
HP SOA Systinet Workbench

Software Version: 3.00

Assertion Editor Guide

Document Release Date: June 2008
Software Release Date: June 2008

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent
with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and
Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard
commercial license.

Third-Party Web Sites

HP provides links to external third-party Web sites to help you find supplemental information. Site content
and availability may change without notice. HP makes no representations or warranties whatsoever as to
site content or availability.

Copyright Notices

' Copyright 2003-2008 Hewlett-Packard Development Company, L.P.

Trademark Notices

Java™ is a US trademark of Sun Microsystems, Inc. Microsoft®, Windows® and Windows XP® are U.S.
registered trademarks of Microsoft Corporation. IBM®, AIX® and WebSphere® are trademarks or registered
trademarks of International Business Machines Corporation in the United States and/or other countries.
BEA® and WebLogic® are registered trademarks of BEA Systems, Inc.

Contents
About this Guide. 5

Document Conventions. 6

Documentation Updates. 7

Support. 8

1 Assertion Editor. 9

Workbench Suite. 9

Overview. 10

User Interface. 11

2 Getting Started. 21

Installing Workbench. 21

Creating an Assertion Project. 23

Downloading and Importing Assertions. 24

3 Manipulating Assertions. 27

Creating Assertions. 27

Editing Assertions. 28

Deleting Assertions. 35

Comparing Assertion Versions. 36

4 Validating and Publishing Assertions. 39

Testing Assertions. 39

Resolving Conflicts. 40

Publishing Assertions. 41

5 Deploying Assertions. 43

Building an Assertion Extension. 43

Applying Extensions. 44

3

Redeploying the EAR File. 47

6 Customizing Assertions. 49

Customizing Source Type. 49

Adding PM Extensions. 50

A Dialog Boxes. 51

Define New Implementation Wizard. 51

Run. 52

B Assertion Developer Reference. 55

Assertion Document Details. 55

4

About this Guide
Welcome to the Assertion Editor Guide. This guide explains how to use Assertion Editor as part of HP SOA
Systinet.

This guide contains the following chapters:

• Chapter 1, Assertion Editor

Provides an overview of the main features of Assertion Editor.

• Chapter 2, Getting Started

Describes the installation of the main features, and shows you how to create an assertion project in
Assertion Editor.

• Chapter 3, Manipulating Assertions

Explains how to create, download, edit, and compare assertions using Assertion Editor.

• Chapter 4, Validating and Publishing Assertions

Shows how to test, publish, and resolve conflicts in assertions using Assertion Editor.

• Chapter 5, Deploying Assertions

Shows how to build an Assertion extension project using Assertion Editor.

• Chapter 6, Customizing Assertions

Explains how to customize the source type and add PM extensions in Assertion Editor.

5

Document Conventions
This document uses the following typographical conventions:

Script name or other executable command plus mandatory arguments.run.bat make

Command-line option.[--help]

Choice of arguments.either | or

Command-line argument that should be replaced with an actual value.replace_value

Choice between two command-line arguments where one or the other is
mandatory.

{arg1 | arg2}

User input.rmdir /S /Q System32

Filenames, directory names, paths and package names.C:\System.ini

Program source code.a.append(b);

Inline Java class name.server.Version

Inline Java method name.getVersion()

Combination of keystrokes.Shift+N

Label, word, or phrase in a GUI window, often clickable.Service View

Button in a user interface.OK

Menu option.New→Service

6

Documentation Updates
This guide's title page contains the following identifying information:

• Software version number, which indicates the software version.

• Document release date, which changes each time the document is updated.

• Software release date, which indicates the release date of this version of the software.

To check for recent updates, or to verify that you are using the most recent edition of a document, go to:

http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign-in. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

Or click the New users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support service.
Contact your HP sales representative for details.

7

http://h20230.www2.hp.com/selfsolve/manuals
http://h20229.www2.hp.com/passport-registration.html

Support
You can visit the HP Software Support Web site at:

http://www.hp.com/go/hpsoftwaresupport

HP Software Support Online provides customer self-solve capabilities. It provides a fast and efficient way
to access interactive technical support tools needed to manage your business. As a valued support customer,
you can benefit by using the HP Software Support web site to:

• Search for knowledge documents of interest

• Submit and track support cases and enhancement requests

• Download software patches

• Manage support contracts

• Look up HP support contacts

• Review information about available services

• Enter into discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a
support contract.

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

8

http://www.hp.com/go/hpsoftwaresupport
http://h20230.www2.hp.com/new_access_levels.jsp
http://h20229.www2.hp.com/passport-registration.html

1 Assertion Editor

HP SOA Systinet Workbench includes Assertion Editor, a set of features for use with the Policy Manager
component of SOA Systinet. Assertion Editor enables you to create, edit, and delete assertions on any
number of Policy Manager servers. In addition, you can use Assertion Editor to test an assertion, validating
the assertion against a source document.

This chapter introduces Assertion Editor in the following sections:

• Workbench Suite on page 9

• Overview on page 10

• User Interface on page 11

Workbench Suite
HP SOA Systinet Workbench is a suite of editor tools enabling you to customize your deployment of SOA
Systinet.

Workbench consists of the following editor tools, distributed as a single Eclipse development platform:

• Customization Editor

Customizes the underlying SOA Definition Model (SDM) and the appearance of these artifacts within
SOA Systinet.

• Taxonomy Editor

Customizes the taxonomies used to categorize artifacts in SOA Systinet.

• Assertion Editor

Customizes the conditions applied by your business policies within SOA Systinet.

9

• Report Editor

Customizes report definitions for use with SOA Systinet.

Overview
Assertions are the building blocks of policy. Each assertion checks a single condition of a policy, returning
a true or false result. In Policy Manager, one or more assertions are collected together to form a WS-Policy
document called a technical policy. The technical policy is a set of assertions that fulfils a management
requirement. Technical policies, in turn, are associated with specific artifacts or artifact types to form a WS-
PolicyAttachments document called a business policy. This is the top level of a policy, embodying specific
business requirements.

SOA Systinet provides tools for testing whether sources comply with the relevant business policies.

To meet management requirements, a technical policy often needs a new assertion. Changing requirements
can also result in existing assertions becoming out of date. Assertion Editor is a tool, built on the widely
used Eclipse IDE, to simplify assertion creation and editing.

Assertion Editor makes working with assertions easy.

Use Assertion Editor to do the following:

1 Create an assertion project.

For details, see the following sections:

• Creating an Assertion Project on page 23

• Downloading and Importing Assertions on page 24

2 Create and manage assertions.

For details, see the following sections:

• Creating Assertions on page 27

• Editing Assertions on page 28

Chapter 110

• Deleting Assertions on page 35

• Comparing Assertion Versions on page 36

3 Validate assertions before publishing.

For details, see Testing Assertions on page 39.

