
HP QuickTest Professional Web Add-in Extensibility

Software Version: 9.5

Developer’s Guide

Manufacturing Part Number: T6513-90037
Document Release Date: January 2008

Software Release Date: January 2008

2

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Third-Party Web Sites

HP provides links to external third-party Web sites to help you find supplemental
information. Site content and availability may change without notice. HP makes no
representations or warranties whatsoever as to site content or availability.

Copyright Notices

© 1992 - 2008 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe® and Acrobat® are trademarks of Adobe Systems Incorporated.

Intel®, Pentium®, and Intel® Xeon™ are trademarks of Intel Corporation in the U.S. and
other countries.

Java™ is a US trademark of Sun Microsystems, Inc.

Microsoft®, Windows®, Windows NT®, and Windows® XP are U.S registered trademarks of
Microsoft Corporation.

Oracle® is a registered US trademark of Oracle Corporation, Redwood City, California.

Unix® is a registered trademark of The Open Group.

SlickEdit® is a registered trademark of SlickEdit Inc.

3

Documentation Updates

This manual’s title page contains the following identifying information:

• Software version number, which indicates the software version

• Document release date, which changes each time the document is updated

• Software release date, which indicates the release date of this version of the software

To check for recent updates, or to verify that you are using the most recent edition of a
document, go to:

http://ovweb.external.hp.com/lpe/doc_serv/

http://ovweb.external.hp.com/lpe/doc_serv/

4

Support

You can visit the HP Software Support Web site at: www.hp.com/go/hpsoftwaresupport

HP Software online support provides an efficient way to access interactive technical support
tools. As a valued support customer, you can benefit by using the support site to:

• Search for knowledge documents of interest

• Submit and track support cases and enhancement requests

• Download software patches

• Manage support contracts

• Look up HP support contacts

• Review information about available services

• Enter into discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many
also require a support contract. To find more information about access levels, go to:
http://h20230.www2.hp.com/new_access_levels.jsp

To register for an HP Passport ID, go to:
http://h20229.www2.hp.com/passport-registration.html

http://www.hp.com/go/hpsoftwaresupport
http://h20230.www2.hp.com/new_access_levels.jsp
http://h20229.www2.hp.com/passport-registration.html

5

Table of Contents

Welcome to This Guide ...7
How This Guide Is Organized ...8
Who Should Read This Guide ...10
QuickTest Professional Online Documentation10
Additional Online Resources...12
Typographical Conventions..14

Chapter 1: Introducing QuickTest Professional Web Add-in
Extensibility...17

About QuickTest Professional Web Add-in Extensibility....................17
Identifying the Building Blocks of Web Add-in Extensibility18
Deciding When to Use Web Add-in Extensibility20
Understanding How to Implement Web Add-in Extensibility...........28

Chapter 2: Installing the QuickTest Professional Web Add-in
Extensibility SDK ...31

About Installing the QuickTest Professional Web Add-in
Extensibility SDK ..31

Installing the QuickTest Professional Web Add-in Extensibility SDK 33
Repairing the QuickTest Professional Web Add-in Extensibility SDK

Installation ..40
Uninstalling the QuickTest Professional Web Add-in

Extensibility SDK ..45

Chapter 3: Planning QuickTest Support for Your Toolkit51
About Planning QuickTest Support for Your Toolkit52
Preparing to Create Support for a Custom Toolkit52
Determining the Toolkit Related Information....................................53
Determining the Support Information for Each Custom

Control Type ...54
Where Do You Go from Here? ..58

Table of Contents

6

Chapter 4: Developing Support for Your Toolkit59
About Custom Toolkit Support ...60
Creating a Custom Toolkit Support Set ..61
Introducing the Custom Toolkit’s Object Model to QuickTest63
Understanding the Toolkit Configuration File71
Designing JavaScript Functions for Your Toolkit Support Set73
Teaching QuickTest to Identify the Test Object Class to Use for a

Custom Web Control..75
Testing the Toolkit Support Set During Development81
Logging and Debugging the Custom Support84
Implementing Support for Test Object Methods................................86
Implementing Support for Identification Properties92
Implementing a Filter for Learning Child Controls95
Implementing Support for Recording ...97

Chapter 5: Deploying the Toolkit Support Set.................................101
About Deploying the Custom Toolkit Support.................................101
Deploying the Custom Toolkit Support..102
Removing Deployed Support ..103

Chapter 6: Learning to Create QuickTest Support for a Simple
Custom Web Control ..107

Preparing for This Lesson ..108
Planning Support for the Web Add-in Extensibility Book Sample

 Toolkit ..109
Developing the Toolkit Support Set ..118
Lesson Summary..145

Chapter 7: Learning to Create QuickTest Support for a
Complex Custom Web Control...147

Preparing for This Lesson ..148
Planning Support for the Web Add-in Extensibility Used Books

Control..149
Developing the Toolkit Support Set ..157
Lesson Summary..174

Index..175

7

Welcome to This Guide

Welcome to QuickTest Professional Web Add-in Extensibility.

QuickTest Professional Web Add-in Extensibility is a Software Development
Kit (SDK) that enables you to support testing applications that use third-
party and custom Web controls that are not supported out-of-the-box by the
QuickTest Professional Web Add-in.

The QuickTest Professional Web Add-in Extensibility SDK provides the
following:

➤ An API that enables you to extend the QuickTest Professional Web Add-in to
support custom Web controls

➤ The online Web Add-in Extensibility Help, which includes the following:

➤ A Developer’s Guide

➤ An API Reference

➤ A Toolkit Configuration Schema Help

➤ The QuickTest Test Object Schema Help

➤ A printer-friendly (PDF) version of the Developer’s Guide

➤ Sample Web Add-in Extensibility toolkit support sets that extend QuickTest
support for the following environments:

➤ The ASP .NET AJAX control toolkit

➤ A sample Web toolkit that includes controls named Book and
UsedBooksTable

Welcome to This Guide

8

This chapter includes:

 ➤ How This Guide Is Organized on page 8

 ➤ Who Should Read This Guide on page 10

 ➤ QuickTest Professional Online Documentation on page 10

 ➤ Additional Online Resources on page 12

 ➤ Typographical Conventions on page 14

How This Guide Is Organized

This guide explains how to set up the QuickTest Professional Web Add-in
Extensibility SDK and use it to extend QuickTest support for third-party and
custom Web controls.

This guide assumes you are familiar with QuickTest functionality, and
should be used together with the QuickTest Web Add-in Extensibility Toolkit
Configuration Schema Help, QuickTest Professional Web Add-in Extensibility API
Reference, and the QuickTest Test Object Schema Help that are provided in
online Help format with the SDK installation (Start > Programs > QuickTest
Professional > Extensibility > Documentation > Web Add-in Extensibility
Help).

These documents should also be used in conjunction with the HP QuickTest
Professional User’s Guide, the QuickTest Professional Web Add-in Guide, and the
HP QuickTest Professional Object Model Reference (available with the QuickTest
Professional installation).

This guide contains:

 Part I Working with Web Add-in Extensibility

Explains how to use QuickTest Professional Web Add-in Extensibility to
extend QuickTest support for custom Web controls. This part includes:

➤ Introducing QuickTest Professional Web Add-in Extensibility

➤ Installing the QuickTest Professional Web Add-in Extensibility SDK

➤ Planning QuickTest Support for Your Toolkit

Welcome to This Guide

9

➤ Developing Support for Your Toolkit

➤ Deploying the Toolkit Support Set

 Part II Tutorial: Learning to Create Web Custom Toolkit Support

Guides you step-by-step through the process of creating custom support for
some sample controls. This part includes:

➤ Learning to Create QuickTest Support for a Simple Custom Web Control

➤ Learning to Create QuickTest Support for a Complex Custom Web Control

 Part III API Reference

Explains the methods exposed by the Web Add-in Extensibility
IControlImplUtils utility object interface, and describes the syntax of these
methods.

 Part IV Toolkit Configuration Schema Help

Explains the elements and attributes that you define in a toolkit
configuration file.

 Part V QuickTest Test Object Schema Help

Explains the elements and attributes that you use in a test object
configuration file to define the test object model for supporting your toolkit.

Note: The information, examples, and screen captures in this guide focus
specifically on working with QuickTest tests. However, much of the
information applies equally to components.

Business components and scripted components are part of HP Business
Process Testing, which utilizes a keyword-driven methodology for testing
applications. For more information, see the HP QuickTest Professional User’s
Guide and the HP QuickTest Professional for Business Process Testing User’s
Guide.

WebExtAPIRef.chm::/ToolkitInterfaces_P.html
WebToolkitConfigSchema.chm::/Toolkit_xsd.html
TestObjectSchema.chm::/ClassesDefintions_xsd.html

Welcome to This Guide

10

Who Should Read This Guide

This guide is intended for programmers, QA engineers, systems analysts,
system designers, and technical managers who want to extend QuickTest
support for Web custom controls.

To use this guide, you should be familiar with:

➤ Major QuickTest features and functionality

➤ QuickTest Professional Object Model

➤ QuickTest Professional Web Add-in

➤ XML (basic knowledge)

➤ Web Programming (HTML and JavaScript)

QuickTest Professional Online Documentation

QuickTest Professional includes the following online documentation:

Readme provides the latest news and information about QuickTest. Choose
Start > Programs > QuickTest Professional > Readme.

QuickTest Professional Installation Guide explains how to install and set up
QuickTest. Choose Help > Printer-Friendly Documentation > HP QuickTest
Professional Installation Guide.

QuickTest Professional Tutorial teaches you basic QuickTest skills and shows
you how to design tests for your applications. Choose Help > HP QuickTest
Professional Tutorial.

Product Feature Movies provide an overview and step-by-step instructions
describing how to use selected QuickTest features. Choose Help > Product
Feature Movies.

Printer-Friendly Documentation displays the complete documentation set in
Adobe portable document format (PDF). Online books can be viewed and
printed using Adobe Reader, which can be downloaded from the Adobe Web
site (http://www.adobe.com). Choose Help > Printer-Friendly Documentation.

http://www.adobe.com

Welcome to This Guide

11

QuickTest Professional Help includes:

➤ What’s New in QuickTest Professional describes the newest features,
enhancements, and supported environments in the latest version of
QuickTest.

➤ QuickTest User's Guide describes how to use QuickTest to test your
application.

➤ QuickTest for Business Process Testing User's Guide provides step-by-step
instructions for using QuickTest to create and manage assets for use with
Business Process Testing.

➤ QuickTest Professional Add-ins Guide describes how to work with
supported environments using QuickTest add-ins, and provides
environment-specific information for each add-in.

➤ QuickTest Object Model Reference describes QuickTest test objects, lists
the methods and properties associated with each object, and provides
syntax information and examples for each method and property.

➤ QuickTest Advanced References contains documentation for the
following QuickTest COM and XML references:

➤ QuickTest Automation provides syntax, descriptive information, and
examples for the automation objects, methods, and properties. It also
contains a detailed overview to help you get started writing QuickTest
automation scripts. The automation object model assists you in
automating test management, by providing objects, methods and
properties that enable you to control virtually every QuickTest feature
and capability.

➤ QuickTest Test Results Schema documents the test results XML
schema, which provides the information you need to customize your
test results.

➤ QuickTest Test Object Schema documents the test object XML schema
schema, which provides the information you need to extend test
object support in different environments.

➤ QuickTest Object Repository Schema documents the object repository
XML schema, which provides the information you need to edit an
object repository file that was exported to XML.

Welcome to This Guide

12

➤ QuickTest Object Repository Automation documents the Object
Repository automation object model, which provides the information
you need to manipulate QuickTest object repositories and their
contents from outside of QuickTest.

➤ VBScript Reference contains Microsoft VBScript documentation,
including VBScript, Script Runtime, and Windows Script Host.

To access the QuickTest Professional Help, choose Help > QuickTest
Professional Help. You can also access the QuickTest Professional Help by
clicking in selected QuickTest windows and dialog boxes and pressing F1.
Additionally, you can view a description, syntax, and examples for a
QuickTest test object, method, or property by placing the cursor on it and
pressing F1.

Additional Online Resources

Mercury Tours sample Web site is the basis for many examples in this guide.
The URL for this Web site is newtours.demoaut.com.

Knowledge Base opens directly to the Knowledge Base landing page on the
Mercury Customer Support Web site. Choose Help > Knowledge Base. The
URL for this Web site is support.mercury.com/cgi-bin/portal/CSO/kbBrowse.jsp.

Customer Support Web site accesses the HP Software Support Web site. This
site enables you to browse the Support Knowledge Base and add your own
articles. You can also post to and search user discussion forums, submit
support requests, download patches and updated documentation, and more.
Choose Help > Customer Support Web site. The URL for this Web site is
www.hp.com/go/hpsoftwaresupport.

Most of the support areas require that you register as an HP Passport user
and sign in. Many also require a support contract.

To find more information about access levels, go to:
http://h20230.www2.hp.com/new_access_levels.jsp

To register for an HP Passport user ID, go to:
http://h20229.www2.hp.com/passport-registration.html

http://newtours.demoaut.com
http://support.mercury.com/cgi-bin/portal/CSO/kbBrowse.jsp
http://www.hp.com/go/hpsoftwaresupport
http://h20230.www2.hp.com/new_access_levels.jsp
http://h20229.www2.hp.com/passport-registration.html

Welcome to This Guide

13

Send Feedback enables you to send online feedback about QuickTest
Professional to the product team. Choose Help > Send Feedback.

HP Software Web site accesses the HP Software Web site. This site provides
you with the most up-to-date information on HP Software products. This
includes new software releases, seminars and trade shows, customer support,
and more. Choose Help > HP Software Web site. The URL for this Web site
is www.hp.com/go/software.

http://www.hp.com/go/software

Welcome to This Guide

14

Typographical Conventions

This guide uses the following typographical conventions:

UI Elements and
Function Names

This style indicates the names of interface elements on
which you perform actions, file names or paths, and
other items that require emphasis. For example, “Click
the Save button.” It also indicates method or function
names. For example, "The wait_window statement has
the following parameters:"

Arguments This style indicates method, property, or function
arguments and book titles. For example, “Refer to the
HP User’s Guide.”

<Replace Value> Angle brackets enclose a part of a file path or URL
address that should be replaced with an actual value.
For example, <MyProduct installation folder>\bin.

Example This style is used for examples and text that is to be
typed literally. For example, “Type Hello in the edit
box.”

CTRL+C This style indicates keyboard keys. For example, “Press
ENTER.”

[] Square brackets enclose optional arguments.

{ } Curly brackets indicate that one of the enclosed values
must be assigned to the current argument.

... In a line of syntax, an ellipsis indicates that more items
of the same format may be included. In a
programming example, an ellipsis is used to indicate
lines of a program that were intentionally omitted.

| A vertical bar indicates that one of the options
separated by the bar should be selected.

Part I

Working with Web Add-in Extensibility

16

17

1
Introducing QuickTest Professional Web
Add-in Extensibility

QuickTest Professional Web Add-in Extensibility enables you to provide
high-level support for third-party and custom Web controls that are not
supported out-of-the-box by the QuickTest Professional Web Add-in.

This chapter includes:

 ➤ About QuickTest Professional Web Add-in Extensibility on page 17

 ➤ Identifying the Building Blocks of Web Add-in Extensibility on page 18

 ➤ Deciding When to Use Web Add-in Extensibility on page 20

 ➤ Understanding How to Implement Web Add-in Extensibility on page 28

About QuickTest Professional Web Add-in Extensibility

The QuickTest Professional Web Add-in provides built-in support for a
number of commonly used Web controls. You use QuickTest Professional
Web Add-in Extensibility to extend that support and enable QuickTest to
recognize additional Web controls.

When QuickTest learns an object in an application, it recognizes the object
as belonging to a specific test object class. This determines the identification
properties and test object methods of the test object that represents the
application’s object in QuickTest.

When QuickTest learns the controls on a Web page without Extensibility, it
ignores certain types of elements and does not create test objects to
represent the controls they define.

Chapter 1 • Introducing QuickTest Professional Web Add-in Extensibility

18

For other Web controls that are not supported out-of-the-box by the Web
Add-in, QuickTest creates a generic WebElement test object. This type of test
object might not have certain characteristics that are specific to the Web
control you are testing. Therefore, when you try to create test steps with this
test object, the available identification properties and test object methods
might not be sufficient.

For example, consider a custom Web control that is a special type of table
that QuickTest recognizes as a plain WebElement. WebElement test objects
do not support GetCellData operations. To create a test step that retrieves the
data from a cell in the table, you would need to create test objects to
represent each cell in the table, and create a complex test that accesses the
relevant cell’s test object to retrieve the data.

