Following are examples for JVM 1.5 and JVM 1.4:

JVM 1.5 Example

In this example, if your managed server is called cluster_server1, you would modify
config.xml to add the javaagent argument (in red) as follows:

 <server>
 <name>cluster_server1</name>
 <ssl>
 <enabled>false</enabled>
 </ssl>
 <machine>Machine-0</machine>
 <listen-port>8001</listen-port>
 <cluster>ChenCluster</cluster>
 <web-server>
 <web-server-log>
 <number-of-files-limited>false</number-of-files-limited>
 </web-server-log>
 </web-server>
 <listen-address></listen-address>
 <server-start>
 <arguments>-javaagent:e:/myprobe/javaprobe/build/lib/probeagent.jar</
arguments>
 <password-encrypted>{3DES}9pcg8snNNwA=</password-encrypted>
 </server-start>
 <jta-migratable-target>
 <user-preferred-server>cluster_server1</user-preferred-server>
 <cluster>ChenCluster</cluster>
 </jta-migratable-target>
 </server>
Installing and Configuring Java Agent 51

JVM 1.4 Example

For JVM 1.4, you would copy the output from the jreinstrumenter to the <arguments> tag
in config.xml for the server you want to monitor. In this example, the jreinstrumenter
argument (in red) is added:

 <server>
 <name>cluster_server1</name>
 <ssl>
 <enabled>false</enabled>
 </ssl>
 <machine>Machine-0</machine>
 <listen-port>8001</listen-port>
 <cluster>ChenCluster</cluster>
 <web-server>
 <web-server-log>
 <number-of-files-limited>false</number-of-files-limited>
 </web-server-log>
 </web-server>
 <listen-address></listen-address>
 <server-start>
 <arguments>-Xbootclasspath/
<java_agent_install_dir>\DiagnosticsAgent\classes\Sun\1.4.2_08;<java_agent_in
stall_dir>\DiagnosticsAgent\classes\boot</arguments>
 <password-encrypted>{3DES}9pcg8snNNwA=</password-encrypted>
 </server-start>
 <jta-migratable-target>
 <user-preferred-server>cluster_server1</user-preferred-server>
 <cluster>ChenCluster</cluster>
 </jta-migratable-target>
 </server>

Configuring Messaging System Providers

TransactionVision uses queues for the communication between the Analyzers and the
Sensors. You need at least three queues: the configuration queue, the event queue, and the
exception queue. The default name of these queues are
TVISION.CONFIGURATION.QUEUE, TVISION.EVENT.QUEUE, and
TVISION.EXCEPTION.QUEUE, respectively. You must set up these queues on your message
system provider in a vendor-specific way. See Chapter 5 “Managing Communication Links” in
the TransactionVision Administration Guide for details.

IBM WebSphere MQ

You may create the queues on your queue managers using the IBM WebSphere MQ runmqsc
utility program or the MQ Explorer graphical user interface that is available on Windows and
Linux. For using the client connection type, you also need to define a server connection
channel and a listener on your queue manager. See the vendor's documentation for details.
52 Chapter 2

TIBCO EMS

You may create the queues using the TIBCO EMS Administration tool. See the vendor's
documentation for details.

Progress SonicMQ

You may create the queues on your SonicMQ brokers using the SonicMQ Management
Console. See the vendor's documentation for details.

BEA WebLogic JMS

You may use the WebLogic Administrative Console to configure a JMS server and queues.
Following is a summary of the steps needed for WebLogic 8.1. See the vendor's documentation
for details.

1 Create a Temporary template:

Choose Services > JMS > Templates, and click Configure a new JMS Template....

2 Create a persistent JMS store:

Choose Services > JMS > Stores, and click Configure a new JMS Store....

You need to specify a directory path for the store (such as /tmp).

Alternatively, you may use a JDBC store instead.

3 Create a JMS server:

Choose Services > JMS > Servers, and click Configure a new JMS Server....

On this page, you need to specify the Persistent Store and the Temporary Template
created above.

4 Create the queues:

Choose Services > JMS > Servers > your_server_name, and click Configure Destinations…,
then click Create a new JMS Queue....

5 Create a Connection Factory:

Choose Services > JMS > ConnectionFactories and click Create a new JMS Connection
Factory….
Installing and Configuring Java Agent 53

54 Chapter 2

3 Installing WebSphere MQ and User Event
Sensors on UNIX Platforms
This chapter provides instructions on installing TransactionVision Sensors for WebSphere
MQ and User Event on UNIX platforms. To install TransactionVision Sensors for Java
applications and application servers, see Chapter 2, Installing and Configuring Java Agent.

Note that TransactionVision provides unique packages for each Sensor.

Installing Sensors

Installation Files

The following table shows the installation file names for the TransactionVision packages for
each platform. Note that if you install the User Event Sensor, the common package is
installed automatically because this Sensor depends on it.

Installation Steps

1 Change to the directory location of the TransactionVision installation files (either a CD
device or download directory).

2 Log in as superuser:

su

3 Enter the following command to begin the installation procedure:

Platform Files

AIX tvision_common_750_aix_power.bff
tvision_sensor_wmq_750_aix_power.bff
tvision_sensor_userevent_750_aix_power.bff

HP-UX tvision_sensor_wmq_750_hpux_ia64_tar.gz
tvision_sensor_wmq_750_hpux_parisc_tar.gz

Linux tvision_common_750_linux_x86.rpm
tvision_sensor_wmq_750_linux_x86.rpm
tvision_sensor_userevent_750_linux_x86.rpm

Solaris tvision_common_750_solaris_sparc_pkg.gz
tvision_sensor_wmq_750_solaris_sparc_pkg.gz
tvision_sensor_userevent_750_solaris_sparc_pkg.gz

On Solaris and HP-UX, you must copy the installation files from the CD device to
a temporary directory on your host's hard drive.
55

./tvision_install_750_unix.sh

The following menu is displayed:

This script will install/uninstall different TransactionVision
components.

Unzipping/Untaring common package files ...
Unzipping/Untaring Analyzer package files ...
Unzipping/Untaring Web package files ...
Unzipping/Untaring WebSphere MQ Agent package files ...
Unzipping/Untaring User Event Agent package files ...

The following TransactionVision packages are available for
installation:

1. TransactionVision Analyzer
2. TransactionVision Web
3. TransactionVision WebSphere MQ Agent
4. TransactionVision User Event Agent

99. All of above
q. Quit install

Please specify your choices (separated by ,) by number/letter:

4 To install only a single component, type the number associated with the
TransactionVision component package and press Enter.

To install multiple, but not all components, type the numbers associated with the
components you wish to install, separated by commas, and press Enter. For example, to
install all Sensors from the menu above, type the following and press Enter:

3,4

To install all available components, type 99 and press Enter.

The installation script installs the specified package(s), then displays the menu again.

5 To quit the installation procedure, type q and press Enter. To install additional
components, see the installation instructions for those components.

Rebinding the WebSphere MQ Sensor on AIX

For the WebSphere MQ Sensor on the AIX platform, the installation calls the rebind_sensor
script to relink the Sensor library. If you install a WebSphere MQ support pack that modifies
the WebSphere MQ libraries (libmqm.a, libmqic.a, libmqm_r.a, libmqic_r.a), you must
run this script again in order for sensored applications to run correctly. For more information
about this script, see Appendix A, Utilities Reference.

The “Unzipping…” lines above are only for Solaris and HP-UX installations.

The actual options and numbers depend on the installation files available on
your computer.
56 Chapter 3

Uninstalling Sensors

To uninstall TransactionVision components, perform the following steps:

1 Log in as superuser:

su

2 Enter the following command:

./tvision_install_750_unix.sh -u

The following menu is displayed (note that actual options depend on the
TransactionVision packages installed on your computer):

The following TransactionVision packages are installed on the system:

1. TransactionVision Web
2. TransactionVision Analyzer
3. TransactionVision WebSphere MQ Agent
4. TransactionVision User Event Agent

99. All of above
q. Quit uninstall

Please specify your choices (separated by ,) by number/letter:

3 Type the number associated with the TransactionVision package you wish to uninstall
and press Enter.

To uninstall all TransactionVision components, type 99 and press Enter.

The installation script uninstalls the specified package, then displays the menu again.

4 To quit the uninstall, type q and press Enter. If the common package is the only
TransactionVision package still installed, it will be uninstalled automatically.
Installing WebSphere MQ and User Event Sensors on UNIX Platforms 57

58 Chapter 3

4 Installing WebSphere MQ and User Event
Sensors on Windows
The TransactionVision Sensors for WebSphere MQ and User Event are installed as a single
package on Windows. This chapter provides instructions for installing these Sensors. (To
install TransactionVision Sensors for Java applications and application servers, see Chapter
2, Installing and Configuring Java Agent.)

Note that you must be logged into the target system either as Administrator or as a user with
Administrator privileges.

To install this package, perform the following steps:

1 Close all Windows programs currently running on your computer.

2 In the Windows Explorer, double-click tvision_sensor_750_win.exe. The InstallShield
Welcome screen appears.

3 Click Next> to display the InstallShield Save Files screen.

4 To use the default folder for extracting installation files, click Next>. To choose a different
folder, click Change, select the desired folder, then click Next>. InstallShield extracts the
installation files.

If this is the first time installing TransactionVision Sensors on this computer, continue
with Initial Installation. If an earlier version of TransactionVision Sensors is installed on
this computer, continue with Upgrade Installation.

Initial Installation

For an initial installation, the Setup Welcome screen is displayed.

1 On the Setup Welcome screen, click Next> to display the TransactionVision license
agreement.
59

2 Click Yes to accept the license agreement. The User Information screen appears.

3 Enter your name and company name, then click Next>. The Destination Location screen
appears.

4 To install the Sensors for WebSphere MQ and User Event, select Complete and click Next>.
To install only some Sensors, select Custom, click Next>, select the desired Sensors, and
click Next>.

The selected Sensors are installed in the specified location. The Setup Complete page
appears.

5 Click Finish to complete the installation.

Upgrade Installation

For an upgrade installation, double-click tvision_sensor_750_win.exe and click Next> on the
InstallShield Welcome screen to display the Sensor setup maintenance menu:

1 Select one of the following to upgrade the TransactionVision installation (to modify the
installation, see Modifying the Installation on page 62):

• If you wish to install TransactionVision Sensors with different settings from the
previous installation, select Remove and click Next> to uninstall the previous
installation, then begin the installation procedure again.
60 Chapter 4

• If you are upgrading from a previous release, select Reinstall and click Next> to install
TransactionVision Sensors using the settings from the previous installation. The
Configuration File Migration dialog appears:

2 To maintain configuration information from the previous installation, click Yes. The
installation wizard makes a backup copy of existing configuration files, installs the new
version of TransactionVision, and opens an MS-DOS window to migrate existing
configuration files to the new version. When complete, the Setup Complete screen
appears.

To overwrite existing configuration files, click No. The installation wizard displays a
message box asking whether you want to make a backup copy of existing configuration
files before continuing the installation.

Click Yes to create a backup copy or No to continue the installation without backing up
configuration files. The installation wizard then installs the new version of
TransactionVision, overwriting existing configuration files, and displays the Setup
Complete screen.

3 The installation wizard installs the new version of TransactionVision and displays the
Setup Complete screen.

4 Click Finish to complete the installation.
Installing WebSphere MQ and User Event Sensors on Windows 61

Modifying the Installation

After you install TransactionVision Sensors on a host, you may wish to modify your
installation. For example, suppose you initially install the WebSphere MQ Sensor on a host,
then later decide to install the User Event Sensor. To modify your installation perform the
following steps:

1 Double-click tvision_sensor_750_win.exe and click Next> on the InstallShield Welcome
screen to display the TransactionVision Sensor Maintenance screen:

2 To install an additional Sensor or remove an installed Sensor, select Modify and click Next>
to display the Select Components screen.

3 Select the Sensors you want to install and click Next> to run the modified installation.

4 Click Finish to complete the installation.
62 Chapter 4

Uninstalling Sensors

To uninstall TransactionVision components, perform the following steps:

1 From the Start menu, choose Settings > Control Panel.

2 Double-click Add/Remove Programs.

3 Select the HP TransactionVision Sensor package and click Change/Remove. The
maintenance menu screen appears.

4 Select Remove and click Next> to remove TransactionVision components.

5 Click OK to confirm that you wish to uninstall the specified package. The specified
package is uninstalled. The following types of files are not deleted:

— Any files added after the installation.

— Any shared files associated with packages that are still installed.

If shared files do not appear to be associated with any installed packages (for example,
if all other TransactionVision packages have been uninstalled), the Shared File
Detected screen appears.

— To leave all shared files installed, check Don’t display this message again and click No.

— To leave the current file, but display this message for any other shared files, click No.

— To delete the shared file, click Yes.

The Uninstallation Complete screen appears.

6 Click Finish to complete the uninstallation procedure.
Installing WebSphere MQ and User Event Sensors on Windows 63

64 Chapter 4

5 Installing Sensors on i5/OS
To install the Sensor on the i5/OS platform, perform the following steps:

1 If an earlier version of the TransactionVision Sensor is installed, use the following
command to uninstall it:

DLTLICPGM LICPGM(3RBB9ES)

2 On an i5/OS machine, either find an existing library to use or create a new a library to
copy the installation file to (for example, TVTMP).

3 On a PC, FTP the Sensor installation file tvision_sensor_wmq_750_i5os_as400.savf from
the CD-ROM and rename it to sensor750.savf to the library created in step 1 on your i5/
OS machine. Be sure to set binary mode transfer as follows:

ftp> bin
ftp> cd /qsys.lib/tvtmp.lib
ftp> put tvision_sensor_wmq_750_i5os_as400.savf sensor750.savf

4 On the i5/OS machine, run the following command to install the Sensor. Note that you
may need to replace TVTMP in the command with the name of the library in which the
sensor750.savf package resides

RSTLICPGM LICPGM(3RBB9ES) DEV(*SAVF) SAVF(TVTMP/SENSOR750)

5 Verify the installation with the following command:

DSPSFWRSC

6 To use the C Sensor, bind your programs to TVSENSOR/LIBMQM.

7 If a new temporary library was created in step 2, it may now be safely deleted.
65

66 Chapter 5

6 Installing Sensors on z/OS
This chapter provides instructions for installing the following TransactionVision Sensors on
the IBM z/OS platform:

• CICS, WebSphere MQ (WMQ) Batch, and WebSphere MQ (WMQ) IMS

• WebSphere MQ CICS and WebSphere MQ IMS Bridge

For additional RACF requirements for authorizations, firewall settings, and MIPS, see
Appendix C, Additional z/OS Settings.
67

Installing the CICS, WebSphere MQ Batch, and WebSphere MQ
IMS Sensors on IBM z/OS

To install these Sensors on the z/OS platform, perform the following steps, substituting a
valid data set name high-level qualifier for &hlq, for example, TVISION.

Once you complete this installation procedure, see the TransactionVision Administration
Guide for additional configuration instructions.

The following may be used to perform either an SMP/E or non-SMP/E install. See step 4 for
additional details.

1 FTP the Sensor installation files from the Sensors/zos/install directory of the
TransactionVision CD-ROM to your z/OS system using binary mode and specifying the
correct data set attributes on the quote command. For example:

ftp> quote site fixrecfm 80 lrecl=80 recfm=fb blksize=3120
 vol=&volser u=&unit pri=30 sec=5 tr

(where &volser is the target disk volume serial number and &unit is the target disk device
type / esoteric)

ftp> bin
ftp> put sld750.f1 '&hlq.sld750.f1'
ftp> put sld750.f2 '&hlq.sld750.f2'
ftp> put sld750.f3 '&hlq.sld750.f3'
ftp> put sld750.mcs '&hlq.sld750.mcs'

2 Use the TSO RECEIVE command to create the product distribution data sets from the
transferred files. The following table shows the RECEIVE commands and the filename to
enter for each one in response to the prompt, “INMR906A Enter restore parameters or
‘DELETE’ or ‘END’.”

If any of the above ftp commands fail, it may be necessary to delete the target dataset(s)
before re-executing.

