
A.2

HP Service Quality Management
solution

HP SQM Solution Generic DDP

V3.0 Integration Guide

Edition: 2.0

for Microsoft Windows 64-bit Operating System

Nov 2011

© Copyright 2011 Hewlett-Packard Company, L.P.

2

Legal Notices

Warranty

The information contained herein is subject to change without notice. The only

warranties for HP products and services are set forth in the express warranty statements

accompanying such products and services. Nothing herein should be construed as

constituting an additional warranty. HP shall not be liable for technical or editorial

errors or omissions contained herein.

License Requirement and U.S. Government Legend

Confidential computer software. Valid license from HP required for possession, use or

copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software,

Computer Software Documentation, and Technical Data for Commercial Items are

licensed to the U.S. Government under vendor’s standard commercial license.

Copyright Notices

© Copyright 2011 Hewlett-Packard Development Company, L.P.

Trademark Notices

Java™ is a U.S. trademark of Sun Microsystems, Inc.

Microsoft®, Windows® and Windows NT® are U.S. registered trademarks of Microsoft

Corporation.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City, California.

Origin

Printed in English.

A.3 1-3

Contents

Preface ... 5

Chapter 1 ... 8

Introduction for Generic DDP .. 8

1.1 SQM_DDP_CommonLib .. 8
1.2 SQM_DDP_from_Database ... 8
1.3 SQM_DDP_from_XML ... 9
1.4 SQM_DDP_from_TeMIP ... 9
1.5 SQM_DDP_Lib .. 9
1.6 More detail ... 9
1.7 Others .. 10

Chapter 2 ... 11

Deployment ... 11

2.1 Software and Hardware Requirements .. 11
2.1.1 Software requirements .. 11
2.1.2 Hardware requirements .. 11
2.2 Required Deployment .. 12
2.2.1 Import Generic DDP.. 12
2.2.2 Verify the result of deployment ... 12
2.2.3 Install UCMDB Dataflow Probe 9.0.3.. 13
2.2.4 Place the XML file ... 13

Chapter 3 ... 14

Simple Configure and Run ... 14

3.1 Simple Configuration .. 14
3.1.1 SQM_DDP_from_Database ... 14
3.1.2 SQM_DDP_from_XML ... 16
3.1.3 SQM_DDP_from_TeMIP .. 17
3.1.4 Run ... 18

Chapter 4 ... 20

Advanced Usage ... 20

4.1 Referring to DTD file .. 20
4.1.1 Absolute Path Referring .. 20
4.1.2 Relevant Path Referring ... 20
4.2 SQM_DDP_from_Database ... 21
4.2.1 CI Part ... 21
4.2.2 Relationship Part... 23
4.2.3 Use <selector> to specify data source.. 25

1-4—Contents

4.3 SQM_DDP_from_XML ... 26
4.3.1 CI Part ... 26
4.3.2 Relationship Part... 28
4.4 Workflow .. 29
4.5 Trouble shooting .. 31
4.5.1 Log file .. 31
4.5.2 Load External Resource Jar Failure ... 32
4.5.3 Run a job immediately after activate it .. 32

Limitation ... 33

4.6 Functional Limitation .. 33
4.7 Performance... 33

Glossary .. 34

A.4 5

Preface

This document provides reference information to help configure and use

Generic Discovery & Data load Pack (Generic DDP) on Service

Management Foundation.

Purpose of Generic Discovery & Data load Pack (DDP) is to discover

CIs and relationships based on information retrieved from the following

sources:

 External 3PP database

 External function which return the data source(provided by user)

 XML files

 External function which return the data source(provided by TeMIP)

And create these discovered objects and save to the CMDB.

This document describes how to:

 Configure the relevant settings of Discovery job and Run it

 Modify the xml file

Intended Audience

This document is aimed at the following personnel:

 SQM Solution Delivery Engineer

 Developer for SQM Adapter

It is assumed that the readers have got a brief of Discovery and

Dependency Mapping.

Please read books in Associated Documents for reference if you have some

questions.

