
HP Service Oriented Architecture Manager

Broker User Guide

Version: 2.52

Windows®, HP-UX, Linux

February 2008

© Copyright 2004-2008 Hewlett-Packard Development Company, L.P.

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an
additional warranty. HP shall not be liable for technical or editorial errors or omissions contained
herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

Copyright Notices

© Copyright 2004- 2008 Hewlett-Packard Development Company, L.P., all rights reserved.

Trademark Notices

Java™ and all Java based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation

UNIX® is a registered trademark of The Open Group

ii

Support

You can visit the HP Software support web site at:

www.hp.com/go/hpsoftwaresupport

This Web site provides contact information and details about the products, services, and support that HP
Software offers.

HP Software online software support provides customer self-solve capabilities. It provides a fast and
efficient way to access interactive technical support tools needed to manage your business. As a valued
support customer, you can benefit by using the HP Software Support web site to:

• Search for knowledge documents of interest

• Submit and track support cases and enhancement requests

• Download software patches

• Manage support contracts

• Look up HP support contacts

• Review information about available services

• Enter into discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also
require a support contract.

To find more information about access levels, go to:

www.hp.com/managementsoftware/access_level

To register for an HP Passport ID, go to:

www.managementsoftware.hp.com/passport-registration.html

iii

http://www.hp.com/managementsoftware/access_level
http://www.managementsoftware.hp.com/passport-registration.html

 Contents

Table of Contents

SOA Manager Broker-An Overview.. 1-1

Prerequisites ... 1-1

Contextual Overview ... 1-1

Broker Configurator... 1-1

Common Handlers .. 1-2
Monitoring Handler.. 1-2
Logging Handler.. 1-2
Auditing Handler ... 1-2
Schema Validation Handler .. 1-2
Business Content Alerting Handler ... 1-3
Security Handlers.. 1-3

Using Intermediary Services... 2-1

Overview ... 2-1

Viewing Intermediary Service Details.. 2-1
Performance Metrics... 2-2

Undeploying an Intermediary Service ... 2-2

Deploying an Intermediary Service ... 2-2

Editing an Intermediary Service .. 2-3
Changing an Intermediary Service’s Version .. 2-3
Configuring an Intermediary Service’s HTTP Path.. 2-3

Removing an Intermediary Service ... 2-4

Enabling Protocol Switching at the Intermediary ... 2-4
Prerequisites... 2-4
Enabling JMS-to-JMS-Two-Way Protocol Switching..................................... 2-5

Contents-1

Contents

Enabling HTTP-to-JMS-One-Way Protocol Switching 2-6
Enabling JMS-to-HTTP-One-Way Protocol Switching 2-7

Configuring Handlers .. 3-1

Audit Handler .. 3-1
Fields .. 3-1
Configuring the Audit Publisher .. 3-2

Business Metric Alerts Handler ... 3-2
Fields .. 3-3

Generic SOAP Contract Handler... 3-3
Fields .. 3-3

HTTP Pass-Through Transport Header Handler... 3-4

Invocation Handler .. 3-4
Fields .. 3-4

Log Handler... 3-4
Fields .. 3-4

Schema Validation Handler... 3-5

Service Protection Handler.. 3-5
Fields .. 3-5

Content Detection Handler .. 3-5
Fields .. 3-5

Scheduled Availability Handler.. 3-6
Fields .. 3-6

Security Auditing ... 3-7
Field .. 3-7
Configuring Security Auditing.. 3-7

Service Security Inbound Handler... 3-7

SOAP Contract Handler .. 3-7

SOAP Dispatch Handler.. 3-7

SOAP Monitoring Handler ... 3-8
Fields .. 3-8

Contents-2

WS Security Outbound Handler .. 3-8
Fields .. 3-8

WS Security Message Processing Inbound Handler... 3-9
Fields .. 3-9

XML Contract Handler... 3-10

XML Dispatch Handler .. 3-10

XPath Monitoring... 3-10
Fields .. 3-10

XSLT Handler.. 3-11
Fields .. 3-11

Classifier Handler.. 3-11
Fields .. 3-11

Using Custom Intermediary Services .. 4-1

Overview ... 4-1

Convert a Simple Intermediary Service... 4-1

Adding Handlers.. 4-2
Adding Custom Handlers .. 4-2

Defining Service Providers for Custom Web Services 4-3
Enabling Content-based Routing .. 4-4

Getting Started... 5-1

Starting the WSM Broker... 5-1

Stopping the WSM Broker... 5-2
Windows ... 5-2
UNIX ... 5-2

Starting the Broker Configurator Console ... 5-2

Installing the Broker as a Windows Service .. 5-3

Configuring HTTP Settings.. 5-3
Configuring the HTTP Server Port Number .. 5-4
Configuring the Broker’s Management Channel Port.................................... 5-4
Configuring HTTP Server Thread Settings ... 5-5

Contents-3

Contents

Configuring HTTP Client Settings ... 5-5
Configuring HTTP Proxy Settings ... 5-6

Assigning Access to the Console .. 5-6

Using XPL Logging ... 5-7
Installing XPL Logging .. 5-7

XPL Tools ... 5-7
Configuring XPL.. 5-7

Configuring Log Levels ... 5-8
Viewing Logs .. 5-9

Using XPL Tracing .. 5-9
Installation... 5-9

Windows ... 5-9
HP-UX .. 5-9
Linux ... 5-9

Example Configuration Entries ... 5-10

Implementing Load Balancing and Failover.................................... 6-1

Overview ... 6-1

Conceptual Architecture.. 6-2
Load Balancing Scenario .. 6-2
Failover Scenario .. 6-2

Setting Up Load Balancing and Failover ... 6-2
Defining Multiple Endpoints in a WSDL File.. 6-3
Configuring Load Balancing and Failover ... 6-3

Using Multiple Intermediaries .. 6-4

Using the Intermediary’s Security Features.................................... 7-1

Overview ... 7-1
Feature Matrix... 7-1
Supported Security Scenarios .. 7-2

Scenario 1: Intermediary is the Entry Point for External Consumers 7-3
Scenario 2: Web Application is the Entry Point for External Consumers 7-4
Scenario 3: Intermediary is the Exit Point for External Providers................ 7-4

Transport Level Security ... 7-4

Contents-4

Message Level Security.. 7-5
Inbound Message Processing... 7-6
Outbound Message Processing.. 7-6

Setting Up the Security Components .. 7-6
Configure a Key Store... 7-7
Configure a CA Trust Store... 7-7
Configure the Intermediary’s SSL Port.. 7-8
Setting Up Authentication and Authorization... 7-8

Implementing a Security Scenario... 7-9
Inbound Transport Security... 7-9

Enabling SSL.. 7-9
Enabling Authentication .. 7-10

Outbound Transport Security .. 7-10
Enabling Outbound SSL ... 7-10

Inbound Message Security ... 7-11
Outbound Message Security... 7-12

Management Channel HTTP Basic Authorization ... 7-14

Troubleshooting Broker ..A-1

Installation and Configuration Problems..A-1
Errors occurred during installation ..A-1
AutoPass fails to install ...A-1

Runtime Problems...A-2
Could not start monarch-sba...A-2
Failed to initialize listener..A-3
Unable to determine binding from message element....................................A-3
Authentication header not progressed to backend..A-3
Out of Memory ..A-4

Contents-5

Contents

Contents-6

 1

SOA Manager Broker-An Overview

The SOA Manager Broker (WSM Intermediary) is responsible for collecting management
data for Web services. The Intermediary runs in its own Java process and delegates
service requests through a proxy (intermediary service) to Web services that are deployed
in a Web Service Container. An intermediary service must be created for each Web
service that you want to manage.

Prerequisites

Users must have fundamental knowledge of the Java programming language and Java
platform technologies including security. Users should also have fundamental knowledge
of Web services principles and be familiar with their application hosting environment.

Contextual Overview

Intermediary services utilize the Intermediary’s handlers, which mediate the
communication between a client and a Web service. The handler can be configured with
sub-handlers (referred to as common handlers) that provide varying levels of
manageability (Monitoring, Logging/Auditing, etc…). The Broker Configurator is used to
create intermediary services and configure handlers for intermediary services.

The Smart Business Agent (SBA) provides a method of exposing data and metrics as Web
services using WS-based management protocols. Managed objects collect data and
metrics from the handlers. The data is represented in the SOA Manager and viewed
using the SOA Manager web interface.

Broker Configurator

The Broker Configurator is a Web application that allows you to interact with the
Intermediary. In particular, the Broker Configurator is used to configure the
Intermediary, create intermediary services, and configure an intermediary service's
handlers.

1-1

Common Handlers

Common Handlers

A handler can contain any number of sub-handlers known as common handlers.
Together, the handlers are considered a handler chain. The common handlers for a
simple intermediary service are described below. Some handlers are enabled by default
when you create an intermediary service, while other handlers must be manually
enabled. In addition, custom intermediary services provide an expanded list of handlers
and the ability to add any custom handler.

Monitoring Handler

The Monitoring Handler collects performance data for a Web service. The data is
reported over a period of time (the last 6 minutes, 1 hour, and 1 day). In particular, the
handler reports:

• Average Response Time

• Maximum Response Time

• Minimum Response Time

• Security Violations

• Total Request Count

• Total Failure Count

• Total Success Count

• Availability %

• Uptime %

Logging Handler

The Logging Handler is used to collect and publish the Intermediary’s log messages. The
log messages can be used to troubleshoot any problems that occur with the Intermediary.

Auditing Handler

The Auditing Handler provides message tracing capabilities for a Web service. The
handler can be configured to also include SOAP payload for the message.

Schema Validation Handler

The Schema Validation Handler is used to validate Doc Literal SOAP messages to ensure
that they comply with the SOAP schema definitions.

1-2

SOA Manager Broker-An Overview

Business Content Alerting Handler

The Business Content Handler generates alerts based on content that is found in SOAP
requests, responses, or failure messages. The content is found in the message by applying
an XPath expression.

Security Handlers

Security Handlers are used to provide both message-level and transport-level security for
intermediary services.

1-3

 2 2

Using Intermediary Services Using Intermediary Services

This chapter explains how to manage the life cycle of intermediary services. It begins
with an overview of intermediary services and then describes how to edit, deploy, view,
and remove an intermediary service when using the WSM Intermediary.

This chapter explains how to manage the life cycle of intermediary services. It begins
with an overview of intermediary services and then describes how to edit, deploy, view,
and remove an intermediary service when using the WSM Intermediary.

Overview Overview

An intermediary service is created for each Web service that you want to manage. The
Broker Configurator creates and manages the life cycle of an intermediary service.
Requests for managed Web services are sent to the intermediary service and then
forwarded (dispatched) to the actual service’s endpoints. Intermediary services can be
created for both SOAP/HTTP and XML/HTTP Web services.

An intermediary service is created for each Web service that you want to manage. The
Broker Configurator creates and manages the life cycle of an intermediary service.
Requests for managed Web services are sent to the intermediary service and then
forwarded (dispatched) to the actual service’s endpoints. Intermediary services can be
created for both SOAP/HTTP and XML/HTTP Web services.

SOAP with attachments services is supported only if a WSDL is provided
that describes the service.

Intermediary services are used to manage Web services when you want to do the
following:

• Separate the management of Web services from the services’ implementation.

Viewing Intermediary Service Details

The Service Details screen lets you view the details of an intermediary service. The
details include the intermediary service definition and endpoint, performance data, the
Web service’s endpoints, and features (handlers) configuration.

To view an intermediary service’s details, follow these steps:

1 From the Intermediary Services screen, find the intermediary service that you want to view.

2 From the Name column, click the intermediary service’s name. The Service Details screen
opens. The intermediary service’s details are listed in different sections. The Features section
displays which handlers are enabled and their current configuration settings.

2-1

Undeploying an Intermediary Service

Performance Metrics

The Service Detail screen displays a subset of the performance metrics that are collected
for an intermediary service. The metrics include the Average Response Time, Total
Requests, Successes, and Failures. These metrics provide a general view of how an
intermediary service is performing. The full set of performance metrics is displayed in
the SOA Manager server when the intermediary service is managed as part of a business
service.

Undeploying an Intermediary Service

An intermediary service that is undeployed is inactive, but is not removed from the
Intermediary Service list. The intermediary service is not available for requests until it is
deployed. You can configure an intermediary service that is undeployed, but you cannot
view any of its management data.

Any Web service management data that has been collected is lost when an
intermediary service is undeployed.

To undeploy an intermediary service, follow these steps:

1 From the Intermediary Service list, find the intermediary service that you want to undeploy.

2 From the Action column, click the undeploy link. The status of the service changes from
Operational to Inactive.

Deploying an Intermediary Service

A deployed intermediary service can receive service requests and is considered
operational. An intermediary service that is operational collects management data about
the Web service that it is managing. An intermediary service is automatically deployed
when the intermediary service is created.

To deploy an intermediary service, follow these steps:

1 From the Intermediary Service list, find the intermediary service you want to deploy.

2 From the Action column, click the deploy link. The Status field updates from Inactive to
Operational.

3 Verify that the service is operational by clicking the intermediary service WSDL endpoint
listed in the Service Interface (WSDL) column. The WSDL for the service is displayed.