Command Filename

RECEIVE INDSNAME('&hlq.SLD750.F1') DSN('&hlq.ASLD750.F1')

RECEIVE INDSNAME('&hlq.SLD750.F2') DSN('&hlq.ASLD750.F2')

RECEIVE INDSNAME('&hlq.SLD750.F3') DSN('&hlq.ASLD750.F3')

RECEIVE INDSNAME('&hlq.SLD750.MCS') DSN('&hlq.ASLD750.SMPMCS')
68 Chapter 6

3 The data sets created make up an SMP/E install package in RELFILE format. Verify the
creation of the following SMP/E input data sets:

If any of the above data sets are missing, recheck Steps 1 and 2. If discrepancies remain
unresolved, please contact HP Support for assistance.

Data Set Member(s) Description

&hlq.ASLD750.F1 ASLD750 SMP/E JCLIN

&hlq.ASLD750.F2 SLDMOD01-39 Sensor modules

MQCONNX

LKSTBN

Dummy module for WebSphere 5.1
installations.
Sample job to rebind WBI library

&hlq.ASLD750.F3 DUMYCICS Sample customization job

DUMYIMS Sample customization job

SLDACCPT Sample SMP/E job

SLDALLOC Sample SMP/E job

SLDAPPLY Sample SMP/E job

SLDCICSD Sample customization job

SLDCRTQS Sample customization job

SLDDDDEF Sample SMP/E job

SLDDZON Sample SMP/E job

SLDGZON Sample SMP/E job

SLDINSTL Sample non-SMP/E install job

SLDRECV Sample SMP/E job

SLDTZON Sample SMP/E job

TVISION Sample product startup procedure

TVISIONC Sample product startup procedure

TVISIONM Sample product startup procedure

TVISIONR Sample recovery procedure

VERSION Build number information

&hlq.ASLD750.SMPMCS SMP/E MCS
Installing Sensors on z/OS 69

4 The sample jobs listed below perform an SMP/E product installation. Read the comments
contained in each member, in addition to the instructions for steps 5-9 carefully. Together,
this information should be sufficient to appropriately tailor each jobstream to meet your
local site requirements. (The SMP/E FMID for this installation is ASLD750.)

&hlq.ASLD750.F3(SLDALLOC)
&hlq.ASLD750.F3(SLDGZON)
&hlq.ASLD750.F3(SLDDZON)
&hlq.ASLD750.F3(SLDTZON)
&hlq.ASLD750.F3(SLDDDEF)
&hlq.ASLD750.F3(SLDRECV)
&hlq.ASLD750.F3(SLDAPPLY)

5 Allocate the target and distribution libraries for the product by customizing and running
the SLDALLOC member. The following libraries will be created by the job:

6 If you are installing the Sensor into an existing SMP/E global zone, skip this step. If you
are installing the Sensor into a new SMP/E global zone, customize and run members—
SLDGZON, SLDDZON, and SLDTZON—to create new global, target, and distribution
zones.

7 Create the SMP/E DDDEFs in the distribution and target zones by customizing and
running the SLDDDDEF member. You may install into any SMP/E target zone desired.

The following DDDEFs will be created by the SLDDDDEF member:

You may perform a non-SMP/E install by customizing and running the SLDINSTL member
and skipping steps 5-9 and step 18. All other steps should be performed.

Library Description

target library &THLQUAL.SSLDLOAD Sensor load modules

target library &THLQUAL.SSLDINST Sensor installation sample JCL

target library &THLQUAL.SSLDSAMP Sensor samples

target library &THLQUAL.SSLDPROC Sensor sample JCL procedures

target library &THLQUAL.SSLDAUTH Sensor load modules

distribution library &DHLQUAL.ASLDMOD Sensor distribution modules

distribution library &DHLQUAL.ASLDINST Sensor installation sample JCL

distribution library &DHLQUAL.ASLDSAMP Sensor samples

distribution library &DHLQUAL.ASLDPROC Sensor sample JCL procedures

Library Description

target zone DDDEF SSLDLOAD Points to the SSLDLOAD target library allocated
in Step 4.

target zone DDDEF SSLDINST Points to the SSLDINST target library allocated in
Step 4.

target zone DDDEF ASLDMOD Points to the ASLDMOD distribution library
allocated in Step 4.
70 Chapter 6

8 SMP/E RECEIVE the Sensor installation package product by customizing and running
the SLDRECV member.

target zone DDDEF SCEELKED Points to the LE SCEELKED library. This DDDEF
might already exist in your chosen target zone.

target zone DDDEF SCSQLOAD Points to the WebSphere MQ SCSQLOAD library.
This DDDEF might already exist in your chosen
target zone.

target zone DDDEF SDFHLOAD Points to the CICS SDFHLOAD library. This
DDDEF might already exist in your chosen target
zone.

target zone DDDEF SSLDSAMP Points to the SSLDSAMP target library allocated
in Step 4.

target zone DDDEF SSLDPROC Points to the SSLDPROC target library allocated
in Step 4.

target zone DDDEF SSLDAUTH Points to the SSLDAUTH target library allocated
in Step 4.

distribution zone DDDEF ASLDMOD Points to the ASLDMOD distribution library
allocated in Step 4.

distribution zone DDDEF ASLDINST Points to the ASLDINST distribution library
created in Step 4.

distribution zone DDDEF ASLDSAMP Points to the ASLDSAMP distribution library
created in Step 4.

distribution zone DDDEF ASLDPROC Points to the ASLDPROC distribution library
created in Step 4.

Library Description

Important! If you do NOT have CICS installed on your system, customize and
submit the JCL DUMYCICS to generate dummy CICS modules. Then set the
CICS high level qualifier (&CICSQUAL) to be the same as the target library high
level qualifier (%tvlib). If you do NOT have IMS installed on your system,
customize and submit the JCL DUMYIMS to generate dummy IMS modules. Then
set the IMS high level qualifier (&IMSQUAL) to be the same as the target library
high level qualifier (%tvlib).
Installing Sensors on z/OS 71

9 SMP/E APPLY the Sensor installation package by customizing and running the
SLDAPPLY member. After APPLY processing, verify the following:

10 You may wish to review Chapter 11 in the TransactionVision Administration Guide before
performing the remaining installation steps.

11 Update your CICS CSD file with the required resource definitions for the Sensor by
customizing and running the SLDCICSD member. If your environment consists of
multiple CICS regions with separate CSDs or different startup lists, repeat this step for
each CICS region to be monitored by the Sensor.

12 Place the CICS Sensor program load modules in a library in your DFHRPL concatenation.
Either copy the modules into an existing library already in your DFHRPL concatenation
or add the SSLDLOAD library to the DFHRPL concatenation. The CICS modules are:
SLDPCCX, SLDPCMX, SLDPCPX, SLDPCSX, SLDPDSX, SLDPFCX, SLDPICX,
SLDPPCX, SLDPPSX, SLDPTCX, SLDPTDX, and SLDPTSX. If you run multiple CICS
regions with separate startup JCL, repeat this step for each CICS region to be monitored
by the Sensor.

13 Optional. To automatically enable and disable the Sensor's CICS exit programs at CICS
startup and shutdown, define SLDPCSX as a second pass PLTPI and SLDPCPX as a
second pass PLTSD. Refer to CICS Resource Definition Guide, DFHPLT section. Add these
definitions to your existing DFHPLTxx. If new PLTs are defined, add references to them
in the CICS System Initialization Table (SIT). Refer to CICS System Definition Guide,
“Specifying CICS system initialization parameters.” Repeat this step for each CICS region
to be monitored by the Sensor.

Sample SIT entries:

...
PLTPI=BI,
PLTSD=BS,
...

Sample definitions of PLTs with the suffixes BT and BS:

//DFHPLTPI EXEC DFHAUPLE
//ASSEM.SYSUT1 DD *
 DFHPLT TYPE=INITIAL,SUFFIX=BI
 DFHPLT TYPE=ENTRY,PROGRAM=DFHDELIM

Library Contents

&THLQ.SSLDLOAD SLDPCCX, SLDPCDR, SLDPCMX, SLDPCPX, SLDPCSX,
SLDPDSX, SLDPFCX, SLDPICX, SLDPPCX, SLDPPSX,
SLDPTCX, SLDPTDX, SLDPTSX, MQCONNX, SLDPMDR,
SLDPMECB, SLDPMECQ, SLDPMECR, SLDPMECS,
SLDPMEM, SLDPSTBB, SLDPSTBQ, SLDPSTBR, SLDPSTBS

&THLQ.SSLDINST SLDACCPT, SLDALLOC, SLDAPPLY, SLDCICSD, SLDCRTQS,
SLDDDDEF, SLDDZON, SLDGZON, SLDINSTL, SLDRECV,
SLDTZON, VERSION

&THLQ.SSLDPROC TVISION, TVISIONC, TVISIONM, TVISIONR

&THLQ.SSLMSAMP No members in this release

&THLQ.SSLDAUTH SLDPASM, SLDPBQM, SLDPCMD, SLDPCSC, SLDPCSI,
SLDPCSM, SLDPITM, SLDPMON, SLDPSSS, SLDPTVM,
SLDPMSI, SLDPMSM
72 Chapter 6

 DFHPLT TYPE=ENTRY,PROGRAM=SLDPCSX
 DFHPLT TYPE=FINAL
 END
//*
//DFHPLTSD EXEC DFHAUPLE
//ASSEM.SYSUT1 DD *
 DFHPLT TYPE=INITIAL,SUFFIX=BS
 DFHPLT TYPE=ENTRY,PROGRAM=SLDPCPX
 FHPLT TYPE=ENTRY,PROGRAM=DFHDELIM
 DFHPLT TYPE=FINAL
 END
//

14 APF-authorize the TransactionVision library, &hlq.SSLDAUTH.

15 The TVISION address space must be non-swappable. TVISION assures this by issuing a
SYSEVENT TRANSWAP macro, so it is not necessary to include the program in the PPT.
If you do include it, specify the entry as follows:

PPT PGMNAME(SLDPTVM) CANCEL KEY(8) NOSWAP NOPRIV
NODSI PASS SYST AFF(NONE) NOPREF

Refer to MVS Initialization and Tuning Reference, SCHEDxx system parameters.

16 Customize the sample Sensor startup procedures, TVISION and TVISIONC, in the
&hlq.SSLDPROC data set and copy them to an appropriate procedure library for your
site. See Chapter 11 in the TransactionVision Administration Guide for guidelines for
customizing the startup procedures.

17 Create appropriate Sensor configuration and event queues on the WebSphere MQ queue
manager to be used for communication between the CICS Sensor Driver component and
the TransactionVision Analyzer. Customize and run the SLDCRTQS member. See
Chapter 11 of the TransactionVision Administration Guide for more information.

18 When you are satisfied with the results of your installation, perform an SMP/E ACCEPT
by customizing and running the SLDACCPT member.

19 These sensors use EZASMI to retrieve the IP address. As a result, the startup procedures
need an OMVS environment that is RACF authorized, for example TVISIONC or
TVISIONM.

If the optional step above is not performed, CICS transaction SLDS can be
executed to enable Sensors, and CICS transaction SLDP can be executed to disable
them.

&hlq.SSLMLOAD must NOT be authorized. Refer to MVS Initialization and
Tuning Reference, PROGxx or IEAAPFxx system parameters for additional
details.
Installing Sensors on z/OS 73

Installing the WebSphere MQ CICS and WebSphere MQ IMS
Bridge Sensors on IBM z/OS

There is a single Sensor installation package for WebSphere MQ CICS and WebSphere MQ
IMS bridge Sensors on z/OS. Some configuration steps only apply to the WebSphere MQ
Sensor for CICS; they are noted as “CICS only.” If you do not intend to use the WebSphere MQ
Sensor for CICS, omit those steps. The WebSphere MQ IMS Bridge Sensor also requires
additional steps, which are detailed in Additional Setup for the WebSphere MQ IMS Bridge
Sensor on page 83. If you do not intend to use the WebSphere MQ IMS Bridge Sensor, omit
those steps.

Before You Install the WebSphere MQ Sensor for CICS

The WebSphere MQ Sensor for z/OS CICS consists of two component programs. The program
that monitors an application’s WebSphere MQ API calls is an WebSphere MQ API crossing
exit program named CSQCAPX. This program must be installed in your CICS region in order
for the Sensor to collect any events. A second program, SLMC (with an associated CICS
transaction of the same name), is optional. It can be run to automatically enable and disable
the crossing exit Sensor program in your CICS region as needed by the Sensor. You do not
have to run SLMC for the Sensor to function correctly, but doing so improves your region’s
WebSphere MQ application performance when no Analyzer is monitoring the region. If you
choose not to run SLMC, ensure that the crossing exit is left enabled in your CICS region.

WebSphere MQ API crossing exit programs for CICS are required to have the fixed program
name CSQCAPX. Thus, only a single WebSphere MQ API crossing exit can be installed in a
given CICS region at one time. If you already have a program of this name installed in the
target CICS region, remove the existing CSQCAPX load module from your DFHRPL
concatenation and delete or disable the existing CICS program definitions for CSQCAPX
before installing the Sensor.

The WebSphere MQ Sensor for z/OS CICS requires z/OS Language Environment runtime
support. Before installing the Sensor, be certain that your target CICS region has LE support
enabled. The Sensor requires the CICS region to support LE programs compiled from the C
language. The procedure for enabling LE support is described in the CICS System Definition
Guide (the “Installing Application Programs” chapter in the CICS TS documentation).
Consult the documentation for your version of CICS for full details.

SMPE Installation Procedure

To install these Sensors on z/OS, perform the following steps:

1 FTP the Sensor installation files from Sensors/zos/install directory of the
TransactionVision CD-ROM to your z/OS machine. Be sure to set binary mode transfer
and the data set characteristics as follows:

ftp> quote site fixrecfm 80 lrecl=80 recfm=fb blksize=3120 vol=&volser
u=&unit pri=30 sec=5 tr

(where &volser is the target disk volume serial number and &unit is the target disk device
type / esoteric)

ftp> bin
ftp> put slm750.f1 '&hlq.slm750.f1'
ftp> put slm750.f2 '&hlq.slm750.f2'
74 Chapter 6

ftp> put slm750.f3 '&hlq.slm750.f3'
ftp> put slm750.mcs '&hlq.slm750.mcs'

2 Use the TSO RECEIVE command to create the SMP/E input data sets from the
transferred files. The following table shows the RECEIVE commands and the filename to
enter for each one in response to the prompt, “INMR906A Enter restore parameters or
‘DELETE’ or ‘END’:”

3 The data sets created are an SMP/E install package in RELFILE format. Verify the
creation of the following SMP/E input data sets:

If any of the above ftp commands fail, it may be necessary to delete the target
dataset(s) before re-executing.

Command Filename

RECEIVE INDSNAME(‘&hlq.SLM750.F1’) DSN(‘&hlq.ASLM750.F1’)

RECEIVE INDSNAME(‘&hlq.SLM750.F2’) DSN(‘&hlq.ASLM750.F2’)

RECEIVE INDSNAME(‘&hlq.SLM750.F3’) DSN(‘&hlq.ASLM750.F3’)

RECEIVE INDSNAME(‘&hlq.SLM750.MCS’) DSN(‘&hlq.ASLM750.SMPMCS’)

Data Set Member Description

&hlq.ASLM750.SMPMCS SMP/E MCS file for Sensor

&hlq.ASLM750.F1 ASLM750 JCLIN for SMP/E
Installing Sensors on z/OS 75

&hlq.ASLM750.F2 DFHEAII Dummy module for CICS

MQCONNX Dummy module for MQ51

SLMBCNFG Configuration queue table

SLMMOD01 Sensor crossing exit program for z/
OS CICS

SLMMOD02 SLMC crossing exit management
program for z/OS CICS

SLMMOD10 WebSphere MQ IMS Bridge support
module

SLMMOD11 WebSphere MQ IMS Bridge support
module

SLMMOD12 WebSphere MQ IMS Bridge support
module

SLMMOD13 WebSphere MQ IMS Bridge support
module

SLMMOD14 WebSphere MQ IMS Bridge support
module

SLMMOD15 WebSphere MQ IMS Bridge support
module

SLMMOD16 WebSphere MQ IMS Bridge support
module

SLMMOD17 WebSphere MQ IMS Bridge support
module

SLMMOD18 WebSphere MQ IMS Bridge support
module

SLMMOD19 WebSphere MQ IMS Bridge support
module

SLMYIOE0 WebSphere MQ IMS Bridge support
module

Data Set Member Description
76 Chapter 6

If any of the above data sets are missing, recheck Steps 1 and 2. If in doubt, contact HP
support for assistance.