4 Deploy assertions and manage conflicts.

For details, see the following sections:

• Publishing Assertions on page 41

• Resolving Conflicts on page 40

5 Customize assertions for use with Policy Manager.

For details, see Chapter 6, Customizing Assertions.

User Interface
The default perspective is split into a number of sections with menu options across the top, as shown in
Figure 1.

11Assertion Editor

Figure 1. Assertion Editor UI

The platform perspective consists of the following views:

• Project Explorer

The tree view of your assertion projects. For details, see Project Explorer on page 13.

• Server Explorer

The view listing SOA Systinet server connections to Workbench. For details, see Server Explorer on
page 15.

• Editor

The view showing the components of the assertion. For details, see Editor Pane on page 16.

Chapter 112

Project Explorer

Project Explorer contains a hierarchical list of projects, the assertions in each project, and the validation
definitions in each assertion, as shown in Figure 2.

Figure 2. Project Explorer

Right-click elements in the project to view their context menus, as described in Table 1.

13Assertion Editor

Table 1. Project Explorer Context Menu Options

DescriptionOption

Opens a new project, file, or folder. You can also create a new assertion.New

Opens the assertion in the default Editor.Open

Opens the assertion in editors other than the default Editor.Open With

Copies the selected item to the clipboard.Copy

Pastes a copied item from the clipboard into Project Explorer.Paste

Deletes the selected item.Delete

Moves the selected item to a different location.Move

Renames the selected item.Rename

Imports an assertion from a local file into the project.Import

Exports a project or assertion to a file or Team Project Set.Export

Reflects changes made outside the workspace. The local version does not change.
This is the standard Eclipse Refresh action.

Refresh

Opens the project to users.Open Project

Closes the project to users.Close Project

Runs a compliance check on the selected item.Validate

Opens the Run dialog box.Run As

Opens the Debug dialog box.Debug As

Opens the Profile dialog box.Profile As

Applies a Patch from a team project, or shares your project with a team.Team

Compares the current version of the assertion with the history of its local
changes.

Compare with

Restores deleted resources from local history.Restore from Local
History

Chapter 114

DescriptionOption

Does one of the following:

• Downloads an assertion from the server, as described in Downloading and
Importing Assertions on page 24.

• Updates the assertion with the version on the server, as described in Editing
Assertions on page 28.

• Publishes the assertion to an SOA Systinet server, as described in Publishing
Assertions on page 41.

• Removes the assertion from the server, as described in Deleting Assertions
on page 35.

• Publishes the assertion to a different server, as described in Publishing
Assertions on page 41.

• Builds an extension, as described in Building an Assertion Extension on
page 43.

HP SOA Systinet

Converts projects to plug-in projects.PDE Tools

General properties of the project, assertion, or implementation. Here you can
set read-only status.

Properties

Server Explorer

The Server Explorer displays the SOA Systinet servers connected to Workbench, as shown in Figure 3. The
functionality is shared by all the Workbench editors.

15Assertion Editor

Figure 3. Server Explorer View

Right-click a server in the Server Explorer to open the context menu described in Table 2.

Table 2. Server Explorer Context Menu Options

FunctionOption

Add a server for downloading assertions and taxonomies (Assertion Editor,
Taxonomy Editor, and Customization Editor).

New Server

Delete a server from the Server Explorer.Remove Server

Download a taxonomy from a platform server (Taxonomy Editor and
Customization Editor).

Download Taxonomy

Download assertions from a platform server (Assertion Editor).Download Assertion

Download reports from a reporting server (Report Editor).Download Report

View and edit the server name, URL, username, and password.Properties

Editor Pane

The Editor pane is the main feature of the Assertion Editor UI.

The pane is split into tabs, described in the following sections:

• Overview Tab on page 17

Chapter 116

• Implementation Tab on page 18

• Source Tab on page 18

Overview Tab

The Overview tab shows the components of the assertion, as shown in Figure 4.

Figure 4. Overview Tab

The tab is divided into the following areas:

• General Information

Name of the assertion and its description.

• Implementation

List of implementations of validation logic and the artifact types to which they apply.

17Assertion Editor

• Reference Template

Element used to reference this assertion from a WS-Policy document.

Implementation Tab

The Implementation tab includes a list of implementations, as shown in Figure 5.

Figure 5. Assertion Editor UI: Editor Implementation Tab

Highlighting an implementation opens the XQuery Definition Editor in the window beneath. For details,
see Writing XQuery Definitions on page 31.

Source Tab

The Source tab is an XML editor for editing the assertion, as shown in Figure 6.

Chapter 118

Figure 6. Source Tab

19Assertion Editor

Chapter 120

2 Getting Started

This chapter describes the prerequisites for working with assertions in HP SOA Systinet Assertion Editor.
It contains the following sections:

• Installing Workbench on page 21

• Creating an Assertion Project on page 23

• Downloading and Importing Assertions on page 24

Installing Workbench
HP SOA Systinet Workbench is an Eclipse development platform distributed as a zip file, hp-soa-systinet-
workbench-3.00-win32.zip.

For supported platforms and known issues, see readme.txt alongside the archive.

To install HP SOA Systinet Workbench:

• Extract the archive to your required location, referred to in this document as WB_HOME.

To start HP SOA Systinet Workbench:

• Execute WB_HOME/systinet-workbench/start.exe.

The first time you start Workbench, the welcome screen opens, as shown in Figure 7.

21

Figure 7. Workbench Welcome Screen

Select one of the options to open one of the editor tools, start a new editing project, or view the documentation
set.

You can return to the welcome screen from any of the editor tools by selecting Help→Welcome from the
menu options.

HP SOA Systinet Workbench requires Java SE Development Kit (JDK) 1.5.0 or higher. You must
include the path to this version of the JDK in the JAVA_HOME environment variable.

HP SOA Systinet Workbench is memory-intensive. If you experience performance issues, HP
recommends increasing the memory allocation.

To increase the memory allocation for HP SOA Systinet Workbench:

1 Open WB_HOME/start.ini for editing.

2 Set these new values:

• -Xms128m

• -Xmx1024m

Chapter 222

3 Save your changes.

4 Restart Workbench.

Creating an Assertion Project
To work with assertions, you need an Assertion Project. You can create any number of Assertion Projects
to help organize your work.

To create an Assertion Project:

1 Do one of the following:

• In the Workbench Welcome page, click Create Assertion Project.

• Click New to open the Select a Wizard window, and select HP SOA Systinet→Assertion
Project.

• From the menu, select File→New→Assertion Project.

• Press Alt+Shift+N, and then press R, to open the Select a Wizard window. Then select HP SOA
Systinet→Assertion Project.

The New Assertion Project dialog box opens.

2 In the New Assertion Project dialog box, add the required parameters.

3 Click Next to select or create a server.

If no servers are currently defined, the dialog box continues to Step 5.

4 Do one of the following:

• Select Create a New Server, and click Next.

23Getting Started

Continue to Step 5.

