

Mercury QuickTest Professional
Java™ Add-in

Extensibility Developer’s Guide
Version 9.1

Document Release Date: August 1, 2006

Mercury QuickTest Professional Java Add-in Extensibility Developer’s Guide, Version 9.1

This manual, and the accompanying software and other documentation, is protected by U.S. and
international copyright laws, and may be used only in accordance with the accompanying license
agreement. Features of the software, and of other products and services of Mercury Interactive
Corporation, may be covered by one or more of the following patents: United States: 5,511,185;
5,657,438; 5,701,139; 5,870,559; 5,958,008; 5,974,572; 6,137,782; 6,138,157; 6,144,962; 6,205,122;
6,237,006; 6,341,310; 6,360,332, 6,449,739; 6,470,383; 6,477,483; 6,549,944; 6,560,564; 6,564,342;
6,587,969; 6,631,408; 6,631,411; 6,633,912; 6,694,288; 6,738,813; 6,738,933; 6,754,701; 6,792,460
and 6,810,494. Australia: 763468 and 762554. Other patents pending. All rights reserved.

Mercury, Mercury Interactive, the Mercury logo, the Mercury Interactive logo, LoadRunner,
WinRunner, SiteScope and TestDirector are trademarks of Mercury Interactive Corporation and may
be registered in certain jurisdictions. The absence of a trademark from this list does not constitute a
waiver of Mercury's intellectual property rights concerning that trademark.

All other company, brand and product names may be trademarks or registered trademarks of their
respective holders. Mercury disclaims any responsibility for specifying which marks are owned by
which companies or which organizations.

Mercury provides links to external third-party Web sites to help you find supplemental information.
Site content and availability may change without notice. Mercury makes no representations or
warranties whatsoever as to site content or availability.

Mercury Interactive Corporation
379 North Whisman Road
Mountain View, CA 94043
Tel: (650) 603-5200
Toll Free: (800) TEST-911
Customer Support: (877) TEST-HLP
Fax: (650) 603-5300

© 2006 Mercury Interactive Corporation, All rights reserved

If you have any comments or suggestions regarding this document, please send them by e-mail to
documentation@mercury.com.

QTPJAVAEXTDG9.1/01

iii

Table of Contents

Welcome to This Guide ... vii
How This Guide Is Organized ... viii
Who Should Read This Guide ..ix
QuickTest Professional Online Documentationx
Additional Online Resources.. xii
Documentation Updates ... xiii
Typographical Conventions...xiv

PART I: WORKING WITH JAVA ADD-IN EXTENSIBILITY

Chapter 1: Introducing QuickTest Professional Java Add-in
Extensibility...3

About QuickTest Professional Java Add-in Extensibility3
Identifying the Building Blocks of Java Add-in Extensibility4
Deciding When to Use Java Add-in Extensibility6

Chapter 2: Installing the QuickTest Professional Java Add-in
Extensibility Software Development Kit...13

About Installing the QuickTest Professional Java Add-in
Extensibility SDK ..14

Pre-Installation Requirements...14
Installing the QuickTest Professional Java Add-in

Extensibility SDK ..15
Uninstalling the QuickTest Professional Java Add-in

Extensibility SDK ..22

Table of Contents

iv

Chapter 3: Implementing Custom Toolkit Support............................27
About Custom Toolkit Support ...28
Introducing Java Add-in Extensibility Terminology...........................30
Preparing to Create Support for a Custom Toolkit30
Creating a Custom Toolkit Support Set ..32
Understanding the Toolkit Support Class...35
Understanding the Toolkit Configuration File36
Understanding the Test Object Configuration File38
Understanding Custom Support Classes...43
Deploying and Running the Custom Toolkit Support66
Logging and Debugging the Custom Support Class71
Workflow for Implementing Java Add-in Extensibility......................73

Chapter 4: Planning Custom Toolkit Support75
About Planning Custom Toolkit Support ...76
Determining the Custom Toolkit Related Information......................76
Determining the Support Information for Each Custom Class..........77
Where Do You Go from Here? ..81

Chapter 5: Using the QuickTest Java Add-in Extensibility
Eclipse Plug-In ...83

About the QuickTest Java Add-in Extensibility Eclipse Plug-In..........84
New QuickTest Java Add-in Extensibility Project Wizard...................85
Modifying QuickTest Java Add-in Extensibility Project Properties96
New QuickTest Custom Support Class Wizard97
New QuickTest Custom Static-Text Support Class Wizard...............132
Working with QuickTest Commands in Eclipse...............................137

PART II: TUTORIAL: LEARNING TO CREATE JAVA CUSTOM TOOLKIT
SUPPORT

Chapter 6: Using the QuickTest Java Add-in Extensibility Tutorial ..149
Understanding the Tutorial Lesson Structure...................................150
Checking Tutorial Prerequisites ..150
Learning to Support a Simple Control ..152
Learning to Support a Static-Text Control..152
Learning to Support a Complex Control ..153

Table of Contents

v

Chapter 7: Learning to Support a Simple Control155
Preparing for This Lesson ..156
Planning Support for the ImageButton Control...............................158
Creating a New QuickTest Java Add-in Extensibility Project164
Creating a New QuickTest Custom Support Class171
Understanding the New Custom Support...182
Deploying and Testing the New Custom Toolkit Support186
Changing the Name of the Test Object ..187
Implementing Support for a Test Object Method189
Implementing Event Handler Methods to Support Recording.........192
Lesson Summary..193

Chapter 8: Learning to Support a Custom Static-Text Control197
Preparing for This Lesson ..198
Planning Support for the ImageLabel Control198
Creating the QuickTest Custom Static-Text Support Class...............203
Understanding the New Custom Static-Text Support Class207
Deploying and Testing the New Custom Static-Text Support Class.208
Completing the Support for the Static-Text Control........................210
Optimizing the ImageControls Toolkit Support...............................213
Lesson Summary..223

Chapter 9: Learning to Support a Complex Control225
Preparing for This Lesson ..226
Planning Support for the AllLights Control228
Creating the QuickTest Java Add-in Extensibility Project234
Creating the New QuickTest Custom Support Class239
Understanding the New Custom Support Files252
Deploying and Testing the New Custom Toolkit Support255
Implementing Support for the AllLights Control.............................258
Lesson Summary..265

Index..267

Table of Contents

vi

vii

Welcome to This Guide

Welcome to QuickTest Professional Java Add-in Extensibility.

QuickTest Professional Java Add-in Extensibility is an SDK package that
enables you to support testing applications that use third-party and custom
Java controls that are not supported out-of-the-box by the QuickTest
Professional Java Add-in.

The QuickTest Professional Java Add-in Extensibility SDK provides:

➤ an API that enables you to extend the QuickTest Professional Java Add-in to
support custom Java controls.

➤ a plug-in for the Eclipse Java development environment, which provides
wizards and commands that help you create and edit custom toolkit support
sets.

➤ a complete Java Add-in Extensibility documentation set including an API
reference, a toolkit configuration file schema Help, and this Developer’s
Guide.

➤ a set of sample applications and completed Java Add-in Extensibility
projects that extend support for these applications.

This chapter describes: On page:

How This Guide Is Organized viii

Who Should Read This Guide ix

QuickTest Professional Online Documentation x

Additional Online Resources xii

Welcome

viii

How This Guide Is Organized

This guide explains everything you need to know to use QuickTest
Professional Java Add-in Extensibility to extend QuickTest support for
third-party and custom Java controls.

This guide should be used together with the QuickTest Professional Java
Add-in Extensibility API Reference, the QuickTest Test Object Schema, and the
QuickTest Java Add-in Extensibility Toolkit Configuration Schema (provided in
online Help format). These documents should also be used in conjunction
with the QuickTest Professional User’s Guide, the QuickTest Professional Java
Add-in Guide, and the QuickTest Professional Object Model Reference. All of
these guides (including this Developer’s Guide) can be accessed online by
choosing Help > QuickTest Professional Help from the QuickTest main
window.

This guide contains:

 Part I Working with Java Add-in Extensibility

Explains how to use QuickTest Professional Java Add-in Extensibility to
extend QuickTest support for custom Java controls. This part includes:

➤ Introducing QuickTest Professional Java Add-in Extensibility

➤ Installing the QuickTest Professional Java Add-in Extensibility Software
Development Kit

➤ Implementing Custom Toolkit Support

➤ Planning Custom Toolkit Support

➤ Using the QuickTest Java Add-in Extensibility Eclipse Plug-In

Documentation Updates xiii

Typographical Conventions xiv

This chapter describes: On page:

Welcome

ix

 Part II Tutorial: Learning to Create Java Custom Toolkit Support

Guides you step-by-step through the process of creating custom support for
some sample controls. This part includes:

➤ Using the QuickTest Java Add-in Extensibility Tutorial

➤ Learning to Support a Simple Control

➤ Learning to Support a Custom Static-Text Control

➤ Learning to Support a Complex Control

Note: The information, examples, and screen captures in this guide focus
specifically on working with QuickTest tests. However, much of the
information applies equally to components.

Business components and scripted components are part of Mercury Business
Process Testing, which utilizes a keyword-driven methodology for testing
applications. For more information, refer to the QuickTest Professional User’s
Guide and the QuickTest Professional for Business Process Testing User’s Guide.

Who Should Read This Guide

This guide is intended for programmers, QA engineers, systems analysts,
system designers, and technical managers who want to extend QuickTest
support for Java custom controls.

To use this guide, you should be familiar with:

➤ Major QuickTest features and functionality

➤ QuickTest Professional Object Model

➤ QuickTest Professional Java Add-in

➤ XML (basic knowledge)

➤ Java Programming

Welcome

x

QuickTest Professional Online Documentation

QuickTest Professional includes the following online documentation:

Readme provides the latest news and information about QuickTest. Choose
Start > Programs > QuickTest Professional > Readme.

QuickTest Professional Installation Guide explains how to install and set up
QuickTest. Choose Help > Printer-Friendly Documentation > Mercury
QuickTest Professional Installation Guide.

QuickTest Professional Tutorial teaches you basic QuickTest skills and shows
you how to design tests for your applications. Choose Help > QuickTest
Professional Tutorial.

Product Feature Movies provide an overview and step-by-step instructions
describing how to use selected QuickTest features. Choose Help > Product
Feature Movies.

Printer-Friendly Documentation displays the complete documentation set in
Adobe portable document format (PDF). Online books can be viewed and
printed using Adobe Reader, which can be downloaded from the Adobe Web
site (http://www.adobe.com). Choose Help > Printer-Friendly Documentation.

QuickTest Professional Help includes:

➤ What’s New in QuickTest describes the newest features, enhancements,
and supported environments in the latest version of QuickTest.

➤ QuickTest User's Guide describes how to use QuickTest to test your
application.

➤ QuickTest for Business Process Testing User's Guide provides step-by-step
instructions for using QuickTest to create and manage assets for use with
Business Process Testing.

➤ QuickTest Object Model describes QuickTest test objects, lists the
methods and properties associated with each object, and provides syntax
information and examples for each method and property.

http://www.adobe.com

Welcome

xi

➤ QuickTest Advanced References contains documentation for the
following QuickTest COM and XML references:

• QuickTest Automation provides syntax, descriptive information, and
examples for the automation objects, methods, and properties. It also
contains a detailed overview to help you get started writing QuickTest
automation scripts. The automation object model assists you in
automating test management, by providing objects, methods and
properties that enable you to control virtually every QuickTest feature
and capability.

• QuickTest Test Results Schema documents the XML schema that
enables you to customize your test results.

• QuickTest Test Object Schema documents the XML schema that
enables you to extend test object support in different environments.

• QuickTest Object Repository Automation documents the Object
Repository automation object model that enables you to manipulate
QuickTest object repositories and their contents from outside of
QuickTest.

➤ VBScript Reference contains Microsoft VBScript documentation,
including VBScript, Script Runtime, and Windows Script Host.

Choose Help > QuickTest Professional Help. Online Help is also available
from specific QuickTest windows and dialog boxes by clicking in the
window and pressing F1. You can also view a description, syntax, and
examples for a QuickTest test object, method, or property by placing the
cursor on it and pressing F1.

Note: Your QuickTest Help may contain additional items relevant to any
QuickTest add-ins you have installed. For more information, refer to the
relevant add-in documentation.

Welcome

xii

Additional Online Resources

Knowledge Base uses your default Web browser to open the Mercury
Customer Support Web Site directly to the Knowledge Base landing page.
Choose Help > Knowledge Base. The URL for this Web site is
http://support.mercury.com/cgi-bin/portal/CSO/kbBrowse.jsp.

Customer Support Web Site uses your default Web browser to open the
Mercury Customer Support Web site. This site enables you to browse the
Mercury Support Knowledge Base and add your own articles. You can also
post to and search user discussion forums, submit support requests,
download patches and updated documentation, and more. Choose Help >
Customer Support Web Site. The URL for this Web site is
http://support.mercury.com.

Send Feedback enables you to send online feedback about QuickTest to the
product team. Choose Help > Send Feedback.

Mercury Home Page uses your default Web browser to access Mercury’s Web
site. This site provides you with the most up-to-date information on
Mercury and its products. This includes new software releases, seminars and
trade shows, customer support, educational services, and more. Choose
Help > Mercury Home Page. The URL for this Web site is
http://www.mercury.com.

Mercury Best Practices contain guidelines for planning, creating, deploying,
and managing a world-class IT environment. Mercury provides three types
of best practices: Process Best Practices, Product Best Practices, and People
Best Practices. Licensed customers of Mercury software can read and use the
Mercury Best Practices available from the Customer Support site,
http://support.mercury.com.

http://support.mercury.com/cgi-bin/portal/CSO/kbBrowse.jsp
http://support.mercury.com
http://www.mercury.com
http://support.mercury.com

Welcome

xiii

Documentation Updates

Mercury is continually updating its product documentation with new
information. You can download the latest version of this document from
the Customer Support Web site (http://support.mercury.com).

To download updated documentation:

 1 In the Customer Support Web site, click the Documentation link.

 2 Under Please Select Product, select QuickTest Professional.

Note that if the required product does not appear in the list, you must add it
to your customer profile. Click My Account to update your profile.

 3 Click Retrieve. The Documentation page opens and lists the documentation
available for the current release and for previous releases. If a document was
updated recently, Updated appears next to the document name.

 4 Click a document link to download the documentation.

http://support.mercury.com

Welcome

xiv

Typographical Conventions

This guide uses the following typographical conventions:

UI Elements This style indicates the names of interface elements on
which you perform actions, file names or paths, and
other items that require emphasis. For example, “Click
the Save button.”

Arguments This style indicates method, property, or function
arguments and book titles. For example, “Refer to the
Mercury User’s Guide.”

<Replace Value> Angle brackets enclose a part of a file path or URL
address that should be replaced with an actual value.
For example, <MyProduct installation folder>\bin.

Example This style is used for examples and text that is to be
typed literally. For example, “Type Hello in the edit
box.”

CTRL+C This style indicates keyboard keys. For example, “Press
ENTER.”

Function_Name This style indicates method or function names. For
example, “The wait_window statement has the
following parameters:”

[] Square brackets enclose optional arguments.

{ } Curly brackets indicate that one of the enclosed values
must be assigned to the current argument.

... In a line of syntax, an ellipsis indicates that more items
of the same format may be included. In a
programming example, an ellipsis is used to indicate
lines of a program that were intentionally omitted.

| A vertical bar indicates that one of the options
separated by the bar should be selected.

Part I

Working with Java Add-in Extensibility

2

3

1
Introducing QuickTest Professional Java
Add-in Extensibility

Welcome to QuickTest Professional Java Add-in Extensibility.

QuickTest Professional Java Add-in Extensibility enables you to provide
high-level support for third-party and custom Java controls that are not
supported out-of-the-box by the QuickTest Professional Java Add-in.

About QuickTest Professional Java Add-in Extensibility

The QuickTest Professional Java Add-in provides built-in support for a
number of commonly used Java objects. You use QuickTest Professional Java
Add-in Extensibility to extend that support and enable QuickTest to
recognize additional Java controls.

When QuickTest learns an object in the application, it recognizes the
control as belonging to a specific test object class. This determines the
identification properties and test object methods of the test object that
represents the application’s object in QuickTest.

This chapter describes: On page:

About QuickTest Professional Java Add-in Extensibility 3

Identifying the Building Blocks of Java Add-in Extensibility 4

Deciding When to Use Java Add-in Extensibility 6

Part I • Working with Java Add-in Extensibility

4

QuickTest can learn Java controls that are not supported out-of-the-box by
the Java Add-in without using Extensibility. However, when QuickTest
learns a Java control that is not supported, it recognizes the control as a
generic Java test object. This type of Java test object might not have certain
characteristics that are specific to the Java control. Therefore, when you try
to create test steps with this test object, the available identification
properties and test object methods might not be sufficient.

For example, consider a custom control that is a special type of button that
QuickTest recognizes as a plain JavaObject. JavaObject test objects do not
support simple Click operations. The JavaObject.Click method requires the
coordinates of the click as arguments. To create a test step that clicks this
custom control, you would have to calculate the button’s location and
provide the coordinates for the click.

By creating support for a Java control using Java Add-in Extensibility, you
can direct QuickTest to recognize the control as belonging to a specific test
object class, and you can specify the behavior of the test object. You can also
extend the list of available test object classes that QuickTest is able to
recognize. This enables you to create tests that fully support the specific
behavior of your custom Java controls.

Identifying the Building Blocks of Java Add-in Extensibility

The sections below describe the main elements that comprise QuickTest
object support. These elements are the building blocks of Java Add-in
Extensibility. By extending the existing support of one or more of these
elements, you can create the support you need to create meaningful and
maintainable tests.

Test Object Classes

In QuickTest, every object in an application is represented by a test object of
a specific test object class. The Java Add-in maps each supported class to a
specific test object class. QuickTest determines which test object class to use
according to this mapping.

Chapter 1 • Introducing QuickTest Professional Java Add-in Extensibility

5

When QuickTest learns a control of a Java class that is not yet supported (a
custom class), it selects the test object class to represent the control based on
the class inheritance hierarchy. QuickTest searches for the closest ancestor of
the class that is supported, and uses the test object class mapped to this
class. For example, if the custom class extends java.awt.Applet, QuickTest
recognizes the control as a JavaApplet test object. If the custom class extends
the java.awt.Canvas, QuickTest recognizes the control as a JavaObject test
object.

The icon that is used to represent this type of object in QuickTest, for
example in the Keyword View and Object Repository, is also determined by
the test object class.

Test Object Names

When QuickTest learns an object, it uses data from the object to generate a
name for the test object. A descriptive test object name enables you
distinguish between test objects of the same class and makes it easier to
identify them in your object repository and in tests.

When QuickTest learns a control of a Java class that is not yet supported and
therefore uses a test object class mapped to one of its ancestors, the test
object name is based on the rules defined for that test object class. In many
cases, this is not the ideal name for the custom control.

Test Object Identification Properties

The test object class that is mapped to the Java class determines the list of
identification properties for a test object. It also determines which of these
identification properties are used to uniquely identify the object, which
identification properties are available for checkpoints (in the Checkpoint
Properties dialog box), and which are selected by default for checkpoints.
However, the actual values of the identification properties are derived from
the definition of the custom class. Therefore, several custom classes that are
mapped to the same test object may have different definitions for the same
identification property.

Part I • Working with Java Add-in Extensibility

6

Test Object Methods

The test object class that is mapped to the Java class determines the list of
test object methods for a test object. However, the actual behavior of the test
object method depends on the definition of the specific custom class. This
means that the same test object method may operate differently for
different custom classes that are mapped to the same test object class.

Recording Events

One way to create QuickTest tests is by recording user operations on the
application. When you start a recording session, QuickTest listens for events
that occur on objects in the application and registers corresponding test
steps. Each Java object class defines which events QuickTest can listen for.
The Java Add-in determines what test step to record for each event that
occurs.

Deciding When to Use Java Add-in Extensibility

The QuickTest Professional Java Add-in provides a certain level of support
for every Java control. Before you extend support for a custom Java control,
analyze it from a QuickTest perspective to view the extent of this support
and to decide which elements of support you need to modify.

When you analyze the custom control, use the Object Spy, Keyword View,
Expert View, and the Record option. Make sure you examine each of the
elements described in “Identifying the Building Blocks of Java Add-in
Extensibility”, above.

If you are not satisfied with the existing object identification or behavior,
your control is a candidate for Java Add-in Extensibility, as illustrated in the
following situations:

➤ QuickTest might recognize the control using a test object class that does not
fit your needs. You can use Java Add-in Extensibility to map the custom class
to another existing test object class or to a new test object class that you
create.

Chapter 1 • Introducing QuickTest Professional Java Add-in Extensibility

7

➤ The test object class mapped to the control might be satisfactory, but you
would like to customize the behavior of certain test object methods or
identification properties. You can use Java Add-in Extensibility to override
the default implementation of these properties and methods with your own
custom implementation.

➤ You may find that the test object names QuickTest generates for all controls
of a certain Java class are identical (except for a unique counter) or that the
name used for the control does not clearly indicate the object it represents.
You can use Java Add-in Extensibility to modify how QuickTest names test
objects for that Java class.

➤ QuickTest may identify individual sub-controls within your custom control,
but not properly identify your main control. For example, if your main
custom control is a digital clock with edit boxes containing the hour and
minute digits, you might want changes in the time to be recognized as
SetTime operations on the clock control and not as Set operations on the
edit boxes. You can use Java Add-in Extensibility to treat a custom control as
a wrapper object for the controls it contains. QuickTest does not learn the
individual controls contained in a wrapper object.

➤ During a record session, when you perform operations or trigger events on
your control, QuickTest may not record a step at all, or it may record steps
that are not specific to the control’s behavior. Alternatively, QuickTest may
record many steps for an event that should be considered a single operation,
or it may record a step when no step should be recorded. You can use Java
Add-in Extensibility to modify the events to listen for and the test steps to
record for specific events.

Part I • Working with Java Add-in Extensibility

8

Analyzing the Default QuickTest Support and Extensibility
Options for a Sample Custom Control

The following example illustrates how you can use Java Add-in Extensibility
to improve the QuickTest support of a custom control.

The AllLights control shown below is a game application that is not
specifically supported on QuickTest.

This application operates as follows:

➤ Clicking in the grid area turns different lights on (or off), according to an
internal set of rules, and updates the LightOn and LightOff counters.

➤ Clicking the RESTART button turns off all of the lights. The LightOn and
LightOff counters are updated accordingly.

➤ Clicking in other areas has no effect.

➤ The object of the game is to turn on all of the lights, at which point a
congratulatory message is displayed.

Chapter 1 • Introducing QuickTest Professional Java Add-in Extensibility

9

If you point to this control using the Object Spy, QuickTest recognizes it as a
generic JavaApplet named AllLights (the name of the custom class). The
icon shown is the standard JavaApplet class icon.

If you record on the AllLights control without implementing support for it,
the Keyword View looks like this:

Part I • Working with Java Add-in Extensibility

10

In the Expert View, the recorded test looks like this:

Note that only generic Click steps are recorded, with arguments indicating
the low-level recording details (x- and y-coordinates and the mouse button
that performed the click). These steps are difficult to understand and
modify.

Chapter 1 • Introducing QuickTest Professional Java Add-in Extensibility

11

If you use Java Add-in Extensibility to support the AllLights control, the
result is more meaningful. QuickTest recognizes the control as an AllLights
test object named Lights and uses a customized icon. The test object
properties include relevant information, such as oncount and onlist, which
provide the total number of all lights that are on at a given moment and
their ordinal locations in the grid.

Part I • Working with Java Add-in Extensibility

12

When you are ready to create a test on the control, the ClickLight and
Restart methods are supported. These methods can be recorded or you can
select them manually in the Operation column of the Keyword View. You
can also create a checkpoint to check the value of identification properties,
for example, gameover (that indicates whether all lights are on, meaning
that you won the game).

In the Keyword View, a test may look like this:

In the Expert View, the test looks like this:

This test is easier to understand and modify.

13

2
Installing the QuickTest Professional Java
Add-in Extensibility Software
Development Kit

This chapter lists the pre-installation requirements and explains how to
install the QuickTest Professional Java Add-in Extensibility SDK.

This chapter describes: On page:

About Installing the QuickTest Professional Java Add-in Extensibility
SDK

14

Pre-Installation Requirements 14

Installing the QuickTest Professional Java Add-in Extensibility SDK 15

Uninstalling the QuickTest Professional Java Add-in Extensibility
SDK

22

Part I • Working with Java Add-in Extensibility

14

About Installing the QuickTest Professional Java Add-in
Extensibility SDK

The QuickTest Professional Java Add-in Extensibility SDK enables you to
design QuickTest support for custom Java controls. The SDK installation
includes:

➤ an API that you can use to create support for custom Java controls

➤ a plug-in for the Eclipse Java development environment that provides:

➤ wizards that guide you through the process of creating custom toolkit
support sets

The Java Add-in Extensibility wizards in Eclipse create all of the required
files, classes, and methods. These wizards also provide method stubs for
methods that you may need to implement.

➤ commands for editing the files after they are created

➤ a set of sample applications and completed Java Add-in Extensibility
projects that extend support for these applications. (The sample applications
and their support sets are installed in the <Java Add-in Extensibility SDK
installation folder>\samples folder.)

Pre-Installation Requirements

Before you install the QuickTest Professional Java Add-in Extensibility SDK:

➤ Make sure that Eclipse, version 3.1.2, is installed on your computer if you
plan to work with the Java Add-in Extensibility Eclipse plug-in. You can
download this Eclipse version, free of charge, from
http://www.eclipse.org/downloads. (Eclipse 3.1.2 requires Java Development
Kit 1.4.2 or later.)

When you install Eclipse, make sure to note the installation location on
your computer. You will need to enter this information when installing the
Java Add-in Extensibility SDK.

http://www.eclipse.org/downloads

Chapter 2 • Installing the QuickTest Professional Java Add-in Extensibility Software Development Kit

15

Note: The Java Add-in Extensibility Eclipse plug-in is required to perform
the tutorial described in Part II, “Tutorial: Learning to Create Java Custom
Toolkit Support.” Additionally, it is recommended to use this plug-in to
design at least the skeleton of your toolkit support.

➤ (Optional) Make sure that QuickTest 9.1 with the Java Add-in is installed on
the same computer. This enables the Java Add-in Extensibility Eclipse
plug-in to interact with QuickTest, enabling you to work more efficiently
when debugging and testing your custom toolkit support. For example, if
you use the Java Add-in Extensibility Eclipse plug-in on a QuickTest
computer, you can deploy the toolkit support to QuickTest for debugging by
simply clicking a button.

Note: If you do not install QuickTest and the Java Add-in before you install
the QuickTest Professional Java Add-in Extensibility SDK, any Java Add-in
Extensibility Eclipse plug-in functionality that requires interaction with
QuickTest will not be available.

Installing the QuickTest Professional Java Add-in
Extensibility SDK

You use the Setup program to install the QuickTest Professional Java Add-in
Extensibility SDK on your computer.

To install the QuickTest Professional Java Add-in Extensibility SDK:

 1 Close all instances of Eclipse and QuickTest Professional.

 2 Insert the QuickTest Professional Java Add-in CD-ROM into the CD-ROM
drive and browse to the Java Add-in Extensibility SDK folder.

Part I • Working with Java Add-in Extensibility

16

 3 Double-click the setup.msi file to start the installation.
The Welcome screen of the QuickTest Professional Java Add-in Extensibility
SDK Setup Wizard opens.

Chapter 2 • Installing the QuickTest Professional Java Add-in Extensibility Software Development Kit

17

 4 Click Next. The End-User License Agreement screen opens.

Note: If the Modify, Repair, or Remove Installation screen opens, the
QuickTest Professional Java Add-in Extensibility SDK is already installed on
your computer. Before you can install a new version, you must first uninstall
the existing one, as described in “Uninstalling the QuickTest Professional
Java Add-in Extensibility SDK” on page 22.

Read the license agreement and select the I accept the terms in the license
agreement check box.

Part I • Working with Java Add-in Extensibility

18

 5 Click Next. The Custom Setup screen opens.

All of the features displayed in the Custom Setup screen are installed
automatically during the setup.

Chapter 2 • Installing the QuickTest Professional Java Add-in Extensibility Software Development Kit

19

 6 Click Next. The Ready to Install screen opens.

Part I • Working with Java Add-in Extensibility

20

 7 Click Install. The Setup program installs the QuickTest Professional Java
Add-in Extensibility SDK and displays a dialog box in which you specify the
location of the Eclipse installation on your computer.

The Java Add-in Extensibility Eclipse plug-in is installed on Eclipse
according to the location you specify.

Note: You can install the Java Add-in Extensibility Eclipse plug-in on
additional Eclipse installations after you finish the QuickTest Professional
Java Add-in Extensibility SDK installation process. To do this, browse to the
<QuickTest Professional Java Add-in Extensibility SDL installation
folder>\eclipse folder, and run deploysdkplugins.exe. Enter an Eclipse
installation folder in the dialog box that opens, and click OK.

If you do not plan to use this plug-in, click Cancel and proceed to step 8.
Otherwise, click Browse, navigate to the Eclipse installation folder, and
select the root eclipse folder. Click OK. Then click OK to accept the Eclipse
installation location.

Chapter 2 • Installing the QuickTest Professional Java Add-in Extensibility Software Development Kit

21

 8 In the final screen, click Finish to exit the Setup Wizard.

Tip: If you do not see the QuickTest toolbar in Eclipse after the installation,
run the command line <Eclipse installation folder>\eclipse -clean on your
computer to refresh the Eclipse plug-in configuration, and then re-open
Eclipse.

Part I • Working with Java Add-in Extensibility

22

Uninstalling the QuickTest Professional Java Add-in
Extensibility SDK

If you no longer need the QuickTest Professional Java Add-in Extensibility
SDK, you can remove it from your computer.

To uninstall the QuickTest Professional Java Add-in Extensibility SDK:

 1 Close all instances of Eclipse and QuickTest Professional.

 2 Insert the QuickTest Professional Java Add-in CD-ROM into the CD-ROM
drive and browse to the Java Add-in Extensibility SDK folder.

 3 Double-click the setup.msi file to run the setup program.
The Welcome screen of the QuickTest Professional Java Add-in Extensibility
SDK Setup Wizard opens.

Chapter 2 • Installing the QuickTest Professional Java Add-in Extensibility Software Development Kit

23

 4 Click Next. The Modify, Repair, or Remove Installation screen opens.

Part I • Working with Java Add-in Extensibility

24

 5 Click Remove. The Remove Installation screen opens.

 6 Click Remove. The Setup program removes the QuickTest Professional Java
Add-in Extensibility SDK and opens the final Setup Wizard screen.

Chapter 2 • Installing the QuickTest Professional Java Add-in Extensibility Software Development Kit

25

 7 In the final screen, click Finish to exit the Setup wizard.

Note: When you uninstall the QuickTest Professional Java Add-in
Extensibility SDK, the Java Add-in Extensibility Eclipse plug-in is removed
from all Eclipse installations.

Tip: If you still see the QuickTest toolbar in Eclipse after uninstalling, run
the command line <Eclipse installation folder>\eclipse -clean on your
computer to refresh the Eclipse plug-in configuration, and then re-open
Eclipse.

Part I • Working with Java Add-in Extensibility

26

27

3
Implementing Custom Toolkit Support

You implement Java Add-in Extensibility by creating a custom toolkit
support set for each Java toolkit you want to support. The custom toolkit
support set is comprised of Java classes and XML configuration files. The
Java classes you create extend existing Java Add-in classes and the support
they provide, by overriding their methods and defining new ones.

This chapter explains how to create support for a custom toolkit. It explains
what files you have to create for the custom toolkit support set, the structure
and content of these files, and where they should be stored.

This chapter describes: On page:

About Custom Toolkit Support 28

Introducing Java Add-in Extensibility Terminology 30

Preparing to Create Support for a Custom Toolkit 30

Creating a Custom Toolkit Support Set 32

Understanding the Toolkit Support Class 35

Understanding the Toolkit Configuration File 36

Understanding the Test Object Configuration File 38

Understanding Custom Support Classes 43

Deploying and Running the Custom Toolkit Support 66

Logging and Debugging the Custom Support Class 71

Workflow for Implementing Java Add-in Extensibility 73

Part I • Working with Java Add-in Extensibility

28

About Custom Toolkit Support

When you extend QuickTest support of a custom toolkit, you create an API
that is based on the existing QuickTest Java Add-in and supplements it. This
API, or custom toolkit support set, is composed of Java classes and XML
configuration files. It provides an interface between QuickTest and the Java
application being tested, enabling QuickTest to identify the Java controls in
the application and correctly perform operations on those controls.

This chapter describes the different files, classes, methods, and definitions
that you must include in a custom toolkit support set. For more
information, refer to the QuickTest Java Add-in Extensibility API Reference
(Help > QuickTest Professional Help > Java Add-in Extensibility Developer’s
Guide > QuickTest Java Add-in Extensibility API Reference).

Note: Before you actually begin to create a custom toolkit support set, you
must plan it carefully. For more information, see “Planning Custom Toolkit
Support” on page 75.

The QuickTest Professional Java Add-in Extensibility SDK provides a plug-in
for the Eclipse Java development environment, which provides wizards that
help you create custom toolkit support sets. This plug-in also provides a set
of commands that you can use to edit the files after they are created.