&hlq.ASLM750.F3 DUMYCICS Sample customization job

DUMYIMS Sample customization job

SLMACCPT Sample JCL for SMP/E Accept step

SLMALLOC Sample JCL for TransactionVision
SMP/E target and distribution
library allocation

SLMAPPLY Sample JCL for SMP/E Apply step

SLMBCFGQ Sample job to change the default
TransactionVision configuration
queue name for the batch and IMS
Sensors or the WebSphere MQ IMS
Bridge Sensor

SLMCICSD Sample JCL for updating CICS CSD
file with Sensor program definition

SLMCRTQS Sample JCL to create
TransactionVision communication
queues

SLMDDDEF Sample JCL for creating SMP/E
DDDEFs for TransactionVision

SLMDZON Sample JCL to create the SMP/E
distribution zone

SLMGZON Sample JCL to create the SMP/E
global zone

SLMINSTL Sample non-SMP/E install job

SLMRECV Sample JCL for SMP/E Receive step

SLMTZON Sample JCL to create the SMP/E
target zone

TVISIONB Sample procedure to start the
WebSphere MQ IMS Bridge Sensor
control address space

TVISIOND Sample procedure to start the
WebSphere MQ IMS Bridge Sensor
event dispatcher address space

VERSION Text file containing
TransactionVision build number
information

Data Set Member Description
Installing Sensors on z/OS 77

4 The sample jobs listed below perform an SMP/E product installation. Please read the
comments contained in each member, in addition to the instructions for steps 5-9
carefully. Together, this information should be sufficient to appropriately tailor each
jobstream to meet your local site requirements. (The SMP/E FMID for this installation is
ASLM750.)

&hlq.ASLM750.F3(SLMALLOC)

&hlq.ASLM750.F3(SLMGZON)

&hlq.ASLMD750.F3(SLMDZON)

&hlq.ASLM750.F3(SLMTZON)

&hlq.ASLM750.F3(SLMDDEF)

&hlq.ASLM750.F3(SLMRECV)

&hlq.ASLM750.F3(SLMAPPLY).

5 Allocate the target and distribution libraries for the product. Sample JCL for this purpose
is provided in the SLMALLOC member. You must tailor this job for the requirements of
your installation before executing it. The following libraries will be created by the job:

6 If you are installing the Sensor into an existing SMP/E global zone, continue to step 7. If
you are installing the Sensor into a new SMP/E global zone, use the sample JCL in the
SLMGZON, SLMDZON, and SLMTZON members to create new global, target, and
distribution zones. You must tailor these jobs for the requirements of your installation
before executing them.

Library Description

target library &THLQUAL.SDFHLOAD Dummy CICS data set for a user who
does not have a CICS installation

target library &THLQUAL.SDFSRESL Dummy IMS data set for a user who
does not have an IMS installation

arget library &THLQUAL.SSLMAUTH Sensor load modules

target library &THLQUAL.SSLMINCL Sensor header files

target library &THLQUAL.SSLMINST Sensor installation sample JCL

target library &THLQUAL.SSLMLOAD Sensor load modules

target library &THLQUAL.SSLMPROC Sensor sample JCL

target library &THLQUAL.SSLMSAMP Sensor samples

target library &THLQUAL.SSLMSRC0 Sensor sample source file

distribution library &DHLQUAL.ASLMINCL Sensor header files

distribution library &DHLQUAL.ASLMINST Sensor installation sample JCL

distribution library &DHLQUAL.ASLMMOD Sensor distribution modules

distribution library &DHLQUAL.ASLMPROC Sensor sample JCL

distribution library &DHLQUAL.ASLMSAMP Sensor samples

distribution library &DHLQUAL.ASLMSRC0 Sensor sample source file
78 Chapter 6

7 Create the SMP/E DDDEFs in the distribution and target zones. Sample JCL for this
purpose is provided in the SLMDDDEF member. You may install into any SMP/E target
zone desired. You must tailor this job for the requirements of your installation before
executing it.

The following DDDEFs will be created by the job:

Library Description

target zone DDDEF SSLMLOAD Points to the SSLMLOAD target library
allocated in Step 4.

target zone DDDEF SSLMINST Points to the SSLMINST target library
allocated in Step 4.

target zone DDDEF ASLMMOD Points to the ASLMMOD distribution library
allocated in Step 4.

target zone DDDEF SCEELKED Points to the LE SCEELKED library. This
DDDEF might already exist in your chosen
target zone.

target zone DDDEF SCSQLOAD Points to the WebSphere MQ SCSQLOAD
library. This DDDEF might already exist in
your chosen target zone.

target zone DDDEF SDFHLOAD Points to the CICS SDFHLOAD library. This
DDDEF might already exist in your chosen
target zone.

target zone DDDEF SSLMINCL Points to the SSLMINCL target library
allocated in Step 4.

target zone DDDEF SSLMSRC0 Points to the SSLMSRC0 target library
allocated in Step 4.

target zone DDDEF SSLMSAMP Points to the SSLMSAMP target library
allocated in Step 4.

target zone DDDEF SSLMPROC Points to the SSLMPROC target library
allocated in Step 4.

target zone DDDEF SSLMAUTH Points to the SSLMQUTH target library
allocated in Step 4.

distribution zone DDDEF ASLMMOD Points to the ASLMMOD distribution library
allocated in Step 4.

distribution zone DDDEF ASLMINST Points to the ASLMINST distribution library
created in Step 4.

distribution zone DDEF ASLMINCL Points to the ASLMINCL distribution library
created in Step 4.
Installing Sensors on z/OS 79

8 SMP/E RECEIVE the Sensor installation package. Sample JCL for this purpose can be
found in the SLMRECV member. You must tailor this job for the requirements of your
installation before executing it, changing the &DSNPREFIX and &GZONECSI
parameters with your editor. Set the &DSNPREFIX parameter to account for the high
level qualifier under which you created the ASLM750.* data sets. For example, if the data
sets were installed in USERNAME.ASLM750.* and your global CSI data set was
MY.GLOBAL.CSI, your customized JCL for the SMP/E RECEIVE might look as follows:

//RECEIVE EXEC PGM=GIMSMP,REGION=OM
//SMPCSI DD DSN=MY.GLOBAL.CSI,
//DISP=SHR
//SMPPTFIN DD DSN=USERNAME.ASLM750.SMPMCS,DISP=OLD
//SYSPRINT DD SYSOUT=*
//SMPCNTL DD *
SET BDY(GLOBAL).
RECEIVE SELECT(ASLM750) RFPREFIX(USERNAME) SYSMODS LIST.
/*

9 SMP/E APPLY the Sensor installation package. Sample JCL for this purpose can be found
in the SLMAPPLY member. You must tailor this job for the requirements of your
installation before executing it. After the job is done verify the following:

distribution zone DDEF ASLMSRC0 Points to the ASLMSRC0 distribution library
created in Step 4.

distribution zone DDEF ASLMSAMP Points to the ASLMSAMP distribution library
created in Step 4.

distribution zone DDEF ASLMPROC Points to the ASLMPROC distribution library
created in Step 4.

Important! If you do NOT have CICS installed on your system, customize and submit the JCL
DUMYCICS to generate dummy CICS modules. Then set the CICS high level qualifier
(&CICSQUAL) to be the same as the target library high level qualifier (%tvlib). If you do
NOT have IMS installed on your system, customize and submit the JCL DUMYIMS to
generate dummy IMS modules. Then set the IMS high level qualifier (&IMSQUAL) to be the
same as the target library high level qualifier (%tvlib).

Library Contents

&THLQUAL.SSLMLOAD CSQCAPX, MQCONNX, SLMC, SLMCSTUB, SLMXSRV,
BTMQEXIT, SLMBCNFG

&THLQUAL.SSLMINST SLMACCPT, SLMALLOC, SLMAPPLY, SLMCICSD,
SLMCRTQS, SLMDDDEF, SLMDZON, SLMGZON,
SLMRECV, SLMTZON, SLMCPYDC, SLMCPYDI,
VERSION, SLMINSTL

&THLQUAL.SSLMINCL BTMQEXIT, BTTRACE

&THLQUAL.SSLMPROC SLMEJCL, SLMLKSTB, SLMTJCL, SLMTRJCL,
TVISIONB, SLMBCFGQ, TVISIOND

Library Description
80 Chapter 6

10 (CICS only) Update your CICS CSD file with the CSQCAPX and SLMC resource
definitions for the Sensor. Sample JCL for this purpose can be found in the SLMCICSD
member. You must tailor this job for the requirements of your installation before
executing it.

This job step will define a program resource definition for CSQCAPX in your CICS region.
Note that if your region already has a program resource defined for CSQCAPX and a
CSQCAPX program is already installed then this previous program load module must be
removed from your DFHRPL concatenation before the Sensor CSQCAPX module can be
installed and used. This requirement results from the fixed naming mechanism used by
WebSphere MQ for the API crossing exit facility for CICS/WebSphere MQ (only one
crossing exit can be installed and it must be named CSQCAPX).

This job step will also define program and transaction definitions for SLMC.

11 (CICS only) Place the CSQCAPX and SLMC load modules in a library within your
DFHRPL concatenation. You can either copy the modules into an existing library already
present in your DFHRPL concatenation or you can add the SSLMLOAD library to the
DFHRPL concatenation.

12 (CICS only) Enable the WebSphere MQ API crossing exit within your CICS region using
the CKQC transaction. You can do this from the Connection > Modify > Enable API Exit
menu item in the CKQC panel, or by specifying arguments to CKQC when invoking it. For
example, you could enter CKQC MODIFY N E to enable the crossing exit (E for enable, D
for disable).

13 Create appropriate Sensor configuration and event queues on the queue manager. Sample
JCL for this purpose can be found in the SLMCRTQS member. You must tailor this job to
the requirements of your installation before running it. See Chapter 7, Configuring
WebSphere MQ Sensors, for more information about Sensor configuration and event
queues.

14 When you are satisfied with the results of your installation, run the SMP/E ACCEPT step.
Sample JCL for this purpose can be found in the SLMACCPT member. You must tailor
this job to the requirements of your installation before running it.

15 These sensors use EZASMI to retrieve the IP address. As a result, these startup
procedures need an OMVS section that is RACF authorized, like TVISIOND.

Configuring SLMC for CICS

SLMC is an optional Sensor component that can improve the WebSphere MQ application
performance of programs run in your CICS region when the Analyzer is not monitoring the
region. SLMC monitors the TransactionVision configuration queue for messages from the
Analyzer, examines any messages present there, and automatically enables or disables the
WebSphere MQ crossing exit mechanism as needed by the Analyzer. Disabling the crossing

&THLQUAL.SSLMSAMP SLMEXITS, SLMTSAMP

&THLQUAL.SSLMSRC0 SLMEXITD

&THLQUAL SSLMAUTH DFSYIOE0, SLMXCMD, SLMXCTL, SLMXINT,
SLMXMON, SLMXRDQ, SLMXTKC, SLMXWRQ,
SLMXXMC, SLMYIOE0

Library Contents
Installing Sensors on z/OS 81

exit when the Analyzer is not actively monitoring the region (when no configuration messages
are present or when configuration messages do not apply to the CICS region or host) improves
application performance.

To use SLMC, you must configure your CICS region to run the SLMC transaction, which runs
the SLMC program. Because SLMC uses the WebSphere MQ CSQCRST program, which must
run with a terminal attached, to enable and disable the crossing exit, SLMC must also be run
with a terminal attached. For ease of operations, it is recommended that you run SLMC using
a sequential terminal, allowing it to be automatically started in the background when the
CICS region is brought up. However, you can invoke it directly from an ordinary terminal if
required.

A sequential terminal definition defines input and output data sets used by CICS to supply
terminal input and output. The input data set contains the CICS transaction names you want
to run (SLMC in this case) and the output data set receives the terminal output from the
transaction(s). Creating a sequential terminal definition requires you to assemble CICS
terminal resource macro definitions using DFHAUPLE, set the TCT parameter in your SIT to
enable reading of the TCT in which your assembled macros are placed, and add DD names to
your CICS region’s startup JCL to define the input and output data sets for the terminal.

To create a sequential terminal to run SLMC, use the sample sequential terminal definitions
supplied by IBM in the CICS SDFHSAMP members DFHTCT5$ and DFH$TCTS. For
complete details on this sample and how to set up a sequential terminal, consult the CICS
System Definition Guide and CICS Resource Definition Guide for your version of CICS.

To run the SLMC transaction with your sequential terminal, the sequential terminal input
data set (for example, the CARDIN DDNAME in the IBM sequential terminal sample) should
contain the following two lines:

SLMC\
CESF LOGOFF\

SLMC issues messages describing its operation to the system log. These messages are
described in the following table. In each of the message descriptions, nnn represents the CICS
task number of the running SLMC transaction.

The \ character is the standard CICS end-of-data character. If you have redefined the
end-of-data character on your EODI system initialization parameter, specify your end-of-data
character instead.

Message Description

SLMS300I CICS SLMC nnn: TransactionVision
sensor: Management Initiated for WebSphere MQ
API Crossing Exit

Issued when SLMC begins execution

SLMS202I CICS SLMC nnn: TransactionVision
sensor: Enabling WebSphere MQ API Crossing Exit

Issued when SLMC enables the
crossing exit

SLMS201I CICS SLMC nnn: TransactionVision
sensor: Disabling WebSphere MQ API Crossing Exit

Issued when disabling the crossing
exit

SLMS203I CICS SLMC nnn: TransactionVision
sensor: SLMC Exiting

Issued after a diagnostic error if the
error causes SLMC to exit

SLMS117E CICS SLMC nnn: TransactionVision
sensor: diagnostic message

Issued when an error is encountered.
The diagnostic message describes the
error
82 Chapter 6

Additional Setup for the WebSphere MQ IMS Bridge Sensor

The WebSphere MQ IMS Bridge Sensor is implemented as three components:

1 An OTMA Input/Output Edit exit routine, DFSYIOE0, which runs in the IMS control
region.

2 A control function, referred to as TVISIONB, which runs as a started task in a separate
address space.

3 An event dispatcher function, referred to as TVISIOND, which runs as a started task in
another separate address space.

These three components communicate via cross memory program calls, which requires some
system setup considerations:

1 TVISIONB requires one system linkage index (LX), which it reserves the first time it is
started after an IPL and thereafter reuses. Refer to the IBM z/OS or z/OS MVS
Initialization and Tuning Reference, IEASYSxx (System Parameter List) NSYSLX=nnn
parameter.

2 The TransactionVision library, thlqual.SSLMAUTH, must be APF-authorized. Note that
thlqual.SSLMLOAD must not be authorized. Refer to MVS Initialization and Tuning
Reference, PROGxx or IEAAPFxx system parameters.

3 The TVISIONB address space must be non-swappable. TVISIONB assures this by issuing
a SYSEVENT TRANSWAP macro, so it is not necessary to include the program in the
PPT. If you do include it, specify the entry as follows:

PPT PGMNAME(SLMXCTL) CANCEL KEY(8) NOSWAP NOPRIV
 NODSI PASS SYST AFF(NONE) NOPREF

Refer to MVS Initialization and Tuning Reference, SCHEDxx system parameters.

For instructions on completing Sensor setup and operating the WebSphere MQ IMS Bridge
Sensor, see Chapter 7, Configuring WebSphere MQ Sensors.
Installing Sensors on z/OS 83

84 Chapter 6

7 Configuring WebSphere MQ Sensors
TransactionVision provides two types of WebSphere MQ Sensors:

• WebSphere MQ Sensor library

• WebSphere MQ API Exit

Configuring the WebSphere MQ Sensor Library

The WebSphere MQ Sensor library is dynamically loaded at runtime by including its library
search path before the standard WebSphere MQ library search path. The standard
WebSphere MQ library is dynamically loaded by the Sensor library. Before you can use
TransactionVision to record event data for an application, you must configure the application
environment to load the Sensor library instead of the standard WebSphere MQ library.