• Select Use an Existing Server, select the server from the list and input its credentials, and then
click Next.

Continue to Step 6

5 In the New Server dialog box, add the required parameters, and then click Next.

6 Select assertions to download from the server.

7 Click Finish.

Downloading and Importing Assertions
Using Assertion Editor, you can download assertions from a Policy Manager server to edit or test them.

You can download assertions in one of two ways:

• When you create a project, as described in Creating an Assertion Project on page 23.

• From your local file system, at a later date.

To download assertions:

1 Right-click the server containing the assertions you need in Server Explorer to open its context menu,
and select Download Assertions.

The Download Assertion dialog box opens.

2 Select the assertions to download, and click Next.

The Choose Location dialog box opens.

3 Select the project to add the assertions to, and click Finish.

Chapter 224

To import assertions from a local file:

1 Right-click the server containing the assertions you need in Server Explorer to open its context menu,
and select Import Assertions.

The Import Assertion dialog box opens.

2 Select the assertions to import, and click Next.

The Choose Location dialog box opens.

3 Select the project to add the assertions to, and click Finish.

The assertions are imported to your project.

25Getting Started

Chapter 226

3 Manipulating Assertions

This chapter explains how to work with assertions, as detailed in the following sections:

• Creating Assertions on page 27

• Editing Assertions on page 28

• Deleting Assertions on page 35

• Comparing Assertion Versions on page 36

Creating Assertions
In Creating an Assertion Project on page 23, you created an Assertion Project and looked at how to download
and import assertions. The following section explains how to create new assertions.

To create a new assertion:

1 Do one of the following:

• Click New to open the New: Select a Wizard dialog, and expand HP SOA Systinet→Assertion,
and then, click Next.

• Select File→New→Assertion.

• Press Alt+Shift+N to open the context menu, and select Assertion.

The New Assertion wizard opens.

2 In the New Assertion wizard, enter the required parameters.

3 Click Finish to create the assertion.

27

4 Double-click the assertion in Project Explorer to open it in the Editor, and do the following:

• Add an implementation, as described in Adding and Deleting Implementations on page 29.

• Test the assertion, as described in Testing Assertions on page 39.

• Publish the assertion, as described in Publishing Assertions on page 41.

Editing Assertions
The heart of Assertion Editor's functionality is the ability to edit assertions. To edit an assertion, you must
have a local copy.

If you are editing an assertion that also exists on a server, you must update your local copy before
editing it. Editing a local assertion before updating it from the server can result in a revision conflict.
Assertion Editor warns you if this is the case. For details, see Resolving Conflicts on page 40.

To update an assertion from the server:

1 Right-click the assertion in Project Explorer to open its context menu.

2 Select HP SOA Systinet→Update Assertion.

The main functionality of Assertion Editor is described in the following sections:

• Editing General Properties on page 29

• Adding and Deleting Implementations on page 29

• Writing XPath Definitions on page 30

• Writing XQuery Definitions on page 31

• Editing XQuery Definitions on page 32

• Editing Reference Templates on page 35

Chapter 328

Editing General Properties

General properties are the name and text description of the assertion. Changing the name in the editor does
not change the file name or reference template local name. These can only be changed in the General
Properties section of the Overview tab. For details, see Overview Tab on page 17.

Adding and Deleting Implementations

An implementation contains a resource type and the code used to validate that resource type. An assertion
must contain one or more implementations.

To add an implementation:

1 In the Implementation field of the Editor view, click New.

The Define New Implementation wizard opens. For details, see Define New Implementation Wizard
on page 51.

2 Do one of the following:

• To add a predefined implementation, select it from the Predefined drop-down list, and then select
the required Dialect from the drop-down list.

• To manually define an implementation, select the Manual Define check box, and then enter the
required parameters.

3 Click OK.

To delete an implementation:

1 Open the Editor view and select the Overview tab.

Implementations in your project are displayed in the Implementation window.

2 To delete an implementation, select it and click Delete.

29Manipulating Assertions

After adding the implementation, open the Implementation tab of the Editor and edit the XQuery or XPath
definitions to meet your needs. For instructions, see Writing XPath Definitions on page 30 or Writing
XQuery Definitions on page 31.

Writing XPath Definitions

After creating an implementation that uses an XPath validation handler, as described in Adding and Deleting
Implementations on page 29, you need to write the XPath definition.

To write an XPath definition:

1 Open the Editor view and select the Implementation tab.

2 Import a sample XML document of the type to which the assertion applies.

3 In the XPath Definition Editor, under Load XML Template, select one of the following links:

• Click From Resource to load a sample XML document from your Assertion Editor project.

• Click From file to load a sample XML document from your local file system.

• Click From URL to load a sample XML document from the Web.

The XML document appears in the XML Template tab.

To add an XPath expression:

1 Right-click the relevant line in the sample XML document to open its context menu.

2 Select Generate XPath expression.

The XPath expression appears in the XPath Definition Editor field.

You can have only one XPath expression for each implementation. An artifact passes validation
if at least one XML node matches the XPath expression.

3 Modify the XPath expression in the XPath Definition Editor, if necessary.

Chapter 330

4 If the XPath contains any unresolved namespace prefixes, an unresolved warning appears.

• If you receive a warning, go to Step 5.

• If you do not receive a warning, go to Step 8.

5 Click the unresolved prefix link.

The Manage prefix and namespace pane opens.

6 Define the namespace of the prefix, as follows:

• To add a namespace, click Add, and then enter the required parameters.

• To delete a namespace, select it and click Remove.

7 Click OK.

8 To test the XPath expression, click Test expression.

The results of the test appear in the Test Results tab of the XPath Expression Editor.

Writing XQuery Definitions

Assertion Editor incorporates syntax highlighting for writing and editing XQueries.

To write an XQuery definiton:

1 Open the assertion in the Editor view and click New in the Implementation pane.

The Define New Implementation dialog box opens, as shown in Define New Implementation Wizard
on page 51.

2 To use a predefined source type:

• In the Predefined field, select the source type you need from the drop-down list.

• In the Dialect field, select XQuery from the drop-down list, and click OK.

31Manipulating Assertions

3 To manually define a source type:

• Select the Manual Define check-box.

• Enter the required parameters.

• In the Dialect field, select XQuery from the drop-down list, and click OK.

The XQuery Definition opens in the Editor view.

4 Edit the XQuery Definition, as described in Editing XQuery Definitions on page 32, and click Test
Assertion.

If the assertion passes validation, you can now publish the assertion. For details, see Publishing
Assertions on page 41.

If the assertion does not pass validation, you can resolve any problems. For details, see Resolving
Conflicts on page 40.

Editing XQuery Definitions

Assertion Editor also supports external XML editors.