Software versions
Name Version Operating System Description

Generic Discovery

& Data load Pack

3.0 Windows 2003 or 2008

64-bit

Abbreviations and Acronyms

Table 1 List of Abbreviations and Acronyms

Term Meaning

SQM Service Quality Manager

SMF Service Management Foundation

6—Contents

BSM Business Service Management

UCMDB Universal Configuration Management

Data Base

SIS Site Scope

KPI Key Performance Indicator

MA Monitoring Adapter

DDM Discovery and Dependency Mapping

DDP Discovery & Data load Pack

KES KPI Enrichment Service

CIT Configuration Item Type

CI Configuration Item

SLM Service Level Management

Associated Documents

 HP Discovery and Dependency Mapping

The HP Business Availability Center and Discovery Dependency Mapping

documents are available at:

http://support.openview.hp.com/selfsolve/manuals

 sqm_service_management_foundation_installation_and_configuration_

guide.doc

Additional SQM Solution materials (like the SQM Solution product briefs)

and information about SQM Solution updates are available at:

http://www.hp.com/cms

 Section "Next Generation Operations Support System Solutions"

 Section "Assurance"

 Section “HP Service Quality Management Solution”

 Section "Learn More"

Support

You can visit the HP Software support web site at:

http://www.hp.com/go/hpsoftwaresupport

This Web site provides contact information and details about the

products, services, and supports that HP Software offers.

HP Software online software support provides customer self-solve

capabilities. It provides a fast and efficient way to access interactive

technical support tools needed to manage your business. As a valued

support customer, you can benefit by using the support site to:

 Search for knowledge documents of interest

 Submit enhancement requests online

 Download software patches

 Submit and track progress on support cases

 Manage a support contract

http://support.openview.hp.com/selfsolve/manuals
http://www.hp.com/cms
http://www.hp.com/go/hpsoftwaresupport

A.4 7

 Look up HP support contacts

 Review information about available services

 Enter discussions with other software customers

 Research and register for software training

8—Contents

Chapter 1

Introduction for Generic DDP

Generic Discovery & Data load Pack (DDP) is to discover CIs and

relationships based on information retrieved from the following sources:

 External 3PP database

 External function which return the data source(provided by user)

 XML files

 External function which return the data source(provided by TeMIP)

And create these discovered objects and save to the CMDB.

It has five packages to serve its purpose:

 SQM_DDP_CommonLib

 SQM_DDP_from_Database

 SQM_DDP_from_XML

 SQM_DDP_from_TeMIP

 SQM_DDP_Lib

They can be installed into BSM after executing

SQMSolSMFV300RevC.exe.

1.1 SQM_DDP_CommonLib

This package contains Jython script files and jar files as external resource

which could be integrated into other application to load CIs and CI

relationships.

1.2 SQM_DDP_from_Database

This package provides a whole discovery template for creating CIs and

relationships from a specified database, including a module, a job, a

pattern and a script.

 in_db_discovery.py

Provide the main function which will be executed by Probe.

This script imports some scripts from SQM_DDP_CommonLib to

achieve the target.

A.4 9

1.3 SQM_DDP_from_XML

This package provides a whole discovery template for creating CIs and

relationships from specified xml files, including a module, a job, a pattern

and one script.

 in_xml_discovery.py

Provide the main function which will be executed by Probe.

This script imports some scripts from SQM_DDP_CommonLib to

achieve the target.

1.4 SQM_DDP_from_TeMIP

This package provides a whole discovery template for creating CIs and

relationships from specified TeMIP Data, including a module, a job, a

pattern and one script.

 BAC_Loader_launch.py

Provide the main function which will be executed by Probe.

This script imports some scripts from SQM_DDP_CommonLib to

achieve the target.

1.5 SQM_DDP_Lib

This package provides jar files to support DDP to run.

1.6 More detail

For more detail, please check the following table:

Table 2 List of DDP content

Package Content Detail

SQM_DDP_CommonLib

Scripts

create_ci_from_db.py

create_relationship_from_db.py

generic_discovery_lib.py

generic_xml_lib.py

xml_lib.py

dataload_sdk.py

Ext
Resrc

sqm-discovery.jar

xmlbean.jar

sqm_genericdiscovery_db.dtd

sqm_genericdiscovery_xml.dtd

Conf
Files log.properties

SQM_DDP_from_Database

Module SQM_DDP_from_Database

Job SQM_DDP_from_Database

Pattern SQM_DDP_from_Database

Scripts in_db_discovery.py

10—Contents

SQM_DDP_from_XML

Module SQM_DDP_from_XML

Job SQM_DDP_from_XML

Pattern SQM_DDP_from_XML

Scripts in_xml_discovery.py

SQM_DDP_from_TeMIP

Module SQM_DDP_from_TeMIP

Job SQM_DDP_from_TeMIP

Pattern SQM_DDP_from_TeMIP

Scripts BAC_Loader_launch.py

SQM_DDP_Lib
Ext
Resrc

apache.jar

other.jar

1.7 Others

 sqm_genericdiscovery_xml.dtd

This is the DTD file for the input XML file and is used by inXML-

discovery to check the xml file to see whether the file is well formed or

not.

 sqm_genericdiscovery_db.dtd

This is the DTD file for the input XML file and is used by inDB-

discovery to check the xml file to see whether the file is well formed or

not.