When you use the Java Add-in Extensibility wizards to create the custom
toolkit support, the wizards create all of the required files, classes, and basic
methods. They also provide method stubs for additional methods that you
may need to implement.

To gain a better understanding of designing custom toolkit support sets
before you begin to design your own, perform the lessons in Part II,
“Tutorial: Learning to Create Java Custom Toolkit Support.” In these lessons
you use the Java Add-in Extensibility wizards in Eclipse to create custom
support for sample custom controls.

Chapter 3 • Implementing Custom Toolkit Support

29

Even if you do not regularly use Eclipse to develop Java software, it is
recommended that you use it for Java Add-in Extensibility, at least for
performing the tutorial. It is generally simpler to create the skeleton of the
custom toolkit support with the help of the Java Add-in Extensibility
wizards than to do it manually. After you have completed this initial stage,
you can continue the design of the toolkit support in the development
environment of your choice.

For information on setting up Eclipse and the QuickTest Professional Java
Add-in Extensibility Eclipse plug-in, as well as using the plug-in, see
“Installing the QuickTest Professional Java Add-in Extensibility Software
Development Kit” on page 13.

Note: If you choose not use the Java Add-in Extensibility wizards in Eclipse,
you can still extend full support for the custom toolkit manually using the
information in this chapter.

Part I • Working with Java Add-in Extensibility

30

Introducing Java Add-in Extensibility Terminology

The following terminology, specific to QuickTest Java Add-in Extensibility, is
used in this guide:

Native toolkit. A toolkit that implements drawing using native API. Abstract
Windows Toolkit (AWT) and Standard Widgets Toolkit (SWT) are native
toolkits. Java Foundation Classes (JFC) is not a native toolkit, as it extends
AWT.

Basic user interface component. In the AWT toolkit: java.awt.Component
In the SWT toolkit: org.eclipse.swt.widgets.Widget

Custom toolkit. A set of classes, all extending the basic user interface
component of the same native toolkit.

Custom class. A Java class that extends java.awt.Component or
org.eclipse.swt.widgets.Widget for which you create QuickTest support.

Custom toolkit support. Extends QuickTest ability to recognize controls in a
custom toolkit as test objects, view and check their properties, and run tests
on them. (In this guide, custom toolkit support is also referred to as custom
support or toolkit support.)

Preparing to Create Support for a Custom Toolkit

You can extend QuickTest support for any toolkit containing classes that
extend java.awt.Component or org.eclipse.swt.widgets.Widget.

When you create a custom toolkit support set for each custom toolkit, the
first step is to determine the set of classes that comprise your custom toolkit.
For the purpose of Extensibility, a custom toolkit is a set of classes that
extend the basic user interface component of the same native toolkit.

This does not prevent you from creating support for a toolkit containing
classes that extend java.awt.Component, as well as those that extend
org.eclipse.swt.widgets.Widget. Such a toolkit is simply seen as two
separate custom toolkits, and you must create support separately for each set
of classes.

Chapter 3 • Implementing Custom Toolkit Support

31

Similarly, if you have user interface control classes that extend the basic user
interface component of the same native toolkit, and are packaged in
separate Java archives or class folders, you can treat them as one custom
toolkit. This means you can create a single custom toolkit support set for all
those classes.

Within a custom toolkit, you extend QuickTest support for each control (or
group of similar controls) separately. You do this by creating custom support
classes for the different custom control classes in the toolkit. (In this guide,
custom support classes are also referred to as support classes.)

Before you extend QuickTest support for a custom control make sure you
have full access to the control and understand its behavior. You must have
an application in which you can view the control in action, and also have
access to the class that implements it.

You do not need to modify any of the custom control’s sources to support it
in QuickTest, but you do need to be familiar with them. Make sure you
know which members (fields and methods) you can access externally, the
events for which you can listen, and so forth. You use this information
when you design the support class. To implement the interface between
QuickTest and the custom class, the support class uses custom class
members. The support class can only access the members of the custom class
that are defined as public.

In addition, you need access to the compiled classes in a Java archive or class
folder because you add them to the classpath when compiling the support
classes.

Part I • Working with Java Add-in Extensibility

32

Creating a Custom Toolkit Support Set

After you determine the set of custom classes for which you want to extend
QuickTest support, you create the custom toolkit support set.

A Java Add-in Extensibility custom toolkit support set comprises the
following java classes and XML configuration files:

➤ One toolkit support class, described on page 35

➤ One toolkit configuration file, described on page 36

➤ One or more test object configuration files (if this support set introduces
new test object classes or extends existing ones), described on page 38

➤ Custom support classes (mapped to the custom classes), described on
page 43

The Java classes of the custom toolkit support set are packaged in a toolkit
root package named com.mercury.ftjadin.qtsupport.<Custom Toolkit
Name>. Within this package, the custom support classes are stored in a sub-
package named com.mercury.ftjadin.qtsupport.<Custom Toolkit Name>.cs.
The configuration files are stored under the QuickTest installation folder
and reference the java packages. For more information, see “Deploying and
Running the Custom Toolkit Support” on page 66.

To create a custom toolkit support set:

 1 Choose a unique name to represent the custom toolkit.

You use the custom toolkit name to compose the name of the toolkit
support class and its packaging. The name must start with a letter and can
contain only alphanumeric characters and underscores.

Providing unique toolkit names allows a single QuickTest installation to
support numerous custom toolkit support sets simultaneously. For this
reason, a name such as MyToolkit is not recommended.

 2 Create the toolkit root package:
com.mercury.ftjadin.qtsupport.<Custom Toolkit Name>.

 3 Create the toolkit support class in the toolkit root package. Name the class
<Custom Toolkit Name>Support.java.
For information on the content of this class, see “Understanding the Toolkit
Support Class” on page 35.

Chapter 3 • Implementing Custom Toolkit Support

33

 4 Create the toolkit configuration file. Name the file:
<Custom Toolkit Name>.xml.
For information on the content of this file, see “Understanding the Toolkit
Configuration File” on page 36.

 5 Consider the behavior (fields and methods) of the custom controls, and
map the custom controls to a QuickTest test object class. For more
information, see “Mapping a Custom Control to a Test Object Class” on
page 49.

If you require any new QuickTest test object classes to map to controls in the
custom toolkit, create the test object configuration file. Name the file
<Custom Toolkit Name>TestObjects.xml.

For information on the content of this file and the locations in which to
store it, see “Understanding the Test Object Configuration File” on page 38.

Note: In most cases, a custom toolkit support set has only one test object
configuration file, named <Custom Toolkit Name>TestObjects.xml.
However, you could store the definitions for different test object classes in
different test object configuration files. You create all of the test object
configuration file according to the QuickTest Test Object Schema Help (Help >
QuickTest Professional Help > QuickTest Advanced References > QuickTest
Test Object Schema). All of the test object configuration files must be
located in the same folders, specified in “Deploying and Running the
Custom Toolkit Support” on page 66.

QuickTest loads of all the test object class definitions (from all of the test
object configuration files) when it opens, regardless of the custom toolkit for
which they were created. This enables you to use the same test object class
definitions when supporting different custom toolkits.

 6 Create the com.mercury.ftjadin.qtsupport.<Custom Toolkit Name>.cs
support class sub-package.

Part I • Working with Java Add-in Extensibility

34

 7 In the support class sub-package, create the custom support classes for the
classes you want to support.

In most cases, you name the custom support class <Custom Class Name>CS.
If your custom toolkit contains classes from different packages, you might
have custom classes with the same name. In this case, you must provide
different names for the custom support classes, because they are stored in
one package. For information on the content of support classes, see
“Understanding Custom Support Classes” on page 43.

The following example illustrates the structure of the java classes in the
custom toolkit support set for the custom toolkit named javaboutique.
Within this toolkit, two custom classes are supported: AllLights and
AwtCalc.

 8 If you develop the custom support using the Java Add-in Extensibility
wizard, the wizard defines the required environment variables. If you do not
use the wizard, add you must add the following items to the build path (the
classpath used by the compiler):

➤ <Java Add-in Extensibility SDK installation
folder>\eclipse\plugins\com.mercury.java.ext.lib_1.0.0\mic.jar

➤ <Java Add-in Extensibility SDK installation
folder>\eclipse\plugins\com.mercury.java.ext.lib_1.0.0\jacob.jar

➤ The locations of the compiled custom classes (these locations can be class
folders or Java archives)

Note: If, at any time, the custom controls are modified in a way that might
affect the support, you should re-compile the support classes, adjusting
them if necessary.

Chapter 3 • Implementing Custom Toolkit Support

35

Understanding the Toolkit Support Class

Every custom toolkit support set has one toolkit support class that indicates
the native toolkit that the custom toolkit extends.

Note: When all of the classes in a custom toolkit extend the basic user
interface class of another toolkit (for example java.awt.Component) we say
the custom toolkit extends that toolkit (in this example: AWT).

By extending the custom toolkit support class from the correct native toolkit
support set, you ensure that your toolkit inherits all of the necessary utility
methods for basic functionality (such as event handling and dispatching).

The QuickTest Professional Java Add-in provides custom toolkit support
classes for AWT, SWT, and JFC (Swing). When you create new Java Add-in
Extensibility custom toolkit support classes you extend one of these, or the
custom toolkit support class of other existing Extensibility custom toolkit
support sets.

The inheritance hierarchy of toolkit support classes reflects the hierarchy of
the custom toolkits. For example, the JFCSupport class extends the class
AWTSupport. A toolkit support class of a toolkit that extends JFC will extend
JFCSupport thereby inheriting AWTSupport functionality. No further
implementation is required in this class.

For example, this is the toolkit support class for the Javaboutique custom
toolkit, which extends the AWT native toolkit:

package com.mercury.ftjadin.qtsupport.javaboutique;
import com.mercury.ftjadin.support.awt.AwtSupport;
public class JavaboutiqueSupport extends AwtSupport {}

Part I • Working with Java Add-in Extensibility

36

The following table shows which toolkit support class to extend, if you want
to extend the toolkit support classes provided for AWT, SWT, or JFC.

Understanding the Toolkit Configuration File

Every custom toolkit support set has one toolkit configuration file named
<Custom Toolkit Name>.xml, which is stored under the QuickTest
installation folder. This file provides the information that QuickTest needs
to find the classes of the custom toolkit support set.

The toolkit configuration file specifies:

➤ The location of the toolkit support class

➤ The location of the compiled support classes (a class folder or Java archive)

QuickTest adds this location to the Java application classpath when the
application runs, enabling the application to find the required support
classes.

➤ The support toolkit description

➤ A mapping of each custom class to its custom support class

A single custom support class can be mapped to more than one custom
class, but each custom class can be mapped to only one custom support
class.

To extend the toolkit support
class for:

Extend:

AWT com.mercury.ftjadin.support.awt.AwtSupport

JFC11 (Swing) com.mercury.ftjadin.support.jfc.JFCSupport

SWT com.mercury.ftjadin.support.swt.SwtSupport

Chapter 3 • Implementing Custom Toolkit Support

37

The following example illustrates the configuration file of the javaboutique
toolkit support, with one supported custom class—AwtCalc:

<?xml version="1.0" encoding="UTF-8"?>
<Controls

class="com.mercury.ftjadin.qtsupport.javaboutique.javaboutiqueSupport"
SupportClasspath="C:\JE\workspace\javaboutiqueSupport\bin"
description="Javaboutique toolkit support.">
<Control Type="org.boutique.toolkit.AwtCalc">

<CustomRecordReplay>
<ImplementationClass>

com.mercury.ftjadin.qtsupport.javaboutique.cs.AwtCalcCS
</ImplementationClass>

</CustomRecordReplay>
</Control>

</Controls>

For information on the structure and syntax of this file, refer to the
QuickTest Java Add-in Extensibility Toolkit Configuration Schema Help (Help >
QuickTest Professional Help > Java Add-in Extensibility Developer’s Guide >
QuickTest Java Add-in Extensibility Toolkit Configuration Schema).

For information on where to store this file, see “Deploying and Running the
Custom Toolkit Support” on page 66.

Part I • Working with Java Add-in Extensibility

38

Understanding the Test Object Configuration File

If you map custom controls to new (or modified) test object classes, you
must create one or more test object configuration files in the custom toolkit
support set. For more information, see “Mapping a Custom Control to a Test
Object Class” on page 49.

In the test object configuration files, you define the test object classes (for
example, their identification properties, the test object methods they
support, and so forth). Each time you run QuickTest, it reads all of the test
object configuration files and merges the information for each test object
class from the different files into one test object definition. For more
information, see “Understanding How QuickTest Merges Test Object
Configuration Files” on page 41.

A test object class definition can include:

➤ the name of the new test object class and its attributes, including the base
class—the test object class that the new test object class extends

➤ the path of the icon file to use for this test object class (Optional. If not
defined, the JavaObject icon is used.) The icon file must be in an
uncompressed .ico format.

➤ the methods of the new test object, including the following information for
each method:

➤ the arguments, including the argument type (String or Variant) and
direction (In or Out)

➤ whether the argument is mandatory, and, if not, its default value

➤ the description (shown as a tooltip in the Keyword View, Expert View,
and Step Generator)

➤ the Documentation string (shown in the Documentation column of the
Keyword View and in the Step Generator)

➤ the return value type

➤ the test object method that is selected by default in the Keyword View and
Step Generator when a step is generated for an object of this class

Chapter 3 • Implementing Custom Toolkit Support

39

➤ the identification properties of the new test object

➤ the identification properties that are used for the object description

➤ the identification properties that are available for use in checkpoints

➤ the identification properties that are selected by default for checkpoints
(in QuickTest)

Note: You can also create a definition for an existing test object class in the
test object configuration file. This definition is added to the existing
definition of this test object class, affecting all objects of this class. It is
therefore not recommended to modify existing test object classes in this
way.

For example, if you add an identification property, it appears in QuickTest in
the list of properties for all objects of this class, but has no value unless it is
implemented in the specific object’s class.

If you add a test object method, it appears in the list of test object methods
in QuickTest, but if you use the test object method in a test, and it is not
implemented in the specific object’s support class, a run-time error occurs.

Part I • Working with Java Add-in Extensibility

40

The following example shows parts of the Calculator test object class
definition in the javaboutique test object configuration file:

<ClassInfo BaseClassInfoName="JavaApplet"
DefaultOperationName="Calculate" Name="Calculator">
<IconInfo
IconFile="C:\Program Files\Mercury Interactive\QuickTest Professional Java

Add-in Extensibility SDK\samples\Javaboutique\Calculator_3D.ico"/>
<TypeInfo>

<Operation ExposureLevel="CommonUsed" Name="Calculate"
PropertyType="Method">
<Description>Builds the whole calculation process</Description>
<Documentation><![CDATA[Perform %a1 operation with %a2 and

%a3 numbers]]></Documentation>
<Argument Direction="In" IsMandatory="true" Name="operator">

<Type VariantType="Variant"/>
</Argument>
<Argument Direction="In" IsMandatory="true" Name="num1">

<Type VariantType="Variant"/>
</Argument>
<Argument Direction="In" IsMandatory="true" Name="num2">

<Type VariantType="Variant"/>
</Argument>

</Operation>
...

</TypeInfo>
<Properties>

<Property ForVerification="true" ForDefaultVerification="true"
Name="value"/>

<Property ForVerification="true" Name="objects count"/>
<Property Name="width"/>
...
<Property ForDescription="true" Name="toolkit class"/>
...

</Properties>
</ClassInfo>

Chapter 3 • Implementing Custom Toolkit Support

41

This example shows that the Calculator test object class extends the
JavaApplet test object class. It uses the Calculator_3D.ico icon file, and its
default test object method is Calculate (which has three mandatory input
parameter of type Variant:operator, num1 and num2).

The following identification properties are defined for the Calculator test
object class:

➤ value. Available for checkpoints and selected by default in the Checkpoint
Properties dialog box in QuickTest.

➤ objects count. Available for checkpoints but not selected by default.

➤ toolkit class. Used for the test object description but not available for
checkpoints.

Note: When you modify a test object configuration file, the changes take
effect only after you restart QuickTest.

You can practice creating support for a custom control that is mapped to a
new test object class in the tutorial lesson “Learning to Support a Complex
Control” on page 225.

For information on the structure and syntax of this file, refer to the
QuickTest Test Object Schema Help (Help > QuickTest Professional Help >
QuickTest Advanced References > QuickTest Test Object Schema).

For information on the location in which to store this file, see “Deploying
and Running the Custom Toolkit Support” on page 66.

Understanding How QuickTest Merges Test Object
Configuration Files

Each time you open QuickTest, it reads all of the test object configuration
files located in the <QuickTest installation folder>\dat\Extensibility\Java
folder. It then merges the information for each test object class from the
different files into a single test object definition, according to the priority of
each test object configuration file.

Part I • Working with Java Add-in Extensibility

42

You define the priority of each test object configuration file using the
Priority attribute of the TypeInformation element. For more information,
refer to the QuickTest Test Object Schema Help (Help > QuickTest Professional
Help > QuickTest Advanced References > QuickTest Test Object Schema).

Note: If the priority of a test object configuration file is higher than the
existing class definitions, it overrides any existing test object class
definitions, including built-in QuickTest information. For this reason, be
aware of any built-in functionality that will be overridden before you
change the priority of a test object configuration file.

The following sections describe the process followed when ClassInfo,
ListOfValues, and Operation elements are defined in multiple test object
configuration files.

ClassInfo Elements

➤ If a ClassInfo element is defined in a test object configuration file with a
higher priority, the information is appended to any existing definition. If a
conflict arises between ClassInfo definitions in different files, the definition
in the file with the higher priority overrides (replaces) the information in
the file with the lower priority.

➤ If a ClassInfo element is defined in a test object configuration file with a
priority that is equal to or lower than the existing definition, the differing
information is appended to the existing definition. If a conflict arises
between ClassInfo definitions in different files, the definition in the file with
the lower priority is ignored.

ListOfValues Elements

➤ If a conflict arises between ListOfValues definitions in different files, the
definition in the file with the higher priority overrides (replaces) the
information in the file with the lower priority (the definitions are not
merged). In this case, QuickTest goes through all the classes and reattaches
the enumeration values for arguments of type Enumeration.

Chapter 3 • Implementing Custom Toolkit Support

43

➤ If a ListOfValues definition overrides an existing list, the new list is updated
for all arguments of type Enumeration that are defined for operations of
classes in the same test object definition file.

➤ If a ListOfValues is defined in a configuration file with a lower priority than
the existing definition, the lower priority definition is ignored.

Operation Elements

➤ Operation element definitions are either added, ignored, or overridden,
depending on the priority of the configuration file.

➤ If an Operation element is defined in a test object configuration file with a
higher priority, the operation is added to the existing definition for the
class. If a conflict arises between Operation definitions in different files, the
definition in the file with the higher priority overrides (replaces) the
definition with the lower priority (the definitions are not merged).

Understanding Custom Support Classes

In a custom toolkit support set, there is a custom support class for each
supported custom class. The custom support class provides the actual
interface between the custom class methods and the QuickTest capabilities,
thus providing the QuickTest Java Add-in Extensibility.

Note: A single custom support class can provide support for more than one
custom class. The support class can be mapped (in the toolkit configuration
file described on page 36) to more than one custom class. This support class
then provides support for the custom classes that are mapped to it, and for
their descendants.

The first step in creating the support classes is determining the class
inheritance hierarchy. This includes deciding the order in which you create
support for classes within the custom toolkit, and determining which
existing support class the new support class must extend. For more
information, see “Determining the Inheritance Hierarchy for a Support
Class,” below.

Part I • Working with Java Add-in Extensibility

44

The second step is deciding what test object class to map to the custom
control. For more information, see “Mapping a Custom Control to a Test
Object Class” on page 49.

After you make the preliminary decisions regarding hierarchy and test
object class, you are ready to write the main part of the QuickTest Java
Add-in Extensibility—the custom support class.

Each custom support class determines what test object class is mapped to
the custom control it supports and how the identification properties and
test object methods are implemented.

The custom support class inherits the methods of its superclass. You can use
the super implementation, override the methods, or add new ones, as
needed. In support classes, you use the following types of methods:

➤ Identification property support methods. Used to support identification
properties. For more information, see “Supporting Identification Properties”
on page 50.

➤ Replay methods. Used to support test object methods. For more
information, see “Supporting Test Object Methods” on page 53.

➤ Event handler methods. Used to provide support for recording on the
custom control. This part of the Extensibility is optional. Even if you do not
implement support for recording, you still have full support for the basic
QuickTest capabilities on the custom control (for example, learning the
object, running tests on it, checking properties and values, and so forth).
If the custom class extends SWT, you cannot create support for the
QuickTest recording capability. For more information, see “Supporting the
Record Option” on page 56.

➤ Utility methods. Used to control the Extensibility. These methods do not
support the specific functionality of the custom class; they control the
interface between QuickTest and the custom application. Different utility
methods are used for different purposes.

You can find a list of the available utility methods in the Support Class
Summary on page 65. The methods are described in detail, in the following
sections: “Supporting the Record Option” on page 56, “Supporting Top-
Level Objects” on page 59, and “Supporting Wrapper Controls” on page 59.

Chapter 3 • Implementing Custom Toolkit Support

45

When you implement these methods in the custom support class, you can
use different methods supplied in the MicAPI. For more information, see
“Using Methods from MicAPI” on page 66, and refer to the QuickTest Java
Add-in Extensibility API Reference (Help > QuickTest Professional Help > Java
Add-in Extensibility Developer’s Guide > QuickTest Java Add-in Extensibility
API Reference).

For a short summary of the types of methods a custom class contains, see
“Support Class Summary” on page 65.

Determining the Inheritance Hierarchy for a Support Class

Within the custom toolkit for which you create QuickTest support, you
must decide:

➤ Which custom classes must have matching support classes, and which can
be supported by the support classes of their superclasses.

➤ Which existing support class each new support class extends.
(This also determines the order in which support classes must be created.)

Understanding the Hierarchy of Support Classes

The hierarchy of the support classes must reflect the hierarchy of the custom
classes.

The following example illustrates the hierarchy of the TextField class
support. The column on the left illustrates the hierarchy of the TextField
support class, TextFieldCS. The column on the right illustrates the hierarchy
of the TextField class in the AWT toolkit.

In this example, a support class exists for every custom class, but this is not
mandatory.

com.mercury.ftjadin.qtsupport.awt.cs.TextFieldCS java.awt.TextField

com.mercury.ftjadin.qtsupport.awt.cs.TextComponentCS java.awt.TextComponent

com.mercury.ftjadin.qtsupport.awt.cs.ComponentCS java.awt.Component

com.mercury.ftjadin.infra.abstr.ObjectCS java.lang.Object

Part I • Working with Java Add-in Extensibility

46

When QuickTest learns an object, it can always identify the class name of
the object. According to the class, QuickTest determines the inheritance
hierarchy of this class. QuickTest then searches the toolkit configuration
files for the support class that is mapped to that class. If no support class is
found, QuickTest searches for a support class that is mapped to the support
class’ immediate superclass, and so on, until a matching support class is
found. Support classes can be provided by Mercury Interactive or any other
vendor. If no other support class is found, AWT objects are supported by the
ComponentCS class; SWT objects are supported by the WidgetCS class.

The following example illustrates the hierarchy of the ImageButton class
support. The column on the left illustrates the hierarchy of the ImageButton
support class, ImageButtonCS. The column on the right illustrates the
hierarchy of the ImageButton class in the AWT toolkit.

No support class is mapped to the superclass of ImageButton, ImageControl.
Therefore, the support class for ImageButton extends the support class
mapped to the higher level—CanvasCS.

Determining Which Support Classes to Create

When determining which custom classes require support classes, you must
consider the functionality and hierarchy of the custom classes.

If the support provided for a custom class’ superclass is sufficient to support
this custom class (meaning the custom class has no specific behavior that
needs to be specifically supported), there is no need to create a support class
for it.

com.mercury.ftjadin.qtsupport.custom.cs.ImageButtonCS com.demo.ImageButton

com.mercury.ftjadin.qtsupport.awt.cs.CanvasCS

com.demo.ImageControl

com.mercury.ftjadin.qtsupport.awt.cs.ComponentCS

java.awt.Canvas

com.mercury.ftjadin.infra.abstr.ObjectCS

java.awt.Component

java.lang.Object

Chapter 3 • Implementing Custom Toolkit Support

47

Otherwise, you must create a new support class that extends the superclass’
support class and map it to the custom class (in the toolkit configuration file
described on page 36). In the new support class you need to implement only
those elements of support that are not sufficiently supported by the
superclass’ support class.

If more than one custom class extends the same superclass, and they share
an identification property or test object method that requires the same
support, provide this support in a support class for the superclass, and not
separately in each class’ support class.

Determining Which Classes the New Support Classes Extend

To determine the existing support class that your new support class needs to
extend, you examine the hierarchy of the custom class and check which
support classes are mapped to its superclasses.

When you use the Java Add-in Extensibility wizards to create the custom
toolkit support, the New Custom Support Class wizard determines which
class to extend for each support class you create. It displays the custom class
hierarchy and informs you which existing support class is the base
(superclass) for the new support class. For more information, see “Custom
Class Selection Screen” on page 99.

To determine the support class inheritance without the help of the Java
Add-in Extensibility wizard:

 1 Determine the inheritance hierarchy of the custom class.

 2 Search the toolkit configuration files for a support class that is already
mapped to a superclass of the custom class.

You must search the toolkit configuration files that are part of the QuickTest
Professional Java Add-in, as well as in those that are part of Extensibility
custom toolkit support. These files are located in <QuickTest Installation
Folder> bin\java\classes\builtin and in <QuickTest Installation Folder>
bin\java\classes\extension, respectively.

 3 Create the support class for the custom class, extending the support class
that you found mapped to its closest superclass.

Part I • Working with Java Add-in Extensibility

48

Note: If the closest support class you found is part of the QuickTest
Professional Java Add-in, it is located in the com.mercury.ftjadin.support
package. In this case, instead of extending it directly, you must extend the
class with the same name provided in the com.mercury.ftjadin.qtsupport
package.

The example below uses the ImageButton custom control to illustrate the
process of determining the hierarchy of a support class.

This is the hierarchy of the ImageButton class:

ImageButton's nearest superclass, com.demo.ImageControl, is not mapped
to a support class. The next superclass, java.awt.Canvas is mapped to
com.mercury.ftjadin.support.awt.cs.CanvasCS. This is part of the QuickTest
Professional Java Add-in, so ImageButtonCS will extend the CanvasCS class
in the qtsupport package: com.mercury.ftjadin.qtsupport.awt.cs.CanvasCS.
This is the ImageButtonCS class definition:

package com.mercury.ftjadin.qtsupport.imagecontrols.cs;
import com.mercury.ftjadin.qtsupport.awt.cs.CanvasCS;
...
public class ImageButtonCS extends CanvasCS {};

java.lang.Object
java.awt.Component

java.awt.Canvas
com.demo.ImageControl

com.demo.ImageButton

Chapter 3 • Implementing Custom Toolkit Support

49

Mapping a Custom Control to a Test Object Class

The test object class that is mapped to a custom control determines the
identification properties and test object methods that QuickTest uses for the
control. The values and behavior of these properties and methods are
determined by support methods implemented in the custom control’s
support class.

You can map the custom control to an existing test object class that has all
of the identification properties and test object methods relevant to the
custom control. Alternatively, you can create a new test object class
definition (in a test object configuration file) and map the custom control to
the new test object class.

Each new test object class is based on an existing one, extending its set of
identification properties and test object methods. All test object classes
extend the JavaObject class. If an existing test object class definition
includes some, but not all, of the identification properties and test object
methods that you need, create a new test object class that extends it. (It is
not recommended to add identification properties and test object methods
to an existing test object class because that would affect all of the test
objects of this class.)

You map the custom control to a test object class by implementing the
to_class_attr method in the support class, to return the name of the
relevant test object class. If the test object class returned by the inherited
to_class_attr method is appropriate for the custom control, you do not have
to override the to_class_attr method in the new support class.

The to_class_attr method provides the value for the Class Name
identification property. When QuickTest learns an object, it finds the
support class to use for this object, as described in “Understanding the
Hierarchy of Support Classes” on page 45. QuickTest then uses the Class
Name identification property to determine which test object class is mapped
to this control. QuickTest then uses this test object class name to find the
test object definition, which can be taken from either an existing QuickTest
test object, or from a new test object configuration file that you create.

For more information, see “Understanding the Test Object Configuration
File” on page 38.

Part I • Working with Java Add-in Extensibility

50

Supporting Identification Properties

The identification properties of a custom control are defined in the test
object class. This can be an existing QuickTest test object class or one you
define in a test object configuration file.

Support for the identification properties is provided in the support class by
implementing a method with the following signature for each identification
property:

public String <identification property name>_attr(Object obj)

The method name must contain only lower case letters (even if the property
name in the test object configuration file contains upper case letters). The
obj argument is the object that represents the custom control.

Within the method, you return the value of the required property by using
the custom class’ public members. (Note that the support class can access
only those custom class members that are defined as public.)

For example, the width_attr method implements support for a width
identification property:

public String width_attr(Object obj) {
return Integer.toString(((Component) obj).getBounds().width);

}

When your support class extends the support class of a functionally similar
control, you do not have to implement support for those identification
properties that apply without change to the custom control. For example,
many controls have a label property. If the implemented support of the
label property adequately supports the custom control, you do not need to
override the parent’s method.

Chapter 3 • Implementing Custom Toolkit Support

51

Note: You might inherit (or create) support methods for identification
properties that are not included in the test object class definition. These
identification properties are not displayed in QuickTest in the Object Spy or
in the Checkpoint Properties dialog box. You can access these identification
properties by using the GetROProperty method. For more information on
the GetROProperty method, refer to the QuickTest Professional Object Model
Reference.

To cover identification properties of the custom control that are not
supported by the parent support class, add new methods in your support
class. To cover identification properties that have the same name as
supported ones, but a different implementation, override the parent
methods.

Note: In JavaTree and JavaList test objects, there are identification properties
named tree_content and list_content (respectively) that are used in
checkpoints. QuickTest calculates these properties based on the count
identification property and the GetItem test object method, as follows:
QuickTest retrieves the count identification property, and calls the GetItem
test object method for each item in the tree or list (from zero to count-1).

If you override the implementation of count_attr or
GetItem_replayMethod, you must make sure that they return the type of
information that QuickTest expects. For example, count_attr must return a
numeric value and GetItem_replayMethod must return an item for each
index from zero to count-1.

If you map a custom control to the JavaTree or JavaList test object classes,
and the custom support class does not inherit the count_attr and
GetItem_replayMethod methods, you must implement them to return the
information that QuickTest expects.

Part I • Working with Java Add-in Extensibility

52

Special Identification Property Support Methods

The following basic identification property support methods are commonly
used when creating support classes. In Part II, “Tutorial: Learning to Create
Java Custom Toolkit Support,” you can practice using some of these
methods:

➤ The to_class_attr method (described in “Mapping a Custom Control to a
Test Object Class” on page 49) supports the Class Name identification
property. It provides the mapping of the custom control to a test object
class, by returning the name of the relevant test object class. QuickTest uses
this property to determine which test object class is mapped to the custom
control.

➤ The name of a test object is determined by its tag property. All AWT support
classes extend ObjectCS. ObjectCS implements the tag_attr method to
check a set of properties in a specified order and to return the first valid
value it finds. A valid value is one that is not empty and does not contain
spaces.

In the ObjectCS class, the tag_attr method checks the following properties
(in the order in which they are listed):

➤ label

➤ attached_text (for more details, see below)

➤ unqualified custom class (the name of the class without the package
name)

To change the name of a custom control test object, do not override the
tag_attr method in the support class. Instead, make use of its existing
implementation and override the method label_attr.

➤ ObjectCS, which all AWT support classes extend, also implements the
attached_text_attr method. It searches for adjacent static-text objects close
to the custom control and returns their text. This mechanism is useful for
controls such as edit boxes and list boxes, which do not have their own
descriptive text, but are accompanied by a label.

You can create support for a custom static-text control to enable QuickTest
to use its label property as the attached text for an adjacent control. For
more information, see “New QuickTest Custom Static-Text Support Class
Wizard” on page 132.

Chapter 3 • Implementing Custom Toolkit Support

53

➤ The class_attr method returns the name of the test object’s generic type
(object, button, edit, menu, static_text, and so forth). This is not the specific
test object class mapped to the object, but the general type of test object
class. If you are creating a support class for a static-text control, you must
implement the class_attr method to return the string static_text. Otherwise,
do not override it.

➤ The value_attr method is not mandatory, but it implements the value
identification property, which is commonly used to represent the current
state of the control. For example, the value_attr method may return the
name of the currently selected tab in a tab control, the path of the currently
selected item in a tree, the currently displayed item in a menu, and so forth.
If you are creating a new test object class, and the term current state is
relevant, implement support for a value identification property. If your
support class inherits a value_attr method, verify that its implementation is
correct for the supported control.

Supporting Test Object Methods

The test object methods of a custom control are defined in the test object
class. This can be an existing QuickTest test object class or one you define in
a test object configuration file.

Support for the test object methods is provided in the support class by
implementing a replay method with the following signature for each test
object method:

public Retval <test object method name>_replayMethod(Object obj, <… list of
String arguments>)

The obj argument is the object that represents the custom control.

Replay methods accept only strings as arguments, and QuickTest passes all
arguments to them in a string format. To use the boolean or numeric value
of the argument, use MicAPI.string2int.