2-2

Using Intermediary Services

Editing an Intermediary Service

You can edit an intermediary service at any time. Typically an intermediary service is
edited to enable/disable different handlers depending on the type of manageability that is
required for the Web service.

To edit an intermediary service, follow these steps:

1 From the Intermediary Service list, find the intermediary service that you want to edit.

2 From the Action column, click the edit link. The Edit Service screen opens.

3 From the Edit Service screen, edit the intermediary service using the fields provided. The
handler configuration options are detailed in Chapter 11 “Configuring Handlers”. See
Chapter 15 “Using the Intermediary’s Security Features” for detailed instructions if you
want to secure communication with the intermediary service.

4 Click Save. The Intermediary Service screen opens and the intermediary service is
automatically deployed. The deployment is complete when the status changes to
Operational.

Changing an Intermediary Service’s Version

Each intermediary service has a description which includes a name that identifies the
service in the Broker Configurator and a version number. An intermediary service name
is automatically generated when the intermediary service is created. You cannot change
the intermediary service’s name, but you can change the version number.

To change an intermediary service’s version, follow these steps:

1 From the Configurator's main toolbar, click List Services. The Broker Service screen opens.

2 From the Action column, click the edit link for the intermediary service. The Edit Service
screen opens.

3 From the Service section, select the Version field and enter a version number for the
intermediary service.

4 At the bottom of the screen, click Save. The Broker Service screen opens and the
intermediary service is automatically deployed. The deployment is complete when the status
changes to Operational.

Configuring an Intermediary Service’s HTTP Path

An intermediary service’s HTTP Path is the path that will be used by a client to invoke
the managed Web service. For example, if the intermediary agent is installed on
"MyHost.com" and the default intermediary port is used, the URL to the Web service
would be:

http://MyHost.com:9032/<http_path_value>

2-3

Removing an Intermediary Service

A path value is automatically generated when the intermediary service is created.
Changing the HTTP path of an intermediary service is useful when multiple
intermediary services, with different configurations, are created for the same service or
when a specific URL strategy is used by your organization.

To configure a service's HTTP Path, follow these steps:

1 From the Configurator's main toolbar, click List Services. The Broker Service screen opens.

2 From the Action column, click the edit link for the intermediary service. The Edit Service
screen opens.

3 From the Inbound Transport section, select the HTTP Path field and enter a path. The path
must consist of alpha-numeric characters and begin with a forward slash (/).

4 At the bottom of the screen, click Save. The Broker Service screen opens and the
intermediary service is automatically deployed. The deployment is complete when the status
changes to operational.

Removing an Intermediary Service

When an intermediary service is removed, it is deleted from the Intermediary Service
list. In addition, the service definition (WSDL) for the intermediary service is deleted
from the <install_dir>\conf\broker directory.

To remove an intermediary service, follow these steps:

1 From the Intermediary Service list, find the intermediary service that you want to remove.

2 From the Action column, click the remove link. A confirmation dialog box opens and asks
you to confirm the removal of the intermediary service.

3 Click OK to remove the intermediary service.

Enabling Protocol Switching at the Intermediary

You can configure the intermediary to help in communication between service consumers and service
providers that follow different protocols. The intermediary provides support to switch messages
between JMS and HTTP/HTTPS protocols. The intermediary, before sending the request to an
endpoint, transforms the request to a format supported by the protocol at the endpoint. The
intermediary, after receiving a response from the endpoint, transforms the response back to the
format supported by the protocol at the client that sent the request.

Prerequisites

To use JMS as the transport model, follow these steps to make sure that the prerequisites are
satisfied:

1 Install the JMS server separately

2-4

Using Intermediary Services

2 Configure the destinations for both inbound and outbound service messages.
NOTE: The intermediary currently supports publish/subscribe and point to point messaging
model. You can also enforce policies by using this feature in a JMS transport model.

3 Copy the JMS client jar files corresponding to the provider to the <install_dir>/lib/ext
directory on the intermediary.

4 Make sure that the WSDL for the intermediary Web service contains the JMS binding
information.

SOA Manager currently supports the following JMS service providers:

• WebLogic 8.1

• JBoss 4.0.4

• Tibco 4.4.0

• Sonic 7.0, 7.5

During protocol switching, the following sequence of events occurs at the intermediary:

1 The service consumer sends a SOAP or XML message over HTTP or JMS to the
intermediary.

2 The intermediary receives the message and invokes the transport and XML handlers to
transform the message based on the protocol supported at the endpoint.

3 For a two-way protocol switch interaction, the intermediary creates a temporary destination
to receive a response from the endpoint.

4 After receiving the response from the endpoint, the intermediary invokes handlers to process
the message back to the protocol supported by the service consumer.

5 After the message is processed it is converted to the protocol supported by the service
consumer.

The intermediary supports two-way protocol switching for the following scenarios:

• Communication between different JMS service providers

• Communication from HTTP to JMS

• Communication from JMS to HTTP

Refer to the following scenarios to configure the intermediary to enable protocol switching.

Enabling JMS-to-JMS-Two-Way Protocol Switching

For a JMS-to-JMS two-way protocol communication, you must make sure that the following
prerequisites are satisfied:

Configure three queues, one each for the following:

• Intermediary service

• Endpoint

• Client (to receive messages)

2-5

Enabling Protocol Switching at the Intermediary

Make sure that the endpoint information present in the WSDL (that contains the queue information)
is similar to the setup information of the queue.

To enable JMS-to-JMS protocol switching, follow these steps:

1 Start SOA Manager Intermediary and log in to the Broker Configurator.

2 Click Add New Broker Web Service. The Step1: Import WSDL screen of the Add New
Broker Service page opens.

3 Type the modified WSDL that contains information about the JMS endpoint in the Browse
local WSDL file: box.

4 Click Next. The Step 2: Configure Endpoints screen of the Add New Broker Service page
opens.

5 Verify that the parameters are similar to what you specified in the WSDL.

6 Click Next. The Step 3: Configure Broker Service screen of the Add New Broker Service page
opens.

7 Select JMS Transport from the Inbound Transport table. This displays the additional
parameters that you must specify for JMS transport.

8 Specify the following details in the JMS Transport section. The examples shown in
parenthesis for each of the options are specific to a WebLogic server used for inbound
transport:

• Destination Style: Specify queue for the destination type for the JMS transport
model. JMS Topic type destination style is not supported currently.

• Vendor URI: Specify the URL of the vendor that provides JNDI (http://bea.com).

• Initial Context Factory: Specify the name of the JNDI context factory
(weblogic.jndi.WLInitialContextFactory).

• JNDI Provider Url: Specify the URL of the JNDI server
(t3://soamw2.ind.hp.com:7001).

• JNDI Connection Factory Name: Specify the JNDI lookup name for the connection
factory (weblogic.jms.ConnectionFactory).

• JNDI Destination Name: Specify the name of the JNDI destination name
(weblogic.wsee.WLSJbossInboundQueue).

9 Click Finish. This enables the JMS-to-JMS two-way protocol switching at the intermediary.

Enabling HTTP-to-JMS-One-Way Protocol Switching

To enable HTTP-to-JMS protocol switching, follow these steps:

1 Start SOA Manager Intermediary and log in to the Broker Configurator.

2 Click Add New Broker Web Service. The Step1: Import WSDL screen of the Add New
Broker Service page opens.

3 Type the modified WSDL that contains the JMS endpoint information in the Browse local
WSDL file: box.

2-6

Using Intermediary Services

4 Click Next. The Step 2: Configure Endpoints screen of the Add New Broker Service page
opens.

5 Verify that the parameters are similar to what you specified in the WSDL.

6 Click Next. The Step 3: Configure Broker Service screen of the Add New Broker Service page
opens.

7 Select Http Transport from the Inbound Transport table.

8 Click Finish. This enables the HTTP-to-JMS one-way protocol switching at the
intermediary.

Enabling JMS-to-HTTP-One-Way Protocol Switching

To enable JMS-to-HTTP protocol switching, follow these steps:

1 Start SOA Manager Intermediary and log in to the Broker Configurator.

2 Click Add New Broker Web Service. The Step1: Import WSDL screen of the Add New
Broker Service page opens.

3 Type the modified WSDL that contains the HTTP endpoint information in the Browse local
WSDL file: box.

4 Click Next. The Step 2: Configure Endpoints screen of the Add New Broker Service page
opens.

5 Verify that the parameters are similar to what you specified in the WSDL.

6 Click Next. The Step 3: Configure Broker Service screen of the Add New Broker Service page
opens.

7 Select JMS Transport from the Inbound Transport table.

8 Click Finish. This enables the JMS-to-HTTP one-way protocol switching at the
intermediary.

2-7

 3 3

Configuring Handlers Configuring Handlers

This chapter lists the management handlers available for intermediary services in
alphabetical order. Each entry includes a description of each handler as well as the
handler’s fields. Where applicable, example entries for the fields are provided. You can
refer to the entries in the chapter when you are editing or creating an intermediary
service.

This chapter lists the management handlers available for intermediary services in
alphabetical order. Each entry includes a description of each handler as well as the
handler’s fields. Where applicable, example entries for the fields are provided. You can
refer to the entries in the chapter when you are editing or creating an intermediary
service.

When using custom intermediary services, handler ordering is important,
because handlers attach information to the executing operation for other
handlers to find and use. Some handlers, like encryption/decryption
handlers, also modify the message as it passes along the chain.

Audit Handler

The Audit Handler collects trace information on messages sent to Web services. The
auditing feature can collect a message's SOAP payload. The information collected is sent
to HP SOA Manager and is stored in a database. The HP SOA Manager web interface is
used to query the database to retrieve audit information. Any management application
can be extended to access the audit data. For more information on using the SOA
Manager Auditing feature, see the “Using Auditing” chapter in the SOA Manager User
Guide.

Fields

• Include detailed traces: Captures profile data. The outcome of a Web service
invocation as it passes through each handler in the handler chain for an
intermediary service.

• Payload Option: Type of message payloads that should be logged.

• Payload Filter: Criteria to determine which message payloads should be logged.

• Expression: An XPath expression for determining which message payloads should
be logged. This field is used if content-based payload logging is configured. This field
is only available for custom intermediary services.

3-1

Business Metric Alerts Handler

• Namespaces: Namespaces that are used in the expression field must be declared
using the namespace prefix and the namespace URI. This field is only available for
custom intermediary services.

Configuring the Audit Publisher

The Audit Publisher is an Intermediary component that publishes audit information that
is collected by the audit handler.

There are two configuration options for the Audit publisher: interval and threshold.
The Audit publisher sends trace messages using the value for whichever configuration
option is reached first.

• interval– The entry sets the amount of time in milliseconds between publishing
audit information.

• threshold – The threshold sets the number of messages that are published. When
the number of messages reaches this threshold, the messages are published.

To configure the audit publisher, follow these steps:

1 Stop the Intermediary if it is currently started.

2 Use a text editor to open <install_dir>\conf\broker\mipServer.xml.

3 Edit the audit interval and threshold values. For example:

<entry name="com.hp.audit.publisher.interval">100000</entry>

<entry name="com.hp.audit.publisher.threshold">10</entry>

4 Save and close the properties file.

5 Restart the Intermediary.

Business Metric Alerts Handler

Business content alerting lets you define a business metric for specific content that is
found in the SOAP request and response message for a service (for example, an order is
placed with a total that is greater than $25,000.00). When the business metric value is
found, an alert is generated and sent to the Network Services server which notifies alert
recipients (email, HP SOA Manager web interface console, and so on). For more
information on SOA Manager business content alerting feature, see the “Using Alert
Notification” chapter in the SOA Manager Administrator Guide.

Business content alerts are processed by the Network Services server and
sent to any recipients configured to receive business content alerts.
Recipients for business content alerts are viewed in the HP SOA Manager
web interface.

3-2

Configuring Handlers

Fields

• Name: Enter a user friendly name to identify the alert. (for example, HPQ Alert)

• Operation: Enter an operation in the service that contains the business content you
want to monitor. The XPath expression is applied to the operation. (for example,
getInfo)

• Alert applies to: Select when you want the intermediary to search for the operation.
You can select to search during requests or responses.

• Expression: Enter an XPath expression which selects the business content from the
operation. For example, //tns1:InfoRequest/tns1:symbol/text(). This
expression traverses the SOAP message for the InfoRequest node and selects the
text found for the symbol child node.

• Message: A user friendly message that is sent with the alert. (for example, A
${name} alert has occurred)

• Dynamic Properties: A dynamic variable defined within the message. The Name
field corresponds to the variable name. The XPath field corresponds to an XPath
expression used to update the variable. For example, Name: name Xpath:
//s:Envelope/s:Body/t:InfoRequest/t:symbol/text().The XPath
expression specified here is evaluated on the business content selected by the
expression provided in the expression field.

• Namespace Prefixes: Any namespace prefixes that appear in the XPath expression
(for example, prefix: tns1 URI: http://wsm.hp.com/Finance/Request).

Generic SOAP Contract Handler

The Generic SOAP Contract Handler detects the operation from a request. It can be used
to replace the Soap Contract Handler. The handler is commonly used for SOAP services
that do not have a WSDL. The handler generates a simple WSDL and does not perform
any runtime checks. The handler must be used after decryption and before any handler
that requires the operation. The handler only supports a single portType and binding.
Operations are set as the runtime soap payload element. When using this handler, no
WSDL is required in the Intermediary deployment unit.