The two DTD files are deployed into BAC server as DDM external

resource. They will be automatically downloaded into DDM’s client at the

following path when DDM probe connects to BAC server.

<Probe's Installation

Path>\runtime\probeGateway\discoveryResources

A.4 11

Chapter 2

Deployment

This chapter explains how to deploy the package into the BSM. Once you

finished deployment, you can follow the instructions in the next chapter to

configure.

2.1 Software and Hardware Requirements

2.1.1 Software requirements

Table 3 Software Requirements

Software Version

Microsoft Windows 2003 Server or later

HP Service Management

Foundation

3.0

HP Business Service

Management

9.1.X HP BSM 9.1.X(with an

advanced license to use

Discovery)

HP Discovery Probe 9.0.3

Database with the needed

data

Oracle 10g or later

MySQL 5.1.23

2.1.2 Hardware requirements

 CPU: Pentium IV 2.4 GHz or later

 Memory:1 GB RAM(min)

 Free hard disk space:8GB

For the complete hardware requirements, see the HP Discovery and

Dependency Mapping User Guide.

12—Contents

2.2 Required Deployment

2.2.1 Import Generic DDP

Using SMF installer to deploy automatically

All the parts of DDP will be installed in BSM after SMF installer has been

executed successfully.

Please read HP SQM Solution Service Management Foundation

Installation and Configuration Guide.doc for the installation guide.

2.2.2 Verify the result of deployment

1. SQM_DDP_CommonLib

Admin > RTSM Administration > Data Flow Management > Adapter

Management

Confirm that there is a package named “SQM_DDP_CommonLib” and

contains all the following scripts.

 generic_discovery_lib.py

 generic_xml_lib.py

 create_ci_from_db.py

 create_relationship_from_db.py

 dataload_sdk.py

 xmllib.py

Also its external resource should contain:

 sqm-discovery.jar

 xmlbean.jar

 sqm_genericdiscovery_db.dtd

 sqm_genericdiscovery_xml.dtd

Besides it has a configuration file:

 log.properties

2. SQM_DDP_from_Database

Admin > RTSM Administration > Data Flow Management > Adapter

Management

There should be a package named SQM_DDP_from_Database which

contains a pattern “SQM_DDP_from_Database” and a script:

 in_db_discovery.py

Admin > RTSM Administration > Data Flow Management > Discovery

Control Panel

There should be a module named SQM_DDP_from_Database and a job

“SQM_DDP_from_Database”

3. SQM_DDP_from_XML

Admin > RTSM Administration > Data Flow Management > Adapter

Management

A.4 13

There should be a package named SQM_DDP_from_XML which

contains a pattern “SQM_DDP_from_XML” and a script:

 in_xml_discovery.py.

Admin > RTSM Administration > Data Flow Management > Discovery

Control Panel

There should be a module named SQM_DDP_from_XML and contains

a job “SQM_DDP_from_XML”

4. SQM_DDP_from_TeMIP

Admin > RTSM Administration > Data Flow Management > Adapter

Management

There should be a package named SQM_DDP_from_TeMIP which

contains a pattern “SQM_DDP_from_TeMIP” and a script:

 BAC_Loader_launch.py.

Admin > RTSM Administration > Data Flow Management > Discovery

Control Panel

There should be a module named SQM_DDP_from_TeMIP and

contains a job “SQM_DDP_from_TeMIP”

5. SQM_DDP_Lib

Admin > RTSM Administration > Data Flow Management > Adapter

Management

There should be a package named SQM_DDP_Lib which contains:

 apache.jar

 other.jar

2.2.3 Install UCMDB Dataflow Probe 9.0.3

See DiscoveryDependencyMapping.pdf for installation guide.

Just remember to install Probe Gateway and Management together (not

in separated mode).

2.2.4 Place the XML file

The XML files which DDP uses should be saved to any path at the PC

where the Probe is installed.