Important! When using the Sensor Library with 64-bit applications, including 64-bit Java,
there may be library conflicts between the WebSphere MQ 32-bit libraries and the 64-bit
libraries. See the “Implications of a 64-bit queue manager” section in the WebSphere MQ
Quick Beginnings book to resolve any problems seen when trying to use the Sensor Library for
64-bit applications.

Distributed Platforms

Distributed platforms include all platforms other than z/OS and i5/OS. On distributed
platforms, you must add the directory location of the Sensor library to an environment
variable setting on the computer where the monitored application runs before starting the
application.

The following table shows the appropriate environment variable and directory location to set
for each platform for if you are using 32-bit applications. If a path including the standard
WebSphere MQ library exists as part of the environment value, the Sensor entry must appear
before it in order to use TransactionVision.

Platform
Environment
Variable Default Directory

Windows PATH C:\Program
Files\Hewlett-Packard\TransactionVision\lib

Sun Solaris LD_LIBRARY_PATH /opt/HP/TransactionVision/lib

HP-UX SHLIB_PATH /opt//HP/TransactionVision/lib

IBM AIX LIBPATH /usr/lpp/HP/TransactionVision/lib

RedHat Linux LD_LIBRARY_PATH /opt/HP/TransactionVision/lib
85

All of the directory locations in this table are the default Sensor installation locations. If the
Sensor was installed in a location other than the default, specify the directory location for the
Sensor executable.

When using 64-bit applications, set the library paths as shown in the following table:

On the AIX platform, you must run /usr/sbin/slibclean to clear the original shared library
from memory before you can pick up a new library that has the same name as an existing
library.

On the HP-UX platform, you may have to use the chatr command to enable your application
to pick up the Sensor library if the use of the SHLIB_PATH environment variable is not
enabled or is not the first in the dynamic library search path for your application. You may
use the chatr command to check the current settings of your application. In any case, make
sure that SHLIB_PATH is enabled and is before the standard WebSphere MQ library path.
See Chapter 10 in the TransactionVision Administration Guide for details.

Important! When using multithreaded applications with WebSphere MQ on UNIX systems,
ensure that the applications have sufficient stack size for the threads. IBM recommends using
a stack size of at least 256KB when multithreaded applications are making MQI calls. When
using the TransactionVision WebSphere MQ Sensor, even more stack size may be required;
the recommended stack size is at least 512KB. For more information, see Chapter 7,
“Connecting to and disconnecting from a queue manager,” in the WebSphere MQ Application
Programming Guide.

To run applications to be monitored by Sensors without setting the library environment
globally, run the wmqsensor script provided with TransactionVision as follows:

On UNIX platforms:

installation_directory/wmqsensor application_command_line

On Windows platforms:

installation_directory\wmqsensor application_command_line

For example, if you run your WMQ application as amqsput..., you will use

installation_directory\wmqsensor amqsput...

z/OS Batch, IMS, and WebSphere MQ-IMS Bridge

On the z/OS batch and IMS platforms, the SLMLKSTB member of the sample procedure
library thlqual.SSLMPROC contains a sample job to bind the Sensor to an WebSphere MQ
application program. The WebSphere MQ batch stub section—CSQBSTUB, CSQBRRSI, or
CSQBRSTB for Batch or CSQQSTUB for IMS—is replaced in the application load module

Platform
Environment
Variable Default Directory

Sun Solaris LD_LIBRARY_PATH /opt/HP/TransactionVision/lib64:/opt/mqm/lib64

HP-UX SHLIB_PATH /opt/HP/TransactionVision/lib64:/opt/mqm/lib64

IBM AIX LIBPATH /usr/lpp/HP/TransactionVision/lib64:/usr/lpp/mqm/
lib64

RedHat Linux
x86-64

LD_LIBRARY_PATH /opt/HP/TransactionVision/lib64:/opt/mqm/lib64
86 Chapter 7

with the corresponding Sensor batch or IMS stub—SLMBSTUB, SLMBRRSI, SLMBRSTB, or
SLMQSTUB. After this bind, the application will invoke the Sensor instead of WebSphere MQ
directly.

Note that thlqual is the high-level qualifier chosen by your System Administrator when
installing TransactionVision. For example, if the high-level qualifier is TVISION, the sample
procedure library is TVISION.SSLMPROC.

When running the application, make sure that the library containing the Sensor is specified
in the LNKLST, STEPLIB, or JOBLIB concatenation. In UNIX System Services, define
environment variable STEPLIB to specify the library containing the Sensor.

z/OS CICS

On the z/OS CICS platform, Sensors use the API-crossing exit mechanism provided by the
CICS adapter of WebSphere MQ for z/OS.

i5/OS

On the i5/OS platform, the main Sensor service program has the same name as the
WebSphere MQ service program: LIBMQM for non-threaded programs and LIBMQM_R for
threaded programs. The two TransactionVision service programs have the same signature
and exported symbols (in the same order) as their WebSphere MQ counterparts.

TransactionVision also provides two utility service programs:

• MQMUTL5 binds to QMQM/LIBMQM

• MQMUTL5_R binds to QMQM/LIBMQM_R

The main Sensor service program binds to one of these three service programs so a program’s
MQI call will be passed into the WebSphere MQ service program.

Use one of the following methods to use the Sensor service program:

• User program is created by CRTPGM with the parameter “BNDSRVPGM(QMQM/
LIBMQM)” or “BNDSRVPGM(QMQM/LIBMQM_R” or “BNDSRVPGM(QMQM/
AMQZSTUB)”.

Specify the “ALWUPD(*YES)” and “ALWLIBUPD(*YES)” parameters to CRTPGM. The
default values are *YES for ALWUPD and *NO for ALWLIBUPD. If the user program is
created without these parameters, rebind it by either method.

After the program binding, you can use UPDPGM to switch between the service programs
provided by WebSphere MQ and the Sensor. The parameter for this command is
SRVPGMLIB, which you can set to either QMQM or TVSENSOR.

• User program is created by CRTPGM with the parameter “BNDSRVPGM(*LIBL/
LIBMQM)” or “BNDSRVPGM(*LIBL/LIBMQM_R)”.

Note that if your current applications use the z/OS Resource Recovery Services (RRS) in
batch, the calls to SRRCMIT and SRRBACK are not recorded by the Sensor but are simply
passed through to WebSphere MQ.
Configuring WebSphere MQ Sensors 87

After the binding of the program, use ADDLIBLE or CHGLIBL to switch between the
WebSphere MQ library QMQM and the Sensor library TVSENSOR. The Sensor library
must precede the WebSphere MQ library QMQM in the library list in order to use
TransactionVision.

Configuring Sensor Logging

On some operating systems, there is no additional work to obtain error and trace logging from
the WebSphere MQ Sensors. However, on UNIX platforms, syslogd may need to be configured
to log the logging facility used by the WebSphere MQ Sensors. Refer to Chapter 9, Configuring
Sensor Logging, for details on WebSphere MQ Sensor logging on UNIX platforms.

Setting the Configuration Queue Name

By default, Sensors look for a configuration queue named
TVISION.CONFIGURATION.QUEUE on the queue manager specified in the WebSphere MQ
API call. However, you may specify a different configuration queue name when you create a
communication link. If you are using a communication link that specifies a non-default
configuration queue name, you must configure Sensors to look for configuration messages on
that queue instead of TVISION.CONFIGURATION.QUEUE.

UNIX, Windows, and i5/OS

On UNIX, Windows, and i5/OS platforms, set the TVISION_CONFIGURATION_QUEUE
environment variable to the Sensor configuration queue specified in the communication link
for all processes that use the Sensor.

IBM z/OS Batch, IMS and WebSphere MQ-IMS Bridge

On IBM z/OS Batch, IMS, and WebSphere-IMS bridge, a user-installable load module named
SLMBCNFG can be generated to control which queue the Sensor reads to retrieve
configuration messages from the Analyzer.

1 Edit thlqual.SSLMPROC(SLMBCFGQ) and change as follows:

a Change the value of the SET CONFIGQ statement to specify the desired
configuration queue name.

b Change the SET THLQUAL statement to specify the high-level qualifier for your
TransactionVision Sensor libraries.

c If your system does not have the IBM-supplied HLASMCL procedure available,
change the JCL as necessary to assemble and bind the included source code. Please do
not change any of the source code.

2 Submit thlqual.SSLMPROC(SLMBCFGQ) to effect the change.

Note that an RPG program created by the ILE RPG compiler uses the same
WebSphere MQ service program as the C program created by the ILE C compiler.
TransactionVision has been tested in the following scenarios using MQI in an ILE
RPG program.

• Using MQI through a call to MQM

• Using prototyped calls to the MQI
88 Chapter 7

For more information about the WebSphere MQ-IMS bridge Sensor, see Using the
WebSphere MQ-IMS Bridge Sensor on page 99.

On IBM z/OS CICS, a user-installable program named SLMCNFQ can be written to control
which queue the Sensors read from to retrieve configuration messages from the Analyzer.

If the program SLMCNFQ can be executed by the Sensor via an EXEC CICS LINK, the
Sensor does so, passing SLMCNFQ a CICS comm area large enough to hold a configuration
queue name (48 bytes). The comm area initially contains the default configuration queue
name (TVISION.CONFIGURATION.QUEUE). When executed by the Sensor, SLMCNFQ
should write the desired configuration queue name to the comm area passed to it, and then
return. Subsequently, the Sensor will read the comm area to retrieve the correct configuration
queue name.

If the attempt to execute the SLMCNFQ fails, the z/OS CICS WebSphere MQ Sensor tries to
load the program SLMBCNFG and gets the configuration queue name. For instructions on
generating this program, see Generating SLMBCNFG on page 89.

If the attempt to load SLMBCNFG fails, the Sensor reads from
TVISION.CONFIGURATION.QUEUE.

Writing SLMCNFQ

You can write an SLMCNFQ program in any language supported by your CICS region. The
following is an example written in C that sets the configuration queue name to
MY.CONFIGURATION.QUEUE:

#include <cmqc.h>
#include <string.h>
 #include <stdlib.h>
 int main(int argc, char * argv[])
 {
 void *pCommArea = NULL;
 EXEC CICS ADDRESS COMMAREA(pCommArea) EIB(dfheiptr);
 if (pCommArea && (dfheiprt->eibcalen >= sizeof(MQCHAR48)))
 {
 memset(pCommArea, 0, sizeof(MQCHAR48));
 strcpy(pCommArea, “MY.CONFIGURATION.QUEUE”);
 }
 EXEC CICS RETURN;
 }

Generating SLMBCNFG

SLMBCNFG is generated the same way as for z/OS batch and IMS; that is:

1 Edit thlqual.SSLMPROC(SLMBCFGQ) and change as follows:

a Change the value of the SET CONFIGQ statement to specify the desired
configuration queue name.

b Change the SET THLQUAL statement to specify the high-level qualifier for your
TransactionVision Sensor libraries.

Note that the installation procedure for the z/OS CICS Sensor does NOT create an
SLMCNFQ program. For instructions on writing this program, see Writing SLMCNFQ,
which follows.

To use a different configuration queue name for each CICS region, see Using Separate
Configuration Queues for Each CICS Region on page 90.
Configuring WebSphere MQ Sensors 89

c If your system does not have the IBM-supplied HLASMCL procedure available,
change the JCL as necessary to assemble and bind the included source code. Please do
not change any of the source code.

2 Submit thlqual.SSLMPROC(SLMBCFGQ) to effect the change.

Using Separate Configuration Queues for Each CICS Region

If you have multiple CICS regions, you may want to use a different configuration queue name
for each CICS region while sharing the Sensor library among those CICS regions. To achieve
this, perform the following steps:

1 If you have not added the table SLMBCNFG to your CSD definition, please do so. The
definition of SLMBCNFG is shown below:

DEFINE PROGRAM(SLMBCNFG) GROUP(BTITV)
 DESCRIPTION(TVISION SENSOR CONFIGQ TABLE)
 LANGUAGE(ASSEMBLER) RELOAD(NO) RESIDENT(YES) USAGE(NORMAL)
 USELPACOPY(NO) STATUS(ENABLED) DATALOCATION(ANY)

2 Create a new member called CONFIGQ in &TVISION.SSLMSAMP. The contents of this
member, which is extracted from the supplied sample
TVISION.SSLMPROC(SLMBCFGQ), are as follows:

.*---

.* SLMCONFG - TVision configuration macro - PLEASE DO NOT CHANGE

.*---
 MACRO
 SLMCONFG &CONFIGQ=TVISION.CONFIGURATION.QUEUE
SLMBCNFG AMODE 31
SLMBCNFG RMODE ANY
SLMBCNFG SECT
CONFIGQ DC CL48'&CONFIGQ'
 MEND
*
 SLMCONFG CONFIGQ=&SYSPARM
 END

3 In your CICS startup JCL, make the following updates:

In the PROC statement of DFHSTART, add one parameter, CONFIGQ. For example:

//DFHSTART,PROC,START=AUTO,
// INDEX1='CICSTS22',
 ...
 // SIP=0,
 // CONFIGQ='TVISION.CONFIGURATION.QUEUE',
 ...

Add an additional step before the actual CICS execution step:

//*---
// EXEC HLASMCL,
 // PARM.C='NORLD,NOXREF,NORXREF,SYSPARM(&CONFIGQ)',
 // PARM.L='MAP,REFR'
 //C.SYSIN DD DISP=SHR,DSN=TVISION.SSLMSAMP(CONFIGQ)
 //L.SYSLMOD DD
DSN=&&CONFIGQ(SLMBCNFG),DISP=(,PASS),SPACE=(TRK,(1,,1))
 //*--
90 Chapter 7

Add a DD statement referencing the temporary PDS created above to DFHRPL
concatenation preceding the TVISION library. For example:

...
// DD DISP=SHR,DSN=&&CONFIGQ
 // DD DISP=SHR,DSN=TVISION.SSLMLOAD
 ...

4 After you have made these modifications, you can start each CICS region with different
configuration queue name by simply passing a unique CONFIGQ parameter. For example:

S CICS.CICS1,START=COLD,...,CONFIGQ='TV.CONFIG.Q1'
S CICS.CICS2,START=COLD,...,CONFIGQ='TV.CONFIG.Q2'

Setting the Configuration Queue Check Interval

By default, Sensors check the configuration queue for new configuration messages every five
seconds. On UNIX, Windows, and i5/OS platforms, however, you may specify a different
configuration queue check interval. To specify a non-default configuration queue check
interval for a Sensor, set the TVISION_CONFIG_CHECK_INTERVAL environment variable
to the desired interval, in milliseconds.

Configuring the WebSphere MQ Messaging System Provider

TransactionVision uses queues for the communication between the Analyzers and the
Sensors. You need at least three queues: the configuration queue, the event queue, and the
exception queue. The default name of these queues are
TVISION.CONFIGURATION.QUEUE, TVISION.EVENT.QUEUE, and
TVISION.EXCEPTION.QUEUE, respectively. You must set up these queues on your message
system provider in a vendor-specific way. See Chapter 5 “Managing Communication Links” in
the TransactionVision Administration Guide for details.

You may create the queues on your queue managers using the IBM WebSphere MQ runmqsc
utility program or the MQ Explorer graphical user interface that is available on Windows and
Linux. For using the client connection type, you also need to define a server connection
channel and a listener on your queue manager. See the vendor's documentation for details.

Configuring the WebSphere MQ API Exit Sensor

The WebSphere MQ API Exit Sensor is an exit program which examines all MQI calls made
with respect to the associated queue manager. The exit program registers functions to be
invoked before and after an MQI call. It is implemented in the following shared objects/DLLs:

• tvisionapiexit

• tvisionapiexit_r

Though the Sensor is registered with respect to queue managers, it is actually loaded and
executed within the address space of the application making the MQI calls. For example, the
Sensor is running in the amqsput program address space, not the queue manager space.

