
HP Service Oriented Architecture Policy Enforcer

Integration Guide

Version: 3.10

Windows®, HP-UX, Linux, Solaris

February 2009

© Copyright 2004-2009 Hewlett-Packard Development Company, L.P.

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an
additional warranty. HP shall not be liable for technical or editorial errors or omissions contained
herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

Copyright Notices

© Copyright 2004- 2009 Hewlett-Packard Development Company, L.P., all rights reserved.

Trademark Notices

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation

UNIX® is a registered trademark of The Open Group

This product includes ANTLR (http://www.antlr.org).

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

This product includes CUP Parser Generator.

This product includes software developed by the DOM4J Project (http://www.dom4j.org).

This product includes HSQLDB.

This product includes ICU.

This product includes software developed by the Jaxen Project (http://www.jaxen.org/).

This product includes Jena.

This product includes software developed by the MX4J project (http://mx4j.sourceforge.net).

This product includes copyrighted software developed by E. Wray Johnson for use and distribution by
the Object Data Management Group (http://www.odmg.org/).

.

ii

http://www.antlr.org/
http://www.apache.org/
http://www.dom4j.org/
http://www.jaxen.org/
http://mx4j.sourceforge.net/
http://www.odmg.org/

Support

You can visit the HP Software support web site at:

www.hp.com/go/hpsoftwaresupport

This Web site provides contact information and details about the products, services, and support that HP
Software offers.

HP Software online software support provides customer self-solve capabilities. It provides a fast and
efficient way to access interactive technical support tools needed to manage your business. As a valued
support customer, you can benefit by using the HP Software Support web site to:

• Search for knowledge documents of interest

• Submit and track support cases and enhancement requests

• Download software patches

• Manage support contracts

• Look up HP support contacts

• Review information about available services

• Enter into discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also
require a support contract.

To find more information about access levels, go to:

www.hp.com/managementsoftware/access_level

To register for an HP Passport ID, go to:

www.managementsoftware.hp.com/passport-registration.html

iii

http://www.hp.com/managementsoftware/access_level
http://www.managementsoftware.hp.com/passport-registration.html

 Contents

Table of Contents

Introduction.. 1-1

Document Overview.. 1-1
Audience... 1-1

Integration with SOA PE Overview... 2-1

Integration Points .. 2-1
Prerequisites for Integration.. 2-2

Startup Tasks.. 2-2
SOA PE .. 2-2

Web Services Integration.. 2-2
Database Integrations... 2-3

SOA PE Policy Enforcement Intermediary Group... 2-3
Java API Integrations.. 2-3
Security Customization ... 2-4

Prerequisites for Integration... 3-1

Startup Tasks for SOA PE and SOA PE Broker.. 3-1
StartupTask Interface.. 3-1
Configuration File (server.xml) .. 3-2

Manually Implementing Intermediary Web Services ... 3-3
Creating an Intermediary Web Service JAR ... 3-3

Writing the Intermediary Web Service Definition... 3-3
Creating a Custom Handler .. 3-5
Adding Custom Handlers to an Intermediary Web Service Definition 3-7

Deploying an Intermediary Web Service Jar... 3-7

Database Integration ... 4-1

Overview ... 4-1

Contents-1

Contents

Database Schema Reference ... 4-1
MESSAGE_TRACE Table .. 4-1
MESSAGE Table .. 4-3

Sample SLA Reports... 4-4
Sample SLA Reports for Month of Nov 2004 .. 4-5

Integration with HP Business Process Insight 5-1

Integration Instructions.. 5-1

Configuration Instructions.. 5-2
On the HP BPI Server... 5-2
On the SOA PE Server ... 5-3
Prerequisites for HP BPI- SOA PE Adapter Installation 5-3
Installing the HP BPI- SOA PE Adapter .. 5-4
Stopping the SOA PE Adapter .. 5-5
SOA PE Adapter Log Files ... 5-5

Troubleshooting HP BPI Integration.. 5-5

Integration with HP Diagnostics... 6-1

Overview ... 6-1
Configuring a Java Agent with the Diagnostics Server 6-2
Viewing Service Performance Using the Diagnostics Probe......................... 6-2
Enabling or Disabling the Probe Agent ... 6-3

Microsoft Windows.. 6-3
UNIX and Linux... 6-3
Windows Service .. 6-3

Troubleshooting Diagnostics Integration... 6-3

Sonoa ServiceNet PEP Integration... 7-1

Sonoa ServiceNet Integration Overview ... 7-1
Service Lifecycle Management ... 7-2

Prerequisites for Integration .. 7-2

Registering Sonoa ServiceNet with HP SOA PE... 7-3

Frequently Asked Questions ... 7-4

Contents-2

Mapping SOA Services Model to Registry 8-1

Overview ... 8-1

Role of Registry in the SOA .. 8-1

Policy Mapping.. 8-2

Web Service Mappings ... 8-3

Appendix A Product Compatibility MatrixA-1

Product Compatibility Matrix..A-1

Index .. I-1

Contents-3

Contents

Contents-4

 1

Introduction

The Integration Guide is intended for users who want to take advantage of the HP
Service Oriented Architecture Policy Enforcer (SOA PE) integration possibilities. SOA
PE Integration is often performed to either customize how the SOA PE works or to reuse
the SOA PE’s assets within other enterprise applications.

Much attention has been given to ensure that the SOA PE’s architecture is flexible and
easy to integrate with. The architecture is pluggable and uses popular industry
standards such as Java and XML. More important, the SOA PE is among the first
distributed management software products to use a services-based architecture. For
example, Web Services are used to expose many parts of the SOA PE’s management
model. This practice not only ensures standard and open integration possibilities, it
clearly sets the SOA PE within current and future SOA-based environments.

Document Overview

The SOA PE Integration Guide provides instructions for performing integrations with
the SOA PE. The guide provides a brief contextual overview of the customization and
integration possibilities. Generally, each chapter is dedicated to an integration possibility
and is self contained. Therefore, the book need not be read in sequence.

Every effort has been made to explain general concepts. However, much of the content in
this guide assumes that the user is already familiar with the SOA PE and has a basic
level of experience. If you are new to the SOA PE product, it is recommended that you
first become familiar with the product. A good starting point is the SOA PE User Guide
and the SOA PE Tutorials. These and other documents are located in the distribution in
the /Documentation directory.

Audience

The Integration Guide is primarily intended for solution architects, systems integrators,
and application developers who are responsible for integrating and enabling
management components in their environments.

1-1

 2

Integration with SOA PE Overview

This chapter provides information about the integration features provided by HP SOA
PE. This chapter also discusses briefly about the various types of integrations possible.
See the respective chapters for more information about each type of integration.

Integration Points

SOA PE provides several integration points. The integration points can facilitate the
deployment of Web Services management solution as well as provide an opportunity to
repurpose some of the management data that is collected for Web Services. In some
cases, there is also the ability to customize the solution with management features that
are not supported with the solution, but important to fulfill the management needs of a
Web Service deployment.

In general, the integration points have been organized into the categories listed below.
This is purely an organizational scheme and does not suggest any functional boundaries
within the product.

• SOA PE includes the following integration points:

⎯ Database – This integration point is used to create custom audit reports or to
include audit information within other management applications.

⎯ Web Services interfaces – This integration point is used to create new (or
augment existing) enterprise management applications by reusing the SOA PE’s
management data and management model. The data and model are exposed as
management Web Services.

• SOA PE policy enforcement intermediary – The intermediary supports integration
with Java APIs. This integration helps you create custom management handlers that
address the specific Web Service management requirements of an organization.

• Integration with other products – You can integrate SOA PE with the following
products:

⎯ HP Business Process Insight (BPI)

⎯ HP SOA Systinet

⎯ HP Diagnostics

2-1

Integration Points

Prerequisites for Integration

These steps are used to manually create SOA PE’s assets as well as customize the SOA
PE and the policy enforcement intermediary startup. The prerequisites for integration
are as follows:

• Customize startup behaviors.

• Automate repetitive tasks.

• Save time when updating SOA PE assets over multiple installations.

• Reuse current tool sets (IDE, Content Versioning System, and so on).

• Maintain current development processes.

Startup Tasks

SOA PE policy enforcement intermediary group has the ability to execute user-defined
Java code at startup. This is useful for initializing any required services when the
processes are started or executing any type of process initialization code.