See 4.1 to learn more about how to refer to DTD in XML file

14—Contents

Chapter 3

Simple Configure and Run

This chapter described how to configure the discovery settings of DDP and

how to run it.

3.1 Simple Configuration

3.1.1 SQM_DDP_from_Database

1. Admin > RTSM Administration > Data Flow Management > Discovery

Control Panel

2. Select the Job “SQM_DDP_from_Database” below

SQM_DDP_from_Database in the Discovery Job Pane.

3. Click “Properties” tab in the right pane and edit “Parameters”.

Figure 5 Model of demo (CI part)

 JDBCURL required

The URL for the DB connection

E.G.

jdbc:oracle:thin:@ibis.chn.hp.com:1521:sqlsa

 username required

Account to log into database

 password required

The one used to log into database

 jars required

Jar files which will be used as external resource especially for database

driver.

Multi jar files can be specified here. Use “;” to separate each other.

The Jar file path must be full path

E.G.

C:\hp\UCMDB\DataFlowProbe\runtime\probeGateway\discoveryResources\ojdbc6.jar;

C:\hp\UCMDB\DataFlowProbe\runtime\probeGateway\discoveryResources\mysql.jar

How to load external resource? Refer to step 5.

 driver required

DB driver used

E.G.

com.mysql.jdbc.Driver

oracle.jdbc.OracleDriver

 inputFilepath required

This field is used to specify XML resource.

It might be a single file, a folder or a ZIP file.

If you want to specify file or folder, use absolute path to refer.

As to ZIP file, you can specify it with absolute path or relevant path.

 checkValidConnectionSql optional

A SQL statement to ensure that db-connection is available or not.

It’ll be executed before querying data each time.

 enableReport required

True/False

Enable report function or not

4. Admin > RTSM Administration > Data Flow Management > Adapter

Management

5. Load the db driver to BSM as discovery external resource.

Click the button * shown in Figure 6 and choose “Import external

resource”. Select the jar file needed and click ok.

16—Contents

Figure 6 Load external resource

3.1.2 SQM_DDP_from_XML

1. Admin > RTSM Administration > Data Flow Management > Discovery

Control Panel

2. Select the Job “SQM_DDP_from_XML” below shown in Figure 7

SQM_DDP_from_XML in the Discovery Control Panel.

 Figure 7 Model of xml demo (CI part)

3. Click “attribute” tab in the right pane and edit “Parameters”

 inputFilePath required

This field is used to specify XML resource.

It might be a single file, a folder or a ZIP file.

If you want to specify file or folder, use absolute path to refer.

As to ZIP file, you can specify it with absolute path or relevant path.

 username required

Account to log into BSM server JMX console

 password required

Password is used to log on BSM server JMX console if necessary

 protocol required

The protocol used to connect to the web service

Only http is supported for now

 host required

Hostname or IP of the web service host (BSM Gateway)

 port required

BSM server JMX console’s port (e.g. 8080).

 file required

The path of the WSDL file

The default setting for BSM is:

/axis2/services/UcmdbService

3.1.3 SQM_DDP_from_TeMIP

 1. Admin > RTSM Administration > Data Flow Management > Discovery

Control Panel

 2. Select the Job “SQM_DDP_from_TeMIP” below shown in Figure 8

SQM_DDP_from_TeMIP in the Discovery Control Panel.

 Figure 8 Model of TeMIP demo (CI part)

18—Contents

4. Click “attribute” tab in the right pane and edit “Parameters”

 inputFilePath required

This field is used to specify XML resource.

It might be a single file, a folder or a ZIP file.

If you want to specify file or folder, use absolute path to refer.

As to ZIP file, you can specify it with absolute path or relevant path.

 username required

Account to log into BSM server JMX console

 password required

Password is used to log on BSM server JMX console if necessary

 protocol required

The protocol used to connect to the web service

Only http is supported for now

 host required

Hostname or IP of the web service host (BSM Gateway)

 port required

BSM server JMX console’s port (e.g. 8080).

 BACLoaderPath required

TeMIPServiceConsole’s batch file load from TeMIP server.

c:\\TeMIPServiceConsole\\bin\\runBacLoader.bat

 file required

The path of the WSDL file

The default setting for BSM is:

/axis2/services/UcmdbService

3.1.4 Run

All the patterns in this prototype have the same trigger CIT: “Discovery

Probe Gateway”. CIs of this type can be automatically created when the

probe is connected to BSM server. Please specify the IP range for the

Probe and make it available to drive the job run.