You can use the WebSphere MQ API Exit Sensor to monitor any WebSphere MQ server
applications. You can monitor client applications indirectly by collecting the corresponding
MQI calls in the server connection channel agents (listeners).
Configuring WebSphere MQ Sensors 91

The WebSphere MQ API Exit Sensor differs from the WebSphere MQ Sensor Library in the
following ways:

• There is no need to disable FASTPATH_BINDING (see WebSphere MQ Sensors and
FASTPATH_BINDING on page 96 chapter for more information).

• The completion and reason codes for MQDISC calls are not collected by the API Exit
Sensor and are set to fixed values of MQCC_OK and MQRC_NONE, respectively. The
event time for MQDISC events is set to the before-MQDISC function invocation time.

• The API Exit Sensor collects some TransactionVision internal events generated from
WebSphere MQ (WMQ) calls made by the Analyzer, and also internal WMQ events from
Java Sensors using a client connection to the listener.

Configuring the API Exit Sensor on Distributed and i5/OS Platforms

To use the WebSphere MQ API Exit Sensor on distributed platforms or i5/OS, you must
perform the following steps:

1 Link the appropriate WebSphere MQ API Exit Sensor shared object/DLL for your
environment (distributed platforms only).

2 Add the required stanzas to the mqs.ini and qm.ini files.

Linking the WebSphere MQ API Exit Sensor

Because TransactionVision supports both 32-bit and 64-bit versions of WebSphere MQ, you
must link to the correct shared object/DLL.

For WebSphere MQ V5.3 and V6.0 (32-bit), use the following commands to link the Sensor:

ln –s <TransactionVision Install Directory>/lib/tvisionapiexit /var/mqm/
exits/tvisionapiexit

ln –s <TransactionVision Install Directory>/lib/tvisionapiexit_r /var/mqm/
exits/tvisionapiexit_r (not required for Solaris)

For WebSphere MQ V6.0 (64-bit), use the following commands to link the Sensor:

ln –s <TransactionVision Install Directory>/lib64/tvisionapiexit /var/mqm/
exits64/tvisionapiexit

ln –s <TransactionVision Install Directory>/lib64/tvisionapiexit_r /var/
mqm/exits64/tvisionapiexit_r (not required for Solaris)

Ensure that the following stanza is in the qm.ini file:

ExitPath:
 ExitsDefaultPath=/var/mqm/exits/
 ExitsDefaultPath64=/var/mqm/exits64

Note that if ExitsDefaultPath parameter value and/or ExitsDefaultPath64 values of the
ExitPath: stanza in qm.ini file are changed, you must change the directory name /var/mqm/
exits and/or /var/mqm/exits64 described in the link commands appropriately.

 If the API Exit Sensor and WebSphere MQ Sensor Library are active at the same time, the
API Exit Sensor will log a warning and not register the MQI exits, staying inactive. The
WebSphere MQ Sensor Library will then continue to process events.
92 Chapter 7

New Stanzas

You must define the API Exit Sensor in new stanzas in the mqs.ini file, which contains
definitions applied to the whole WebSphere MQ environment, and the qm.ini file, which
applies to individual queue managers. The mqs.ini file is typically located in the directory /
var/mqm. The qm.ini file is typically in the directory /var/mqm/qmgrs/<qmgr_name>. A
stanza consists of a section header followed by a colon, which is then followed by lines
containing attribute/value pairs separated by the "=" character. Note that the same attributes
may be used in either mqs.ini or qm.ini.

Add the following stanzas to mqs.ini:

• ApiExitCommon

The attributes in this stanza are read when any queue manager starts, then overwritten
by the API exits defined in qm.ini.

• ApiExitTemplate

When any queue manager is created, the attributes in this stanza are copied into the
newly created qm.ini file under the ApiExitLocal stanza.

Add the following stanza to qm.ini:

• ApiExitLocal

When the queue manager starts, API exits defined here override the defaults defined in
mqs.ini.

Stanza Attributes and Values

All of these required stanzas have the following attributes and values:

• Name=TransactionVisionWMQSensor

The descriptive name of the API exit passed to it in the ExitInfoName field of the MQAXP
structure. This attribute should be set to the string “TransactionVisionWMQSensor”.

• Function=TVisionEntryPoint

The name of the function entry point into the module containing the API exit code. This
entry point is the MQ_INIT_EXIT function. This attribute should be set to the string
“TVisionEntryPoint”.

• Module=tvisionapiexit

The module containing the API exit code. Set this attribute to the TransactionVision
WebSphere MQ API Exit Sensor binary. For platforms that support separate threaded
libraries (AIX, HP-UX, and Linux), this is set to the path for the non-threaded version of
the Sensor module. The threaded version of the WebSphere MQ application stub
implicitly appends _r to the given module name before it is loaded.

• Data=TVQ=queue_name

Important! Do not specify a path; the module path is determined by the link
command you used to link to the correct module (see Linking the WebSphere MQ
API Exit Sensor on page 92). The location depends on whether you use 32-bit or
64-bit WebSphere MQ libraries. The 32-bit module is located in
<TransactionVision installation directory>/lib, while the 64-bit module is located
in <TransactionVision installation directory>/lib64.
Configuring WebSphere MQ Sensors 93

To set the queue object names for which the Sensor should ignore WMQ events on, set the
TVQ attribute to the object name or part of the object name with wildcards. If no Data
section is specified, events on objects matching TVISION* will be ignored by the Sensor.
To completely turn off this feature specify an empty string for TVQ (Data=TVQ=).

The data field can have a maximum of 24 characters; therefore, the TVQ object name
value may be up to 20 characters and may include the * wildcard character at the
beginning and/or end of the string. Only one queue string may be specified for the TVQ
attribute. For more information, see Discarding WebSphere MQ Events on
TransactionVision Queues on page 95.

• Sequence=sequence_number

The sequence in which the TransactionVision WebSphere MQ API Exit Sensor module is
called relative to other API exits. An exit with a low sequence number is called before an
exit with a higher sequence number. There is no need for the sequence number of exits to
be contiguous; a sequence of 1, 2, 3 has the same result as a sequence of 7, 42, 1096. If two
exits have the same sequence number, the queue manager decides which one to call first.
This attribute is an unsigned numeric value.

The following is an example illustrating the Sensor configuration per queue manager (qm.ini).

ApiExitLocal:
 Name=TransactionVisionWMQSensor
 Sequence=100
 Function=TVisionEntryPoint
 Module=tvisionapiexit

Configuring the API Exit Sensor on Windows Platforms

Configure the WebSphere MQ API Exit Sensor on Windows platforms using the WebSphere
MQ Services snap-in or the amqmdain command to update the Windows Registry.

A new property page for the WebSphere MQ Services node, API Exits, describes the two types
of API exit managed from this node: ApiExitCommon and ApiExitTemplate. In the Exits
property page for individual queue managers, you can update the ApiExitLocal. The
Configure... buttons launch a dialog to manage the entries within each stanza. The dialog
consists of a multi-column list of any API exits already defined in the appropriate stanza, with
buttons to add, view, change the properties of, and remove exits. See Configuring the API Exit
Sensor on Distributed and i5/OS Platforms on page 92 for a description of required stanzas
and attribute values.

When you finish defining or changing an exit, press OK to update the Registry, or press
Cancel to discard changes.

Identifying Programs to Monitor

The WebSphere MQ API Exit Sensor uses two files to identify which programs to monitor:

• exit_sensor.allow defines which programs will be monitored. All other programs are NOT
monitored. Note that if this file is empty, no programs will be monitored. On i5/OS, this
file name is ALLOW.MBR.

• exit_sensor.deny defines which programs will not be monitored. All other programs will be
monitored. On i5/OS, this file name is DENY.MBR. This file is shipped with the
WebSphere MQ Sensor and contains some default programs from which events are not
collected by the API Exit Sensor, such as the WebSphere MQ command server.
94 Chapter 7

These files are located at the top level TransactionVision installation directory. For example,
on Solaris if TransactionVision is installed at /opt/HP/TransactionVision, these two files exist
in the /opt/HP/TransactionVision directory. On i5/OS, these files are in /qsys.lib/tvsensor.lib/
EXITSENSOR.FILE.

In these files, comment lines begin with a # character. You may use the * wildcard character at
the beginning and/or end of program names.

If both exit_sensor.allow and exit_sensor.deny exist, the Sensor ignores exit_sensor.deny.

Most WebSphere MQ commands (programs) are denied, and the API exit is not registered for
them. Additional programs can be denied by the user by specifying the names in
exit_sensor.deny.

The following is an example exit_sensor.allow file, which will only collect from WebSphere MQ
listeners:

File: exit_sensor.allow
Description: Only collect from WebSphere MQ Listeners
amqcrsta
amqrmppa
runmqlsr

The following is an example exit_sensor.deny file to collect any program except for those that
start with amq:

File: exit_sensor.deny
Description: Collect any program except those that
start with “amq”
amq*

Discarding WebSphere MQ Events on TransactionVision Queues

By default, the Sensor discards any WebSphere MQ traffic related to any queue object with
the name prefix “TVISION.” To specify a different queue object name, set TVQ to the object
name string in the Data attribute. Use the * wildcard character to indicate where in the object
name the specified characters occur, as in the following examples:

• HP_TV*

“HP_TV” is the prefix for all TransactionVision queue objects.

• *HP_TV

“HP_TV is the suffix for all TransactionVision queue objects.

• *HP_TV*

All TransactionVision queue objects contain the string “HP_TV.”

If you require finer control over which queue objects to track, use a data collection filter
instead. For instructions on using data collection filters, see the “Managing Data Collection
Filters” chapter of the TransactionVision Administration Guide.

Note that wildcards may be used before and/or after the TVQ value, but not within it. For
example, a value of T*VISION is invalid.
Configuring WebSphere MQ Sensors 95

WebSphere MQ Sensors and FASTPATH_BINDING

For the standard WebSphere MQ Library Sensor on distributed platforms, if
FASTPATH_BINDING is set for the monitored application, it binds the application to the
same address space as the queue manager and tries to load a secondary DLL that is linked
against the standard WebSphere MQ library. Since this environment is configured to load the
Sensor library instead of WebSphere MQ, the secondary DLL tries to call internal symbols
that are not available.

To work around this potential problem, Sensors disable all FASTPATH_BINDING by setting
the MQ_CONNECT_TYPE environment variable to STANDARD whenever the monitored
application calls MQCONNX.

Using Sensors with WebSphere MQ Samples

If you want to use Sensors to monitor WebSphere MQ sample applications, note the following
limitations:

• On Windows, there are two locations for WebSphere MQ samples. If you run the samples
under WebSphere MQ\bin, you must copy the sample executables (amqsput, amqsget,
and so on) to a different directory to enable them to load the Sensor library instead of the
standard WebSphere MQ library. This is because the WMQ libraries reside in this same
folder and take precedence over the Sensor libraries even if PATH is set properly. The
samples under WebSphere MQ\TOOLS\c\samples\bin do not show this problem.

• On the HP-UX and Linux platforms, the sample executables have a hard-coded
WebSphere MQ library path and therefore will not load the Sensor library.

• When using the WebSphere MQ sample amqsgbr, do not use the Sensor event queue as
the first parameter.

WebSphere MQ Client Application Monitoring

For applications using WebSphere MQ client bindings, TransactionVision is capable of
monitoring and tracing these applications’ messaging activities in either a distributed or
centralized mode.

Distributed Monitoring

The following diagram illustrates how TransactionVision works in a distributed monitoring
environment:
96 Chapter 7

In general, applications that make use of WebSphere MQ client binding will communicate
with a “listener” process (also known as the channel responder) that runs on the same host as
the targeted queue manager. All WebSphere MQ activities (that is, MQI calls) are forwarded
to and processed by the listener program, which in turn issues the appropriate MQI calls to
the corresponding queue managers on behalf of the client applications.

In the distributed monitoring mode, an instance of the TransactionVision client Sensor will be
installed on the same host where the client application runs. The Sensor will intercept and
monitor the MQI calls made by the client application, generate trace information accordingly,
and invoke the corresponding MQI entry points in the regular WebSphere MQ client binding.

The trace information generated will be based on the client application context. This means
information such as program name, program instance, and host name, will be related to the
client application directly.

This monitoring scheme requires a client Sensor installed on each machine where WebSphere
MQ client applications run. Moreover, the client Sensor is capable of monitoring any
applications making use of the C language WebSphere MQ client runtime binding. In other
words, the client Sensor supports applications developed in C and C++. On the other hand,
WebSphere MQ Java Client class does not make use of the C runtime binding. Thus this
approach is not applicable to WebSphere MQ Java client applications or applets. (Note that
WebSphere MQ Java Server applications are indeed supported through the C language
TransactionVision Server Sensor).

This approach is supported for client applications running on Windows, Solaris, HP-UX, AIX,
and Linux operating systems.

Centralized Monitoring

Centralized monitoring of the WebSphere MQ listener program is only supported using the
API Exit Sensor and is not supported with the library sensor. The following diagram
illustrates how the Sensor works in a centralized monitoring environment:
Configuring WebSphere MQ Sensors 97

In this case, the Sensor is deployed on the host where the listener process and queue manager
reside. Instead of direct monitoring of the client application, the Sensor monitors the listener
program instead. Note that the TransactionVision Server Sensor is deployed. The Sensor
intercepts and reports any MQI calls issued by the listener program. In other words, the
listener program will execute the same MQI calls that the client application invokes (with a
few exceptions, as we will discuss later). Therefore, by examining the listener program MQI
call records, TransactionVision users can have a good understanding of the messaging
activities originated from the client applications.

One advantage of this approach is that Sensor deployment can be centralized around the host
machines where the queue manager runs. Unlike the distributed approach, no client Sensors
are needed on the client machines. This can greatly reduce the installation and
administration efforts in environment where client applications may run on thousands of
machines distributed in different physical facilities.

Another note is that this approach can support WebSphere MQ Java client application/applet
monitoring. Such monitoring is not supported in the distributed mode.

If you decide to deploy this model of monitoring, take note of the following:

• Since the Sensor monitors the listener program instead of client applications directly,
certain context information reported such as program name, program instance identifiers,
host name, and so on, correspond to the listener program instead. However, since each
client connection is handled in a particular thread or process instance of the listener
program, MQI calls from the same client application and same connection will be listed
under the same listener program instance.

• The listener program will not invoke the MQCONN or MQCONNX calls on client
connection requests. Thus there will be no corresponding TransactionVision trace
information reported for such connection events.

• The listener program may make additional MQI calls on its behalf. For example, when
processing a new connection, it will make a MQOPEN-MQINQ-MQCLOSE call sequence
for querying queue manager information. Also, it will make a MQCMIT-MQBACK call
sequence when processing a disconnection request from the client.

• There is a one-to-one correspondence between the MQPUT/MQPUT1/MQGET calls from
the client applications and listener program. So the listener messaging activities should
accurately reflect those of the clients it serves.

• As discussed before, context information reported is associated with the listener program.
However, client application origin context information can be retrieved indirectly through
the message header (MQMD) structure embedded in the MQPUT/MQPUT1/MQGET
feedback data through the call parameters.
98 Chapter 7

• If you use the Servlet, JMS, or EJB Sensors with a client connection to a queue manager
through a listener, which is being monitored with the TransactionVision WebSphere MQ
Sensor, internal TransactionVision events will be captured. It is recommended to either
use a separate unmonitored listener for the Servlet, JMS, or EJB Sensors or use server
binding connections from these Sensors. If this cannot be done, change the data collection
filter to exclude the configuration and event queues.

The table below summarizes the characteristics of the two approaches:

Installation and Configuration Considerations

For distributed monitoring, install client Sensors on each host where WebSphere MQ client
applications run. Follow the standard Sensor installation instructions in Installing and
Configuring the Java Agent on Windows on page 16.

For centralized monitoring, install server Sensors on each host where one or more listener
programs are to be monitored.

Using the WebSphere MQ-IMS Bridge Sensor

The WebSphere MQ-IMS bridge is a WebSphere MQ component that enables WebSphere MQ
applications to invoke IMS transactions and receive their reply messages. The application
performs an MQPUT to an WebSphere MQ-IMS bridge input queue with a message consisting
of an IMS transaction code followed by transaction data and receives the IMS output message
by performing an MQGET to the reply-to queue specified in the message descriptor on the
MQPUT. The IMS transaction does not need to change to accommodate this interface.