By creating support for a Web control using Web Add-in Extensibility, you
can direct QuickTest to recognize the control as belonging to a specific test
object class, and you can specify the behavior of the test object. You can also
extend the list of available test object classes that QuickTest is able to
recognize. This enables you to create tests that fully support the specific
behavior of your custom Web controls.

Identifying the Building Blocks of Web Add-in Extensibility

The sections below describe the main elements that comprise QuickTest
object support. These elements are the building blocks of Web Add-in
Extensibility. By extending the existing support of one or more of these
elements, you can develop the support you need to create meaningful and
maintainable tests.

Test Object Classes
In QuickTest, every object in an application is represented by a test object of
a specific test object class. The test object class determines the list of
identification properties and test object methods available in QuickTest for
this test object. The icon used to represent the test object in QuickTest, for
example in the Keyword View and Object Repository, is also determined by
the test object class.

Chapter 1 • Introducing QuickTest Professional Web Add-in Extensibility

19

Test Object Names
When QuickTest learns an object, it creates a unique name for each test
object on the page. A descriptive test object name enables you distinguish
between test objects of the same class and makes it easier to identify them in
your object repository and in tests.

By default, a test object is given the name of its test object class (appended
with an index if there is more than one test object of the same class on the
page). In many cases, this is not the ideal name for the custom control.

The test object name needs to be meaningful to the QuickTest user,
preferably using terminology that is relevant to your toolkit. QuickTest
displays this name in the Keyword View, in the Expert View, and in the
object repository.

Test Object Identification Properties
The test object class used to represent the Web control determines the list of
identification properties available for the test object. It also determines
which of these identification properties are used to uniquely identify the
control, which identification properties are available for checkpoints (in the
Checkpoint Properties dialog box), and which are selected by default for
checkpoints. However, the actual values of the identification properties are
derived from the definition of the Web control. Therefore, several Web
controls that are represented by test objects from the same test object class
might have different definitions for the same identification property.

Test Object Methods
The test object class used to represent the Web control determines the list of
test object methods for a test object. However, the actual behavior of the test
object method depends on the definition of the specific Web control. This
means that the same test object method might operate differently for
different Web controls that are represented by test objects from the same
test object class.

Chapter 1 • Introducing QuickTest Professional Web Add-in Extensibility

20

Recording Events
One way to create QuickTest tests is by recording user operations on the
application. When you start a recording session, QuickTest listens for events
that occur on objects in the application and registers corresponding test
steps. The test object class used to represent a Web control determines which
events QuickTest can listen for on the Web control and what test step to
record for each event that occurs.

Deciding When to Use Web Add-in Extensibility

The QuickTest Professional Web Add-in provides a certain level of support
for most Web controls, but ignores controls defined as DIV or SPAN
elements. Before you extend support for a custom Web control, analyze it
from a QuickTest perspective to view the extent of this support and to
decide which elements of support you need to modify.

When you analyze the custom Web control, use the Object Spy, Keyword
View, Expert View, and the Record option. Make sure you examine each of
the elements described in “Identifying the Building Blocks of Web Add-in
Extensibility”, above.

If you are not satisfied with the existing object identification or behavior,
your Web control is a candidate for Web Add-in Extensibility, as illustrated
in the following situations:

➤ QuickTest might recognize the control using a test object class that does not
fit your needs. You can use Web Add-in Extensibility to instruct QuickTest to
identify the custom control as belonging to a new test object class that you
create.

➤ The test object class that QuickTest uses for the control might be
satisfactory, but you would like to customize the behavior of certain test
object methods or identification properties. You can use Web Add-in
Extensibility to create a new test object class that extends the one QuickTest
uses, override the implementation of these properties and methods with
your own custom implementation, and instruct QuickTest to use the new
test object class.

Chapter 1 • Introducing QuickTest Professional Web Add-in Extensibility

21

➤ You might find that the test object names QuickTest generates for all objects
of a certain control type are identical (except for a unique counter) or that
the name used for the test object does not clearly indicate the control it
represents. You can use Web Add-in Extensibility to create a new test object
class that extends the one QuickTest uses, modify how QuickTest names test
objects of your new class, and instruct QuickTest to use the new test object
class.

➤ QuickTest might identify individual sub-controls within your custom
control, but not properly identify your main control. For example, if your
main custom control is a digital clock with edit boxes containing the hour
and minute digits, you might want changes in the time to be recognized as
SetTime operations on the clock control and not as Set operations on the
edit boxes. You can use Web Add-in Extensibility to modify how events that
occur on child controls are treated.

➤ During a record session, when you perform operations or trigger events on
your control, QuickTest might not record a step at all, or it might record
steps that are not specific to the control’s behavior. Alternatively, QuickTest
might record many steps for an event that should be considered a single
operation, or it might record a step when no step should be recorded.

You can configure the events you want to record for each type of existing
Web object by modifying the Web event configuration. For more
information, see the section on configuring web event recording in the
HP QuickTest Professional Add-ins Guide.

If Web event configuration does not sufficiently enable you to customize
recording, for example, if you want to modify the steps that QuickTest
records when certain events occur, you can use Web Add-in Extensibility.

Chapter 1 • Introducing QuickTest Professional Web Add-in Extensibility

22

Analyzing the Default QuickTest Support and Extensibility
Options for a Sample Custom Control
The following example illustrates how you can use Web Add-in Extensibility
to improve the QuickTest support of a custom control.

The Book control shown below represents a book sold on the Internet. This
control is not specifically supported on QuickTest.

This control contains information including the title of the book, its
authors, the price for a new copy of the book, and the lowest price for which
a used copy can be purchased.

Clicking on the title of the book opens a page with more details about the
book. Clicking on an author name opens a page with a list of books by the
same author. Clicking on Used opens a Used Books page, listing all of the
available used copies of the book, and their prices.

Chapter 1 • Introducing QuickTest Professional Web Add-in Extensibility

23

The Book control is implemented as a Web table, as follows:

<table class="Book">
<tr>

<td class="BookImageCell" rowspan="4">

</td>
<td class="BookCell">

The History of QuickTest Professional

</td>
</tr>
<tr>

<td class="BookCell">
By: Jane Doe,

John Doe
</td>

</tr>
<tr>

<td class="BookCell">
</td>

</tr>
<tr>

<td class="BookCell">
New: 59.99$
Used: from 29.99$

</td>
</tr>

</table>

Chapter 1 • Introducing QuickTest Professional Web Add-in Extensibility

24

Therefore, if you point to this control using the Object Spy, QuickTest
recognizes it as a WebTable object named according to the title of the book.
The icon used for the test object is the standard WebTable class icon.

Chapter 1 • Introducing QuickTest Professional Web Add-in Extensibility

25

If you record on the Book control without implementing support for it, the
Keyword View looks like this:

In the Expert View, the recorded test looks like this:

Note that only simple Click steps are recorded, each attributed to a different
object defined within the book control. Click operations are recorded
independently on Web Link test objects with different names, or on the
Book image test object. These steps are not helpfully meaningful in the
context of this control.

Chapter 1 • Introducing QuickTest Professional Web Add-in Extensibility

26

If you use Web Add-in Extensibility to support the Book control, the result is
more meaningful. QuickTest recognizes the control as a WebExtBook test
object (still named according to the book title) and uses a different icon. The
test object properties include relevant information, such as authors and
min_used_price, which provide the names of all the book’s authors and the
lowest price for which a used copy can be purchased.

Chapter 1 • Introducing QuickTest Professional Web Add-in Extensibility

27

When you are ready to create a test on the control, the Select,
GoToAuthorPage, and GoToUsedBookPage methods are supported. These
methods can be recorded or you can select them manually in the Operation
column of the Keyword View. When recording a test, both clicking on the
book’s image and clicking its title result in a Select step being recorded.

You can also create a checkpoint to check the value of identification
properties, for example, authors (that provides a string comprised of all the
books authors).

In the Keyword View, a test created by recording the same user operations as
the test shown above will look like this:

In the Expert View, the test looks like this:

This test is more meaningful and relevant for the Book control’s
functionality.

Chapter 1 • Introducing QuickTest Professional Web Add-in Extensibility

28

Understanding How to Implement Web Add-in Extensibility

Using Web Add-in Extensibility, you can implement full support for all
QuickTest features for your controls. You can implement Web Add-in
Extensibility support for a set of controls (also referred to as a toolkit or
custom toolkit) by developing a toolkit support set.

Implementing Web Add-in Extensibility consists of the following stages:

 1 Planning the Toolkit Support Set

➤ Determine the set of Web controls that comprise your custom toolkit.

➤ Define the test object model by determining which test objects and
operations you want to support based on the controls and business
processes supported by your toolkit.

For more information, see “Planning QuickTest Support for Your Toolkit” on
page 51.

 2 Developing the Toolkit Support Set

A Web Add-in Extensibility toolkit support set is comprised of the following
files:

➤ One test object configuration file, which describes the test object model
for your toolkit to QuickTest.

➤ One toolkit configuration file, which describes which test object class
represents each control in the toolkit and how QuickTest interacts with
each control.

➤ One or more files containing JavaScript functions that QuickTest can call
to perform operations on the custom controls.

For more information, see “Developing Support for Your Toolkit” on
page 59.

Chapter 1 • Introducing QuickTest Professional Web Add-in Extensibility

29

 3 Deploying the Toolkit Support Set

To deploy your toolkit support set and enable QuickTest to support your
controls, you need to copy the files you created to specific locations within
the QuickTest installation folder.

After you deploy the toolkit support set, when QuickTest opens, it displays
your toolkit name as a child node under the Web Add-in node in the Add-in
Manager. If you select the check box for your toolkit, QuickTest supports the
controls in this toolkit using the toolkit support set that you developed.

For more information, see “Deploying the Toolkit Support Set” on page 101.

 4 Enhancing the Toolkit Support Set

After you have created and tested basic Web Add-in Extensibility support for
your controls you can enhance your toolkit support set by using some of the
more complex options to fine-tune your support.

When you develop a Web Add-in Extensibility toolkit support set, you can
start by creating a simple and basic support set and deploying it to
QuickTest. This enables QuickTest to recognize your controls correctly and
enables QuickTest user to create and run tests on the controls. You can then
enhance your support to enable more complex capabilities, such as filtering
the child objects learned with a control and more advanced handling of
events when recording a test.

You can learn how to develop a toolkit support set hands-on, by performing
the lessons in “Tutorial: Learning to Create Web Custom Toolkit Support”
on page 105.

For more information, see “Developing Support for Your Toolkit” on
page 59.

Chapter 1 • Introducing QuickTest Professional Web Add-in Extensibility

30

31

2
Installing the QuickTest Professional Web
Add-in Extensibility SDK

This chapter describes the installation process for the QuickTest Professional
Web Add-in Extensibility SDK and the content of the SDK.

This chapter includes:

 ➤ About Installing the QuickTest Professional Web Add-in Extensibility SDK
on page 31

 ➤ Installing the QuickTest Professional Web Add-in Extensibility SDK
on page 33

 ➤ Repairing the QuickTest Professional Web Add-in Extensibility SDK
Installation on page 40

 ➤ Uninstalling the QuickTest Professional Web Add-in Extensibility SDK
on page 45

About Installing the QuickTest Professional Web Add-in
Extensibility SDK

The Web Add-in Extensibility API is an intrinsic part of QuickTest and does
not require any additional installation. The QuickTest Professional Web
Add-in Extensibility SDK installation provides the Web Add-in Extensibility
documentation and samples of completed toolkit support sets.

After you install the SDK, you can access the documentation from Start >
Programs > QuickTest Professional > Extensibility > Documentation. You can
use the sample toolkit support sets to learn more about implementing Web
Add-in Extensibility.

Chapter 2 • Installing the QuickTest Professional Web Add-in Extensibility SDK

32

Installing the QuickTest Professional Web Add-in Extensibility SDK on a
QuickTest computer enables you to work more efficiently when debugging
and testing your custom toolkit support. However, you can also install and
use the SDK on a computer without QuickTest. You can create the toolkit
support set for your Web controls on any computer. To test and debug the
toolkit support set you must deploy it to QuickTest. For more information,
see “Deploying the Toolkit Support Set” on page 101.

Using the Web Add-in Extensibility Samples
The Web Add-in Extensibility samples are installed in the following
locations:

➤ The Book application is installed in <QuickTest Professional Web Add-in
Extensibility SDK installation folder>\samples\WebExtSample\Application.
You can run this application from Start > Programs > QuickTest Professional
> Extensibility > Samples > Web Add-in Extensibility Book Sample.

➤ The toolkit support set for the Book application is installed in <QuickTest
Professional Web Add-in Extensibility SDK installation
folder>\samples\WebExtSample\Toolkit Support Set.

In Part II, “Tutorial: Learning to Create Web Custom Toolkit Support”, you
create a similar toolkit support set for the Book application and deploy it to
QuickTest.

➤ The toolkit support set for the ASP .NET AJAX control toolkit is installed in
<QuickTest Professional Web Add-in Extensibility SDK installation
folder>\dat\Extensibility\Web (and in the Toolkits subfolder within this
folder). The toolkit support set includes a Help file that describes the test
objects that represent the ASP .NET AJAX controls and the test object
methods and properties available for these test objects.

Note: The sample toolkit support set for the ASP .NET AJAX controls toolkit
does not support recording on the ASPAjaxSlider, ASPAjaxReorderList, and
ASPAjaxResizableControl test object classes, due to a Web Add-in
Extensibility limitation.

Chapter 2 • Installing the QuickTest Professional Web Add-in Extensibility SDK

33

If you install the Web Add-in Extensibility SDK in the QuickTest installation
folder on a computer on which QuickTest is installed, the toolkit support set
for the ASP .NET AJAX control toolkit is deployed to QuickTest. When you
open QuickTest, the ASPAjax environment is displayed in the Add-in
Manager dialog box. You can select the check box for this environment,
instructing QuickTest to load the support for the ASP .NET AJAX control
toolkit, or you can clear the check box for the ASPAjax environment and see
how QuickTest recognizes the ASP .NET AJAX controls without Extensibility
support.

If you do not install the Web Add-in Extensibility SDK in the QuickTest
installation folder, you can manually deploy the ASPAjax toolkit support set
to QuickTest. To deploy the toolkit support set, you must copy the relevant
files from <QuickTest Professional Web Add-in Extensibility SDK installation
folder>\dat\Extensibility\Web to the <QuickTest Professional installation
folder>\dat\Extensibility\Web folder.

For more information, see “Deploying the Toolkit Support Set” on page 101.

Installing the QuickTest Professional Web Add-in
Extensibility SDK

Use the QuickTest Professional Setup program to install the QuickTest
Professional Web Add-in Extensibility SDK on your computer.

Note: You must be logged on with Administrator privileges to install the
QuickTest Web Add-in Extensibility SDK.

Chapter 2 • Installing the QuickTest Professional Web Add-in Extensibility SDK

34

To install the QuickTest Professional Web Add-in Extensibility SDK:

 1 Insert the QuickTest Professional DVD into the CD-ROM/DVD drive. The
QuickTest Professional Setup window opens. (If the window does not open,
browse to the DVD and double-click setup.exe from the root folder.)

Chapter 2 • Installing the QuickTest Professional Web Add-in Extensibility SDK

35

 2 Click Add-in Extensibility SDKs. The Add-in Extensibility SDKs screen opens.

Chapter 2 • Installing the QuickTest Professional Web Add-in Extensibility SDK

36

 3 Click QuickTest Professional Web Add-in Extensibility SDK Setup.

The Welcome screen of the QuickTest Professional Web Add-in Extensibility
SDK Setup Wizard opens.

Note: If the wizard screen that enables you to select whether to repair or
remove the SDK installation opens, the QuickTest Professional Web Add-in
Extensibility SDK is already installed on your computer. Before you can
install a new version, you must first uninstall the existing one, as described
in “Uninstalling the QuickTest Professional Web Add-in Extensibility SDK”
on page 45.

Chapter 2 • Installing the QuickTest Professional Web Add-in Extensibility SDK

37

 4 Click Next. The License Agreement screen opens.

Read the license agreement and select I Agree.

Chapter 2 • Installing the QuickTest Professional Web Add-in Extensibility SDK

38

 5 Click Next. The Select Installation Folder screen opens.

➤ This screen displays the location in which the QuickTest Professional
Web Add-in SDK will be installed.

To select a different location for the installation, click Browse, choose a
folder, and then click OK.

Important: If you are installing the Web Add-in Extensibility SDK on a
QuickTest computer, install the SDK in the QuickTest installation folder.
This deploys the toolkit support set for the ASP .NET AJAX control toolkit
to QuickTest, enabling you to load QuickTest support for this toolkit
from the QuickTest Add-in Manager dialog box.