Admin > RTSM Administration > Data Flow Management > Data Flow

Probe Set up

1. Click the Probe which you use at the left pane.

2. Click the “+” icon at the right pane and specify IP range in the popup

box.

Figure 9 Set valid IP range for Probe

However, you may change the trigger CIT to whatever is available at your

convenience.

Admin > RTSM Administration > Data Flow Management > Discovery Control

Panel

Select the job, “SQM_DDP_from_Database” under the module

“SQM_DDP_from_Database”.

1. Right-click it and choose "Activate" on the pop menu

Figure 10 Activate Discovery Job

2. Do the same thing to the job “SQM_DDP_from_XML” and

“SQM_DDP_from_TeMIP”

3. Wait a moment and press the "refresh" ICON to see result.

Check the result pane and see whether CI or link is discovered or not

20—Contents

Chapter 4

Advanced Usage

Advanced settings of the packages will be introduced.

Besides, we’ll give a brief introduction of the workflow to help user

analyze the errors which might occur.

4.1 Referring to DTD file

DDP uses XML files as its configuration file.

These XML files must be written in compliance with DDP’s DTD files.

 sqm_genericdiscovery_xml.dtd

Definition for XML files used by SQM_DDP_from_XML

 sqm_genericdiscovery_database.dtd

Definition for XML files used by SQM_DDP_from_Database

4.1.1 Absolute Path Referring

Use the DTD file’s absolute path to refer. For example:
<!DOCTYPE entities SYSTEM "

C:\hp\UCMDB\DataFlowProbe\runtime\probeGateway\discoveryResources\sqm_genericdiscovery_xml.dtd">

4.1.2 Relevant Path Referring

Use the DTD file’s relevant path to refer.

Example 1: While DTD file and XML file are in the same folder

<!DOCTYPE entities SYSTEM " sqm_genericdiscovery_xml.dtd">

Example 2: While DTD file is in the upper folder of XML file

<!DOCTYPE entities SYSTEM " ..\sqm_genericdiscovery_xml.dtd">

If XML files are packed into ZIP file to deploy, these file will be extracted

into the following path

<Probe's Installation

Path>\runtime\probeGateway\discoveryResources\<ZIP file

name>\

Meanwhile, DTD file will be automatically downloaded into DDM Probe’s

client at:

<Probe's Installation Path>\runtime

\probeGateway\discoveryResources

In this case, use “..\sqm_genericdiscovery_xml.dtd” to

refer to the upper folder’s DTD file.

4.2 SQM_DDP_from_Database

The xml file which describes the definition of CIs and relationships will be

introduced in this sector.

4.2.1 CI Part

Let’s see an example first:
<CIT CItype="BSO_POC_Stream">

 <selector><![CDATA[select * from BSO]]></selector>

 <keyAttributes>

 <attribute name="sid_object_identifier"

dataType="string" formatting="">

 <columns>

 <column name="sid"/>

 </columns>

 </attribute>

 </keyAttributes>

 <attributes>

 <attribute name="display_label"

dataType="string" formatting="">

 <columns>

 <column name="label"/>

 </columns>

 </attribute>

 <attribute name="name"

dataType="string" formatting="">

 <columns>

 <column name="bsoname"/>

 </columns>

 </attribute>

 <attribute name="bso_location"

dataType="location_type_enum" formatting="">

 <columns>

 <column name="location"/>

 </columns>

 </attribute>

 <attribute name="bso_list"

dataType="string_list" formatting=",">

 <columns>

 <column name="groupone"/>

 <column name="grouptwo"/>

 <column name="groupthird"

 </columns>

 </attribute>

 </attributes>

</CIT>

This is a sample for the construction of the CI part.

1. <CIT>

Each <CIT> represents one CI’s definition.

22—Contents

Its attribute:

 CItype

CIT name

 table

Table from where the data is extracted.

It also contains one <keyAttributes> and one <attributes>.

- <keyAttributes>

Key attribute(s) of the specified CIT

- <attributes>

Non-key attribute(s) of the specified CIT

- <selector>

Specify the data source with SQL statement.

See 4.1.3 for more detail

<keyAttributes> and <attributes> are almost the same, but

<keyAttributes> must contain one <attribute> at least while

<attributes> needn’t.

2. <attribute>

This element represents the information for converting DB’s fields into

CI’s attributes.

Its attribute:

 name

Attribute name

 dataType

Attribute data type

 The following types are supported now.