The TransactionVision WebSphere MQ-IMS bridge Sensor monitors WebSphere MQ-IMS
bridge messages rather than the WebSphere MQ API calls made by the calling applications.

Distributed Monitoring Centralized Monitoring

Direct client MQI tracing Indirect tracing through listener MQI calls

Direct client context information access Client context information through call
parameters

Client Sensor on each client host Server Sensor per queue manager host

Monitors applications using WebSphere MQ
C binding

Server Sensor per queue manager host

Supports client applications running on
Windows, Solaris, HP-UX, AIX, and Linux

Support clients connecting to queue
managers running on Windows, Solaris,
HP-UX, and AIX

The centralized monitoring mechanism is exclusive with the distributed monitoring
mechanism. In general, the server Sensor monitoring the listener program will report activities
originated from all clients it services, including those clients that may be monitored by client
Sensors residing on the client host. In order to avoid redundant reports, if you choose the
centralized monitoring approach, make sure that on every host where clients are connecting to
the queue manager whose listener is being monitored, the client Sensor is disabled.
Configuring WebSphere MQ Sensors 99

Sensor Setup

Before using the WebSphere MQ-IMS bridge Sensor, perform the following setup tasks:

1 Customize the sample TVISIONB startup procedure in thlqual.SSLMPROC and copy it to
an appropriate PROCLIB. TVISIONB requires four startup parameters, which may be
specified in the procedure or on the START command.

— The QMGR parameter specifies the name of the WebSphere MQ queue manager to
which TVISIONB must connect to access its configuration and event queues. Note
that this queue manager is the one to which the Analyzer connects when establishing
a communication link to the Sensor and not necessarily the queue manager(s) to
which the WebSphere MQ-IMS bridge is connected. It must be the same queue
manager used when defining the configuration and event queues during installation
(see the sample job in thlqual.SSLMINST(SLMCRTQS).

— The MAXQ parameter specifies the maximum amount of storage, in megabytes, that
TVISIONB will allocate for its buffer queue. Please refer to The TVISIONB Buffer
Queue on page 101.

— The EDPROC parameter specifies the name of the procedure to start the TVISIOND
address space.

— The IMSJOB parameter specifies the jobname of the IMS control region for the IMS
system to be monitored.

2 Include the thlqual.SSLMAUTH in the STEPLIB concatenation for each IMS control
region for which TransactionVision WebSphere MQ-IMS bridge monitoring is required or
copy the DFSYIOE0 module to an existing qualifying library.

WebSphere MQ-IMS Bridge Sensor Operation

To operate the WebSphere MQ-IMS bridge Sensor, perform the following steps:

1 Assure that IMS control region is started with the TransactionVision DFSYIOE0 exit
routine accessible in its STEPLIB.

2 Start the TVISIONB address space from the system operator's console, specifying any
parameters to be overridden in the startup procedure. For example:

S TVISIONB[.jobname],IMSJOB=IMS71CR1,QMGR=CSQ1, MAXQ=10

If you will be running multiple instances of the Sensor, you should specify a unique
jobname for each instance. Otherwise, the jobname will default to the procedure name and
all MVS modify and stop commands will apply to all instances. Alternatively, create
separate, uniquely named startup procedures for each IMS system to be monitored.

If IMSJOB is omitted (for example, specified as nul)l, the started Sensor instance will
monitor each IMS system in which the DFSYIOE0 exit routine is driven and which is not
explicitly monitored by another instance of the Sensor. If an IMS system-specific Sensor is
started while a monitor-all Sensor is running, monitoring of the targeted IMS system will
be switched to the specific Sensor instance. Conversely, when a specific Sensor is stopped,
monitoring of the targeted IMS system will be switched to the monitor-all Sensor, if
running. To avoid confusion, it is recommended that you run only specific Sensors or run a
monitor-all Sensor and no specific Sensors. Only one monitor-all Sensor will be allowed
and only one Sensor monitoring each specific IMS system will be allowed.

TVISIONB will automatically start TVISIOND.
100 Chapter 7

3 Request bridge monitoring from the TransactionVision web application on a connected
workstation. Please refer to the TransactionVision User's Guide for more information.

4 Ordinarily, the activity of the bridge Sensor is controlled from the TransactionVision web
application. However, you may disable the Sensor from the system console with the
MODIFY command: F TVISIONB,DISABLE MQIMSBDG. When disabled the
TransactionVision exit routine, DFSYIOE0, continues to run in the IMS control region
but sends no events to the TVISIONB server component. Re-enable the Sensor as follows:
F TVISIONB,ENABLE MQIMSBDG.

5 Stop the TVISIONB address space as follows: P TVISIONB. This will implicitly disable
the Sensor; the exit routine continues running but does not attempt to send events to the
TVISIONB. TVISIOND will automatically by stopped.

Any events in the buffer queue will be sent to the event dispatcher component before
shutdown completes. To avoid this quiesce function, you may request an immediate
shutdown, in which case all events in the buffer queue are discarded: P TVISIONB
IMMED.

The TVISIONB Buffer Queue

The Sensor server component maintains an in-storage queue to buffer events flowing from the
exit routine through TVISIONB to TVISIOND. It is likely that the rate of events from the exit
routine will be several times faster than the rate of event dispatching by TVISIOND. The
queue will expand and contract in response to these respective flows. The maximum size of
the queue may be controlled irrespective of the REGION specification.

On the TVISIONB start command or in the startup procedure, specify MAXQ=nn, where nn is
the maximum size of the queue in megabytes. The minimum size is 3. The maximum allowed
value is 2046—to allow TVISIONB to use the entire 2GB address space.

TVISIONB allocates and frees its queue storage in 1MB blocks. If TVISIONB cannot allocate
an additional block when required, either because of the MAXQ limitation or REGION size
constraints, it issues a warning message and, when the current block is full, it discards any
new events until it is able to allocate a new block. Events already queued will continue to be
collected.

To define the optimum MAXQ specification for your environment will require some
experimentation. However, a generous specification that turns out to be unnecessary is not
costly since the queue will contract to as low as 2MB when the excess is not needed regardless
of the MAXQ setting.

Event Data

The WebSphere MQ-IMS bridge Sensor collects the following event data for each WebSphere
MQ-IMS bridge event:

• Input/output flag

• Segment sequence indicator

• Transaction code

• IMS message (or message segment)

• Userid

• Cross Systems Coupling Facility (XCF) member name of queue manager

• The message descriptor (MQMD) specified on the MQPUT in the originating application.
Configuring WebSphere MQ Sensors 101

To cause the Sensor to add the queue manager and queue object to the WebSphere MQ-IMS
bridge entry event data, the Analyzer requires an event modifier bean. The bean provided
with TransactionVision provides a simple approach. It defines the WebSphere MQ queue
manager and queue objects in separate XML configuration files, and defines a special event
modifier to pick up the definition and insert that into WebSphere MQ-IMS bridge entry
events. The following two files, located in <TVISION_HOME>/config/services, are used to set
up an WebSphere MQ-IMS bridge entry event modifier:

• Beans.xml

• IMSBridgeObject.xml

Beans.xml

This file sets up the event analysis framework by defining a chain of processing beans. By
default, com.Bristol.tvision.services.analysis.event-modifier.IMSBridgeEntryModiferBean is
already defined under EventModifierCtx, which reads an object definition from
IMSBridgeObject.xml and plugs the definition (in the format of an XML document fragment)
into the event XML document if that event is an WebSphere MQ-IMS bridge entry event.

<Module type="Context" name="EventModifierCtx">
 <!--
 This context contains beans that modify XML event,
 which are unmarshalled from the raw event stream.
 User can easily plug in their modifier in this
 section. The sample bean checks the user data to
 see if its a valid XML document. If so, the
 document will be parsed and plugged under the user
 data node
 <Module type="Bean"
class="com.bristol.tvision.services.analysis.eventmodifier
.DefaultModifierBean"/>
 -->
 <!--
 This bean read MQObject definition for IMS bridge
 entry event from $TVISION_HOME/config/service/
 IMSBridgeObject.xml
 -->
 <Module type="Bean"
class="com.bristol.tvision.services.analysis.eventmodifier
.IMSBridgeEntryModifierBean"/>
</Module>

IMSBridgeObject.xml

This file defines the WebSphere MQ queue objects that generate the WebSphere MQ-IMS
bridge events, as in the following sample:

<?xml version="1.0" encoding="UTF-8"?>
<IMSBridgeMQObject>
 <MQObject objectName="IMS.BRIDGE.QUEUE" queueManager="MQS1"
objectType="Q_LOCAL"/>
</IMSBridgeMQObject>
102 Chapter 7

Note that only one MQOBJECT element is defined under the root element
IMSBridgeMQObject. If multiple MQObject elements are defined, the event modify bean just
picks up the first one.

Depending on the object type, the XML document may extend the structure to provide more
detailed information. For example, the following defines a remote queue object:

<?xml version="1.0" encoding="UTF-8"?>
<IMSBridgeMQObject>
 <MQObject objectName="REMOTE.BRIDGE.QUEUE" queueManager="MQS1"
objectType="Q_REMOTE">
 <MQObject objectName="IMS.BRIDGE.QUEUE" queueManager="MQS2"
objectType="Q_LOCAL">
 </MQObject>
</IMSBridgeMQObject>

The XML schema is located in <TVISION_HOME>/config/xmlschema/IMSBridgeObj.xsd.

Data Collection Filters and Queries

Filtering (either in a data collection filter or query) is not provided on some event attributes
such as user name, IMS PSB name, IMS region type, IMS identifier, program, entry event
queue, and queue manager or return code.

To filter on the WebSphere MQ-IMS bridge entry or exit events, select the appropriate API,
either on the WebSphere MQ API criteria page (queries) or the MQ IMS Bridge API criteria
page (data collection filters):

Using the WebSphere Business Integration Sensor

TransactionVision provides a WebSphere Business Integration (WBI) Sensor that enables
TransactionVision to distinguish the various message flows and identify individual logical
transaction paths within WBI. The WBI Sensor is a WBI plug-in that supports trace nodes
(TransactionVisionTrace), inserted into normal execution paths, and failure nodes
(TransactionVisionFailure), inserted into failure paths.

Attribute Description

objectName Defines the WebSphere MQ queue name

queueManager Defines the queue manager name

objectType Defines the type of queue. Valid values are Q_LOCAL, Q_ALIAS,
Q_REMOTE, Q_CLUSTER, Q_LOCAL_CLUSTER,
Q_ALIAS_CLUSTER, Q_REMOTE_CLUSTER, and
DISTRIBUTION_LIST

API Description

MQIMS_BRIDGE_ENTRY WebSphere MQ-IMS bridge entry event

MQIMS_BRIDGE_EXIT WebSphere MQ-IMS bridge exit event
Configuring WebSphere MQ Sensors 103

Any number of processing nodes may be inserted into an existing message flow at the desired
points. Each processing node is a checkpoint that collects the state of the current message
flow and reports it to the Analyzer. The reported event provides information such as broker
name, message flow name, message data, etc. A unique label may be assigned to each node;
the label is reported in the TransactionVision event associated with the node instance.

To install and configure the WBI Sensor, you must do the following:

• Integrate the TransactionVision plugin with the Message Brokers Toolkit for WebSphere
Studio.

• Install the TransactionVision WBI Sensor on the WBIMB platform.

Message Brokers Toolkit for WebSphere Studio Integration

The following steps are based on the standard Message Brokers Toolkit and Eclipse
Technology plug-in installation procedures:

1 Ensure that the Message Brokers Toolkit is not running.

2 Unzip sensor_install_directory\mqsi\TransactionVisionWBIPlugin.zip to
WBIMB_install_directory\eclipse\plugins.

When the Message Brokers Toolkit is started, the TransactionVision trace nodes will be
visible with the other built-in nodes when editing a message flow.

TransactionVision User-Defined Node Installation for WBIMB

Perform the following steps to install the TransactionVision WBI Sensor on the WBIMB
platform:

1 Stop the WBI message broker(s).

2 Copy the WBI Sensor user-defined node library to the corresponding WBIMB install
subdirectory.

Windows:

Copy the library <sensor_install_directory>\mqsi\tvisiontrace.lil to the
directory <WBIMB_install_directory>\bin.

UNIX:

Copy the library to the directory <WBIMB_install_directory>/lil.

3 Restart the WBI message broker(s).

Node Insertion

You may now insert any number of TransactionVision Sensor trace and failure nodes into any
message flows through the Message Brokers Toolkit. Remember that any changes to the
configuration repository must be deployed to the appropriate brokers.

See the TransactionVision User’s Guide for information about using the WBI Sensor in
TransactionVision data collection and analysis.
104 Chapter 7

8 Configuring the Proxy Sensor
The TransactionVision Proxy Sensor enables TransactionVision to provide a basic level of
correlation of business transactions into process that are not monitored using
TransactionVision Sensors. Some examples of the appropriate applications of the Proxy
Sensor include:

• Transactions where a monitored application places a request message on a queue, after
which an application running on a platform not supported by the TransactionVision
Sensor (such as Tandem) retrieves the message, processes it, and places a reply on a
queue for retrieval by the monitored application.

• Transactions where a monitored application places a request message on queue, after
which an application at a business partner location (where TransactionVision is not
installed) retrieves the message, processes it, and places a reply on a queue for retrieval
by the monitored application.

In these scenarios, where some unsensored applications are participating in the business
transaction, the Proxy Sensor enables TransactionVision to provide limited information about
the entire business transaction.

Unlike the TransactionVision Sensor, the Proxy Sensor is a Java bean that runs within the
Analyzer. It recognizes transactions that are going to unsensored applications and creates
special proxy objects to represent the unsensored applications involved in the transaction.

Application Requirements

For the Proxy Sensor to correlate business transactions involving unsensored applications,
the applications must meet the following requirements:

• The application monitored by the Sensor must maintain the message ID and correlation
IDs in the MQMD.

• The application monitored by the Sensor must specify a Reply-To queue in the request.

• The unsensored application must provide a meaningful program name in the MQMD for
reply events.

Enabling the Proxy Sensor

The Proxy Sensor is enabled by the TransactionVision license code.
105

Configuring the Proxy Definition File

The Analyzer generates proxy objects when WebSphere MQ events are from certain queues
and belong to a request-reply MQPUT-MQGET pair with matching message and correlation
IDs. The proxy definition file is an XML file that defines the attributes of proxy objects. It is
located in <TVISION_HOME>/config/services/ProxySensorDef.xml.

You must define a proxy element for each unsensored application you wish to include in your
TransactionVision analysis.

The following example defines a proxy element for the program P2:

<ProxySensor>
 <Proxy matchMsgIdToCorrelId=”true”>
 <Request queue="Q1" queueManager="QM1"/>
 <Reply queue="Q2" queueManager="QM2" />
 <Retrieve queue="INPUT_LQ" queueManager="DWMQI1"/>
 <Program name="P2" path="/usr/local/bin/P2path" />
 <Host name="P2_host_name" os="SOLARIS" />
 </Proxy>
</ProxySensor>

Subelements

Specify the following subelements for each proxy element:

Whenever you modify this file, you must restart the Analyzer for the changes to take effect.

Element Required? Attributes Description

Request Yes queue
queueManager

The WebSphere MQ queue and queue
manager from which the proxy
program gets the event.

Reply Yes queue
queueManager

The WebSphere MQ queue and queue
manager where the proxy program
puts the reply event of the same
message ID and correlation ID as the
request event.

Program Yes name
path

The name and path of the proxy
program.

Host Yes name
os

The name and operating system of the
host where the proxy program runs.