To use an external XQuery editor with Assertion Editor, you must first add the Saxon extension to the
external editor:

• Folder

WORKBENCH_HOME/plugins/com.systinet.tools.assertioneditor.lib_version-number/lib/saxon-extensions/

• Extension

pm-extension-functions.jar

To edit an XQuery Definition:

1 In Project Explorer, right-click the XQuery to open its context menu, select Open With, and then
select from the following options:

Chapter 332

Text Editor

To edit the XQuery with a plain text editor.

•

• System Editor

To edit the XQuery with an editor currently used by your system.

• In-place Editor

To edit the XQuery with an OLE editor.

• Default Editor

To edit the XQuery with the default editor provided with Assertion Editor.

• Other

To edit the XQuery with an editor not previously defined.

2 Edit the XQuery as required and save your changes.

Instructions on how to add the Saxon extension to the most popular XML editors are given in the following
sections:

• Editing XQueries in oXygen on page 33

• Editing XQueries in Stylus Studio on page 34

Editing XQueries in oXygen

To set up oXygen™ to edit XQueries:

1 Open or create the XQuery file in oXygen.

2 Click Configure Transformation Scenario to open the Configure Transformation Scenario wizard.

3 Select Execute XQuery, and click New to open the Edit Scenario pane.

33Manipulating Assertions

4 In the Transformer field, select Saxon 8B.

5 Click Extensions to open the Extensions dialog box, and click Add to open the Add Extension dialog
box.

6 Type in or browse for the path to pm-extension-functions.jar.

7 Click OK in all wizard panes to save the transformation scenario.

When you open any other XQuery files, you must always choose this transformation scenario and then edit
the XQuery file to force oXygen to rebuild it.

This procedure was created for oXygen 8.1. Other versions can be used but some details may
differ.

Editing XQueries in Stylus Studio

To set up Stylus Studio™ to edit XQueries:

1 Select Tools→Options to open the Options dialogue.

2 Expand Module Setting+XQuery→Processor Settings from the tree menu.

3 In the Processor drop-down list, select Saxon 9.0.0.2, and then, click the Use as default processor
checkbox.

4 Click OK.

5 Select Project→Set Classpath and add the path to pm-extension-functions.jar.

To open an XQuery in Stylus Studio from Assertion Editor:

1 In the Project Explorer of the Assertion Editor UI, right-click the XQuery.

2 Select Open With→System Editor.

Chapter 334

Editing Reference Templates

The referencing template defines the element used to reference an assertion from a WS-Policy document.
The template can include parameters which represent requirements whose specific values might vary.

To edit an assertion's reference template:

1 Open the Overview tab in the Editor view.

2 In the Reference Template pane, enter the required parameters.

3 Do one of the following:

• To add a parameter, click New.

• To edit an existing assertion, highlight it, and then click Edit.

The Define Parameter wizard opens.

4 Enter the required parameters.

5 Click OK.

To preview the reference template in a technical policy, click Preview assertion reference to open the
dialog box, and then enter example parameter values.

Deleting Assertions
If an assertion is no longer useful, you can delete it in one of the following ways:

• Deleting Local Assertions on page 35

• Deleting Assertions on the Server on page 36

Deleting Local Assertions

Deleting a local copy of an assertion does not affect the version on the server.

35Manipulating Assertions

To delete a local copy of an assertion:

• Right-click the assertion in Project Explorer to open its context menu, and select Delete.

Deleting Assertions on the Server

Deleting the version of an assertion that is on a server does not affect any local versions.

To delete an assertion on a server:

• Right-click the assertion in Server Explorer to open its context menu, and select Delete Assertion.

Alternatively, you can delete an assertion from the server directly from the Project Explorer. This gives you
the option of deleting the local copy at the same time.

To delete an assertion from the server and the local copy:

1 Right-click the assertion in Project Explorer to open its context menu, and select HP SOA
Systinet→Delete Assertion.

2 When prompted, select one of the following:

• Also delete resources from local file system.

• Do not delete resources on local file system.

Comparing Assertion Versions
Assertion Editor uses the Eclipse Compare function to track version numbers, enabling you to roll back an
assertion to a previous version.

To compare versions of an assertion:

1 Right-click the assertion in Project Explorer to open its context menu, and select Replace with→Local
History.

The Replace with Local History window opens.

Chapter 336

Changes to XQuery implementations do not appear in this window. XQueries are held in
separate, stand-alone files so they can be accessed by external XML editors. Use your editor's
revision control feature for XQueries.

2 Compare the versions.

3 Click Replace, if you want to replace the current version with the one to which you are comparing it.

37Manipulating Assertions

Chapter 338

4 Validating and Publishing Assertions

This chapter explains how to test assertions and deal with validation conflicts before publishing or exporting
them, as detailed in the following sections:

• Testing Assertions on page 39

• Resolving Conflicts on page 40

• Publishing Assertions on page 41

Testing Assertions
Before publishing an assertion, you can test it.

To test an assertion:

1 Double-click the assertion in Project Explorer to open it in the Editor.

2 Click Test Assertion.

The Run dialog box opens. For details, see Run on page 52.

3 Enter the required parameters, and click Apply to save the parameters, or Revert to roll back the
changes.

4 Click Run.

The test results appear in the Assertion Console view.

To test a different assertion:

1 Click Browse.

39

The Select Assertion window opens

2 Browse for the required assertion.

3 Click OK.

4 Enter the required parameters, and click Run.

To select source files for testing an assertion:

1 Do one of the following:

• Click Add File to browse Assertion Editor projects.

• Click Add External Files to browse the local file system.

• Click Add URL and type in the URL of a source file.

2 Enter the required parameter values in the Parameters table, and then do one of the following:

• Click Apply.

• Click Revert to use the most recent parameter value.

For information about assertion reference templates, see Editing Reference Templates on page 35.

3 Click Run.

Resolving Conflicts
Conflicts occur when there are differences between an updated local copy of an assertion and that on the
server. Assertion Editor notifies you of the conflict, and asks if you want to force the update or publication.

Forcing an assertion to be updated overwrites any local changes that have been made. Forcing an assertion
to be published overwrites any changes that were made to the version on the server.

The safest way to resolve such conflicts is to either cancel publication or update the assertion.

Chapter 440

To update a conflicting assertion:

1 Copy your local version of the assertion to a different location in Project Explorer.

2 Right-click the assertion to open its context menu, and select HP SOA Systinet→Update Assertion.

A conflict warning appears.

3 Click OK to update the assertion.

Assertion Editor overwrites the local copy of the assertion with the version on the server.

Publishing Assertions
After writing, editing, and testing an assertion, you can publish it to an SOA Systinet server.

In Project Explorer, assertions that have not been published are indicated by a question mark (?).
Assertions that have been changed locally since they were last synchronized with the version on
the server are indicated by a right arrow (>).

To publish an assertion:

• Right-click the assertion in Project Explorer to open its context menu, and select HP SOA
Systinet→Publish Assertion.

Assertion Editor connects to the server and attempts to publish the assertion.