Integrators are responsible for creating the user-defined Java code as well as configuring
each server to use the custom code. Configuration of startup classes is done in the
servers’ XML configuration file (server.xml).

SOA PE

You can integrate with SOA PE by using published Web Services interfaces or databases.

Web Services Integration

The most common and robust method for integrating with SOA PE is by using the SOA
PE’s published Web Services interfaces. The Web Services are SOAP based Web Services
that are defined using WSDL. The Web Services follow standard Web Services
management protocols.

Two Web Services management specifications are: Web Services
Distributed Management (WSDM) and Web Services for Management (WS-
Management). At present, SOA PE software utilizes the Web Services
catalog, which is an HP authored precursor to the standard WS
management protocols. SOA PE software supports these specifications as
they mature and stabilize.

Web Services integrations allow system architects to leverage current management
investments and provide a broader and more thorough view of the enterprise. In general,
Web Services integrations are used to:

• Link SOA PE with other enterprise management products to create composite and
custom applications

• Create and/or reuse current management consoles to display the SOA PE’s
management data

• Create custom management consoles

2-2

Integration with SOA PE Overview

Database Integrations

Web Services audit trace messages are persisted to a central database. This information
in conjunction with the model relationships which are also populated into the database
(such as which Business Service contains which Web Services) can be used to enable
reporting and analytical applications such as SLA reporting, billing, non-repudiation,
forecasting, and so on. Any application can potentially connect to the SOA PE database
and make use of the data. For example, the database can be used to create audit reports
using packages like Crystal Reports.

Integrators are responsible for creating and maintaining database connections from
within their applications. In addition, integrators are responsible for upgrading their
applications as the SOA PE’s database schema changes.

SOA PE Policy Enforcement Intermediary Group

The Broker Configurator tool is typically used to create intermediary groups, configure
intermediary group management handlers, and deploy intermediary groups. These steps
can become repetitive and time consuming depending on the number of intermediary
groups that are being deployed. However, these tasks can be completed without using the
Broker Configurator.

Integrators are responsible for creating the intermediary group definition file (a
proprietary file written using XML), packaging the intermediary group as a Java Archive
(jar file), and copying it to the appropriate directory on the policy enforcement
intermediary group. Depending on the requirements, some or all of these tasks can be
automated.

Java API Integrations

Policy handlers implement management logic that is used to interpose visibility and
controls on Web Services. These handlers are inserted in the HTTP or SOAP pipeline
that is responsible for processing request and response messages. Intermediary groups
use a set of standard handlers and can also be configured to use a set of simple or
advanced handlers. However, an organization may have special management
requirements that are not covered by any of the provided handlers.

In such cases, the SOA PE’s Java API can be used to create custom handlers that can
implement any management or processing logic that is required.

Integrators are responsible for:

• Creating the custom handler Java logic by extending a base class

• Compiling the handler

• Configuring the handler in the intermediary group definition file

• Packaging the handler in the intermediary group jar file

2-3

Integration Points

Security Customization

The SOA PE’s Java API integration point is used to create custom security
implementations that allow an organization to enforce security policies that are not
covered by the default security features provided by the policy enforcement intermediary.
This includes custom authentication based on user profile, custom security handlers, and
an XML Introspection service.

2-4

 3

Prerequisites for Integration

Before integration, you must make sure that you perform the following activities:

• Customize startup behaviors

• Automate repetitive tasks

• Save time when updating SOA PE assets over multiple installations

• Reuse current tool sets (IDE, Content Versioning System, and so on)

• Maintain current development processes

Startup Tasks for SOA PE and SOA PE Broker

SOA PE and SOA PE Broker have the ability to execute user-defined Java code at
startup. This is useful for initializing any required services when the process is started,
or for executing any other type of process initialization code. To have either SOA PE or
Broker execute startup code, a class must be created that implements the
com.hp.wsm.sn.server.StartupTask interface. This startup class should be
registered in the service.xml file of either SOA PE or SOA PE Broker. This file is
present in the/conf directory.

StartupTask Interface

A startup class must implement the com.hp.wsm.sn.server.StartupTask interface
in order to be executed. The StartupTask interface is as follows:

public interface StartupTask {
 public void startup(MipServer server) throws
 StartupTaskFailureException,
 LicenseException.LicenseRunTimeError,
 LicenseException.LicenseNotFound;
}

3-1

Startup Tasks for SOA PE and SOA PE Broker

The class must be available on the classpath. When the server executes the startup task,
it creates a new instance of the class and executes the startup method, passing in the
current com.hp.wsm.sn.server.MipServer instance. The MipServer class is used
for internal processing and is generally not used by user-defined startup tasks. The
MipServer interface is not documented and is subject to change.

The startup class should throw a subclass of the
com.hp.wsm.sn.server.StartupTaskFailureException class if a critical problem
occurred and the server should shutdown.

Configuration File (server.xml)

The server.xml file is located in the <install_dir>/conf/broker and
<install_dir>/conf/networkservices directories, respectively. Underneath the root
<server> element, it has a <startup> element. This is the element in which the list of
startup classes is contained. Each startup class should be specified within <classname>
tags. For example:

<server>
 <startup>
 <classname>
 com.hp.wsm.sn.networkservices.NetworkServicesStartupTask
 </classname>
 </startup>
</server>

The startup tasks are executed in the order in which they appear in the startup list.
User-defined startup tasks should follow the existing com.hp.wsm.sn startup tasks.
While it is possible to put a startup task before the existing
NetworkServicesStartupTask or BrokerStartupTask, it is not recommended.

3-2

Prerequisites for Integration

Manually Implementing Intermediary Web Services

When using a SOA PE Broker-based deployment scenario, the Broker Configurator is
typically used to create intermediary Web Services. This includes configuring an
intermediary Web Service's management handlers. As an option, users can manually
create intermediary Web Services and configure their management handlers.
Intermediary Web Services are manually created and deployed when:

• You do not want to use the Broker Configurator.

• You want to develop and manage intermediary Web Services using your own
development environment (IDE, Content Versioning System, development processes).

• You want to create custom intermediary Web Services.

The instructions in this section demonstrate how to manually create an intermediary
Web Service and deploy it to the Policy Enforcement Point (PEP).

Creating an Intermediary Web Service JAR

The artifacts of an intermediary Web Service are packaged as a JAR file. A good method
for learning about intermediary Web Services is to create an intermediary Web Service
using the Broker Configurator, and then inspecting the intermediary Web Service JAR
file or using the files in the JAR as a template for creating your own intermediary Web
Services. When using the Broker Configurator, the JAR file is written to the
<install_dir>/conf/broker.

The archive contains two files which can be manually created:

• service.wsdl – This file contains a service’s definition without the address
(endpoints) for the service. The service can be defined using either SOAP semantics,
or can be created using straight XML.

• service.xml – This file contains a service’s endpoints and also the management
capabilities that will be interposed for the service.

Writing the Intermediary Web Service Definition

The intermediary Web Service definition (service.xml) is an XML-based file and can
be created using a text editor or an XML editor. Among other things, the definition
contains a service’s endpoints and references to any management handlers. The file can
contain handlers that are included with the WSM solution, or can contain any custom
handlers you create. The service.xml contains the following elements:

<service>

This is the root element of the intermediary Web Service definition. The following
attributes are included as part of the <service> element.

• class: Defines the class used to create the intermediary Web Service. There are four
possible classes that you can use:

3-3

Manually Implementing Intermediary Web Services

⎯ com.hp.wsm.sn.router.xml.SimpleSoapServiceFactory: This class is
used to create an intermediary service for SOAP-based services as defined in the
service.wsdl file. The intermediary Web Service can contain a predefined set of
handlers often referred to as simple handlers.

⎯ com.hp.wsm.sn.router.xml.SimpleXmlServiceFactory: This class is used
to create an intermediary Web Service for XML-based services as defined in the
service.wsdl file. The intermediary Web Service can contain a predefined set of
handlers often referred to as simple handlers.

⎯ com.hp.wsm.sn.router.xml.CustomSoapServiceFactory: This class is
used to create an intermediary service for SOAP-based services as defined in the
service.wsdl file. The intermediary Web Service can contain a broad set of
handlers and can also contain any custom handlers you create.

⎯ com.hp.wsm.sn.router.xml.CustomXmlServiceFactory: This class is used
to create an intermediary Web Service for XML-based services as defined in the
service.wsdl file. The intermediary Web Service can contain a broad set of
handlers and can also contain any custom handlers you create.