Chapter 2 • Installing the QuickTest Professional Web Add-in Extensibility SDK

39

➤ If you click Disk Cost, a window opens displaying the amount of free disk
space on your computer and the amount required for this installation.
The space required for the installation includes space required for the
QuickTest Professional Web Add-in Extensibility SDK files and folders (on
the disk that you select for this installation) and additional space
required on the system disk (the disk on which the operation system is
installed), which is used only during the installation process.

➤ Select Just me if you want to limit the access to the QuickTest
Professional Web Add-in Extensibility SDK you are installing. Otherwise,
select Everyone to enable anyone who uses this computer to use the SDK.

 6 Click Next. The setup program installs the QuickTest Professional Web
Add-in SDK and opens the Installation Complete screen.

Chapter 2 • Installing the QuickTest Professional Web Add-in Extensibility SDK

40

 7 In the Installation Complete screen, if you select the Show Readme check
box, the QuickTest Professional Web Add-in Extensibility Readme file opens
after you click Close. The Readme file contains the latest technical and
troubleshooting information. To open the Readme file at another time,
select Start > Programs > QuickTest Professional > Extensibility >
Documentation > Web Add-in Extensibility Readme.

Click Close to exit the setup wizard.

Repairing the QuickTest Professional Web Add-in
Extensibility SDK Installation

Your QuickTest Professional DVD enables you to repair an existing
QuickTest Professional Web Add-in SDK installation by replacing any
missing or damaged files from your previous installation.

Note: To use the QuickTest Professional DVD to repair an installation, you
must use the same DVD that you used for the original installation.

Chapter 2 • Installing the QuickTest Professional Web Add-in Extensibility SDK

41

To repair the QuickTest Professional Web Add-in Extensibility SDK
installation:

 1 Insert the QuickTest Professional DVD into the CD-ROM/DVD drive. The
QuickTest Professional Setup window opens. (If the window does not open,
browse to the DVD and double-click setup.exe from the root folder.)

Chapter 2 • Installing the QuickTest Professional Web Add-in Extensibility SDK

42

 2 Click Add-in Extensibility SDKs. The Add-in Extensibility SDKs screen opens.

Chapter 2 • Installing the QuickTest Professional Web Add-in Extensibility SDK

43

 3 Click QuickTest Professional Web Add-in Extensibility SDK Setup. The Web
Add-in Extensibility SDK Setup Wizard opens, enabling you to select
whether to repair or remove the SDK installation.

Chapter 2 • Installing the QuickTest Professional Web Add-in Extensibility SDK

44

 4 Select Repair and click Finish. The Setup program replaces the QuickTest
Professional Web Add-in Extensibility SDK files and opens the Installation
Complete screen.

 5 In the Installation Complete screen, click Close to exit the Setup wizard.

Chapter 2 • Installing the QuickTest Professional Web Add-in Extensibility SDK

45

Uninstalling the QuickTest Professional Web Add-in
Extensibility SDK

You can uninstall the QuickTest Professional Web Add-in SDK by using
Add/Remove Programs as you would for other installed programs.
Alternatively, you can use the setup program on the QuickTest Professional
DVD.

Note:

➤ You must use the same DVD that you used for the original installation.

➤ You must be logged on with Administrator privileges to uninstall the
QuickTest Web Add-in Extensibility SDK.

Chapter 2 • Installing the QuickTest Professional Web Add-in Extensibility SDK

46

To uninstall the QuickTest Professional Web Add-in Extensibility SDK:

 1 Insert the QuickTest Professional DVD into the CD-ROM/DVD drive. The
QuickTest Professional Setup window opens. (If the window does not open,
browse to the DVD and double-click setup.exe from the root folder.)

Chapter 2 • Installing the QuickTest Professional Web Add-in Extensibility SDK

47

 2 Click Add-in Extensibility SDKs. The Add-in Extensibility SDKs screen opens.

Chapter 2 • Installing the QuickTest Professional Web Add-in Extensibility SDK

48

 3 Click QuickTest Professional Web Add-in Extensibility SDK Setup. The Web
Add-in Extensibility SDK Setup Wizard opens, enabling you to select
whether to repair or remove the SDK.

Chapter 2 • Installing the QuickTest Professional Web Add-in Extensibility SDK

49

 4 Select Remove and click Finish. The Setup program removes the QuickTest
Professional Web Add-in Extensibility SDK and opens the Installation
Complete screen.

 5 In the Installation Complete screen, click Close to exit the Setup wizard.

Chapter 2 • Installing the QuickTest Professional Web Add-in Extensibility SDK

50

51

3
Planning QuickTest Support for Your
Toolkit

Before you begin to create support for a custom toolkit, you must carefully
plan the support. Detailed planning of how you want QuickTest to
recognize the custom controls enables you to correctly build the
fundamental elements of the custom toolkit support.

This chapter includes:

 ➤ About Planning QuickTest Support for Your Toolkit on page 52

 ➤ Preparing to Create Support for a Custom Toolkit on page 52

 ➤ Determining the Toolkit Related Information on page 53

 ➤ Determining the Support Information for Each Custom Control Type
on page 54

 ➤ Where Do You Go from Here? on page 58

Note: This chapter assumes familiarity with the concepts presented in
Chapter 1, “Introducing QuickTest Professional Web Add-in Extensibility.”

Chapter 3 • Planning QuickTest Support for Your Toolkit

52

About Planning QuickTest Support for Your Toolkit

Extending the QuickTest Professional Web Add-in’s support to recognize
custom controls is a process that requires detailed planning. To assist you
with this, the sections in this chapter include sets of questions related to the
implementation of support for your custom toolkit and its controls. When
you create your toolkit support set, you will be implementing it based on
the answers you provide to these questions.

The first step is determining general information related to your custom
toolkit, after which you will define the specific information related to each
control you want to support.

Preparing to Create Support for a Custom Toolkit

Before you begin planning support for custom Web controls, make sure you
have full access to the controls and understand their behavior. You must
have an application or Web page in which you can view the controls in
action, and view the source that implements them.

You do not need to modify any of a custom control’s sources to support it in
QuickTest, but you do need to be familiar with them. Make sure you know
what elements and attributes the control comprises, what HTML properties
it has, the events for which you can listen, and so on.

Chapter 3 • Planning QuickTest Support for Your Toolkit

53

Determining the Toolkit Related Information

When you plan your toolkit support set, begin by deciding the general
toolkit related information:

➤ Provide a unique name for the toolkit or environment for which you are
creating support.

QuickTest displays the name of your environment in all of the dialog boxes
that display lists of add-ins or supported environments. For example, when
QuickTest opens, it displays the name of your environment as a child of the
Web Add-in in the Add-in Manager dialog box and the QuickTest user can
specify whether to load support for that environment.

➤ Decide which controls this toolkit support set will support.

➤ Decide what files will contain the JavaScript functions that you write for the
toolkit support set.

➤ You can specify one default file for the JavaScript functions that
implement support for the different QuickTest functionalities and the
different test object classes. In addition, you can define separate files for
your implementation functions for the different functionalities and test
object classes.

➤ You can specify one file that contains common JavaScript functions that
you call from within others.

➤ Decide whether to use one JavaScript function for the whole toolkit to
match test object classes to the custom controls. For more information,
“Teaching QuickTest to Identify the Test Object Class to Use for a Custom
Web Control” on page 75.

When you design the toolkit support set, you specify this information in the
toolkit configuration file. For more information, see “Understanding the
Toolkit Configuration File” on page 71.

Chapter 3 • Planning QuickTest Support for Your Toolkit

54

Determining the Support Information for Each Custom
Control Type

When planning custom support for a specific type of control, carefully
consider how you want QuickTest to recognize controls of this type—what
type of test object you want to represent the controls in QuickTest tests,
which identification properties and test object methods you want to use,
and so on. Make these decisions based on the business processes that might
be tested using this type of control and operations that users are expected to
perform on these controls.

You can run an application containing the custom control and analyze the
control from a QuickTest perspective using the Object Spy, the Keyword
View, and the Record option. This enables you to see how QuickTest
recognizes the control without custom support, and helps you to determine
what you want to change.

To view an example of analyzing a custom control using QuickTest, see
“Analyzing the Default QuickTest Support and Extensibility Options for a
Sample Custom Control” on page 22.

Understanding the Web Add-in Extensibility Planning
Checklist
When you plan the support for a specific type of control, you must ask
yourself a series of questions. These are explained below and are available in
an abbreviated, printable checklist on page 57.

 1 Make sure you have access to an application that runs the custom control
on a computer with QuickTest installed.

 2 Is there an existing Web test object class which can be extended to represent
the custom control? If so, which one? If not, your new test object class
needs to extend the WebElement class.

Chapter 3 • Planning QuickTest Support for Your Toolkit

55

 3 If the new test object class extends a base test object class other than
WebElement, does the control include an element of the type normally
represented by the base test object class (also referred to as a base element)?

➤ If not, you will need to implement all of the test object methods defined
in the base class and a method that returns values for all of the test class’
identification properties.

➤ If the control includes a base element, is it the root Web element of the
control?

➤ If it is the root element, QuickTest will use its internal implementation
for the inherited test object methods and identification properties that
you do not override.

➤ If the base element is not the root element, you need to implement a
JavaScript function that returns the base element.

 4 Define the details for the new test object class that will represent the custom
control in QuickTest tests:

 a Specify the test object class name.

 b Do you want QuickTest to use a different icon for the new test object?
If so, make sure the icon file is available in an uncompressed .ico format.
Recommended location: <QuickTest Professional installation
folder>\dat\Extensibility\<QuickTest add-in name>\Toolkits\
<Environment name>\res.

 c Specify one or more identification properties that can be used to
uniquely identify the control (in addition to the test object class).

 d Specify the default test object method to be displayed in the Keyword
View and Step Generator when a step is generated for a test object of this
class.

 e Do you want to provide a Help file, which QuickTest will open when F1
is pressed for test objects of this class in the Keyword View or Expert
View?
If so, make sure that the Help file is available in .chm format.
Recommended location: <QuickTest Professional installation
folder>\dat\Extensibility\<QuickTest add-in name>\Toolkits\
<Environment name>\help.

Chapter 3 • Planning QuickTest Support for Your Toolkit

56

When you design the toolkit support set, you specify this information in the
test object configuration file. For more information, see “Introducing the
Custom Toolkit’s Object Model to QuickTest” on page 63.

 5 Which properties will you use to determine what test object class represents
controls of this type? Decide how to design the process of identifying the
test object class to use for this control. For more information, see “Teaching
QuickTest to Identify the Test Object Class to Use for a Custom Web
Control” on page 75.

 6 Specify the basis for naming the test object that represents the control.

 7 What identification properties do you want to support? Which properties
should be displayed in the Checkpoint Properties dialog box in QuickTest,
and which should be selected by default in this dialog box? Which
identification properties can be used for Smart Identification?

 8 What the test object methods you want to support? Specify the method
argument types and names, and whether it returns a value in addition to the
return code.
Optionally, specify the location of a Help file, which QuickTest will open
when F1 is pressed in the Keyword View or Expert View or the Operation
Help button is clicked in the Step Generator for a test object method.

 9 Do you want to dynamically provide a list of possible values for any test
object method arguments? Which?

 10 Which types of children should QuickTest learn with the control?

 11 Should the Object Spy display test objects of this class?

 12 Do you want to provide support for creating QuickTest tests by using the
Record option?

If so, list the events you want to record on the custom control during a
QuickTest recording session.

 13 Determine what parts of the support need to be designed in the toolkit
configuration file and what parts need JavaScript functions.

Note: You can use the checklist on the following page to mark your answers.

Chapter 3 • Planning QuickTest Support for Your Toolkit

57

Web Add-in Extensibility Planning Checklist
Use this checklist to plan the support for your custom control.

Custom Control Support Planning Checklist
Specify in
Toolkit
XML?

Support by
JavaScript
function?

The sources for this custom control are located in: n/a n/a

Specify the Web test object base class that the new test object class
extends: (Default—WebElement)

n/a n/a

Is the base test object class WebElement?
Yes/No

If No, is there a base element (an element that matches the base
test object class)?
Yes/No

If there is a base element, do you need a JavaScript function to
return it?Yes/No

Yes/No Yes/No

Specify the New Web test object class details:

➤ Test object class name:

➤ Icon file location (optional):
➤ Identification properties for description:

➤ Default test object method:

➤ Help file location:

n/a n/a

Specify the basis for identifying the test object class to use for the
control:

Yes/No Yes/No

Specify the basis for naming the test object: n/a Yes

List the identification properties to support. Mark which should
be available (and which selected by default) for checkpoints and
which (if any) should be used for Smart Identification:

Yes/No Yes/No

Chapter 3 • Planning QuickTest Support for Your Toolkit

58

Where Do You Go from Here?

After you finish planning the custom toolkit support, you create the toolkit
support set to support the custom toolkit as per your plan. Chapter 4,
“Developing Support for Your Toolkit” explains how to develop the toolkit
support set.

List the test object methods to support (if required, include
arguments, return values, Help file location and Help ID):

Yes/No Yes/No

Provide a dynamic list of values for any test object method
arguments?
Yes/No (default)

If so, list the arguments:

n/a Yes/No

Specify the types of children that QuickTest should learn with the
control:

Yes/No Yes/No

Display test objects of this class in the Object Spy?
Yes (default)/No

Yes/No n/a

Provide support for recording?
Yes/No

If so, list the events that should trigger recording:

Yes/No Yes/No

Custom Control Support Planning Checklist
Specify in
Toolkit
XML?

Support by
JavaScript
function?

59

4
Developing Support for Your Toolkit

This chapter explains how to create support for a custom Web toolkit. It
explains what files you have to create for the toolkit support set, the
structure and content of these files, and how to use them to support the
different QuickTest capabilities for your environment.

For information on where the toolkit support set files should be stored to
activate the support you design, see Chapter 5, “Deploying the Toolkit
Support Set”.

This chapter includes:

 ➤ About Custom Toolkit Support on page 60

 ➤ Creating a Custom Toolkit Support Set on page 61

 ➤ Introducing the Custom Toolkit’s Object Model to QuickTest on page 63

 ➤ Understanding the Toolkit Configuration File on page 71

 ➤ Designing JavaScript Functions for Your Toolkit Support Set on page 73

 ➤ Teaching QuickTest to Identify the Test Object Class to Use for a Custom Web
Control on page 75

 ➤ Testing the Toolkit Support Set During Development on page 81

 ➤ Logging and Debugging the Custom Support on page 84

 ➤ Implementing Support for Test Object Methods on page 86

 ➤ Implementing Support for Identification Properties on page 92

 ➤ Implementing a Filter for Learning Child Controls on page 95

 ➤ Implementing Support for Recording on page 97

Chapter 4 • Developing Support for Your Toolkit

60

About Custom Toolkit Support

You implement Web Add-in Extensibility by creating a toolkit support set
for each Web toolkit you want to support. The toolkit support set is
comprised of XML configuration files and JavaScript functions. The XML
configuration files define the test object classes that you create to support
the custom Web controls and map them to the controls. In addition, they
define how QuickTest operates on the custom controls. The JavaScript
functions provide an interface between QuickTest and the application being
tested, retrieving information about the control and performing operations
on it.

This chapter describes the different files, definitions, and functions that you
must include in a custom toolkit support set. For more information, see the
QuickTest Web Add-in Extensibility Toolkit Configuration Schema Help, the
QuickTest Web Add-in Extensibility API Reference, and the QuickTest Test Object
Schema Help (available in the QuickTest Professional Web Add-in
Extensibility online Help).

The Web Add-in Extensibility SDK provides a sample toolkit support set that
extends QuickTest support for the ASP .NET AJAX control toolkit. The
sample also includes a Help file for the test object model that QuickTest uses
to support testing controls from this toolkit. The toolkit support set files are
installed in <QuickTest Professional Web Add-in Extensibility SDK
installation folder>\dat\Extensibility\Web (and in the Toolkits subfolder
within this folder). You can browse through these files to see examples of
how Web Add-in Extensibility can be implemented. Some of the examples
in this chapter are taken from these files.

Note: Before you actually begin to create a toolkit support set, you must
plan it carefully. For more information, see “Planning QuickTest Support for
Your Toolkit” on page 51.

Chapter 4 • Developing Support for Your Toolkit

61

Creating a Custom Toolkit Support Set

A Web Add-in Extensibility toolkit support set is comprised of the following
files:

➤ One test object configuration file, which describes the test object model
for your toolkit to QuickTest: The test object classes that QuickTest
should use to represent controls in your toolkit, and the properties and
test object methods that need to be supported for the test objects. For
more information, see “Introducing the Custom Toolkit’s Object Model
to QuickTest” on page 63.