Fields

• namespace: The target namespace for the generated WSDL

• name: The name of the WSDL

• portType: The name of the generated portType

• binding: The name of the generated binding

3-3

HTTP Pass-Through Transport Header Handler

HTTP Pass-Through Transport Header Handler

The HTTP Pass-Through Transport Header Handler copies transport headers from
either side of the intermediary (request or response). This handler must be used in
conjunction with, and before, the Dispatch Handler.

The headers are configured in <install_dir>/conf/broker/mipServer.xml. There is a
property for both a request (SOAPAction is the default) and a response (no default):

<entry
 name="com.hp.transport.headers.pass.request">SOAPAction
</entry>
<entry name="com.hp.transport.headers.pass.response"></entry>

This handler copies JMS properties when the transport used is JMS.

When you set a request property, the handler copies properties in the request message
from the broker to the service. For a response property, the handler copies properties
from the service to the client.

Invocation Handler

The Invocation Handler marshals XML to Java using JAXB and is used to invoke a Java
class. The invocation handler is only available for custom intermediary services.

Fields

• Classname: The name of the Java class to be invoked

• Packages: The package of the Java class

Log Handler

An intermediary service’s logging feature lets you indicate whether or not you want
faults to be logged to the Intermediary’s log file as well as the console. When enabled, log
messages are included in the log file and the console. The intermediary’s log file is named
broker.log and is located at <install_dir>/log.

Fields

Category: This field is only available for custom intermediary services. This field lets
you select a specific log category where log messages are sent. This field is optional.

3-4

Configuring Handlers

Schema Validation Handler

Schema validation ensures that SOAP requests conform to a Web service’s WSDL. If the
schema validation feature is enabled, requests that do not strictly conform to the WSDL
are not dispatched to the service endpoint and an HTTP 500 error is returned by the
Intermediary. If the schema validation feature is disabled, SOAP requests are not
validated before being dispatched to the service endpoint. Depending on the level of
nonconformity, a SOAP request may or may not be successful.

Schema validation is only applied to services implemented using document
literal SOAP operations.

Service Protection Handler

This handler limits access to endpoints being managed using a policy enforcement point.
You can use this handler to specify the number of service requests that the policy
enforcement point can accept. After the limit specified for the number of service requests
that the policy enforcement point can accept is exceeded, this handler rejects the
subsequent service request messages by sending a SOAP fault which prevents the
managed endpoint from crashing or denying service requests.

Fields

• Number of requests to be accepted by the policy enforcement point by the second,
minute, hour, day, week, or month.

• Time zone to be used.

Content Detection Handler

You can use this handler to verify the presence of content in a SOAP message at the
Intermediary. You can check for the presence of the content in the header or the body of
the message using this handler. This handler allows you to specify an XPath expression
to extract the content from the message that you want to detect. Based on the presence
or absence of the XPath expression in the extracted content, thehandler either rejects the
message from the client and returns a fault code to the client or forwards the message to
the endpoint.

Fields

• XPath expression: specifies the XPath expression that you want to use to extract
content.

• Namespace prefix: specifies the namespace prefix to be included with the XPath
expression.

3-5

Scheduled Availability Handler

• Fault code: specifies the fault code to be generated for the specified fault type.

• Fault code (namespace URI): specifies the URI to the schema that you want to use in
the event of a specified fault getting generated.

• Fault message: specifies the fault message to be generated for the specified fault
type.

Scheduled Availability Handler

You can use this handler to allow or deny access to a service based on the scheduled
availability time period specified for that service. The Intermediary uses this handler to
allow or deny access to a service at that specific time. If the service is specified to be
available at the time specified, the Intermediary forwards the message from the client to
the endpoint. If the service is specified to be unavailable, the handler rejects the message
and sends a SOAP fault to the client.

Fields

• Service availability: specifies if the service must be available or not at the specified
time.

• Hours of operation: specifies the time for the availability or non availability of the
service. You can select one of the following options:

⎯ Days (Non recurring): specifies that the handler is applicable on a non recurring
basis on all days.

⎯ Workdays (recurring): specifies that the handler is applicable on a recurring
basis on workdays.

⎯ Weekends (recurring): specifies that the handler is applicable on a recurring
basis on weekends.

• Time zone: specifies the time zone to be used.

• Start time: specifies the start time of the service availability or non availability.

• End time: specifies the end time of the service availability or non availability

• Fault code: specifies the fault code for the fault type generated.

• Fault message: specifies the fault message to be generated for the specified fault
type.

3-6

Configuring Handlers

Security Auditing

The Security Audit Handler is used to collect security trace information (used for non-
repudiation, and so on) and sends the payload to a security provider.

Field

• Payload Option: Use this field if you want to constrain the type of message
payloads that should be logged. Only payloads for the option selected are captured
and sent to the security provider.

Configuring Security Auditing

When using the Security Audit Handler, you must configure the security provider where
security trace information will be sent.

Service Security Inbound Handler

The Service Security Inbound Handler performs authorization using the principal and
credentials associated with an operation. This handler is used in conjunction with, and
must come after the WS Security Message Processing Inbound handler. This handler
must come before any handler that needs to be protected.

SOAP Contract Handler

The SOAP Contract Handler detects the operation from a request. It is a required
handler that must be in every SOAP service. The handler must be used after decryption
but before any handler that requires the operation. The handler can only be disabled, or
the ordering changed, when using custom intermediary services.

The Generic SOAP Contract Handler can be used to replace the Soap
Contract Handler for SOAP services that do not have a WSDL. For more
information, see the “Generic SOAP Contract Handler” section above.

SOAP Dispatch Handler

The SOAP Dispatch Handler is used to dispatch a request to the Intermediary's
Dispatcher component, which is responsible for forwarding a request to a Web service's
endpoint. The handler must be last in the handler chain.

3-7

SOAP Monitoring Handler

SOAP Monitoring Handler

The SOAP Monitoring Handler is used to decide if a service response is a success or
failure. The handler must be used after any handler that requires the outcome and
before any handler that might modify the outcome. Matches are based on SOAP fault
codes.

Fields

• Match: Use the appropriate option to indicate whether the match means a success or
a failure or all faults to be considered as failure.

• Fault Codes: Use this field to configure a list of codes to match. You must also
include namespace for the code. For example, Code: Server Namespace:
http://schemas.xmlsoap.org/soap/envelope/. When the option chosen for
match is “All faults as failure”, fault codes need not be specified.

WS Security Outbound Handler

The Ws Security Outbound Handler provides support for WS-security on outbound
messages (from the Intermediary to a consumer). This includes user name/password,
signing, and encryption.. The handler removes the security headers if they already exist
in the message. The handler then adds a new security header to the outbound message.
Support for Security Assertion Markup Language (SAML) prevents existing message
security headers from getting removed.

Fields

• actor: This specifies the target for which the header is configured. You can specify
this parameter in the <install_dir>\conf\broker\mipServer.xml file. <install_dir>
represents the directory in which you have installed SOA Manager Broker. If you
specify this parameter, the security header for the specified actor (present in the
inbound message) is not removed from the outbound message.

• outbound.remove: Use this parameter to specify if the security header must be
removed or retained in the outbound message. You can set the value of this
parameter to true (indicating that the security header must be removed) or false (to
indicate that the security header must be retained) to indicate your choice. You can
specify this parameter in the <install_dir>\conf\broker\mipServer.xml file.
<install_dir> represents the directory in which you have installed SOA Manager
Broker.

• authMethod: The outbound authentication method being used. Valid entries are
Cert, UsernameToken, and SSOToken.

• outMsgEncrypted: Whether or not the message needs to be decrypted. This field is
only relevant when using the Cert method. Valid entries are true and false.

• outMsgUsername: Username to be sent with the outgoing message

3-8

Configuring Handlers

• outMsgPassword: Password to be sent with the outgoing message

• outMsgSecurityProvider: Not used

• outMsgSignBeforeEncrypt: Whether or not the message will be signed before it is
encrypted. If set to true, the response is signed and then encrypted. If set to false, the
response is encrypted and then signed. This field is only relevant when using the
Cert method and when outMsgEncrypted and outMsgSigned are enabled.

• outMsgSigned: Whether or not the message has a signature that needs to be
validated. This field is only relevant when using the Cert method. Valid entries are
true and false.

• relayRouter: The alias to find the recipient certificate from the keystore.

• securityProvider: Not used

WS Security Message Processing Inbound Handler

The WS Security Message Processing Inbound handler provides support for WS-security
signing and encryption. This handler is used in conjunction with the Service Security
Inbound Handler and must come before any handler that reads the request body.

Both handlers are required because the authorization cannot be performed until the
operation being invoked is known, but the handler that detects the operation requires the
request to be decrypted first. Decryption and credential extraction is first completed
using the WS Security Message Processing Inbound handler. The Soap Contract Handler
detects the operation, and then the Service Security Inbound Handler uses the
credentials and operation to perform authorization. . SOA Manager Broker removes the
security header in message before passing the message to the end point. As a result,
additional information contained in the headers does not reach the end point. Support for
Security Assertion Markup Language (SAML) prevents removal of unprocessed security
headers in the message before forwarding the message to the end point.

Fields

• actor: This specifies the target for which the header is configured. You can specify
this parameter in the <install_dir>\conf\broker\mipServer.xml file. <install_dir>
represents the directory in which you have installed SOA Manager Broker. If you
specify this parameter, SOA Manager Broker processes the header specific to the
actor specified and removes this header from the message before passing the rest of
the headers to the end point. If you do not specify this parameter, the Broker uses
the header that does not contain any specification for this parameter.

• inbound.remove: Use this parameter to specify if the processed security header
must be removed or retained in the inbound message. You can set the value of this
parameter to true (indicating that the security header must be removed) or false (to
indicate that the security header must be retained) to indicate your choice. You can
specify this parameter in the <install_dir>\conf\broker\mipServer.xml file.
<install_dir> represents the directory in which you have installed SOA Manager
Broker.

3-9

XML Contract Handler

• inMsgAuthMethod: The inbound authentication method being used. Valid entries
are Cert, UsernameToken, and SSOToken.

• inMsgEncrypted: Whether or not the message needs to be decrypted. This field is
only relevant when using the Cert method. Valid entries are true and false.

• inMsgResponseSecurity: Whether or not the response is to be secured. If set to
false, the response will not be signed or encrypted. If set to true, inMsgEncrypted and
inMsgSigned will apply and the response will be signed and/or encrypted.

• inMsgSSOEnable: Not used

• inMsgSignBeforeEncrypt: Whether or not the message will be signed before it is
encrypted. If set to true, the response is signed and then encrypted. If set to false,
the response is encrypted and then signed. This field is only relevant when using the
Cert method and when the inMsgEncrypted and inMsgSigned are enabled.

• inMsgSigned: Whether or not the message has a signature that needs to be
validated. This field is only relevant when using the Cert method. Valid entries are
true and false.

XML Contract Handler

The XML Contract Handler detects the operation from a request. It is a required handler
that must be in every XML service. The handler must be used after decryption but before
any handler that requires the operation. The handler can only be disabled, or the
ordering changed, when using custom intermediary services for XML services.

XML Dispatch Handler

The XML Dispatch Handler is used to dispatch a request to the intermediary’s
Dispatcher component, which is responsible for forwarding a request to a Web service's
endpoint. The handler is used for custom intermediary services for XML services. The
handler must be last in the handler chain

XPath Monitoring

The XPath Monitoring handler is used to decide if a service response is a success or
failure. The handler must be used after any handler that requires the outcome and
before any handler that might modify the outcome. The handler is used for custom
intermediary services for XML services. Matches are based on XPath expressions.

Fields

• Match: Use the options to indicate whether the match means a success or a failure.

• XPath: Use this field to enter an XPath expression used to match.

3-10

Configuring Handlers

• Namespace Mapping: Enter any namespace prefixes that appear in the XPath
expression (prefix: tns1 Namespace: http://wsm.hp.com).

XSLT Handler

The XSLT Handler runs an XSLT template on the request or response messages. A
different template can be assigned for the request and response. The templates must be
included in the intermediary service JAR file in order to be loaded by the Intermediary’s
classloader.

Fields

• requestTemplate: The name of the XSLT template to be applied to a request
message.

• responseTemplate: The name of the XSLT template to be applied to a response
message.

Classifier Handler

The classifier handler forwards the requests to a specific endpoint configured to the
handler.

Fields

• Enter New Classifier: The classifier name.

• Expression: An XPath expression for the endpoint of the classifier.

• Context: Specifies if the classifier must be used for message or transport.

• Namespaces: Any namespaces that you might want to specify.

3-11

 4

Using Custom Intermediary Services

This chapter explains how to use custom intermediary services. The instructions include
tasks for creating and configuring a custom intermediary service definition as well as
adding handlers to a custom intermediary service. In most situations, a simple
intermediary service provides enough functionality to manage a Web service. However,
there are situations when a custom intermediary service can be used to allow greater
control of the service definition and access to custom WSM functionality.