Within the replay method, you carry out the required operation on the
custom control by using the custom class public methods or by dispatching
low-level events using MicAPI methods. (Note that the support class can
access only those custom class methods that are defined as public.) For more
information, refer to the QuickTest Java Add-in Extensibility API Reference.

Part I • Working with Java Add-in Extensibility

54

For example, Click_replayMethod (in the ImageButtonCS class), supports
the Click test object method on an ImageButton custom control:

public Retval Click_replayMethod(Object obj) {
ImageButton button = (ImageButton) obj;
MicAPI.mouseClick((Object) button, button.getWidth() / 2,

button.getHeight() / 2);
Return Retval.OK;

}

All replay methods must return a MicAPI.Retval value. The Retval value
always includes a return code, and can also include a string return value.
The return code provides information to QuickTest about the success or
failure of the test object method. The return value can be retrieved and used
in later steps of a QuickTest test.

For example, the EmulatedTextField control is a custom text box. The
GetValue_replayMethod (in the EmulatedTextFieldCS class) returns the
text from this custom text box in addition to the return code OK:

public Retval GetValue_replayMethod(Object obj) {
String myvalue;
EmulatedTextField emt = (EmulatedTextField)obj;
myvalue = emt.getText();
return new Retval(RError.E_OK, myvalue);

}

For more information on the MicAPI.Retval values recognized by QuickTest,
refer to the QuickTest Java Add-in Extensibility API Reference (Help > QuickTest
Professional Help > Java Add-in Extensibility Developer’s Guide > QuickTest
Java Add-in Extensibility API Reference).

When your support class extends the support class of a functionally similar
control, you do not have to implement support for those test object
methods that apply without change to the custom control. For example,
many controls have a Click test object method. If the implemented support
of the Click test object method adequately supports the custom control, you
do not need to override the parent’s method.

Chapter 3 • Implementing Custom Toolkit Support

55

To cover test object methods of the custom control that are not supported
by the parent support class, add new methods in your support class. To
cover test object methods that have the same name as supported ones, but a
different implementation, override the parent methods.

Note: In JavaTree and JavaList test objects, there are identification properties
named tree_content and list_content (respectively) that are used in
checkpoints. QuickTest calculates these properties based on the count
identification property and the GetItem test object method, as follows:
QuickTest retrieves the count identification property, and calls the GetItem
test object method for each item in the tree or list (from zero to count-1).

If you override the implementation of count_attr or
GetItem_replayMethod, you must make sure that they return the type of
information that QuickTest expects. For example, count_attr must return a
numeric value and GetItem_replayMethod must return an item for each
index from zero to count-1.

If you map a custom control to the JavaTree or JavaList test object classes,
and the custom support class does not inherit the count_attr and
GetItem_replayMethod methods, you must implement them to return the
information that QuickTest expects.

Part I • Working with Java Add-in Extensibility

56

Supporting the Record Option

You can extend QuickTest support of the recording option only for controls
that extend AWT.

If you do not implement support for recording, you still have full support
for all of the other QuickTest capabilities on the custom control, for
example, learning the object, running tests on it, checking properties and
values, and so forth.

To support recording on a custom control, the custom support class must:

➤ Implement listeners for the events that you want to trigger recording.

➤ Register the listeners on the custom controls when the are created.

➤ Send Record events to QuickTest when the relevant events occur.

➤ Override low-level recording if you want to record more complex
operations. For example, if you want to record a JavaEdit.Set operation, you
must override the recording of individual keyboard inputs. If you want to
record selecting an option in a menu, you must override recording of mouse
clicks.

In Part II, “Tutorial: Learning to Create Java Custom Toolkit Support” you
can practice creating support for recording on custom controls.

To add support for recording to a custom support class:

 1 Include the listeners in the support class signature. For example, the
ImageButton support class ImageButtonCS listens for Action events:

public class ImageButtonCS extends CanvasCS implements ActionListener {}

 2 Use a constructor for the support class to generate a list containing all of the
listeners that you want to register on the custom control, and the methods
used to add and remove these listeners.

You do this by calling the utility method addSimpleListener for each
listener. This method accepts three arguments of type String: The name of
the listener, the name of the registration method, and the name of the
method used to remove the listener.

Chapter 3 • Implementing Custom Toolkit Support

57

In the example below, the Action listener is listed for registration on
ImageButton custom controls:

public ImageButtonCS() {
addSimpleListener("ActionListener", "addActionListener",

"removeActionListener");

The first time QuickTest identifies the custom control, it creates an instance
of the support class for this custom control. This instance of the support
class is used to support all subsequent controls of this custom class.
Whenever a custom class instance is created, the support class registers the
required listeners on the object using the registration methods you
specified.

 3 Override low-level recording (optional):

To override recording of low-level mouse events:

protected Object mouseRecordTarget(MouseEvent e) {
return null;

}

To override recording of low-level keyboard events:

protected Object keyboardRecordTarget(KeyEvent e) {
return null;

}

 4 Implement the relevant event handler methods from the listener interface,
to send record messages to QuickTest, using the MicAPI.record methods.

For information on how to use MicAPI.record, refer to the QuickTest Java
Add-in Extensibility API Reference (Help > QuickTest Professional Help > Java
Add-in Extensibility Developer’s Guide > QuickTest Java Add-in Extensibility
API Reference).

JavaExtAPIRef.chm::/com/mercury/ftjadin/custom/MicAPI.html

Part I • Working with Java Add-in Extensibility

58

For example, the following event handler method is implemented in
ImageButtonCS, the support class for ImageButton:

public void actionPerformed(ActionEvent e) {
try {

if (!isInRecord())
return;

MicAPI.record(e.getSource(), "Click");
} catch(Throwable tr)

{ tr.printStackTrace();
}

}

When an Action event occurs on an ImageButton, QuickTest records a Click
operation on the ImageButton.

The try ... catch block prevents unnecessary activity if this code is reached
when the Java application is running while QuickTest is idle. The stack trace
is printed to the same log file as other Java Add-in Extensibility log
messages, enabling you to determine when this method was called
inadvertently. For more information, see “Logging and Debugging the
Custom Support Class” on page 71.

For information on recording on wrapper controls, see “Supporting Wrapper
Controls,” below.

Note: If MicAPI.record is called when there is no active QuickTest recording
session, nothing happens. If you perform additional calculations or
assignments before calling MicAPI.record, make sure that you first call
isInRecord to determine whether a recording session is active. If no
recording session is active, you may want to avoid certain operations.

Chapter 3 • Implementing Custom Toolkit Support

59

Supporting Top-Level Objects

If you want QuickTest to recognize the custom control as the highest Java
object in the test object hierarchy, you need to inform QuickTest that this
Java control is a top-level object. You do this by overriding the utility
method isWindow (Object obj) in the support class to return true. In the
following example, the JavaApplet AllLights is a top-level Java object.

Only a container object can be a top-level object. A container object is one
that extends java.awt.container if it is AWT-based, or
org.eclipse.swt.widgets.Composite if it is SWT-based.

If the control is a top-level object only in some situations, you can
implement the isWindow method to return true in some situations and
false in others. For example, an applet can be a standalone application or an
object within a Web browser.

Supporting Wrapper Controls

A wrapper control is a container control that groups the controls within it
and represents them as a single control. For example, the AwtCalc calculator
control is a wrapper control.

Part I • Working with Java Add-in Extensibility

60

When QuickTest learns a wrapper control, it does not learn the controls
within it separately as descendants. If you record a test on a wrapper control,
events that occur on the controls within it, are recorded as operations on
the wrapper control.

Note: Only AWT-based controls can be supported on QuickTest as wrapper
controls. If the custom control is SWT-based, it is always learned with all of
its descendants.

For example, the AwtCalc calculator control contains simple buttons for
digits and operators. In a recording session on this control, you might want
simple click operations to be interpreted as more meaningful calculator-
oriented operations. You can use Java Add-in Extensibility to instruct
QuickTest to record clicks on digit buttons as Calculator.SetValue steps, and
clicks on operator buttons as Calculator.SetOperator steps.

Understanding How QuickTest Handles Wrapper Controls

Wrapper controls must register themselves as wrappers for the types of
controls that they wrap.

Before QuickTest learns a control as a descendant, QuickTest checks if any
wrappers are registered for this type of control. If there are registered
wrappers, QuickTest searches for the one to which this particular control
belongs. QuickTest performs this search by calling the
checkWrappedObject method of each registered wrapper. If QuickTest finds
a relevant wrapper, QuickTest does not learn the descendant control. If no
relevant wrapper is found, QuickTest learns the descendant control.

When a control is learned separately (by clicking on the specific control),
QuickTest does not check for wrappers.

Similarly, before QuickTest records an operation on a control, QuickTest
checks if any wrappers are registered for this type of control. If there are
registered wrappers, QuickTest searches for the one to which this particular
control belongs. If QuickTest finds a relevant wrapper, QuickTest passes the
record message to the wrapper control before adding a step to the test. If no
relevant wrapper is found, the operation is recorded as is.

Chapter 3 • Implementing Custom Toolkit Support

61

When the wrapper receives a record message (triggered by an operation
performed on one of its wrapped objects), it can do one of the following:

➤ Discard the message to prevent the recording of the operation.

➤ Modify the message to record a different operation.

➤ Leave the message as is to record the operation without intervention.

The following section describes how this mechanism is implemented, using
the AwtCalc wrapper control as an example. After support for the AwtCalc
control is implemented, a test recorded on the control could look like this:

Implementing Support for Wrapper Controls

If you want to support a wrapper control, you must implement the
com.mercury.ftjadin.infra.abstr.RecordWrapper interface in MicAPI. This
interface includes the following methods:

➤ public void registerWrapperInspector()

➤ public Object checkWrappedObject(Object obj)

➤ public RecordMessage wrapperRecordMessage(RecordMessage message,
Object wrapper)

➤ public boolean blockWrappedObjectRecord()

The sections below describe each of these methods in detail.

Part I • Working with Java Add-in Extensibility

62

public void registerWrapperInspector()

This method is used to register as a wrapper for the relevant types of
controls.

For example, the AwtCalcCS support class registers itself as a wrapper of
Button controls:

public void registerWrapperInspector() {
MicAPI.registerWrapperInspector(Button.class, this);

}

The AwtCalcCS is registered as a wrapper for Button controls only, therefore
operations on the AWT Calculator label or on the edit box will be recorded
without any wrapper intervention. In addition, when the AwtCalc control is
learned, the label and edit box are learned as its descendants.

public Object checkWrappedObject(Object obj)

QuickTest calls this method to check whether a specific object belongs to
the custom control. The support class implements this method to return the
specific wrapper instance if obj is wrapped by the custom control.
Otherwise, it returns null.

For example, the checkWrappedObject method in AwtCalcCS is
implemented, as follows:

public Object checkWrappedObject(Object obj) {
Component comp = (Component)obj;
if
(comp.getParent().getClass().getName().equals("org.boutique.toolkit.AwtCalc"))

return comp.getParent();
return null;
}

Chapter 3 • Implementing Custom Toolkit Support

63

public RecordMessage wrapperRecordMessage(RecordMessage
message, Object wrapper)

QuickTest calls this method during a recording session when a wrapped
object sends a record message. QuickTest passes the record message to the
wrapper control before adding a step to the test.

This method returns one of the following:

➤ null, indicating that this message should be ignored and no step should be
recorded

➤ a modified record message to be sent instead of the original one

➤ the original record message

For example, in the wrapperRecordMessage method in AwtCalcCS, if the
operation to record is on a button, the method replaces it with the
appropriate operation to record—Reset, Enter, SetOperator or SetValue (with
the appropriate parameters). If the operation in the record message in on a
label or text field, AwtCalc does not interfere with the recording.

public RecordMessage wrapperRecordMessage(RecordMessage message,
Object wrapper) {

Object subject = message.getSubject();
if (subject instanceof Button) {

// Get the label of the button
String value = ((Button) subject).getLabel().trim();
String operation;
// Select what method will be recorded and with what parameters
if (value.equals("=")) {

return RecordMessage.getRecordMessageInstance(wrapper,"Enter");
}
if (value.equals("C")) {

return RecordMessage.getRecordMessageInstance(wrapper,"Reset");
} else {

if (value.equals("+") || value.equals("-") || value.equals("x")
|| value.equals("/") || value.equals("^")
|| value.equals("sqrt"))

operation = "SetOperator";
else

operation = "SetValue";

Part I • Working with Java Add-in Extensibility

64

}
String params[] = new String[1];
params[0] = value;
RecordMessage res =

RecordMessage.getRecordMessageInstance(wrapper, operation,
params, AgentRecordMode.NORMAL_RECORD);

return res;
}
// AwtCalc does not interfere if the message is not from a button
return message;

}

boolean blockWrappedObjectRecord()

When this method returns false, the controls contained in the wrapper
generate record messages in response to events as if they were independent
controls. QuickTest then calls wrapperRecordMessage to pass the record
messages it receives from wrapped controls to the wrapper. The wrapper can
then decide whether to discard the message, modify it, or record the
operation as is.

When this method returns true, it causes all of the controls contained in the
wrapper to ignore all events. The wrapped controls do not send any record
messages to QuickTest, and wrapperRecordMessage is never called.

If blockWrappedObjectRecord returns null, and you want the wrapper to
record events that occur on the objects it contains, the wrapper itself must
register new event listeners on the wrapped objects. Then it must handle the
events to generate the appropriate test steps (using MicAPI.record) during a
recording session.

Chapter 3 • Implementing Custom Toolkit Support

65

Support Class Summary

The following table summarizes the types of methods you use in a custom
support class. For more information, refer to the QuickTest Java Add-in
Extensibility API Reference (Help > QuickTest Professional Help > Java Add-in
Extensibility Developer’s Guide > QuickTest Java Add-in Extensibility API
Reference).

Method Type Syntax Common Methods

Identification
property
methods

public String <identification property
name>_attr(Object obj)

to_class_att

tag_attr

label_attr

attached_text_attr

class_attr

value_attr

Test Object
Methods

public Retval <test object method
name>_replayMethod(Object obj,
<… list of String arguments>)

Event Handling
methods

Dependent on the listener that is
being implemented.

Call MicAPI.record from
the event handler
methods.

Utility
methods to
use

protected void addSimpleListener(String listenerName, String
addMethodName, String removeMethodName)

public static final boolean isInRecord()

Utility
methods to
override

public boolean isWindow(Object obj)

protected Object mouseRecordTarget (MouseEvent e)

protected Object keyboardRecordTarget (KeyEvent e)

public boolean blockWrappedObjectRecord()

public void registerWrapperInspector()

public Object checkWrappedObject(Object obj)

public RecordMessage wrapperRecordMessage(RecordMessage
message, Object wrapper)

Part I • Working with Java Add-in Extensibility

66

Using Methods from MicAPI

MicAPI contains several sets of methods that you can use in the custom
support classes to provide the following types of functionality:

➤ Dispatching low-level events. These methods include MouseClick,
KeyType, and postEvent. These methods are commonly used in replay
methods.

➤ Recording custom control operations on QuickTest. These methods are
commonly used in event handler methods.

➤ Logging messages and errors from the support classes. These methods are
used throughout the custom support class, to print log and error messages.
For more information, see “Logging and Debugging the Custom Support
Class” on page 71.

Deploying and Running the Custom Toolkit Support

The final stage of extending QuickTest support for a custom toolkit is
deployment. This means placing all of the files you created in the correct
locations, so that the custom toolkit support is available to QuickTest.

After you deploy the custom toolkit support, if you run an application that
contains the custom toolkit controls and perform QuickTest operations on
the application, you can see the effects of the support you designed.

You can also deploy the toolkit support during the development stages, to
test how it affects QuickTest and debug the custom toolkit support set that
you are creating.

Chapter 3 • Implementing Custom Toolkit Support

67

The following table describes the appropriate location for each of the toolkit
files:

File Name Location

<Custom Toolkit Name>.xml <QuickTest Installation
Folder>\bin\java\classes\extension

<Custom Toolkit Name>TestObjects.xml
Optional. Required only if mapping
custom classes to new test object classes.

Note: This file name convention is used
by the Java Add-in Extensibility
wizard. You can have more than
one test object configuration file,
and name them as you wish.

• <QuickTest Installation
Folder>\Dat\Extensibility\Java

• <QuickTest Add-in for Quality Center
Installation Folder>\Dat\Extensibility\
Java
(Optional. Required only if
QuickTest Add-in for Quality
Center is installed)

<Custom Toolkit Name>Support.class All of the Java support classes can be
packaged in class folders or Java
archives on the computer on which
QuickTest is installed, or in an
accessible network location.

Specify the location in <Custom Toolkit
Name>.xml

<CustomClass>CS.class

Icon files for new test object classes
(optional)

Must be an uncompressed .ico format
file, located on the computer on which
QuickTest is installed, or in an
accessible network location.

Specify the location in <Custom Toolkit
Name>TestObjects.xml

Part I • Working with Java Add-in Extensibility

68

Notes:

If you want to remove support for a custom toolkit from QuickTest after it is
deployed, you must delete its toolkit configuration file from:
<QuickTest Installation Folder> bin\java\classes\extension

If none of the test object class definitions in a test object configuration file
are mapped to any custom controls (meaning they are no longer needed),
you can delete the file from:
<QuickTest Installation Folder>\Dat\Extensibility\Java (and <QuickTest
Add-in for Quality Center Installation Folder>\Dat\Extensibility\Java if
relevant).

Deploying Custom Support During the Development Stage

During the design stages of the custom toolkit support, the support class
files can remain in your workspace. You deploy the custom toolkit support
by placing the toolkit configuration files (including the test object
configuration file) in the correct locations, and by specifying the location of
the compiled support classes in the toolkit configuration (XML) file. In
addition, if your new test object classes use specific icons, you specify their
locations in the test object configuration file.

If you develop custom toolkit support using the QuickTest Java Add-in
Extensibility plug-in in Eclipse, and QuickTest is installed on your computer,
you deploy toolkit support by clicking the Deploy Toolkit Support Eclipse
toolbar button, or by choosing QuickTest > Deploy Toolkit Support. The
XML configuration files are copied to the correct QuickTest locations, while
the Java class files remain in the Eclipse workspace. (The actual locations of
the toolkit support class and the custom support classes are listed in the
toolkit configuration file.)

If you do not use the QuickTest Java Add-in Extensibility plug-in in Eclipse,
or if QuickTest is installed on another computer, you must perform the
deployment manually, according to the information in the table on page 66.

Chapter 3 • Implementing Custom Toolkit Support

69

To deploy custom support manually during the development stages:

 1 Make sure that the compiled support classes (toolkit support class and
custom support classes) are in a location that can be accessed by QuickTest.

 2 Update the configuration files with the correct locations of the compiled
support classes and icon files (if relevant).

 3 Copy the configuration files to the appropriate folders, as described in the
table on page 66.

Deploying Custom Support After the Design is Completed

When the custom toolkit support is fully designed, you can deploy it to any
computer on which QuickTest is installed.

To deploy custom support after the design is completed:

 1 Place the compiled support classes (toolkit support class and custom support
classes) in their permanent location. The classes can be in class folders or in
a Java archive, in a location that can be accessed by QuickTest.

In addition, if you have new test object classes using specific icons, place the
icon files in a location that can be accessed by QuickTest.

 2 Update the toolkit configuration file with the correct location of the
compiled support classes.

If necessary, update the test object configuration file with the correct
location of the icon files.

 3 Copy the configuration files to the appropriate folders, as described in the
table on page 66.

Part I • Working with Java Add-in Extensibility

70

Modifying Deployed Support

If you modify a toolkit support set that was previously deployed to
QuickTest, the actions you must perform depend on the type of change you
make, as follows:

➤ If you modify the toolkit configuration file or a test object configuration file,
you must deploy the support.

➤ If you modify a test object configuration file, you must reopen QuickTest
after deploying the support.

➤ Whether you modify the configuration files or only the Java support classes,
you must re-run the Java application for the changes to take effect.

Running an Application with Supported Custom Controls

After you deploy the custom toolkit support, you can perform QuickTest
operations on an application that contains the supported custom controls
to test the effects of the support.

You can run the application in any way you choose. If you run an SWT
application from Eclipse, Eclipse overrides the Java library path to add the
SWT dll. Therefore, you must add the jvmhook.dll path (required by the Java
Add-in) to the library path manually.

To add the jvmhook.dll path to the library path:

 1 Right-click the application file in the Eclipse Package Explorer. Choose
Run As > SWT Application.

 2 In the Eclipse toolbar, choose Run > Run. The Run dialog box opens.

 3 Select the SWT application in the Configurations list.

 4 Click the Arguments tab.

 5 In the VM arguments area, enter:

-Djava.library.path=<System Folder>\system32

(For example: -Djava.library.path=c:\WINNT\system32)

 6 Close the application and repeat step 1 to run the application again.

Chapter 3 • Implementing Custom Toolkit Support

71

Logging and Debugging the Custom Support Class

When you design your support classes, it is recommended to include writing
messages to a log file, to assist in debugging any problems that may arise.

Use the MicAPI.logLine method to send messages to the log file. For more
information, see QuickTest Java Add-in Extensibility API Reference (Help >
QuickTest Professional Help > Java Add-in Extensibility Developer’s Guide >
QuickTest Java Add-in Extensibility API Reference).

To control the printing of the log messages (to prevent all messages from
being printed at all times), you create debug flags in each support class.
When you call MicAPI.logLine, you provide the appropriate debug flag as
the first argument. MicAPI.logLine prints the log messages only when the
debug flag that you specified is on.

The following example illustrates how to print log messages in a support
class:

private static final String DEBUG_ALLLIGHTSCS = "DEBUG_ALLLIGHTSCS";

public String light_on_positions_attr(Object obj) {
AllLights lights = (AllLights) obj;

...
for (int i = 0; i < 5; i++) {

for (int j = 0; j < 5; j++) {
if(lights.isSet(j, i)) {

MicAPI.logLine(DEBUG_ALLLIGHTSCS, "Light "+i+":"+j+" is set");
...

}
}

}
}

In QuickTest, you create a test with the following two lines and run it to
control the logging. Within the test, list the flags to turn on and the file to
which the messages should be written:

javautil.SetAUTVar "sections_to_debug", "DEBUG_ALLLIGHTSCS"
javautil.SetAUTVar "debug_file_name", "C:\JavaExtensibility\Javalog.txt"

JavaExtAPIRef.chm::/com/mercury/ftjadin/custom/MicAPI.html

Part I • Working with Java Add-in Extensibility

72

If you want to turn on more than one flag simultaneously, enter all of the
flag strings consecutively in the second argument (separated by spaces), as
in the following example:

javautil.SetAUTVar "sections_to_debug", "DEBUG_ALLLIGHTSCS
DEBUG_AWTCALC"

The messages printed by MicAPI.logLine, according to the flags you set, are
printed to the specified file when the support class runs. To change the flags
controlling the log printing, or to change the file to which they are written,
run the QuickTest test again with the appropriate arguments.

Debugging Your Custom Toolkit Support

The Java support classes run in the context of the application you are
testing. Therefore, if you want to debug your support classes, you can do so
in the same way as you would debug the application itself.

To begin debugging, place breakpoints within the support classes, run the
application as though you were debugging it, and perform different
QuickTest operations on the application to reach the different parts of the
support classes.

If the application code is stored in Eclipse, you can run it in debug mode
from Eclipse. (Right-click the application file and choose Debug As > Java
Applet (or Application) or Debug As > SWT Application.)

If the application code is not stored in Eclipse, use remote debugging on the
application to debug the support classes. For information about remote
debugging, refer to the Eclipse Help.

Chapter 3 • Implementing Custom Toolkit Support

73

Workflow for Implementing Java Add-in Extensibility

The following workflow summarizes the steps you need to perform to create
QuickTest Java Add-in Extensibility support for a custom toolkit, and the
order in which you need to perform them. Follow these steps for each
custom toolkit you want to support.

* You can use the wizards in the QuickTest Java Add-in Extensibility Eclipse
plug-in to create the custom toolkit support project, the custom classes, and
all of the required files. Alternatively, if you choose not to use the wizards,
you must create the necessary packages and files manually, as described in
“Creating a Custom Toolkit Support Set” on page 32. In addition, if you
then decide to map custom classes to new test object classes, you must
define the new test object classes in a test object configuration file.

Repeat the following steps for each custom class in the custom
toolkit

Plan the custom toolkit support

*Create the QuickTest Java Add-in Extensibility project

*Create the QuickTest custom support class

Implement the necessary methods in the custom support
class

Deploy the toolkit support (for debugging)

Debug the toolkit support by testing it in QuickTest

Deploy the toolkit support to its final location

Part I • Working with Java Add-in Extensibility

74

75

4
Planning Custom Toolkit Support

Before you begin to create support for a custom toolkit, you must carefully
plan the support. Detailed planning of how you want QuickTest to
recognize the custom controls enables you to correctly build the
fundamental elements of the custom toolkit support. It is important to plan
all of the details before you begin. Making certain changes at a later stage
might require intricate manual changes, or even require you to recreate the
custom support.

Note: This chapter assumes familiarity with the concepts presented in
Chapter 3, “Implementing Custom Toolkit Support.”

This chapter describes: On page:

About Planning Custom Toolkit Support 76

Determining the Custom Toolkit Related Information 76

Determining the Support Information for Each Custom Class 77

Where Do You Go from Here? 81

Part I • Working with Java Add-in Extensibility

76

About Planning Custom Toolkit Support

Creating custom toolkit support is a process that requires detailed planning.
To assist you with this, the sections in this chapter include sets of questions
related to the implementation of support for your custom toolkit and its
controls. When you are ready to create your custom toolkit support, you will
be implementing support for it based on the answers you provide to these
questions.

The first step is determining general information related to your custom
toolkit, after which you will define the specific information related to each
custom class you want to support.

Determining the Custom Toolkit Related Information

To plan the details related to the custom toolkit answer the following
questions:

➤ What custom classes are included in the custom toolkit?

Provide a unique name for the custom toolkit, and list the locations of the
custom classes. The locations can be Eclipse projects, Java archive files or
class folders.

For the rules on grouping custom classes into toolkits you can support, see
“Preparing to Create Support for a Custom Toolkit” on page 30.

➤ What native toolkit (or existing supported toolkit) does the custom toolkit
extend?

Note: When all of the classes in a custom toolkit extend the basic user
interface class of another toolkit (for example java.awt.Component) we say
the custom toolkit extends that toolkit (in this example: AWT).

Chapter 4 • Planning Custom Toolkit Support

77

➤ In what order do you want to create support for the different classes within
the toolkit?

For information on how to answer this question, see “Determining the
Inheritance Hierarchy for a Support Class” on page 45.

Determining the Support Information for Each Custom
Class

Before you begin planning the support for a custom class, make sure you
have full access to the control and understand its behavior. You must have
an application in which you can view the control in action, and also have
access to the custom class that implements it.

You do not need to modify any of the custom control’s sources to support it
in QuickTest, but you do need to be familiar with them. Make sure you
know which members (fields and methods) you can access externally, the
events for which you can listen, and so forth.

When planning custom support for a specific class, carefully consider how
you want QuickTest to recognize controls of this class—what type of test
object you want to represent the controls in QuickTest tests, which
identification properties and test object methods you want to use, and so
forth. The best way to do this is to run the application containing the
custom control and to analyze the control from a QuickTest perspective
using the Object Spy, the Keyword View, and the Record option. This
enables you to see how QuickTest recognizes the control without custom
support, and helps you to determine what you want to change.

To view an example of analyzing a custom control using QuickTest, see
“Analyzing the Default QuickTest Support and Extensibility Options for a
Sample Custom Control” on page 8.

Part I • Working with Java Add-in Extensibility

78

Understanding the Custom Class Support Planning Checklist

When you plan your custom support for a specific class, you must ask
yourself a series of questions. These are explained below and are available in
an abbreviated, printable checklist on page 80.

Note: Questions 1, 4, and 5 are fundamental to the design of the custom
toolkit support. Changing the answers to these questions after creating
support may require you to make complex manual changes, or even to
recreate the custom support.

 1 Make sure you select the correct custom class to support:

 a Does the custom class have a superclass for which QuickTest custom
support is not yet available?

 b Does the custom control have identification properties or test object
methods that require the same QuickTest support as other controls that
extend the same superclass?

If so, consider creating support for the superclass first.

 2 Make sure you have access to custom class sources and to an application
that runs the custom control on a computer with QuickTest installed.

 3 Make sure you have access to the compiled custom class on the computer on
which you are programming. The classes can be in class folders, a Java
archive, or an Eclipse project.

 4 Is there an existing Java test object class which adequately represents the
custom control? If so, which one?

Chapter 4 • Planning Custom Toolkit Support

79

 5 If not, you need to create a new test object class:

 a Is there an existing Java object class which can be extended to represent
the custom control? If so, which one? If not, your new test object class
needs to extend the JavaObject class.

 b Do you want QuickTest to use a different icon for the new test object?
If so, make sure the icon file is available in an uncompressed .ico format.

 c Specify one or more identification properties that can be used to
uniquely identify the control (in addition to the test object class and the
fully qualified Java class name of the control).

 d Specify the default test object method to be displayed in the Keyword
View and Step Generator when a step is generated for an object of this
class.

 6 Do you want QuickTest to recognize the custom control as a top-level Java
test object?

 7 Does the custom control contain objects that are significant only in the
context of this control (meaning, is it a wrapper)? (For example, a Calculator
object is a wrapper for the calculator button objects.)

 8 Specify the basis for naming the test object that represents the control.

 9 List the identification properties you want to support.

If you are creating a new test object class, also decide which properties
should be selected by default in the Checkpoint Properties dialog box in
QuickTest.

 10 List the test object methods you want to support. Specify the method
argument types and names, and whether it returns a value in addition to the
return code.

 11 If the custom control is AWT-based, do you want to provide support for
creating QuickTest tests by using the Record option?

If so, list the events you want to record on the custom control during a
QuickTest recording session.

Note: You can use the checklist on the following page to mark your answers.

Part I • Working with Java Add-in Extensibility

80

Custom Class Support Planning Checklist

Use this checklist to plan your custom class toolkit support.

Custom Class Support Planning Checklist

Does the custom class have a superclass for which QuickTest custom support is not yet
available? Yes /No

If so, should I first extend support for a control higher in the hierarchy? Yes /No

Do I have an application that runs the custom control on a computer with QuickTest
installed? Yes /No

The sources for this custom control class are located in:

Which existing Java test object matches the custom control?

If none, create a new Java test object class named:

• New test object class extends: (Default—JavaObject)

• Icon file location (optional):

• Identification property for description:

• Default test object method:

Should QuickTest recognize the custom control as a top-level Java test object? Yes /No

Is the custom control a wrapper? Yes /No

Specify the basis for naming the test object:

List the identification properties to support, and mark default checkpoint properties:

List the test object methods to support (include arguments and return values if required):

Provide support for recording? (AWT-based only) Yes /No

If so, list the events that should trigger recording:

Chapter 4 • Planning Custom Toolkit Support

81

Where Do You Go from Here?

After you finish planning the custom toolkit support, you create the custom
toolkit support set to support the custom toolkit as per your plan. You can
create all of the required files, classes, and basic methods using the
QuickTest Java Add-in Extensibility wizards in Eclipse. The wizards also
provide method stubs for additional methods that you may need to
implement. For more information, see “Using the QuickTest Java Add-in
Extensibility Eclipse Plug-In” on page 83.

If you choose not use the Java Add-in Extensibility wizard in Eclipse, you
can still extend full support for the custom toolkit manually using the
information in Chapter 3, “Implementing Custom Toolkit Support.”

Part I • Working with Java Add-in Extensibility

82

83

5
Using the QuickTest Java Add-in
Extensibility Eclipse Plug-In

The QuickTest Professional Java Add-in Extensibility SDK includes a plug-in
for the Eclipse Java development environment. This plug-in provides
wizards that you can use to create custom toolkit support sets and
commands for editing the files after they are created.

If you choose not use the Java Add-in Extensibility wizards, you can skip this
chapter. In this case, you can extend full support for the custom toolkit
manually, as described in “Implementing Custom Toolkit Support” on
page 27.

This chapter describes: On page:

About the QuickTest Java Add-in Extensibility Eclipse Plug-In 84

New QuickTest Java Add-in Extensibility Project Wizard 85

Modifying QuickTest Java Add-in Extensibility Project Properties 96

New QuickTest Custom Support Class Wizard 97

New QuickTest Custom Static-Text Support Class Wizard 132

Working with QuickTest Commands in Eclipse 137

Part I • Working with Java Add-in Extensibility

84

About the QuickTest Java Add-in Extensibility Eclipse
Plug-In

When you install the QuickTest Professional Java Add-in Extensibility SDK,
the QuickTest Java Add-in Extensibility plug-in is added to Eclipse. This
plug-in provides wizards that you can use to create custom toolkit support
sets and commands for editing the files after they are created. For
information about installing and uninstalling the Java Add-in Extensibility
SDK, see “Installing the QuickTest Professional Java Add-in Extensibility
Software Development Kit” on page 13.

You can use the wizards supplied by the QuickTest Java Add-in Extensibility
plug-in in Eclipse to create and deploy custom toolkit support. The wizards
create all of the necessary files, classes, and methods, based on details you
specify about the custom classes and the required support. The wizards also
provide method stubs for the additional methods you may need to
implement.

This chapter assumes that you have read the “Implementing Custom Toolkit
Support” chapter of this guide (on page 27), which explains the elements
that comprise custom toolkit support and the workflow for creating this
support.