Note: QuickTest loads of all the test object class definitions (from all of
the test object configuration files) when it opens, regardless of the
custom toolkit for which they were created. This enables you to use the
same test object class definitions when supporting different custom
toolkits.

➤ One toolkit configuration file, which describes which test object class
represents each control in the toolkit and how QuickTest interacts with
each control. For more information, see “Understanding the Toolkit
Configuration File” on page 71.

➤ One or more files containing JavaScript functions that QuickTest can call
to retrieve information from or perform operations on the custom
controls.

➤ Optionally, icon files that contain icons used in QuickTest to represent
the test object classes that you define, and Help files that describe these
test object classes and their methods and properties.

Chapter 5, “Deploying the Toolkit Support Set” describes the names of the
different files required for a toolkit support set, and the folder structure in
which they are stored.

Chapter 4 • Developing Support for Your Toolkit

62

To create a custom toolkit support set:

 1 Choose a unique name to represent the toolkit or environment for which
you are creating support.

You use the custom toolkit name to compose the name of the toolkit folder
and the toolkit configuration file. The name must start with a letter and can
contain only alphanumeric characters and underscores.

Providing unique toolkit names enables a single QuickTest installation to
support numerous custom toolkit support sets simultaneously. For this
reason, a name such as MyToolkit is not recommended.

 2 Create a folder for your toolkit support set.

You can choose any convenient name and location for this folder.

 3 Create the following folder structure: <toolkit support set
folder>\Toolkits\<toolkit environment name>\res.

 4 In the toolkit support set folder, create a file named <toolkit environment
name>TestObjects.xml. This is the test object configuration file.

 5 In the <toolkit support set folder>\Toolkits\<toolkit environment name>
folder, create the following:

➤ A file named <toolkit environment name>.xml (this is the toolkit
configuration file)

➤ One or more files that will contain the JavaScript functions you design

 6 You can use the <toolkit support set folder>\Toolkits\<toolkit environment
name>\res folder you created to store any icons that you provide to
represent your test object classes in QuickTest and Help files that describe
the test objects in your environment.

Chapter 4 • Developing Support for Your Toolkit

63

Introducing the Custom Toolkit’s Object Model to
QuickTest

The first stage of developing support for a custom toolkit is to introduce the
test object model that you want QuickTest to use to test your applications
and controls. To do this, you define the test object model in the test object
configuration file. You need to create a test object class for every type of
custom control for which you want to extend or modify QuickTest support.
For more information, see “Extending an Existing Test Object Class” on
page 66 and “Providing a Help File for Customized Test Object Classes” on
page 70.

In a test object configuration XML, you define the test object classes (for
example, their identification properties, the test object methods they
support, and so on). To do this, you define a ClassInfo element for each test
object class. In addition, you define the name of the environment for which
the test object classes are intended, and the QuickTest add-in which they
extend. If the relevant add-in is not loaded when QuickTest opens,
QuickTest does not load the information in this XML. Similarly, if the
environment name is displayed in the Add-in Manager dialog box and the
check box for this environment is not selected, the information in this XML
is not loaded.

A test object class definition can include the following:

➤ The name of the new test object class and its attributes, including the base
class—the test object class that the new test object class extends.
The test object class name must be unique among all of the environments
whose support a QuickTest user might load simultaneously. For example, do
not use names of test object classes from existing QuickTest add-ins, such as
WebButton, WebEdit, Page, etc.

➤ The path of the icon file to use for this test object class (Optional. If not
defined, a default icon is used.) The icon file must be in an uncompressed
.ico format.

➤ A context-sensitive Help topic to open when F1 is pressed for the test object
in the Keyword View or Expert View. The definition includes the Help file
path and the relevant Help ID within the file.

Chapter 4 • Developing Support for Your Toolkit

64

➤ The methods of the new test object, including the following information for
each method:

➤ The arguments, including the argument type (String or Variant) and
direction (In or Out).

➤ Whether the argument is mandatory, and, if not, its default value.

➤ Whether a dynamic list of possible values for this argument can be
retrieved from the supported control and displayed in the Keyword View,
Expert View, and Step Generator.

➤ The method description (shown as a tooltip in the Keyword View, Expert
View, and Step Generator).

➤ The Documentation string (shown in the Documentation column of the
Keyword View and in the Step Generator).

➤ The return value type.

➤ A context-sensitive Help topic to open when F1 is pressed for the test
object method in the Keyword View or Expert View, or when the
Operation Help button is clicked for the method in the Step Generator.
The definition includes the Help file path and the relevant Help ID
within the file.

➤ The test object method that is selected by default in the Keyword View and
Step Generator when a step is generated for an object of this class.

➤ The identification properties of the new test object.

➤ The identification properties that are used for the object description.

➤ The identification properties that are used for Smart Identification (Smart
Identification needs to be enabled for these definitions to take effect).

➤ The identification properties that are available for use in checkpoints.

➤ The identification properties that are selected by default for checkpoints
(in the QuickTest Checkpoint Properties dialog box).

For information on the structure and syntax of this XML, see the QuickTest
Test Object Schema Help, available in the QuickTest Professional Web
Add-in Extensibility online Help.

Chapter 4 • Developing Support for Your Toolkit

65

Each time you run QuickTest, it reads all of the test object configuration
XMLs and merges the information for each test object class from the
different XMLs into one test object class definition. For more information,
see “Understanding How QuickTest Merges Test Object Configuration Files”
on page 68.

The following example shows the definition of the WebExtUsedBooks test
object definition, which is part of the WebExtSample toolkit used for the
tutorial section of this guide:

<ClassInfo BaseClassInfoName="WebTable" GenericTypeID="Table"
DefaultOperationName="SelectBook"
Name="WebExtUsedBooks">

<IconInfo IconFile="INSTALLDIR\Dat\Extensibility\Web\Toolkits
\WebExtSample\res\WebBookList.ico"/>

<TypeInfo>
<Operation ExposureLevel="CommonUsed" Name="SelectBook"

PropertyType="Method">
<Description>

Selects the radio button for the specified book and clicks Select.
</Description>
<Documentation><![CDATA[Select the radio button for the book with

 index %a1 and click Select.]]></Documentation>
<Argument Name="BookIndex" IsMandatory="true" Direction="In">

<Type VariantType="Integer"/>
</Argument>

</Operation>
</TypeInfo>
<IdentificationProperties>

<IdentificationProperty ForDefaultVerification="true"
ForVerification="true" ForDescription="true"
Name="title"/>

</IdentificationProperties>
</ClassInfo>

This example shows that the WebExtUsedBooks test object class extends the
WebTable test object class. The WebExtUsedBooks test object class uses the
WebBookList.ico icon file, its default test object method is SelectBook
(which has one Integer mandatory input parameter: BookIndex), and it has
one additional identification property: title.

Chapter 4 • Developing Support for Your Toolkit

66

One identification property is defined for the WebExtUsedBooks test object
class: title. This identification property is used in the object description,
available for checkpoints, and selected by default in the Checkpoint
Properties dialog box in QuickTest.

Extending an Existing Test Object Class
If there is an existing test object class that provides partial support for your
control, but needs some modification, for example, a different naming
convention for test objects in the class, or additional or modified test object
methods, you create a new test object class to represent the control. When
you create the new test object class, you base this test object class on the
existing test object class, inheriting all of its test object methods.

You can then extend the functionality of this test object class by defining
and implementing additional test object methods and identification
properties. In addition, you can override existing test object methods by
providing an alternate implementation for them. You define the new or
changed methods and properties in the test object configuration file, and
design their implementation using JavaScript functions.

To extend an existing test object class, you define the name of the base test
object class in the ClassInfo\BaseClassInfoName attribute in the ClassInfo
element for the new test object class in the test object configuration file.
This declares that the new test object class supports all of the test object
methods of the base test object class in addition to any that you define for
the new test object class.

You must ensure that all of the inherited test object methods are
implemented and not only declared. One way to do this is to write
JavaScript functions to support each inherited test object method. Another,
simpler way is to ensure that the control includes an element of the type
that matches the base test object class. This element is referred to as the base
element. QuickTest can then use its internal implementation for the
inherited test object methods that you do not specifically implement for the
custom control, communicating with the base element.

Chapter 4 • Developing Support for Your Toolkit

67

In addition, if the control includes a base element, QuickTest uses the base
test object class implementation to retrieve the identification property
values when the following conditions are met:

➤ In the test object configuration file, you defined identification properties for
the new test object class with the same names as properties of the base test
object class.

➤ You do not implement a JavaScript function that retrieves the values for
those properties.

If the base element is the root element of the control that you are
supporting, QuickTest recognizes the base element and uses the base test
class implementation for test object methods and identification properties
that you do not implement.

If the base element is not the root element of the control, you must write a
JavaScript function that returns this base element to QuickTest, and specify
the name and location of the JavaScript function in the toolkit
configuration file. You specify this information in the Control\Settings
element in the toolkit configuration file. For example, if your control is a
special kind of table, and is defined as a DIV element (which QuickTest
normally ignores) that contains a table element (which QuickTest normally
represents with a WebTable element), you can create a MyWebTable test
object class that extends WebTable and map the DIV element to this the
MyWebTable test object class. To return the base element, you implement a
JavaScript function named get_base_table in a file named HPTable.js. In the
toolkit configuration Settings element for the MyWebTable Control
element, you define the func_to_get_base_elem as follows:

<Control TestObjectClass=MyWebTable>
<Settings>

<Variable name="default_imp_file " value="HPTable.js"/>
<Variable name="func_to_get_base_elem" value="get_base_table"/>

</Settings>
</Control>

Chapter 4 • Developing Support for Your Toolkit

68

Understanding How QuickTest Merges Test Object
Configuration Files
Each time you open QuickTest, it reads all of the test object configuration
files located in the <QuickTest installation folder>\dat\Extensibility\
<QuickTest add-in name> folders. QuickTest then merges the information
for each test object class from the different files into a single test object class
definition, according to the priority of each test object configuration file.

You define the priority of each test object configuration file using the
Priority attribute of the TypeInformation element.

Notes:

➤ If the priority of a test object configuration file is higher than the existing
class definitions, it overrides any existing test object class definitions,
including built-in QuickTest information. For this reason, be aware of
any built-in functionality that will be overridden before you change the
priority of a test object configuration file.

➤ QuickTest ignores the definitions in a test object configuration files in
the following situations:
a. The Load attribute of the TypeInformation element is set to false.
b. The environment relevant to the test object configuration file is
displayed in the Add-in Manager dialog box, and the QuickTest user
selects not to load the environment.

When multiple test object class definitions exist, QuickTest must handle any
conflicts that arise. The following sections describe the process QuickTest
follows when ClassInfo, ListOfValues, and Operation elements are defined in
multiple test object configuration files. All of the IdentificationProperty
elements for a specific test object class must be defined in only one test
object configuration file.

Chapter 4 • Developing Support for Your Toolkit

69

ClassInfo Elements

➤ If a ClassInfo element is defined in a test object configuration file with a
priority higher than the existing definition, the information is appended to
any existing definition. If a conflict arises between ClassInfo definitions in
different files, the definition in the file with the higher priority overrides
(replaces) the information in the file with the lower priority.

➤ If a ClassInfo element is defined in a test object configuration file with a
priority that is equal to or lower than the existing definition, the differing
information is appended to the existing definition. If a conflict arises
between ClassInfo definitions in different files, the definition in the file with
the lower priority is ignored.

ListOfValues Elements

➤ If a conflict arises between ListOfValues definitions in different files, the
definition in the file with the higher priority overrides (replaces) the
information in the file with the lower priority (the definitions are not
merged).

➤ If a ListOfValues definition overrides an existing list, the new list is updated
for all arguments of type Enumeration that are defined for operations of
classes in the same test object configuration file.

➤ If a ListOfValues is defined in a configuration file with a lower priority than
the existing definition, the lower priority definition is ignored.

Operation Elements

➤ Operation element definitions are either added, ignored, or overridden,
depending on the priority of the test object configuration file.

➤ If an Operation element is defined in a test object configuration file with a
priority higher than the existing definition, the operation is added to the
existing definition for the class. If a conflict arises between Operation
definitions in different files, the definition in the file with the higher
priority overrides (replaces) the definition with the lower priority (the
definitions are not merged).

Chapter 4 • Developing Support for Your Toolkit

70

Providing a Help File for Customized Test Object Classes
As part of the QuickTest Professional online Help, QuickTest provides an
Object Model Reference for the test object classes that it defines. The
reference is intended to help the QuickTest users use QuickTest test objects,
methods, and properties in their tests. In addition, when F1 is pressed for a
test object or test object method in the Keyword View or Expert View, or
when the Operation Help button is clicked for a test object method in the
Step Generator, QuickTest opens the Object Model Reference to the relevant
location.

When you modify test object classes or define new ones, using test object
configuration XML definitions, you can provide similar (.chm) Help files for
the test objects, methods, and properties that you define. Deploy these Help
files as part of your toolkit support set and inform the users where they can
be found. You can store the Help files in any convenient location. For
example, in a <QuickTest Professional installation
folder>\dat\Extensibility\<QuickTest add-in name>\Toolkits\
<Environment name>\help folder. In the test object configuration XML, you
define HelpInfo elements for test object classes and test object methods,
specifying the Help file path and the relevant Help ID within the file.

Important: The Help file name must be different from the names of the Help
files provided in the <QuickTest Professional installation folder>\help
folder.

When F1 or the Operation Help button is pressed for a test object class or
test object method for which you defined a HelpInfo element, QuickTest
opens the context-sensitive Help topic you specified. For inherited test
object methods that do not have a HelpInfo element, QuickTest opens the
Help provided for the base test object class.

In the Help that you provide for your test object classes, it is helpful to
specify the following information for each test object class:

➤ The base test object class that this test object class extends (include a note
explaining that the descriptions for inherited test object methods not
covered in this Help can be found in the Help for the base test object class).

Chapter 4 • Developing Support for Your Toolkit

71

➤ A list of the available test object methods (including the inherited methods)

➤ Descriptions of the test object methods that you defined, including the
method’s purpose, syntax, arguments, return value, and any other relevant
information.

➤ A list of the available identification properties and descriptions for those
properties

Understanding the Toolkit Configuration File

To begin developing your toolkit support set, you define a basic toolkit
configuration file. You can verify the toolkit configuration file you design
against the <QuickTest Web Add-in Extensibility installation
folder>\dat\Extensibility\Web\Toolkits\Toolkit.xsd file. (This file is also
located in the <QuickTest Professional installation
folder>\dat\Extensibility\Web\Toolkits folder.)

In a toolkit configuration XML, you must define a Control element for each
test object class that you plan to use to support controls in your toolkit.
Each Control element must include a TestObjectClass attribute that specifies
the name of the test object class to which it applies.

The Control elements are contained within one Controls element, which
represents the toolkit as a whole.

The toolkit configuration file must provide information that enables
QuickTest to identify which test object class to use for each control in the
toolkit. This information can be provided at toolkit level or at control level,
as described in the following sections.

The toolkit configuration XML can also contain additional information. A
brief summary of the possible content of this XML is provided below and
more detail on how to design and use the toolkit configuration XML is
provided in the subsequent sections of this guide.

Chapter 4 • Developing Support for Your Toolkit

72

The toolkit specific information can include:

➤ The priority of the toolkit. When QuickTest attempts to identify the test
object class mapped to a custom control, it searches in the different toolkits
in the order of their priority (highest priority first).

➤ An identification function (and optionally the name of the file that contains
the function) used to identify the test object class to use for each control in
the toolkit.

➤ The name of the default file from which implementation functions are
called if no file is specifically defined for a test object class.

A test object class element can include:

➤ An identification function (and optionally the name of the file that contains
the function) or identification conditions used to identify the custom
controls that should be represented by this test object class.

➤ The name of the default file from which implementation functions are
called if no file is specifically defined for a function.

➤ A function (and optionally the name of the file that contains that function)
that returns the element whose test object implements the properties and
test object methods inherited from the base class and not implemented for
this control.

➤ The functions (and optionally the name of the file containing those
functions) that implement the test object methods of this test object class.
QuickTest calls these functions to perform test steps on the control. If no
functions are defined, QuickTest calls implementation functions with the
same name as the test object methods.

➤ The function (and optionally the name of the file containing the function)
that retrieves the identification properties from the control. If no function is
defined, QuickTest calls a function named get_property_value.

➤ Elements that indicate whether to use the default Web Event Configuration
for handling events on the control and its children, and can specify
functions that QuickTest should run to perform customized event listening
and handling.