Overview

Custom intermediary services are similar to simple intermediary services in that they
act as proxies to a Web service endpoint and provide WSM capabilities in the form of
handlers that are organized in a handler chain. Any handler available for a simple
intermediary service is also available for a custom intermediary service. Simple
intermediary services use a predefined set of handlers, while custom intermediary
services are boundless. The handler chain can be customized to include a broad range of
handlers (including custom handlers). The ordering of the handlers in the handler chain
can be configured.

The benefits of using a custom intermediary service include the following:

• Maximum control when assigning handlers and creating the handler chain

• Support for a broad range of handlers

• Support for custom handlers

• Reuse of handlers within a handler chain (that is, multiple business metric handlers)

Convert a Simple Intermediary Service

Custom intermediary services are created by first creating a simple intermediary service
(see Chapter 10) and then converting the simple intermediary service to a custom
intermediary service. You can convert SOAP/HTTP and XML/HTTP simple services to
custom services.

4-1

Adding Handlers

To convert a simple intermediary service to a custom intermediary service, follow these
steps:

1 From the Intermediary Services list, find the intermediary service that you want to
convert.

2 From the Action column, click edit. The Edit Service screen opens.

3 Click Convert. The Edit Custom Service screen opens and lists the handlers for the
custom service. Any handlers that were configured for the simple intermediary
service are also configured for the custom service. Several default handlers, which
were part of the simple intermediary service but not previously visible, are listed.

4 Click Save. The Intermediary Service screen opens and the intermediary service is
automatically deployed. The deployment is complete when the status changes to
Operational. The Style field indicates that the intermediary service is Custom.

Adding Handlers

Using custom intermediary services provides greater control when adding handlers for
an intermediary service. Handlers are assigned to a custom intermediary service using
the Broker Configurator’s Edit Custom Service screen. The available handlers are
detailed in the "Configuring Handlers" chapter.

To add handlers to a custom intermediary service, follow these steps:

1 From the Service list, find the custom intermediary service that you want to edit. The
Style field indicates that the intermediary service is Custom.

2 From the Action column, click edit. The Edit Custom Service screen opens and
displays the handlers currently assigned to the intermediary service.

3 Use the Add a new handler drop-down list to add a handler. The handler is added to
the list of handlers. Repeat this step to add additional handlers. See Chapter 11
“Configuring Handlers” for a detailed description of each handler.

4 Click Save. The Intermediary Services screen opens and the intermediary service is
automatically deployed. The deployment is complete when the status changes to
Operational.

Adding Custom Handlers

Custom intermediary services let you add your own custom handlers to an intermediary
service’s handler chain. To add a custom handler, you must first create the custom
intermediary service and then edit the service’s definition file located in the intermediary
service jar file.

To add a custom handler, follow these steps:

1 Uncompress <install_dir>\conf\broker\<intermediary_service_name>.jar.

2 Using a text (or XML) editor, open service.xml.

4-2

Using Custom Intermediary Services

3 Under the <service> element, add a <handler> element and include the fully
qualified class name. For example:

<handler classname=”com.company.HandlerClass” />

4 If the handler requires any properties, add them as elements under the handler
class. For example:

<handler classname=”com.company.HandlerClass” >
 <property1>foo</property1>
 <property2>
 <property name=”foo” value=”bar” />
 </property2>
 <ns1:property3>foo</ns1:property3>
</handler>

If the property uses a namespace, you must declare the namespace as an
attribute of the <service> element before using the namespace (for
example, xmlns:ns1=”com.company”).

5 Save and close service.xml.

6 Place the custom handler class and any dependent classes in the same directory as
service.xml.

7 Re-jar the intermediary service including the custom handler class and any
dependent classes.

8 Place the jar in <install_dir>\conf\broker\. The intermediary service is
automatically deployed. You can use the Broker Configurator to verify that the jar
has been deployed. The intermediary service is listed on the Service List and its
status is Operational.

Defining Service Providers for Custom Web Services

The intermediary allows you to route a SOAP request to an appropriate endpoint based
on the context or content of the message. Intermediary can be configured to do this
routing as follows:

• When you create an intermediary Web service, if the WSDL used contains multiple
end points, the intermediary lets you classify these endpoints.

• The definition for this classification is provided as properties of the Classifier
handler. The following properties must be specified:

⎯ XPath expression – The XPath expression that should be evaluated on the
incoming request

⎯ Context – This field indicates whether the expression should be evaluated on the
transport context or content of the message. When transport is selected, the
XPath expression is evaluated using XML in the following format:

− <header>

− <header-name1>value</header-name1>

− <header-name1>value</header-name1>

4-3

Defining Service Providers for Custom Web Services

− </header>

The variables <header-name1> and <header-name2> represent the HTTP headers when
HTTP transport is used or JMS headers when JMS transport is used. When HTTP is
used as transport, the XML file also contains the following details:

− <TCP_HOST>source_host</TCP_HOST>

− TCP_PORT>source_port</TCTP_PORT>

When a request is sent to an intermediary Web service, based on the content or context
of the message, the intermediary can route the request to the appropriate endpoint. The
definition for this classification is provided by using classification handlers. An incoming
request can be classified.

If you enable XSLT transformation, the intermediary transforms the classified message.
See the XSLT Transformation section for additional information about XSLT
transformation. The intermediary then forwards the request based on the specifications
in the classifier to the corresponding endpoint. You must perform the steps in the
following section to enable content-based routing. See Enabling Content-based Routing
for Intermediary Web Services for information on configuring content-based routing for
intermediary Web services. Refer to the following scenario for additional information.

Consider a banking Web service where you must administer requests from customers
belonging to the following classifications:

• High loan request ($25,000 and above)

• Medium loan request (up to $25,000)

The banking Web service must forward requests from these two types of loan requests
automatically to the corresponding endpoints that handle specific types of loan requests.
For example, according to the bank loan guidelines, a medium loan request does not need
approval from the higher authorities in the bank. A high loan request needs approval
from the manager and senior management staff. For this scenario, you can configure the
banking Web service to automatically forward loan requests to the corresponding
endpoints based on the loan amount requested by the customer. You can perform this
configuration using the content-based routing feature that SOA Manager provides.

Content Based Routing feature is supported only for XML service types.

Enabling Content-based Routing

To enable content-based routing for the example scenario, follow these steps:

1 Start SOA Manager Intermediary and log in to the Broker Configurator.

2 Click Add New Intermediary Web Service. The Step1: Import WSDL screen of
the Add New Broker Service page opens.

3 Import the desired WSDL in the Browse local WSDL file: box.

4 Click Next. The Step 2: Configure Endpoints screen of the Add New Broker Service
page opens.

4-4

Using Custom Intermediary Services

5 Type high_loan and medium_loan in the Classifier boxes available for each
endpoint. Special characters such as %, &, and +, and so on are nut supported for
classifier names.

6 Click Next. The Step 3: Configure Broker Service screen of the Add New Broker
Service page opens.

7 Change the name of the service and HTTP Path if a similar service is already
deployed.

8 Select Classifier Handler from the Features section. The Classifier Handler
section opens.

9 Type high_loan and click Add in the Enter New Classifier box.

10 Type medium_loan and click Add in the Enter New Classifier box

11 Select high_loan from the Classifier drop-down list and provide the following
details:

a Specify an XPath expression for the endpoint of the classifier in the Expression
box

b Select Message from the Context option

c Type the Prefix and the URIs for the Namespaces in the corresponding boxes

d Click Save.

12 Repeat steps a through d for the medium_loan classifier and click Save.

13 Click Save.

14 Click Finish.

4-5

Defining Service Providers for Custom Web Services

4-6

 5 5

Getting Started Getting Started

This chapter provides detailed instructions for starting and configuring the WSM Broker.
The WSM Broker is installed as part of the SOA Manager installation. Before beginning
the instructions in this chapter, make sure you have installed SOA Manager following all
the instructions in the SOA Manager Installation Guide. The directory where you
installed SOA Manager is referred to as <install_dir> throughout these instructions.

This chapter provides detailed instructions for starting and configuring the WSM Broker.
The WSM Broker is installed as part of the SOA Manager installation. Before beginning
the instructions in this chapter, make sure you have installed SOA Manager following all
the instructions in the SOA Manager Installation Guide. The directory where you
installed SOA Manager is referred to as <install_dir> throughout these instructions.

This chapter also provides instructions for configuring the Broker using the Broker’s
configuration files. The chapter covers common configuration changes and does not
include every configuration option. The Broker’s configuration files are located in the
<install_dir>\conf\broker directory of the distribution. The configuration files can be
edited with a text editor. In addition, several of the configuration options discussed here
can be set using the Broker Configurator.

This chapter also provides instructions for configuring the Broker using the Broker’s
configuration files. The chapter covers common configuration changes and does not
include every configuration option. The Broker’s configuration files are located in the
<install_dir>\conf\broker directory of the distribution. The configuration files can be
edited with a text editor. In addition, several of the configuration options discussed here
can be set using the Broker Configurator.

Starting the WSM Broker Starting the WSM Broker

A script for both Windows and UNIX is provided to start the Broker. The script is located
in <install_dir>/bin/win32 and <install_dir>/bin/unix, respectively. Windows users
can choose to create product icons during installation. If you accepted the default
program group during installation, you can start the Broker by clicking Start |
Program Files | HP Software | SOA Manager 2.52 | Broker.

A script for both Windows and UNIX is provided to start the Broker. The script is located
in <install_dir>/bin/win32 and <install_dir>/bin/unix, respectively. Windows users
can choose to create product icons during installation. If you accepted the default
program group during installation, you can start the Broker by clicking Start |
Program Files | HP Software | SOA Manager 2.52 | Broker.

During the SOA Manager installation, you had the option to install the
WSM Broker as a Windows Service. If you chose this option, the WSM
Broker is already running. Attempting to start WSM Broker again causes
an error.

To start the WSM Broker:

1 Open a command prompt.

2 Depending on your platform, change directories to <install_dir>\bin\win32 or
<install_dir>\bin\unix.

3 Run the “broker” startup script. The console outputs log messages as the broker
starts. The broker has started when you see the message:

MIP Server startup completed in # seconds.

5-1

Stopping the WSM Broker

If you selected to install the WSM Broker as a Windows service, the Broker
may already be running. If you attempt to start the Broker again, an error
message is displayed.

Stopping the WSM Broker

The WSM Broker can be stopped using the stop process methods that are appropriate for
the host operating system.

Windows

Switch to the command window where the server process is running and type Ctrl+c.
Then type y to terminate the process.

If the WSM Broker is running as a Windows service, the service must be stopped. To stop
a Windows service, open the Control Panel and select Administrative Tools. From the
Administrative Tools screen, select Services. From the Services screen, right-click the
WSM Broker service and select Stop.

UNIX

When using Linux or HP-UX, open a terminal window and issue the following command:

ps –ef | grep java

The command lists all current Java processes, including the process number. Find the
WSM Broker process and issue the kill command to stop the process. For example:

kill <process number>

Starting the Broker Configurator Console

Typical interaction with the Broker is through its console. The console is a Web
application that runs on port 9032. To change the default port, see the “HTTP Settings”
section below.

To start the Broker Configurator:

1 Start the Broker as described above.

2 Open a Browser.

3 Enter the following URL and substitute <host> with the host name where the Broker
Agent is running:

http://<host>:9032/console

4 The login screen already contains default credentials: admin is the username and
password is the password.

5-2

Getting Started

5 Click Login. The Brokered Services screen displays.

The WSM Broker version (including installed patches) is located above the
copyright statement at the bottom of each page.

Installing the Broker as a Windows Service

If you choose not to install the Broker as a Windows service during the installation, a
batch script is provided that installs the Broker as a Windows service. This allows the
Broker to automatically start whenever Windows is started. The script can also be used
to remove the Broker from being a Windows service.

To install the Broker to run as a Win 32 Service:

1 Open a command window.

2 Change directories to <install_dir>\bin\win32\services.

3 Run service-manager.bat and specify the following arguments:

service-manager.bat –install broker <install_dir>

The service has been successfully installed when the following message is outputted
to the console:

Service “HP SOA Manager v2.52 Broker” installed.

The script configures the HP SOA Manager 2.52 broker service to
automatically start the next time Windows is started. You must use the
Windows Computer Management Console to change this behavior.

 To remove the service, run the service-manager script and specify
–remove. For example,

service-manager.bat –remove broker

Configuring HTTP Settings

The WSM Broker contains both an HTTP server and an HTTP client. The server is used
to accept HTTP requests for Web services and is also used to interact with the Broker
Configurator. The HTTP client is used to communicate with HTTP-based servers that
are hosting Web services in your environment (i.e., WebLogic server). The HTTP settings
allow you to change the behavior of HTTP communication and in some circumstances
may help improve the performance of HTTP communication.

This section covers:

• Configuring the HTTP Server Port Number

• Changing the Broker’s Management Channel Port

• Configuring the HTTP Server Thread Settings

• Configuring the HTTP Client Settings

5-3

Configuring HTTP Settings

• Configuring the HTTP Proxy Settings

Configuring the HTTP Server Port Number

The default port used by the HTTP Server and the Broker Configurator is 9032. If port
9032 is currently being used, the Broker will not start.