When you create support for a custom toolkit, you first use the New
QuickTest Java Add-in Extensibility Project Wizard to create an Eclipse
project containing the packages and files for the custom toolkit support.

Then you create support classes for the relevant custom classes using the
New QuickTest Custom Support Class Wizard (described on page 97). To
create a support class for a custom static-text class, you use the New
QuickTest Custom Static-Text Support Class Wizard (described on page 132).

After the wizard creates the support class according to your specifications,
you must complete the design of the custom support. To do this, you
implement the method stubs created by the wizard to match the needs of
the custom control.

Chapter 5 • Using the QuickTest Java Add-in Extensibility Eclipse Plug-In

85

The QuickTest Java Add-in Extensibility Eclipse plug-in also provides
commands that you can use to edit the support you are designing, and to
deploy it to QuickTest for debugging. These commands are described in
“Working with QuickTest Commands in Eclipse” on page 137.

Note: While you are working with the wizard, do not rename or delete any
of the files that the wizard creates. When the wizard performs the
commands you specify, it searches for the files according to the names it
created. When the custom toolkit support set is complete and you are
performing the final deployment, you can rename the configuration files. In
the final deployment stage, you can also divide the test object configuration
file into more than one file. Place the custom toolkit support set files in the
appropriate folders, as specified in “Deploying Custom Support After the
Design is Completed” on page 69.

New QuickTest Java Add-in Extensibility Project Wizard

You use the New QuickTest Java Add-in Extensibility Project wizard to create
a new project in Eclipse containing the files that comprise the support set
for a specific custom toolkit. After you specify the details of the custom
toolkit, the wizard creates the necessary toolkit support files.

After you create the New QuickTest Java Add-in Extensibility project, you
can create support for each of the custom toolkit classes. To do this, you use
the New QuickTest Custom Support Class Wizard, described on page 97 (or
the New QuickTest Custom Static-Text Support Class Wizard, described on
page 132).

To open the New QuickTest Java Add-in Extensibility Project wizard in
Eclipse:

 1 Choose File > New > Project. The New Project dialog box opens.

 2 Expand the QuickTest Professional folder and select QuickTest Java Add-in
Extensibility Project.

Part I • Working with Java Add-in Extensibility

86

 3 Click Next. The New QuickTest Java Add-in Extensibility Project Screen
opens (described on page 87).

Tip: You can shorten this process by customizing Eclipse to provide
QuickTest Java Add-in Extensibility Project as an option in the New menu.
To do this, perform the following: Choose Window > Customize
Perspective. In the Shortcuts tab in the dialog box that opens, select the
QuickTest Professional and QuickTest Java Add-in Extensibility Project check
boxes. Click OK.

Chapter 5 • Using the QuickTest Java Add-in Extensibility Eclipse Plug-In

87

QuickTest Java Add-in Extensibility Project Screen

In the QuickTest Java Add-in Extensibility Project screen, you create a
QuickTest Java Add-in Extensibility project and define the project layout.

Perform the following:

➤ In the Project name box, enter a name for the project.

➤ In the Project Layout area, select Create separate source and output
folders.

Part I • Working with Java Add-in Extensibility

88

Click Next to continue to the Custom Toolkit Details Screen (described on
page 89).

For information on the options available in this Eclipse wizard screen, refer
to the Eclipse Help.

Chapter 5 • Using the QuickTest Java Add-in Extensibility Eclipse Plug-In

89

Custom Toolkit Details Screen

In the Custom Toolkit Details screen, you provide the details of the custom
toolkit so that the wizard can generate a corresponding custom toolkit
support set.

Specify the following details:

➤ Unique custom toolkit name. A name that uniquely represents the custom
toolkit for which you are creating support.

Part I • Working with Java Add-in Extensibility

90

The name must begin with an English letter and contain only alphanumeric
characters and underscores. When the wizard creates the new toolkit
support class, it uses the name you specify for the custom toolkit, and adds
the suffix, Support, to this name. For example, if you name the custom
toolkit ImageControls, when the wizard creates the toolkit support class, it
names it ImageControlsSupport.

Providing unique toolkit names enables a single QuickTest installation to
support numerous custom toolkit support sets simultaneously.

Note: You cannot specify the name of a custom toolkit whose support is
already deployed to QuickTest. If you want to create a new project using the
wizard, and use this project to replace existing custom toolkit support, you
must first manually delete the existing support. To do this, browse to
<QuickTest Installation Folder> bin\java\classes\extension, delete the
toolkit configuration file, and then use the Reload Support Configuration
command described on page 138.

➤ Support toolkit description. A sentence describing the support toolkit. The
description is stored in the toolkit configuration file.

➤ Base toolkit. The toolkit that the custom toolkit extends. A toolkit can be
considered the base toolkit of a custom toolkit if all of the custom controls
in the custom toolkit extend controls in the base toolkit.

The Base toolkit list contains a list of toolkits for which QuickTest support
already exists. After you create and deploy support for your own toolkits,
they are displayed in the list as well.

When the wizard creates the new custom toolkit support set, it creates a new
toolkit support class. This new toolkit support class extends the toolkit
support class of the base toolkit you select. As a result, the new custom
toolkit support inherits all of the necessary utility methods for basic
functionality (for example, event handling and dispatching) from the base
toolkit support.

Chapter 5 • Using the QuickTest Java Add-in Extensibility Eclipse Plug-In

91

➤ Custom toolkit class locations. A list of the locations of the custom classes
you want to support in this project. You can specify Eclipse projects, .jar
files, and Java class folders (the file system folders containing the compiled
Java classes).

When the new Java Add-in Extensibility project is built, these locations are
added to the project build path.

Note: The Custom Class Selection Screen in the New QuickTest Custom
Support Class Wizard (shown on page 99) displays the custom classes from
the locations you list in this box. This enables you to select the required
custom class when creating a custom support class. (You create custom
support classes after the new Java Add-in Extensibility project is built.)

To add custom toolkit class locations to the list:

Add the locations of the custom toolkit classes using one or more of the
following options:

➤ Click Add project to select an Eclipse project. The Select Project dialog
box opens and displays the projects in the current Eclipse workspace.

Select the check box for the appropriate project and click OK to add it to
the Custom toolkit class locations box.

Part I • Working with Java Add-in Extensibility

92

➤ Click Add Jar to add a Java archive (.jar) file. The Open dialog box opens.

Browse to the appropriate Java archive file, select it, and click OK to add
it to the Custom toolkit class locations box.

➤ Click Add Class Folder to add a class folder. The Select Folder dialog box
opens.

Chapter 5 • Using the QuickTest Java Add-in Extensibility Eclipse Plug-In

93

Browse to the appropriate folder, select it, and click OK to add it to the
Custom toolkit class locations box.

Note: Select the root folder that contains the compiled class packages.
For example, the file ImageButton.java defines the class
com.demo.ImageButton. When you compile this class and store the
result in the bin folder, the class file ImageButton.class location is:
bin\com\demo\ImageButton.class. If you want to select the location of
this class for the Custom toolkit class locations, select the bin folder.

To remove custom toolkit class locations from the list:

Select the location in the Custom toolkit class locations box and click
Remove.

Note: To add or remove custom class locations in a Java Add-in Extensibility
project after it is created, use the Properties dialog box for QuickTest Java
Add-in Extensibility projects described on page 96.

After you add the locations of all of the custom classes included in the
custom toolkit, click Finish. The Project Summary screen opens.

Part I • Working with Java Add-in Extensibility

94

Project Summary Screen

Before the wizard creates the custom toolkit support files, the Project
Summary screen summarizes the specifications you provided for the new
Java Add-in Extensibility project.

Review the information. If you want to change any of the data, click Cancel
to return to the Custom Toolkit Details Screen (described on page 89). Use
the Back and Next buttons to open the relevant screens and make the
required changes.

Chapter 5 • Using the QuickTest Java Add-in Extensibility Eclipse Plug-In

95

If you are satisfied with the definitions, click OK. The wizard creates new
QuickTest Java Add-in Extensibility project, containing the following items:

➤ The toolkit root package: com.mercury.ftjadin.qtsupport.<Custom Toolkit
Name> containing:

➤ The toolkit support class in the toolkit root package:
<Custom Toolkit Name>Support.java

For information on the content of this class, see “Understanding the
Toolkit Support Class” on page 35.

➤ The support class sub-package:
com.mercury.ftjadin.qtsupport.<Custom Toolkit Name>.cs

➤ A folder for configuration files named Configuration. It contains:

➤ The <Custom Toolkit Name>.xml toolkit configuration file. For
information on the content of this file, see “Understanding the Toolkit
Configuration File” on page 36.

➤ The TestObjects folder for test object configuration files.

Note: If you have more than one Java Run-time Environment (JRE) installed
on your computer, and one or more of the custom toolkit class locations
you specified were Eclipse projects, make sure that the custom toolkit
projects and the new Java Add-in Extensibility project are using the same
JRE. If they are not, modify the JRE for one or more of the projects so that all
of the projects use the same JRE.

Part I • Working with Java Add-in Extensibility

96

Modifying QuickTest Java Add-in Extensibility Project
Properties

In the Eclipse menu bar, choose Project > Properties. The Properties dialog
box opens. In the left pane, select QuickTest Support from the list of
property types. The QuickTest Support properties are displayed in the right
pane.

For information on the options in this dialog box, see “Custom Toolkit
Details Screen” on page 89.

After the Java Add-in Extensibility project is created, you cannot change the
Unique custom toolkit name or the Base toolkit.

You can change the Support toolkit description. You can also add or remove
locations in the Custom toolkit class locations list. When you modify this
list, you must modify the project’s build path accordingly.

You can click the Restore button to restore the settings in this dialog box to
the most recently saved values.

Chapter 5 • Using the QuickTest Java Add-in Extensibility Eclipse Plug-In

97

New QuickTest Custom Support Class Wizard

You use the New QuickTest Custom Support Class wizard to create each
support class within a Java Add-in Extensibility project. After you specify the
details of the custom class and the required QuickTest support, the wizard
creates the support class and all of the necessary methods, accordingly. The
wizard also provides method stubs for any additional methods you need to
implement.

To open the New QuickTest Custom Support Class wizard in Eclipse:

 1 In the Eclipse Package Explorer tab, select a QuickTest Java Add-in
Extensibility project. Then choose File > New > Other. The New dialog box
opens.

Part I • Working with Java Add-in Extensibility

98

 2 Expand the QuickTest Professional folder and select QuickTest Custom
Support Class.

 3 Click Next. The Custom Class Selection Screen opens.

Tip: You can shorten this process by customizing Eclipse to provide
QuickTest Custom Support Class as an option in the New menu. To do this,
perform the following: Choose Window > Customize Perspective. In the
Shortcuts tab in the dialog box that opens, select the QuickTest Professional
and QuickTest Custom Support Class check boxes. Click OK.

Chapter 5 • Using the QuickTest Java Add-in Extensibility Eclipse Plug-In

99

Custom Class Selection Screen

The Custom Class Selection screen is the first screen in the New QuickTest
Custom Support Class wizard. In this screen, you select the custom class you
want to support and set the relevant options. The wizard automatically
determines which existing support class the new support class must extend,
based on the custom class inheritance hierarchy.

The main area of this screen contains the following options:

➤ Custom toolkit tree. Displays all of the classes in the custom toolkit that are
candidates for support (taken from the custom toolkit class locations you
listed in the New QuickTest Java Add-in Extensibility Project wizard). Use
the expand (+) and collapse (-) signs to expand and collapse the tree, and to
view its packages and classes.

Part I • Working with Java Add-in Extensibility

100

Only classes that fulfill the following conditions are displayed:

➤ Classes that extend java.awt.Component or
org.eclipse.swt.widgets.Widget.

➤ Classes for which QuickTest support has not yet been extended. If
support for a custom class was previously deployed to QuickTest, or if
support for a custom class is being developed in the current Eclipse
project, the custom class does not appear in this tree.

Note: If you think a certain class meets all of the requirements above, but it
still does not appear in the tree, try to update your environment by using
the Reload Support Configuration command (described on page 138).

For example, if you delete custom support in an Eclipse Java Add-in
Extensibility project to create new support for the same custom control, you
must reload the support configuration. This enables the custom class to
appear in the Custom toolkit tree.

➤ Custom class inheritance hierarchy. Displays the inheritance hierarchy of
the class selected in the Custom toolkit tree. Gray nodes indicate classes that
are not included in this toolkit. Black nodes indicate classes that are part of
the custom toolkit.

You can select the custom class you want to extend in the Custom toolkit
tree or the Custom class inheritance hierarchy. (In the Custom class
inheritance hierarchy you can select only black nodes, and only classes that
do not have QuickTest support.)

➤ Base support class. The support class that the new support class must
extend. You cannot modify this information. The wizard selects the support
class of the closest ancestor in the hierarchy that has QuickTest support. (If
support for a custom class was previously deployed to QuickTest, or if
support for a custom class is being developed in the current Eclipse project,
the wizard recognizes the custom class as having QuickTest support.)

Chapter 5 • Using the QuickTest Java Add-in Extensibility Eclipse Plug-In

101

Note: When QuickTest recognizes a Java object that is not mapped to a
specific support class, it uses the support class mapped to the object’s closest
ancestor. Therefore, the base support class is the class that would provide
support for the custom control if it were not mapped to a specific support
class. In the new custom support class, you need to implement (or override)
only the support that the base support class does not adequately provide.

You can use the information displayed in the Custom class inheritance
hierarchy and Base support class to help you decide whether you should
first extend support for another custom class, higher in the hierarchy. Before
you decide, consider the following:

➤ Is there a custom class higher in hierarchy that does not have QuickTest
support?

➤ If so, does the custom class have elements that need to be supported in a
similar manner for more than one of its descendants?

If you answered "yes" to the above, consider creating support for the higher
class first. This will enable its support class to be used as the Base support
class. If the class is displayed as a black node in the hierarchy, you can select
it in this screen and create support for it in this session of the wizard. If the
class appears as a gray node, it is not part of this toolkit, and you cannot
create support for it within the current QuickTest Java Add-in Extensibility
project.

If the higher class extends the base toolkit of the current support project,
you can add it to the scope of this project by adding it to the custom toolkit.
For information on base toolkits, see “Custom Toolkit Details Screen” on
page 89. For information on adding a custom class to an existing support
project, see “Modifying QuickTest Java Add-in Extensibility Project
Properties” on page 96.

Otherwise, if you want to create support for the higher class first and then
use its support class as a base support class, you must perform the procedure
described below.

Part I • Working with Java Add-in Extensibility

102

To create support for a higher class that is not part of this custom toolkit
and use this support as a base support class:

 1 Create support for the higher class in another QuickTest Java Add-in
Extensibility project.

 2 Deploy the support to QuickTest.

 3 Reopen the original QuickTest Java Add-in Extensibility project. Choose
QuickTest > Reload Support Configuration or click the Reload Support
Configuration button.

 4 Open the New QuickTest Custom Support Class wizard (described on
page 97). The wizard now selects the new support class you created as the
Base support class.

Note: Selecting the class to support is fundamental to creating a custom
support class. If you make changes in later screens and then return to this
screen and select a different class, those changes will be discarded.

The bottom of the Custom Class Selection screen contains the following
options:

➤ Controls of this class represent top-level objects. Enables you to specify that
QuickTest may be expected to recognize the control as the highest Java
object in the test object hierarchy. For more information see, “Supporting
Top-Level Objects” on page 59.

If you select this check box, the wizard implements the isWindow method
in the new custom support class. This method returns true.

This option is available only if the class you selected to support is a
container class, meaning that it extends java.awt.container or
org.eclipse.swt.widgets.Composite. The check box is selected by default if
the new support class extends one of the following support classes: ShellCS
(SWT), WindowCS (AWT), AppletCS (AWT).

Chapter 5 • Using the QuickTest Java Add-in Extensibility Eclipse Plug-In

103

➤ Change custom support class name. Enables you to modify the default
name the wizard provided for the support class, if needed.

By default, the name for a support class is <custom class name>CS. In most
cases, there is no need to change the default name. However, if your custom
toolkit contains classes from different packages, you might have more than
one custom class with the same name. In this case, you must provide
different names for the custom support classes because they are stored in
one package.

To modify the custom support class name, select the Change custom
support class name check box and then enter the new name.

Note: The options in the Custom Class Selection screen are identical to the
options available in the Custom Static-Text Class Selection screen in the
New QuickTest Custom Static-Text Support Class wizard (described on
page 132).

Click Next to continue to the Test Object Class Selection Screen, described
below.

Part I • Working with Java Add-in Extensibility

104

Test Object Class Selection Screen

In QuickTest tests, the custom class controls are represented by test objects
of the selected test object class. In the Test Object Class Selection screen, you
map the custom class to a test object class. In the custom support class, the
wizard adds a to_class_attr property method that is implemented to return
the test object class you select in this screen. This enables the support class
to inform QuickTest what test object class is mapped to the custom class.

Select one of the following options:

➤ Same as base support class. Maps the custom class to the test object class
returned by the to_class_attr property method of the base support class. (If
you select this option, the wizard does not add a to_class_attr method to
the new support class that it creates. The new support class inherits the base
support class’ method.)

In the Custom Class Selection Screen (described on page 99), you
determined the base support class, which is the support class that the new
support class extends. The custom class supported by the base support class
is mapped to a specific test object class. If this test object class is also a
logical test object for your custom class, select the Same as base support
class option.

Chapter 5 • Using the QuickTest Java Add-in Extensibility Eclipse Plug-In

105

The following examples illustrate when to select the Same as base support
class option:

➤ You want to support a custom control that is similar to the one supported
by the base support class. Controls are considered similar if they have the
same set of identification properties and test object methods, but the
properties and methods are implemented differently. In this case, the test
object class returned by the to_class_attr property method of the base
support class is appropriate for your custom control.

➤ You are creating a support class for other support classes to extend—not
to support actual controls. In this case, you can select this option because
it is not important which test object class you map to the custom class.
To view an example of this type, see “Creating Support for the
ImageControl Custom Class” on page 213.

➤ Existing test object class. Enables you to map the custom class to an existing
test object class that is already supported by QuickTest. This list contains all
of the Java objects that QuickTest supports. If you define new test object
classes for custom support, they are also included in the list.

If you select this option, you must also select the appropriate existing test
object class from the list.

Notes:

If you defined new test object classes in the current Eclipse workspace, they
are displayed in this list immediately. Otherwise, new test object classes are
displayed in the list only after they are deployed to QuickTest and you
reload the configuration (for more information, see “Reload Support
Configuration” on page 138).

If you select a test object class that is not defined within your project, its test
object class definition must also be deployed to QuickTest for your support
to function properly.

Part I • Working with Java Add-in Extensibility

106

Tip: Select this option only if this test object class includes all of the
identification properties and test object methods of the custom control. If
you need to add additional properties or methods, select New test object
class.

➤ New test object class. Enables you to map the custom control to a new test
object class that you create. Select this option if none of the existing test
object classes include all of the identification properties and test object
methods of the custom control. Then enter a name for the new test object
class. The test object class name must begin with a letter and contain only
alphanumeric characters and underscores.

➤ Extends existing test object. Each new test object class is based on an
existing one, extending its set of identification properties and test object
methods. All test object classes extend the JavaObject class. You can
choose a more specific existing test object class to extend by selecting it
from the list.

The list of existing test objects contains all of the Java objects that
QuickTest supports. If you define new test object classes for custom
support, they are included in the list as well.

Note: If you defined new test object classes in the current Eclipse
workspace, they are displayed in this list immediately. Otherwise, new
test object classes are displayed in the list only after they are deployed to
QuickTest and you reload the configuration (for more information, see
“Reload Support Configuration” on page 138).
If you select a test object class that is not defined within your project, its
test object class definition must also be deployed to QuickTest for your
support to function properly.

Chapter 5 • Using the QuickTest Java Add-in Extensibility Eclipse Plug-In

107

If you select the New test object class option, you define additional details
about the new test object class in the New Test Object Class Details Screen
(described on page 128). The wizard then adds the definition of the new test
object class to the test object configuration file. For information on the
structure and content of this file, refer to the QuickTest Test Object Schema
Help (Help > QuickTest Professional Help > QuickTest Advanced References >
QuickTest Test Object Schema).

Note: Selecting the test object class to map to the custom class is
fundamental to creating a custom support class. If you make changes in
later screens and then return to this screen and select a different test object
class, those changes will be discarded.

Click Next to continue to the Custom Support Test Object Identification
Properties Screen, described below.

Part I • Working with Java Add-in Extensibility

108

Custom Support Test Object Identification Properties Screen

The Custom Support Test Object Identification Properties screen displays the
identification properties supported by the base support class you are
extending, as well as additional properties that are defined in the test object
class you selected, but are not yet supported. It enables you to select
properties whose support you want to implement or override with new
functionality. It also enables you to add new properties.

Properties Inherited from Base Support Class

The left pane displays all of the identification properties implemented by
the base support class. These are the identification properties that will be
inherited by the support class you are creating. You can select any
identification properties whose support you want to override with a
different implementation.

Chapter 5 • Using the QuickTest Java Add-in Extensibility Eclipse Plug-In

109

Note: Some of these identification properties are not included in the test
object class definition. Therefore, they are not displayed in QuickTest in the
Object Spy or in the Checkpoint Properties dialog box. You can access those
identification properties by using the GetROProperty method. For more
information on the GetROProperty method, refer to the QuickTest
Professional Object Model Reference.

When the wizard creates the support class file, it adds a support method
stub, named <identification property name>_attr, for each of the
identification properties you select. The support method stubs return the
same values as the support methods in the base support class. You can
implement the new support methods to match the needs of your custom
control.

Additional Properties Required for Test Object Class

The right pane displays the identification properties that are defined in the
test object class you selected, but are not supported by the base support
class. You can modify this list using the Add, Remove, and Modify buttons.

For each of the identification properties in this pane, the wizard adds a
support method stub to the support class it creates. The support method
stubs return null until you implement them to match the needs of your
custom control.

If you add identification properties to this list, the wizard adds them to the
test object class definition in the test object configuration file. For
information on the structure and content of this file, refer to the QuickTest
Test Object Schema Help (Help > QuickTest Professional Help > QuickTest
Advanced References > QuickTest Test Object Schema).

Part I • Working with Java Add-in Extensibility

110

Note: If you selected the Same as base support class option in the Test
Object Class Selection Screen(on page 104), the wizard does not know
which test object class is mapped to the custom control. As a result, no
identification properties are displayed in the right pane. If you add an
identification property, the wizard adds the appropriate support method
stub to the support class it creates. However, the identification property is
not added to any test object class definition.

To add an identification property:

 1 Click Add. The Identification Property dialog box opens.

 2 Enter a name for the new identification property and click OK. (The
identification property name must begin with a letter and contain only
alphanumeric characters and underscores.)

Note: If you add identification properties to this list, they are added to the
test object class definition. This means that the new properties appear in the
list of identification properties in QuickTest for all test objects of this class.

Therefore, if you plan to add properties, it is recommended to create a new
test object class based on the existing one, instead of using the existing test
object class.

Chapter 5 • Using the QuickTest Java Add-in Extensibility Eclipse Plug-In

111

To remove an identification property:

 1 In the Additional properties required for test object class pane, select the
property you want to remove.

 2 Click Remove. Then click Yes to confirm.

Note: If you remove an identification property from the list, it is no longer
supported for this custom class. However, it is still part of the test object
class definition. Therefore, although it still appears in the list of
identification properties shown in the QuickTest Object Spy, it will have no
value.

To modify an identification property:

 1 In the Additional properties required for test object class pane, select the
property you want to rename.

 2 Click Modify. The Identification Property dialog box opens.

 3 Modify the identification property name and click OK.

Note: When you remove an identification property from the existing test
object class, the property is no longer supported for the custom class, but is
still part of the test object class. When you add an identification property, it
is added to the test object class definition, and will appear in QuickTest for
all test objects of this class. Modifying an identification property is
equivalent to removing it and adding a new one.

Part I • Working with Java Add-in Extensibility

112

Tip: To add identification properties after the support class is created, use
the Add Identification Property button or choose QuickTest > Add
Identification Property.

Click Next to continue to the Custom Support Test Object Methods Screen,
described below.

Custom Support Test Object Methods Screen

The Custom Support Test Object Methods screen displays the test object
methods defined for the test object class you mapped to the custom control.
You use this screen to select test object methods whose support you want to
implement or override with new functionality and to add new test object
methods.

Chapter 5 • Using the QuickTest Java Add-in Extensibility Eclipse Plug-In

113

Methods Inherited from Base Support Class

The left pane displays all of the test object methods that are defined for the
test object class you selected and are implemented by the base support class.
These are the test object methods that will be inherited by the support class
you are creating. You select any test object methods whose support you
want to override with a different implementation.

When the wizard creates the support class file, it adds a support method
stub, named <test object method name>_replayMethod, for each test
object method you selected. The support method stubs return the same
values as the support methods in the base support class. You can implement
the new support methods to match the needs of your custom control.

Note: If you selected the Same as base support class option in the Test
Object Class Selection Screen (on page 104), the wizard does not know
which test object class is mapped to the custom control. As a result, no test
object methods are displayed in the left pane. After the wizard creates the
new support class, you can override any of the replay methods that it
inherits from the base support class by adding them to the class manually.

Additional Methods Required for Test Object Class

The right pane displays the test object methods that are defined in the test
object class you selected, but are not supported by the base support class.

You can modify the list in this pane using the Add, Remove, and Modify
buttons.

The Add and Modify buttons enable you to add test object methods to this
list or to modify the methods that are already in the list. Note that
modifying the name of a method is equivalent to removing the method and
adding a new one. For more information, see “Understanding the Test
Object Method Dialog Box” on page 116.

For each of the test object methods in this pane, the wizard adds support
method stubs to the support class it creates. The support method stubs
return the error value Retval.NOT_IMPLEMENTED until you implement
them to match the needs of your custom control.

Part I • Working with Java Add-in Extensibility

114

If you add test object methods to this list, the wizard adds them to the test
object class definition in the test object configuration file. For information
on the structure and content of this file, refer to the QuickTest Test Object
Schema Help (Help > QuickTest Professional Help > QuickTest Advanced
References > QuickTest Test Object Schema).

Notes:

➤ If you add test object methods to this list, they are added to the existing
test object class. This means that the new methods appear in QuickTest
for all test objects of this class, regardless of whether or not they are
supported for these objects. In a QuickTest test, if you call a test object
method for an object, and that method is not supported, a run-time error
occurs.
Therefore, if you plan to add test object methods to support a custom
control, it is recommended to create a new test object class based on the
existing one, instead of using the existing test object class.

➤ If you selected the Same as base support class option in the Test Object
Class Selection Screen (on page 104), the wizard does not know which
test object class is mapped to the custom control. As a result, no test
object methods are displayed in the right pane. If you add a test object
method, the wizard adds the appropriate replay method stub to the
support class it creates. However, the test object method is not added to
any test object class definition.

To remove a test object method from the list:

 1 In the Additional methods required for test object class pane, select the test
object method you want to remove.

 2 Click Remove. Then click Yes to confirm.

Chapter 5 • Using the QuickTest Java Add-in Extensibility Eclipse Plug-In

115

Note: If you remove a test object method from the list, it is no longer
supported for this custom class. However, it is still part of the test object
class definition. Therefore, it still appears in the list of test object methods in
QuickTest.

If you use this test object method on a custom control in QuickTest tests, a
run-time error occurs. For example, although a drop-down-list control is
supported as a List test object, if you select the select_range test object
method for a drop-down-list control, and it is not supported, a run-time
error occurs.

Tip: To add test object methods after the support class is created, use the
Add Test Object Method button or choose QuickTest > Add Test Object
Method.

After you specify the custom support test object methods, click Next. One of
the following screens open:

➤ If you are creating support for an AWT-based custom control, the Custom
Control Recording Support Screen (described on page 121) opens.

➤ If you are creating support for an SWT-based custom control, and you
mapped a new test object class to the custom control, the New Test Object
Class Details Screen (described on page 128) opens.

➤ If neither of the previous conditions is met, the Custom Control Support
Class Summary Screen (described on page 130) opens.

Part I • Working with Java Add-in Extensibility

116

Understanding the Test Object Method Dialog Box

When you click Add or Modify in the Custom Support Test Object Methods
Screen (described on page 112), the Test Object Method dialog box opens.

The Test Object Method dialog box enables you to specify details for the test
object methods listed in the Additional methods required for test object
class pane in the Custom Support Test Object Methods screen.

Chapter 5 • Using the QuickTest Java Add-in Extensibility Eclipse Plug-In

117

The Test Object Method dialog box contains the following items:

Option Description

Method name The name of the test object method as it appears in QuickTest
tests. The name should clearly indicate what the test object
method does so that a user can select it from the Step
Generator or in the Keyword View. Method names cannot
contain non-English letters or characters. In addition, method
names must begin with a letter and cannot contain spaces or
any of the following characters:
! @ # $ % ^ & * () + = [] \ { } | ; ‘ : ““ , / < > ?

Notes:
- Do not use the name of a test object method that
already exists in the support class. (The Custom Support
Test Object Methods Screen lists the test object methods
that are already included in the support class.) If you
want to override the implementation of an existing test
object method, select it in the left pane of the Custom
Support Test Object Methods screen (rather than
creating a new test object method with the same name).
- Modifying the name of a method is equivalent to
removing the method and adding a new one.

Part I • Working with Java Add-in Extensibility

118

Arguments A list of the test object method arguments and their types.

Use the following buttons to modify the list:

• Add. Enables you to add additional arguments to the test
object method. For more information, see “Adding or
Modifying an Argument for a Test Object Method,” below.

• Remove. Removes the selected argument from the list.

• Modify. Enables you to modify the arguments of the test
object method. For more information, see “Adding or
Modifying an Argument for a Test Object Method,” below.

• Up. Moves the selected argument up in the list.

• Down. Moves the selected argument down in the list.

Notes:
- The first argument of every test object method must be
obj (Object). You cannot remove, modify, or move this
argument.
- You cannot modify the signature of a test object
method that belongs to the existing test object class
that you selected in the Test Object Class Selection
Screen (described on page 104). (This means that in an
existing test object method, you cannot add or remove
arguments, or change their types.)

Option Description

Chapter 5 • Using the QuickTest Java Add-in Extensibility Eclipse Plug-In

119

Method returns
a string value

Indicates that this test object method returns a string value in
addition to the return code. (The return value can be retrieved
and used in later steps of a QuickTest test.)

If you select this check box:

• the wizard adds the ReturnValueType element to the test
object method definition that it creates in the test object
configuration file.

• the method stub that the wizard creates in the new support
class, returns the object Retval (""), which includes the
return code OK and an empty string.
When you implement the replay method for this test
object method, you can use different types of Retval. If
everything is ok, return the string value. Otherwise, return
only the relevant error code. For more information, refer to
the QuickTest Java Add-in Extensibility API Reference (Help >
QuickTest Professional Help > Java Add-in Extensibility
Developer’s Guide > QuickTest Java Add-in Extensibility API
Reference).

Description The tooltip that is displayed when the cursor is positioned over
the test object method in the Step Generator, in the Keyword
View, and when using IntelliSense.

Documentation A sentence that describes what the step that includes the test
object method actually does. This sentence is displayed in the
Step documentation box in the Step Generator and in the
Documentation column of the Keyword View.

You can insert arguments in the Documentation text by
clicking and selecting the relevant argument. The
arguments are then replaced dynamically by the relevant
values.

Option Description

Part I • Working with Java Add-in Extensibility

120

Adding or Modifying an Argument for a Test Object Method

When you click Add or Modify in the Test Object Method dialog box, the
Test Object Method Argument dialog box opens. The Test Object Method
Argument dialog box enables you to specify the details for each of the
arguments you list in the Test Object Method dialog box.

The Test Object Method Argument dialog box contains the following items:

Option Description

Name The name of the argument as it appears in QuickTest
tests. The argument name should clearly indicate the
value that needs to be entered for the argument.
Argument names must contain only alphanumeric
characters. In addition, argument names must begin
with a letter and cannot contain spaces or any of the
following characters:
! @ # $ % ^ & * () + = [] \ { } | ; ‘ : ““ , / < > ?

Chapter 5 • Using the QuickTest Java Add-in Extensibility Eclipse Plug-In

121

Custom Control Recording Support Screen

Note: The Custom Control Recording Support screen opens only if you are
creating a support class for an AWT-based custom class.

To support recording on a custom control, the support class must
implement listeners for the events that trigger recording.

Type Instructs QuickTest to do one of the following:

• Require String values for this argument in test steps
with this test object method

• Allow Variant values

Even if you define the Type as Variant, all arguments
are passed to the replay methods as strings. In addition,
when you record test steps, the arguments are always
registered as strings.

Note: If you want to define a list of possible values for
an argument, you must do so manually. In the
test object configuration file, define the list of
values and change the argument’s type to
ListOfValues.

For more information, refer to the QuickTest Test Object
Schema Help (Help > QuickTest Professional Help >
QuickTest Advanced References > QuickTest Test Object
Schema).

Mandatory Argument Instructs QuickTest whether or not to require the
person writing the test to supply a value for the
argument.

In the list of arguments, mandatory arguments cannot
follow optional arguments.

Default value If an argument is optional, you can provide a default
value that QuickTest uses if no other value is defined.

This option is not available for mandatory arguments.