To select a server that is not in the project:

1 Right-click the assertion to open its context menu, and select HP SOA Systinet→Publish to Other
Server.

The New Server wizard opens.

2 Follow the steps for adding a server, as described in Creating an Assertion Project on page 23.

41Validating and Publishing Assertions

If changes were made to the version on the server since you last synchronized, a conflict warning
appears that asks whether you want to force publication. For details on conflict resolution, see
Resolving Conflicts on page 40.

Chapter 442

5 Deploying Assertions

This chapter explains how to test assertions and deal with validation conflicts before publishing or exporting
them, as detailed in the following sections:

• Building an Assertion Extension on page 43

• Applying Extensions on page 44

• Redeploying the EAR File on page 47

Building an Assertion Extension
After publishing assertions, you can copy them to an Assertion extension.

In Project Explorer, assertions that have not been published are indicated by a question mark (?).
Assertions that have been changed locally since they were last synchronized with the version on
the server are indicated by a right arrow (>).

To build an Assertion extension:

1 Right-click the assertion project in Project Explorer to open its context menu, and expand HP SOA
Systinet→Build Extension to open the location browser.

2 Enter a name for the extension project and browse for the location you want to save the project to, and
then click Save.

All assertions from the selected assertion project are copied to the Assertion extension.

43

Applying Extensions
You can extend SOA Systinet by adding libraries or JSPs to the deployed EAR files, by modifying the data
model, by configuring the appearance of the UI, and by importing pre-packaged data.

Extensions to SOA Systinet come from the following sources:

• Customization Editor

Typical extensions created by Customization Editor contain modifications to the data model and artifact
appearance and possibly data required by the customization (taxonomies). They may also contain new
web components which may include custom JSP and Java code.

• Assertion Editor, Report Editor, and Taxonomy Editor

These extensions contain assertion, reporting, and taxonomy data only and do not involve changes to
the data model.

The setup tool opens the EAR files, applies the extensions, and then repacks the EAR files.

Apply extensions according to one of the following scenarios:

• Single-Step Scenario on page 44

The setup tool performs all the processes involved in applying extensions, including any database
alterations, as a single step.

• Decoupled DB Scenario on page 46

Database SQL scripts are run manually, and the setup tool performs the other processes as individual
steps that are executable on demand. This is useful in organizations where the user applying extensions
does not have the right to alter the database, which is done by a database administrator.

Single-Step Scenario

Follow this scenario if you have permission to alter the database used for SOA Systinet.

Chapter 544

To apply extensions to SOA Systinet in a single step:

1 Make sure that all extensions are in the following directory:

SOA_HOME/extensions

The setup tool automatically applies all extensions in that directory.

If you are applying extensions to another server, substitute the relevant home directory for
SOA_HOME.

2 Stop the server.

3 Start the setup tool by executing the following command:

SOA_HOME/bin/setup.bat(sh)

4 Select the Apply Extensions scenario, and click Next.

The setup tool automatically validates the step by connecting to the server, copying the extensions,
and merging the SDM configuration.

If you extension does not contain data model changes, select Apply Extensions Don't Touch
DB.

5 Click Next for each of the validation steps and the setup execution.

This process takes some time.

6 Click Finish to end the process.

7 Deploy the EAR file:

45Deploying Assertions

JBoss

The setup tool deploys the EAR file automatically.

If you need to deploy the EAR file to JBoss manually, see Redeploying the EAR File on page 47.

•

• For other application servers, deploy the EAR file manually.

For application server specific details, see "Deploying the EAR File" in the HP SOA Systinet
Installation and Deployment Guide .

8 Restart the server.

The setup tool normally applies ALTER scripts if database changes are required for an extension.
If the ALTER script cannot be used, then a DROP/CREATE process may be used instead. In these
cases, you must recreate indices on the database.

SOA_HOME/log/setup.log contains the following line in these cases:

Could not apply alteration scripts, application will continue with slower DB drop/create/restore

scenario.

Decoupled DB Scenario

Follow this scenario if the user who applies extensions does not have permission to modify the database.

To apply extensions and modify the database separately:

1 Make sure that all extensions are in the following directory:

SOA_HOME/extensions

The setup tool automatically applies all extensions in that directory.

2 Stop the server.

3 Start the setup tool by executing the following command:

Chapter 546

SOA_HOME/bin/setup -a.

4 Select the Apply Extensions scenario, and click Next.

5 Click Next, to execute the extension application, and exit the setup tool.

6 Provide the scripts from SOA_HOME/sql to the Database Administrator.

The database administrator can use all.sql to execute the scripts that drop and recreate the database
schema.

7 Execute the setup tool in command line mode to finish the extension application:

SOA_HOME/bin/setup -c

8 Redeploy the EAR file:

• JBoss

The setup tool deploys the EAR file automatically.

If you need to deploy the EAR file to JBoss manually, see Redeploying the EAR File on page 47.

• For other application servers, deploy the EAR file manually.

For application server specific details, see "Deploying the EAR File" in the HP SOA Systinet
Installation and Deployment Guide .

Redeploying the EAR File
After using the setup tool to apply extensions or updates, you must redeploy the EAR file to the application
server. For JBoss, you can do this using the setup tool.

For other application servers, follow the EAR deployment procedures described in the "Deploying
the EAR File" in the HP SOA Systinet Installation and Deployment Guide .

47Deploying Assertions

To redeploy the EAR to JBoss:

1 Stop the application server.

2 Start the setup tool by executing the following command:

SOA_HOME/bin/setup.bat(sh).

3 Select the Advanced scenario, and click Next.

4 Scroll down, select Deployment, and then click Next.

5 When the setup tool validates the existence of the JBoss Deployment folder, click Next.

6 Click Finish to close the setup tool.

7 Restart the application server.

Chapter 548

6 Customizing Assertions

Assertion Editor incorporates predefined elements that are suitable for most use cases. However, you can
customize certain elements. Customization of assertions is described in the following sections:

• Customizing Source Type on page 49

• Adding PM Extensions on page 50

Customizing Source Type
When you define the implementation of an assertion, you can either select from a list provided by Assertion
Editor, or you can define your own source type.

To manipulate source types:

1 From the menu, select Window→Preferences.

The Preferences wizard opens.

2 Expand HP SOA SystinetAssertion Editor, and select Source Type.

A table opens displaying source type names, local names, and namespaces.

3 Do one of the following:

• To create a new source type, click Add to open the New Source Type window. Enter the required
parameters, and click OK.

• To edit an existing source type, select it and click Edit to open the Edit Source Type window. Enter
the required parameters, and click OK.

• To delete an existing source type, select it and click Delete.

49

Adding PM Extensions
You can extend Policy Manager with custom-written validation handlers, in addition to the XQuery and
XPath handlers that are included in the distribution.

To add a PM extension to your project:

1 Right-click the project in Project Explorer to open its context menu, and select Properties.

The Properties for SOA Systinet wizard opens.