• name: The name of the intermediary Web Service

• version: A version for the intermediary Web Service

• namespace: A list of namespaces entered as prefix=url

<transport>

The <transport> element is contained within the <service> element and is used to
define the transport layer used to access the intermediary Web Service. It contains a
reference to the transport provider as well as the http context that is used to access the
intermediary Web Service and whether the transport layer is secured.

The following example demonstrates the transport definition:

<transport
 provider="com.hp.wsm.sn.router.http.HttpTransportProvider">
 <ns1:property name="http.context" value="/financeServiceProxy"/>
 <ns1:property name="http.secure" value="false"/>
</transport>

<routing>

The <routing> element is contained within the <service> element and is used to bind
the intermediary service to a Web Service endpoint. The dispatcher is used to send the
request to final endpoint. The following example demonstrates the routing definition:

<routing>
 <entry binding="ns2:FinanceServiceSoapSoapBinding">
 <ns3:endpoint
 type="com.hp.wsm.sn.common.dispatcher.
 endpoint.http.HttpEndpointProvider">
 <ns1:property name="priority" value="primary"/>
 <ns4:address>
 http://15.40.235.105:8080/axis/services/FinanceServiceSoap
 </ns4:address>
 </ns3:endpoint>
 </entry>
</routing>

3-4

Prerequisites for Integration

Handler Definitions

Each handler that you want to include for the intermediary Web Service must be
referenced in the intermediary service definition and be contained within the <service>
element. Any properties for the handler must be included as attributes. The following
example demonstrates the audit handler definition:

<audit
 classname="com.hp.wsm.sn.router.xml.handlers.audit.
 AuditHandlerFactory"
 includeProfiling="true"
 payload-filter="ALL"
 payload-option="REQUEST-RESPONSE"
</audit>

A reference of all the handlers can be found in the SOA PE User Guide.

Creating a Custom Handler

The following example demonstrates a custom handler:

Package com.mycompany.CustomHandler

import com.hp.wsm.sn.router.common.message.MessageServiceException;
import com.hp.wsm.sn.router.xml.XmlOperation;
import com.hp.wsm.sn.router.xml.handlers.BaseXmlHandler;
import java.io.IOException;

public class CustomHandler extends BaseXmlHandler {
 public void onRequest(XmlOperation operation) throws
 MessageServiceException {
 try {
 // Custom code goes here.
 }
 catch (IOException e) {
 throw new MessageServiceException.RequestReadException(e);
 }
 }
}

An onResponse method is also available when processing a response
message.

An operation can be retrieved by using getOperation() or
getOperationAsString() on the XmlOperation object.

Accessing Attachments for SOAP with Attachments

The SOA PE Intermediary provides an API that can be used in custom handlers to access
attachments that are part of a SOAP with Attachments (SwA) message. This API is part
of the com.hp.wsm.sn.router.xml.SoapOperation class and is therefore only
available for SOAP services.

To access the soap attachments of a service request in a custom intermediary Web
Service handler:

3-5

Manually Implementing Intermediary Web Services

1 Create a Handler class which extends BaseXmlHandler and overwrites the methods:

public void onRequest(XmlOperation operation)
public void onResponse(XmlOperation operation)

2 In the onRequest and/or onResponse method, verify that the XmlOperation
parameter is an instance of SoapOperation.

3 If it is a SoapOperation, the attachments can be accessed by casting the
XmlOperation to a SoapOperation and calling:

public Attachments getRequestAttachments()
public Attachments getResponseAttachments()

The com.hp.wsm.sn.router.soap.Attachments class that is returned from these
operations has methods to retrieve body parts by index:

public BodyPart get(int i)

Or by name:

public BodyPart getAttachmentByPartName(String partName)

The returned type is javax.mail.BodyPart. Below is an example of a handler that
accesses attachments from a SwA message:

package …

import com.hp.wsm.sn.router.xml.handlers.BaseXmlHandler;
import com.hp.wsm.sn.router.xml.XmlOperation;
import com.hp.wsm.sn.router.xml.SoapOperation;
import com.hp.wsm.sn.router.common.message.
 MessageServiceException;
import com.hp.wsm.sn.router.soap.Attachments;

public class SoapAttachmentHandler extends BaseXmlHandler {
 public void onRequest(XmlOperation operation)
 throws MessageServiceException {

// check that the operation is an instance of SoapOperation

 if (operation instanceof SoapOperation) {
 SoapOperation soapOp = (SoapOperation)operation;
 Attachments attachments =
 soapOp.getRequestAttachments();

// add code to manipulate the request attachment parts.

 }
 }

 public void onResponse(XmlOperation operation)
 throws MessageServiceException.InternalError {

// check that the operation is an instance of SoapOperation

 if (operation instanceof SoapOperation) {
 SoapOperation soapOp = (SoapOperation)operation;
 Attachments attachments =
 soapOp.getResponseAttachments();

// add code to manipulate the response attachment parts.

 }
 }
}

3-6

Prerequisites for Integration

Adding Custom Handlers to an Intermediary Web Service Definition

Custom intermediary Web Services allow you to add your own custom handlers to an
intermediary Web Service’s handler chain. In order to add a custom handler, you must
first create the custom intermediary Web Service and then edit the service’s definition
file located in the intermediary Web service jar file.

To add a custom handler:

1 Uncompress <install_dir>\conf\broker\<intermediary_web_service_name>.jar.

2 Using a text (or XML) editor, open service.xml.

3 Under the <service> element, add a <handler> element and include the fully
qualified class name. For example:

<handler classname=”com.company.HandlerClass” />

4 If the handler requires any properties, add them as elements under the handler
class. For example:

<handler classname=”com.company.HandlerClass” >
 <property1>foo</property1>
 <property2>
 <property name=”foo” value=”bar” />
 </property2>
 <ns1:property3>foo</ns1:property3>
</handler>

If the property uses a namespace, you must declare the namespace as an
attribute of the <service> element before using the namespace
(xmlns:ns1=”com.company”).

5 Save and close service.xml.

6 Place the custom handler class and any dependent classes in the same directory as
service.xml.

7 Re-jar the intermediary Web service including the custom handler class and any
dependent classes.

Deploying an Intermediary Web Service Jar

Intermediary Web Service JARs are placed in the <install_dir>/conf/broker directory.
Any intermediary Web Service JARs that are in this directory are automatically deployed
by the SOA PE Intermediary. When the JAR is deployed, it is automatically extracted to
<install_dir>/conf/broker and placed in a directory that is named using the IP
address of the host computer.

Never edit the extracted files as they will be overwritten when a new JAR
is deployed.

3-7

 4 4

Database Integration Database Integration

This chapter describes how to create SLA audit reports using the SOA PE Server’s audit
database. The chapter provides a brief overview of the integration architecture and
includes a reference of the schema and data dictionary of the audit database. An example
of an SLA audit report is also provided.

This chapter describes how to create SLA audit reports using the SOA PE Server’s audit
database. The chapter provides a brief overview of the integration architecture and
includes a reference of the schema and data dictionary of the audit database. An example
of an SLA audit report is also provided.

Overview Overview

SOA PE has the ability to capture audit information about Web service messages into a
central audit database. When a policy enforcement intermediary group is registered with
SOA PE, the Audit Service registers an event callback listener. Subsequently, the
intermediary posts Audit Trace message lists back to the Audit Service at a configured
interval. The Audit Service inserts these trace messages into the Audit database. This
information in conjunction with the model relationships which are also populated into
the database (such as which Business Service contains which Web services) can be used
to enable reporting and analytical applications such as SLA reporting, billing, non-
repudiation, forecasting, etc.

SOA PE has the ability to capture audit information about Web service messages into a
central audit database. When a policy enforcement intermediary group is registered with
SOA PE, the Audit Service registers an event callback listener. Subsequently, the
intermediary posts Audit Trace message lists back to the Audit Service at a configured
interval. The Audit Service inserts these trace messages into the Audit database. This
information in conjunction with the model relationships which are also populated into
the database (such as which Business Service contains which Web services) can be used
to enable reporting and analytical applications such as SLA reporting, billing, non-
repudiation, forecasting, etc.

This chapter provides instructions for producing custom SLA reports based on the
management data that is stored in the Audit database.
This chapter provides instructions for producing custom SLA reports based on the
management data that is stored in the Audit database.