Option Description

Part I • Working with Java Add-in Extensibility

122

The Custom Control Recording Support screen displays the event handler
methods implemented by the support class you selected to extend.

The Custom Control Recording Support screen enables you to:

➤ select methods whose implementation you want to override with new
functionality

➤ add new event listeners to implement

➤ set recording-related options

For information about how the wizard implements the details you specify in
this screen, see “Understanding What the Wizard Adds to the Support Class”
on page 125.

Methods Inherited from Base Support Class

The left pane displays the event handler methods implemented by the base
support class. You can select the methods you want to override.

Chapter 5 • Using the QuickTest Java Add-in Extensibility Eclipse Plug-In

123

Additional Methods Required for Test Object Class

In the right pane, you specify the listeners you want to add for the new
support class. Each listener you select implies a set of event handler methods
you can implement.

To add a listener to the list:

 1 Click Add and select the appropriate listener from the Listener dialog box
that opens.

Note: The list contains the listeners that can be registered on the custom
control. The wizard compiles this list by identifying listener registration
methods in the custom class and its superclasses. The wizard identifies as
registration methods, only methods named add<XXX>Listener whose first
argument extends java.util.EventListener. If your custom class uses a
registration method that does not comply with this definition, you cannot
add the corresponding listener using the wizard. You can implement the
required support manually after the wizard creates the new custom support
class.

 2 If the selected listener has more than one registration method, select a
method from the Registration method list.

 3 Click OK. The listener you selected and all of the event handler methods it
includes are added to the list.

Part I • Working with Java Add-in Extensibility

124

To remove a listener from the list:

Select a listener or one of its event handler methods and click Remove.

Custom Control Recording Support Screen Options

The Custom Control Recording Support screen contains the following
options:

Option Description

Treat controls of this class as
wrapper controls

Instructs the wizard to implement the
com.mercury.ftjadin.infra.abstr.Record
Wrapper interface in the new support
class.

If the custom control extends
java.awt.container, this check box is
selected by default. Otherwise, it is not
available.

For more information, see “Wrapper
Implementation in the Support Class” on
page 126.

Override low-level mouse event
recording

Instructs the wizard to implement the
mouseRecordTarget method in the new
support class so that it returns null.

This instructs QuickTest not to record
low-level mouse events (coordinate-based
operations), so you can record more
complex operations, such as, selecting an
option in a menu.

Override low-level keyboard event
recording

Instructs the wizard to implement the
keyboardRecordTarget method in the
new support class, so that it returns null.

This instructs QuickTest not to record
low-level keyboard events, enabling you
to record more complex events, such as,
setting a value in an edit box.

Chapter 5 • Using the QuickTest Java Add-in Extensibility Eclipse Plug-In

125

Note: The options listed in the table above are available only in the wizard
(and not in the Eclipse QuickTest commands that you can use to edit a
support class after it is created). If you do not select these options when you
create the support class, and you want to implement them later, you will
have to do so manually.

Tip: To add event handlers after the support class is created, use the Add
Event Handler button or choose QuickTest > Add Event Handler.

Understanding What the Wizard Adds to the Support Class

The following sections describe the methods that the wizard adds to the
support class it creates, based on the definitions in this screen:

Listener Implementation in the Support Class

In the support class file it creates, the wizard implements the listeners and
options you specified, as follows:

➤ The implemented listener interfaces are added to the support class signature.

➤ A constructor is added to the support class, listing all of the listeners that
need to be registered on the custom control. It also lists the methods used to
add and remove the listeners. This is done by calling addSimpleListener for
each listener.

➤ A method stub is added to the support class for each of the event handler
methods you selected in the left pane. The method stubs call the
corresponding event handler methods in the base support class. You can
implement the new event handler methods to match the needs of your
custom control.

Part I • Working with Java Add-in Extensibility

126

Note: Some of the event handler methods are implemented in existing
support classes as final methods, which cannot be overriden. If you select
one of these methods in the left pane, the wizard adds an underscore at the
beginning of the method name in the method stub that it creates. For
example, if you select focusGained, focusLost, keyTyped, keyPressed, or
keyReleased, the wizard creates _focusGained, _focusLost, _keyTyped,
_keyPressed, or _keyReleased, respectively. Each one of the final methods is
implemented to call _<method name> after performing its basic
functionality. Therefore, you can override the _<method name> methods
to add functionality to these final methods.

➤ A method stub is added to the support class for each of the event handlers
listed in the right pane. You must implement the event handler methods to
call MicAPI.record. (Each method stub includes a comment to remind you
to do this, and a basic skeleton which provides a recommendation for the
method’s structure.) For more information, see “Supporting the Record
Option” on page 56.

Wrapper Implementation in the Support Class

You select the Treat controls of this class as wrapper controls check box if
you are creating support for a container control that groups the controls
within it and represents them as a single control. If you select this check
box, the wizard adds the following method stubs to the support class:

➤ blockWrappedObjectRecord. (Returns False.)

➤ registerWrapperInspector. (A comment is added to remind you to
implement this method to register this class as a wrapper of specific control
types.)

➤ checkWrappedObject. (Returns null.)

➤ wrapperRecordMessage. (Returns the record message sent by the wrapped
control without performing any intervention.)

Chapter 5 • Using the QuickTest Java Add-in Extensibility Eclipse Plug-In

127

You can implement these methods to achieve the required wrapping
functionality. For more information, see “Supporting Wrapper Controls” on
page 59.

If you mapped a new test object class to the custom control, click Next to
continue to the New Test Object Class Details Screen (described below).
Otherwise, click Finish to continue to the Custom Control Support Class
Summary Screen (described on page 130).

Part I • Working with Java Add-in Extensibility

128

New Test Object Class Details Screen

If you mapped a new test object class to the custom control, you define
additional details about the new test object class in the New Test Object
Class Details screen.

Chapter 5 • Using the QuickTest Java Add-in Extensibility Eclipse Plug-In

129

The New Test Object Class Details screen contains the following options:

When the wizard creates the new support class, it adds the new test object
type to the test object configuration file. The options you specify in the New
Test Object Class Details screen are recorded in this file. For information
about the structure of this file, refer to the QuickTest Test Object Schema Help
(Help > QuickTest Professional Help > QuickTest Advanced References >
QuickTest Test Object Schema).

Option Description

Test object icon The path of the icon file to use in the Keyword view
for this test object class. The icon file must be in an
uncompressed .ico format.

This is optional. If you do not define an icon file,
the JavaObject icon is used.

Identification property for
unique description

Specifies the identification property that QuickTest
uses to uniquely identify the control (in addition to
the toolkit class and index properties).

You can select an identification property from the
list or leave the property the wizard selected by
default.

Default test object method Specifies the default test object method displayed
in the Keyword View and Step Generator when a
step is generated for an object of this class.

Select a test object method from the list.

Default checkpoint
properties

Specifies the identification properties that are
selected by default when you create a checkpoint
for an object of this class.

Select the check boxes for the appropriate
properties. Click Select All or Clear All to select or
clear all of the check boxes.

Part I • Working with Java Add-in Extensibility

130

Note: If you want QuickTest to include additional identification properties
in the test object description, you must manually specify this in the test
object configuration file. The wizard adds the test object class definition to
the test object configuration file. For each property that you want to add to
the test object description, find the line that describes it in the file. Between
the words Property and Name, add the words ForDescription="true".

Click Finish. The Custom Control Support Class Summary Screen opens, as
described below.

Custom Control Support Class Summary Screen

Before the wizard creates the custom support class file, the Custom Support
Class Summary screen summarizes the specifications you provided for the
new support class.

Chapter 5 • Using the QuickTest Java Add-in Extensibility Eclipse Plug-In

131

If you want to change any of the data, click Cancel to return to the previous
wizard screen. Use the Back and Next buttons to open the relevant screens
and make the required changes.

If you are satisfied with the definitions, click OK. The wizard creates the new
support class with all of the required methods, according to your
specifications.

In addition, the wizard adds the test object class definition to the test object
configuration file if one of the following conditions is met:

➤ You mapped a new test object class to the custom control.

➤ You added identification properties or test object methods to an existing test
object class.

Note: If the test object configuration file does not exist, the wizard creates it
at this time. For information on the structure of the test object
configuration file, refer to the QuickTest Test Object Schema Help (Help >
QuickTest Professional Help > QuickTest Advanced References > QuickTest
Test Object Schema).

Completing the Custom Class Support

After you finish creating a custom support class (using the New QuickTest
Custom Support Class Wizard), you need to perform the following
additional steps:

➤ Save the class. The changes made by the wizard are codependent and need
to be saved to prevent discrepancies.

Note: In Eclipse, the new class file is opened and displayed in a tab in the
right pane. Until you save the class, an asterisk (*) is displayed in the tab
next to the support class file name.

Part I • Working with Java Add-in Extensibility

132

➤ Implement any method stubs that the wizard created in the new custom
support class. For more information, see “Understanding the Toolkit
Support Class” on page 35.

➤ Deploy the toolkit support to QuickTest to enable the support to be
available. For more information, see “Deploying and Running the Custom
Toolkit Support” on page 66.

New QuickTest Custom Static-Text Support Class Wizard

You use the New QuickTest Custom Static-Text Support Class wizard to
create a support class for a custom static-text class within a Java Add-in
Extensibility project. Supporting a static-text class enables QuickTest to use
its label property as the attached text for an adjacent control.

The only thing that you need to specify in this wizard is which custom class
you want to support as a static-text class (and the controls of this class
represent top-level objects, if relevant). The wizard creates the new support
class with the methods required for the support of static-text objects. These
methods are described in “Custom Static-Text Support Class Summary
Screen” on page 135.

After the wizard creates the new support class, you complete its
implementation as described in “Completing the Custom Static-Text Class
Support” on page 136.

In most cases, it is not necessary to support any additional identification
properties or test object methods for a static-text control. However, after the
wizard creates the new support class, you can add additional methods to the
class, providing support for additional identification properties or test object
methods, or for recording. You can add these methods manually, or by using
the commands described in “Working with QuickTest Commands in
Eclipse” on page 137.

To open the New QuickTest Custom Static-Text Support Class wizard in
Eclipse:

 1 In the Eclipse Package Explorer tab, select a QuickTest Java Add-in
Extensibility project. Then choose File > New > Other. The New dialog box
opens.

Chapter 5 • Using the QuickTest Java Add-in Extensibility Eclipse Plug-In

133

 2 Expand the QuickTest Professional folder and select QuickTest Custom
Static-Text Support Class.

 3 Click Next. The Custom Static-Text Class Selection Screen opens.

Tip: You can shorten this process by customizing Eclipse to provide
QuickTest Custom Static-Text Support Class as an option in the New menu.
To do this, perform the following: Choose Window > Customize
Perspective. In the Shortcuts tab in the dialog box that opens, select the
QuickTest Professional and QuickTest Custom Static-Text Support Class
check boxes. Click OK.

Part I • Working with Java Add-in Extensibility

134

Custom Static-Text Class Selection Screen

The options in the Custom Static-Text Class Selection screen are identical to
the options in the Custom Class Selection Screen (described on page 99).

You select the custom class you want QuickTest to recognize as static-text
and set the relevant options.

Static-text controls do not normally have any identification properties or
test object methods that are relevant for QuickTest tests. Therefore, no
additional specifications are required in this wizard.

Click Finish. The Custom Static-Text Support Class Summary Screen opens
(described below).

Chapter 5 • Using the QuickTest Java Add-in Extensibility Eclipse Plug-In

135

Custom Static-Text Support Class Summary Screen

Before the wizard creates the custom support class file, the Custom
Static-Text Support Class Summary screen summarizes the specifications you
provided for the new support class.

If you want to change any of the data, click Cancel to return to the Custom
Static-Text Class Selection Screen, described above.

If you are satisfied with the definitions, click OK. The wizard creates the new
support class with the following methods, which are required for the
support of static-text objects:

➤ class_attr. Returns the string static_text, enabling QuickTest to recognize
objects of this class as static-text controls.

➤ label_attr. Returns the label property of the superclass.

When the label property for a Java control is empty, QuickTest looks for an
adjacent static-text control and uses its label property for the test object
name. Therefore you may want to implement the label_attr method to
return the appropriate name, for example, the string displayed by the
static-text control.

Part I • Working with Java Add-in Extensibility

136

➤ tag_attr. Returns the tag property of the superclass (which returns the label
property value) with the suffix (st). This method provides the test object
name for the static-text control itself, while the label_attr method provides
the name used for adjacent controls.

For example, if you implement the label_attr method to return MyButton,
the tag_attr method returns MyButton(st).

For more information, see “Special Identification Property Support
Methods” on page 52.

➤ value_attr. Returns the label property.

The value property represents a control’s test object state. For static-text
controls, the label property adequately represents this state.

You can practice creating support for a custom static-text control in the
tutorial lesson “Learning to Support a Custom Static-Text Control” on
page 197.

Completing the Custom Static-Text Class Support

After you finish creating a custom support class for a custom static-text class
(using the New QuickTest Custom Static-Text Support Class Wizard), you
need to perform the following additional steps:

➤ Save the class. The changes made by the wizard are codependent and need
to be saved to prevent discrepancies.

Note: In Eclipse, the new class file is opened and displayed in a tab in the
right pane. Until you save the class, an asterisk (*) is displayed in the tab
next to the support class file name.

➤ Implement the label_attr method, if needed.

➤ Deploy the toolkit support to QuickTest to enable the support to be
available. For more information, see “Deploying and Running the Custom
Toolkit Support” on page 66.

Chapter 5 • Using the QuickTest Java Add-in Extensibility Eclipse Plug-In

137

Working with QuickTest Commands in Eclipse

After you install the QuickTest Java Add-in Extensibility SDK, which
includes the Java Add-in Extensibility Eclipse Plug-in, a toolbar with the
following buttons is added to Eclipse:

A new QuickTest menu is also added to Eclipse, with these same commands.
The commands are described in detail in the following sections.

Deploy Toolkit Support

The Deploy Toolkit Support command is available when you select a
QuickTest Java Add-in Extensibility project (or elements within it) in the
Eclipse Package Explorer tab.

Note: The Deploy Toolkit Support command is not available if you installed
the QuickTest Professional Java Add-in Extensibility SDK before installing
QuickTest and the Java Add-in. To solve this problem, uninstall the
QuickTest Professional Java Add-in Extensibility SDK and install it again. For
more information, see “Installing the QuickTest Professional Java Add-in
Extensibility Software Development Kit” on page 13.

You use the Deploy Toolkit Support command to deploy the toolkit support
during the development stages. To use this command, QuickTest and the
QuickTest Java Add-in Extensibility Eclipse Plug-in must be installed on the
same computer.

Button Definition Button Definition

Deploy Toolkit Support Add Identification
Property

Reload Support
Configuration

Add Test Object Method

Delete Custom Support Add Event Handler

Part I • Working with Java Add-in Extensibility

138

This command copies the toolkit configuration file and the test object
configuration file to the appropriate QuickTest folders. In the toolkit
configuration file, the location specified for the support classes is the Eclipse
workspace. The next time you run the Java application, the support you
developed is available on QuickTest. For more information, see “Deploying
and Running the Custom Toolkit Support” on page 66.

Notes:

The Deploy Toolkit Support command copies only the test object
configuration file that is named <Custom Toolkit Name>TestObjects.xml. If
you create additional test object configuration files you must copy them to
the appropriate folders, specified in “Deploying and Running the Custom
Toolkit Support” on page 66.

The Deploy Toolkit Support command validates the configuration files
against their corresponding XSD files, and only deploys them if their format
meets the requirements. For information about the structure of the
configuration files, refer to the QuickTest Java Add-in Extensibility Toolkit
Configuration Schema Help (Help > QuickTest Professional Help > Java Add-in
Extensibility Developer’s Guide > QuickTest Java Add-in Extensibility Toolkit
Configuration Schema) and the QuickTest Test Object Schema Help (Help >
QuickTest Professional Help > QuickTest Advanced References > QuickTest
Test Object Schema).

Reload Support Configuration

The Reload Support Configuration command is available when you select a
QuickTest Java Add-in Extensibility project (or elements within it) in the
Eclipse Package Explorer tab.

Chapter 5 • Using the QuickTest Java Add-in Extensibility Eclipse Plug-In

139

Note: The Reload Support Configuration command is not available if you
installed the QuickTest Professional Java Add-in Extensibility SDK before
installing QuickTest and the Java Add-in. To solve this problem, uninstall
the QuickTest Professional Java Add-in Extensibility SDK and install it again.
For more information, see “Installing the QuickTest Professional Java Add-in
Extensibility Software Development Kit” on page 13.

The Reload Support Configuration command instructs the QuickTest Java
Add-in Extensibility Eclipse plug-in to update the plug-in’s list of supported
Java classes and test object classes by reloading:

➤ the selected project’s configuration files and support classes

➤ all of the toolkit configuration files and test object configuration files from
the QuickTest installation folder

The Reload Support Configuration command affects the following items in
the New QuickTest Custom Support Class wizard:

➤ The list of custom classes displayed in the custom toolkit tree in the Custom
Class Selection Screen (described on page 99).

➤ The wizard’s selection of the base support class in the Custom Class
Selection Screen (described on page 99).

➤ The list of existing test object classes displayed in the Test Object Class
Selection Screen (described on page 104).

The following examples demonstrate situations that require reloading the
support configuration:

➤ You modified the test object configuration file in the QuickTest Java Add-in
Extensibility project, adding or removing test object classes. You now want
the wizard’s list of existing test object methods to reflect these changes.

➤ You manually deployed support of a custom toolkit to QuickTest, and you
want the wizard to recognize that the classes are supported.

Part I • Working with Java Add-in Extensibility

140

➤ You manually deleted support for some classes from QuickTest, and you
want these classes to be removed from the list of supported classes in the
Eclipse plug-in.

➤ You created a custom toolkit support set (named Support Set A) in one
Eclipse project and deployed it. You are now creating a custom toolkit
support set (named Support Set B) for another custom toolkit in a different
Eclipse project. You want to use a support class from Support Set A as the
base support class for a support class in Support Set B.

Delete Custom Support

The Delete Custom Support command is available when you select a
QuickTest Java Add-in Extensibility custom support class in the Eclipse
Package Explorer tab.

Note: The command is available only if this class was created as a QuickTest
Java Add-in Extensibility custom support class in this Eclipse workspace.

You use this command to delete support for a specific custom class. The
support class is deleted, as well as its listing in the toolkit configuration file.
If you created a new test object class for this support class, it is not deleted
from the test object configuration file because other support classes can use
it.

If you delete the support class using the Eclipse Delete command, instead of
the Delete Custom Support, you must manually remove the mapping of the
custom control to this support class in the toolkit configuration file.

Tip: If you want to delete a support class you have just created, make sure
you save the support class first.

Chapter 5 • Using the QuickTest Java Add-in Extensibility Eclipse Plug-In

141

After deleting a support class, if you previously deployed support for this
custom class to QuickTest, you must re-deploy the toolkit support. This
replaces the toolkit configuration file with the updated one, removing the
support for this custom class from QuickTest as well.

If you delete a support class that serves as the base support class for another,
you must manually change the inheritance of this other class. For example:
InheritedCS extends ToDeleteCS that extends BuiltInCS. If you delete
ToDeleteCS, you must manually change InheritedCS to extend BuiltInCS.

Note: You cannot remove support of a complete toolkit using the QuickTest
Java Add-in Extensibility Eclipse Plug-in commands. To do this you have to
manually delete the toolkit configuration files from their locations in the
QuickTest folders. For more information, see “Deploying and Running the
Custom Toolkit Support” on page 66.

Add Identification Property

The Add Identification Property command is available when you select a
QuickTest Java Add-in Extensibility custom support class in the Eclipse
Package Explorer tab.

Note: This command is available only if this class was created as a QuickTest
Java Add-in Extensibility custom support class in this Eclipse workspace.

You use this command to add an identification property after the support
class is created.

You must deploy the toolkit support for the changes to take effect on
QuickTest.

Part I • Working with Java Add-in Extensibility

142

To add an identification property:

 1 Click the Add Identification Property button. The Identification Property
dialog box opens.

 2 Enter a name for the new identification property and click OK.

 3 A confirmation box opens notifying you that in addition to adding the new
identification property to the support class, the property will also be added
to the definition of the test object class mapped to the supported control.
This identification property will then appear in the list of identification
properties in QuickTest for all test objects of this class.

Click Yes if you want to continue. (If you click No, the new identification
property is discarded.)

A support method stub for the identification property you defined, named
<identification property name>_attr, is added to the support class. The
method stub returns null until you implement the method to match the
needs of your custom control.

 4 Another message box prompts you to select whether you want the new
identification property to be selected by default in checkpoints.

After you make your selection, the new identification property is added to
the test object class description in the test object configuration file.

If you clicked Yes, the ForDefaultVerification attribute is added to the
identification property definition and set to true. Otherwise, the
ForDefaultVerification is not added. (In both cases, the ForVerification
attribute is added and set to true, so that the new identification property is
always available for checkpoints.)

Chapter 5 • Using the QuickTest Java Add-in Extensibility Eclipse Plug-In

143

Note: If you add an identification property to the test object class definition,
it appears in the list of identification properties in QuickTest for all test
objects of this class.

It is for this reason that, if you plan to add properties, you create a new test
object class based on the existing one, instead of using the existing test
object class.

Tip: If you add an identification property that you want to be part of the
unique test object description, you have to manually define this in the test
object configuration file. In the row for this identification property, between
the words Property and Name add the words ForDescription="true". This adds
the ForDescription attribute to the Property element and sets it to true.

For more information, refer to the QuickTest Test Object Schema Help (Help >
QuickTest Professional Help > QuickTest Advanced References > QuickTest
Test Object Schema).

Add Test Object Method

The Add Test Object Method command is available when you select a
QuickTest Java Add-in Extensibility custom support class in the Eclipse
Package Explorer tab.

Note: This command is available only if this class was created as a QuickTest
Java Add-in Extensibility custom support class in this Eclipse workspace.

You use this command to add a test object method after the support class is
created.

You must deploy the toolkit support for the changes to take effect on
QuickTest.

Part I • Working with Java Add-in Extensibility

144

To add a test object method:

 1 Click the Add Test Object Method button. The Test Object Method Dialog
box opens.

 2 Define the details of the test object method you want to add, and click OK.
For more information, see “Understanding the Test Object Method Dialog
Box” on page 116.

 3 A confirmation box opens notifying you that in addition to adding new test
object method to the support class, the test object method will also be added
to the definition of the test object class mapped to the supported control.
The test object method will then appear in QuickTest for all test objects of
this class.

Click Yes if you want to continue. (If you click No, the new test object
method is discarded.)

A support method stub for the test object method you defined, named <test
object method name>_replayMethod, is added to the support class. This
method stub returns the error value Retval.NOT_IMPLEMENTED until you
implement it to match the needs of your custom control.

In addition, the test object method is added to the test object class
definition in the test object configuration file. For information on the
structure and content of this file, refer to the QuickTest Test Object Schema
Help (Help > QuickTest Professional Help > QuickTest Advanced References >
QuickTest Test Object Schema).

Note: If you add a test object method to an existing test object class, the
new methods appear in QuickTest for all test objects of this class, regardless
of whether or not they are supported for these objects. In a QuickTest test, if
you call a test object method for an object, and that method is not
supported, a run-time error occurs.

Therefore, if you plan to add test object methods to support a custom
control, it is recommended to create a new test object class based on the
existing one, instead of using the existing test object class.

Chapter 5 • Using the QuickTest Java Add-in Extensibility Eclipse Plug-In

145

Add Event Handler

The Add Event Handler command is available when you select an
AWT-based QuickTest Java Add-in Extensibility custom support class in the
Eclipse Package Explorer tab.

Note: This command is available only if this class was created as a QuickTest
Java Add-in Extensibility custom support class in this Eclipse workspace.

You use this command to add an event handler to the support class after it is
created.

The following options are available in the Custom Control Recording
Support wizard screen when you create a new support class:

➤ Treat controls of this class as wrapper controls

➤ Override low-level mouse event recording

➤ Override low-level keyboard event recording

If you did not select them when you created the support class, and you want
to implement them, you have to do so manually. For information on how to
do this, see “Supporting the Record Option” on page 56.

To add event handler methods:

 1 Click the Add Event Handler button. The Listener dialog box opens.

Part I • Working with Java Add-in Extensibility

146

 2 Select a listener from the list.

If the selected listener has more than one registration method, select a
method from the Registration method list.

➤ Click OK.

The listener you selected is added to the signature of the support class.

A constructor is added to the support class (or modified, if it already exists)
to call the addSimpleListener method for the listener you selected. This
adds the listener to the list of listeners that need to be registered on the
custom control, and specifies the methods used to register and remove it.

Method stubs for all of the event handler methods that comprise the listener
you selected are added to the support class. A comment is added to each
method stub, reminding you to implement the event handler to call
MicAPI.record to send a record message to QuickTest. For more information
see “Supporting the Record Option” on page 56.

Part II

Tutorial: Learning to Create Java Custom
Toolkit Support

148

149

6
Using the QuickTest Java Add-in
Extensibility Tutorial

The QuickTest Java Add-in Extensibility tutorial comprises lessons that will
familiarize you with the process of creating, testing, and deploying custom
toolkit support. After completing the tutorial, you can apply the skills you
learn to create QuickTest support for your own custom toolkits and controls.

This introduction describes: On page:

Understanding the Tutorial Lesson Structure 150

Checking Tutorial Prerequisites 150

Learning to Support a Simple Control 152

Learning to Support a Static-Text Control 152

Learning to Support a Complex Control 153

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

150

Understanding the Tutorial Lesson Structure

This tutorial is divided into three lessons. Each lesson assumes that you have
already performed the previous lessons or have an equivalent level of
experience. In each lesson, you learn more about the capabilities and
techniques available with QuickTest Java Add-in Extensibility. It is
recommended to perform the lessons in order.

In each lesson in this tutorial, you extend QuickTest support for a different
custom control, using the QuickTest Java Add-in Extensibility Eclipse
plug-in. The custom controls are provided in sample custom toolkits that
you can find in the <Java Add-in Extensibility SDK installation
folder>\samples folder. This folder also contains the custom toolkit support
sets required to support these custom controls and additional examples of
custom toolkits and their support.

Each lesson in the tutorial explains the Java Add-in Extensibility wizard
options that you need to use in that specific lesson. For more information
on these wizards, see “Using the QuickTest Java Add-in Extensibility Eclipse
Plug-In” on page 83.

Checking Tutorial Prerequisites

To perform the lessons in this tutorial, you must meet the requirements
described in this section.

System Requirements

The following minimum system requirements are required to perform the
lessons in this tutorial:

Eclipse, version 3.1.2

Eclipse, version 3.1.2 requires Java 1.4.2 or later.

Java Add-in Extensibility SDK

For information on installing Eclipse or the Java Add-in Extensibility SDK
see “Installing the QuickTest Professional Java Add-in Extensibility Software
Development Kit” on page 13.

Chapter 6 • Using the QuickTest Java Add-in Extensibility Tutorial

151

QuickTest Professional 9.1 or later, including the Java Add-in

For information on installing QuickTest Professional, refer to the QuickTest
Professional Installation Guide.

If your QuickTest Professional installation is not on the same computer as
Eclipse, you can still perform the lessons in this tutorial. However, when you
are instructed to deploy the toolkit support to QuickTest, you must
manually transfer the custom support class files and configuration files to
the correct folders on the QuickTest computer as described in “Deploying
and Running the Custom Toolkit Support” on page 66.

A computer on which support has not yet been implemented for the
custom toolkits and controls in this tutorial

If support has already been for the custom toolkits and controls in this
tutorial, remove the support as described in “Deploying and Running the
Custom Toolkit Support” on page 66 or use another computer.

Knowledge Requirements

The lessons in this tutorial assume you have the background knowledge
described below:

Familiarity with major QuickTest features and functionality

You should have a thorough understanding of the following: test objects,
object repository, Object Spy, Keyword View, and Expert View. You should
also have experience recording, editing, and running tests. For more
information, refer to the QuickTest Professional User’s Guide.

Experience with Java programming

You should be familiar with the concepts related to Java programming
(class, package, interface, inheritance, and so on) and know how to write
and compile Java classes.

Familiarity with XML

You should be familiar with the concepts of elements and attributes and feel
comfortable working with schemas and editing XML files.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

152

A basic understanding of the concepts described in the Implementing
Custom Toolkit Support chapter

This tutorial assumes familiarity with the concepts described in
“Implementing Custom Toolkit Support” (beginning on page 27).

Learning to Support a Simple Control

The lesson, Learning to Support a Simple Control (on page 155), uses a basic
custom Java control named ImageButton to teach you the fundamental
elements of custom support. This lesson guides you through the steps
required to create a custom toolkit support project containing one custom
support class. Through this lesson, you will learn to recognize and
understand the files and methods that comprise custom support.

In this lesson, you use two of the wizards provided by the QuickTest Java
Add-in Extensibility Eclipse plug-in: the New QuickTest Java Add-in
Extensibility Project wizard and the New QuickTest Custom Support Class
wizard.

Learning to Support a Static-Text Control

The lesson, Learning to Support a Custom Static-Text Control (on page 197),
uses the ImageLabel control to teach you how to support a static-text
control. This lesson guides you through the steps required to create a
support class for a static-text control in an existing custom toolkit support
project. (The ImageLabel control belongs to the same custom toolkit as the
ImageButton control that you used in the previous lesson.) Through this
lesson, you will learn about the basic methods that are required in a support
class for a static-text control.

In this lesson, you use the New QuickTest Custom Static-Text Support Class
wizard provided by the QuickTest Java Add-in Extensibility Eclipse plug-in.

Chapter 6 • Using the QuickTest Java Add-in Extensibility Tutorial

153

Learning to Support a Complex Control

The lesson, Learning to Support a Complex Control (on page 225), uses the
custom Java control AllLights to teach you more about custom support.
AllLights is a complex control with unique behavior that requires a new test
object class definition. The lesson guides you through the steps of creating a
custom support class containing new identification properties and test
object methods that did not exist in the parent support class. You will also
learn to understand the test object configuration file.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

154

155

7
Learning to Support a Simple Control

In this lesson you create support for the ImageButton control within the
ImageControls toolkit. Adding support for the ImageButton control requires
only minimal customization, allowing you to learn the basics of creating a
custom toolkit support set.

Before you perform this lesson, ensure that you have read the
“Implementing Custom Toolkit Support” and “Planning Custom Toolkit
Support” chapters in this guide and that you meet the tutorial prerequisites
as described in Chapter 6, “Using the QuickTest Java Add-in Extensibility
Tutorial.”

This lesson guides you through the following stages: On page:

Preparing for This Lesson 156

Planning Support for the ImageButton Control 158

Creating a New QuickTest Java Add-in Extensibility Project 164

Creating a New QuickTest Custom Support Class 171

Understanding the New Custom Support 182

Deploying and Testing the New Custom Toolkit Support 186

Changing the Name of the Test Object 187

Implementing Support for a Test Object Method 189

Implementing Event Handler Methods to Support Recording 192

Lesson Summary 193

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

156

Preparing for This Lesson

Before you extend QuickTest support for a custom control, you must:

➤ Make sure you have full access to the control.

➤ Understand its behavior and what functionality needs to be tested.

➤ Have an application in which you can see and operate the control.

➤ Have access to the class that implements it. (Although you do not modify
any of the custom control classes when creating your custom support, you
reference the compiled classes, and rely on information you can gain from
the source files.)

Perform the following steps to create an Eclipse project containing the
ImageControls custom toolkit classes and a sample application containing
the custom controls.

Note: The sample application is designed to run from the default <QuickTest
Professional Java Add-in Extensibility SDK installation>\samples folder. If
you install the SDK to another location, you need to modify the sample
application slightly before you begin this lesson. For information, see
“Modifying the Sample Application to Run From Another Location” on
page 158.

To create a new Java project with the ImageControls sample in Eclipse:

 1 Run Eclipse and choose File > New > Project. The New Project dialog box
opens.

 2 Select Java Project and click Next. The New Java Project dialog box opens.

 3 Enter ImageControls in the Project name box.

 4 Select the Create project from existing source option.

 5 Click the Browse button and browse to the <QuickTest Professional Java
Add-in Extensibility SDK installation folder>\samples\ImageControls\src
folder. Click OK to return to the New Java Project dialog box.

Chapter 7 • Learning to Support a Simple Control

157

 6 Click Finish. A new Java project is created with the ImageControls sample
source files. The new project, named ImageControls, is displayed in the
Package Explorer tab.

Expand the ImageControls project to view its content. The
ImageControls\src package folder contains two packages:

➤ The com.sample package contains the sample application: SampleApp.

➤ The com.demo package contains three custom controls: ImageButton,
ImageControl and ImageLabel.

The following diagram shows the inheritance hierarchy of the classes in the
com.demo package.

The functionality provided by the classes in this package is as follows:

➤ ImageControl. This class extends the Canvas class, and displays an image on
the control.

➤ ImageLabel. This class extends the ImageControl class, and allows writing
additional text over the image displayed on the control.

➤ ImageButton. This class extends the ImageControl class, and draws a
button-like rectangle around the control. It listens for low-level events on
the control, and triggers an Action event when the button is clicked.

java.awt.Canvas

com.demo.ImageControl

com.demo.ImageButton com.demo.ImageLabel

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

158

Modifying the Sample Application to Run From Another
Location

If you installed the QuickTest Professional Java Add-in Extensibility SDK to a
folder other than the default installation folder, you must modify the
sample application before performing this lesson.