To change the port number:

1 Stop the Broker if it is currently started.

2 Using a text editor, open <install_dir>\conf\broker\mipServer.xml.

3 Change the port number the com.hp.http.server.port entry. For example:

<entry name="com.hp.http.server.port">9035</entry>

4 Save and close the file.

5 Restart the Broker.

Configuring the Broker’s Management Channel Port

The Broker's management channel port is used to publish the management WSDLs for
brokered Web services (i.e., http://host:9032/wsmf/services). The management WSDLs
are used by SOA Manager server to get management data about brokered Web services.

By default, the management channel port is set to port 9032 which is also the application
channel port that receives Web service requests. To separate management channel and
application channel traffic, change the management channel port.

The management channel port is required when registering a WSM Broker
with the Network Service server. If the default port number is changed,
make sure that the new port number is known when the WSM Broker is
being registered with the Network Service server.
For more instructions on securing the management channel, see the SOA
Manager Administrator Guide.

To define a different server port for the management channel:

1 Stop the Broker if it is currently started.

2 Use a text editor to open <install_dir>\conf\broker\mipServer.xml.

3 Specify a port value for the com.hp.http.server.managementPort element.
Make sure the port is not being used by any other application on your system. For
example:

<entry name="com.hp.http.server.managementPort">9033</entry>

4 Save and close mipServer.xml.

5 Start the Broker server.

5-4

Getting Started

Configuring HTTP Server Thread Settings

You can change the manner in which the HTTP server manages threads. Thread
management can help increase performance and improve latency for the HTTP Server.
There are three thread settings:

• <entry name="com.hp.http.threads.max"> – The maximum number of threads
allowed to be used by the HTTP server.

• <entry name="com.hp.http.threads.min"> – The minimum number of threads
allowed to be used by the HTTP server.

• <entry name="com.hp.http.threads.maxIdle"> – The maximum amount of
time in milliseconds that an HTTP server thread can remain idle.

To change HTTP server thread settings:

1 Stop the Broker if it is currently started.

2 Use a text editor to open <install_dir>\conf\broker\mipServer.xml.

3 Configure the HTTP Server Thread settings. For example:

<entry name="com.hp.http.threads.max">50</entry>
<entry name="com.hp.http.threads.min">2</entry>
<entry name="com.hp.http.threads.maxIdle">60000</entry>

4 Save and close the file.

5 Restart the Broker.

Configuring HTTP Client Settings

The WSM Broker contains an HTTP client used to communicate to an HTTP server. In
particular, the client is used to send requests to and receive responses from the
containers that are hosting Web services. The client settings can improve performance
between the HTTP client and an HTTP server.

• <entry name="com.hp.http.client.keepAlive"> – Indicates the HTTP client
will reuse a network connection to the server. This usually has performance benefits
because the client does not need to keep opening and closing sockets. Typically, the
value is set to true. Valid values are either true or false.

• <entry name="com.hp.http.client.chunking"> – Allows the HTTP client to
send data by breaking it into smaller chunks. Chunking information allows the client
and server to process large amounts of data without using as much memory.
Typically the value is set to true. However, some HTTP servers may not support this
feature, in which case the value should be set to false.

To configure HTTP client settings:

1 Stop the Broker if it is currently started.

2 Use a text editor to open <install_dir>\conf\broker\mipServer.xml.

3 Configure the HTTP Server Thread settings. For example:

<entry name="com.hp.http.client.chunking">true</entry>
<entry name="com.hp.http.client.keepAlive">true</entry>

5-5

Assigning Access to the Console

4 Save and close the file.

5 Restart the Broker.

Configuring HTTP Proxy Settings

Many networks use a proxy server that enables access to resources that are external to a
network. This is also true for external Web services that are being managed by a Broker.
The Proxy Host and Proxy Port settings allow you to define a proxy server. If set, all
requests sent to a brokered service are dispatched to the final endpoint through the
proxy server.

However, a proxy server is not required to access addresses that are internal to the
network. Therefore, if you are managing Web services that are both internal and
external to the network, the Non-proxy Hosts setting allows you to define a set of hosts
that never require the use of a proxy server.

You do not need to set the Non-proxy Hosts setting if you do not define a
proxy server.

 To configure the HTTP proxy settings:

1 From the Broker Configurator’s main toolbar, click HTTP Settings. The HTTP
Settings screen displays.

2 Use the Proxy Host and Proxy Port text boxes to enter a proxy server’s host and
port. The host value must be an IP address or the full DNS name of the server.

3 Use the Non-proxy Hosts text box to enter a list of hosts that do not require the
use of a proxy server. Use the pipe character (|) to separate entries. For example:

localhost | 15.* | 16.* | 127.*

The local host and any hosts in the 15, 16, and 127 domain space do not require the
proxy server.

4 Click Save to save your changes.

Assigning Access to the Console

The <install_dir>\conf\broker\mipServer.xml file allows you to define user credentials
for accessing the Broker’s console. In particular, you can define usernames and
passwords for accessing the console. A single role, admins, has been implemented. All
users must be associated with this role.

To add console access rights for a user:

1 Stop the Broker if it is currently started.

2 Using a text editor, open <install_dir>\conf\broker\mipServer.xml.

3 Add a new user and password entry. For example:

<entry name="com.hp.mip.server.security.user">Joe User</entry>
<entry name="com.hp.mip.server.security.password">password</entry>

5-6

Getting Started

4 Save and close the file.

5 Restart the Broker.

You can use the Broker Configurator to change a user’s password. You
must be logged into the Configurator as the user in order to change the
password. See the Broker Configurator Online Help for detailed
instructions.

Using XPL Logging

SOA Manager uses HP Cross Platform (XPL) logging. Installation, configuration, and
usage are described below.

Installing XPL Logging

During the SOA Manager installation, you may be prompted to select the HP Software
installation and data directories. You will only be prompted for this information if this is
the first time you have installed an HP Software product.

The default value for the installation directory is C:\Program Files\HP Software on
Windows and /opt/OV on UNIX. The default value for the data directory is C:\Program
Files\HP Software\data on Windows and /var/opt/OV on Unix. The Broker log
files are created in the log subdirectory of the data directory. If you do not run the Broker
as an administrator, you may need to change the permissions for the log subdirectory.

XPL Tools

The HP Software Cross Platform Component contains logging and tracing tools. If you
need to change the default log file configuration parameters, install the component. Run
the appropriate installer in the /Support directory of the SOA Manager CD.

Configuring XPL

The Broker automatically creates log files in the log subdirectory of the HP Software
data directory. The Broker log file name has the format:

broker[unique].sequence.locale

For example:

broker0.0.en_US

This is the first broker log file created for the US English locale.

The Broker creates a log file for an English locale and a second file for your system’s
locale if it is different from English.

The Broker creates up to 10 log files, each file containing up to 1 megabyte of data. The
log files will have sequence numbers 0 through 9. When the maximum number of log files
is exceeded, the sequence 0 log file is overwritten.

5-7

Using XPL Logging

You can change the maximum number of log files and log file size using the HP Software
Cross Platform tool, ovconfchg. After installing the HP Software Cross Platform
Component, this program is in the bin directory of the HP Software installation
directory. An example of using this tool is shown below.

ovconfchg -ns xpl.log.OvLogFileHandler -set filecount 12
-set filesize 2

This command sets the maximum number of log files to 12 and the maximum log file size
to 2 megabytes.

Restart the Broker for the new configuration to take effect.

You can see the current configuration using this command:

ovconfget

For more information about ovconfchg and ovconfget, see the help documentation in
the help subdirectory of the HP Software installation directory.

Configuring Log Levels

You can change the Broker log levels using the BSE. Alternatively, you can change the
log levels by editing the logging.properties file in the JDK lib directory or the
xpllogging.properties in the <install_dir>/conf/broker directory. The log levels
are: SEVERE, WARNING, INFO, FINE, FINER, and FINEST. By default the log level is set to
INFO.

Using JRE Properties File

You can change the log level for the Broker by editing the logging.properties file in
the JRE lib directory. You must restart SOA Manager and the Broker to make the
changes take effect. For example, you can add the following line to the end of
logging.properties:

com.hp.ov.mip.level = FINE

This sets the log level for the Broker to FINE.

Using the XPL Properties File

You can change the log level for the Broker by editing the xpllogging.properties in
the <install_dir>/conf/broker directory. You must restart the Broker for the changes
take effect. For example, you can add the following line to the end of the file:

com.hp.ov.mip.level = FINE

This sets the log level for the Broker to FINE.

Viewing Logs

You can use an editor or the BSE to view the Broker log files. In the BSE, go to a
Broker’s Resource View screen and click the View Log link. Alternatively, use an editor
to view the Broker log files in the HP Software data log directory.

5-8

Getting Started

Using XPL Tracing

SOA Manager uses the HP Software Tracing tools for tracing. Please refer to the HP
Software Tracing Concepts Guide for detailed information on how use the trace feature.
The guide is located on the SOA Manager CD in the /Documentation directory.

Installation

Before beginning this procedure, verify if the HP Software Tracing tools are already
installed on your system. You can check to see if the trace server is installed. On Unix,
the trace server is installed as /opt/OV/lbin/xpl/trc/ovtrcd. On Windows, the
trace server is installed as C:\Program Files\HP Software\bin\ovtrcsvc.exe.

The tracing tools are located on the SOA Manager CD in the /Support directory.

Windows

To install the tracing tools on a Windows system, double-click on /Support/HPOvXpl-
<version>-release.msi.

HP-UX

To install the tracing tools on an HP-UX system, run:

swinstall –s /Support/HPOvXpl-<version>-HPUX11.0-release.depot *

Linux

To install the tracing tools on a Linux system, run:

rpm –Uhv /Support/HPOvXpl-<version>-Linux2.4-release.rpm

Example Configuration Entries

The following SOA Manager entries are example entries for the XPL configuration file:

TCF Version 3.2
APP: "networkservices"
SINK: Socket "system1.acme.com" "node=192.1.60.106;"
TRACE: "mip.config" "Operation" Info Error
TRACE: "mip.config" "Parameters" Info Error
TRACE: "mip.config" "Procedure" Info Error
TRACE: "mip.metrics" "Operation" Info Error
TRACE: "mip.metrics" "Parameters" Info Error
TRACE: "mip.metrics" "Procedure" Info Error
TRACE: "mip.slos" "Operation" Info Error
TRACE: "mip.slos" "Parameters" Info Error
TRACE: "mip.slos" "Procedure" Info Error
TRACE: "mip.deploy" "Operation" Info Error
TRACE: "mip.deploy" "Parameters" Info Error
TRACE: "mip.deploy" "Procedure" Info Error

5-9

 6

Implementing Load Balancing and
Failover

This chapter provides instructions for setting up the load balancing and failover features
that are included with the WSM Intermediary. In addition, an overview and conceptual
architecture for load balancing and failover is provided.

The load balancing and fault tolerance features included with the Intermediary are
primarily designed for requests made between an intermediary service and its Web
service endpoints. However, load balancing and failover can also be implemented
between a client and an Intermediary. The final section “Using Multiple Intermediaries”
explains this scenario and provides implementation instructions.

Overview

The WSM Intermediary contains a load balancing and failover feature that automatically
routes a Web service request that is made to an intermediary service to multiple
endpoints. Should requests to a primary endpoint fail, a backup endpoint is
automatically used instead. The endpoints are defined in a service’s definition (WSDL)
file and are configured when an intermediary service is created using the Broker
Configurator console. When a Web service with multiple endpoints is managed, the
management information (success, response time, and so on) for each endpoint is
aggregated.

Load balancing and failover is an important part of distributed applications and offers
some key benefits. In particular, these features:

• Provide redundancy – Multiple instances of a Web service that are spread across
different hosts means a service is always available for requests.

• Minimize downtime – Multiple instances of a Web service that are spread across
different hosts allows an application to continue making requests even if one host
fails or is being serviced.

• Increase reliability – Users never experience an unavailable application.

• Improve performance – Request loads are spread across different hosts, which
prevents bottlenecks from occurring.

6-1

Conceptual Architecture

• Reduce single points of failure – Requests to an endpoint which is failing are
automatically rerouted to working endpoints.

Conceptual Architecture

All requests that are sent to an intermediary service are sent to a final endpoint using
the Intermediary’s dispatcher. A list of available endpoints is registered with the
Intermediary and is used to find endpoints that can satisfy a request.

A WSDL file is used to define a service and the endpoints (SOAP addresses) available for
the service. When an intermediary service is created from the WSDL file, these endpoints
are discovered and registered by the Intermediary and configured as either an active
endpoint or a backup endpoint.

Load Balancing Scenario

Active endpoints are the primary addresses that are used to service a request. Multiple
active endpoints can be used to share the load of servicing requests. Only after all active
endpoints fail, will a backup endpoint be used. When a request is dispatched to an active
endpoint, it is done using a round robin scheme. That is, an endpoint is used once and
then moved to the bottom of the list of available endpoints. The next request goes to the
next endpoint on the list and then that endpoint is moved to the bottom of the list and so
on.

Failover Scenario

Backup endpoints are only used when all active endpoints fail. A failure occurs when an
HTTP Status code is returned that is greater than or equal to 300, less than 500, or equal
to 503. While the backup endpoint is being used, the Intermediary continues to try an
active endpoint at 30 second intervals. When an active endpoint becomes available,
requests are again routed to it and the backup endpoint is no longer used.