➤ Elements that indicate when to learn the control and its children, and
optionally, a function that specifies which children to learn.

Chapter 4 • Developing Support for Your Toolkit

73

➤ Elements that indicate whether to display test objects of this class in the
Object Spy.

➤ A function (and optionally the name of the file containing the function)
that retrieves the list of possible values for a test object method argument
from the control. If no function is defined, QuickTest calls a function named
get_list_of_values.

Note: When planning the order of the Control elements in this file, consider
that QuickTest follows this order when searching for a test object class to
match a control. The first matching test object class is used.

For information on the structure and syntax of this XML, see the Toolkit
Configuration Schema Help, available in the QuickTest Professional Web
Add-in Extensibility online Help.

Designing JavaScript Functions for Your Toolkit Support Set

As part of the toolkit support set, you design JavaScript functions that
QuickTest calls. The Web Add-in Extensibility API provides the following
conventions, utility object methods and JavaScript functions for you to use
in the JavaScript functions that you design:

➤ _elem. A token that represents the Web element that QuickTest is currently
handling. For example, the following JavaScript function returns the value
of the id identification property of the current Web element:

function get_property_value(prop)
{

if (prop == "id")
{

return _elem.id;
}

}

Chapter 4 • Developing Support for Your Toolkit

74

➤ IControlImplUtils. The interface for utility objects whose methods you can
use to instruct QuickTest to perform different operations. To call methods of
objects that implement this interface, call _util.<method_name>.

➤ toSafeArray (inArr). A JavaScript function that you can run to convert an
array variable to the SafeArray type format that is required in some of the
utility object methods. This JavaScript function is defined in the common.js
file located in the <QuickTest Web Add-in Extensibility installation folder>\
dat\Extensibility\Web\Toolkits folder (and also in the <QuickTest
Professional installation folder>\dat\Extensibility\Web\Toolkits folder).

Using the Utility Object Interface
As part of the toolkit support set, you design JavaScript functions that
QuickTest calls. The IControlImplUtils utility object interface exposes the
following methods that you can call in the JavaScript functions that you
design:

➤ Alert (message). Opens a modal message box displaying the specified
message.

➤ RegisterForEvent (element, eventName, handler, [HandlerParam]). Registers to
listen for a specific event on a specific Web element. Use this method in a
JavaScript function that controls listening to events to support recording.
For more information on developing support for recording, see
“Implementing Support for Recording” on page 97.

➤ Record (method, arrParams, delay). Adds a step to the test and adds a test
object to the object repository if it is not already there. Use this method in a
JavaScript function that records a step in a test after an event occurs on a
control. For more information on developing support for recording, see
“Implementing Support for Recording” on page 97.

➤ Report (status, method, arrParams, details). Adds information about the run
results of a test step to the Test Results. Use this method in a JavaScript
function that performs a step on a control. For more information on
developing support for running tests, see “Implementing Support for Test
Object Methods” on page 86.

WebExtAPIRef.chm::/ToolkitInterfaces~Mercury.QTP.ToolkitManager.IControlImplUtils~Alert.html
WebExtAPIRef.chm::/ToolkitInterfaces~Mercury.QTP.ToolkitManager.IControlImplUtils~RegisterForEvent.html
WebExtAPIRef.chm::/ToolkitInterfaces~Mercury.QTP.ToolkitManager.IControlImplUtils.html
WebExtAPIRef.chm::/ToolkitInterfaces~Mercury.QTP.ToolkitManager.IControlImplUtils~Record.html
WebExtAPIRef.chm::/ToolkitInterfaces~Mercury.QTP.ToolkitManager.IControlImplUtils~Report.html

Chapter 4 • Developing Support for Your Toolkit

75

➤ LogLine (text, severity). Sends a message to the Event Viewer. Use this
method to help you analyze the performance of your support set or debug
its functionality. For more information on using the Event Viewer to debug
your toolkit support set, see “Logging and Debugging the Custom Support”
on page 84.

For more information about these utility object methods, see the QuickTest
Web Add-in Extensibility API Reference (available with the Web Add-in
Extensibility SDK online Help).

Teaching QuickTest to Identify the Test Object Class to Use
for a Custom Web Control

After you define the test object classes that you want QuickTest to use to
represent your controls, you need to map each type of control to a specific
test object class.

This identification can be performed using JavaScript functions or condition
elements that check the control’s properties and determine the test object
class that should represent it. To improve performance, define the
identification elements in such a way that JavaScript function calls are
avoided as much as possible.

WebExtAPIRef.chm::/ToolkitInterfaces~Mercury.QTP.ToolkitManager.IControlImplUtils~LogLine.html

Chapter 4 • Developing Support for Your Toolkit

76

You provide information enabling QuickTest to identify which test object
class to use for the different controls in the Controls\CommonIdentification
element in the toolkit configuration file, or in the Control\Identification
element. In these elements you can define the following:

➤ A set of conditions per test object class. When QuickTest handles each
control, QuickTest checks the control’s HTML properties against the
conditions you define in each Control element, and locates the first one
whose conditions the control meets.

➤ One JavaScript identification function for the whole toolkit. When
QuickTest handles each control, QuickTest calls this function, which checks
the control’s properties and returns the appropriate test object class.

➤ A JavaScript identification function per test object class. When QuickTest
handles each control, QuickTest calls each of these JavaScript functions, in
the order in which the test objects are defined in the toolkit configuration
file. Each function checks whether the test object class for which it is
defined should represent the control. QuickTest uses the first test object
class whose function returns true.

This method of identification should be avoided if possible because it
significantly affects performance, as it involves many calls to JavaScript
functions for each control.

➤ You can also combine the use of conditions and JavaScript functions,
defining conditions that limit the calls to the JavaScript function you
define, based on the control’s properties. For more information, see “Using
the Identification\Conditions Elements” on page 77.

For more information, see “Designing JavaScript Functions for Your Toolkit
Support Set” on page 73.

Chapter 4 • Developing Support for Your Toolkit

77

Important:

➤ If you specify an identification function at the toolkit level (in the
Controls\CommonIdentification element) and also conditions at the test
object class level (in the Control\Identification element), QuickTest
checks the conditions before calling the JavaScript function, to avoid
unnecessary calls.

➤ If you specify an identification function at the toolkit level (in the
Controls\CommonIdentification element), QuickTest does not call any
identification functions specified at the test object class level (in the
Control\Identification element).

For information on the structure and syntax of the identification elements,
see the Toolkit Configuration Schema Help, available in the QuickTest
Professional Web Add-in Extensibility online Help.

After you teach QuickTest to identify the Test Object Class to use for the
custom control, you can test the basic functionality of your toolkit support
set. For more information, see “Testing the Toolkit Support Set During
Development” on page 81.

Using the Identification\Conditions Elements
You can define Conditions elements in the Control\Identification element
defined for a test object class. This enables QuickTest to identify the controls
that should be represented by this test object class, based on the control’s
properties, without calling an identification function. Alternatively, you can
define an identification function (per test object class or for the whole
toolkit) and use the conditions to limit the times QuickTest calls the
function. You do this by defining that the identification function be called
only in cases when the control’s properties meet certain conditions.

Chapter 4 • Developing Support for Your Toolkit

78

You compose the Conditions using a set of Condition elements, joined by
either and or or logic. Each Condition element specifies a certain property of
the HTML control, and the expected value for that property. The condition
is met if the value in the control’s property matches the specified value (you
can specify in the condition whether the value must be equal or not equal to
the specified value). You can nest Conditions elements to create complex
logic.

For each set of conditions, that is for each Conditions element, you specify
one of the following types, instructing QuickTest how to treat the control if
its properties match the conditions within it:

➤ IdentifyIfPropMatch. If the conditions in this element are met, use the
current test object class to represent the control.

➤ CallIDFuncIfPropMatch. If the conditions in this element are met, call the
identification function to check this control. Otherwise, do not use the
current test object class to represent the control.

➤ SkipIfPropMatch. If the conditions in this element are met, do not use the
current test object class to represent the control.

Important:

➤ If a Conditions element of type IdentifyIfPropMatch is defined, it is
checked before the other types.

➤ If both CallIDFuncIfPropMatch and IdentifyIfPropMatch Conditions
elements are defined, the Conditions of type IdentifyIfPropMatch take
precedence.

➤ A Conditions element of type SkipIfPropMatch is checked only if no
other types of Conditions elements are defined.

➤ If you nest Conditions elements, the type attribute of the nested elements
is ignored.

Chapter 4 • Developing Support for Your Toolkit

79

Understanding How HTML Properties are Compared for
Conditions

When comparing the value of an HTML property specified in a condition
with the specified expected value, the following rules apply:

➤ String value comparisons are not case-sensitive.

➤ When specifying a string value, a regular expression can be provided as the
expected value. In this case, set the is_reg_exp attribute to true.

➤ Numeric value comparisons simply compare the numeric values.

➤ When comparing a Boolean value, the values true, 1, and yes are all
considered true. The values false, 0, and no, are all considered false.

➤ If the HTML property that you are checking returns an object, use valid and
null as the expected values. The property is considered valid if it successfully
returns an object, and null if it fails to return an object.

➤ Set the equal attribute in the Condition element to false if you want to
check if the property does not have a certain value.

The following examples illustrate different ways that you can use the
Conditions element:

Example 1: Identification Function and Conditions

<Identification type="javascript" function="isCalendar">
<Conditions type="CallIDFuncIfPropMatch" logic="or">

<Condition prop_name="CalendarBehavior" expected_value="valid"/>
<Condition prop_name="PopupBehavior" expected_value="valid"/>

</Conditions>
</Identification>

Chapter 4 • Developing Support for Your Toolkit

80

Example 2: Conditions Only

<Identification>
<Conditions type="IdentifyIfPropMatch" logic="and">

<Condition prop_name="AccordionBehavior" expected_value="valid"/>
</Conditions>
<Conditions type="SkipIfPropMatch" logic="or">

<Condition prop_name="AccordionBehavior" expected_value="null"/>
</Conditions>

</Identification>

Example 3: Nested Conditions nodes

<Identification>
<Conditions type="IdentifyIfPropMatch" logic="and">

<Condition prop_name="tagName" expected_value="div"/>
<Conditions logic="or">

<Condition prop_name="id" expected_value="hp_table_1"/>
<Condition prop_name="id" expected_value="hp_table_2"/>

</Conditions>
</Conditions>
<Conditions type=" SkipIfPropMatch" logic="and">

<Condition prop_name="tagName" expected_value="div" equal="false"/>
</Conditions>

</Identification>

For information on the structure and syntax of the Conditions and
Condition elements, see the Toolkit Configuration Schema Help, available in
the QuickTest Professional Web Add-in Extensibility online Help.

Chapter 4 • Developing Support for Your Toolkit

81

Testing the Toolkit Support Set During Development

After you define your test object model in the test object configuration file,
and define a basic toolkit configuration file enabling QuickTest to identify
which test object classes to use for the different controls, you can test the
existing functionality of the toolkit support set. To do this, you deploy the
toolkit support set and test how QuickTest interacts with the controls in
your environment.

After you complete additional stages of developing support for your
environment, you can deploy the toolkit support set again and test
additional areas of interaction between QuickTest and your controls
(learning test objects, running tests, an so on).

To test your toolkit support set after defining the test object classes and
mapping them to custom Web elements:

 1 In the test object configuration file, set the
TypeInformation\DevelopmentMode attribute to true, to ensure that
QuickTest reads all of the test object class information from the file each
time it opens. When you complete the development of the toolkit support
set, make sure to set this attribute to false.

 2 Deploy the toolkit support set on a QuickTest computer by copying the files
of the support set to the correct locations in the QuickTest installation
folder. For more information, see “Deploying the Toolkit Support Set” on
page 101.

 3 Open QuickTest. Ensure that the environment name that you defined for
the toolkit support set is displayed in the Add-in Manager dialog box as a
child of the Web Add-in. (If the Add-in Manager dialog box does not open
when you open QuickTest, see the HP QuickTest Professional Add-ins Guide for
instructions.)

 4 Select the check box for your environment (the Web Add-in is then selected
automatically) and click OK to load the support for your toolkit.

 5 Open an application with your custom controls.

Chapter 4 • Developing Support for Your Toolkit

82

 6 At this point QuickTest can already recognize and learn your controls, and
you can create test steps with your custom test objects.

 a Use the Object Spy to view the test object properties and test object
methods that are supported for your controls.

➤ For each test object class that you defined, the Object Spy displays all
of the identification properties that you defined in the test object
configuration file. New identification properties are displayed without
values because you have not yet implemented methods to retrieve the
values from the controls. For identification properties that have the
same names as base test object class properties, QuickTest uses the base
class implementation to retrieve the property values if the root Web
element of the control matches the base test object class. For more
information, see “Implementing Support for Identification Properties”
on page 92.

➤ The Object Spy displays all of the test object methods available for
each test object class that you defined to represent your controls. This
includes test object methods inherited from the base test object class,
as well as the test object methods that you defined in the test object
configuration file.

 b Use the Add Objects to Local button in the Object Repository dialog box
to learn your controls. Ensure that the correct icon is used to represent
the test object in the object repository.

 c In the Keyword View, create a test step with a test object from a class that
you defined.

➤ If you defined a default operation for this class, it is displayed in the
Operation column after you select the test object in the Item column.

➤ The list of available operations in the Operation column reflects the
definitions in the test object configuration file, and also includes
operations inherited from the base test object class.

➤ After you choose an operation, the Value cell is partitioned according
to the number of arguments of the selected operation, and if you
defined possible values for the operation (in the ListOfValues element),
they are displayed in a list.

Chapter 4 • Developing Support for Your Toolkit

83

➤ The descriptions and documentation strings you defined for test object
methods in the test object configuration file are displayed in tooltips and
in the Documentation column, respectively.

 d In the Expert View, create a test step with a test object from a class that
you defined. Intellisense displays all of the operations available for the
test object, and possible input values for these operations, if relevant,
based on the definitions in the test object configuration file. (Inherited
test object methods are also displayed.)

 e In the Step Generator, create a test step with a test object from a class that
you defined. The operations that you defined in the test object
configuration file are displayed in the Operation list, and the
descriptions you defined for the operations are displayed as tooltips.
(Inherited test object methods are also displayed.)

For more information on working with these options in QuickTest, see
the HP QuickTest Professional User’s Guide.

To test your toolkit support set after developing support for additional
QuickTest functionality:

 1 Follow steps 1 to 5 in the previous procedure, to deploy the toolkit support
set, open QuickTest, load the support and run an application with controls
from your environment.

 2 Depending on the QuickTest functionality for which you are developing
support, perform the relevant QuickTest operations on the application to
test that support. For example, learn controls in the application, run a test
on the application, record test steps on the application and so on.

Chapter 4 • Developing Support for Your Toolkit

84

Logging and Debugging the Custom Support

When you design the JavaScript functions for your toolkit support set, it is
recommended to include writing messages to the Windows Event Viewer, to
assist in debugging any problems that may arise.

Use the _util.LogLine method to send messages to the Event Viewer. For
more information, see the QuickTest Web Add-in Extensibility API Reference
(available with the Web Add-in Extensibility SDK online Help).

You provide the message text and its level of severity, and QuickTest adds
the toolkit name and a time and date stamp and writes the messages to the
Event Viewer.

In addition, while recognizing objects supported by Web Add-in
Extensibility and performing tests on them, QuickTest also writes log and
error messages to the Event Viewer.

WebExtAPIRef.chm::/ToolkitInterfaces~Mercury.QTP.ToolkitManager.IControlImplUtils~LogLine.html

Chapter 4 • Developing Support for Your Toolkit

85

To view the messages and analyze the performance of your toolkit support
set, open the Event Viewer (in Windows XP and Windows 2000, select
Start > Settings > Control Panel > Administrative Tools > Computer
Management, expand the Event Viewer node in the Computer
Management tree) and select the QuickTest node. Double-click a specific
message to see its text.

Chapter 4 • Developing Support for Your Toolkit

86

You can filter the messages displayed in the Event Viewer according to
severity and other message fields. In the Computer Management toolbar,
select View > Filter. For more information, see the Event Viewer Help (select
Action > Help in the Event Viewer).

Implementing Support for Test Object Methods

After enabling QuickTest to recognize the custom controls, you must
provide support for running test object methods. If you try to run a test with
steps that run on custom test objects before providing implementation for
these methods, the test fails and a run-time error occurs.