After you copy the ImageControls source files into Eclipse, browse to the
package ImageControls\src\com.sample in Eclipse and open the
SampleApp.java file.

Locate the code containing the image file paths:

C:/Program Files/Mercury Interactive/QuickTest Professional Java Add-in
Extensibility SDK/samples/ImageControls/images/mercury.gif

C:/Program Files/Mercury Interactive/QuickTest Professional Java Add-in
Extensibility SDK/samples/ImageControls/images/JavaExt1.gif

Replace C:/Program Files/Mercury Interactive/QuickTest Professional Java Add-
in Extensibility SDK in these paths with the actual installation folder to
enable the sample application to function properly.

Planning Support for the ImageButton Control

In this section, you analyze the current QuickTest support of the
ImageButton control, determine the answers to the questions in the
“Understanding the Custom Class Support Planning Checklist” on page 78,
and fill in the “Custom Class Support Planning Checklist” on page 163,
accordingly.

The best way to do this is to run the application containing the custom
control, and analyze it from a QuickTest perspective using the Object Spy,
Keyword View, and Record option.

Chapter 7 • Learning to Support a Simple Control

159

 1 Run the SampleApp application and open QuickTest.

In the Eclipse Package Explorer tab, right-click SampleApp. Choose
Run As > Java Application. The SampleApp application opens.

Open QuickTest and load the Java Add-in.

 2 Use the Object Spy to view the ImageButton properties.

In QuickTest Choose Tools > Object Spy or click the Object Spy toolbar
button to open the Object Spy dialog box. Click the Properties tab.

In the Object Spy dialog box, click the pointing hand, then click the button
in the SampleApp application.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

160

The ImageButton control is based on a custom class that QuickTest does not
recognize. Therefore, it recognizes the button as a generic JavaObject named
ImageButton, and the icon shown is the standard JavaObject class icon.

Close the Object Spy.

 3 Record an operation on the ImageButton control.

In QuickTest choose Automation > Record and Run Settings to open the
Record and Run Settings dialog box. In the Java tab, select Record and run
test on any open Java application. If the Web Add-in is also loaded, click the
Web tab and select Record and run test on any open browser. Click OK.

Chapter 7 • Learning to Support a Simple Control

161

Click the Record button or choose Automation > Record. Click the button
in the SampleApp application. The counter value in the edit box increases
by one.

A new step is added to the test.

Click the Stop button or choose Automation > Stop to end the recording
session.

The Click operation on the ImageButton JavaObject is a generic click, with
arguments indicating the low-level recording details (x and y coordinates
and the mouse button that performed the click).

 4 Determine the custom toolkit to which the ImageButton control
belongs.

When you extend QuickTest support for a control you always do so in the
context of a toolkit. For the purpose of this tutorial, three classes that share
the same ancestor, java.awt.Canvas, are grouped to form the custom toolkit
named ImageControls: ImageButton, ImageLabel, and their superclass
ImageControl.

In this lesson you create support for the ImageControls toolkit, initially
supporting only the ImageButton class.

 5 Complete the custom class support planning checklist.

You want QuickTest to treat the ImageButton as a special kind of button and
you want it to support the operation it performs. Therefore it makes sense to
create Extensibility support for this control.

The custom class ImageButton extends another custom class, ImageControl,
for which QuickTest also does not provide support. At this point, there does
not seem to be any functionality requiring special QuickTest support, which
ImageButton shares with other classes that extend ImageControl. Therefore
it is sufficient to extend support directly to the ImageButton class.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

162

When fully supported, QuickTest should recognize the ImageButton control
as a JavaButton test object. You want JavaButton test objects representing
controls of this type to be named according to the name of the image file
that the control displays.

The custom support should also include support for the simple
Click-on-the-button operation. (Note that in QuickTest, the simple
JavaButton Click operation has an optional argument that specifies which
mouse button performed the click.) The ImageButton custom class listens
for low-level mouse events and substitutes them with events that are more
relevant to button behavior, in this case an Action event. Therefore, to
record mouse clicks, the support class must listen for Action events.

On the next page you can see the checklist, completed based on the
information above.

Chapter 7 • Learning to Support a Simple Control

163

Custom Class Support Planning Checklist

Custom Class Support Planning Checklist

Does the custom class have a superclass for which QuickTest custom support is not yet
available? Yes /No

If so, should I first extend support for a control higher in the hierarchy? Yes /No

Do I have an application that runs the custom control on a computer with QuickTest
installed? Yes /No

The sources for this custom control class are located in:
an Eclipse project called ImageControls

Which existing Java test object matches the custom control? JavaButton

If none, create a new Java test object class named: N/A

• New test object class extends: (Default—JavaObject)

• Icon file location (optional):

• Identification property for description:

• Default test object method:

Is the custom control a top-level object? Yes /No

Is the custom control a wrapper? Yes /No

Specify the basis for naming the test object: its image file name

List the identification properties to support, and mark default checkpoint properties:

nothing special

List the test object methods to support (include arguments and return values if required):

Click (button)

Provide support for recording? (AWT-based only) Yes /No

If so, list the events that should trigger recording:

ActionEvents

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

164

Creating a New QuickTest Java Add-in Extensibility Project

In this section you create a new project for the ImageControls toolkit
support. To do this, you use one of the wizards provided by the QuickTest
Java Add-in Extensibility plug-in in Eclipse.

 1 Open the New QuickTest Java Add-in Extensibility Project wizard.

In Eclipse, choose File > New > Project. The New Project dialog box opens.
Expand the QuickTest Professional folder and select QuickTest Java Add-in
Extensibility Project.

Click Next. The QuickTest Java Add-in Extensibility Project screen opens.

Chapter 7 • Learning to Support a Simple Control

165

 2 Enter the QuickTest Java Add-in Extensibility project details.

In the Project name box, enter ImageControlsSupport. Select the Create
separate source and output folders option. For more information on this
dialog box, refer to the Eclipse Help.

Click Next. The Custom Toolkit Details screen opens.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

166

 3 Enter the custom toolkit details.

In this screen, you provide the details of the ImageControls toolkit so that
the wizard can generate a corresponding custom toolkit support set.

➤ In the Unique custom toolkit name you enter a name that uniquely
represents the custom toolkit for which you are creating support. The
new toolkit support class is given this name plus the suffix-word Support.
Providing unique toolkit names allows a single QuickTest installation to
support numerous custom toolkit support sets simultaneously.

Enter the name ImageControls.

Chapter 7 • Learning to Support a Simple Control

167

➤ In the Support toolkit description box enter: ImageControls toolkit
support.

➤ The Base toolkit list contains a list of toolkits for which QuickTest
support already exists. After you create support for your own toolkits,
they are displayed in the list as well.

The ImageButton custom class extends an AWT component, so keep the
default selection AWT as the Base toolkit.

➤ You must specify the location of the custom classes you want to support
in this toolkit. When the new Java Add-in Extensibility project is built,
these classes are added to the project build path. You can specify .jar files
or file system folders for the class location.

In the Custom toolkit class locations area, click Add project to select the
Eclipse Java project containing the custom classes for the ImageControls
toolkit. The Select Project dialog box opens and displays the projects in
the current Eclipse workspace.

Select the ImageControls check box. Click OK. The ImageControls
project is added in the Custom toolkit class locations box.

➤ Click Finish. The Project Summary screen opens.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

168

 4 View the Project Summary wizard screen.

Review the details of the project and click OK.

Understanding Your New Custom Toolkit Support Set

Your new Java Add-in Extensibility project is displayed in the Package
Explorer tab.

Note: If you have more than one JRE installed on your computer, make sure
that the ImageControls project and the ImageControlsSupport project are
using the same JRE version. If they are not, modify the JRE for one of the
projects so that they use the same version.

Chapter 7 • Learning to Support a Simple Control

169

Expand the ImageControlsSupport project to view its content.

The src folder contains the following packages:

➤ com.mercury.ftjadin.qtsupport.imagecontrols

This package contains the new toolkit support class file,
ImageControlsSupport.java, which defines the new toolkit support class,
ImageControlsSupport:

public class ImageControlsSupport extends AwtSupport {
}

The ImageControls toolkit for which you are creating support extends AWT.
Therefore, the ImageControls toolkit support class extends the built-in
QuickTest AwtSupport. No additional implementation is needed in this
class.

➤ com.mercury.ftjadin.qtsupport.imagecontrols.cs

This package is currently empty. When you create the individual custom
control support classes, they are stored is this package.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

170

The Configuration folder contains the following items:

➤ The TestObjects folder

This folder is currently empty. If you create new test object classes to
represent the custom controls in your toolkit, a test object configuration file
is created in this folder. This is not relevant for this lesson.

➤ The toolkit configuration file: ImageControls.xml

Open the file to view its content.

<Controls
class="com.mercury.ftjadin.qtsupport.imagecontrols.ImageControlsSupport"
SupportClasspath="C:\Documents and Settings\user\workspace1\ImageControl
sSupport\bin" description="ImageControls toolkit support.">
</Controls>

At this point, the XML file contains a single Controls element that declares
the toolkit support class by providing values for the class, SupportClasspath,
and description attributes.

When you create the individual custom control support classes, the
mapping of each custom control to its support class is added to this
configuration file.

Notice that the support class location is currently in your Eclipse workspace.
This is appropriate for the development phase of the custom support. When
the support is fully implemented and tested, you store the support classes in
a more permanent location on a QuickTest computer and update the values
in the toolkit configuration file appropriately. For more information, see
“Deploying and Running the Custom Toolkit Support” on page 66.

For a complete understanding of the structure of this file, refer to the
QuickTest Java Add-in Extensibility Toolkit Configuration Schema Help (Help >
QuickTest Professional Help > Java Add-in Extensibility Developer’s Guide >
QuickTest Java Add-in Extensibility Toolkit Configuration Schema).

Chapter 7 • Learning to Support a Simple Control

171

Creating a New QuickTest Custom Support Class

In this section you create a custom support class for the ImageButton
control, as part of the ImageControls toolkit support. To do this, you use
one of the wizards provided by the QuickTest Java Add-in Extensibility
plug-in in Eclipse. The details you specify in each wizard screen reflect the
decisions you made when planning the custom support. In the subsequent
sections you implement the methods that the wizard creates in this class.

Note: The following sections describe only the options in the wizard screens
that are relevant to this lesson. For a complete description of all options
available in the wizard screens, see Chapter 5, “Using the QuickTest Java
Add-in Extensibility Eclipse Plug-In.”

 1 Open the New QuickTest Custom Support Class wizard.

In the Eclipse Package Explorer tab, select the new QuickTest Java Add-in
Extensibility project, ImageControlsSupport. Choose File > New > Other.
The New dialog box opens.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

172

Expand the QuickTest Professional folder and select QuickTest Custom
Support Class.

Click Next. The Custom Class Selection screen opens.

Chapter 7 • Learning to Support a Simple Control

173

 2 Select the custom class to support, and set the options for the support
class.

Expand the com.demo package and select the ImageButton class.

In the Custom toolkit tree pane, you can see the structure of the
ImageControls project, which you selected for the custom toolkit class
location, in step 3 of “Creating a New QuickTest Java Add-in Extensibility
Project” (on page 166). The com.demo package contains the ImageControls
custom toolkit, with its custom classes, as described in “Preparing for This
Lesson” on page 156.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

174

Note: The com.samples package is included in the ImageControls sample
project, only to provide convenient access for running the sample
application. The main content of the ImageControls project is the
ImageControls custom toolkit, contained in com.demo package.

In the Custom class inheritance summary pane, you can see the hierarchy of
the ImageButton class you have selected. It extends the ImageControl class,
which is part of the same toolkit, and is therefore shown in black.

The ImageControl custom class is not supported, but the Canvas class does
have a matching support class, provided in the
com.mercury.ftjadin.support.awt.cs package. Therefore the Base support
class for the ImageButton support class you are creating is CanvasCS. This is
the class that your new support class extends.

The Controls of this class represent top-level objects option is disabled
because the ImageButton class is not a container class.

The name for the ImageButton support class is, by default, ImageButtonCS.
It is recommended to keep the default name.

Click Next. The Test Object Class Selection screen opens.

Chapter 7 • Learning to Support a Simple Control

175

 3 Select a test object class to represent the custom control.

In this screen, you map the custom control to a test object class. In
QuickTest tests, the custom class controls are represented by test objects of
this test object class. This is the first and most important decision you make
when creating a custom support class.

In the previous screen, you determined the support class that the new
support class extends. When the test object mapped to the class whose
support you are extending is also a logical test object for the custom class,
you select Same as base support class. The ImageButtonCS class extends
CanvasCS, whose test object class does not adequately represent
ImageButton controls.

The existing JavaButton test object does answer the needs of your custom
support. Select the Existing test object class option and select JavaButton
from the list. The list of existing test objects contains all of the Java objects
that QuickTest currently supports. If you define new test objects for custom
support, they are included in the list as well.

Click Next. The Custom Support Test Object Identification Properties screen
opens.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

176

 4 Determine the set of test object identification properties to implement
in ImageButtonCS.

This screen displays the identification properties supported by the base
support class you are extending, as well as additional properties that are
defined in the test object class you selected, but are not yet supported. It
enables you to select properties whose support you want to implement or
override with new functionality and to add new properties.

The left pane shows all of the identification properties whose support is
implemented by CanvasCS, and therefore inherited by the new
ImageButtonCS support class. For most of the properties in this list, the
default implementation is sufficient.

➤ Select the label property by clicking the check box. After you finish
generating the support files using the wizard, you will override the
existing support for this property with a custom implementation that
matches the needs of the custom control.

➤ The popup identification property is displayed in the right pane because
it is a JavaButton property, but it is not supported by CanvasCS. This
property is not required for the ImageButton support. Select it, click
Remove, and then click Yes to confirm.

Chapter 7 • Learning to Support a Simple Control

177

Note: The popup identification property is part of the JavaButton test
object identification properties. Removing it from this list means that it
is not supported for ImageButton controls. It will still appear in the list of
identification properties shown in the QuickTest Object Spy, but will
have no value.

➤ Click Next. The Custom Support Test Object Methods screen opens.

 5 Determine the set of test object methods to implement in
ImageButtonCS.

This screen displays the test object methods defined in the test object class
you selected. It enables you to select methods whose support you want to
implement or override with new functionality and to add new methods.

The left pane shows all of the test object methods (defined in the test object
class you selected) whose support is implemented by CanvasCS, and
therefore inherited by ImageButtonCS. This existing implementation is
sufficient for ImageButton so there is no need to select any methods to
override.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

178

In the right pane, you can see the test object methods that are defined for
the JavaButton test object class, but are not supported by CanvasCS.

➤ The only test object method that ImageButton requires from this list is
the Click (Object obj, String button) method. After you finish generating
the support files using the wizard, you will implement support for this
method.

➤ Select the PressKey method, click Remove, and then click Yes to confirm.

Note: The PressKey method is one of the JavaButton test object methods.
Removing it from this list means that it is not supported for ImageButton
controls. It will still appear in the list of test object methods in QuickTest.
If you use the PressKey method on an ImageButton control in a
QuickTest test, a run-time error occurs.

➤ Click Next. The Custom Control Recording Support wizard screen opens.

Chapter 7 • Learning to Support a Simple Control

179

 6 Determine the set of events for which to listen, in order to support
recording on the ImageButton control.

This screen displays the event listeners implemented by the support class
you are extending. It enables you to select event handler methods whose
implementation you want to override with new functionality and to add
new event listeners to implement.

In the left pane, you can see the listeners implemented by CanvasCS. You do
not have to override any of these for the ImageButtonCS custom support
class.

In the right pane, you specify the listeners you want to add for
ImageButtonCS. Each listener you select implies a set of event handler
methods that the wizard adds to the support class.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

180

➤ Click Add to add the ActionListener.

The Listener dialog box opens.

• Select java.awt.event.ActionListener from the Listener list. If the
selected listener had more than one registration method, you would
also select a method from the Registration method list.

• Click OK. The Listener dialog box closes and the ActionListener, and
all of the event handler methods it includes, are added to the list in
the right pane of the wizard screen.

➤ On the Custom Control Recording Support screen, select the Override
low-level mouse event recording check box to prevent low-level events
(coordinate-based operations) from being recorded instead of the events
you want to record. For more details on this option, see “Understanding
Event Recording Support” on page 184.

➤ Click Finish. The Custom Control Support Class Summary screen opens.

Chapter 7 • Learning to Support a Simple Control

181

 7 View the custom control support class summary.

Review the planned content of the custom support class, and click OK.

The following changes are made in the ImageControlsSupport project:

➤ A new QuickTest custom support class, ImageButtonCS, is created in the
com.mercury.ftjadin.qtsupport.imagecontrols.cs package. The file is opened
and displayed in a tab in the right pane.

➤ A new ImageControlsTestObjects.xml file is created in the
Configuration\TestObjects folder.

➤ The ImageControls.xml file is modified.

For a detailed explanation of these changes, see “Understanding the New
Custom Support,” below.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

182

The asterisk (*) next to the ImageButtonCS file name (in the ImageButtonCS
tab) indicates that it has not been saved. The changes made by the wizard
are codependent, and must be saved to prevent discrepancies. Choose File >
Save, or click the Save button.

Understanding the New Custom Support

Your new QuickTest Java Add-in Extensibility custom toolkit support set is
composed of:

➤ One toolkit support class: ImageControlsSupport, which is created by the
wizard when the ImageControlsSupport project is created, and not changed.

➤ One toolkit configuration file: ImageControls.xml. This file is created by the
wizard when the ImageControlsSupport project is created. It is updated
with each support class you add for this toolkit.

The ImageControls.xml file is now updated to map the
com.demo.ImageButton custom control, to its support class,
com.mercury.ftjadin.qtsupport.imagecontrols.cs.ImageButtonCS.

➤ One test object configuration file: ImageControlsTestObjects.xml. Since you
did not add any identification properties or test object methods to this the
JavaButton test object class, this file does not currently contain any
significant information.

For a complete understanding of the structure of this file, refer to the
QuickTest Test Object Schema Help (Help > QuickTest Professional Help >
QuickTest Advanced References > QuickTest Test Object Schema).

➤ Custom support classes, one per custom class. In this case, you created one
custom support class: ImageButtonCS.

The following sections explain the elements that the wizard creates in the
ImageButtonCS class.

Chapter 7 • Learning to Support a Simple Control

183

Understanding the Basics of the ImageButtonCS Class

The QuickTest Java Add-in Extensibility wizard creates the custom support
class based on the specifications you entered, and registers it in the toolkit
support configuration file.

The two most basic characteristics of a support class are:

➤ the support class it extends

➤ the test object class mapped to the custom control

Open ImageButtonCS.java to review the support class that the wizard
created for ImageButton.

The first declaration reflects your selection in the wizard to extend the
CanvasCS class:

public class ImageButtonCS extends CanvasCS implements ActionListener {
private static final String DEBUG_IMAGEBUTTONCS =

"DEBUG_IMAGEBUTTONCS";
...
}

Note: DEBUG_IMAGEBUTTONCS is defined to control printing log
messages. For more information, see “Logging and Debugging the Custom
Support Class” on page 71.

The to_class property, implemented by the to_class_attr method, defines
the test object class selected to represent this custom control. QuickTest
decides the set of identification properties and test object methods for the
test object based on this mapping.

public String to_class_attr(Object obj) {
return "JavaButton";

}

This implementation is sufficient to provide initial recognition of the
custom control in QuickTest.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

184

Understanding Identification Property and Test Object Method
Support

Each identification property that can be learned for a particular custom
control is represented in the support class, by a method called <property
name>_attr. Each test object method that can be supported for the control is
represented by a method called <test object method name>_replayMethod.

When the wizard creates the support class, it inserts stubs for the required
methods, according to the identification properties and test object methods
that you selected to implement.

The following method stub was added because you selected to override the
label identification property, inherited from CanvasCS, in step 4 of
“Creating a New QuickTest Custom Support Class” (on page 176):

public String label_attr(Object arg0) {
// TODO Auto-generated method stub
return super.label_attr(arg0);

}

The following method stub was added because you selected to implement
the Click (Object obj) test object method, in step 5 of “Creating a New
QuickTest Custom Support Class” (on page 177):

public Retval Click_replayMethod(Object obj, String button) {
return Retval.NOT_IMPLEMENTED;

}

Understanding Event Recording Support

In the ImageButtonCS class, the following elements provide the basis for
event recording:

➤ Low-level recording override (enables recording of higher-level events):

protected Object mouseRecordTarget(MouseEvent e) {
return null;

}

Chapter 7 • Learning to Support a Simple Control

185

This method is added because you selected the Override low-level mouse
event recording check box in step 6 in “Creating a New QuickTest Custom
Support Class” (on page 179).

➤ Listing ActionListener for registration on the ImageButton control:

public ImageButtonCS() {
addSimpleListener("ActionListener", "addActionListener",

"removeActionListener");
}

This constructor method is added because in step 6 in “Creating a New
QuickTest Custom Support Class” (on page 179) you added the
ActionListener to the list of listeners you want to implement.

The constructor calls the addSimpleListener method to add the
ActionListener to the list of listeners that need to be registered on the
custom control.

➤ Action event handler implementation:

public void actionPerformed(ActionEvent arg0) {
try {

if (!isInRecord())
return;

// TODO: Uncomment and edit the call to MicAPI.record
// MicAPI.record(arg0.getSource(), <Operation>, new
// String[]{<Parameters>});
} catch (Throwable th) {

}
}

The wizard creates this method stub without any actual implementation.
You implement it when you get to the step for “Implementing Event
Handler Methods to Support Recording” on page 192. The method stub
contains the try..catch block and the isInRecord check, providing a
recommendation for this method’s structure. For more information, see
“Supporting the Record Option” on page 56.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

186

Deploying and Testing the New Custom Toolkit Support

In this part of the lesson, you use the QuickTest Deploy Toolkit Support
command in Eclipse to deploy the ImageControls toolkit support to
QuickTest. Currently only one control in this toolkit, the ImageButton
control, is supported. The toolkit support is not yet complete, but you can
already test the support created up to this point.

 1 Deploy the ImageControls toolkit support to QuickTest.

In the Eclipse Package Explorer tab, select the ImageControlsSupport
project.

Click the Deploy Toolkit Support button, or choose
QuickTest > Deploy Toolkit Support. In the confirmation messages that
open, click Yes and then OK.

The toolkit configuration file and the test object configuration file are
copied to the relevant folders in your QuickTest installation folder. The
custom support will be available the next time you start the custom
application.

For more information on deploying custom toolkit support, see “Deploying
and Running the Custom Toolkit Support” on page 66.

 2 Test the new custom support.

Repeat steps 1, 2, and 3 in “Planning Support for the ImageButton Control”
on page 158, to run the application, view the ImageButton control with the
QuickTest Object Spy, and try to record a Click operation on it.

Note: QuickTest establishes its connection with an application when the
application opens. Therefore, although you can use an open QuickTest
session to test the changes, you must close the SampleApp application, and
run it again.

QuickTest recognizes the ImageButton as a JavaButton named ImageButton.

Chapter 7 • Learning to Support a Simple Control

187

Note: The new support class (ImageButtonCS) inherited some identification
properties from the base support class (CanvasCS) that are not included in
the JavaButton test object class definition. These properties are displayed in
the Custom Support Test Object Identification Properties screen (described
on page 176), but they are not displayed in QuickTest in the Object Spy or in
the Checkpoint Properties dialog box. You can access these identification
properties by using the GetROProperty method. For more information on
the GetROProperty method, refer to the QuickTest Professional Object Model
Reference.

Because you have overridden the low-level recording, but have not yet
implemented the actionPerformed(ActionEvent arg0) event handler
method, QuickTest currently does not record anything when you click the
button.

Changing the Name of the Test Object

In this part of the lesson, you extend QuickTest support of the ImageButton
control to recognize its name as per your plan (“Planning Support for the
ImageButton Control” on page 158). To do this, you will learn about the
special property methods implemented in ObjectCS: tag_attr and
attached_text_attr.

The name of a test object is determined by its tag property. All AWT support
classes extend ObjectCS. ObjectCS implements the tag_attr method to
check a set of properties in a specified order, and return the first valid value
it finds. A valid value is one that is not empty, and does not contain spaces.

In the tag_attr method in the ObjectCS class, the following properties are
checked, in the order in which they are listed:

➤ label

➤ attached_text (for more detail see below).

➤ unqualified custom class

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

188

The label property is implemented in the custom support class with the
label_attr method. In ImageButtonCS, this method currently returns null,
as does its superclass, CanvasCS.

The attached_text_attr method is also implemented by ObjectCS. It
searches for adjacent static-text objects near the object, and returns their
text. This mechanism is useful for controls like edit boxes and list boxes,
which do not have their own descriptive text, but are accompanied by a
label.

Note: You can teach QuickTest to recognize custom static-text objects using
the QuickTest Custom Static-Text Support Class Wizard, which you access
from the Eclipse New dialog box. For more information, see “Learning to
Support a Custom Static-Text Control” on page 197.

In ImageButton, the attached_text property is empty, so QuickTest must use
a fallback mechanism. It uses the unqualified custom class, which is the
name of the class, without the package name. In this case, the custom class:
com.demo.ImageButton resulted in the name ImageButton for test object.

To change the name of a custom control test object, do not override the
tag_attr method in the support class. Instead, make use of its existing
implementation, and override the method label_attr. Override the
label_attr method in the ImageButtonCS class

 1 Override the label_attr method in the ImageButtonCS class.

In Eclipse, in the ImageButtonCS.java file, in the label_attr method stub,
replace return super.label_attr(arg0); with the following code, so that it
returns the name of the image file used for the ImageButton (without the
full path):

ImageButton ib = (ImageButton)arg0;
String res = ib.getImageString();
if(res == null || res.length() == 0)

return null;
int last = res.lastIndexOf('/');
if(last == -1)

Chapter 7 • Learning to Support a Simple Control

189

return res;
return res.substring(last+1);

Click the Save button, or choose File > Save to save your changes.

Note: You do not have to deploy the toolkit support to QuickTest again
because you changed only Java class files and not configuration files.

 2 Test the new custom support.

Repeat steps 1 and 2 in “Planning Support for the ImageButton Control” on
page 158, to run the application and view the ImageButton control with the
QuickTest Object Spy.

Note: You can use an open QuickTest session, but you must close the
SampleApp application, and run it again, for the changes you made in the
custom support to take effect.

QuickTest now recognizes the ImageButton as a JavaButton named
JavaExt1.gif.

Implementing Support for a Test Object Method

In this section you extend QuickTest support of the ImageButton, to support
a Click-the-button test object method. To do this, you must implement the
Click_replayMethod in the custom support class, to call the appropriate
MicAPI function.

 1 Test the current functionality of the Click method on an ImageButton.

In QuickTest, create a new test, add the JavaExt1.gif button to the object
repository, and add a step with this object. For instructions on how to do
this, refer to the QuickTest Professional User’s Guide.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

190

The ImageButton is recognized as a JavaButton item (note the icon used)
named JavaExt1.gif. The Click operation is the default operation for this
item, as it is for all JavaButton items.

Click Run or choose Automation > Run. The Run dialog box opens.

Select New run results folder. Accept the default results folder name.

Click OK to close the Run dialog box.

QuickTest runs the test, and an error message is displayed. Click Details on
the message box. The following information is displayed:

The reason for this error is that in order to run the Click operation, the
QuickTest calls Click_replayMethod, which is currently implemented in the
ImageButtonCS to return the error code NOT_IMPLEMENTED.

Click Stop, to stop running the test.

Chapter 7 • Learning to Support a Simple Control

191

 2 Implement the Click_replayMethod method in ImageButtonCS.

In Eclipse, in the ImageButtonCS.java file, import
com.mercury.ftjadin.custom.MicAPI and replace the Click_replayMethod
method stub, with the following code:

public Retval Click_replayMethod(Object obj, String button) {
ImageButton ib = (ImageButton) obj;
MicAPI.mouseClick((Object) ib, ib.getWidth() / 2,

ib.getHeight() / 2);
return Retval.OK;

}

Click the Save button, or choose File > Save.

Note: This implementation ignores the button argument. For an
implementation that takes this argument into account, you could call a
different MicAPI.mouseClick method. For more information, refer to the
QuickTest Java Add-in Extensibility API Reference (Help > QuickTest
Professional Help > Java Add-in Extensibility Developer’s Guide > QuickTest
Java Add-in Extensibility API Reference).

 3 Test the new custom support.

Note: You do not have to deploy the toolkit support to QuickTest again
because you changed only Java class files and not configuration files.

Close the SampleApp application and run it again.

In QuickTest, run the test you created in step 1 above. The test run
completes successfully. As you can see, the click counter in the edit box is
increased when the test executes the Click operation.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

192

Implementing Event Handler Methods to Support
Recording

Because you planned to support recording on the ImageButton control, you
suppressed low-level recording on this object, and registered to listen for
Action events on this control.

In this section, you implement the actionPerformed listener method, to
call MicAPI.record, and record the Click operation on the ImageButton
object.

 1 Implement the actionPerformed listener method to record Click
operations.

In Eclipse, in the ImageButtonCS.java file, in the actionPerformed listener
method stub, modify the code to look like this:

public void actionPerformed(ActionEvent arg0) {
try {

if (!isInRecord())
return;

MicAPI.record(arg0.getSource(), "Click");
} catch (Throwable th) {

MicAPI.logStackTrace(th);
}

}

The MicAPI.logStackTrace method prints a stack trace to the log file
containing all of the other Java Add-in Extensibility log messages, and
allows you to determine when the actionPerformed method was called
inadvertently. For more information, see “Logging and Debugging the
Custom Support Class” on page 71.

Click the Save button, or choose File > Save.

Note: You do not have to deploy the toolkit support to QuickTest again
because you changed only Java class files and not configuration files.

Chapter 7 • Learning to Support a Simple Control

193

 2 Test the new custom support.

Close the SampleApp application and run it again.

Create a new test and click the Record button or choose Automation >
Record. If the Record and Run Settings dialog box opens, make sure the
Record and run test on any open Java application option is selected, and
click OK. Click the button in the SampleApp application.

A simple Click operation is recorded on the JavaExt1.gif JavaButton.

The ImageButton custom control is now fully supported, according to the
specifications you decided on when planning your custom support.

Lesson Summary

In this lesson you created support for the ImageButton control, allowing
QuickTest to recognize it as a JavaButton test object. You modified the object
name, and supported the Click operation.

➤ You learned how to create a toolkit support project, with one custom
support class.

➤ You learned to recognize and understand the files that make up the toolkit
support.

➤ You learned to use the following identification property support methods:

to_class_attr

tag_attr

label_attr

attached_text_attr

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

194

And made use of the following functions:

addSimpleListener

mouseRecordTarget

MicAPI.mouseClick

MicApi.record

Where Do You Go from Here?

For more information on the structure and content of a custom toolkit
support set, see “Implementing Custom Toolkit Support” on page 27.

For more information on the toolkit configuration file, refer to the QuickTest
Java Add-in Extensibility Toolkit Configuration Schema Help (Help > QuickTest
Professional Help > Java Add-in Extensibility Developer’s Guide > QuickTest
Java Add-in Extensibility Toolkit Configuration Schema).

For more information on the MicAPI methods, refer to the QuickTest Java
Add-in Extensibility API Reference (Help > QuickTest Professional Help > Java
Add-in Extensibility Developer’s Guide > QuickTest Java Add-in Extensibility
API Reference).

In the next lesson you learn how to create support for a static-text custom
control. Static-text controls normally do not have to support any specific
operations; They simply provide a label for adjacent controls. In the support
class for a static-text control, simply implementing a set of specific methods
provides the necessary support. The New QuickTest Custom Static-Text
Support Class Wizard is specifically dedicated to creating custom support for
static-text custom controls.

Chapter 7 • Learning to Support a Simple Control

195

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

196

197

8
Learning to Support a Custom Static-Text
Control

In this lesson you create support for the ImageLabel control within the
ImageControls toolkit. The ImageLabel control does not have any specific
identification properties or test object methods that need to be supported.
Its main purpose is to serve as a label. Therefore, you create support for the
ImageLabel as a static-text object.

This lesson assumes that you already performed the lesson “Learning to
Support a Simple Control” on page 155, in which you created the custom
toolkit support set for the custom toolkit ImageControls. In this lesson, you
create another support class in the same custom toolkit support set.

This lesson guides you through the following stages: On page:

Preparing for This Lesson 198

Planning Support for the ImageLabel Control 198

Creating the QuickTest Custom Static-Text Support Class 203

Understanding the New Custom Static-Text Support Class 207

Deploying and Testing the New Custom Static-Text Support Class 208

Completing the Support for the Static-Text Control 210

Optimizing the ImageControls Toolkit Support 213

Lesson Summary 223

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

198

Preparing for This Lesson

The ImageControls Java project that you created in Eclipse when you
prepared for the lesson “Learning to Support a Simple Control” (on
page 156), contains the ImageLabel class. The sample application that you
ran in that lesson displays the ImageLabel control (to the left of the
ImageButton). The purpose of the ImageLabel control in this application is
to provide a label for the text box below it, which does not have a label
identification property of its own.

Open Eclipse and locate the ImageControls Java project.

Planning Support for the ImageLabel Control

In this section, you analyze the current QuickTest support of the ImageLabel
control and the adjacent text box, determine how you want QuickTest to
recognize the controls, and fill in the “Custom Class Support Planning
Checklist” on page 202, accordingly.