Database Schema Reference Database Schema Reference

There are two tables that are used to create SLA Audit reports: There are two tables that are used to create SLA Audit reports:

• MESSAGE_TRACE • MESSAGE_TRACE

• MESSAGE • MESSAGE

MESSAGE_TRACE Table MESSAGE_TRACE Table

Name Type Description

sequenceId xsd:string An identifier that links together

4-1

Database Schema Reference

Name Type Description

MessageTrace instances that represent hops
between nodes (i.e. intermediaries) for the
same message call. This information is
currently passed between nodes in the HTTP
header SequenceHeader.
If a node receives a message that has a
SequenceHeader, it should use that value to
populate the sequenceId field of the
MessageTrace for that message.
If a node receives a message that does not
have a SequenceHeader, the node should
generate a new globally unique sequenceId.
It should use this value to populate the
sequenceId field of the MessageTrace for
that message.
In either case, the node should also add a
SequenceHeader HTTP header to any
outgoing messages associated with this call
and populate it with the appropriate
sequenceId.

traceSourceId xsd:string A unique identifier that identifies the source of
the message trace – the intermediary that is
sending the message trace to the
CollectionService.
The value is the host and port of the router
sending the trace.

traceSourceRole xsd:string A string indicating the role being played by
the sender of this message trace with regard to
the message being traced.

serviceName xsd:string The name of the service being invoked.
The value of this field is the name of the
service element in the WSDL for this service.

serviceVersion xsd:string The version of the service being invoked.
The value of this field is the namespace of the
service element in the WSDL for this service.

portType xsd:string The WSDL portType being invoked.

operation xsd:string The WSDL operation being invoked.

binding xsd:string The WSDL binding being invoked.

serviceType xsd:string An indicator if the service is managed
internally (proxy) or is outside the service
network.
This field is restricted to the values internal
and external.

4-2

Database Integration

Name Type Description

transportType xsd:string The transport on which the message traveled.
This is typically http or jms.

consumerSecurit
yPrincipal

xsd:string The Principal invoking the service.

providerSecurit
yPrincipal

xsd:string The Principal used by the services network on
behalf of the consumer.

senderURI xsd:string A URI identifying the message source.

receiverURI xsd:string A URI identifying the message destination.

duration xsd:long The duration in milliseconds of the call from
the time the request was received by this node
to when it was completed.

timestamp xsd:dateTime The time at which the call was received.
This should be in UTC format (‘Z’ extension)
with Millisecond (.sss) precision.

errorType xsd:string An indicator for the type of error that
occurred, if any.
This field is restricted to the values none,
application, transport, timeout,
marshalling, and soap fault.

requestSize xsd:int The size of the request in bytes.

responseSize xsd:int The size of the response in bytes

MESSAGE Table

This table contains actual message payloads.

Name Type Description

sequenceId xsd:string The UUID representing this message.

requestMessage CLOB The payload body of a request message.

responseMessage CLOB The payload body of a response message.

requestMessageH
eader

xsd:string The request message header for the payload.

requestTranspor
tHeader

xsd:string The response transport header for the payload.

responseMessage
Header

xsd:string The response message header for the payload.

responseTranspo
rtHeader

xsd:string The response transport header for the payload.

messageBody xsd:var
char

The body of the message.

4-3

Sample SLA Reports

Sample SLA Reports

You can build SLA reports from the SOA PE Audit database using a reporting package
like Crystal Reports. Refer to the Audit database schema and data dictionary to
understand the source of this information.

From: MM/DD/YY HH:MM:SS
To: MM/DD/YY HH:MM:SS
Compute over interval: MONTH / WEEK / DAY / HOUR

Consumer: <securityPrincipal>
 Consumed Service: <serviceNS>:<serviceName>
 Number of Requests made:
 Number of Requests processed successfully:
 Number of Requests failed:
 %age Availability over interval: (Number of Requests processed
 successfully / Number of Requests made) X 100
 Max Response time:
 Average Response time:

4-4

Database Integration

Sample SLA Reports for Month of Nov 2004

From: 11/01/04 00:00:00

To: 11/30/04 00:00:00

Compute over : DAY

Consumer: joebob

Consumed Service: http://wsm.hp.com/finance:financeServiceProxy

Time
Window

Number of
Requests

Number of
Successes

Number
of failures

%
Availability

Ave
Response
(ms)

Max
Response
(ms)

11/01/04 –
11/02/04

35 24 11 68.57 274 360

11/02/04 –
11/03/04

45 44 1 97.77 248 423

…

Consumed Service: http://wsm.hp.com/mobile:mobileServiceProxy

Time
Window

Number of
Requests

Number of
Successes

Number
of failures

%
Availability

Ave
Response
(ms)

Max
Response
(ms)

11/01/04 –
11/02/04

29 29 0 100 128 175

11/02/04-
11/03/04

13 13 0 100 110 155

…

4-5

 5

Integration with HP Business Process
Insight

HP Business Process Insight (BPI) is one of the HP Software products that you can
integrate with SOA PE. You can configure instances of the HP BPI SOA PE adapter to
integrate with your SOA PE installations. You can then configure HP BPI to link SOA
PE business events to the business flows that you define. SOA PE enables you to manage
your Service Oriented Architecture (SOA) resources to ensure their reliability and
optimize their performance. The combination of SOA PE and HP Business Process
Insight provides you with the ability to monitor the health and performance of services
running within a Service Oriented Architecture. This chapter provides an overview of the
integration, configuring, and troubleshooting instructions when integrating HP BPI with
SOA PE. Refer to the HP Business Process Insight (BPI) manuals for more information
about detailed instructions and conceptual information regarding HP BPI.

Integration Instructions

The HP BPI-SOA PE integration works as follows:

• Within the HP BPI Modeler, you are able to specify the SOA PE Business Services on
which your business flow depends.

• You then deploy your flow to the HP BPI Business Impact Engine.

• As these Business Services change state, this status information is collected from
SOA PE and your HP BPI flow reflects any resultant business impact.

For SOA PE to be able to communicate with HP BPI you need to install and run the HP
BPI SOA PE Adapter component. This SOA PE Adapter component can be installed on
any machine that has access to your network, but typically you would install the SOA PE
Adapter component on the SOA PE server. Refer to the BPI Installation Guide for more
details.

Let’s consider the architecture where you have installed HP BPI and the SOA PE
adapter on different servers where:

• You install and configure the HP BPI SOA PE Adapter to talk to your SOA PE
installation.

5-1

Configuration Instructions

• Within the HP BPI Administration Console, you configure a connection to your
HP BPI SOA PE Adapter.

• You make sure the HP BPI Service Adapters component is running, as this is the
component that handles the BPI side of the SOA PE connection. This
communication uses the HP Software Web Services interface.

• When defining a flow within the HP BPI Modeler you specify the names of the
SOA PE Business Services that you wish to use. The HP BPI Modeler calls the
HP BPI Service Adapters component (which, in turn, calls the HP BPI SOA PE
Adapter) to determine whether these services exist as Business Services within
SOA PE.

• You deploy your flow to the HP BPI Business Impact Engine.

• The BPI Service Adapters component polls the HP BPI SOA PE Adapter to get
status details about the SOA PE Business Services. Any status changes for these
Business Services are passed through to the HP BPI Business Impact Engine.

Configuration Instructions

Configuring the HP BPI SOA PE integration requires some set up on both the SOA PE
server and the HP BPI server. Even if you have installed HP BPI on the same server as
SOA PE, these steps are still required:

On the HP BPI Server

You configure the SOA PE connection details using the HP BPI Administration Console:

1 Select Operational Service Sources from the Navigation tree in the
Administration Console. The right-hand pane shows a list of Operational Service
Sources.

2 From the right-hand pane, select the Add button to add a new Service Source for the
SOA PE adapter instance that you have created. You are presented with the Service
Oriented Architecture Manager Source Properties dialog box.

3 Enter values for the properties of the SOA PE Service Source. The properties are
fully described in the HP Business Process Insight Administration Guide:

⎯ Service Source Name

⎯ Description (Optional)

⎯ Product Name, which is set as Service Oriented Architecture Manager. The
interface allows for additional Service Sources to be added in future versions of
BPI.