- string

- integer/ int

- long

- double

- boolean/bool

- string_list

- location_type_enum

 formatting

Formatting function

This is the way to combine <column>s’ values to generate the

attribute’s value.

It could be:

- Blank

Meaning no specific formatting function to be applied

- <SEPARATOR>

The default formatting function with the separator string

specified

- <customer_specified_function>

Formatting function which is specified by the customer. The

naming of it is:

“function:” + Jython file name + “.” + function name

For example,
function:customfunction.getUpper

This means that the script will execute the function “getUpper” in

customfunction.py to generate the current attribute’s value.

A sample for the function:
def getLower(target):

 return str(target['key2']).lower()

The function has only one parameter which is a python’s

dictionary. It contains the values of all the columns and the

special parameter “Framework”.

target[<column name>]

Get the given column value.

target[“framework”]

Get framework passed by the discovery script.

 predefinedValue

Default value for the current attribute’s value

If predinedValue is not null or blank string, the current attribute’s

value will be replaced with. (This means that contents of the

columns will be ignored.)

3. <columns>

Subject has several <column> elements in it and each <column>

represents a field.

<column> has only one attribute “name” which represents the field

name in a certain table or view.

4.2.2 Relationship Part

Let’s see an example first:
<link linkname="depends_on" table="V_PRODUCT_REL">

 <attributes>

 <attribute name="data_name" dataType="string"

formatting="" predefinedValue="testRelationshipAttr"/>

 </attributes>

 <originCI CItype="VFProduct">

 <keyAttributes>

 <attribute name="id" dataType="string"

formatting="">

 <columns>

 <column name="product_id"/>

24—Contents

 </columns>

 </attribute>

 </keyAttributes>

 </originCI>

 <endCI CItype="VFService">

 <keyAttributes>

 <attribute name="id" dataType="string"

formatting="">

 <columns>

 <column name="service_id"/>

 </columns>

 </attribute>

 </keyAttributes>

 </endCI>

</link>

This is a sample for the construction of the relationship (also called link)

part.

1. <link>

Each <link> represents one kind of valid link’s definition.

Pay attention that “depends_on” is just a type of relationship while

depends_on: VFProduct VFService means a valid link.

Its attribute:

 linkname

Type name of the current valid link

 table

Table from where the data is extracted.

It contains 4 tags:

 <attributes>

This represents the attributes of the relationship.

Just like the one in <CIs> sector, it has <attribute> as its child and

the structure is the same. Please read 4.1.1 for reference.

 <originCI>

This represents the origin point of the link

 <endCI>

This represents the end point of the link.

 <selector>

Specify the data source with SQL statement.

See 4.1.3 for more detail

2. <originCI> and <endCI>

Both <originCI> and <endCI> have an attribute “CItype” to show its

CIT and an <keyAttributes> element.

<keyAttribute> here is just the same as the one in the CI part. Please

read 4.1.1 for reference.

4.2.3 Use <selector> to specify data source

As mentioned before, we can specify the attribute “table” to gain data

source. Beside it, we have another choice to use <selector> instead.

Let’s see an example first:
<CIT CItype="test_cell">

 <selector><![CDATA[select * from

mms_test_v]]></selector>

 <keyAttributes>

 <attribute name="data_name" dataType="string"

formatting="_">

 <columns>

 <column name="country_id"/>

 <column name="region_id"/>

 <column name="lai"/>

 <column name="cell_id"/>

 </columns>

 </attribute>

 </keyAttributes>

 <attributes>

 <attribute name="location_area_identity"

dataType="string" formatting="">

 <columns>

 <column name="lai"/>

 </columns>

 </attribute>

 <attribute name="cell_identifier" dataType="string"

formatting="">

 <columns>

 <column name="cell_id"/>

 </columns>

 </attribute>

 </attributes>

</CIT>

The <selector> could be written in two patterns.

4.2.3.1 SQL statement

<selector><![CDATA[select * from mms_test_v]]></selector>

If the SQL statement includes some special XML character, the statement

must be surrounded by a CDATA tag like the sample shown above.

Note

In an XML document or external parsed entity, a CDATA section is a

section of element content that is marked for the parser to interpret as only

character data, not markup. A CDATA section is merely an alternative

syntax for expressing character data;

there is no semantic difference between character data that manifests as a

CDATA section and character data that manifests as in the usual syntax in

which "<" and "&" would be represented by "<" and "&", respectively.