Chapter 4 • Developing Support for Your Toolkit

87

For each test object method that you defined in the test object configuration
file, you must write a JavaScript function that QuickTest runs to perform the
step on the control. In addition to performing the step, you can design the
JavaScript function to add a line to the test results report, send log messages
to the Event Viewer, and display messages boxes to the QuickTest user, as
necessary. For more information, see “Designing JavaScript Functions for
Your Toolkit Support Set” on page 73.

In the toolkit configuration file, you need to specify the JavaScript file in
which QuickTest should look for the JavaScript functions and, optionally,
the name of the function to use for each test object method.

You can specify a JavaScript file and function for each test object method in
the toolkit configuration file, or you can define a default JavaScript file per
toolkit (Controls element) or per test object class (Control element).
QuickTest uses the default files for all test objects methods for which you do
not specify an implementation file. By default, QuickTest searches in the
specified file for a JavaScript function with the same name as the test object
method. Therefore, you do not need to specify function names in the toolkit
configuration file, unless you choose to name a function something other
than the corresponding test object method name. For more information, see
the Toolkit Configuration Schema Help, available in the QuickTest
Professional Web Add-in Extensibility online Help.

Important: Do not create JavaScript functions named get_property_values
or get_list_of_values. These names are reserved for the JavaScript functions
that QuickTest calls (by default) to retrieve run-time values of test object
identification properties and lists of possible values for test object method
arguments.

After you create support for running test object methods, you can run
QuickTest tests on your custom test objects, and verify that your toolkit
support set performs correctly. For more information on testing your toolkit
support set, see “Testing the Toolkit Support Set During Development” on
page 81.

Chapter 4 • Developing Support for Your Toolkit

88

The following example is taken from the ASPAjax toolkit support set, which
includes support for a Select method on the ASPAjaxTabs test object. In the
ASPAjax test object configuration file, this is declared as follows:

<ClassInfo BaseClassInfoName="WebElement"
DefaultOperationName="Select"
Name="ASPAjaxTabs">

<TypeInfo>
<Operation ExposureLevel="CommonUsed" Name="Select"

PropertyType="Method">
<Description>Selects the specified tab.</Description>
<Documentation>

<![CDATA[Select the tab with index %a1.]]>
</Documentation>
<Argument Name="Index" IsMandatory="true" Direction="In">

<Type VariantType="Integer"/>
<Description>The index value of the tab to select.</Description>

</Argument>
</Operation>

</TypeInfo>
</ClassInfo>

In the toolkit configuration file, the Control\Settings element for the
ASPAjaxTabs test object class is defined as follows:

<Control TestObjectClass="ASPAjaxTabs">
<Settings>

<!-- Indicates the location of the JavaScript file that contains the
 implementation of the script -->
<Variable name="default_imp_file" value="Tabs.js"/>

</Settings>
</Control>

No Run element is defined for this test object class. Therefore, when
QuickTest runs a step with the Select test object method, QuickTest searches
in the Tabs.js file (as defined in the toolkit configuration file) for a JavaScript
function named Select.

In the Tabs.js file, the Select JavaScript function is implemented to accept an
index and select the tab with that index.

Chapter 4 • Developing Support for Your Toolkit

89

Supporting Dynamic Lists of Values for Method
Arguments
When a QuickTest user creates a test step with a test object method,
QuickTest can display a set of predefined possible values available for the
arguments of that method. For example, if an argument is a Boolean
argument, QuickTest can display true and false as the possible values, or, for
a month argument, QuickTest can display a list of names of all the months.
However, sometimes, a limited set of possible values for an argument exists,
but depends on the specific object on which the step is performed. For
example:

➤ The values that are actually relevant for the Integer row and column
arguments of the function Table(<table_name>).SetCellData (row, column)
are limited to the number of rows and columns in the specific table.

➤ The relevant values for the String path argument of the function
Tree(<tree_name>).Select (path) are limited to the paths that exist in the
specific tree.

Using extensibility, you can enable QuickTest to dynamically provide a list
of values for arguments of test object methods.

To support a dynamic list of values:

 1 In the test object configuration file, set the DynamicListOfValues attribute
the Argument element to true.

 2 In the toolkit configuration file, you can specify the file name and function
name of the JavaScript function that QuickTest must call to retrieve the list
of values. By default, QuickTest requests the list of values by calling the
get_list_of_values JavaScript function from the default implementation file
that you specify for the test object class in the default_imp_file variable in
the Control\Settings element. For more information, see the Toolkit
Configuration Schema Help, available in the QuickTest Professional Web
Add-in Extensibility online Help.

QuickTest calls the JavaScript function for every argument whose
DynamicListOfValues attribute is set to true in the test object configuration
file. The parameters provided to this function indicate the test object
method and argument for which the values are being requested.

Chapter 4 • Developing Support for Your Toolkit

90

 3 Write a JavaScript function that accepts the names of the test object method
and argument and returns a list of values relevant for the specified argument
on the current element. Return the string values concatenated to one string,
each value enveloped in quotation marks.

Note: The dynamic list of values is retrieved from the control in the
application being tested. Therefore, in order to display the dynamic list of
values, the relevant control must be visible in the application when the test
is edited.

For example, in the toolkit support set for the WebExtSample environment,
located in <Web Add-in Extensibility SDK installation folder>\samples\
WebExtSample folder, a dynamic list of values is supported for the
AuthorName argument in the GoToAuthorPage test object method of the
test object class WebExtBook.

➤ In the WebExtSampleTestObjects.xml test object configuration file, the
argument is defined as follows:

<Operation Name="GoToAuthorPage" PropertyType="Method">
<Description>Opens the Web page for the specified author.</Description>
<Argument Name="AuthorName" IsMandatory="true" Direction="In"

DynamicListOfValues="true">
<Type VariantType="String"/>
<Description>The author.</Description>

</Argument>
</Operation>

Chapter 4 • Developing Support for Your Toolkit

91

In the WebExtBook.js file (defined as the default implementation file for the
WebExtBook test object class in the WebExtSample.xml toolkit
configuration file) the following JavaScript functions are designed to return
a list of the book’s authors, each enveloped in quotation marks:

// Dynamic list of values implementation
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
function get_list_of_values(method, argIndex)
{

// When creating a step with the GoToAuthorPage test object method,
// provide a list of the authors of this book, that can be used for the method's

 // argument.
if (method == "GoToAuthorPage")
{

return get_GoToAuthorPage_list_of_values(argIndex);
}

return null;
}

function get_GoToAuthorPage_list_of_values(argIndex)
{

var arr = new Array();
if(argIndex > 1)

return toSafeArray(arr);

// Retrieve all authors
var AuthorsCount = 0;
for(var i = 0 ; i < _elem.rows[1].cells[0].children.length ; ++i)
{

if(_elem.rows[1].cells[0].children[i].tagName == "A")
{

arr[AuthorsCount]="\""+_elem.rows[1].cells[0].children[i].innerText+"\"";
AuthorsCount++;

}
}
return toSafeArray(arr);

}

Chapter 4 • Developing Support for Your Toolkit

92

Implementing Support for Identification Properties

In the test object configuration file you defined the identification properties
for your test object classes. When QuickTest runs a test it needs to retrieve
the values for these properties. QuickTest uses identification property
run-time values in different test object methods, such as GetROProperty.
Identification property run-time values are also required for different basic
capabilities, such as creating checkpoints and outputting values.

To support retrieving the run-time values of identification properties, you
need to implement a JavaScript function that accepts a PropertyName
parameter and returns the value of any property QuickTest requests. For
more information on writing JavaScript functions for Web Add-in
Extensibility, see “Designing JavaScript Functions for Your Toolkit Support
Set” on page 73.

QuickTest uses the base test object class implementation to retrieve the
identification property values when the following conditions are met:

➤ The control includes a base element (for more information, see “Extending
an Existing Test Object Class” on page 66).

➤ The identification property is defined in the test object configuration file
with the same name as a base test object class property.

➤ You do not provide a function that returns a value for that identification
property.

Implement your JavaScript function to return a value for the identification
properties defined in the test object configuration file in the following
situations:

➤ Base test object class implementation for retrieving the value for this
identification property value is not available.

➤ The base test object class implementation does not meet your needs.

By designing the function that returns identification property values to
return a value for the logical_name property, you can control how QuickTest
names test objects of this test object class. For more information, see
“Customizing the Test Object Name” on page 93.

Chapter 4 • Developing Support for Your Toolkit

93

In the toolkit configuration file, you can specify the JavaScript file in which
you implemented the JavaScript function that retrieves property values. You
can also specify the name of the function that you implemented for this
purpose (in the Control\Run\Properties element). However, if you do not
specify a function name, QuickTest calls get_property_value (PropertyName)
and this is the function that you must implement. If you do not specify a
file name, QuickTest calls the function from the default JavaScript file you
specified in the Control\Settings element (at the test object class level) or in
the Controls\Settings element (at the toolkit level). For more information,
see the Toolkit Configuration Schema Help, available in the QuickTest
Professional Web Add-in Extensibility online Help.

After you create support for retrieving the run-time values of identification
properties, you can test that your toolkit support set correctly enables
QuickTest to run checkpoints on your Web elements, display the property
values in the Object Spy, and run test steps with the GetROProperty
operation. For more information on testing your toolkit support set, see
“Testing the Toolkit Support Set During Development” on page 81.

Customizing the Test Object Name
When QuickTest learns an object, it creates a unique name for each test
object on the page. A descriptive test object name enables you distinguish
between test objects of the same class and makes it easier to identify them in
your object repository and in tests.

By default, a test object is given the name of its test object class (appended
with an index if there is more than one test object of the same class on the
page). In many cases, this is not the ideal name for the custom control.

The test object name needs to be meaningful to the QuickTest user,
preferably using terminology that is relevant to your toolkit. QuickTest
displays this name in the Keyword View, in the Expert View, and in the
object repository. The test object name is not used for object identification
and therefore does not have to remain constant in the application.

Chapter 4 • Developing Support for Your Toolkit

94

For example, the test object name can be language-dependent. The
QuickTest user can create a test with the application running in one
language, creating test objects with names in that language. The user can
then run the test on the same application in another language. The names
of test objects in the test remain in the original language, but QuickTest can
correctly recognize the test objects and perform operations on them, based
on their description.

To control how QuickTest names test objects of a test object class, design the
function that returns identification property values to return a value for the
logical_name property. QuickTest uses this value as the test object name.

For example, WebExtBook test objects in the WebExtSample environment
are named based on their book title. The sample toolkit support set for the
WebExtSample environment is located in <Web Add-in Extensibility SDK
installation folder>\samples\WebExtSample folder. The WebExtBook.js file
is defined as the default implementation file in the WebExtSample.xml
toolkit configuration file. The JavaScript function for returning
identification property run-time values is defined in the WebExtBook.js file
as follows:

function get_property_value(prop)
{

if (prop == "logical_name" || prop == "title")
// For the "title" identification property, as well as the "logical_name"
// property, return the inner text of the second cell in the first row.
{

return _elem.rows[0].cells[1].innerText;
}

}

Chapter 4 • Developing Support for Your Toolkit

95

Implementing a Filter for Learning Child Controls

When you instruct QuickTest to learn a Web page, the Define Object Filter
dialog box opens, enabling you to determine which of the Web page’s
descendants should be learned with it. When you select All object types,
instructing QuickTest to learn the custom control with its parent Web page,
all of the controls contained within your custom control are also learned as
children of that Web page (and siblings of the control itself).

In some situations, there is no need to create test objects for all of the
children of a control. For example, when there are no significant operations
to perform on the children and no properties to retrieve, or when, for
testing purposes, operations performed on the children are viewed as
operations performed on the parent control. For example, on a calculator
control that contains button controls, there is no need to create test objects
for the digit buttons. Pressing the digit buttons performs a Set operation on
the calculator object itself, providing a numeric input for a calculator
operation.

You can determine which controls QuickTest learns by defining a Learn
Filter for the test object class you create. You can use the
Control\Filter\Learn element in the toolkit configuration file to define basic
filtering, or you can implement complex filters by writing a JavaScript
function. If you design a filter using a JavaScript function, specify the
location and name of the function in the toolkit configuration file.

In the toolkit configuration file, in the Control\Filter\Learn element, you
can define:

➤ Whether to learn controls represented by this test object class. You can also
specify that QuickTest should learn controls of this type only if they have
children.

➤ Whether to learn the controls contained within the controls represented by
this test object class. You can also specify that your JavaScript function
needs to be called to determine which descendants to learn.

If you write a JavaScript function to implement the filter, the function must
return a SafeArray containing all of the descendant Web elements that you
want QuickTest to learn. For more information, see “Designing JavaScript
Functions for Your Toolkit Support Set” on page 73.

Chapter 4 • Developing Support for Your Toolkit

96

For more information, see the Toolkit Configuration Schema Help, available
in the QuickTest Professional Web Add-in Extensibility online Help.

You can see an example of defining Learn Filters in the sample toolkit
support set for the WebExtSample environment located in <Web Add-in
Extensibility SDK installation folder>\samples\WebExtSample folder.

➤ The Filter element for the WebExtBook test object class is defined (in the
WebExtSample.xml file) as follows:

<Filter>
<Learn learn_control="Yes" learn_children="No"/>

</Filter>

This instructs QuickTest to learn WebExtBook test objects without their
descendants.

➤ The Filter element for the WebExtUsedBooks test object class is defined as
follows:

<Filter>
<Learn learn_control="Yes" learn_children="CallFilterFunc"

type="javascript" function="GetChildrenToLearn" />
</Filter>

This instructs QuickTest to learn WebExtUsedBooks test objects, and to call
the CallFilterFunc JavaScript function to determine which descendants to
learn.

The GetChildrenToLearn JavaScript function is located in the
WebExtUsedBooks.js file, which is defined as the default implementation
file in the WebExtSample.xml toolkit configuration file. The
GetChildrenToLearn JavaScript function returns all of the radio button
descendants of the used books table control:

function GetChildrenToLearn()
{ // Return all of the radio buttons in the used books table

return toSafeArray(_elem.children[0].getElementsByTagName("input"));
}

Chapter 4 • Developing Support for Your Toolkit

97

After you implement a Learn Filter, you can instruct QuickTest to learn your
custom controls, and verify that your toolkit support set correctly controls
which of the controls’ children are learned. For more information on testing
your toolkit support set, see “Testing the Toolkit Support Set During
Development” on page 81.

Implementing Support for Recording

One way to add objects to the object repository and create tests in QuickTest
is by recording. To record a test, QuickTest registers to listen to events on the
Web elements, and, when an event occurs, QuickTest adds the relevant step
to the test. By default, QuickTest uses the standard Web event configuration
to determine the events to which to listen for each Web element, and the
steps to record in the test when each event occurs.

If you want to customize recording on a test object class that you defined,
you must specify the events that you want to record and the steps that you
want QuickTest to add to the test when those events occur.

For each test object class on which you want to customize recording, define
a Control\Record\EventListening element in the test object configuration
file. In this element you can specify whether to use standard Web event
configuration to handle events on controls represented by this test object
class. In addition, you can specify whether to use standard Web event
configuration to handle events that take place on those controls’ children.

In addition to specifying whether QuickTest should use standard Web event
configuration, you can specify a JavaScript function that provides more
specific event registration (and optionally, the name of the file containing
the function). For more information, see the Toolkit Configuration Schema
Help, available in the QuickTest Professional Web Add-in Extensibility
online Help.

Chapter 4 • Developing Support for Your Toolkit

98

In addition to the definitions in the toolkit configuration file, you write the
following types of JavaScript functions:

➤ One JavaScript function that uses the RegisterForEvent function in the _util
utility object to register for listening to the correct events on the correct
elements. The arguments of this function also determine what JavaScript
functions QuickTest calls when each event occurs.

QuickTest calls this function after registering to listen to events according to
the standard Web event configuration. The event registration performed by
this function overrides any previous registrations for the same events. For
events not handled by this function the standard registration is used.

➤ One or more JavaScript functions that handle the events, when they occur,
by calling the Record function in the _util utility object to inform QuickTest
what step to add to the test.

Note: The Record function, and other utility object functions, require a
SafeArray type argument. To convert an array to a SafeArray, you can use
the toSafeArray (array) function that Web Add-in Extensibility provides. This
function is defined in <Web Add-in Extensibility installation
folder>\dat\Extensibility\Web\Toolkits\common.js (also located in the
<QuickTest installation folder>\dat\Extensibility\Web\Toolkits folder).

For information on the syntax of the utility object functions, see the
QuickTest Web Add-in Extensibility API Reference (available with the Web
Add-in Extensibility SDK online Help). For more information on writing
JavaScript functions for Web Add-in Extensibility, see “Designing JavaScript
Functions for Your Toolkit Support Set” on page 73.