If you have multiple backup endpoints, requests are sent using a round
robin scheme.

Setting Up Load Balancing and Failover

Load Balancing and failover is set up for each intermediary service that you create.
When you create an intermediary service, each endpoint that is discovered can be
configured as either an active endpoint or a backup endpoint. This section describes how
to modify a WSDL file to include multiple endpoints and how to configure each endpoint
as an active or backup endpoint.

6-2

Implementing Load Balancing and Failover

Defining Multiple Endpoints in a WSDL File

The load balancing and failover feature is dependent on a WSDL file that defines
multiple endpoints for a Web service. For example, if two instances of the same Web
service are running on two different hosts, then a single WSDL file can be used to define
the Web service and each endpoint that is available. Endpoints are defined in the
<service> node of a WSDL file as demonstrated below for the finance service:

<service name="FinanceService">
 <port name="FinanceServiceSoap" binding="tns:FinanceServiceSoap">
 <soap:address
 location="http://host1:7001/FinanceService/FinanceService" />
 </port>
 <port name="FinanceServiceSoap" binding="tns:FinanceServiceSoap">
 <soap:address
 location="http://host2:7001/FinanceService/FinanceService" />
 </port>
</service>

The FinanceService above contains two SOAP address endpoints. One endpoint is
located on host1 and the other is located on host2. Each endpoint must be defined
within a <port> node that also defines the PortType and binding.

Before creating an intermediary service using the Broker Configurator,
make sure you have modified a WSDL to include multiple endpoints as
demonstrated above.

Configuring Load Balancing and Failover

An intermediary service is created by using the Broker Configurator. The create service
wizard steps you through the process of creating an intermediary service, including
importing a WSDL file and configuring whether an endpoint should be an active
endpoint or a backup endpoint.

To configure load balancing and failover:

1 Log in to the Broker Configurator.

2 Click on the Create Brokered Web Service link. Step 1 of the Create Brokered
Service wizard displays (Step 1: Import WSDL).

3 Enter a WSDL that defines multiple endpoints for a Web service.

4 Click next to move to Step 2 of the wizard (Step 2: Configure Endpoints).

5 By default, an endpoint is configured to be the primary endpoint as indicated by the
Primary option in the Options field. Click to select the Backup option if the
endpoint is to be only used as a backup if a primary endpoint should fail.

Endpoints can only be configured when an intermediary service is initially
created.

6-3

Using Multiple Intermediaries

Using Multiple Intermediaries

Multiple Intermediaries are used to provide an additional level of assurance that no
single point of failure exists between clients and an Intermediary. In this scenario, a
third party load balancer, such as Cisco’s IP Director, is used to balance requests
between two or more Intermediaries that are running on different hosts.

Each Intermediary contains an intermediary service for the same Web service. Loads are
balanced between each intermediary service and if one Intermediary fails, additional
intermediaries are available to continue servicing requests. Management information
(i.e., success, response time, and so on) for each intermediary service is aggregated. In
addition, each intermediary service can be viewed separately in a single business service
when using the HP SOA Manager web interface.

When implementing this scenario, use the instructions in the “Setting Up Load
Balancing and Failover” section discussed previously for each installation of the WSM
Intermediary.

It is beyond the scope of this documentation to detail installation and
configuration of a third party load balancer. See the documentation that
was included with your load balancer product for full installation and setup
instructions.

6-4

Implementing Load Balancing and Failover

6-5

 7 7

Using the Intermediary’s Security
Features
Using the Intermediary’s Security
Features

This chapter provides instructions for securing the Web services application channel
when using a WSM Intermediary deployment scenario. An overview section has been
included that introduces many of the fundamentals of the security implementation.
Users should be familiar with general security principals and Web services-based
security before completing the instructions in this chapter.

This chapter provides instructions for securing the Web services application channel
when using a WSM Intermediary deployment scenario. An overview section has been
included that introduces many of the fundamentals of the security implementation.
Users should be familiar with general security principals and Web services-based
security before completing the instructions in this chapter.

The use of the security implementation is dependent on the use of the
WSM Intermediary. You can use such deployment scenarios in conjunction
with the WSM Intermediary and thus leverage the security features that
are provided with the Intermediary and discussed in this chapter.

Overview

While emerging trends in Web services architecture indicate that the future of Web
services is loosely coupled, multi-hop, document exchange style message oriented
interactions; most current implementations are point-to-point request-response HTTP
based. Most enterprise security groups have existing security infrastructure and
products established in house. The Intermediary security architecture takes this into
consideration and provides a comprehensive set of options for securing Web services
either at the (HTTP) transport layer or (SOAP) messaging layer.

Feature Matrix

The following table lists the support technology that is included with the Intermediary
security solution.

7-1

Overview

Security
Concern

Transport Level Message Level

Authentication HTTP/S: basic auth
HTTPS: X.509 certificates
HTTP/S: SSO tokens

WS-Security: User password
WS-Security: X.509 certificates
WS-Security: SSO tokens

Confidentiality SSL WS-Security: XML-Encryption

Integrity SSL WS-Security: D-Sig

Auditing SOA Manager SOA Manager

Non-Repudiation SOA Manager Audit
Service (using D-Sig)

SOA Manager Audit Service
(using D-Sig)

• All User Identity Management – authentication, authorization, and administration is
deferred to enterprise security products.

• WS-Security implementation in the Intermediary (D-Sig, Encryption) is done using
Verisign TSIK toolkit.

• Java Key Store and PKCS12 Key Stores can be used for PKI support – except that
covered by the security products.

Supported Security Scenarios

This section describes end-to-end security scenarios supported by the Intermediary
security implementation. There are three basic security scenarios discussed:

• Scenario 1: Intermediary is the Entry Point for External Consumers.

• Scenario 2: Web Application is the Entry Point for External Consumers.

• Scenario 3: Intermediary is the Exit Point for External Providers.

The figure below shows a high level view of the Intermediary security implementation
and includes all three scenarios.

7-2

Using the Intermediary’s Security Features

Scenario 1: Intermediary is the Entry Point for External Consumers

In this scenario, incoming HTTP/S traffic through the firewall is front-ended by the
Intermediary. The Intermediary supports HTTP/S basic authentication and X.509 client
certificate authentication over SSL. Alternately, the intermediary can also be configured
to decrypt incoming message payload and use X.509 certificates embedded in the digital
signature of the payload to authenticate the message.

Authentication/Authorization failures are tracked and sent to the SOA Manager so that
alerts can be raised if the failures exceed SLO threshold values.

The security provider typically returns a security token (referred to as SSO token) as a
result of successful authentication. This token can be propagated further to the back end
Web service implementation either as an HTTP header or embedded in a WS-Security
header in the payload. Obviously, for this to be meaningful, the back end Web service
container platform must be integrated with the SSO security provider.

In case the back-end Web service container platform is not participating in the SSO,
there are three options:

• Once authentication/authorization is done at the intermediary, no subsequent
security authentication/authorization is done at the back end Web service
implementation. In this case, firewalls may be configured to ensure that all traffic
entering the Web service implementation is coming authenticated and authorized
through the intermediary. The shortcoming of this approach is that business logic
requiring security principal information cannot be written unless such information is
also present in the message payload.

7-3

Overview

• A variation of the above option is that all actual authentication/authorization is done
at the intermediary, but the intermediary presents some normalized identity to the
back end Web service implementation. For example, some things like user,
intermediary, password, and secret such that the back end application can be secured
without having to configure firewalls. This too has the shortcoming that original
security principal information is lost in the transition between intermediary and Web
service implementation. However, it does make the back end implementation secure.
The Intermediary (dispatcher) can be configured with credentials for basic
authentication or x.509 client certificates that it can present while authenticating
against back end Web service implementations. This can be done at the HTTP layer
or embedded as WS-Security headers in the payload.

• If it is technically not feasible to integrate the SSO solution to the back end Web
service container environment, the SSO problem can potentially be solved at the
Intermediary. The Intermediary would have to know how to present credentials for
represented principals in the back end Web service container realm. Some mapping
must be made between incoming security principals and those known to the Web
service container realm. Intermediary security does not natively support identity
mapping features.

Scenario 2: Web Application is the Entry Point for External Consumers

Incoming traffic such as regular Web application requests (i.e. non-SOAP) is
authenticated at the Web Server/Web Application Server layer. If this layer is already
integrated with the SSO provider, it can make requests against the Intermediary by
propagating the SSO security token over SSL. The tokens can be presented either as
HTTP headers or embedded in the WS-Security header. The Intermediary supports both
styles for re-authentication against the SSO security provider.

Alternately, the internal Web service consumer may present some other authentication
credentials via HTTP/S basic authentication, X.509 certificates over SSL or WS-Security
D-Sig. The Intermediary can be configured to use any of these for authentication against
the security provider. In this case, the Intermediary behavior is no different than that
specified in Scenario 1, where it accepted calls from external consumers.

When the Intermediary forwards the request on to its final destination, it can support all
the options described in Scenario 1.

Scenario 3: Intermediary is the Exit Point for External Providers

This scenario is covered between Scenario 1 and Scenario 2 and does not require any
different explanation. In addition, Intermediary security does not support SAML.
However, future releases of SOA Manager will provide SAML support.

Transport Level Security

HTTP/S serving is done by the Intermediary. HTTP/S client side (known as the
Dispatcher) is implemented using a performance enhanced version of Jakarta commons
HTTP Client that further uses JSSE for its SSL implementation.

Each intermediary service can be configured with transport security options for inbound
traffic. The following figure shows a common view of transport level security.

7-4

Using the Intermediary’s Security Features

Message Level Security

Message level security is offered using SOAP handlers. Figure 7-1 shows a common view
of message level security.

Figure 7-1: Message Level Security

7-5

Setting Up the Security Components

Inbound Message Processing

Inbound request payload can be decrypted using the Intermediary’s server certificate.
This assumes that the public key for this certificate was exchanged a priori (exactly how
is out of the scope of this documentation) with the caller of the message and was used to
encrypt the message. Once decrypted, the digital signature of the message is validated to
ensure that the message integrity has not been tampered with. The digital signature
contains the clients X.509 certificate (or chain leading to CA certificate). This certificate
can be used to authenticate the message sender. The message processing handler also
saves this certificate in case it needs to be used to encrypt the response before returning
the response to the caller.

Meta-data required for XML Encryption and D-Sig behavior is extracted from WS-
Security headers. Actual underlying implementation is provided by Verisign’s TSIK
toolkit. This toolkit uses JCE to provide crypto algorithms. SOA Manager includes
BouncyCastle JCE provider by default. We do not provide any PKI maintenance and
customers are expected to use the Java Key Store.

Three types of WS-Security header credentials can be used for authentication:

• plain user:password, X.509 certificates

• incoming SSO token

Outbound Message Processing

Outbound payload can be digitally signed using the Intermediary’s server certificate
configured in the Java Key Store. This digital signature embeds the Intermediary’s X.509
certificate into a WS-Security header. It can be used by the receiver to authenticate the
intermediary. Alternately, we can also embed a WS-Security user:password or WS-
Security SSO token that either entered the Intermediary or that was created by
authenticating against the security provider.

Once signed, it can be encrypted using the receiver’s public key. This must have been
entered into the Java Key Store a priori. The key alias is then specified in the
configuration.

The returned response can be decrypted using the Intermediary’s server certificate and
payload integrity can be validated by checking against the embedded D-Sig.

Setting Up the Security Components

As discussed in the “Overview” section, the Intermediary utilizes several external
security components in order to secure communication on the application channel. The
components must be configured as discussed in this section prior to implementing a
security scenario. In addition, The Intermediary must be configured to use the various
security components.

If you do not require the security features provided by a particular security component,
you may skip the setup instruction for that component. However, if you are unsure of
which security components you require or if you are testing different security
capabilities, it is suggested that you setup all the security components.

7-6

Using the Intermediary’s Security Features

This section does not cover the security configuration at the WS Container
or in the consumers (applications) that are using the Web services. Refer to
your vendor’s documentation for instructions on setting up security.

Configure a Key Store

The steps below detail how to use the Broker Configurator to configure a Key Store for
use by the Intermediary.

A Key Store is required in the following steps. The Intermediary security
solution supports both Java Key Stores and PKCS12 Key Stores. The steps
below outline the configuration for use with a Java Key Store. For
information on creating a Java Key Store, see Appendix A “Creating a Java
Key Store.”

To configure a Java Key Store:

1 Start the Broker Configurator.

2 From the Configurator’s main tool bar, click SSL Settings. The SSL Settings screen
displays.

3 Set the following properties:

⎯ Keystore Location: The location of your Java Key Store (i.e.,
C:\\crypto\\scream.jks).

⎯ Keystore Password: The password for your Java Key Store.

⎯ Keystore Type: Because we are using a Java Key Store this property is set to
“jks”.

⎯ Private Key Alias: The alias of the Java Key Store private key.

⎯ Private Key Password: The private key password in the Key Store.