 1 Run the SampleApp application and open QuickTest.

In the Eclipse Package Explorer tab, right-click SampleApp. Choose
Run As > Java Application. The SampleApp application opens.

Open QuickTest and load the Java Add-in.

 2 Use the Object Spy to view the ImageLabel properties.

In QuickTest Choose Tools > Object Spy or click the Object Spy toolbar
button to open the Object Spy dialog box. Click the Properties tab.

In the Object Spy dialog box, click the pointing hand, then click the image
on the left in the SampleApp application.

Chapter 8 • Learning to Support a Custom Static-Text Control

199

The ImageLabel control is based on a custom class that QuickTest does not
recognize. Therefore, it recognizes the button as a generic JavaObject object
named ImageLabel, and the icon shown is the standard JavaObject class
icon. The label identification property is empty.

 3 Use the Object Spy to view the text box properties.

In the Object Spy dialog box, click the pointing hand, then click the text
box in the SampleApp application.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

200

The text box is based on a standard TextField class; therefore QuickTest
recognizes it as a JavaEdit test object. However, the label identification
property is empty and QuickTest does not recognize any adjacent controls as
static-text controls. Therefore, the JavaEdit test object is named according to
its class name—TextField.

Close the Object Spy.

 4 Complete the custom class support planning checklist.

The ImageLabel control is a static-text control. You want QuickTest to
recognize this fact, and use the ImageLabel’s label property as attached text
for adjacent controls that do not have their own label property.

Chapter 8 • Learning to Support a Custom Static-Text Control

201

The ImageLabel displays an image file optionally accompanied by
additional text. When the control does not display any text, the name of the
test object that represents the control can be based on the name of the
image file that the control displays.

The ImageLabel itself does not have any additional identification properties
or test object methods that need to be identified in QuickTest tests. In
addition, there is no need to record any operations on the ImageLabel
control.

On the next page you can see the checklist, completed based on the
information above.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

202

Custom Class Support Planning Checklist

Custom Class Support Planning Checklist

Does the custom class have a superclass for which QuickTest custom support is not yet
available? Yes /No

If so, should I first extend support for a control higher in the hierarchy? Yes /No

Do I have an application that runs the custom control on a computer with QuickTest
installed? Yes /No

The sources for this custom control class are located in:
an Eclipse project called ImageControls

Which existing Java test object matches the custom control? JavaStaticText

If none, create a new Java test object class named: N/A

• New test object class extends: (Default—JavaObject)

• Icon file location (optional):

• Identification property for description:

• Default test object method:

Is the custom control a top-level object? Yes /No

Is the custom control a wrapper? Yes /No

Specify the basis for naming the test object: its text or (if there is no text) its image file name

List the identification properties to support, and mark default checkpoint properties:

nothing special

List the test object methods to support (include arguments and return values if required):

nothing special

Provide support for recording? (AWT-based only) Yes /No

If so, list the events that should trigger recording: N/A

Chapter 8 • Learning to Support a Custom Static-Text Control

203

Creating the QuickTest Custom Static-Text Support Class

In the lesson “Learning to Support a Simple Control”, you created the
ImageControlsSupport QuickTest Java Add-in Extensibility project (as
described on page 164). In that project, you created the custom support class
for the ImageButton control.

In this section you create another custom support class in the same project
to support the ImageLabel control.

In most cases, static-text controls do not have identification properties or
test object methods that need to be identified in QuickTest tests. In
addition, there is usually no need to record any operations on a static-text
control. Therefore, the QuickTest Java Add-in Extensibility Eclipse plug-in
provides a special wizard for creating support classes for static-text controls.

In this wizard, all you have to do is select the ImageLabel class to be
supported as a static-text control. The wizard creates the new support class
with all the required methods. After the wizard creates the new support
class, you modify the methods that the wizard creates to complete the
support.

 1 Open the New QuickTest Custom Static-Text Support Class wizard.

In the Eclipse Package Explorer tab, select the QuickTest Java Add-in
Extensibility project, ImageControlsSupport. Choose File > New > Other.
The New dialog box opens.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

204

Expand the QuickTest Professional folder and select QuickTest Custom
Static-Text Support Class.

Click Next. The Custom Class Selection screen opens.

Chapter 8 • Learning to Support a Custom Static-Text Control

205

 2 Select the custom class to support, and set the options for the support
class.

Expand the com.demo package and select the ImageLabel class.

Since you are creating support for a class in the ImageControls custom
toolkit, the Custom toolkit tree pane looks similar to the one in the lesson
“Learning to Support a Simple Control”, as shown in step 2 of “Creating a
New QuickTest Custom Support Class” (on page 173). The Custom toolkit
tree represents the list of classes that you can select to support. The
ImageButton class does not appear in this list because you already created
support for it.

In the Custom class inheritance summary pane, you can see the hierarchy of
the ImageLabel class you have selected. It extends the ImageControl class,
which is part of the same toolkit, and is therefore shown in black.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

206

The ImageControl custom class is not supported, but the Canvas class does
have a matching support class, provided in the
com.mercury.ftjadin.support.awt.cs package. Therefore the Base support
class for the ImageLabel support class you are creating is CanvasCS. This is
the class that your new support class extends.

The Controls of this class represent top-level objects option is disabled
because the ImageLabel class is not a container class.

The name for the ImageLabel support class is, by default, ImageLabelCS. It is
recommended to keep the default name.

Click Finish. The Custom Static-Text Support Class Summary screen opens.

 3 View the custom static-text control support class summary.

Review the planned content of the custom static-text support class, and
click OK.

The following changes are made in the ImageControlsSupport project:

➤ The ImageControls.xml file is modified to map the ImageLabel custom class
to its support class—ImageLabelCS.

Chapter 8 • Learning to Support a Custom Static-Text Control

207

➤ A new QuickTest custom support class, ImageLabelCS, is created in the
ImageLabelCS.java file in the
com.mercury.ftjadin.qtsupport.imagecontrols.cs package. The file is opened
and displayed in a tab in the right pane.

For a detailed explanation of the content of the ImageLabelCS class, see
“Understanding the New Custom Static-Text Support Class,” below.

The asterisk (*) next to the ImageLabelCS file name (in the ImageLabelCS
tab) indicates that it has not been saved. The changes made by the wizard
are codependent, and must be saved to prevent discrepancies. Choose File >
Save, or click the Save button.

Understanding the New Custom Static-Text Support Class

Examine the contents of the new ImageLabelCS.java file. The ImageLabelCS
custom static-text support class extends CanvasCS.

In the new support class, the wizard created stubs for the following
methods:

➤ class_attr. Returns the string static_text.

This informs QuickTest that the ImageLabel control is a JavaStaticText
object. This means that the QuickTest mechanism that searches for attached
text can use the ImageLabel’s label property as attached text for adjacent
controls.

➤ label_attr. Returns the label property of the superclass (in this case
CanvasCS).

This method defines ImageLabel’s label identification property. The text in
this identification property is used for adjacent controls’ attached text. The
wizard includes a comment in this method stub, reminding you to
implement it to return the appropriate text.

➤ tag_attr. This method supports the tag property, which represents the name
of the static-text test object.

In the lesson “Learning to Support a Simple Control”, in the section
“Changing the Name of the Test Object” on page 187, you learned how the
tag property is implemented. The tag_attr method in the support class that

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

208

the wizard creates returns super.tag_attr(obj) with the added suffix (st). This
means that the name for the static-text test object is derived by using the
same logic as for regular test objects (label, attached text or unqualified class
name), and adding (st) at the end.

➤ value_attr. Returns the label property.

The value property represents a control’s test object state. For static-text
controls, the label property adequately represents this state.

For more information on these special identification properties, see “Special
Identification Property Support Methods” on page 52.

Deploying and Testing the New Custom Static-Text Support
Class

In this section, you use the QuickTest Deploy Toolkit Support command in
Eclipse to deploy the ImageControls toolkit support to QuickTest. This adds
the ImageLabel support to QuickTest, in addition to the ImageButton
control whose support you deployed previously. The ImageLabel support is
not yet complete, but you can already test the support created up to this
point.

 1 Deploy the ImageControls toolkit support to QuickTest.

In the Eclipse Package Explorer tab, select the ImageControlsSupport
project.

Click the Deploy Toolkit Support button, or choose
QuickTest > Deploy Toolkit Support. In the confirmation messages that
open, click Yes and then OK.

The toolkit configuration file and the test object configuration file are
copied to the relevant folders in your QuickTest installation folder. The
custom support will be available the next time you start the custom
application.

For more information on deploying custom toolkit support, see “Deploying
and Running the Custom Toolkit Support” on page 66.

Chapter 8 • Learning to Support a Custom Static-Text Control

209

 2 Test the new custom support.

Repeat steps 1 and 2 in “Planning Support for the ImageLabel Control” on
page 198, to run the application, and view the ImageLabel control and the
text box with the QuickTest Object Spy.

Note: QuickTest establishes its connection with an application when the
application opens. Therefore, although you can use an open QuickTest
session to test the changes, you must close the SampleApp application, and
run it again.

QuickTest recognizes the ImageLabel as a JavaStaticText object named
ImageLabel(st).

CanvasCS, which ImageLabelCS extends, does not provide support for the
label identification property. Therefore, ImageLabel’s label property is
empty (as is its attached text property). As a result, the superclass tag
property returns ImageLabel’s class name, and ImageLabel’s tag property is
ImageLabel(st).

QuickTest still identifies the text box as a JavaEdit test object named
TextField (its class name) because the label property of the adjacent
static-text object, ImageLabel, is still empty.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

210

Completing the Support for the Static-Text Control

In this part of the lesson, you implement the label_attr method in the
ImageLabelCS class to return the name of the image file used for the
ImageLabel. This enables QuickTest to use the ImageLabel’s label property as
attached text for adjacent controls. In addition, implementing the
ImageLabel’s label property provides the ImageLabel test object with a more
specific name.

 1 Implement the label_attr method in the ImageLabelCS class.

In Eclipse, in the ImageLabelCS.java file, in the label_attr method stub,
replace return super.label_attr(obj); with the following code:

ImageLabel il = (ImageLabel)obj;
String res = il.getText();
if(res != null && res.length() > 0)

return res;
res = il.getImageString();
if(res == null || res.length() == 0)

return null;
int last = res.lastIndexOf('/');
if(last == -1)

return res;
return res.substring(last+1);

The label identification property returns the text on the label (if it exists) or
the name of the image file used for the ImageLabel (without the full path).

Click the Save button, or choose File > Save to save your changes.

Note: You do not have to deploy the toolkit support to QuickTest again
because you changed only Java class files and not configuration files.

 2 Test the new custom support.

Repeat steps 1 and 2 in “Planning Support for the ImageLabel Control” on
page 198, to run the application and view the ImageLabel control and the
text box with the QuickTest Object Spy.

Chapter 8 • Learning to Support a Custom Static-Text Control

211

Note: You can use an open QuickTest session, but you must close the
SampleApp application, and run it again, for the changes you made in the
custom support to take effect.

QuickTest now recognizes the ImageLabel as a JavaStaticText test object
named QuickTest Java(st), with the label property QuickTest Java.

QuickTest now recognizes the text box as a JavaEdit test object named
QuickTest Java. The label property of the JavaEdit test object is empty. The

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

212

ImageLabel’s label property provides the text for the JavaEdit’s attached text
property, which is used as the test object name.

Note: If you modify the SampleApp application and remove the line
imageLb.setText("QuickTest Java");, the ImageLabel will not display any text.
QuickTest will then recognize the ImageLabel as a JavaStaticText test object
named mercury.gif(st), with the label property mercury.gif. QuickTest will
recognize the text box as a JavaEdit test object named mercury.gif.

Chapter 8 • Learning to Support a Custom Static-Text Control

213

The ImageLabel static-text custom control is now fully supported, according
to the specifications you determined when planning your custom support.
The support for the ImageControls toolkit is now complete. You can find a
ready-made example of this support in the
<QuickTest Professional Java Add-in Extensibility SDK installation
folder>\samples\ImageControlsSupport folder.

Optimizing the ImageControls Toolkit Support

Note that the implementation you used for the label identification property
in the ImageLabel class is very similar to the implementation of the label
identification property in the ImageButton class. Since both of these classes
extend the ImageControl class, it might have been preferable to implement
support for the label identification property in a support class for the
ImageControl (ImageControlCS).

This means that when planning support for the ImageButton and
ImageLabel controls, the answer to the second question in the “Custom
Class Support Planning Checklist” on page 202 would have been Yes (I
should first extend support for a control higher in the hierarchy).
ImageButtonCS and ImageLabelCS would then extend ImageControlCS,
and in ImageLabelCS you would fine-tune the label property by overriding
the inherited label_attr method.

In the following sections you modify the ImageControls toolkit support set
to prevent the duplicate implementation of the label_attr method. The
changes do not affect the functionality of the support. You create the
ImageControlCS support class and modify ImageButtonCS and
ImageLabelCS to extend ImageControlCS.

Creating Support for the ImageControl Custom Class

In this section, you create a custom support class for the ImageControl class
in the ImageControlsSupport project.

 1 Open the New QuickTest Custom Support Class wizard.

In the Eclipse Package Explorer tab, select the new QuickTest Java Add-in
Extensibility project, ImageControlsSupport. Choose File > New > Other.
The New dialog box opens.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

214

Expand the QuickTest Professional folder, select QuickTest Custom Support
Class and click Next. The Custom Class Selection screen opens.

 2 Select the custom class to support, and set the options for the support
class.

➤ Expand the com.demo package and select the ImageControl class.

In the Custom toolkit tree pane, you can see that the ImageControl class is
the only class in the com.demo package that is not yet supported.

In the Custom class inheritance summary pane, you can see the hierarchy of
the ImageControl class you have selected. The ImageControl class extends
java.awt.Canvas, therefore the Base support class for the ImageControl
support class you are creating is CanvasCS.

Leave the default name, ImageControlCS, for the ImageControl support
class.

➤ Click Next. The Test Object Class Selection screen opens.

Chapter 8 • Learning to Support a Custom Static-Text Control

215

 3 Select a test object class to represent the custom control.

You are creating the ImageControlCS support class only to use it as a base
support class for other support classes, not to support actual controls.
Therefore, it is not important to which test object class you map the
ImageControl custom class.

➤ Select Same as base support class. This maps the ImageControl custom
class to whichever test object class is mapped to java.awt.Canvas. No
direct mapping takes place. The new support class does not implement a
to_class_attr method, but inherits it from the base support class.

➤ Click Next. The Custom Support Test Object Identification Properties
screen opens.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

216

 4 Determine the set of test object identification properties to implement
in ImageControlCS.

This screen displays the identification properties supported by the base
support class you are extending, as well as additional properties that are
defined in the test object class you selected, but are not yet supported.

The left pane displays all of the identification properties whose support is
implemented by CanvasCS, and therefore inherited by the new
ImageControlCS support class. It enables you to select properties whose
support you want to override with new functionality.

In the Test Object Class Selection screen (on page 215), you did not select a
specific test object class. Therefore, the wizard does not know which test
object class is mapped to the ImageControl custom control. As a result, no
identification properties are displayed in the right pane.

➤ Select the label property by clicking its check box. After you finish
generating the support files using the wizard, you will override the
existing support for this property with a custom implementation that
matches the needs of the custom control.

➤ Click Next. The Custom Support Test Object Methods screen opens.

Chapter 8 • Learning to Support a Custom Static-Text Control

217

 5 Determine the set of test object methods to implement in
ImageControlCS.

This screen displays the test object methods defined in the test object class
you selected.

In the Test Object Class Selection screen (on page 215), you did not select a
specific test object class. Therefore, the wizard does not know which test
object class is mapped to the ImageControl custom control. As a result, no
test object methods are displayed in this screen.

The ImageControl custom control does not have any test object methods
that need to be supported.

Click Next. The Custom Control Recording Support wizard screen opens.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

218

 6 Determine the set of events for which to listen, in order to support
recording on the ImageControl control.

This screen displays the event listeners implemented by the support class
you are extending. It enables you to select event handler methods whose
implementation you want to override with new functionality and to add
new event listeners to implement.

In the left pane, you can see the listeners implemented by CanvasCS. You do
not have to override any of these for the ImageControlCS custom support
class.

You are creating the ImageControlCS support class only to use it as a base
support class for other support classes, not to support actual controls.
Therefore, it is not necessary to support recording on ImageControl
controls.

Click Finish. The Custom Control Support Class Summary screen opens.

Chapter 8 • Learning to Support a Custom Static-Text Control

219

 7 View the custom control support class summary.

Review the planned content of the custom support class, and click OK.

The following changes are made in the ImageControlsSupport project:

➤ The ImageControls.xml file is modified to map the ImageControl custom
class to its support class—ImageControlCS.

➤ A new QuickTest custom support class, ImageControlCS, is created in the
ImageControlCS.java file in the
com.mercury.ftjadin.qtsupport.imagecontrols.cs package. The file is
opened and displayed in a tab in the right pane.

The ImageControlCS class extends CanvasCS and contains only one
method stub—label_attr.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

220

The asterisk (*) next to the ImageControlCS file name (in the
ImageControlCS tab) indicates that it has not been saved. The changes
made by the wizard are codependent, and must be saved to prevent
discrepancies. Choose File > Save, or click the Save button.

 8 Implement the label_attr method in the ImageControlCS class.

➤ In Eclipse, in the ImageControlCS.java file, in the label_attr method
stub, replace return super.label_attr(obj); with the following code, so that it
returns the name of the image file used for the ImageControl (without
the full path):

ImageControl ic = (ImageControl)arg0;
String res = ic.getImageString();
if(res == null || res.length() == 0)

return null;
int last = res.lastIndexOf('/');
if(last == -1)

return res;
return res.substring(last+1);

➤ Click the Save button, or choose File > Save to save your changes.

Modifying the ImageControls Toolkit Support Hierarchy

The hierarchy of the support classes must match the hierarchy of the
custom classes. Now that the ImageControl class is mapped to the support
class ImageControlCS, the support classes for the ImageControl descendants
must extend ImageControlCS.

Both ImageButtonCS and ImageLabelCS inherit label_attr method.
ImageLabelCS needs to override this method to fine-tune its support of the
label property.

 1 Modify the ImageButtonCS class to extend ImageControlCS.

➤ Open the ImageButtonCS.java file in the ImageControlsSupport project
in Eclipse, and locate the ImageButtonCS class signature:

public class ImageButtonCS extends CanvasCS implements ActionListener

Chapter 8 • Learning to Support a Custom Static-Text Control

221

➤ Modify the signature so that ImageButtonCS extends ImageControlCS:

public class ImageButtonCS extends ImageControlCS implements
ActionListener

➤ Remove the label_attr method from the ImageButtonCS class.

➤ Save the ImageButtonCS.java file.

 2 Modify the ImageLabelCS class to extend ImageControlCS.

➤ In the ImageLabelCS.java file, replace public class ImageLabelCS extends
CanvasCS with public class ImageLabelCS extends ImageControlCS.

➤ Replace the following lines in the label_attr method in the
ImageLabelCS class:

res = il.getImageString();
if(res == null || res.length() == 0)

return null;
int last = res.lastIndexOf('/');
if(last == -1)

return res;
return res.substring(last+1);

with:

return super.label_attr(obj);

➤ Save the changes.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

222

Deploying and Testing the New ImageControls Toolkit Support

When you created the new ImageControlCS support class, the wizard
modified the ImageControls.xml file to map the ImageControl class to the
ImageControlCS support class. Therefore, you must redeploy the
ImageControls toolkit support for your changes to take effect.

 1 Deploy the ImageControls toolkit support to QuickTest.

In the Eclipse Package Explorer tab, select the ImageControlsSupport
project.

Click the Deploy Toolkit Support button, or choose
QuickTest > Deploy Toolkit Support. In the confirmation messages that
open, click Yes and then OK.

 2 Test the modified custom support.

Repeat the procedures in “Planning Support for the ImageButton Control”
on page 158 and “Planning Support for the ImageLabel Control” on
page 198, to re-run the SampleApp application and ensure that the support
for ImageButton and ImageLabel is functioning properly.

Note: You did not change any test object configuration files, therefore you
can use an open session of QuickTest.

The changes you made to the custom toolkit support set do not affect the
way QuickTest recognizes and tests the ImageLabel and ImageButton
controls. However, the support for the label identification property for both
of these controls is now inherited from the ImageControlCS class. If
additional custom classes that extend ImageControl are created, their label
property will be similarly supported on QuickTest with no additional effort
required.

You can find a ready-made example of the improved support for the
ImageControls toolkit in the
<QuickTest Professional Java Add-in Extensibility SDK installation
folder>\samples\ImageControlsSupportAdvanced folder.

Chapter 8 • Learning to Support a Custom Static-Text Control

223

Lesson Summary

In this lesson you created support for the ImageLabel control, allowing
QuickTest to recognize it as a static-text object and use its label property as
attached text for adjacent controls.

You then created support for the ImageControl class to improve the
flexibility of the toolkit support, and modified the hierarchy of the
ImageControls toolkit support set accordingly.

➤ You learned how to create a support class for a custom static-text control,
using the following identification property support methods:

class_attr

tag_attr

label_attr

value_attr

➤ You used the Same as base support class option in the Test Object Class
Selection screen, and learned about the effects of that selection.

Where Do You Go from Here?

For more information on the identification properties that you used in this
lesson, see “Special Identification Property Support Methods” on page 52.

In the next lesson you learn how to create support for a custom control that
needs to be mapped to a new test object class. You will define special
identification properties and test object methods for the new test object
class, and implement support for them.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

224

225

9
Learning to Support a Complex Control

In this lesson you create support for the AllLights control within the
Javaboutique toolkit. This is a complex control, with unique behavior, that
requires a new test object class definition.

In the lesson “Learning to Support a Simple Control” on page 155, you
learned to create support for a simple custom control. You are now familiar
with the basics of Java Add-in Extensibility, therefore this lesson explains
only the more advanced information.

This lesson guides you through the following stages: On page:

Preparing for This Lesson 226

Planning Support for the AllLights Control 228

Creating the QuickTest Java Add-in Extensibility Project 234

Creating the New QuickTest Custom Support Class 239

Understanding the New Custom Support Files 252

Deploying and Testing the New Custom Toolkit Support 255

Implementing Support for the AllLights Control 258

Lesson Summary 265

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

226

Preparing for This Lesson

Before you extend QuickTest support for a custom control, you must have
access to its class and an application that runs it.

In this section, you create an Eclipse project containing the Javaboutique
custom toolkit classes. The AllLights class can run as an Applet, so there is
no need for an additional application containing the custom control.

To create a new Java project with the Javaboutique sample in Eclipse:

 1 Run Eclipse and choose File > New > Project. The New Project dialog box
opens.

 2 Select Java Project and click Next. The New Java Project dialog box opens.

 3 Enter Javaboutique in the Project name box.

 4 Select the Create project from existing source option.

 5 Click the Browse button and browse to the <QuickTest Professional Java
Add-in Extensibility SDK installation folder>\samples\Javaboutique\src
folder. Click OK to return to the New Java Project dialog box.

 6 Click Finish. A new Java project is created with the ImageControls sample
source files. The new project, named Javaboutique, is displayed in the
Package Explorer tab.

Expand the Javaboutique project to view its content. The Javaboutique\src
package folder contains the org.boutique.toolkit package. This package
contains three custom controls: AllLights, AwtCalc and ETextField.

In this lesson, you create the QuickTest Java Add-in Extensibility project for
the Javaboutique custom toolkit and the support class for AllLights. (You
can find the completed support for AllLights and for AwtCalc in the
<QuickTest Professional Java Add-in Extensibility SDK installation
folder>\samples\JavaboutiqueSupport folder.

Chapter 9 • Learning to Support a Complex Control

227

In the Eclipse Package Explorer tab, right-click the Allights.java class in the
org.boutique.toolkit package and choose Run As > Java Applet. The
AllLights application opens:

Click different locations in the frame to become familiar with the AllLights
behavior:

➤ Clicking in different parts of the grid area turns different lights on (or off),
according to an internal set of rules, updating the LightOn and LightOff
counters.

➤ Clicking the RESTART button turns off all of the lights. The LightOn and
LightOff counters are updated accordingly.

➤ Clicking in other areas has no effect.

➤ The object of the game is to turn on all of the lights, at which point a
congratulation message is displayed.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

228

Planning Support for the AllLights Control

In this section, you analyze the current QuickTest support of the AllLights
control, determine the answers to the questions in the “Understanding the
Custom Class Support Planning Checklist” on page 78, and fill in the
“Custom Class Support Planning Checklist” on page 233, accordingly.

The best way to do this is to run the application containing the custom
control, and analyze it from a QuickTest perspective using the Object Spy,
Keyword View, and Record option.

 1 Run the AllLights application and open QuickTest.

If the AllLights application is already running, choose Applet > Restart from
the application toolbar so the application looks like the image shown above.
Otherwise, right-click AllLights.Java in the Eclipse Package Explorer tab, and
choose Run As > Java Applet to run it.

Open QuickTest and load the Java Add-in.

 2 Use the Object Spy to view the AllLights properties and methods.

In QuickTest Choose Tools > Object Spy or click the Object Spy toolbar
button to open the Object Spy dialog box. Click the Properties tab.

In the Object Spy dialog box, click the pointing hand, then click the
AllLights application.

Chapter 9 • Learning to Support a Complex Control

229

The AllLights control extends JavaApplet, for which QuickTest support is
built in, therefore it recognizes the application as a JavaApplet, named
AllLights. The icon shown is the standard JavaApplet class icon.

Close the Object Spy.

 3 Record operations on the AllLights control.

In QuickTest choose Automation > Record and Run Settings to open the
Record and Run Settings dialog box. In the Java tab, select Record and run
test on any open Java application. If the Web Add-in is also loaded, click the
Web tab and select Record and run test on any open browser. Click OK.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

230

Click the Record button or choose Automation > Record. Click on different
locations in the AllLights application: the grid, the RESTART button, and
one of the counters.

With each click, a new step is added to the test:

Click the Stop button or choose Automation > Stop to end the recording
session.

The Click operation on the AllLights JavaApplet is a generic click, with
arguments indicating the low-level recording details (x and y coordinates
and the mouse button that performed the click).

 4 Determine the custom toolkit to which the AllLights control belongs.

When you extend QuickTest support for a control you always do so in the
context of a toolkit. For the purpose of this tutorial, three classes that extend
AWT are grouped to form the custom toolkit named Javaboutique: AllLights,
AwtCalc, and ETextField.

In this lesson you create support for the Javaboutique toolkit, initially
supporting only the AllLights class.

 5 Complete the custom class support planning checklist.

This section describes the required support for the AllLights control, and
then summarizes the information in the support planning checklist.

➤ Deciding which custom class to support:

The AllLights custom class extends the Applet class, supported on QuickTest
by AppletCS.

You want QuickTest to treat the AllLights as a special kind of Applet. You
want it to support the special operations it performs, and to recognize its
properties. Therefore it makes sense to create Extensibility support for this
control.

Chapter 9 • Learning to Support a Complex Control

231

➤ Mapping a test object class to the custom control:

The JavaApplet test object class provides basic support for the AllLights
control, but does not support all of the necessary identification properties
and test object methods. Therefore you create a new test object class
extending JavaApplet, named AllLights and map it to the AllLights custom
control.

➤ Deciding the details for the new test object class:

The new test object class is represented by the icon file:
<QuickTest Professional Java Add-in Extensibility SDK Installation
folder>\samples\Javaboutique\AllLights_icon.ico

The identification properties used by default to uniquely define the test
object (label, class, and index) are sufficient.

The default test object method is ClickLight.

The new identification properties to support are: OnCount, OnList, and
GameOver. They should all be selected by default in the QuickTest
Checkpoint Properties dialog box.

➤ AllLights controls are top-level objects, but not wrappers.

➤ The name of the test object itself should be Lights.

➤ The custom support should include support for the following identification
properties:

➤ OnCount. Specifies the number of lights that are on, at the given
moment.

➤ OnList. Lists the location of the lights that are on, at the given moment.
The lights are numbered 0 through 24, starting from the upper left corner
and numbering row by row. The list contains the numbers of the lights
that are on, each preceded by a space.

➤ GameOver. A Yes or No string, indicating whether all lights are on or not.

➤ The custom support should include support for the following test object
methods:

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

232

➤ ClickLight. Simulates clicking a specific light in the grid. This method
requires two arguments, Row and Column, specifying the location of the
light to click.

➤ Restart. Simulates clicking the Restart button.

➤ Support for recording:

Override low-level mouse event recording.

Listen for mouse events. Based on the location of the click, send a record
message to record ClickLight or Restart operations.

On the next page you can see the checklist, completed based on the
information above.

Chapter 9 • Learning to Support a Complex Control

233

Custom Class Support Planning Checklist

Custom Class Support Planning Checklist

Does the custom class have a superclass for which QuickTest custom support is not yet
available? Yes /No

If so, should I first extend support for a control higher in the hierarchy? N/A

Do I have an application that runs the custom control on a computer with QuickTest
installed? Yes /No

The sources for this custom control class are located in:
an Eclipse project called Javaboutique

Which existing Java test object matches the custom control? None

If none, create a new Java test object class named: AllLights

• New test object class extends: (Default—JavaObject) JavaApplet

• Icon file location (optional): <QuickTest Professional Java Add-in Extensibility SDK
Installation folder>\samples\Javaboutique\AllLights_icon.ico

• Identification property for description: label

• Default test object method: ClickLight

Is the custom control a top-level object? Yes /No

Is the custom control a wrapper? Yes /No

Specify the basis for naming the test object: Use the name: "Lights"

List the identification properties to support, and mark default checkpoint properties:

OnCount, OnList, GameOver (all selected by default in checkpoints)

List the test object methods to support (include arguments and return values if required):

ClickLight (Variant Row, Variant Column)
Restart (no arguments)

Provide support for recording? (AWT-based only) Yes /No

If so, list the events that should trigger recording:

MouseEvents

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

234

Creating the QuickTest Java Add-in Extensibility Project

In this section you create a new project for the Javaboutique toolkit support.
To do this, you use one of the wizards provided by the QuickTest Java
Add-in Extensibility plug-in in Eclipse.

 1 Open the New QuickTest Java Add-in Extensibility Project wizard.

In Eclipse, choose File > New > Project. The New Project dialog box opens.
Expand the QuickTest Professional folder and select QuickTest Java Add-in
Extensibility Project.

Click Next. The QuickTest Java Add-in Extensibility Project screen opens.

Chapter 9 • Learning to Support a Complex Control

235

 2 Enter the QuickTest Java Add-in Extensibility project details.

In the Project name box, enter JavaboutiqueSupport. Select the Create
separate source and output folders option. For more information on this
dialog box, refer to the Eclipse Help.

Click Next. The Custom Toolkit Details screen opens.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

236

 3 Enter the custom toolkit details.

In this screen, you provide the details of the Javaboutique toolkit so that the
wizard can generate a corresponding custom toolkit support set.

In the Unique custom toolkit name enter Javaboutique.

In the Support toolkit description box enter: Javaboutique toolkit support.

The AllLights custom class extends an AWT component, so keep the default
selection AWT as the Base toolkit.

Chapter 9 • Learning to Support a Complex Control

237

In the Custom toolkit class locations area, click Add project to select the
Eclipse Java project containing the custom classes for the Javaboutique
toolkit. The Select Project dialog box opens and displays the projects in the
current Eclipse workspace.

Select the Javaboutique check box. Click OK. The Javaboutique project is
added in the Custom toolkit class locations box. Click Finish. The Project
Summary screen opens.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

238

 4 View the Project Summary wizard screen.

Review the details of the project and click OK.

The New QuickTest Java Add-in Extensibility project JavaboutiqueSupport is
created, with the basic packages and files of the custom toolkit support set:

➤ The package com.mercury.ftjadin.qtsupport.javaboutique, containing the
new toolkit support class file, JavaboutiqueSupport.java.

➤ The package com.mercury.ftjadin.qtsupport.javaboutique.cs

➤ The Configuration folder, containing the TestObjects folder and the new
toolkit configuration file: Javaboutique.xml

Chapter 9 • Learning to Support a Complex Control

239

Note: If you have more than one JRE installed on your computer, make sure
that the Javaboutique project and the JavaboutiqueSupport project are using
the same JRE version. If they are not, modify the JRE for one of the projects
so that they use the same version.

Creating the New QuickTest Custom Support Class

In this section you create a custom support class for the AllLights control, as
part of the Javaboutique toolkit support. To do this, you use one of the
wizards provided by the QuickTest Java Add-in Extensibility plug-in in
Eclipse. The details you specify in each wizard screen reflect the decisions
you made when planning the custom support. In the subsequent sections
you implement the methods that the wizard creates in this class.

Note: The following sections describe only the options in the wizard screens
that are relevant to this lesson. For a complete description of all options
available in the wizard screens, see Chapter 5, “Using the QuickTest Java
Add-in Extensibility Eclipse Plug-In.”

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

240

 1 Open the New QuickTest Custom Support Class wizard.

In the Eclipse Package Explorer tab, select the new QuickTest Java Add-in
Extensibility project, JavaboutiqueSupport. Choose File > New > Other. The
New dialog box opens.

Expand the QuickTest Professional folder and select QuickTest Custom
Support Class.

Click Next. The Custom Class Selection screen opens.