2 Select PM Extensions to open a list of PM extensions in the project.

3 Do one of the following:

• Click Add PM Extension to open the Select Extension window. Select the required extension,
and click OK.

• Click Add External PM Extension to open the Select PM Extension window. Browse for the
required extension, and click OK.

After adding a PM extension to your Assertion Editor project, apply it to all relevant Policy Manager servers
with the Setup tool. For information about the Setup tool, see the SOA Systinet Administration Guide.

Chapter 650

A Dialog Boxes

Each Assertion Editor input dialog is described in the following sections:

• Define New Implementation Wizard on page 51

• Run on page 52

Define New Implementation Wizard
Enter general parameters to define the new implementation.

DefinitionParameter

Select a predefined source type from the drop-down menu.Predefined

Select this check-box to manually define the source type you want to use.Manual Define

Enter the namespace of the source type you want to use.Namespace

51

DefinitionParameter

Browse for and select the local name of the source type you want to use.Local Name

Select the dialect you want to use (default is XQuery).Dialect

Run
Define parameters to test the assertion before publishing.

DefinitionParameter

The name you want to use for the test.Name

Browse for and select the assertion you want to test.Assertion

Add or remove a local file, external file, or endpoint URL to test against the assertion.Source

52

DefinitionParameter

Enter the required parameters for the selected source.Parameters

53

54

B Assertion Developer Reference

Assertion Document Details
Example B.1 on page 55 is the raw XML document of the UDDI BE 01 assertion.

Example B.1: UDDI BE 01 Assertion XML Document

<?xml version="1.0" encoding="UTF-8"?>
 <pm:Assertion xmlns:pm="http://systinet.com/2005/10/soa/policy"
 xmlns:up="http://systinet.com/2005/10/soa/policy/uddi"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <pm:Parameter Name="lang" Type="xs:string" XPointer="xpointer(@RequiredLang)"/>
<!-- template of the instance of the assertion -->
 <pm:Template>
 <up:UDDI_BE_01 RequiredLang="en"/>
 </pm:Template>
 <pm:Validation SourceType="xmlns(ns=urn:uddi-org:api_v2)qname(ns:businessEntity)"
 xmlns:uddi="urn:uddi-org:api_v2"
 xmlns:val="http://systinet.com/2005/10/soa/policy/validation">
<!-- the validation is implemented via xpath expression -->
 <val:XPath>
 count(/uddi:businessEntity/uddi:name[@xml:lang=$lang])>0
 </val:XPath>
 </pm:Validation>
 </pm:Assertion>

The key components of the assertion, visible in both the UI and the XML document, are:

• Reference Template

• Parameter

• Implementation, which includes the validation handler.

55

Reference Templates

The reference template defines what the assertion looks like instantiated as a WS-Policy document (See the
generic <pm:Template> element shown in Example B.1 on page 55.). If there is a namespace to be defined it
is included in the reference template. If there are parameters, you can define the default values they point
to. If there is no namespace or parameter, the template can be a simple empty tag, like <assertionName/>.

The UDDI BE 01 assertion reference template defines the up namespace. The assertion has one parameter,
lang, which points to the RequiredLang attribute. The reference template sets the default value of this parameter,
en. The actual XML of the reference template is:

<p:Template>
 <up:UDDI_BE_01 RequiredLang="en" xmlns:up="http://systinet.com/2005/10/soa/policy/uddi"/>
 </p:Template>

Reference templates must obey the following rules:

• The template name must be unique.

• The template must be a complete and valid XML element, not a fragment.

• The template can carry a namespace. This is the case with the WS-I BasicProfile assertion reference
templates, such as <wsi:BP1004 xmlns:wsi="http://www.ws-i.org/testing/2004/07/assertions/"/>

Parameters

Parameters represent requirements whose specific values may vary. They include such things as timeouts,
type of authentication, required SOAP header elements, and so on. The value referenced by a parameter
can differ between technical policies containing the parameter's parent assertion because each technical
policy contains its own instance of the assertion.

Using parameters lets the policy developer reuse assertions. The developer can set a different required value
for an assertion in each policy in which the assertion is used. Without parameters, the developer would need
a separate assertion for each required value.

Example B.2 on page 57 is an assertion taken from a policy file (namespaces omitted for brevity). Note the
attribute RequiredLang with the value of "en". This attribute represents the RequiredLang parameter. Its default
value is "en" for English. This default value is specified in the reference template (see Reference Templates
on page 56) but the policy developer can change this value in individual policy files. If the assertion developer
does not specify the parameter's default value in the reference template and does not set the parameter as

56

optional, the policy developer must set the parameter value when creating a technical policy with the
parameter's parent assertion.

Example B.2: Assertion With Parameter

<wsp:Policy xmlns:wsp="..."/>
 <up:UDDI_BE_01 RequiredLang="en" xmlns:up="..."/>
</wsp:Policy>

A parameter definition has the following structure:

• pm:Parameter/@Name

Name of the parameter.

• pm:Parameter/pm:Description

Description of the parameter.

• pm:Parameter/@XPointer

Location of the modified attribute (expressed as an XPointer).

• pm:Parameter/@ValueXPointer

Location of the modified attribute (expressed as an XPointer). See below for details.

• pm:Parameter/@Optional

Optionality of the parameter (if it is optional, it might be left unfilled).

Another example:

<wsp:Policy xmlns:wsp="..."/>
 <up:Communication xmlns:up="...">
 <up:ConnectionTimeout value="10000"/>
 ...
 </up:Communication>
 </wsp:Policy>

57

This assertion checks whether communication settings contain a connection timeout set to at least 10 seconds.
Additionally, the XML Schema of this assertion specifies that either the "value" must be present, or, to use
the default value, the whole up:ConnectionTimeout element must be missing.

In this case, a single XPointer referencing the up:ConnectionTimeout/@value attribute is not enough, because
Policy Manager would not know that the whole element should be removed when the value is not entered.
Therefore the parameter is now described in two XPaths:

• Location of the element that should be removed when the value of the parameter is not set

• Location of the value within the element defined above

The location of the element is set in the XPointer and the location of the value within the element is set in
a ValueXPointer. For example, Example B.3 on page 58 is a parameter with the ValueXPointer set at 5000.
This results in the policy document in Example B.4 on page 58. By contrast, if the developer leaves the
ValueXPointer blank, the resulting policy document is Example B.5 on page 59.

Example B.3: Parameter with ValueXPointer Set at 5000

<p:Parameter Name="ConnectionTimeout" Optional="false" Type="xsd:integer"
 XPointer="xmlns(up=...)xpointer(up:ConnectionTimeout)"
 ValueXPointer="xpointer(@value)"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <p:Description>Connection timeout in milliseconds.</p:Description>
</p:Parameter>

Example B.4: Policy Document with ValueXPointer in Parameter Set to 5000

<wsp:Policy xmlns:wsp="..."/>
 <up:Communication xmlns:up="...">
 <up:ConnectionTimeout value="5000"/>
 </up:Communication>
</wsp:Policy>

58

Example B.5: Policy Document with Empty ValueXPointer in Parameter

<wsp:Policy xmlns:wsp="..."/>
 <up:Communication xmlns:up="...">
 </up:Communication>
</wsp:Policy>

Table 3 shows the XML representations of various XPointer and ValueXPointer combinations, for optional
and required attributes, and whether the value is defined or not. Example B.6 on page 60 is a correctly
defined XPointer.