⎯ Host name

⎯ Port

⎯ Status Event Poll Interval In addition, you can configure a Web Proxy for your
Web Services connection if you have on

4 Click the OK button when you modifications are complete.

5-2

Integration with HP Business Process Insight

5 Make sure that the Enabled check box is selected in the column next to the new
service source entry.

6 Click the Apply button to apply your changes

7 Move to the Component Status screen and stop and restart all the BPI components.
The configuration is now complete and you can access SOA PE business services from
HP BPI.

On the SOA PE Server

You need to install the HP BPI SOA PE Adapter and configure it to talk to your SOA PE
installation. Once the BPI SOA PE Adapter is installed and running, it is available to HP
BPI.

Prerequisites for HP BPI- SOA PE Adapter Installation

The SOA PE adapter needs be installed only if you want to use SOA PE as a source of
operational events. The adapter can be installed on any Windows machine and
configured to access the machine where SOA PE is running.

You install the SOA PE Adapter files from the zip archive provided on the HP BPI
distribution media.

 You can configure and start only one instance of the SOA PE adapter for each installation. Starting
multiple instances of the adapter from the same installation can have unpredictable results.

If you want to run multiple instances of the adapter on one machine, you can achieve this
by installing the adapter multiple times and starting one adapter instance from each
installation.

You need the following information available to install and set up the adapter on the
SOA PE machine.

Information Notes

The name of the SOA PE Web
Service that Manager Web
Service that contains the catalog
of web services that it exposes.

This is the SOA PE Web service that starts with the following string:
WsmfServiceCatalog...
The SOA PE Web services are listed at:
http://hostname:port/wsmf/services where:

• hostname, is the host name of the machine where SOA PE is
running. This is described as the next parameter in this table.

• port, is the port number used by SOA PE to publish its Web
Services. This is described more fully later in this table.

Hostname of the machine where
SOA PE is running

If no hostname is specified, a value of local host is assumed.

5-3

http://hostname:port/wsmf/services

Configuration Instructions

Port number used by SOA PE to
publish its Web Services

If no port number is specified, a value of 5002 is used.

Port Number used to publish the
SOA PE adapter as a Web
Service. This is the Axis port
number as installed with the
adapter.

If no port number is specified, a value of 18097 is used.

Installing the HP BPI- SOA PE Adapter

Complete the following steps to install the adapter:

1 Locate the zip archive file on the SOA PE distribution media:

cd-root\i386\soam-adaptor.zip

2 Copy the zip archive file to the machine where you want to install the SOA PE
adapter.

3 Create a new directory for the SOA PE Adapter zip archive file.

4 Unpack the zip archive file into the directory that you have created in the previous
step.

5 Set the path for the Java Home directory for the adapter in the environment variable
SOAMADAPTER_JAVA_HOME. Open a Command Window and enter:

set SOAMADAPTER_JAVA_HOME=java-install-dir
where java-install-dir is the location of your Java installation, for

example: c:\program files\java\jdk1.5.0_08

6 From a Windows Command Window, locate the following script to configure and start
the adapter:

7 From the directory where the script is located, run the following script in a new
Command Window to configure and start the adapter as follows:

runAdapter.bat
start runAdapter -csoa-svs-catalog -h hostname -swsvs-port -aadport

where:

-c soa-svs-catalog (required parameter)

-c takes a parameter soa-svs-catalog, which is the name of the SOA PE Web
Services Catalog. This is the catalog name that you identified starting with the string
WsmfServiceCatalog.

-h hostname (optional parameter)

5-4

Integration with HP Business Process Insight

-h takes a parameter, which is the fully qualified host name of the machine where SOA
PE is running. This parameter is optional and if it is not specified, a value of localhost is
assumed.

-s wsvs-port (optional parameter)

-s takes a parameter, which is the port number used by SOA PE to publish its Web
services. This parameter is optional and if it is not specified a value of 5002 is used.

-a adport (optional parameter)

-a takes a parameter, which is the port number used by Axis to publish the SOA PE
Adapter as a Web Service. This parameter is optional and if it is not specified, a value of
18097is used.

An instance of the SOA PE Adapter is now installed, configured and started. Do not close
the Command Window where you started the adapter, or you shut down this adapter
instance.

You also need to configure the adapter as an operational service source for HP BPI. You
do this using the Administration Console as described in the HP Business Process
Insight Administration Guide.

You can check that the adapter is configured and running at any time using the following
URL:

http://hostname:18097/axis/services/SOAMAdapter?wsdl where hostname is
the name of the machine where the adapter is installed. If the browser returns an error
page, then the adapter is not running.

Stopping the SOA PE Adapter

You stop the adapter using CTRL/C in the Command Window where you started the
adapter.

SOA PE Adapter Log Files

The SOA PE Adapter logs errors and warnings in the following log file:

adapter-install-dir/data/log

Troubleshooting HP BPI Integration

If the BPI Dashboard returns an error similar to the following when you attempt to link
to a SOA PE-defined Service, it is likely to be because you are using a version of the
Business Process Dashboard that does not recognize the Service definition:

File: dash1-1_error.gif

In this example, you are running a Business Process Dashboard based on HP BPI version
01.01. The integration with SOA PE was introduced in HP BPI version 2.10. As a result,
the HP BPI Dashboard version 01.01 does not understand the SOA PE Service and is not
able to render it.

5-5

Troubleshooting HP BPI Integration

If you want to show SOA PE Services, you need to upgrade your Business Process
Dashboard to version 02.10.

5-6

 6 6

Integration with HP Diagnostics Integration with HP Diagnostics

Overview Overview

SOA PE integrates with HP Diagnostics to monitor the request and response flow from
service consumers to service providers through the Broker. When you install SOA PE
Broker, the installer installs the Diagnostics probe. The Diagnostics probe enables you to
integrate SOA PE Broker with the HP Diagnostics Server and use Diagnostics for
monitoring. The Diagnostics probe runs on port number 40000. You can configure the
Broker to use the Diagnostics Server after installing the SOA PE Broker.

SOA PE integrates with HP Diagnostics to monitor the request and response flow from
service consumers to service providers through the Broker. When you install SOA PE
Broker, the installer installs the Diagnostics probe. The Diagnostics probe enables you to
integrate SOA PE Broker with the HP Diagnostics Server and use Diagnostics for
monitoring. The Diagnostics probe runs on port number 40000. You can configure the
Broker to use the Diagnostics Server after installing the SOA PE Broker.

The following diagram illustrates how the Diagnostics probe works with SOA PE Broker. The following diagram illustrates how the Diagnostics probe works with SOA PE Broker.

In the diagram, the SOA PE Broker is configured to integrate with Diagnostics Server.

6-1

Overview

Configuring a Java Agent with the Diagnostics Server

You can refer to the HP Diagnostics Enterprise Edition documentation for configuring a
Java agent with the Diagnostics Server.

Viewing Service Performance Using the Diagnostics Probe

After installing SOA PE and configuring the policy enforcement points, you can view the
service performance metrics from SOA PE user interface by performing the following
steps:

1 Log on to the SOA PE user interface and click Policy Enforcement Points from
the View drop-down menu on the left pane. The Policy Enforcement Intermediary
Group page opens.

2 Click the policy enforcement intermediary group from the displayed list. The
Contained Policy Enforcement Intermediary Instances page opens.

3 Click View Metrics to view to the Diagnostics page. This displays the Diagnostics
page shown below.

The default credentials for diagnostics are as follows:

⎯ User ID: admin

⎯ Password: admin

4 Click Begin Profiling present on the left-hand corner of the Diagnostics page if this
is the first time you are viewing the performance status of the policy enforcement
intermediary instance. This step is necessary for the service performance data
collection to start.

6-2

Integration with HP Diagnostics

Enabling or Disabling the Probe Agent

You can do as follows to enable or disable the probe agent on various operating system
platforms after installing SOA PE.

Note: By default the probe agent is enabled in SOA PE.

Microsoft Windows

To disable the Diagnostics probe, you must make sure that the command rem is not
specified at the beginning of the set MIP_OPTS= line in the mipserver.bat file present in
the <install_dir>\bin\win32 directory.

You can add the command rem at the beginning of the line to enable the Diagnostics
probe.

UNIX and Linux

To disable the Diagnostics probe, you must make sure that the command # is not
specified at the beginning of the MIP_OPTS= line in the mipserver.bat file present in the
<install_dir>\bin\unix directory.

You can add the command # at the beginning of the line to enable the Diagnostics probe.