4 From the bottom of the screen, click Save.

Configure a CA Trust Store

A CA Trust Store is used to store certificates from Certificate Authorities (CA) that are to
be considered trusted. In these instructions, the Trust Store is a Java Key Store
populated with certificates from trusted CA’s. The Java Developers Kit includes Java
Secure Socket Extension (JSSE) which provides a populated Trust Store and is located in
<jdk_install>/jre/lib/security/cacerts.

A Key Store is required in the following steps. The Intermediary security
solution supports both Java Key Stores and PKCS12 Key Stores. The steps
below outline the configuration for use with a Java Key Store. For
information on creating a Java Key Store, see Appendix A “Creating a Java
Key Store.”

7-7

Setting Up the Security Components

To configure the intermediary to use a CA Trust Store:

1 From the Configurator’s main tool bar, click SSL Settings. The SSL Settings screen
displays.

2 Set the following properties:

⎯ Truststore Location: Trust Store location (i.e.,
<jdk_install>/jre/lib/security/cacerts).

⎯ Truststore Password: Trust Store password. By default, the Trust Store
password is changeit.

⎯ Truststore Type: Because we are using a Java Key Store, this property is set to
jks.

If you have changed any defaults associated with this Trust Store, the
above entries will not work. Ensure settings are configured to match that of
your environment.

3 From the bottom of the screen, click Save.

Configure the Intermediary’s SSL Port

The Intermediary’s SSL port is used to accept HTTPS requests and is used to implement
transport-level security. You must define which port you want to use to accept HTTPS
requests.

To configure the Intermediary’s SSL Port:

1 From the Configurator’s main tool bar, click HTTP Settings. The HTTP Settings
screen displays.

2 In the HTTPS Server Port field, enter the port you want the Intermediary to use for
SSL connections.

3 From the bottom of the screen, click Save.

Setting Up Authentication and Authorization

This section provides details on how to provide authentication and authorization. The
intermediary supports basic authentication and authorization using basic authentication
and x.509 client certificates. For either scenario, you can implement authentication and
authorization for all intermediary services, specific intermediary services, or for specific
operations within an intermediary service.

By applying authentication and authorization services to your Web services, you can
confidently ensure that only selected consumers gain access to identified resources. The
Intermediary security solution provides authentication and authorization services on a
best of breed approach by integrating to well known and proven enterprise security
products.

7-8

Using the Intermediary’s Security Features

Implementing a Security Scenario

This section provides instructions for implementing security scenarios. There are
scenarios for both transport-level security and message-level security. The security
scenarios include options for securing inbound communication from a consumer to the
Intermediary and outbound communication from the Intermediary to a Policy consumer.

Before implementing a security scenario, you must configure the security
components that are used by the Intermediary (see “Setting Up the
Security Components” above).

The security scenarios discussed in this section are not mutually exclusive. You may
choose to implement a single scenario, or you may choose to combine several scenarios
together. The scenarios you choose to implement depend on the security requirements of
your environment and the security requirements of your applications. Refer to the
“Overview” section above for detailed information about the Intermediary’s security
capabilities.

The scenarios discussed in this section include:

• Inbound Transport Security

• Outbound Transport Security

• Inbound Message Security

• Outbound Message Security

Inbound Transport Security

In this scenario, the Intermediary accepts requests from consumers using SSL and
authenticates/authorizes the user using a security provider. This is a typical scenario
where an enterprise needs to secure inbound communications but does not need to secure
the channel when calling the actual endpoints. An example of this could be providing a
service externally; once the messages are received and through the firewall, the secure
channel is not needed as the messages are traveling across a private network.

Enabling SSL

The Broker Configurator is used to configure an intermediary service and enable inbound
SSL connections. You can configure SSL when you create an intermediary service or you
can edit an existing intermediary service.

To enable inbound SSL:

1 From the Broker Configurator, create a new or edit an existing intermediary service.

2 From the Service Configuration screen, check the Use SSL option located in the
Inbound Transport section.

3 At the bottom of the screen, click Save Changes. The Brokered Services screen
opens. The service you just configured has a Service Interface URL that indicates
HTTPS. This is the URL your clients should use to access the service.

7-9

Implementing a Security Scenario

If the Key Store was configured with a signed server certificate from a
Certificate Authority (CA) which is not commonly known, you may see an
error message indicating that a trust relationship could not be established.
If this is the case, you will need to obtain the CA’s certificate and install
that in the Trust Store for all clients who will access this service.

Enabling Authentication

The Broker Configurator is used to configure an intermediary service and enable
authentication for inbound transport security. Users are authorized using a security
provider. You can enable authentication when you create an intermediary service or you
can edit an existing intermediary service.

To enable authentication:

1 From the Broker Configurator, create a new or edit an existing intermediary service.

2 From the Service Configuration screen’s Inbound Transport section, check the type of
authentication you want to enable:

⎯ Basic Authentication: All requests to the Intermediary need to be
authenticated using a user name and password.

⎯ X.509 Client Certs: All requests to the Intermediary need to be authenticated
using an X.509 certificate.

3 At the bottom of the screen, click Save Changes. Once this service is deployed, the
Intermediary will communicate with security provider to ensure that the consumer
has supplied the proper credentials to gain access to the service. If the user is not
authenticated and/or authorized, the Intermediary will return a 404 Not Authorized
error.

Outbound Transport Security

In this scenario, the Intermediary accepts requests from consumers and then forward
that request to the provider using an SSL channel. This scenario can be combined with
the inbound transport scenario to provide end-to-end transport-level security.

When using outbound SSL Security, a Web Service deployed in a Policy
enforcement agent must be configured to use SSL from within that Policy
enforcement agent. See your Policy Enforcement Agent documentation for
more instructions on setting up SSL communications.

Enabling Outbound SSL

The Broker Console is used to configure an intermediary service and enable outbound
SSL connections. You must enable SSL when you create an intermediary service. You
cannot edit an existing intermediary service to use outbound SSL.

To enable outbound SSL:

1 From the Configurator’s main toolbar, click Create Brokered Web Service. Step 1
of the Create Brokered Service wizard displays (Step 1: Import WSDL).

7-10

Using the Intermediary’s Security Features

2 In the text box, specify the WSDL with HTTPS if your server will dynamically create
port bindings based off of the WSDL URL. For example:

https://company.com/finance?wsdl

Or,

Click browse to locate a Web service’s WSDL.

3 Click next to move to Step 2 of the wizard (Step 2: Configure Endpoints). A binding
is created for the Web service and displays in the Select Endpoints screen. If a Web
service definition contains multiple endpoints, a binding for each endpoint is listed.

4 From the Authentication field, click to select the Send Credentials check box.

5 Complete creating the intermediary service by following the prompts. The
intermediary service is configured to use outbound SSL when you have completed
creating the intermediary service and it is deployed.

If the endpoint has a server certificate signed by a CA whose CA Certificate
is not present within the trust store configured for the Intermediary, the
SSL handshake will fail. Make sure the endpoint’s CA’s Certificate is
located in the Intermediary's trust store.

Inbound Message Security

In this scenario, a consumer must authenticate with the Intermediary before messages
are accepted. In addition, the consumer may choose to encrypt messages before sending
them to the Intermediary; in which case, the intermediary will decrypt the messages
before they are dispatched to the final endpoint. Refer to Figure 7-1 for a conceptual
architecture of message-level security.

The Broker Configurator is used to configure an inbound message security handler for an
intermediary service. You can enable message security when you create an intermediary
service or you can edit an existing intermediary service.

To enable inbound message security:

1 From the Broker Configurator, create a new or edit an existing intermediary service.

2 From the Service Configuration screen’s Feature section, click the Inbound
Message Security option. The security options display.

3 Click the security option you want to enable:

⎯ Username-Password Authentication: All messages to the Intermediary need
to be authenticated using a user name and password.

⎯ Digital Signature Authentication: All messages to the Intermediary need to
be authenticated using a digital signature.

⎯ Digital Signature Authentication with Decryption: All messages to the
Intermediary need to be authenticated using a digital signature. In addition, the
Intermediary’s private key is used to decrypt the message.

7-11

Implementing a Security Scenario

4 Click to select the No Digital Signature or Encryption in Response option if you
do not require the response message to be encrypted or have a digital signature. If
you do not select this option, the intermediary expects the response message to be
encrypted and have a digital signature.

5 At the bottom of the screen, click Save Changes. Once this service is deployed, the
Intermediary will communicate with the security provider for all inbound requests to
ensure that the consumer has supplied the proper credentials to gain access to the
service. If the user is not authenticated and/or authorized, the Intermediary will
return a 404 Not Authorized error.

The Intermediary will fail to recognize a Digital signature if the XML
payload is changed after it has been signed. This typically happens during
debugging when the XML payload is reformatted in “pretty print” for ease
of reading. If the payload is reformatted, it should not be sent to the
Intermediary.

Outbound Message Security

In this scenario, The Intermediary must authenticate itself with a Policy enforcement
agent before messages are processed at the Policy enforcement agent. The Policy
enforcement agent and the Intermediary can share the same security provider or a Policy
enforcement agent’s security provider is used to complete the authentication. In addition,
the Intermediary can encrypt messages before sending them to the Policy enforcement
agent; in which case, the Policy enforcement agent must be able to decrypt the messages.
Refer to Figure 7-1 for a conceptual architecture of message-level security.

The Broker Configurator is used to configure an outbound message security handler for a
brokered service. Requests are authorized using a Policy enforcement agent’s security
provider and encryption is implemented through a Key Store (See “Configure a Key
Store” above). You can enable message security when you create an intermediary service
or you can edit an existing intermediary service.

To enable outbound message security:

1 From the Broker Configurator, create a new or edit an existing intermediary service.

2 From the Service Configuration screen’s Feature section, click the Outbound
Message Security option. The security options displays.

3 Click the security option you want to enable:

⎯ Username-Password Authentication: All messages dispatched to a Policy
enforcement agent need to be authenticated using a user name and password.
The Policy enforcement agent’s security provider is used to verify the credentials
and which resources can be accessed. Enter a valid Username and Password for
your Policy enforcement agent in the fields provided.

⎯ Sign: All messages dispatched to a Policy enforcement agent will include a
digital signature. The Intermediary’s Key Store is used to sign the outbound
message.

7-12

Using the Intermediary’s Security Features

⎯ Sign and Encrypt: All messages dispatched to a Policy enforcement agent will
include a digital signature and will be encrypted. The Intermediary’s Key Store is
used to sign the outbound message. In addition, the Intermediary’s private key
must be located at the Policy enforcement agent to decrypt the message.

4 Click to select the No Digital Signature or Encryption in Response option if the
response message does not have digital signature and is not encrypted. If you do not
select this option, the intermediary expects the response message to have a digital
signature and/or be encrypted.

5 At the bottom of the screen, click Save Changes.

7-13

Management Channel HTTP Basic Authorization

Management Channel HTTP Basic Authorization

HTTP basic authorization can be enabled to secure the intermediary management
channel. This functionality is the same as securing the application channel.

To configure intermediary management channel security:

1 Stop the Intermediary if it is currently started.

2 Use a text editor to open <install_dir>\conf\broker\mipServer.xml.

3 Remove the comment tag and text (<!-- -->) from the following three property entries:

<entry name="com.hp.mip.security.provider.management">
 default</entry>

<entry name="com.hp.mip.security.sba.user">user</entry>

<entry name="com.hp.mip.security.sba.password">password</entry>

⎯ Specify the name of the security provider for management channel in the
com.hp.mip.security.provider.management element.

⎯ Specify the user name for the user who is authorized to access the Web URL of
the management channel in the com.hp.mip.security.sba.user element.

⎯ Specify the password for the user who is authorized to access the Web URL of the
management channel in the com.hp.mip.security.sba.password element.

For example:

A Intermediary is running on Myhost and its management channel is running on
non-secure port 9035. The security provider, SelectAccess, sets up web access control
for any resources under http://Myhost:9035/wsmf/. User jsmith, with
password, johnspassword, is authorized to access these Web resources. The values
of the three entries are set to:

<entry name="com.hp.mip.security.provider.management">
 SelectAccess</entry>

<entry name="com.hp.mip.security.sba.user">jsmith</entry>

<entry name="com.hp.mip.security.sba.password">
 johnspassword</entry>

4 Save and close mipserver.xml.

5 Start the Intermediary server.

7-14

Using the Intermediary’s Security Features

7-15

 A A

Troubleshooting Broker Troubleshooting Broker

This chapter provides common troubleshooting tasks when using the WSM Intermediary. This chapter provides common troubleshooting tasks when using the WSM Intermediary.

Installation and Configuration Problems Installation and Configuration Problems

Errors occurred during installation Errors occurred during installation

Receive an error message at the end of the installation that:

The installation of HP SOA Manager is finished, but some errors
occurred during the install. Please see the installation log for
details.

Solution:

1 Check the <SOAM dir>/HP_SOA_Manager_2.52_InstallLog.xml log file for
errors.

2 If you see install file errors, <action name="Install File" status="error"
/>, it means you only copied the HPSOAManagerInstaller.bin file from the SOA
Manager installation CD to the system. You need to copy all of the files that are on
the CD in the ../Installation directory to the system where you’re trying to
install the intermediary.

AutoPass fails to install

Receive an error dialog during installation that:

AutoPass, the HP Software licensing tool, failed to install properly.
This installation will abort. Please refer to the <temp
dir>\AutoPass_install.log log file for more details.