Only a simplified form of XPointer is recognized in the parameter definition. The rationale is that
in this context XPointer is used not only for retrieving data, but also for creating parameters via
the UI. This is not possible with general XPointers. The recognized XPointer must have the
following structure:

 xmlns(prefix1=ns1)*xpointer({/{<prefix>:}?<localname>[<index>]}*)

Table 3. XPointer Combinations and Results

Result in Policy SchemaValueXPointerXPointerValueOptional

—@P'ABC'Yes/No

<a/>—@P—Yes

Prohibited—No

<a><b P='ABC'/>@Pb[1]'ABC'Yes

<a/> (XPointer is removed.)@Pb[1]—Yes

<a>ABC—b[1]'ABC'Yes

<a><c>ABC</c>c[1]b[1]'ABC'Yes

<a/> (XPointer is removed.)c[1]b[1]—Yes

59

Example B.6: XPointer

xmlns(soap=http://schemas.xmlsoap.org/soap/envelope/)
xmlns(myns=http://systinet.com/examples/foo)xpointer(soap:Envelope[1]/soap:Body[1]/myns:Foo)

Implementations

An assertion has one implementation for each source type to which the assertion applies. Each implementation
is propagated into its own pm:Validation element. An implementation contains the definition of the validation
handler, in p:Validation/##other[1], and the type of artifact which the assertion can be used to validate, in
p:Validation/@SourceType.

Implementations use validation handlers if they do not specify manual validation. Validation handlers are
pluggable pieces of code that show Policy Manager how to validate a source document. Validation handlers
are usually XPath or XQuery expressions, in which case the source code is included inside the
implementation, but they can be custom made. Custom made validation handlers are written in Java and
the implementation references the Java class.

Validation handlers and source types are described in the following sections:

Source Type on page 60. A description of all source types to which an implementation may apply.

XPath Assertions on page 63. XPath validation handlers.

XQuery Assertions on page 64. XQuery validation handlers.

Source Type

The pm:Validation@SourceType attribute defines the type of artifact validated by the assertion. SourceType must
be a simplified XPointer identifying the root element of the resource which the assertion validates. If this
parameter is omitted, the implementation would apply to sources of any type. However, for performance
reasons it is better to map validation to a concrete source type, as narrowly as possible.

SourceType can be set as one of the following:

• A general artifact type with the namespace usually defined in the pm:Validation element. Please see Table
4 for a list of these SourceTypevalues and their associated artifacts and namespaces.

60

• A SOA Systinet artifact type. These share the namespace
xmlns:a="http://systinet.com/2005/05/soa/model/artifact". They are described in "SOA Definition Model"
in the HP SOA Systinet Reference Guide. A list of these SourceType values and their matching SOA
Systinet artifact types is given in Table 5.

Table 4. Source Types Applying to General Resources

ResourceSourceType value

SOAP messagexmlns(soap=http://schemas.xmlsoap.org/soap/envelope/)soap:Envelope

WSDL Definitionxmlns(wsdl=http://schemas.xmlsoap.org/wsdl/)wsdl:definitions

XML Schemaxmlns(xsd=http://www.w3.org/2001/XMLSchema)xsd:schema

UDDI v2 Business
Entity

xmlns(uddi=urn:uddi-org:api_v2)uddi:businessEntity

UDDI v3 Business
Entity

xmlns(uddi=urn:uddi-org:api_v3)uddi:businessEntity

Any SOA Systinet
resource

xmlns(rest=http://systinet.com/2005/05/soa/resource)rest:resource

61

Table 5. SourceTypes Applying to SOA Systinet Artifacts

SOA Systinet artifactSourceType Value

Agreementxmlns(a=http://systinet.com/2005/05/soa/model/artifact)agreementArtifact

Business Policyxmlns(a=http://systinet.com/2005/05/soa/model/artifact)businessPolicyArtifact

Business Servicexmlns(a=http://systinet.com/2005/05/soa/model/artifact)businessServiceArtifact

Contactxmlns(a=http://systinet.com/2005/05/soa/model/artifact)contactArtifact

Contractxmlns(a=http://systinet.com/2005/05/soa/model/artifact)contractArtifact

Consumption Requestxmlns(a=http://systinet.com/2005/05/soa/model/artifact)contractRequestArtifact

Conversation
Document

xmlns(a=http://systinet.com/2005/10/soa/policy/report)Conversation

Documentationxmlns(a=http://systinet.com/2005/05/soa/model/artifact)documentationArtifact

Applicationxmlns(a=http://systinet.com/2005/05/soa/model/artifact)hpsoaApplicationArtifact

HTTP Message
Document

xmlns(a=http://systinet.com/2005/10/soa/policy/report)Message

Personxmlns(a=http://systinet.com/2005/05/soa/model/artifact)personArtifact

Policyxmlns(a=http://systinet.com/2005/05/soa/model/artifact)policyArtifact

Registryxmlns(a=http://systinet.com/2005/05/soa/model/artifact)registryArtifact

Reportxmlns(a=http://systinet.com/2005/05/soa/model/artifact)reportArtifact

Schemaxmlns(a=http://systinet.com/2005/05/soa/model/artifact)schemaArtifact

SLOxmlns(a=http://systinet.com/2005/05/soa/model/artifact)sloArtifact

Taxonomyxmlns(a=http://systinet.com/2005/05/soa/model/artifact)taxonomyArtifact

UDDI Channelxmlns(a=http://systinet.com/2005/05/soa/model/artifact)uddiChannelArtifact

UDDI Entityxmlns(a=http://systinet.com/2005/05/soa/model/artifact)uddiEntityArtifact

UDDI Registryxmlns(a=http://systinet.com/2005/05/soa/model/artifact)uddiRegistryArtifact

Web Applicationxmlns(a=http://systinet.com/2005/05/soa/model/artifact)webArtifact

SOAP Servicexmlns(a=http://systinet.com/2005/05/soa/model/artifact)webServiceArtifact

WS-Policyxmlns(a=http://systinet.com/2005/05/soa/model/artifact)wsPolicyArtifact

62

SOA Systinet artifactSourceType Value

WSDLxmlns(a=http://systinet.com/2005/05/soa/model/artifact)wsdlArtifact

XML Schemaxmlns(a=http://systinet.com/2005/05/soa/model/artifact)xmlSchemaArtifact

XML Servicexmlns(a=http://systinet.com/2005/05/soa/model/artifact)xmlServiceArtifact

XSLTxmlns(a=http://systinet.com/2005/05/soa/model/artifact)xsltArtifact

XPath Assertions

Example B.7 on page 63 is an XPath that applies to UDDI business entities and returns every name element
whose lang attribute is set to the same value as the value of the lang parameter. If the XPath returns a non-
empty list, the source document is considered to be valid against the assertion. If the returned node list is
empty, validation has failed..