Retrieve No queue Causes the Proxy Sensor to check the
given queue object against its
definition rather than the object
defined in <Reply>. This element
allows the Sensor to work with looser
coupling.
106 Chapter 8

Optional Attributes for the Proxy Element

In addition to the subelements above, you may specify the following optional attributes for
any proxy element:

Configuring the User Interface

By default, the Component Topology Analysis view does not show proxy related links in
dynamic mode. To enable the proxy node in this view, set the hasProxySensor attribute in the
UI.properties file to true. For more information about changing this configuration file, see
Appendix B, Configuration Files.

z/OSBatch No jobID
jobName
stepName
tcbAddr

If the proxy program is an z/OS Batch
job, specify the job ID, job name, step
name, and TCB address.

z/OSCICS No regionName
transactionID
taskNum

If the proxy program is an z/OS CICS
task, specify the region name,
transaction ID, and task number.

z/OSIMS No psbName
transactionName
regionID
jobName
imsID
imsType

If the proxy program is an z/OS IMS
job, specify the PSB name, transaction
name, region ID, job name, IMS ID
and IMS type.

Element Required? Attributes Description

Attribute Description

matchMsgIdToCorrelId Causes the Proxy Sensor to match the message Id of the MQPUT
with the correlation Id of the MQGET

matchCorrelIdToMsgId Causes the Proxy Sensor to match the correlation Id of the
MQPUT with the message Id of the MQGET

swapMsgCorrelID Set to true to cause TransactionVision to swap the message ID
and correlation ID for MQPUT/MQPUT1 events when generating
the lookup key. This attribute cannot be used with either
matchMsgIdToCorrelId or matchCorrelIdToMsgId
Configuring the Proxy Sensor 107

108 Chapter 8

9 Configuring Sensor Logging
Log Files

Java Sensors

By default, the TransactionVision Servlet, EJB, JDBC and JMS Sensors log error and
warning messages to sensor.log in the location specified when you run the Java Agent Setup
Module. This location is stored in the Setup.properties file.

To enable the Servlet and JMS Sensors to print banners when activated, set the
com.bristol.tvision.sensor.banner Java property to true. The banner is printed to standard
output.

WebSphere MQ Sensors

By default, the TransactionVision WebSphere MQ Sensors log error, warning, and trace
messages to the local0 facility in the UNIX system log (syslogd), the Windows event log, the
z/OS operator console log, or the i5/OS user job log.

On UNIX platforms, you can specify the log facility by setting the TVISION_SYSLOG
environment variable to one of the following values: user, local0, local1, local2, local3, local4,
local5, local6, or local7. If TVISION_SYSLOG is not set or is set to a value other than those
listed, TransactionVision uses local0. The target log file must already exist for syslogd to log
to it. Contact your system administrator to set up the system log facility, if required.

On UNIX and Windows platforms, set the TVISION_BANNER environment variable, then
start the application. A banner indicating that the application is loading the Sensor should
appear. To disable this behavior, unset TVISION_BANNER. This environment variable can be
set to any value. On Windows, it must be set to a value other than an empty string. On i5/OS,
TVISION_BANNER does not display the library path as it does on UNIX.

Circular Logging

By default, the Servlet, EJB, and JMS Sensors employ a form of circular logging. When the
log file reaches the configured maximum size, it is renamed as a backup file and a new, empty
log file is created. By default, the maximum log size is 10 MB and there is one backup log file.

Using the defaults, when a log file (for example, the Sensor log file sensor.log, reaches 10 MB
in size, it is renamed sensor.log.1 and a new sensor.log file is created. If you change the
configuration so that there are two backup files, the following events take place when
sensor.log reaches 10 MB:

• sensor.log.2 is removed if it exists.
109

• sensor.log.1 is renamed sensor.log.2.

• sensor.log is renamed sensor.log.1.

• A new sensor.log is created.

If you do not wish to use circular logging, you may change the configuration to use linear
logging, in which a single log file is generated.

The <TVISION_HOME>/config/logging/*.Logging.xml files specify the type of logging used,
the maximum log file size, and the number of backup log files for each component. For
example, Sensor.Logging.xml specifies the configuration for the servlet and JMS Sensors. This
file contains entries similar to the following:

<appender class="tvision.org.apache.log4j.RollingFileAppender"
name="SENSOR_LOGFILE">
 <param name="File" value="c:/Program Files/HP/TransactionVision/logs/
sensor.log"/>
 <param name="Append" value="true"/>
 <param name="MaxBackupIndex" value="2"/>
 <param name="MaxFileSize" value="10MB"/>
 <layout class="tvision.org.apache.log4j. PatternLayout">
 <param name="ConversionPattern" value="%d [%t] %-5p %c %x - %m%n"/>
 </layout>
</appender>

Maximum Log File Size

To change the maximum size of the log file, change the value of the MaxFileSize parameter to
the desired size. Values provided should end in “MB” or “KB” to distinguish between
megabytes and kilobytes.

Maximum Number of Backup Log Files

To change the number of backup files, change the value of the MaxBackupIndex parameter to
the desired number of backup files.

Changing from Circular to Linear Logging

To use linear logging rather than circular logging, do the following:

1 In the appender class value, change RollingFileAppender to FileAppender. For example,
in the previous example, change the first line to the following:

<appender class="tvision.org.apache.log4j.FileAppender"
name="SENSOR_LOGFILE">

2 Remove the entries for the MaxBackupIndex and MaxFileSize parameters.
110 Chapter 9

Trace Logging

Trace logging provides verbose information of what a TransactionVision Sensor is doing
internally. It is used mainly to troubleshoot problems and should not be turned on in
production environments.

You can enable trace logging in TransactionVision Sensors to debug Sensor configuration
issues. Trace information for the WebSphere MQ Sensor is logged to the UNIX system log, the
Windows event log, the z/OS operator console log, or the i5/OS user’s job log. For the Servlet,
EJB, and JMS Sensors, trace messages are sent to the Sensor’s log4j TraceLog.

To enable or disable Sensor trace logging in the communication link, see the
TransactionVision Administration Guide for instructions.

Configuring Separate Log Files for Multiple Sensor Instances

If multiple applications servers or JVM processes on the same machine have the Sensor
enabled, the Sensor must be set up to log either to the Windows or UNIX system log, or to a
different log file for each application server or JVM. Not doing so will result in corrupt or
overwritten log file entries.

To set up each Sensor instance to log to a different log file, perform the following steps:

1 Copy the <TVISION_HOME>/config/sensor/Sensor.properties file to another name in the
<TVISION_HOME>/config/sensor directory. For example, if you are setting up the Sensor
for two servers, serverA and serverB, copy Sensor.properties to Sensor_serverA.properties
and Sensor_serverB.properties.

2 Copy the <TVISION_HOME>/config/logging/Sensor.Logging.xml file to another name in
the <TVISION_HOME>/config/logging directory. For example, for each server (serverA
and serverB), copy this file to Sensor.Logging.serverA.xml and
Sensor.Logging.serverB.xml.

3 Modify the logging_xml property in each Sensor.properties file. For example, in
Sensor_serverA.properties, change the property line to
logging_xml=Sensor.Logging.serverA.xml. Similarly, in Sensor_serverB.properties,
change the property line to logging_xml=Sensor.Logging.serverB.xml.

4 Set the JVM property com.bristol.tvision.sensor.properties to the appropriate
Sensor.property file. For example, for serverA set the JFM property as follows:

com.bristol.tvision.sensor.properties=sensor/Sensor_ser
verA.properties

For serverB, set the JVM property as follows:

com.bristol.tvision.sensor.properties=sensor/Sensor_ser
verB.properties

For stand-alone programs, this JVM property is set on the command line when the JVM is
invoked, as follows:

java -Dcom.bristol.tvision.sensor.properties=sensor/Sensor_se
rverA.properties

For WebSphere, set this JVM property using the Administration console for the given
application server under Servers > Application Servers > Process Definition > Java Virtual
Machine > Custom Properties.
Configuring Sensor Logging 111

For WebLogic, set this JVM property using the WebLogic startup script. Open any text
editor to edit the script. For example, startWebLogic.cmd. Set the JAVA_OPTIONS
environment variable to include com.bristol.tvision.sensor.properties as follows:

SET JAVA_OPTIONS=%JAVA_OPTIONS% -Dcom.bristol.tvision.
sensor.properties=<TVISION_HOME>/config/sensor/<custom properties file>

Using Windows and UNIX System Logs

On UNIX and Windows platforms, you can configure TransactionVision to log output to the
system event logging facilities—the event log for Windows or syslog for UNIX. Examples of
the logging configuration files needed to do this can be found in TVISION_HOME/config/
logging/system/*/Sensor.Logging.xml.

For both Windows and UNIX, you must define a specialized event appender.

Windows Event Appender

The following example shows how to configure the Windows event appender to use the event
log:

<appender name="NT_EVENT_LOG" class="tvision.org.apache.log4j.nt
.NTEventLogAppender">
 <layout class="tvision.org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%d [%t] - %m%n"/>
 </layout>
</appender>

NT_EVENT_LOG can then be referenced in a catagory definition of your choice. For example:

<category additivity="false" class="com.bristol.tvision.util.
log.XCategory" name="sensorLog">
 <priority class="com.bristol.tvision.util.log.XPriority" value="info"/>
 appender-ref ref="NT_EVENT_LOG"/>
</category>

On Windows, you must also add a special DLL to your path. This DLL,
NTEventLogAppender.dll, can be found in the config\logging\system\bin directory. For
example:

set path=%TVISION_HOME%\config\logging\system\bin;%PATH%
112 Chapter 9

UNIX Event Appender

The following example shows a UNIX event appender to use syslog:

<appender name="SYSLOG" class="tvision.org.apache.log4j.net.
SyslogAppender">
 <param name="SyslogHost" value="localhost"/>
 <param name="Facility" value="local0"/>
 <layout class="tvision.org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="[%t] %-5p %c %x
- %m%n"/>
 </layout>
</appender>

Specify the SyslogHost and Facility parameters as appropriate for your environment.
Configuring Sensor Logging 113

114 Chapter 9

A Utilities Reference
SetupModule

Description

This script starts the Java Agent Setup Module.

Options

Option Description

-recordFile name.rec Records

-installFile name.rec Plays back recording or automates

-console Launches in console mode
115

MigrateConfig

Location

TVISION_HOME/bin/MigrateConfig.[sh|bat]

Description

This is an internal script called during TransactionVision installation to migrate
configuration files for the Analyzer and UI from an older version of TransactionVision to the
current version.

MigrateConfig will not migrate any Sensor configuration files from previous versions of the
product. Sensors will need to be completely reinstalled and reconfigured.

Do NOT call this script directly; it may only be run during installation.
116 Appendix A

rebind_sensor

Location

TVISON_HOME/bin/rebind_sensor.sh

Description

This script rebinds the TransactionVision WebSphere MQ Sensor on the AIX platform.

In WebSphere MQ support pacs, internal symbols exported from the TransactionVision
WebSphere MQ Sensor on the AIX platform may change. When an internal symbol that has
been exported from the Sensor library is no longer available in the WebSphere MQ library, the
application cannot start and fails with various symbol resolution errors.

Hence, the rebind_sensor script needs to be run whenever a WebSphere MQ support or fix pac
is installed.

It modifies the TransactionVision Sensor libraries in TVISION_HOME/lib.

On WebSphere MQ 6.0 and above, this utility needs to be run twice, to instrument the 32-bit
libraries and the 64-bit libraries, as follows:

$TVISION_HOME/bin/rebind_sensor.sh (rebinds the 32-bit library)
$TVISION_HOME/bin/rebind_sensor.sh -64 (rebinds the 64-bit library)

Syntax

rebind_sensor.sh [-v|-s|-h][-64]

Options

Option Description

-v Writes errors to the console. The default behavior is to write errors to
TVISION_HOME/logs/mqsensorbind.log

-s Uses silent mode, which does not prompt before executing

-h Displays usage message

-64 Rebinds the 64-bit Sensor library. The default, when this option is not present,
is to rebind the 32-bit library
Utilities Reference 117

118 Appendix A

B Configuration Files
The TransactionVision setup utilities save Sensor configuration information necessary for
TransactionVision to operate in the following configuration files. You may also modify these
files directly if you need to make any changes to your configuration.

License.properties

The <TVISION_HOME>/config/license/License.properties file specifies the TransactionVision
license code supplied by HP.

Performance.properties

The <TVISION_HOME>/config/services/Performance.properties file contains the following
settings for performance logging:

• performance

Specifies whether to performance logging is on or off. The default is off.

• count_interval

Specifies the number of events after which performance data is logged. The default is
1000.

Sensor.properties

The <TVISION_HOME>/config/sensor/Sensor.properties file specifies information about the
servlet and JMS Sensors. It has the following entries:

• logging_xml

Specifies the name of the logging configuration file.

• configuration_file

Specifies the path name of the Sensor configuration XML file.

If you modify property files, you must restart the associated application for you changes to
take effect.
119

SensorConfiguration.xml

The SensorConfiguration.xml file defines the interaction between the Sensor and the
configuration queue. It defines the following attributes, which are specified when you create
or edit a communication link.

Setup.properties

The <TVISION_HOME>/config/setup/Setup.properties file specifies the following properties:

• default_tool_install_path

The directory location of the DefaultInstallPath.xml file, which lists the locations of
software components required by TransactionVision

• logs_dir

Attribute Description

ConfigurationQM The name of the configuration queue manager

ConfigurationQ The name of the configuration queue

ConfigurationQMHost The host name of the configuration queue manager

ConfigurationQMPort The listener port number of the configuration queue
manager

ConfigurationQMChannel The channel name of the configuration queue manager

ConnectionRetryDelay The delay in milliseconds between connection attempts
when the connection to the configuration queue manager
is lost. The default is 1000.

ConnectionRetryTimeout The amount of time in milliseconds to try to reconnect to
the configuration queue manager when the connection is
lost. A value of -1 (the default value) is to retry forever.

ConfigurationRetrieveInterval The time interval in milliseconds to check the
configuration queue for new configuration messages. The
default value is 10000.

SensorClientTimeSkewInterval The time interval in milliseconds to check the time skew
from the host running the Sensor and the host running
the configuration queue manager. The default value is
300000 (5 minutes).

EventPackageFlushTimeout The amount of time in milliseconds that an event package
remains idle (no events added) before it is forced to be
written to the event queue. The minimum value is 10000;
the default is 300000 (5 minutes).

RepeatLogInterval The amount of time in milliseconds to repeat a repetitive
error that would normally be suppressed. The default
value is 600000.
120 Appendix B

The name of the directory in which to store log files

• logging_xml

The name of the logging configuration file

• minimum_java_version

The minimum Java version required by TransactionVision

• minimum_java_version_sun

The minimum Java version required by TransactionVision on the Solaris platform

• maximum_java_version

The highest Java version supported by TransactionVision

tvision-wl-sensorconfig.properties

The <TVISION_HOME>/config/weblogic/tvision-wl-sensorconfig.properties file specifies
WebLogic application server information for the servlet and JMS Sensors. It specifies the
following properties:

• adminserver_name

Specifies the administration server name.

• adminserver_host

specifies the administration server host name.

• adminserver_port

Specifies the administration server port number.

• admin_user_name

Specifies the administration user name.

• admin_user_password

Specifies the administration user password.

• domain_dir

Specifies the domain directory.

• server_name

Specifies the name or names of the servers that to be monitored by TransactionVision. To
specify multiple server names, separate them with commas.

tvision-ws-sensorconfig.properties

The <TVISION_HOME>/config/websphere/tvision-ws-sensorconfig.properties file specifies
WebSphere application server information for the servlet and JMS Sensors. It specifies the
following properties:

• appserver_names_v5
Configuration Files 121

For WebSphere Application Server 5.x, specifies the cell name, node name, and server
name. Separate multiple entries with a comma.

• appserver_names_v4

For WebSphere Application Server 4.x, specifies the node name and server name.
Separate multiple entries with a comma.

• adminserver_host

For WebSphere Application Server 4.x, specifies the administrative server name.

• adminserver_port

For WebSphere Application Server 4.x, specifies the administrative server port number.
122 Appendix B

C Additional z/OS Settings
This appendix lists RACF authorizations, firewall settings, and MIPS requirements for
TransactionVision on the z/OS platform.

RACF Authorizations

RACF authorizations are highly customized to the user’s environment and hence there are no
specific requirements for the TransactionVision Sensors. Use the programs and transactions
listed in the following tables to help determine the required RACF authorizations.