Windows Service

If you have installed SOA PE or the Broker as a windows service, you can do as follows to
enable or disable the Diagnostics probe for the service.

To disable the Diagnostics probe, you must make sure that the command rem is not
specified at the beginning of the set SM_MIP_OPTS= line in the service-manager.bat file
available under the <install_dir>\bin\win32\services directory. You can add the
command rem at the beginning of the line to enable the Diagnostics probe.

Troubleshooting Diagnostics Integration

• What do I do if clicking the View Metrics link on the Policy Enforcement
Intermediary Group page does not display the Diagnostics page?

Make sure that the Diagnostics probe is running on port 40000. You can verify this in
the <entry name="com.hp.probe.jetty.port">40000</entry> line in the
mipServer.xml file in the <install_dir>\conf\networkservices directory.
<install_dir> signifies the directory in which you installed SOA PE.

• How do I make sure that my Diagnostics Probe is working correctly?

Verify that you are able to see the inbound or outbound calls, Web services
information, instance tree, exceptions, SOA PE Broker layer information, and so on
in the profiler mode on the Diagnostics page. You can also verify the
log/<probe_id>/detailreport.txt file to identify the SOA PE Broker classes
and methods that are instrumented successfully.

• How do I configure the Diagnostics profiler port if the configured port is already in
use?

6-3

Overview

− Update the entry <entry
name="com.hp.probe.jetty.port">40000</entry> in the
mipServer.xml file present at the following location to
<install_dir>\conf\networkservices \mipserver.xml to use a new
port number.

− Update the entry jetty.port = 40000 and jetty.max.port = 40000
in the webserver.properties file at the following
location <install_dir>
\MercuryDiagnosticsProbe\JavaAgent\DiagnosticsAgent\etc

6-4

 7 7

Integration with Sonoa ServiceNet PEP Integration with Sonoa ServiceNet PEP

This chapter discusses about the integration capability of HP SOA Policy Enforcer (HP
SOA PE) with a third party policy enforcement point. By default, HP SOA PE uses the
Broker as the PEP. HP SOA PE currently supports integration with the Sonoa
ServiceNet PEP. This integration allows you deploy the service and the associated
policies to ServiceNet from HP SOA PE and achieve lifecycle management for the service.

This chapter discusses about the integration capability of HP SOA Policy Enforcer (HP
SOA PE) with a third party policy enforcement point. By default, HP SOA PE uses the
Broker as the PEP. HP SOA PE currently supports integration with the Sonoa
ServiceNet PEP. This integration allows you deploy the service and the associated
policies to ServiceNet from HP SOA PE and achieve lifecycle management for the service.

Sonoa ServiceNet Integration Overview Sonoa ServiceNet Integration Overview

The following diagram shows the integration between HP SOA PE, Systinet, Registry,
and Sonoa ServiceNet.
The following diagram shows the integration between HP SOA PE, Systinet, Registry,
and Sonoa ServiceNet.

This section covers only the integration overview and the flow of artifacts.
It is assumed that you have already performed the necessary configuration
to integrate HP SOA PE, HP SOA Systinet, HP SOA Registry, and Sonoa
ServiceNet. See the sections below for information about prerequisites and
configuration.

As illustrated in the diagram below, if you use Sonoa ServiceNet as the PEP and policy
authoring tool, the policy creation and flow are as follows:

1 After defining policies in Sonoa ServiceNet Control Center you must publish the
policies to the Registry.

2 You must then synchronize Systinet with the Registry for the artifacts. This process
downloads the policies from the Registry to Systinet. You can attach these policies to
the required service that must be deployed to the Sonoa ServiceNet PEP.

3 You must then publish the updated service details and policies attached to the
service to the Registry. This creates a new service provisioning session in the HP
SOA PE Lifecycle Status page.

HP SOA PE downloads all Sonoa ServiceNet policies by default from the
Registry.

7-1

Prerequisites for Integration

4 During service provisioning, the provisioning wizard displays the list of Sonoa
ServiceNet policies that you can attach to the service. You can then deploy the
service to the Sonoa ServiceNet PEP.

Service Lifecycle Management

Service lifecycle management involves getting a business service that is developed, ready
for the next stage in the lifecycle of that service. In this scenario, let us see how a
developed business service and associated artifacts undergo testing before being sent to a
production environment for consumption. Thus, the stages of the lifecycle of the service
in this scenario are development, testing, and production. You can publish the business
service you developed to a Test Registry. You can test the service by attaching more
governance policies, attaching functional endpoints and deploying the service to PEPs,
viewing the generated reports, and so on using SOA PE in the test environment. After
you are satisfied with the performance of the Web Service in the test environment, you
can publish the service and the associated artifacts to the Production Registry. You can
import the service and the artifacts from the Test Registry to Systinet. You can now
publish the business service to a Production Registry from Systinet and thus make the
service available for consumption by service consumers. You can then use SOA PE in the
production environment to implement additional governance criteria on the service,
deploy the service to PEPs, and so on.

Prerequisites for Integration

The integration between HP SOA PE with Sonoa ServiceNet, requires the following
configuration to be performed:

1 Stop SOA PE if it is running.

2 Open the mipServer.xml file present in the following location:
<install_dir>\conf\networkservices using any text editor

7-2

Integration with Sonoa ServiceNet PEP

3 Change the value to true for the following line in the mipServer.xml file: <entry
name="com.hp.pepregistry.load">false</entry>. This enables support for
a third part PEP and HP SOA PE uses the configuration specified in the
pepregistry.xml file present in the following location
<install_dir>\conf\networkservices to register the third part PEP.

4 Add the configuration to register Sonoa ServiceNet with HP SOA PE as shown in the
pepregistry.xml file as shown in the Registering Sonoa ServiceNet with HP SOA PE
section.

5 Copy the following jar files from the Sonoa ServiceNet distribution to
<install_dir>\lib\addons\<pep name>\version.

⎯ <install_dir> refers to the directory in which you have installed HP SOA PE.

⎯ <pep name> this folder has the name that you configured for the PEP in the
pepregistry.xml file.

⎯ <version> this folder name is the version number of the PEP you specified in the
pepregistry.xml file.

6 Start SOA PE

You must make sure that you configure the same Registry with Systinet,
ServiceNet, and SOA PE.

Registering Sonoa ServiceNet with HP SOA PE

To register Sonoa ServiceNet with HP SOA PE, you must perform the following
configuration steps:

1 Open the pepregistry.xml file present in the following location
<install_dir>\conf\networkservices using any text editor.

2 Enable (uncomment) all the lines in the Represents PEP for ServiceNet section
of the file. Specify the policy authoring application name in the
<policyAuthoringApplication name=" "/> line.

3 Replace the policy authoring application name in the following line with the policy
authoring application name of Sonoa ServiceNet in the following line:
<policyAuthoringApplication
name="uddi:systinet.com:soa:model:taxonomies:associatedApplication:other"/>. See
the Sonoa ServiceNet documentation for the Sonoa ServiceNet policy authoring
application name.

The value other denotes that the PEP used is Sonoa ServiceNet PEP and
not the HP SOA PE Broker.

4 Save the file.

7-3

Frequently Asked Questions

Frequently Asked Questions

• I want to modify the policies authored using Sonoa ServiceNet Control Center. Can I
do this from the SOA PE UI?

To modify the policy, you must use the Sonoa ServiceNet Control Center.

• What do I do if I modify a policy associated with a service in ServiceNet?

You can do as follows:

a Create a new policy according to the requirements and remove the old policy.

b Publish the new policy to the Registry.

c Use HP SOA Systinet to attach the modified policy to the service.

d Use the SOA PE Lifecycle Status page that notifies you to provision the service.

• What do I do to remove a Sonoa ServiceNet policy that is associated to a service?

You can do as follows:

a Remove the policy association from all the services to which the policy is
associated.

b Remove the policy from the Sonoa ServiceNet Control Center.

c Remove the policy from HP SOA Systinet.

d Remove the policy from HP SOA PE.

For a service lifecycle management scenario, you must follow the steps
separately for all the stages in the service lifecycle.

• What happens if a policy I am downloading from Sonoa ServiceNet has the same
name of an existing policy in HP SOA PE?

When policies are downloaded, if a Sonoa ServiceNet policy shares the same name
with an existing HP SOA PE policy, then HP SOA PE does not download the Sonoa
ServiceNet policy.