You can see an example of customized recording in the sample toolkit
support set for the WebExtSample environment located in <Web Add-in
Extensibility SDK installation folder>\samples\WebExtSample folder.

WebExtAPIRef.chm::/ToolkitInterfaces~Mercury.QTP.ToolkitManager.IControlImplUtils~RegisterForEvent.html
WebExtAPIRef.chm::/ToolkitInterfaces~Mercury.QTP.ToolkitManager.IControlImplUtils~Record.html

Chapter 4 • Developing Support for Your Toolkit

99

➤ In the toolkit configuration file, within the Control element for the
WebExtBook test object class, the following Record\EventListening element
is defined:

<Record>
<EventListening

use_default_event_handling_for_children="false"
use_default_event_handling="false"
type="javascript" function="ListenToEvents"/>

</Record>

This instructs QuickTest not to use the default Web Event Configuration for
handling events on the Book control and its children, but to call the
JavaScript function ListenToEvents. A JavaScript file is not defined, therefore
QuickTest looks for the JavaScript function in the WebExtBook.js file that is
specified at the Control level for the WebExtBook test object class.

➤ In the WebExtBook.js file, the following ListenToEvents function is defined:

function ListenToEvents(elem)
{

// Connect to the "Select" event: When the book name or the book icon is
// clicked, call OnSelectClicked.
_util.RegisterForEvent(_elem.rows[0].cells[0].children[0], "onclick" ,

"OnSelectClicked");
_util.RegisterForEvent(_elem.rows[0].cells[1].children[0], "onclick" ,

"OnSelectClicked");
}

This function registers QuickTest to listen to click events on the book’s title
and image. When registering for an event, this function specifies what
JavaScript function QuickTest must call when the event occurs.

Chapter 4 • Developing Support for Your Toolkit

100

➤ In the WebExtBook.js file add the following event handler JavaScript
functions:

function OnSelectClicked(handlerParam , eventObj)
{

// Record the "Select" step
var arr = new Array();
_util.Record("Select", toSafeArray(arr) , 0);
return true;

}

This function records the Select test object method on the WebExtBook test
object when the book title or image is clicked.

After you implement support for recording, you can record a test on
controls in your environment, and verify that your toolkit support set
performs correctly. For more information on testing your toolkit support set,
see “Testing the Toolkit Support Set During Development” on page 81.

101

5
Deploying the Toolkit Support Set

The final stage of extending QuickTest support for a custom toolkit is
deploying the toolkit support set. This means placing all of the files you
created in the correct locations on a computer with QuickTest installed,
enabling QuickTest to recognize the controls in the toolkit and run tests on
them.

While you are developing the toolkit support set, deploying it to QuickTest
enables you to test and debug the support that you create. After the toolkit
support set in complete, you can deploy it on any computer with QuickTest
installed, to serve as a QuickTest add-in.

This chapter includes:

 ➤ About Deploying the Custom Toolkit Support on page 101

 ➤ Deploying the Custom Toolkit Support on page 102

 ➤ Removing Deployed Support on page 103

About Deploying the Custom Toolkit Support

From the QuickTest user’s perspective, after you deploy the toolkit support
set on a computer on which QuickTest is installed, the toolkit support set
can be used as a QuickTest add-in.

When QuickTest opens, it displays the environment names of all deployed
Web Add-in Extensibility toolkit support sets in the Add-in Manager, as
child nodes beneath the Web Add-in. The QuickTest user can select an
environment, instructing QuickTest to load support for that environment.
For more information on the Add-in Manager dialog box, see the
HP QuickTest Professional Add-ins Guide.

Chapter 5 • Deploying the Toolkit Support Set

102

Deploying the Custom Toolkit Support

To deploy the toolkit support set that you create, you must place the files in
specific locations within the QuickTest installation folder. The following
table describes the appropriate location for each of the toolkit support files:

File Name Location

<Custom Toolkit Name>TestObjects.xml

Note: This is the recommended file
name convention. You can have more
than one test object configuration XML
file, and name them as you wish.

➤ <QuickTest Installation
Folder>\dat\Extensibility\Web

➤ <QuickTest Add-in for Quality Center
Installation Folder>\dat\Extensibility\
Web
(Optional. Required only if QuickTest
Add-in for Quality Center is installed)

<Custom Toolkit Name>.xml <QuickTest Installation Folder>\dat\Exte
nsibility\Web\Toolkits\<custom toolkit
name>

JavaScript files <QuickTest Installation Folder>\dat\Exte
nsibility\Web\Toolkits\<custom toolkit
name>

Icon files for new test object classes
(optional)

Must be an uncompressed .ico format
file, located on the computer on which
QuickTest is installed, or in an
accessible network location.

Specify the location in <Custom Toolkit
Name>TestObjects.xml

Help files for the test object classes
(optional)

Must be a .chm file, located on the
computer on which QuickTest is
installed, or in an accessible network
location.

Specify the location in <Custom Toolkit
Name>TestObjects.xml

Chapter 5 • Deploying the Toolkit Support Set

103

Note:

The recommended location for the toolkit support set icon files is
<QuickTest Installation Folder>\dat\Extensibility\Web\Toolkits\<custom
toolkit name>\res.

The recommended location for the toolkit support set Help files is
<QuickTest Installation Folder>\dat\Extensibility\Web\Toolkits\<custom
toolkit name>\help.

In the test object configuration file, you can specify these locations using
relative paths. For more information, see the QuickTest Test Object Schema
Help (available with the Web Add-in Extensibility SDK online Help).

If you modify a deployed toolkit support set, you must reopen QuickTest
and re-run the Web application for the changes to take effect.

Removing Deployed Support

When opening QuickTest, the QuickTest user can use the Add-in Manager to
instruct QuickTest whether to load the support provided for any particular
environment or toolkit.

If you want to remove support for a custom toolkit from QuickTest after it is
deployed, you must delete its toolkit configuration file from:
<QuickTest Installation Folder>\dat\Extensibility\Web\Toolkits\
<custom toolkit name>

If none of the test object class definitions in a test object configuration file
are used to represent any custom controls (meaning they are no longer
needed), you can delete the file from:
<QuickTest Installation Folder>\dat\Extensibility\Web (and <QuickTest
Add-in for Quality Center Installation Folder>\dat\Extensibility\Web if
relevant).

Chapter 5 • Deploying the Toolkit Support Set

104

Part II

Tutorial: Learning to Create Web Custom
Toolkit Support

106

107

1
Learning to Create QuickTest Support for
a Simple Custom Web Control

In this lesson you create support for the Book control in the Web Add-in
Extensibility Book Sample toolkit. Creating support for the Book control
requires only minimal customization, allowing you to learn the basics of
creating a toolkit support set.

The <QuickTest Professional Web Add-in Extensibility SDK installation
folder>\samples\WebExtSample\Toolkit Support Set folder contains a
complete toolkit support set for this sample to which you can refer while
you perform this lesson.

Before you perform this lesson, ensure that you have read Chapter 1,
“Introducing QuickTest Professional Web Add-in Extensibility.”

This chapter includes:

 ➤ Preparing for This Lesson on page 108

 ➤ Planning Support for the Web Add-in Extensibility Book Sample Toolkit
on page 109

 ➤ Developing the Toolkit Support Set on page 118

 ➤ Lesson Summary on page 145

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

108

Preparing for This Lesson

Before you extend QuickTest support for a custom control, you must have
access to its source file. You do not need to modify any of the custom
control’s sources to support it in QuickTest, but you do need to be familiar
with them. Make sure you know what elements and attributes comprise the
control, the events that might occur on this control, and so on. You use this
information when you design the support class.

The source file for the Book control is located in <QuickTest Professional
Web Add-in Extensibility SDK installation folder>\samples\WebExtSample\
Application\Book.htm.

You can run the control from Start > Programs > QuickTest Professional >
Extensibility > Samples > Web Add-in Extensibility Book Sample.

Run the control, open the source file for it and study the control’s behavior
and implementation.

The Book control contains information including the title of the book, its
authors, the price for a new copy of the book, and the lowest price for which
a used copy can be purchased.

Clicking on the title or the image of the book opens a page that can display
more details about the book (but is not implemented in this sample).
Clicking on an author name opens a page that can provide a list of books by
the same author (but is not implemented in this sample). Clicking on Used
opens a Used Books page, listing all of the available used copies of the book,
and their prices. The UsedBooks table is a more complex control that you
will learn to support in the lesson, “Learning to Create QuickTest Support
for a Complex Custom Web Control” on page 147.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

109

Planning Support for the Web Add-in Extensibility Book
Sample Toolkit

In this section, you analyze how QuickTest currently recognizes the Book
control versus the way it should recognize it, based on your knowledge of
the control. Next, you determine the answers to the questions in the
“Understanding the Web Add-in Extensibility Planning Checklist” on
page 54, and fill in the “Web Add-in Extensibility Planning Checklist” on
page 116, accordingly.

The best way to do this is to analyze how QuickTest recognizes the Book
control on the one hand, using the Object Spy, Keyword View, and Record
option, and on the other hand, to consider how the control is implemented
and the purposes for which it is used.

 1 Open QuickTest and Run the Book control.

Open QuickTest and load the Web Add-in.

Close any open instances of the Book control and open it from Start >
Programs > QuickTest Professional > Extensibility > Samples > Web Add-in
Extensibility Book Sample.

 2 Use the Object Spy to view the Book properties and methods.

In QuickTest, choose Tools > Object Spy or click the Object Spy toolbar
button to open the Object Spy dialog box. Click the Properties tab and
select Test Object Properties.

In the Object Spy dialog box, click the pointing hand, then click the Book
control.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

110

The Book control is implemented as a Web table, for which QuickTest
support is built in, therefore it recognizes the control as a WebTable, named
according to the title of the book. The icon used for the test object is the
standard WebTable class icon.

Close the Object Spy.

 3 Record operations on the Book control.

In QuickTest, choose Automation > Record and Run Settings to open the
Record and Run Settings dialog box. In the Web tab, select Record and run
test on any open browser. Click OK.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

111

Click the Record button or choose Automation > Record. Click on different
links in the Book control (you must return to the previous page after each
click, to return to the Book control): the book title, the image in the control,
an author name, and the Used link.

With each click, a new step is added to the test:

Click the Stop button or choose Automation > Stop to end the recording
session.

Only simple Click steps are recorded, each attributed to a different object
defined within the book control. Click operations are recorded
independently on Web Link test objects with different names, or on the
Book image test object. These steps are not helpfully meaningful in the
context of this control.

 4 Determine the custom toolkit to which the Book control belongs.

When you extend QuickTest support for a control you always do so in the
context of a toolkit. For the purpose of this tutorial, two custom Web
controls are grouped to form the custom toolkit named WebExtSample:
Book and UsedBooksTable.

In this lesson you create support for the WebExtSample toolkit, initially
supporting only the Book control.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

112

 5 Complete the custom class support planning checklist.

The Book control is implemented as Web table, as follows:

<table class="Book">
<tr>

<td class="BookImageCell" rowspan="4">

</td>
<td class="BookCell">

The History of QuickTest Professional

</td>
</tr>
<tr>

<td class="BookCell">
By: Jane Doe,

John Doe
</td>

</tr>
<tr>

<td class="BookCell">
</td>

</tr>
<tr>

<td class="BookCell">
New: 59.99$
Used: from 29.99$

</td>
</tr>

</table>

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

113

This section describes the required support for the Book control, and then
summarizes the information in the support planning checklist.

 a Choosing the test object class that represents the custom control:

The Book control is implemented as a Web table control to assist in its
appearance. For the purpose of performing tests on this control, there is
no need to for QuickTest to recognize the Book control as a table. On the
other hand, the basic support that QuickTest provides a generic Web
element, using the WebElement object, is not specific enough for the
Book control. Therefore, you create a new test object class named
WebExtBook, which extends WebElement, and teach QuickTest to
identify this test object class as the one that represents the Book control.

 b Defining how QuickTest will identify which test object class to use to
represent the control:

If the control’s tagName property is table and its className property is
Book, use a WebExtBook test object to represent the control.

 c Deciding the details for the new test object class:

➤ The new test object class is represented by the icon file:
<QuickTest installation folder>\Dat\Extensibility\Web\Toolkits\
WebExtSample\res\WebBook.ico

➤ No Help file is provided.

➤ The new identification properties to support are: title, authors, price, and
min_used_price. They should all be displayed (and selected by default) in
the QuickTest Checkpoint Properties dialog box, none are used for Smart
Identification.

The identification properties that uniquely define the object are the
book’s title and the names of its authors.

➤ The name of the test object itself should be the same as its title
identification property.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

114

➤ The custom support should include support for the following test object
methods:

➤ Select. Simulates clicking the book’s title or image. This is the default
test object method.

➤ GoToAuthorPage. Simulates clicking the specified author name (the
available author names should be retrieved from the specific control
during run-time).

➤ GoToUsedBooksPage. Simulates clicking the Used link.

➤ To support a dynamic list of values, you must modify the toolkit
configuration file (to specify the JavaScript function that provides the
values) and design the relevant JavaScript functions.

 d Defining which of the control’s children QuickTest should learn when
learning the control:

For testing purposes, QuickTest should relate to all operations as though
they are carried out on the Book control itself, even if they are
technically performed on controls within it. Therefore, none of the
control’s children need to be learned and represented by test objects.

 e Deciding whether the Object Spy should display WebExtBook test
objects: Yes.

 f Defining whether to support recording, and what events to record:

Listen to mouse clicks that occur on the following elements in the
control: title, image, authors, and Used. When a click occurs on one of
these elements, record the relevant step in the test.

 g Deciding what parts of the support need to be designed in the toolkit
configuration file and what parts need JavaScript functions:

➤ For the simple Book control, test object class identification is based
simply on html property values and can therefore be supported using the
toolkit configuration file without JavaScript functions.

➤ Test object methods and identification properties can be supported by
JavaScript functions using the default naming convention, therefore no
changes are required in the toolkit configuration file.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

115

➤ Instructing QuickTest not to learn the control’s children can be designed
in the toolkit configuration file and does not require JavaScript
functions.

➤ To support recording, you modify the toolkit configuration file to turn
off the default Web Event Configuration and specify the JavaScript
function that registers QuickTest to listen to the correct event. In
addition, design one JavaScript function that handles event registration,
and additional JavaScript functions that instruct QuickTest to record the
relevant steps when the events occur.

Below, you can see the checklist, completed based on the information
above.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

116

Web Add-in Extensibility Planning Checklist

Custom Control Support Planning Checklist
Specify in
Toolkit
XML?

Support by
JavaScript
function?

The sources for this custom control are located in:
<QuickTest Professional Web Add-in Extensibility SDK installation
folder>\samples\WebExtSample\Application\Book.htm

n/a n/a

Specify the Web test object base class that the new test object class
extends: (Default—WebElement)
WebElement

n/a n/a

Is the base test object class WebElement? Yes

If No, is there a base element (an element that matches the base
test object class)?n/a

If there is a base element, do you need a JavaScript function to
return it? n/a

No No

Specify the New Web test object class details:

➤ Test object class name:WebExtBook
➤ Icon file location (optional):

<QuickTest installation folder>\Dat\Extensibility\Web\Toolkits\Web
ExtSample\res\WebBook.ico

➤ Identification properties for description:title, authors
➤ Default test object method:Select
➤ Help file location: n/a

n/a n/a

Specify the basis for identifying the test object class to use for the
control:
tagName = table, className = Book.

Yes No

Specify the basis for naming the test object:
Use the book title

n/a Yes

List the identification properties to support. Mark which should
be available (and which selected by default) for checkpoint sand
which (if any) should be used for Smart Identification:
title, authors, price, min_used_price (all available for checkpoints
and selected by default, none used for Smart Identification)

No Yes

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

117

List the test object methods to support (if required, include
arguments, return values, Help file location and Help ID):
Select ()
GoToAuthorPage (AuthorName)
GoToUsedBookPage ()

No Yes

Provide a dynamic list of values for any test object method
arguments?
Yes

If so, list the arguments:

AuthorName for GoToAuthorPage method

n/a Yes

Specify the types of children that QuickTest should learn with the
control:
None

Yes No

Display test objects of this class in the Object Spy?
Yes

No n/a

Provide support for recording?
Yes

If so, list the events that should trigger recording:

Clicks on title, image, author names, and Used

Yes Yes

Custom Control Support Planning Checklist
Specify in
Toolkit
XML?

Support by
JavaScript
function?