The script will execute the SQL statement and get the result set as data

source of CI or Link creation.

4.2.3.2 Common data source function.

Let’s see an example first:

26—Contents

<selector>function:MyFunction.myDataResource</selector>

If <selector> start with “function:” that means it is a data source function.

The name of a data source function could be specified by the customer.

Its naming rule is: “function:” + Jython file name + “.” + function name

function:custom_function.getDataResource

This means that the script will execute the function “getDataResource” in

custom_function.py to get the result set as data source for CI or Link

creation.

A sample for the function:
def getDSforTest(framework):

 logger.info("Inner application.");

 data = []

 data.append({'key':’1','booleancol':'true'})

 return data

The function has only one parameter “framework”.

This is an interface that can be used to retrieve information that is required

to run the discovery, such as information on the trigger CI, pattern

parameters, and is also used to report on errors that occur during running of

the script. Please refer to the "Discovery SDK" for the Framework full API

information.

The return value is a python list which contains a lot of data represented as

a python dictionary.

The return value must meet the content of XML.

E.g. in above example xml, it contains four columns.
<column name="country_id"/>

<column name="region_id"/>

<column name="lai"/>

<column name="cell_id"/>

So the return value should like below
[{'cell_id':'40005'\

 ,'lai':'234.42.1',\

 'country_id':'AUSTRALIA',\

 'region_id':'Aachen'},\

 {'cell_id':'40009',\

 'lai':'234.42.1',\

 'country_id':'AUSTRALIA',\

 'region_id':'Aachen'}]

The inDB-discovery will take the returned value as data source of CI and

link creation.

4.3 SQM_DDP_from_XML

The input XML file which represents the instances of CIT will be

introduced in this sector.

4.3.1 CI Part

Let’s see an example first:
<CI CItype="BSO_POC_Stream" >

 <keyAttributes>

 <attribute name="sid_object_identifier"

dataType="string" value="BSO_Voice1" formatting="" />

 </keyAttributes>

 <attributes>

 <attribute name="display_label"

dataType="string" value="BSO Voice1" formatting="" />

 <attribute name="name"

dataType="string" value="BSO Customer" formatting="" />

 <attribute name="bso_location"

dataType="location_type_enum" value="city" formatting=""

/>

 <attribute name="bso_list"

dataType="string_list" value="TEMIP,TSC,MYSQL"

formatting="" />

 </attributes>

</CI>

1. <CI>

Each <CI> represents an instance of a certain CIT

It has one attribute:

 CItype

CIT name

There are two elements in it:

 <keyAttributes>

Key attribute(s) of CIT

 <attributes>

Non-key attribute(s) of CIT

They are almost the same except that <keyAttributes> contains at

least one <attribute> while <attributes> might has no <attribute> in it

at all.

2. <attribute>

This represents an attribute of a CI. It has 3 attributes.

 name

Attribute name

 dataType

The following types are supported by now.

- string

- bytes

- boolean

- integer

- long

- double

- date

- string_list

- location_type_enum

28—Contents

 value

Value of the attribute

Be sure to fill it will a string.

 formatting

This could be a blank string, a conjunction string or a function

written in Jython.

Use the string like “function:customer_function.getUpper” to specify

formatting function.
def getUpper(target):

 return (str(target)).upper()

This is a sample for formatting function in XML discovery part.

The function has only one parameter to get the value defined in xml

file. Its output is supposed to be a string.

4.3.2 Relationship Part

Let’s see an example first:
<link linkname="depends_on" weight="343.344">

 <originCI CItype="startCI">

 <keyAttribute name="key" dataType="string" value="B6654" />

 <keyAttribute name="key2" dataType="string" value="tail" />

 </originCI>

 <endCI CItype="endCI">

 <keyAttribute name="key" dataType="string" value="A6653" />

 <keyAttribute name="key2" dataType="string" value="peach"

/>

 </endCI>

</link>

This is a sample for the construction of the relationship(also called link)

part.

1. <link>

Each <link> here represents one instance of valid link.

Note

Be different from the ones in SQM_DDP_from_Database,

Each <link> here represents one instance of valid link while <link>

in SQM_DDP_from_Database represents one kind of valid link.

Its attribute:

 linkname

Name of the current valid link

Besides, it contains 3 tags:

 <attributes>

This represents the attributes of the relationship.

Just like the one in <CIs> sector, it has <attribute> as its child and

the structure is the same. Please read 4.1.1 for reference.