For the TransactionVision CICS Sensor

Transaction
Needs
to Run

Needs to Access
WebSphere MQ

Needs to Run as a CICS
Global User Exit

SLDS Yes No No

SLDM Yes No No

SLDP Yes No No

SLDC Yes No No

SLDD Yes No No

SLDI Yes No No

Transaction
Program

Needs
to Run

Needs to Access
WebSphere MQ

Needs to Run as a CICS
Global User Exit

SLDPCSX Yes No No

SLDPCMX Yes No No

SLDPCCX Yes No No

SLDPDSX Yes No No
123

For the TransactionVision CICS WebSphere MQ (WMQ) Sensor

For the TransactionVision IMS WebSphere MQ (WMQ) Sensor

The TransactionVision IMS WMQ Sensor is run from within the IMS WMQ application that
is being monitored. This is done by link editing a TransactionVision stub against the IMS
WMQ application. Therefore, there may be some RACF authorizations to be performed.

SLDPUXI Yes No No

TVISION Yes No No

TVISIONC Yes Yes No

Exit Program
Needs
to Run

Needs to Access
WebSphere MQ

Needs to Run as a CICS
Global User Exit

SLDPTCX Yes No Yes

SLDPPSX Yes No Yes

SLDPICX Yes No Yes

SLDPTDX Yes No Yes

SLDPPCX Yes No Yes

SLDPFCX Yes No Yes

SLDPTSX Yes Yes Yes

Transaction
Program

Needs
to Run

Needs to Access
WebSphere MQ

Needs to Run as a CICS
Global User Exit

Transaction
Needs
to Run

Needs to Access
WebSphere MQ

Needs to Enable/Disable
CICS Crossing Exit

SLMC Yes No Yes

Transaction
Program

Needs
to Run

Needs to Access
WebSphere MQ

Needs to Enable/
Disable CICS
Crossing Exit

Needs to be
Accessed from
CICS Crossing Exit

CSQCAPX Yes Yes No Yes

SLMC Yes Yes Yes No

SLMBCNFG Yes Yes No No
124 Appendix C

The following libraries are used an may also need to be RACF authorized based on the local
RACF authorization scheme.

Firewall Settings

Since the TransactionVision Sensors use WebSphere MQ to communicate with the
TransactionVision Analyzer, no firewall settings are required. All communication is
configured through WebSphere MQ.

MIPS Required

There are no specific MIPS requirements for the TransactionVision Sensor. Sensors are
architected to be active only when required; even then, they use very little resources to
achieve the required functionality.

Libraries APF Authorized In DFHRPL

SSLDLOAD No Yes

SSLDAUTH Yes No
Additional z/OS Settings 125

126 Appendix C

Index
A
application server

configuring See application server configuration

application server configuration
WebLogic 9.x and 10, 50

application servers
adding interceptors for Sensors for WebSphere,

46
configuring WebLogic 8.1 for JRockit JVM, 48
configuring WebLogic 8.1 for Sun JVM, 46
configuring WebLogic 9.2, 50
configuring WebLogic overview, 46
configuring WebLogic remote-started managed

servers, 51
configuring WebSphere 5.x and 6.0, 41
configuring WebSphere 6.1, 44
running JRE Instrumenter for WebSphere IDE,

45
using JMS Sensor with WebSphere, 46

B
Beans.xml, 102

C
CICS Sensor

configuring SLMC, 81
installing on z/OS, 68

CICS Sensors, 12

circular logging, 109

client application monitoring, 96

configuration files, 119

configuration queue check interval, 91

configuration queue name, 88

configuring
WebLogic 8.1 for JRockit JVM, 48
WebLogic 8.1 for Sun JVM, 46
WebLogic 9.2, 50

E
environment variables

LD_LIBRARY_PATH, 86
LIBPATH, 86
SHLIB_PATH, 86

event log, 111

exit_sensor.deny, 92

F
FASTPATH_BINDING, 96

files
Java Agent installation, 16
UNIX installation for WebSphere MQ and User

Event Sensors, 55

I
IMSBridgeObject.xml, 102

installation
packages, 12
upgrading, 12

installations
silent for Java Agent, 32

J
Java Agent

about, 15
configuring remote-started WebLogic managed

servers, 51
configuring WebLogic 8.1, 46
configuring WebLogic 8.1 for JRockit JVM, 48
configuring WebLogic 9.2, 50
installation files, 16
Java Sensors, 11
launching the installer on Windows, 16
running the installation on Windows, 17
running the JRE Instrumenter, 33
setupModule utility, 115
silent installation, 32

Java Sensors
logging, 109
 127

JRE Instrumenter
processing, 34
running for WebSphere IDE, 45
running on UNIX, 37
running on Windows, 34

JRockit JVM, configuring WebLogic 8.1, 48

L
LD_LIBRARY_PATH environment variable, 85, 86

LIBPATH environment variable, 85, 86

License.properties file, 119

license code, 119

logging, 120
circular, 109
Java Sensors, 109
multiple log files, 111
separate log files for multiple Sensors, 111
trace, 111
UNIX event appender, 113
WebSphere MQ Sensors, 109
Windows event appender, 112

M
messaging system provider

configuring WebSphere MQ, 91

messaging system providers
configuring SonicMQ, 53
configuring TIBCO EMS, 53
configuring WebLogic JMS, 53
configuring WebSphere MQ, 52

MigrateConfig utility, 116

MQ_CONNECT_TYPE, 96

O
operator console log, 111

P
PATH environment variable, 85

Performance.properties, 119

Proxy Sensor
application requirements, 105
configuring, 105
configuring the definition file, 106
configuring the user interface, 107
enabling, 105
option attributes, 107
subelements, 106

ProxySensorDef.xml, 106

R
rebind_sensor utility, 117

S
Sensor.properties, 119

Sensors
CICS, 12
client application monitoring, 96
configuring the Proxy Sensor, 105
configuring WebSphere MQ library, 85
installation on IBM i5/OS, 65
installing WebSphere MQ and User Event on

UNIX, 55
installing WebSphere MQ and User Event on

Windows, 59
installing WebSphere MQ CICS, WebSphere MQ

IMS Bridge Sensors on IBM z/OS, 74
Java, 11
loading WebSphere MQ, 88
logging, 109
modifying WebSphere MQ and User Event on

Windows, 62
multiple log files, 111
rebinding on AIX, 117
rebinding WebSphere MQ on AIX, 56
trace logging, 111
types, 9
uninstalling WebSphere MQ and User Event on

UNIX, 57
uninstalling WebSphere MQ and User Event on

Windows, 63
upgrading from previous releases, 12
upgrading WebSphere MQ and User Event on

Windows, 60
WebSphere MQ, 10
WebSphere MQ API Exit, 91
WMQ-IMS bridge, 99

Setup.properties file, 120

setupModule utility, 115

SHLIB_PATH environment variable, 85, 86

silent installation, 32

SLMC
configuring for CICS, 81

SMPE installation procedure, 74

SonicMQ
configuring as a messaging system provider, 53

subelements of Proxy Sensor, 106

SYSEVENT TRANSWAP macro, 73

system log, 111
128

T
TIBCO EMS

configuring as a messaging system provider, 53

trace logging, 111

TVISION_CONFIG_CHECK_INTERVAL
environment variable, 91

TVISION_CONFIGURATION_QUEUE
environment variable, 88

TVISION_SYSLOG environment variable, 111

tvisionapiexit, 91

tvision-wl-sensorconfig.properties file, 121

tvision-ws-sensorconfig.properties, 121

U
uninstalling

WebSphere MQ and User Event Sensors on
UNIX, 57

WebSphere MQ and User Event Sensors on
Windows, 63

UNIX
configuring the event appender to use the event

log, 113
installing WebSphere MQ and User Event

Sensors, 55
running the JRE Instrumenter, 37
uninstalling WebSphere MQ and User Event

Sensors installation, 57
WebSphere MQ and User Event Sensor

installation files, 55

upgrading
from previous Sensor releases, 12
WebSphere MQ and User Event Sensors on

Windows, 60

upgrading from previous releases, 12

User Event Sensor
installing on UNIX, 55
installing on Windows, 59
modifying on Windows, 62
uninstalling on UNIX, 57
uninstalling on Windows, 63
upgrading on Windows, 60

utilities
MigrateConfig, 116
rebind_sensor, 117
setupModule, 115

W
WBI

broker user-defined node installation, 104
integration, 104

WebLogic
configuration overview, 46
configuring 8.1 for JRockit JVM, 48
configuring 8.1 for Sun JVM, 46
configuring 9.2, 50
configuring remote-started managed servers, 51

WebLogic 9.x and 10, application server
configuration, 50

WebLogic JMS
configuring as a messaging system provider, 53

WebSphere
adding interceptors for Sensors, 46
configuring 5.x and 6.0, 41
configuring 6.1, 44
running JRE Instrumenter for IDE, 45
using the JMS Sensor, 46

WebSphere MQ
configuring as a messaging system provider, 52
configuring the messaging system provider, 91
Sensors, 10

WebSphere MQ API Exit Sensor, 91
configuring on distributed platforms, 92
configuring on i5/OS, 92
configuring on Windows, 94
discarding WMQ events on TransactionVision

queues, 95

WebSphere MQ Batch Sensor
installing on z/OS, 68

WebSphere MQ IMS Sensor
installing on z/OS, 68

WebSphere MQ Sensor
installing on UNIX, 55
installing on Windows, 59
logging, 109
modifying on Windows, 62
rebinding on AIX, 56
uninstalling on UNIX, 57
uninstalling on Windows, 63
upgrading on Windows, 60

WebSphere MQ Sensor library
configuring, 85
129

Windows
configuring the event appender to use the event

log, 112
installing WebSphere MQ and User Event

Sensors, 59
launching the Java Agent installer, 16
modifying WebSphere MQ and User Event

Sensors installation, 62
running the Java Agent installation, 17
running the JRE Instrumenter, 34
uninstalling WebSphere MQ and User Event

Sensors installation, 63
upgrading WebSphere MQ and User Event

Sensors installation, 60

WMQ-IMS Bridge Sensor
additional setup, 83
using, 99

wmqsensor, 86

Z
z/OS

installing CICS, WebSphere MQ Batch,
WebSphere MQ IMS Sensors, 68

installing WebSphere MQ CICS, WebSphere MQ
IMS Bridge Sensors, 74

setting up WebSphere MQ IMS Bridge, 83
SMPE installation procedure, 74

z/OS CICS
configuring SLMC, 81
130

	Sensor Installation and Configuration Guide
	Contents
	1 TransactionVision Sensor Overview
	Available Sensor Types
	WebSphere MQ (WMQ) Sensors
	Java Sensors
	CICS Sensor

	Installation Overview
	Upgrading from Previous Sensor Releases
	Additional TransactionVision Resources

	2 Installing and Configuring Java Agent
	About Installing and Configuring the Java Agent
	Installation Files

	Installing and Configuring the Java Agent on Windows
	Launching the Installer on Windows
	Running the Installation on Windows
	Configuring the Java Agent to Work as a TransactionVision Java Sensor on Windows
	Post Configuration Options
	Enable Java Agent in Applications on Windows
	Enable Java Agent in Applications on UNIX

	Installing and Configuring the Java Agent on UNIX
	Downloading the Installer on UNIX
	Running the Installation on UNIX
	Configuring the Java Agent to Work as a TransactionVision Java Sensor on UNIX
	Configuring the Java Agent on UNIX in Graphical Mode
	Configuring the Java Agent on UNIX in Console Mode

	Silent Installation of the Java Agent
	Running the JRE Instrumenter
	JRE Instrumenter Processing
	Running the JRE Instrumenter Manually
	Running the JRE Instrumenter on a Windows Machine
	Running the JRE Instrumenter on a UNIX Machine

	Configuring the Application Servers
	About Configuring the Application Server
	Configuring WebSphere Application Servers
	WebSphere 5.x and 6.0
	WebSphere 6.1
	Running the JRE Instrumenter for WebSphere IDE
	Using the JMS Sensor with the WebSphere Application Server
	Adding Interceptors for Sensors

	Configuring WebLogic Application Servers
	WebLogic 8.1
	WebLogic 9.2
	Configuring Remote-Started WebLogic Managed Servers

	Configuring Messaging System Providers
	IBM WebSphere MQ
	TIBCO EMS
	Progress SonicMQ
	BEA WebLogic JMS

	3 Installing WebSphere MQ and User Event Sensors on UNIX Platforms
	Installing Sensors
	Installation Files
	Installation Steps
	Rebinding the WebSphere MQ Sensor on AIX

	Uninstalling Sensors

	4 Installing WebSphere MQ and User Event Sensors on Windows
	Initial Installation
	Upgrade Installation
	Modifying the Installation
	Uninstalling Sensors

	5 Installing Sensors on i5/OS
	6 Installing Sensors on z/OS
	Installing the CICS, WebSphere MQ Batch, and WebSphere MQ IMS Sensors on IBM z/OS
	Installing the WebSphere MQ CICS and WebSphere MQ IMS Bridge Sensors on IBM z/OS
	Before You Install the WebSphere MQ Sensor for CICS
	SMPE Installation Procedure

	Configuring SLMC for CICS
	Additional Setup for the WebSphere MQ IMS Bridge Sensor

	7 Configuring WebSphere MQ Sensors
	Configuring the WebSphere MQ Sensor Library
	Distributed Platforms
	z/OS Batch, IMS, and WebSphere MQ-IMS Bridge
	z/OS CICS
	i5/OS

	Configuring Sensor Logging
	Setting the Configuration Queue Name
	UNIX, Windows, and i5/OS
	IBM z/OS Batch, IMS and WebSphere MQ-IMS Bridge
	Setting the Configuration Queue Check Interval

	Configuring the WebSphere MQ Messaging System Provider

	Configuring the WebSphere MQ API Exit Sensor
	Configuring the API Exit Sensor on Distributed and i5/OS Platforms
	Linking the WebSphere MQ API Exit Sensor
	New Stanzas
	Stanza Attributes and Values

	Configuring the API Exit Sensor on Windows Platforms
	Identifying Programs to Monitor
	Discarding WebSphere MQ Events on TransactionVision Queues

	WebSphere MQ Sensors and FASTPATH_BINDING
	Using Sensors with WebSphere MQ Samples
	WebSphere MQ Client Application Monitoring
	Distributed Monitoring
	Centralized Monitoring
	Installation and Configuration Considerations

	Using the WebSphere MQ-IMS Bridge Sensor
	Sensor Setup
	WebSphere MQ-IMS Bridge Sensor Operation
	The TVISIONB Buffer Queue
	Event Data
	Beans.xml
	IMSBridgeObject.xml

	Data Collection Filters and Queries

	Using the WebSphere Business Integration Sensor
	Message Brokers Toolkit for WebSphere Studio Integration
	TransactionVision User-Defined Node Installation for WBIMB
	Node Insertion

	8 Configuring the Proxy Sensor
	Application Requirements
	Enabling the Proxy Sensor
	Configuring the Proxy Definition File
	Subelements
	Optional Attributes for the Proxy Element

	Configuring the User Interface

	9 Configuring Sensor Logging
	Log Files
	Java Sensors
	WebSphere MQ Sensors

	Circular Logging
	Maximum Log File Size
	Maximum Number of Backup Log Files
	Changing from Circular to Linear Logging

	Trace Logging
	Configuring Separate Log Files for Multiple Sensor Instances
	Using Windows and UNIX System Logs
	Windows Event Appender
	UNIX Event Appender

	A Utilities Reference
	SetupModule
	Description
	Options

	MigrateConfig
	Location
	Description

	rebind_sensor
	Location
	Description
	Syntax
	Options

	B Configuration Files
	License.properties
	Performance.properties
	Sensor.properties
	SensorConfiguration.xml
	Setup.properties
	tvision-wl-sensorconfig.properties
	tvision-ws-sensorconfig.properties

	C Additional z/OS Settings
	RACF Authorizations
	For the TransactionVision CICS Sensor
	For the TransactionVision CICS WebSphere MQ (WMQ) Sensor
	For the TransactionVision IMS WebSphere MQ (WMQ) Sensor

	Firewall Settings
	MIPS Required

	Index