Solution:

1 Check to see if the <temp dir>\AutoPass_install.log log file exists.

2 If the log file exists, check for errors.

1-1

Runtime Problems

3 If the log file doesn’t exist, check to see if there are non-English characters in the
<temp dir> name. AutoPass has a bug where it doesn’t allow non-English
characters in path names. If there are non-English characters in the <temp dir>
name:

a Uninstall Network Services.

b Save the value of the TMP environment variable.

c Change the TMP environment variable to a directory with all English characters.

d Install Network Services.

e Change the value of the TMP environment variable back to its original value.

Runtime Problems

Could not start monarch-sba

When trying to start the intermediary, receive a message:

[WARN] unable to locate tools.jar, possible non-sun jvm?

and later:

[SEVERE]; Could not start monarch-sba: java.lang.Exception: Monarch
did not initialize.

Solution:

1 Verify that the environment variable MIP_JAVA_HOME is assigned to the Java 1.4
SDK and not the JRE.

When trying to start the intermediary, receive a message:

[SEVERE]; Could not start monarch-sba: java.lang.Exception: Monarch
did not initialize.

Solution:

1 Turn on logging for the Smart Business Agent (SBA) to get more details about the
problem.

f Change directories to <install_dir>/conf/broker.

g Edit the logging.properties file.

1. Change log4j.category.com.hp.wsm.impact=OFF to
log4j.category.com.hp.wsm.impact=INFO, ROLL_FILE

2. Add the following to the end of the file

ROLL_FILE - rolling file appender that writes the logs to
the file system

log4j.appender.ROLL_FILE=org.apache.log4j.RollingFileAppend
er
log4j.appender.ROLL_FILE.File=C:\\temp\\soam-broker-sba.log

1-2

Troubleshooting Broker

log4j.appender.ROLL_FILE.MaxFileSize=512KB
log4j.appender.ROLL_FILE.MaxBackupIndex=1
log4j.appender.ROLL_FILE.layout=org.apache.log4j.PatternLay
out
log4j.appender.ROLL_FILE.layout.ConversionPattern=-->
%d{yyyyMMdd|HH:mm:ss}|%p|%t|%c{5}|%m%n

2 Restart the intermediary.

3 Look for errors in the C:\temp\soam-broker-sba.log file.

Failed to initialize listener

When trying to start the intermediary, receive a message:

…;SEVERE;An error occurred while initializing the MIP Server: … :
failed to initialize listener

Solution:

1 Check to see if the Intermediary is already running. If you are running on Windows
and selected to install the Intermediary as a service during the installation process,
the Intermediary is automatically started when you reboot the system.

2 If the Intermediary is not running, then another application may be using the port.
By default, the Intermediary uses port 9032. Change the Intermediary to use a
different port.

a Change directories to <install_dir>/conf/broker.

b Edit the mipServer.xml file. Change the <entry
name="com.hp.http.server.port">9032</entry> property.

c Start the Intermediary.

Unable to determine binding from message element

Receive the message when a request is sent to a custom intermediary service:

Unable to determine binding from message element: {xxx}yyy

Solution:

1 Verify that the request matches the binding specified in the WSDL.

2 Verify that the namespace in the request matches the namespace in the WSDL.

Authentication header not progressed to backend

The authentication header is not progressed to the backend service when a request is
sent to a custom XML intermediary service.

Solution:

1-3

Runtime Problems

1 Verify that the
com.hp.wsm.sn.router.xml.handlers.outbound.SoapPassThroughTranspor
tHeaderHandler handler is configured for your custom XML intermediary service.
This handler works for XML services even though it’s called a SOAP handler.

Out of Memory

Receive an error that ran out of memory when running the Intermediary as a service.

Solution:

Increase the stack and heap sizes.

1 Modify the <soam_dir>\bin\win32\services\service-manager.bat file. Add
the stack and heap parameters to the system properties (@set SYS_PROPS=-
Xms64m –Xmx256m –Dcom.hp.mip.autopass.home…).

2 Run the bat file to remove the Intermediary service (service-manager.bat –
remove broker).

3 Run the bat file again to add the Intermediary as a service with the new parameters
(service-manager.bat –install broker).

4 Check that the new parameters are configured by looking in the registry under
HKEY_LOCAL_MACHINE/SYSTEM/CurrentControlSet/Services/
broker<version num>.

Receive an error that ran out of memory when running the Intermediary from the
command line.

Solution:

Increase the stack and heap sizes.

1 Modify the <install_dir>\bin\<unix | win32>\mipserver[.bat] file. Increase
the sizes for –Xms and –Xmx.

2 Restart the Intermediary.

1-4

Troubleshooting Broker

1-5

Index

A
architecture

multiple brokers, 6-4
audit publisher, 3-2
auditing, 3-1

audit publisher, 3-2
auditing handler, 1-2
authentication

enabling, 7-10

B
backup endpoint, 6-2
broker

contextual overview, 1-1
install as Windows service, 5-3
management channel port, 5-4
SSL port, 7-8
starting, 5-1
stopping, 5-2
using multiple, 6-4

broker configurator, 1-1
assign access, 5-6
starting, 5-2

brokered service
auditing, 3-1
business content, 3-2
convert simple, 4-1
custom, 4-1
deploy, 2-2
edit, 2-3
fault logging, 3-1, 3-4
HTTP path, 2-3
overview, 2-1
performance metrics, 2-2
remove, 2-4
schema validation, 3-5
undeploy, 2-2

version, 2-3
view details, 2-1

business content alerting, 3-2
business content handler, 1-3

C
common handlers, 1-2
conceptual architecture

failover and load balancing, 6-2
multiple brokers, 6-4

configure
audit publisher, 3-2
auditing, 3-1
brokered service HTTP path, 2-3
brokered service version, 2-3
business content alert, 3-2
failover and load balancing, 6-3
fault logging, 3-1, 3-4
HTTP, 5-3
key store, 7-7
schema validation, 3-5
SSL port, 7-8
trust store, 7-7

contextual overview, 1-1
counfigure

inbound message security, 7-11
inbound transport security, 7-9
outbound message security, 7-12
outbound transport security, 7-10

custom handlers, 4-2

E
endpoint

backup, 6-2
multiple in WSDL, 6-3
primary, 6-2

environment variable, 5-1

Index-1

Index

F
failover and load balancing

conceptual architecture, 6-2
multiple brokers, 6-4
overview, 6-1, 6-2
scenarios, 6-2
setup, 6-2

fault logging, 3-1, 3-4

G
generic soap contract handler, 3-3

H
handlers

add to custom, 4-2
configuring, 3-1
custom, 4-2
overview, 1-2

HTTP
brokered service URL, 2-3
client settings, 5-5
proxy settings, 5-6
secure port, 7-8
server port, 5-4
server settings, 5-3
threads, 5-5

I
inbound message security, 7-11
inbound transport security, 7-9
installation problems, A-1
Invocation handler, 3-4

K
key store, 7-7

L
logging

brokered service fault, 3-1, 3-4
logging handler, 1-2

M
management channel, 5-4
message level security, 7-5

inbound processing, 7-6, 7-11

outbound processing, 7-6, 7-12
message trace, 3-1
MIP_JAVA_HOME, 5-1
monitoring handler, 1-2

O
outbound message security, 7-12
outbound transport, 7-10
overview

architecture, 1-1
brokered service, 2-1
failover and load balancing, 6-1
security, 7-1

P
payload, 3-1
performance metrics, 2-2
PKI, 7-2
port, 5-4

management channel, 5-4
prerequisites, 1-1
primary endpoint, 6-2
proxy settings, 5-6

R
runtime problems, A-2, A-3

S
SBA, 1-1
schema validation, 3-5
schema validation handler, 1-2
security

feature matrix, 7-1
implement scenario, 7-9
inbound message, 7-11
inbound transport, 7-9
message level, 7-5
outbound message, 7-12
outbound transport, 7-10
overview, 7-1
scenarios, 7-2
setup components, 7-6
transport level, 7-4

server port, 5-4

Index-2

Index

service security inbound handler, 3-7
service version, 2-3
service-manager.bat, 5-3
settings

audit publisher, 3-2
HTTP, 5-3
key store, 7-7
SSL port, 7-8
trust store, 7-7

SOAP
endpoint, 6-3

SOAP contract handler, 3-7
SOAP dispatch handler, 3-7
SOAP monitoring handler, 3-8
SOAP pass-through transport header

handler, 3-4
SOAP payload, 3-1
SSL, 7-4, 7-9, 7-10

enabling, 7-9
port, 7-8

stop broker, 5-2

T
trace message, 3-1

transport level security, 7-4, 7-9, 7-10
troubleshooting

installation problems, A-1
runtime problems, A-2, A-3

trust store, 7-7

U
URL

changing, 2-3

W
Win32 service, 5-3
Windows service, 5-3
ws security message processing inbound

handler, 3-9
ws security outbound handler, 3-8
WSDL

multiple endpoints, 6-3

X
xml contract handler, 3-10
xml dispatch handler, 3-10
XPath monitoring handler, 3-10
XSLT handler, 3-11

Index-3

Index

Index-4

	Broker User Guide
	Contents
	SOA Manager Broker- An Overview
	Prerequisites
	Contextual Overview
	Broker Configurator
	Common Handlers
	Monitoring Handler
	Logging Handler
	Auditing Handler
	Schema Validation Handler
	Business Content Alerting Handler
	Security Handlers

	Using Intermediary Services
	Overview
	Viewing Intermediary Service Details
	Performance Metrics

	Undeploying an Intermediary Service
	Deploying an Intermediary Service
	Editing an Intermediary Service
	Changing an Intermediary Service’s Version
	Configuring an Intermediary Service’s HTTP Path

	Removing an Intermediary Service
	Enabling Protocol Switching at the Intermediary
	Prerequisites
	Enabling JMS-to-JMS-Two-Way Protocol Switching
	Enabling HTTP-to-JMS-One-Way Protocol Switching
	Enabling JMS-to-HTTP-One-Way Protocol Switching

	Configuring Handlers
	Audit Handler
	Fields
	Configuring the Audit Publisher

	Business Metric Alerts Handler
	Fields

	Generic SOAP Contract Handler
	Fields

	HTTP Pass-Through Transport Header Handler
	Invocation Handler
	Fields

	Log Handler
	Fields

	Schema Validation Handler
	Service Protection Handler
	Fields

	Content Detection Handler
	Fields

	Scheduled Availability Handler
	Fields

	Security Auditing
	Field
	Configuring Security Auditing

	Service Security Inbound Handler
	SOAP Contract Handler
	SOAP Dispatch Handler
	SOAP Monitoring Handler
	Fields

	WS Security Outbound Handler
	Fields

	WS Security Message Processing Inbound Handler
	Fields

	XML Contract Handler
	XML Dispatch Handler
	XPath Monitoring
	Fields

	XSLT Handler
	Fields

	Classifier Handler
	Fields

	Using Custom Intermediary Services
	Overview
	Convert a Simple Intermediary Service
	Adding Handlers
	Adding Custom Handlers

	Defining Service Providers for Custom Web Services
	Enabling Content-based Routing

	Getting Started
	Starting the WSM Broker
	Stopping the WSM Broker
	Windows
	UNIX

	Starting the Broker Configurator Console
	Installing the Broker as a Windows Service
	Configuring HTTP Settings
	Configuring the HTTP Server Port Number
	Configuring the Broker’s Management Channel Port
	Configuring HTTP Server Thread Settings
	Configuring HTTP Client Settings
	Configuring HTTP Proxy Settings

	Assigning Access to the Console
	Using XPL Logging
	Installing XPL Logging
	XPL Tools

	Configuring XPL
	Configuring Log Levels

	Viewing Logs

	Using XPL Tracing
	Installation
	Windows
	HP-UX
	Linux

	Example Configuration Entries

	Implementing Load Balancing and Failover
	Overview
	Conceptual Architecture
	Load Balancing Scenario
	Failover Scenario

	Setting Up Load Balancing and Failover
	Defining Multiple Endpoints in a WSDL File
	Configuring Load Balancing and Failover

	Using Multiple Intermediaries

	Using the Intermediary's Security Features
	Overview
	Feature Matrix
	Supported Security Scenarios
	Scenario 1: Intermediary is the Entry Point for External Consumers
	Scenario 2: Web Application is the Entry Point for External Consumers
	Scenario 3: Intermediary is the Exit Point for External Providers

	Transport Level Security
	Message Level Security
	Inbound Message Processing
	Outbound Message Processing

	Setting Up the Security Components
	Configure a Key Store
	Configure a CA Trust Store
	Configure the Intermediary’s SSL Port
	Setting Up Authentication and Authorization

	Implementing a Security Scenario
	Inbound Transport Security
	Enabling SSL
	Enabling Authentication

	Outbound Transport Security
	Enabling Outbound SSL

	Inbound Message Security
	Outbound Message Security

	 Management Channel HTTP Basic Authorization

	Appendix A Troubleshooting Broker
	Installation and Configuration Problems
	Errors occurred during installation
	AutoPass fails to install

	Runtime Problems
	Could not start monarch-sba
	Failed to initialize listener
	Unable to determine binding from message element
	Authentication header not progressed to backend
	Out of Memory

	Index