• After I modify an existing Sonoa ServiceNet policy and publish it to the registry. I do
not see the updated policy in SOA PE. What is the reason?

Currently, SOA PE does not support automatic download of a modified Sonoa
ServiceNet policy from the registry.

7-4

 8

Mapping SOA Services Model to Registry

The SOA PE’s assets that are published to a registry can be leveraged by any application
that can integrate with the registry. This section provides a reference of how the assets
are mapped in registry.

In particular, this section includes mappings for:

• Web Services

• Policies

SOA PE works with only Systinet registry. You must synchronize the Systinet Registry
(Registry) taxonomies with HP SOA Systinet before configuring the registry settings in
SOA PE.

Managed Endpoint represents the service managed by a Web Service Management
System (WSMS). It represents a proxy to the actual end point (Functional End point.)

Functional Endpoint represents the service exposing functionality that can be
managed by a WSMS. The service might be deployed on an application server.

Overview

When you publish a business service, the Web Services contained in that business service
along with the policies associated to it are published to the registry.

Role of Registry in the SOA

SOA implementations use registry as a system of record. The positioning of the role of
registry technology in an SOA has evolved over the past few years since its inception.
Originally, the registry was conceived as a central discovery point for design-time and
run-time reuse.

8-1

Policy Mapping

However, most recent thinking in this direction is that if the Registry is used as the only
way to offer and discover Web Services in the SOA, it provides an excellent control point
to achieve Governance during various stages of development, deployment, and runtime
management. Business stakeholders and enterprise architects define various policies
that must be adhered to in the enterprise SOA. These policies are captured and attached
to various entities in the Registry.

The registry is used to achieve the following:

• Reuse — capture meta-data about Web Services as well as other technology assets
so that effective search capabilities from various environments may be written
against the registry.

• Policy Definition – capture various policy definitions that provide the ability for a
business person or enterprise architect to mandate policies on various entities.

• Capture SOA Environment Model – capture various entities participating in an
SOA; their relationships; and some meaningful subset of state information about
these entities. This information is used to create a standardized/normalized
information store that is used to support various IT governance processes.

• Integration – the agreement of various participants in the SOA to settle upon
ontologies that are linked together in the registry creates very good potential for
different participants to consume and populate information out of registry for their
own narrow domains. The registry then provides a central store to create the
ultimate spider that links together all this information.

Policy Mapping

Policies defined in SOA PE are published to registry according to Web Services Policy
Attachment, Version 1.2.

According to this specification, reusable policy expressions are registered in registry as
distinct TModels. SOA PE publishes all policies except routing and load balancing policy
as distinct TModels. An example TModel is as follows:

<tModel tModelKey="uddi:469fef70-ac75-11dc-a342-3b4e75e1a340"
deleted="false" xmlns="urn:uddi-org:api_v3">

 <name>SchemaPolicy</name>

 <description>SchemaPolicy</description>

 <overviewDoc>

 <description>WS-Policy Expression</description>

<overviewURL>http://nt11812.asiapacific.hpqcorp.net:5002/bse_refresh/
PolicyExpression.jsp?cwcPopup=true&policy=SchemaPolicy</overviewU
RL>

 </overviewDoc>

 <categoryBag>

 <keyedReference
tModelKey="uddi:schemas.xmlsoap.org:policytypes:2003_03"
keyName="policy" keyValue

8-2

Mapping SOA Services Model to Registry

<keyedReference
tModelKey="uddi:schemas.xmlsoap.org:remotepolicyreference:2003_03"
keyName="Policy Expression for SchemaPolicy"
keyValue="http://nt11812.asiapacific.hpqcorp.net:5002/bse_refresh/Pol
icyExpression.jsp?cwcPopup=true&policy=KiranSchemaPolicy"/>

 <keyedReference
tModelKey="uddi:systinet.com:soa:model:taxonomies:policyTypes"
keyName="Runtime"
keyValue="uddi:systinet.com:soa:model:taxonomies:policyTypes:runtime"
/>

 <keyedReference
tModelKey="uddi:systinet.com:soa:model:taxonomies:associatedApplicati
on" keyName="Other"
keyValue="uddi:systinet.com:soa:model:taxonomies:associatedApplicatio
n:other"/>

 </categoryBag>

</tModel

Apart from the taxonomies mentioned in the WS Policy Attachment Specification,
additional taxonomies are published to indicate the policy type as runtime and associated
application as not ‘Policy Manager’

Web Service Mappings

When a Web Service is published to registry, the information published to registry
depends on whether the Web Service was originally created in SOA PE or Systinet.

For Web Services created in SOA PE initially, the following is published :

The WSDL for the proxy Web Service. The WSDL is published according to: Using WSDL
in a UDDI Registry, Version 2.0.2 – Technical Note. The following UDDI entries are
created:

⎯ UDDI business service for the WSDL service

⎯ UDDI binding template for the WSDL port

⎯ UDDI tModel for each binding and port type

• The WSDL for the proxy Web Service. The Web Service WSDL is published to the
Registry if it does not exist in the registry already. It is published according to the
technical note cited above.

• Relationships. The relationships are published as keyed references in the Registry
business service category bag. The following types of relationships are published:

⎯ Reusable Policies – A Registry business service contains a keyed reference to
indicate the reusable policies attached to the Web Services. Local Policy
Reference taxonomy as mentioned in WS Policy Attachment specification is used
to indicate this relationship

⎯ Non Reusable Policies – A Registry business service contains a keyed
reference to indicate the Web Service specific policies attached to it. Remote
Policy Reference taxonomy as mentioned in WS Policy Attachment specification
is used to indicate this relationship.

8-3

Web Service Mappings

NOTE: For discovered services from Systinet, the Registry business service representing
the Web Service is expected to be already registered in registry. Only the policy
association relationship and the binding template information is updated in registry

For discovered services from Systinet, the managed endpoint is published according to
Governance Interoperability Framework (GIF) specification. The figure shown below
explains the mapping,

 While publishing the managed endpoint following steps are followed by SOA PE,

• The functional service’s bindingTemplate (BT1) is copied to a new
bindingTemplate (BT2) contained by the same business service

• bindingTemplate (BT2) is updated with a reference to bindingTemplate (BT1)
using "uddi:systinet.com:management:proxy-reference" taxonomy

• BT1's access point is updated with the proxy endpoint

• Both binding templates are updated with additional categorizations

An example is shown below:

<businessService
 serviceKey="uddi:example.com:myService:bs"
 businessKey="...">
 <name>My service</name>
 <bindingTemplates>
 <bindingTemplate
 bindingKey="uddi:example.com:myService:bt"
 serviceKey="uddi:example.com:myService:bs">
 <accessPoint URLType="http">http://example.com/myServiceProxy</accessPoint>
 <tModelInstanceDetails>
 <tModelInstanceInfo>
 ...
 </tModelInstanceInfo>
 ….

 </tModelInstanceDetails>
 <categoryBag>

8-4

Mapping SOA Services Model to Registry

 <keyedReference
 tModelKey="uddi:systinet.com:management:system"
 keyName="Management System"
 keyValue="HP SOA PE"/>
 <keyedReference
 tModelKey="uddi:systinet.com:management:type"
 keyName="Management entity type"
 keyValue="managedEndpoint"/>
<keyedReference
 tModelKey="uddi:systinet.com:management:state"
 keyName="Governance state"
 keyValue="managed"/>

 <keyedReference
 tModelKey="uddi:systinet.com:management:url"
 keyName="URL from AccessPoint"
 keyValue="http://example.com/myServiceProxy"/>
 </categoryBag>
 </bindingTemplate>

 <bindingTemplate
 bindingKey="uddi:example.com:myService:functionalEndpoint"
 serviceKey="uddi:example.com:myService:bs">
 <accessPoint URLType="http">http://example.com/myService</accessPoint>
 <tModelInstanceDetails>
 ...
 </tModelInstanceDetails>
 <categoryBag>
 <keyedReference
 tModelKey="uddi:systinet.com:management:system"
 keyName="Management System"
 keyValue="HP SOA PE"/>
 <keyedReference
 tModelKey="uddi:systinet.com:management:type"
 keyName="Management entity type"
 keyValue="functionalEndpoint"/>
 <keyedReference
 tModelKey="uddi:systinet.com:management:proxy-reference"
 keyName="Proxy reference"
 keyValue="uddi:example.com:myService:bt"/>
 </categoryBag>
 </bindingTemplate>
 </bindingTemplates>
 <categoryBag>