 <originCI>

This represents the origin point of the link

 <endCI>

This represents the end point of the link.

Both <originCI> and <endCI> have an attribute “CItype” to show its

CIT and an <keyAttributes> element.

The constructions of them are the same.

Both have an attribute “CItype” to show its CIT and an

<keyAttributes> element.

2. <keyAttribute>

This element is supposed to contain all key attributes of the CIT.

Its construction is just like <attribute> in CI part.

Note

Be different from the ones in SQM_DDP_from_Database,

User should list all the key attribute(s) of CIT so that only one CI

instance or nothing could be matched in previous CI discovery step or

in UCMDB. This ensures that only one link can be generated from one

<link>.

 name

Attribute name

 dataType

Only the following types are supported by now.

- string

- boolean

- integer

- double

 value

Value of the attribute

Be sure to fill it with a string.

 formatting

Formatting function definition

See 4.2.1 for reference.

4.4 Workflow

Both of the two patterns we mentioned before have similar process:

1. Create CIs first

2. Create links

For the detail, please check this

Figure 8 Workflow for inDB-discovery

30—Contents

Figure 9 Workflow for inXML-discovery

.

4.5 Trouble shooting

4.5.1 Log file

We provide two log files to help to analyze.

Both of them are generated in the following path:

<Probe Installation Path>\runtime\log

 sqm-genericDDP.log

Record the process of the DDP.

All the invalid data sources will be recorded here.

sqm-genericDDP-report.log

Generate a new report for all the relationships and CIs created in this

execution.

 sqm-genericDDP-report.log

32—Contents

Record the detail of discovery result generated by scripts.

Of course, the original log files for BSM and Discovery Probe still work.

You can take them for reference too.

4.5.2 Load External Resource Jar Failure

Sometimes DDM is connecting to BAC server correctly, but external

resource jars can’t be recognized by DDM.

1. Check whether the jar has been transferred into DDM client at:

<Probe's Installation

Path>\runtime\probeGateway\discoveryResources

If the jar does exist, then go to step 2.

Otherwise, press Ctrl + C to terminate DDM probe, and restart it.

2. If the jar file exists, then press Ctrl + C to terminate DDM probe, and

restart it.

DDM probe is not so stable that jar file won’t be included into the class

path when it is downloaded for the first time.

4.5.3 Run a job immediately after activate it

Right-click the job and choose “Rerun discovery” from the popup menu.

Limitation

There are some limitations in both functional aspect and performance

aspect:

4.6 Functional Limitation

 Not all CIT attribute types are supported for now,

 But below list of attributes are supported in DB and XML discovery.

 For in DB_discovery

- string

- integer/ int

- long

- double

- boolean/bool

- string_list

- location_type_enum

 For in XML_discovery

- string

- bytes

- boolean

- integer

- long

- double

- date

- string_list

- location_type_enum

 Not support multi databases yet

4.7 Performance

 Each job’s executable time is 900 seconds by default, if the data

processing takes too long, the job will be terminated forcedly and

nothing will be reported to BSM.

 Discovery Probe’s default heap is 256~512MB. This might be not

enough for large scale data solving.

34—Contents

Glossary

This glossary contains definitions of terminology used in the

SQM_Solution User Documentation set.

HP Business Service Management (BSM / HPBSM)

Refer to BSM associated documents in Preface Chapter

Service Management Foundation

Refer to SQM Solution associated documents in Preface Chapter

Discovery and Dependency Mapping (DDM)

The Discovery and Dependency Mapping (DDM) process is the mechanism

that enables you to collect information about your system by discovering

the IT infrastructure resources and their interdependencies. DDM

automatically discovers and maps logical application assets in Layers 2 to

7 of the Open System Interconnection (OSI) Model.

Generic Dataload & Discovery Pack (Generic DDP)

Generic Discovery & Dataload Pack is a component of SQM-Solution

which could discover CIs and links from the information extracted from

database or xml file.

Discovery Probe

Discovery Probe is a component of DDM and acts as a data collector.

Probe will receive dispatched discovery job from BSM, execute it and

return result to BSM.

Discovery Module

A set for several discovery jobs which have similar function.

Discovery Job

Discovery Jobs are instances of Discovery Pattern.

Discovery Pattern

One discovery pattern represents a certain pattern to discovery some

data.

Discovery Script

These scripts are written in Jython 2.1 and serve the purpose of Discovery

Pattern.