Chapter 9 • Learning to Support a Complex Control

241

 2 Select the custom class to support, and set the options for the support
class.

Select the AllLights class in the org.boutique.toolkit package.

The AllLights custom class extends java.applet.Applet, which is supported
on QuickTest. The AllLights support class therefore extends the Base
support class: com.mercury.ftjadin.qtsupport.awt.cs.AppletCS. As a result,
the Controls of this class represent top-level objects check box is selected by
default.

Leave this check box selected, because you want QuickTest to recognize the
AllLights controls as the highest Java test objects in the test object hierarchy.

Keep the default custom support class name: AllLightsCS.

Click Next. The Test Object Selection screen opens.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

242

 3 Select a test object class to represent the custom control.

In this screen, you map the custom control to a test object class. In
QuickTest tests, the custom class controls are represented by test objects of
this test object class.

In step 5 of “Planning Support for the AllLights Control”, described on
page 230, you decided to map the AllLights custom control to a new test
object class, AllLights, that extends JavaApplet.

Select the New test object class option and enter AllLights as the name for
the test object class.

In the Extends existing test object list, select JavaApplet. This list contains
all of the Java objects that QuickTest currently supports. If you define new
test objects for custom support, they are included in the list as well.

Click Next. The Custom Support Test Object Identification Properties screen
opens.

Chapter 9 • Learning to Support a Complex Control

243

 4 Determine the set of test object identification properties to implement
in AllLightsCS.

This screen displays the identification properties supported by the base
support class you are extending, as well as additional properties that are
defined in the test object class you selected, but are not yet supported. It
enables you to select properties whose support you want to implement or
override with new functionality and to add new properties.

The left pane shows all of the identification properties whose support is
implemented by AppletCS, and therefore inherited by the new AllLightsCS
support class. For most of the properties in this list, the default
implementation is sufficient. Scroll down and select the label check box.
After you finish generating the support files using the wizard, you will
override the existing support for this property with a custom
implementation that matches the needs of your custom control.

The identification properties displayed in the right pane are JavaApplet
properties that are not supported by AppletCS. These properties are not
required for the AllLights support. Select them, click Remove, and then click
Yes to confirm.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

244

In step 5 of “Planning Support for the AllLights Control”, described on
page 230, you decided to support new identification properties on AllLights
test objects. You now add these properties to the list of additional properties
required for the test object class.

Note: The identification properties are added to the test object class
definition. This means that the new properties appear in the list of
identification properties in QuickTest for all test objects of this class. This is
the reason you are creating the new AllLights test object class.

➤ Click Add in the Additional properties required for test object class
pane. The Identification Property dialog box opens.

In the Name box, enter OnCount. Click OK to add the new Identification
Property to the list.

➤ Repeat this procedure to add the properties OnList and GameOver.

After you finish generating the support files using the wizard, you will
implement support for these properties.

➤ Click Next. The Custom Support Test Object Methods screen opens.

Chapter 9 • Learning to Support a Complex Control

245

 5 Determine the set of test object methods to implement in AllLightsCS.

This screen displays the test object methods defined in the test object class
you selected. It enables you to select methods whose support you want to
implement or override with new functionality, and to add new methods.

The left pane shows all of the test object methods (defined in the test object
class you selected) whose support is implemented by AppletCS, and
therefore inherited by AllLightsCS. There is no need to select any methods
to override.

The PressKey method appears in the right pane, because it is a JavaApplet
test object method, but it is not supported by AppletCS. This method is not
required for AllLights support. Select it, click Remove, and then click Yes to
confirm.

In step 5 of “Planning Support for the AllLights Control”, described on
page 230, you decided to support new test object methods on AllLights test
objects. You now add these methods to the list of additional test object
methods required for the test object class.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

246

Note: The test object methods are added to the existing test object class.
This means that the new methods appear in QuickTest for all test objects of
this class, regardless of whether or not they are supported for these objects.
In a QuickTest test, if you call a test object method for an object, and that
method is not supported, a run-time error occurs. This is the reason you are
creating the new AllLights test object class.

 a Click Add in the Additional test object methods required for test object
class pane. The Test Object Method dialog box opens.

• In the Method Name box, enter: Restart. The Restart test object
method does not require any arguments other than the mandatory
obj (Object) that represents the custom control.

• Leave the Method returns a string value check box cleared. This
method returns only a return code.

• In the Description box, enter: Clicks the RESTART button.

Chapter 9 • Learning to Support a Complex Control

247

• In the Documentation box, enter: Click the RESTART button.

• Click OK to close the Test Object Method dialog box and add the
Restart method to the list.

 b Add another test object method by clicking Add once again. In the Test
Object Method dialog box that opens, perform the following:

• In the Method Name box, enter: ClickLight.

• Add the Row and Column arguments to the ClickLight method:

• In the Arguments area, click Add. The Test Object Method Argument
dialog box opens.

• In the Name box, enter: Row.

• In the Type box, select Variant. (If you select String, then when you
add steps in QuickTest tests with the ClickLight method, you have
to enclose the row number argument in quotes.)

• Leave the Mandatory Argument check box selected.

• Click OK to close the Test Object Method Argument dialog box and
add the Row argument to the list of arguments for the ClickLight
test object method.

• Repeat this procedure to add the Column argument to the list.

• Leave the Method returns a string value check box cleared.

• In the Description box, enter: Clicks the specified light.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

248

• In the Documentation box, enter: Click the light in row <Row> column
<Column>. Enter the <Row> and <Column> arguments in the
sentence by clicking and selecting the relevant argument.

• Click OK to close the Test Object Method dialog box and add the
ClickLight method to the list.

After you finish generating the support files using the wizard, you will
implement support for the methods you added.

 c Click Next. The Custom Control Recording Support wizard screen opens.

 6 Determine the set of events for which to listen, in order to support
recording on the AllLights control.

This screen displays the event listeners supported by the support class you
selected to extend. It enables you to select listeners whose implementation
you want to override with new functionality and to add new event listeners
to implement.

In the left pane, you can see the listeners implemented by AppletCS. You do
not have to override any of these for the AllLightsCS custom support class.

Chapter 9 • Learning to Support a Complex Control

249

In the right pane, you specify the listeners you want to add for AllLightsCS.
Each listener you select implies a set of event handler methods you add to
the custom support class.

Click Add to add the MouseListener.

The Listener dialog box opens.

Select java.awt.event.MouseListener from the Listener list and click OK. The
Listener dialog box closes and the MouseListener, and all of the event
handler methods it includes, are added to the list in the right pane of the
wizard screen.

On the Custom Control Recording Support screen:

➤ Clear the Treat controls of this class as wrapper controls check box. It is
selected, by default, because the AllLights class extends
java.awt.container.

➤ Select the Override low-level mouse event recording check box to
prevent low-level events (coordinate-based operations) from being
recorded instead of the events you want to record.

➤ Click Next. The New Test Object Class Details screen opens.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

250

 7 Define the details for the new test object class AllLights.

In this screen you define the details of the new test object class you are
creating to map to the custom control.

Perform the following:

➤ For the Test object icon, click Browse, locate the <QuickTest Professional
Java Add-in Extensibility SDK Installation folder>\samples\Javaboutique
folder, and select the AllLights_icon.ico file.

Chapter 9 • Learning to Support a Complex Control

251

➤ In the Identification property for unique description box, leave the
selected label property.

➤ In the Default test object method list, select ClickLight.

➤ In the Default checkpoint properties box, leave the selected properties
and select also the GameOver, OnCount, and OnList check boxes.

➤ Click Finish. The Custom Control Support Class Summary screen opens.

 8 View the custom control support class summary.

Review the planned content of the custom support class, and click OK.

The following changes are made in the JavaboutiqueSupport project:

➤ A new QuickTest custom support class, AllLightsCS, is created in the
com.mercury.ftjadin.qtsupport.Javaboutique.cs package. The file is opened
and displayed in a tab in the right pane.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

252

➤ A new JavaboutiqueTestObjects.xml file is created in the
Configuration\TestObjects folder.

➤ The Javaboutique.xml file is modified. An element is added to the file,
mapping the AllLights custom class to the AllLightCS support class. For
information on the structure of this file, refer to the QuickTest Java Add-in
Extensibility Toolkit Configuration Schema Help (Help > QuickTest Professional
Help > Java Add-in Extensibility Developer’s Guide > QuickTest Java Add-in
Extensibility Toolkit Configuration Schema).

For a detailed explanation of the AllLightsCS class and the
JavaboutiqueTestObjects.xml file, see “Understanding the New Custom
Support Files,” below.

The asterisk (*) next to the AllLightsCS file name (in the AllLightsCS tab)
indicates that it has not been saved. The changes made by the wizard are
codependent, and must be saved to prevent discrepancies. Choose File >
Save, or click the Save button.

Understanding the New Custom Support Files

When you completed the process of the New QuickTest Custom Support
Class, the wizard registered the new class in the toolkit configuration file,
and created the following files:

➤ AllLightsCS.java. This file contains the new AllLightsCS support class.

➤ JavaboutiqueTestObject.xml. This file contains the new test object classes
defined for the Javaboutique toolkit support. At this point, there is only one
such test object class: AllLights.

The following sections explain the content that the wizards created in these
files.

Chapter 9 • Learning to Support a Complex Control

253

Understanding the AllLightsCS Custom Support Class

After having performed the lesson “Learning to Support a Simple Control”
on page 155, you are familiar with the basic elements that the wizard creates
in a new custom support class. Examine the contents of the new
AllLightsCS.java file, and locate the following methods and declarations:

➤ The declaration of the AllLightsCS support class, which indicates that it
extends the AppletCS support class and implements the MouseListener
interface.

➤ The declaration of the DEBUG_ALLLIGHTSCS flag, which can be used to
control printing log messages.

➤ The AllLightsCS constructor method, which calls addSimpleListener to
add MouseListener to the list of listeners that need to be registered on the
AllLights control.

➤ The to_class_attr method, which returns the new test object class name:
AllLights.

➤ A method stub for label_attr returning super.label_attr, which you can
replace with a more specific label.

➤ Method stubs for the oncount_attr, onlist_attr, and gameover_attr
methods, which you must implement to support the identification
properties you added. Until you do so, these methods return null, because
these are new methods that you added and they are not implemented in the
superclasses that AllLightsCS extends.

Note: You can use capital letters in the identification property names that
you provide in the wizard screen. These names are written as is in the test
object configuration file. However, in the names of the support methods for
these identification properties, upper case letter are replaced with lower case
ones.

➤ Method stubs for the Restart_replayMethod and
ClickLight_replayMethod methods, which you must implement to
support the test object methods you added. Until you do so, these methods
return the error code NOT_IMPLEMENTED.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

254

➤ The mouseRecordTarget method, which returns null to override recording
of low-level mouse events.

➤ Method stubs for the event handler methods defined by the MouseListener
interface: mouseClicked, mouseEntered, mouseExited, mousePressed,
and mouseReleased. These method stubs contain comments reminding you
to implement them as necessary, calling MicAPI.record to send record
messages to QuickTest.

The is_window method, returning true, was added to the AllLightsCS
support class because you selected the Controls of this class represent top-
level objects check box, on the Custom Class Selection screen. When
learning the test object, QuickTest calls the is_window method to
determine whether to look for a parent object or view this object as the
highest Java object in the hierarchy.

Understanding the Javaboutique Test Object Configuration File

The wizard builds the test object class definition in the test object
configuration file based on the details you specify.

Open the new JavaboutiqueTestObject.xml file and examine its contents.
For information on the structure of this file, refer to the QuickTest Test Object
Schema Help (Help > QuickTest Professional Help > QuickTest Advanced
References > QuickTest Test Object Schema).

Locate the following elements in the test object configuration file:

➤ The test object class that the new test object class extends:

BaseClassInfoName="JavaApplet"

➤ The name of the new test object class and its default test object method:

DefaultOperationName="ClickLight" Name="AllLights">

➤ The location of the icon file:

IconFile="<QuickTest Professional Java Add-in Extensibility SDK Installation
folder>\samples\Javaboutique\AllLights_icon.ico"

Chapter 9 • Learning to Support a Complex Control

255

➤ The definition of the new test object methods you added, and their
description, documentation, and arguments (inside the <TypeInfo>
element).

➤ The definition of the identification properties for this test object class
(inside the <Properties> element). Note the identification properties marked
ForVerification, ForDefaultVerification, and ForDescription.

Deploying and Testing the New Custom Toolkit Support

In this part of the lesson, you use the QuickTest Deploy Toolkit Support
command in Eclipse to deploy the Javaboutique toolkit support to
QuickTest. Currently only one control in this toolkit, the AllLights control,
is supported. The toolkit support is not yet complete, but you can already
test the support created up to this point.

 1 Deploy the Javaboutique toolkit support to QuickTest.

In the Eclipse Package Explorer tab, select the JavaboutiqueSupport project.

Click the Deploy Toolkit Support button, or choose
QuickTest > Deploy Toolkit Support. In the confirmation messages that
open, click Yes and then OK.

The toolkit configuration file and the test object configuration file are
copied to the relevant folders in your QuickTest installation folder. The
custom support will be available the next time you start the custom
application.

For more information on deploying custom toolkit support, see “Deploying
and Running the Custom Toolkit Support” on page 66.

 2 Test the new custom support.

Repeat steps 1, 2, and 3 in “Planning Support for the AllLights Control” on
page 228, to open QuickTest, run the application, view the AllLights control
with the QuickTest Object Spy, and try to record a Click operation on it.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

256

Note: QuickTest reads test object configuration files when it opens. The
Javaboutique toolkit support contains a new test object configuration file.
Therefore, you must close QuickTest open it again.

QuickTest establishes its connection with an application when the
application opens. Therefore, you must close the SampleApp application,
and run it again.

Chapter 9 • Learning to Support a Complex Control

257

QuickTest recognizes the AllLights control as an AllLights test object
(according to the to_class_attr method) named AllLights (the name of the
custom class). The Object Spy displays the icon you specified in the wizard
for this test object class.

Because you have overridden the low-level recording, but have not yet
implemented the mouseClicked (MouseEvent arg0) event handler
method, QuickTest currently does not record anything when you click in
the application frame.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

258

In QuickTest, add the AllLights object to the object repository, and create a
test step with this object in the Keyword View.

The ClickLight test object method is selected, by default, as the step
Operation. If you provide the required arguments for this method and run
the test with this step, a run-time error occurs, because the
ClickLight_replayMethod method returns .NOT_IMPLEMENTED.

Implementing Support for the AllLights Control

In this part of the lesson, you modify the AllLightsCS class to extend
QuickTest support of the AllLights control, as per your plan (“Planning
Support for the AllLights Control” on page 228).

Open the AllLightsCS.java file. In the label_attr method, replace the code:
return super.label_attr(obj); with the code: return "Lights"; to change the name
of the test object. Then perform the following procedures:

➤ Implementing Support for New Identification Properties (described on
page 258)

➤ Implementing Support for New Test Object Methods (described on
page 260)

➤ Implementing Support for Recording (described on page 261)

➤ Testing the Completed Support (described on page 263)

Implementing Support for New Identification Properties

In this section, you implement the methods that support the new
identification properties you defined for the AllLights test object class.

Analyze the AllLights custom class to see the properties it supports.
Determine which properties you can access from the new support class to
provide the relevant identification properties to QuickTest.

Chapter 9 • Learning to Support a Complex Control

259

Notice the public methods GetcounterOn, which allows you to check how
many lights are on at a given time, and isSet, which tells you the status of a
particular light.

 1 Implement the oncount_attr method.

In the oncount_attr method, replace the code return null; with return
String.valueOf(((AllLights)obj).GetcounterOn());

This implementation retrieves the counter from the AllLights custom class
and returns it to QuickTest.

 2 Implement the onlist_attr method.

In the onlist_attr method, delete the code return null; and implement the
method as follows to scan all of the lights and create a list of all the lights
that are on:

public String onlist_attr (Object obj) {
AllLights lights = (AllLights) obj;
StringBuffer buffer = new StringBuffer();
for (int i=0; i<5; i++)

for (int j=0;j<5;j++)
if (lights.isSet(j,i)) {

buffer.append (" ");
buffer.append (i*5+j+1);
}

return buffer.toString();
}

 3 Implement the gameover_attr method.

In the gameover_attr method, delete the code return null; and implement
the method as follows to return Yes or No depending on whether or not all
of the lights are on:

public String gameover_attr(Object obj) {
if (((AllLights) obj).GetcounterOn() == 25)

return "Yes";
return "No";

}

Choose File > Save or click the Save button to save the AllLightsCS.java file.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

260

Implementing Support for New Test Object Methods

In this section, you implement the methods that support the new test object
methods you defined for the AllLights test object class.

Analyze the AllLights custom class methods to determine what actions the
class performs when a user clicks the Restart button or a light in the grid.
You want to simulate these actions when QuickTest runs the test object
methods.

 1 Implement the Restart_replayMethod method.

When a user clicks within the borders of the RESTART button, the AllLights
custom class calls init and update(lights.getGraphics()) to initialize and
redraw the application. The Restart_replayMethod method needs to
simulate this behavior by calling the same methods.

To do this, delete the code: return Retval.NOT_IMPLEMENTED; and
implement the method as follows:

public Retval Restart_replayMethod (Object obj){
AllLights lights = (AllLights) obj;
lights.init();
lights.update(lights.getGraphics());
return Retval.OK;

}

 2 Implement the ClickLight_replayMethod method.

The AllLights custom class performs the algorithm of turning lights on or off
in response to a click, when it receives a mouseUp event. Therefore, when
QuickTest runs the ClickLight_replayMethod, and you want to simulate a
click on a specific light, you can simply send the AllLights object a mouseUp
event with the appropriate coordinates.

Chapter 9 • Learning to Support a Complex Control

261

In the method ClickLight_replayMethod, delete the code
return Retval.NOT_IMPLEMENTED; and implement the method as follows:

public Retval ClickLight_replayMethod(Object obj, String Row, String Column) {
AllLights lights = (AllLights) obj;
int col_num = Integer.valueOf(Column).intValue();
int row_num = Integer.valueOf(Row).intValue();
/* Row and column are 40 pixels wide*/
Event event = new Event (lights, System.currentTimeMillis(),

Event.MOUSE_UP, col_num *40, row_num *40, 0, 0);
lights.mouseUp(event, col_num *40, row_num *40);
return Retval.OK;

}

Note: To support this code, import java.awt.Event in AllLightsCS.java.

Choose File > Save or click the Save button to save the AllLightsCS.java file.

Implementing Support for Recording

Because you planned to support recording on the AllLights control, you
suppressed low-level recording on this object, and registered to listen for
mouse events on this control.

The only mouse event that you want to trigger recording on the AllLights
control is a mouse click. Therefore, in this section, you implement only the
mouseClicked (MouseEvent arg0) event handler method and leave the
other mouse event handler methods empty.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

262

Implement the mouseClicked method as follows and save the
AllLightsCS.java file:

public void mouseClicked(MouseEvent arg0) {
AllLights lights = (AllLights) arg0.getSource();
int x = arg0.getX();
int y = arg0.getY();

try{
if (!isInRecord())

return;
/* If click is within the Restart button borders*/
if ((x > 210) && (x < 270) && (y > 165) && (y < 185)) {

MicAPI.logLine(DEBUG_ALLLIGHTSCS, "Record Restart operation");
MicAPI.record(lights, "Restart");

}

/* If click is within the borders of the grid - record a ClickLights*/
if ((x >= 0) && (x < 200) && (y >= 0) && (y < 200)) {

MicAPI.logLine(DEBUG_ALLLIGHTSCS, "Record ClickLight
operation");

MicAPI.record(lights, "ClickLight", new String[]
{String.valueOf(x/40), String.valueOf(y/40)});

 }
} catch (Throwable th) { MicAPI.logStackTrace(th);}

}

Note: To support this code, import com.mercury.ftjadin.custom.MicAPI in
AllLightsCS.java.

In this event handler method, you call MicAPI.record in different ways. To
record the Restart operation you provide only the object and the operation
name. To record the ClickLight operation you provide additional arguments
as well, specifying the coordinates of the clicked light.

The isInRecord method is called avoid carrying out any unnecessary
operations if QuickTest is not currently recording.

Chapter 9 • Learning to Support a Complex Control

263

The MicAPI.logLine method prints the message to the log file only when
the DEBUG_ALLLIGHTSCS flag is on. For more information, see “Logging
and Debugging the Custom Support Class” on page 71.

The try ... catch block prevents unnecessary activity if this code is reached
when the Java application is running while QuickTest is idle. The
MicAPI.logStackTrace method prints a stack trace to the same log file as
other Java Add-in Extensibility log messages, enabling you to determine
when this mouseClicked method was called inadvertently.

Testing the Completed Support

In this section you test the Javaboutique toolkit support you have just
completed. You do this by analyzing its effect on how QuickTest views the
AllLights control.

You do not have to deploy the toolkit support to QuickTest again in order to
test it because you changed only Java class files and not configuration files.
You can use an open QuickTest session, but you must close the AllLights
application, and run it again, for the changes you made in the custom
support to take effect.

 1 Test the new custom support in the Object Spy.

Close the AllLights application and run it again.

Open QuickTest and load the Java Add-in.

Use the Object Spy to view the AllLights properties and methods. The
AllLights test object is now named Lights.

Close the Object Spy.

 2 Create and run a QuickTest test on the AllLights control.

Add the AllLights control to the test object repository.

Create a test that clicks in two locations in the grid, checks that the game is
not over, and clicks Restart.

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

264

The test you create looks something like this:

Note: The ClickLight_replayMethod, does not check the argument values to
make sure they are valid. If you provide arguments that are out of bounds
(column or row higher than 4) a run-time error will occur.

Run the test and see that it operates correctly (if you defined the checkpoint
to check only that the game is not over—it succeeds).

 3 Record operations on the AllLights control.

In QuickTest, create a new test and choose Automation > Record and Run
Settings to open the Record and Run Settings dialog box. In the Java tab,
select Record and run test on any open Java application. If the Web Add-in
is also loaded, click the Web tab and select Record and run test on any open
browser. Click OK.

Click the Record button or choose Automation > Record. Click on different
locations in the AllLights application: the grid, the RESTART button, and
one of the counters.

When you click in the grid, a ClickLight step is added to the test, with the
relevant arguments. When you click the RESTART button, a Restart step is
added. When you click anywhere else, no operation is recorded (because
you disabled low-level mouse event recording). The recorded test looks
something like this:

Chapter 9 • Learning to Support a Complex Control

265

Click the Stop button or choose Automation > Stop to end the recording
session.

The AllLights custom control is now fully supported, according to the
specifications you decided on when planning your custom support.

Lesson Summary

In this lesson you created a new test object class, AllLights, defining its
identification properties and test object methods. You created support for
the AllLights control, allowing QuickTest to recognize it as an AllLights test
object.

➤ You learned to understand the test object configuration file.

➤ You learned to support new identification properties and test object
methods in the custom support class.

➤ You made use of the is_window utility method, and called the
MicAPI.record method with additional parameters.

Where Do You Go from Here?

Now that you have performed the lessons in this tutorial, you are ready to
apply the Java Add-in Extensibility concepts and the skills you learned to
creating your own custom toolkit support.

For more information on the structure and content of a custom toolkit
support set, see “Implementing Custom Toolkit Support” on page 27.

For more information on the structure and content of the test object
configuration file, refer to the QuickTest Test Object Schema Help (Help >
QuickTest Professional Help > QuickTest Advanced References > QuickTest
Test Object Schema).

Part II • Tutorial: Learning to Create Java Custom Toolkit Support

266

267

A

Add Event Handler command 145
Add Identification Property command 141
Add Test Object Method command 143
Additional Methods Required for Test Object

Class 123
addSimpleListener 56
attached text. See static-text
attached_text_attr 52

B

basic user-interface component 30
blockWrappedObjectRecord 59
blockWrappedObjectRecord() 64

C

checklist 78, 80
checkpoints 38, 128
checkWrappedObject 59, 62
class_attr 52
conventions. See typographical conventions
custom class 30

mapping to support class 4, 36, 104
mapping to test object class 49
planning support for 77

Custom Class Selection Screen 99
Custom Control Recording Support Screen

121
Custom Control Recording Support Screen

Options 124
Custom Control Support Class Summary

Screen 130
Custom Static-Text Class Selection Screen

134

Custom Static-Text Support Class Summary
Screen 135

custom support class 43
debug 71
log messages 71
mapping custom class to 4, 36, 104
methods 65
planning 77
planning checklist 78, 80

custom support class, inheritance 45, 99
Custom Support Test Object Identification

Properties Screen 108
Custom Support Test Object Methods Screen

112
custom support. See support
custom toolkit 30
Custom Toolkit Details Screen 89
custom toolkit support 30

activating 66
debug 71
deploying 66
log messages 71
planning 76
running 70
running on SWT 70
See also support

custom toolkit support set 32

Index

Index

268

D

Delete Custom Support command 140
deploy toolkit support 66

during debug 68
final 69
manual 69
modify 70

Deploy Toolkit Support command 137
documentation updates xiii

E

Eclipse
Extensibility plug-in 14, 83
Extensibility plug-in, when to use 28
Extensibility wizard 14, 83
QuickTest commands 137

event handler methods, event recording
support 125

event handlers 56
event recording, support for 56, 121, 125
Extensibility 3

example 8
implementing 32
project properties 96
when to use 6
workflow 73
See also support

Extensibility SDK 14
install 15
pre-installation requirements 14
uninstall 22

Extensibility wizard. See Eclipse Extensibility
wizard

F

focusGained 125
focusLost 125

I

identification properties, support for 50, 108
isWindow 59

J

Java Add-in Extensibility. See Extensibility

K

keyPressed 125
keyReleased 125
keyTyped 125
Knowledge Base xii

L

label_attr 52
list_content 51
listeners 56, 125
low-level recording, override 56, 125

M

Mercury Best Practices xii
Mercury Customer Support Web site xii
Mercury Home Page xii
MicAPI 66

N

native toolkit 30
New QuickTest Custom Static-Text Support

Class wizard 132
New QuickTest Custom Support Class

Wizard 97
New QuickTest Java Add-in Extensibility

Project Wizard 85
New Test Object Class Details Screen 128

O

online documentation x
online resources xii

P

planning checklist 78, 80
Project Summary Screen 94
properties. See identification properties

Index

269

Q

QuickTest Java Add-in Extensibility Project
Screen 87

QuickTest Java Add-in Extensibility. See
Extensibility

R

Readme x
recording, support for 56, 121, 125
registerWrapperInspector 59, 62
Reload Support Configuration command

138
Retval 53, 116

S

static-text control, support 132, 197
support

event recording 56, 121
identification properties 50, 108
implementing 32
planning checklist 78, 80
static-text controls 132, 197
test object methods 53, 112
top-level objects 59, 99
wrapper controls 59, 124
See also custom toolkit support

support class. See custom support class
SWT, running with support 70

T

tag_attr 52
test object class

definition 38
mapping custom class to 49
merging definitions in QuickTest 41

Test Object Class Selection Screen 104
test object configuration file 38

merging in QuickTest 41
Test Object Method dialog box 116
test object methods

arguments 120
return value 116
support for 53, 112

to_class_attr 52
toolkit configuration files 36
toolkit support class 35
toolkit support. See custom toolkit support
top-level objects, support for 59, 99
tree_content 51
tutorial

advanced 225
basic 155
complex control 225
overview 149
prerequisites 150
simple control 155

typographical conventions xiv

U

updates, documentation xiii

V

value_attr 52

W

workflow 73
wrapper controls, support for 59, 124, 126
wrapperRecordMessage 59, 63

Index

270

	Mercury QuickTest Professional Java™ Add-in Extensibility Developer’s Guide
	Table of Contents
	Welcome to This Guide
	How This Guide Is Organized
	Who Should Read This Guide
	QuickTest Professional Online Documentation
	Additional Online Resources
	Documentation Updates
	Typographical Conventions

	Working with Java Add-in Extensibility
	Introducing QuickTest Professional Java Add-in Extensibility
	About QuickTest Professional Java Add-in Extensibility
	Identifying the Building Blocks of Java Add-in Extensibility
	Test Object Classes
	Test Object Names
	Test Object Identification Properties
	Test Object Methods
	Recording Events

	Deciding When to Use Java Add-in Extensibility
	Analyzing the Default QuickTest Support and Extensibility Options for a Sample Custom Control

	Installing the QuickTest Professional Java Add-in Extensibility Software Development Kit
	About Installing the QuickTest Professional Java Add-in Extensibility SDK
	Pre-Installation Requirements
	Installing the QuickTest Professional Java Add-in Extensibility SDK
	Uninstalling the QuickTest Professional Java Add-in Extensibility SDK

	Implementing Custom Toolkit Support
	About Custom Toolkit Support
	Introducing Java Add-in Extensibility Terminology
	Preparing to Create Support for a Custom Toolkit
	Creating a Custom Toolkit Support Set
	Understanding the Toolkit Support Class
	Understanding the Toolkit Configuration File
	Understanding the Test Object Configuration File
	Understanding How QuickTest Merges Test Object Configuration Files

	Understanding Custom Support Classes
	Determining the Inheritance Hierarchy for a Support Class
	Mapping a Custom Control to a Test Object Class
	Supporting Identification Properties
	Supporting Test Object Methods
	Supporting the Record Option
	Supporting Top-Level Objects
	Supporting Wrapper Controls
	Support Class Summary
	Using Methods from MicAPI

	Deploying and Running the Custom Toolkit Support
	Deploying Custom Support During the Development Stage
	Deploying Custom Support After the Design is Completed
	Modifying Deployed Support
	Running an Application with Supported Custom Controls

	Logging and Debugging the Custom Support Class
	Debugging Your Custom Toolkit Support

	Workflow for Implementing Java Add-in Extensibility

	Planning Custom Toolkit Support
	About Planning Custom Toolkit Support
	Determining the Custom Toolkit Related Information
	Determining the Support Information for Each Custom Class
	Understanding the Custom Class Support Planning Checklist
	Custom Class Support Planning Checklist

	Where Do You Go from Here?

	Using the QuickTest Java Add-in Extensibility Eclipse Plug-In
	About the QuickTest Java Add-in Extensibility Eclipse Plug-In
	New QuickTest Java Add-in Extensibility Project Wizard
	QuickTest Java Add-in Extensibility Project Screen
	Custom Toolkit Details Screen
	Project Summary Screen

	Modifying QuickTest Java Add-in Extensibility Project Properties
	New QuickTest Custom Support Class Wizard
	Custom Class Selection Screen
	Test Object Class Selection Screen
	Custom Support Test Object Identification Properties Screen
	Custom Support Test Object Methods Screen
	Understanding the Test Object Method Dialog Box
	Custom Control Recording Support Screen
	New Test Object Class Details Screen
	Custom Control Support Class Summary Screen

	New QuickTest Custom Static-Text Support Class Wizard
	Custom Static-Text Class Selection Screen
	Custom Static-Text Support Class Summary Screen

	Working with QuickTest Commands in Eclipse
	Deploy Toolkit Support
	Reload Support Configuration
	Delete Custom Support
	Add Identification Property
	Add Test Object Method
	Add Event Handler

	Tutorial: Learning to Create Java Custom Toolkit Support
	Using the QuickTest Java Add-in Extensibility Tutorial
	Understanding the Tutorial Lesson Structure
	Checking Tutorial Prerequisites
	Learning to Support a Simple Control
	Learning to Support a Static-Text Control
	Learning to Support a Complex Control

	Learning to Support a Simple Control
	Preparing for This Lesson
	Modifying the Sample Application to Run From Another Location

	Planning Support for the ImageButton Control
	Custom Class Support Planning Checklist

	Creating a New QuickTest Java Add-in Extensibility Project
	Understanding Your New Custom Toolkit Support Set

	Creating a New QuickTest Custom Support Class
	Understanding the New Custom Support
	Understanding the Basics of the ImageButtonCS Class
	Understanding Identification Property and Test Object Method Support
	Understanding Event Recording Support

	Deploying and Testing the New Custom Toolkit Support
	Changing the Name of the Test Object
	Implementing Support for a Test Object Method
	Implementing Event Handler Methods to Support Recording
	Lesson Summary
	Where Do You Go from Here?

	Learning to Support a Custom Static-Text Control
	Preparing for This Lesson
	Planning Support for the ImageLabel Control
	Custom Class Support Planning Checklist

	Creating the QuickTest Custom Static-Text Support Class
	Understanding the New Custom Static-Text Support Class
	Deploying and Testing the New Custom Static-Text Support Class
	Completing the Support for the Static-Text Control
	Optimizing the ImageControls Toolkit Support
	Creating Support for the ImageControl Custom Class
	Modifying the ImageControls Toolkit Support Hierarchy
	Deploying and Testing the New ImageControls Toolkit Support

	Lesson Summary
	Where Do You Go from Here?

	Learning to Support a Complex Control
	Preparing for This Lesson
	Planning Support for the AllLights Control
	Custom Class Support Planning Checklist

	Creating the QuickTest Java Add-in Extensibility Project
	Creating the New QuickTest Custom Support Class
	Understanding the New Custom Support Files
	Understanding the AllLightsCS Custom Support Class
	Understanding the Javaboutique Test Object Configuration File

	Deploying and Testing the New Custom Toolkit Support
	Implementing Support for the AllLights Control
	Implementing Support for New Identification Properties
	Implementing Support for New Test Object Methods
	Implementing Support for Recording
	Testing the Completed Support

	Lesson Summary
	Where Do You Go from Here?

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