< <keyedReference

 tModelKey="uddi:schemas.xmlsoap.org:remotepolicyreference:2003_03"

 keyName="Policy Expression for myServiceProxyRoutePolicy1"

keyValue="https://soamanagerhost:5003/bse_refresh/PolicyExpression.jsp?cwcPopup=true&policy=myService
ProxyRoutePolicy1" />

 <keyedReference
 tModelKey="uddi:schemas.xmlsoap.org:localpolicyreference:2003_03"
 keyName="SchemaValidation"
 keyValue="uddi:a8666990-ac99-11dc-9cdd-a32db2519cdc" />

 <keyedReference
 tModelKey="uddi:schemas.xmlsoap.org:remotepolicyreference:2003_03"
 keyName="Policy Expression for myServiceProxyLoadBalancingPolicy"

8-5

Web Service Mappings

keyValue="https://soamanagerhost:5003/bse_refresh/PolicyExpression.jsp?cwcPopup=true&policy=myService
ProxyLoadBalancingPolicy" />

 </categoryBag>
</businessService>

For services created in SOA PE the proxy binding template is published according to: Using WSDL in a
UDDI Registry, Version 2.0.2 – Technical Note

An example is shown below,

<businessService serviceKey="uddi:37bd5bd0-ac9a-11dc-9cdd-a32db2519cdc"
businessKey="uddi:systinet.com:demo:hr" xmlns="urn:uddi-org:api_v3">

 <name>myServiceProxy</name>

 <bindingTemplates>

 <bindingTemplate bindingKey="uddi:37e83c60-ac9a-11dc-9cdd-a32db2519cdc"
serviceKey="uddi:37bd5bd0-ac9a-11dc-9cdd-a32db2519cdc">

 <accessPoint
useType="http">http://soamanagerhost:9032/myServiceProxy/myServiceSoapSoapBindin
g</accessPoint>

 <tModelInstanceDetails>

 <tModelInstanceInfo tModelKey="uddi:37783c80-ac9a-11dc-9cdd-a32db2519cdc">

 <instanceDetails>

 <instanceParms>myServiceSoapPort</instanceParms>

 </instanceDetails>

 </tModelInstanceInfo>

 <tModelInstanceInfo tModelKey="uddi:83814670-a944-11dc-bc79-f05f9301bc77"/>

 </tModelInstanceDetails>

 </bindingTemplate>

 </bindingTemplates>

 <categoryBag>

 <keyedReference tModelKey="uddi:uddi.org:wsdl:types" keyName="WSDL Entity
type" keyValue="service"/>

 <keyedReference tModelKey="uddi:uddi.org:xml:namespace" keyName="XML
namespace" keyValue="http://wsm.hp.com/myService"/>

 <keyedReference tModelKey="uddi:uddi.org:xml:localName" keyName="XML local
name" keyValue="myServiceProxy"/>

8-6

Mapping SOA Services Model to Registry

 <keyedReference
tModelKey="uddi:schemas.xmlsoap.org:remotepolicyreference:2003_03"
keyName="Policy Expression for myServiceProxyRoutePolicy1"
keyValue="https://nttiju.asiapacific.hpqcorp.net:5003/bse_refresh/PolicyExpression.jsp?c
wcPopup=true&policy=myServiceProxyRoutePolicy1"/>

 <keyedReference tModelKey="uddi:schemas.xmlsoap.org:localpolicyreference:2003_03"
keyName="SchemaValidation" keyValue="uddi:a8666990-ac99-11dc-9cdd-
a32db2519cdc"/>

 <keyedReference
tModelKey="uddi:schemas.xmlsoap.org:remotepolicyreference:2003_03"
keyName="Policy Expression for myServiceProxyLoadBalancingPolicy"
keyValue="https://soamanagerhost:5003/bse_refresh/PolicyExpression.jsp?cwcPopup=tru
e&policy=myServiceProxyLoadBalancingPolicy"/>

 </categoryBag>

</businessService

8-7

 A A

Appendix A Product Compatibility Matrix Appendix A Product Compatibility Matrix

Product Compatibility Matrix Product Compatibility Matrix

The following table lists the HP Software products compatible for integration with SOA
PE. The table also lists the versions compatible for the integration with SOA PE.
The following table lists the HP Software products compatible for integration with SOA
PE. The table also lists the versions compatible for the integration with SOA PE.

Product Product Version Version

HP Business Process Insight 2.10

HP SOA Systinet 3.10

HP Diagnostics 8.00

A-1

Product Compatibility Matrix

A-2

Index

A
attachments, 3-5
audit

architecture, 4-1
database, 4-1
messages, 4-1
service, 4-1

audit integration, 4-1

B
BaseXmlHandler interface, 3-5
billing, 4-1
Broker Configurator, 3-3
brokered services

add custom handler, 3-7
definition, 3-3
jar, 3-3
manually implement, 3-3

C
custom policy handler, 3-5

add, 3-7

D
database

message table, 4-3
message trace table, 4-1
schema, 4-1

database integrations, 2-3
document overview, 1-1

F
forecasting, 4-1

G
general integration, 2-2

H
handler. See policy handler

I
interfaces

BaseXmlHandler, 3-5
startup tasks, 3-1

J
Java API integrations, 2-3

M
management integration

database, 2-3
general, 2-2, 3-1
Java API, 2-3, 2-4
Web Services, 2-2

message table, 4-3
message trace table, 4-1

N
non-repudiation, 4-1

P
policy handler

add custom, 3-7
custom, 2-3, 3-5
definition, 3-5

R
reports, 2-3, 3-1, 4-4, 4-5

S
security customization, 2-4
server.xml, 3-2
service.wsdl, 3-3
service.xml, 3-3
SLA

reports, 3-1
reports example, 4-4, 4-5

SOAP attachments, 3-5
startup, 2-2, 3-1

Index-1

Index

T
trace messages, 4-1

W
Web Services

integrations, 2-2

Index-2

We appreciate your feedback!

If an email client is configured on this system, by default an email window opens when you
click on the bookmark “Comments”.

In case you do not have the email client configured, copy the information below to a web mail
client, and send this email to docfeedback@hp.com

Product name:

Document title:

Version number:

Feedback:

	Integration Guide
	Contents
	Introduction
	Document Overview
	Audience

	Integration with SOA PE Overview
	Integration Points
	Prerequisites for Integration
	Startup Tasks

	SOA PE
	Web Services Integration
	Database Integrations

	SOA PE Policy Enforcement Intermediary Group
	Java API Integrations
	Security Customization

	Prerequisites for Integration
	Startup Tasks for SOA PE and SOA PE Broker
	StartupTask Interface
	Configuration File (server.xml)

	 Manually Implementing Intermediary Web Services
	Creating an Intermediary Web Service JAR
	Writing the Intermediary Web Service Definition
	Creating a Custom Handler
	Adding Custom Handlers to an Intermediary Web Service Definition

	Deploying an Intermediary Web Service Jar

	Database Integration
	Overview
	Database Schema Reference
	MESSAGE_TRACE Table
	MESSAGE Table

	Sample SLA Reports
	 Sample SLA Reports for Month of Nov 2004

	Integration with HP Business Process Insight
	Integration Instructions
	Configuration Instructions
	On the HP BPI Server
	On the SOA PE Server
	Prerequisites for HP BPI- SOA PE Adapter Installation
	Installing the HP BPI- SOA PE Adapter
	Stopping the SOA PE Adapter
	SOA PE Adapter Log Files

	Troubleshooting HP BPI Integration

	Integration with HP Diagnostics
	Overview
	Configuring a Java Agent with the Diagnostics Server
	Viewing Service Performance Using the Diagnostics Probe

	Enabling or Disabling the Probe Agent
	Microsoft Windows
	UNIX and Linux
	Windows Service

	Troubleshooting Diagnostics Integration

	Integration with Sonoa ServiceNet PEP
	Sonoa ServiceNet Integration Overview
	Prerequisites for Integration
	Registering Sonoa ServiceNet with HP SOA PE
	Frequently Asked Questions

	Mapping SOA Services Model to Registry
	Overview
	Role of Registry in the SOA
	Policy Mapping
	Web Service Mappings

	Appendix A Product Compatibility Matrix
	Product Compatibility Matrix

	Index

	We appreciate your feedback!
	Comments