Example B.7: XPath Expression

 <val:XPath>
 count(/uddi:businessEntity/uddi:name[@xml:lang=$lang])>0
 </val:XPath>

You must take the following points into account when writing XPath assertions:

• Namespace

The element val:XPath is the namespace context for the XPath expression. If you need to define a prefix-
namespace mapping, do it on this element or its ancestors.

• Type system

The XPath engine used in this enforcer is the free version of the Saxon-B 8.5.1 [http://www.saxonica.com]
XSLT/XPath/XQuery engine. Although this version does not contain XML Schema parsing, it still
checks for type conformance. For example, if you need to check that the value of attribute "xyz" is
greater than 5, include in your XPath expression:

xs:integer(@xyz) > 5

If you fail to retype to integer, the XPath expression will never be fulfilled and no warning will be
returned.

63

http://www.saxonica.com

• Parameter type

In this release, assertion parameters are always passed as strings, regardless of the schema type written
in the parameter definition. For this reason you have to explicitly cast the parameter in numerical
comparisons. For example, the following XPath expression would be used in an assertion which checks
that the message's body has at most a given number of elements (defined as a parameter named
MaxElements):

count(soap:Body//*) <=xs:integer($MaxElements)

XQuery Assertions

XQuery expression can be represented as shown in Example B.8 on page 64:

Example B.8: XQuery Expression

 <val:XQuery>

 declare namespace rest="http://systinet.com/2005/05/soa/resource";
 declare namespace a="http://systinet.com/2005/05/soa/model/artifact";
 declare namespace p="http://systinet.com/2005/05/soa/model/property";
 declare namespace val="http://systinet.com/2005/10/soa/policy/validation";

 declare variable $metadata.source.url external;

 if (exists(rest:resource/rest:descriptor/a:businessServiceArtifact/p:productionStage))
then
 val:assertionOK()
 else
 val:assertionFailed(concat('This service is not assigned a category from a lifecycle
taxonomy. ',
 'To fix this problem, go to the service, ',

 'click on "Edit" and assign the category.'))

 </val:XQuery>

The XQuery in Example B.8 on page 64 comes from the Service Supports Lifecycle assertion. The XQuery
applies to business services and checks that each service has a lifecycle stage assigned to it. In the SOA
Systinet use of XQueries, the assertionOK function is called only one time per tested artifact if the artifact
passes validation, whereas if the artifact fails, the assertionFailed function is called for each individual

64

violation. For the XQuery in Example B.8 on page 64 there is no logical need to call assertionFailed more
than once, since the artifact either has one lifecycle stage or none at all. In Example B.9 on page 65, the
XQuery checks each include and import element and makes sure they use relative references. The
assertionFailed function is called for each element that does not use relative references.

Example B.9: XQuery Reporting Multiple Failures

declare namespace xs = "http://www.w3.org/2001/XMLSchema";
 declare namespace val="http://systinet.com/2005/10/soa/policy/validation";

 let $errors :=
 for $el in //xs:*[local-name() = 'include' or local-name() = 'import'] where
($el/@schemaLocation and contains($el/@schemaLocation, ':'))
 return
 val:assertionFailed(concat('This xs:', local-name($el), ' uses absolute reference to another
 schema.'), $el)
 return
 if (empty($errors)) then
 val:assertionOK()
 else
 ()

Namespaces are not propagated from parent elements but defined via standard XQuery declarations.

Together with the source document, XQuery assertions can be called with additional parameters. For
example, these parameters can be used by the assertion to perform additional checks or output the location
of the problem back to the user. The parameters are added to the XQuery expression of the assertion. A
metadata parameter is shown in Example B.8 on page 64.

DescriptionParameter name

The URL of the source of validation. In the case of HTTP
request/response, this points to the request/response message. For one-
way messages, WSDL documents etc. it points to the resource being
validated.

metadata.source.url

The URL of the associated description document (for example, WSDL
associated to a log of messages).

metadata.description.url

65

DescriptionParameter name

Detects subdocuments. Returns "false" if document is standalone, "true"
if document is part of a larger document.

metadata.source.is.subdocument

If you want to write a new XQuery assertion or modify an existing one, follow these guidelines:

• The XQuery engine used in this enforcer is the free version of the Saxon-B 8.5.1
[http://www.saxonica.com] XSLT/XPath/XQuery engine. Although this version does not contain XML
Schema parsing, it still checks for type conformance. For example, if you need to check that the value
of attribute "xyz" is greater than 5, write:

xs:integer(@xyz) > 5

Failing to do so, the XQuery expression might never be fulfilled. If this happens, no warning will be
returned.

• In this release, assertion parameters are always passed as strings, regardless of the schema type written
in the parameter definition. Because of this you must explicitly cast the parameter in numerical
comparisons. For example, the following expression would be used in an assertion which checks that
the message's body has at most a given number of elements (defined as a parameter named MaxElements):

count(soap:Body//*) <= xs:integer($MaxElements)

66

http://www.saxonica.com

	HP SOA Systinet Workbench
	Contents
	About this Guide
	Document Conventions
	Documentation Updates
	Support

	1 Assertion Editor
	Workbench Suite
	Overview
	User Interface
	Project Explorer
	Server Explorer
	Editor Pane
	Overview Tab
	Implementation Tab
	Source Tab

	2 Getting Started
	Installing Workbench
	Creating an Assertion Project
	Downloading and Importing Assertions

	3 Manipulating Assertions
	Creating Assertions
	Editing Assertions
	Editing General Properties
	Adding and Deleting Implementations
	Writing XPath Definitions
	Writing XQuery Definitions
	Editing XQuery Definitions
	Editing XQueries in oXygen
	Editing XQueries in Stylus Studio

	Editing Reference Templates

	Deleting Assertions
	Deleting Local Assertions
	Deleting Assertions on the Server

	Comparing Assertion Versions

	4 Validating and Publishing Assertions
	Testing Assertions
	Resolving Conflicts
	Publishing Assertions

	5 Deploying Assertions
	Building an Assertion Extension
	Applying Extensions
	Single-Step Scenario
	Decoupled DB Scenario

	Redeploying the EAR File

	6 Customizing Assertions
	Customizing Source Type
	Adding PM Extensions

	A Dialog Boxes
	Define New Implementation Wizard
	Run

	B Assertion Developer Reference
	Assertion Document Details
	Reference Templates
	Parameters
	Implementations
	Source Type
	XPath Assertions
	XQuery Assertions