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

118

Developing the Toolkit Support Set

Follow the steps in this section to develop the toolkit support set for the
WebExtSample toolkit and learn the basics of Web Add-in Extensibility.
Developing this toolkit support set comprises the following stages:

➤ Stage 1: Creating the Toolkit Support Set, described on page 118

➤ Stage 2: Introducing the WebExtSample Environment to QuickTest,
described on page 119

➤ Stage 3: Teaching QuickTest to Identify, Spy, and Learn the Book Control,
described on page 122

➤ Stage 4: Implementing Support for the WebExtBook’s Test Object Methods,
described on page 126

➤ Stage 5: Implementing Support for the WebExtBook’s Identification
Properties, described on page 130

➤ Stage 6: Changing the Name of the Test Object, described on page 133

➤ Stage 7: Implementing a Filter to Prevent Learning Child Objects, described
on page 135

➤ Stage 8: Implementing Support for Recording on the Book Control,
described on page 137

➤ Stage 9: Implementing Support for Dynamic List of Values for AuthorName,
described on page 142

Stage 1: Creating the Toolkit Support Set
In this section, you create the files and folders that comprise the toolkit
support set for the WebExtSample toolkit.

To create the toolkit support set:

 1 Create a folder for your toolkit support set.

You can choose any convenient name and location for this folder.

 2 In the toolkit support set folder, create a file named
WebExtSampleTestObjects.xml. This is the test object configuration file.

 3 In the toolkit support set folder, create a folder named Toolkits.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

119

 4 In the Toolkits folder, create a folder named WebExtSample.

 5 In the Toolkits\WebExtSample folder, create the following:

➤ A file named WebExtSample.xml (This is the toolkit configuration file.)

➤ A file named WebExtBook.js (This is the file for all of the JavaScript
functions you design to support the Book control.)

➤ A folder named res containing the WebBook.ico icon file (You can copy
the icon file from <Web Add-in Extensibility installation folder>\
samples\WebExtSample\Toolkit Support Set\Toolkits\WebExtSample\
res.)

Stage 2: Introducing the WebExtSample Environment to
QuickTest
In this section, you introduce the WebExtSample environment to QuickTest,
using the toolkit configuration file and the test object configuration file.
The first layer of Web Add-in Extensibility is introducing the environment
to QuickTest. The toolkit configuration file informs QuickTest of the new
environment (and its name) and the test object configuration file describes
the test object model that you designed for the environment.

Designing the Toolkit Configuration File

The first role of the toolkit configuration file is informing QuickTest of the
new supported environment.

To inform QuickTest that a new environment is supported, it is sufficient to
create a basic toolkit configuration file, whose name is the same as the
environment name. A basic toolkit configuration file must contain one
Controls element with at least one Control element (describing one test
object class). For more information on the elements and attributes in the
toolkit configuration file, see the QuickTest Web Add-in Extensibility Toolkit
Configuration Schema Help (available with the Web Add-in Extensibility SDK
online Help).

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

120

To inform QuickTest about the WebExtSample environment:

Enter the following text in the WebExtSample.xml file that you created in
“Stage 1: Creating the Toolkit Support Set” on page 118:

<?xml version="1.0" encoding="UTF-8"?>
<Controls>

<Control TestObjectClass="WebExtBook"/>
</Controls>

After you deploy this file to the correct location on a QuickTest computer,
when QuickTest opens, it displays the WebExtSample environment in the
Add-in Manager, as a child node beneath the Web Add-in. If you select the
check box for the WebExtSample, QuickTest loads the support that you
provide for this environment.

Later in this lesson you will add additional elements within this Control
element, providing the location of the JavaScript functions that complete
the toolkit support set and information that provides support for the
following QuickTest abilities:

➤ Identifying the test object class used to represent the control (to support the
Object Spy and learning controls)

➤ Filtering child controls when learning the control

➤ Listening to events on the control to record test steps

Designing the Test Object Configuration File

You use the test object configuration file to introduce the WebExtSample
environment and its test object model to QuickTest.

The PackageName attribute in the TypeInformation element associates this
test object configuration file (and the test objects defined in it) with the
WebExtSample environment. If, when QuickTest opens, you do not select
the WebExtSample environment, QuickTest ignores the test object class
definitions in this file.

For more information on the elements and attributes in the test object
configuration file, see the QuickTest Test Object Schema Help (available with
the Web Add-in Extensibility SDK online Help).

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

121

To define the WebExtSample test object model in the test object
configuration file:

Enter the text below in the WebExtSampleTestObjects.xml file that you
created in “Stage 1: Creating the Toolkit Support Set” on page 118. This
defines the WebExtSample environment and the WebExtBook test object
class according to the details described in the “Web Add-in Extensibility
Planning Checklist” on page 116.

<?xml version="1.0" encoding="UTF-8"?>
<TypeInformation Load="true" AddinName="Web" PackageName="WebExtSample">
<ClassInfo BaseClassInfoName="WebElement"

DefaultOperationName="Select"
Name="WebExtBook">

<IconInfo IconFile=
"INSTALLDIR\dat\Extensibility\Web\Toolkits\WebExtSample\res\WebBook.ico"/>

<TypeInfo>
<Operation ExposureLevel="CommonUsed"

Name="Select"
PropertyType="Method">

<Description>Selects the book.</Description>
<Documentation><![CDATA[Select the %l book.]]></Documentation>

</Operation>
<Operation ExposureLevel="CommonUsed"

Name="GoToAuthorPage"
PropertyType="Method">

<Description>Opens the Web page for the specified author.</Description>
<Documentation><![CDATA[Open the Web page for %a1.]]></Documentation>
<Argument Name="AuthorName"

IsMandatory="true" Direction="In"
DynamicListOfValues="true">

<Type VariantType="String"/>
<Description>The author.</Description>

</Argument>
</Operation>
<Operation ExposureLevel="CommonUsed"

Name="GoToUsedBooksPage"
PropertyType="Method">

<Description>Opens the used books page.</Description>
<Documentation><![CDATA[Open the %l used books page.]]></Documentation>

</Operation>
</TypeInfo>
<IdentificationProperties>

<IdentificationProperty ForDefaultVerification="true" ForVerification="true"
ForDescription="true" Name="title"/>

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

122

<IdentificationProperty ForDefaultVerification="true" ForVerification="true"
ForDescription="true" Name="authors"/>

<IdentificationProperty ForDefaultVerification="true" ForVerification="true"
ForDescription="false" Name="price"/>

<IdentificationProperty ForDefaultVerification="true" ForVerification="true"
ForDescription="false" Name="min_used_price"/>

</IdentificationProperties>
</ClassInfo>
</TypeInformation>

Stage 3: Teaching QuickTest to Identify, Spy, and Learn
the Book Control
To support a custom control, QuickTest must be able to identify which test
object class should represent a given control. Therefore, the most basic
element of Web Add-in Extensibility is the Identification element, defined
within each Control element in the toolkit configuration file. Each Control
element defines a test object class. The Identification element specifies
which controls should be represented by that test object class.

When QuickTest needs to recognize a control in the application being
tested, it checks the Identification element defined for each test object class.
The first test object class whose Identification definition matches the control
is used to represent the control.

As described in “Planning Support for the Web Add-in Extensibility Book
Sample Toolkit” on page 109, any control whose tagName property is table
and whose className property is Book is represented by a WebExtBook test
object. This can be defined simply in the toolkit configuration file and does
not require using JavaScript functions.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

123

To define the identification rules for the WebExtBook test object class:

Replace the text in the WebExtSample.xml file with the following text:

<?xml version="1.0" encoding="UTF-8"?>
<Controls>

<Control TestObjectClass="WebExtBook">
<Identification>

<Conditions type="IdentifyIfPropMatch" logic="and">
<Condition prop_name="tagName" expected_value="TABLE"/>
<Condition prop_name="className" expected_value="Book"/>

</Conditions>
</Identification>

</Control>
</Controls>

This adds an Identification element to the Control element that defines the
WebExtBook test object class. The Identification element includes one
Conditions element that contains two conditions, both of which must be
met for the control to qualify as a WebExtBook. The Condition elements
within the Conditions element specify one condition each. In each
condition, the value of the specified HTML property of the control must
match (case-insensitive compare) the specified expected value.

For more information on defining the Identification element for a test
object class, see “Teaching QuickTest to Identify the Test Object Class to Use
for a Custom Web Control” on page 75 and the QuickTest Web Add-in
Extensibility Toolkit Configuration Schema Help (available with the Web Add-in
Extensibility SDK online Help).

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

124

Deploying and Testing the Toolkit Support Set

After defining the WebExtBook test object class in the test object
configuration file and the identification rules for this test object class in the
toolkit configuration file, you can already test the effect of using the toolkit
support set with QuickTest.

To deploy the toolkit support set:

 1 Copy the WebExtSampleTestObjects.xml file to <QuickTest installation
folder>\dat\Extensibility\Web.

 2 In the <QuickTest installation folder>\dat\Extensibility\Web\Toolkits
folder, create a folder named WebExtSample.

 3 Copy the WebExtSample.xml file to the <QuickTest installation
folder>\dat\Extensibility\Web\Toolkits\WebExtSample folder.

 4 In the <QuickTest installation folder>\dat\Extensibility\Web\Toolkits\
WebExtSample folder, create a folder named res.

 5 Place the WebBook.ico file in <QuickTest installation
folder>\dat\Extensibility\Web\Toolkits\WebExtSample\res folder.

To test the toolkit support set:

 1 After you deploy the toolkit support set, open QuickTest.

Note: QuickTest reads toolkit support files when it opens. Therefore, if
QuickTest is open, you must close QuickTest and open it again.

The Add-in Manager dialog box displays the WebExtSample as a child of the
Web environment in the list of available add-ins. (If the Add-in Manager
dialog box does not open, see the HP QuickTest Professional Add-ins Guide for
instructions.)

 2 Select the check box for WebExtSample and click OK. QuickTest opens and
loads the support you designed.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

125

 3 Run the sample control from Start > Programs > QuickTest Professional >
Extensibility > Samples > Web Add-in Extensibility Book Sample.

Note: QuickTest establishes its connection with an application when the
application opens. Therefore, if the Book control is open, you must close it
and run it again.

 4 Perform the following QuickTest operations on the Book control, to see how
QuickTest recognizes the control:

➤ Use the Object Spy to view the test object properties and test object methods
that are supported for the Book control. The test object created for the Book
control is given the name of its test object class. Later in this lesson, you
customize your toolkit support set to provide a more specific name.

➤ Use the Add Objects to Local button in the Object Repository dialog box to
learn the Book control. Ensure that the correct icon is used to represent the
test object in the object repository.

➤ In the Keyword View, create a test step choosing the WebExtBook object
from the object repository in the Item column.

➤ The list of available operations in the Operation column reflects the
definitions in the test object configuration file.

➤ After you choose an operation, the Value cell is partitioned according to
the number of arguments of the selected operation, and if you defined
possible values for the operation (in the ListOfValues element), they are
displayed in a list. For example, when you create a step with the
operation GoToAuthorPage, the value cell requires one argument and
displays the argument’s Name attribute in a tooltip. The AuthorName
argument currently accepts any string. Later in this lesson, you develop
support for dynamically providing a list of the authors that can be used
for this argument.

➤ The descriptions and documentation strings you defined for test object
methods in the test object configuration file are displayed in tooltips and
in the Documentation column, respectively.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

126

➤ In the Expert View, create a test step with a WebExtBook test object.
Intellisense displays all of the operations available for the test object, and
possible input values for these operations, if relevant, based on the
definitions in the test object configuration file.

For more information on working with these options in QuickTest, see the
HP QuickTest Professional User’s Guide.

 5 Run a test with a step that performs a test object method on a WebExtBook
test object. QuickTest searches for a JavaScript function that will run the test
object method on the control. Because you have not yet implemented
support for running test object methods, a run-time error occurs. In the next
section, you implement this support.

Stage 4: Implementing Support for the WebExtBook’s
Test Object Methods
After enabling QuickTest to recognize the custom controls, you must
provide support for running test object methods. For each test object
method that you defined in the test object configuration file, you must
write a JavaScript function that QuickTest runs to perform the step on the
control.

In the toolkit configuration file, you need to specify the JavaScript file in
which QuickTest should look for the JavaScript functions and, optionally,
the name of the function to use for each test object method.

In this section, you provide support for the WebExtBook’s test object
methods: Select, GoToAuthorPage (AuthorName), and GoToUsedBooksPage.

It is possible to specify a JavaScript file and function for each test object
method in the toolkit configuration file. However, in this lesson, you
develop support for running test object methods in the simplest way
possible. At the Control element level, you define one JavaScript file that
QuickTest uses by default for all test objects methods defined within this
element. As for the JavaScript function names, by default, QuickTest
searches in the specified file for a JavaScript function with the same name as
the test object method. Therefore, you do not need to specify the function
names in the toolkit configuration file, but only to create the JavaScript
functions with the correct names.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

127

To develop support for the WebExtBook test object methods:

 1 In the WebExtSample.xml file, within the Control element defined for the
WebExtBook test object class, add the following Settings element:

<Settings>
<Variable name="default_imp_file" value="WebExtBook.js"/>

</Settings>

This instructs QuickTest to search for JavaScript functions in the
WebExtBook.js file (in the <QuickTest installation
folder>\dat\Extensibility\Web\Toolkits\WebExtSample folder).

Note: You can modify the WebExtSample.xml file in the toolkit support set
folder and then later deploy it to QuickTest for testing, or you can modify
<QuickTest installation folder>
\dat\Extensibility\Web\Toolkits\WebExtSample\WebExtSample.xml
directly.

 2 In the WebExtBook.js file that you created in “Stage 1: Creating the Toolkit
Support Set” on page 118, paste the text below to create JavaScript functions
for each test object method: Select, GoToAuthorPage (AuthorName), and
GoToUsedBooksPage.

Note: The _elem object is a reserved object that QuickTest uses to refer to the
HTML control currently being handled.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

128

// Run implementation
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// This section contains the functions that carry out the test object methods.

function Select()
{ // Click the link in the second cell of the first row.

_elem.rows[0].cells[1].children[0].click();
}

function GoToAuthorPage(AuthorName)
{ // Look for the specified author name among the children of the first cell

// in the second row and click it.
var bWasFound = false;
for(var i = 0 ; i < _elem.rows[1].cells[0].children.length ; ++i)
{

if(_elem.rows[1].cells[0].children[i].innerText == AuthorName)
{

_elem.rows[1].cells[0].children[i].click();
bWasFound = true;
break;

}
}
if(bWasFound == false)

throw ("Author name not found !");
}

function GoToUsedBooksPage()
{ // Click the link in the first cell of the third row.

_elem.rows[3].cells[0].children[1].click();
}

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

129

Deploying and Testing the Toolkit Support Set

After developing support for running the test object methods, you deploy
the updated toolkit support set to QuickTest and test it.

To test the support for running test object methods:

 1 To deploy the updated toolkit support set to QuickTest, copy the
WebExtBook.js file (and WebExtSample.xml if necessary) to <QuickTest
installation folder>\dat\Extensibility\Web\Toolkits\WebExtSample.

 2 Close and reopen QuickTest. Select the check box for WebExtSample in the
Add-in Manager dialog box and click OK. QuickTest opens and loads the
support you designed.

 3 Close and rerun the sample control from Start > Programs > QuickTest
Professional > Extensibility > Samples > Web Add-in Extensibility Book
Sample.

 4 Use the Add Objects to Local button in the Object Repository dialog box to
learn the Book control.

 5 Create a test with the following step and then run the test:

Browser("Book").Page("Book").WebExtBook("WebExtBook").GoToAuthorPage
"Jane Doe"

Note: If you run the GoToAuthorPage test object method with an author
name that does not exist in the control, the JavaScript function throws an
exception, QuickTest displays a run-time error message and the test step
fails.

Create and run similar tests to test the Select and GoToUsedBooksPage test
object methods.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

130

Stage 5: Implementing Support for the WebExtBook’s
Identification Properties
In this section you implement support for retrieving the values of
identification properties during a test run. QuickTest uses identification
property run-time values in different standard test object methods, such as
GetROProperty. Identification property run-time values are also required for
different basic capabilities, such as creating checkpoints and outputting
values.

To support retrieving the run-time values of identification properties, you
need to implement a JavaScript function that accepts a PropertyName
parameter and returns the value of any property QuickTest requests. You
must implement this method to return a value for each identification
property defined in the test object configuration file.

In the toolkit configuration file, you can specify the JavaScript file in which
you implemented the JavaScript function that retrieves property values. You
can also specify the name of the function that you implemented for this
purpose. However, if you do not specify a function name, QuickTest calls
get_property_value (PropertyName) and this is the function that you must
implement. If you do not specify a file name, QuickTest calls the function
from the JavaScript file you specified in the Control\Settings element.
Therefore, in this lesson, you create the get_property_value function in the
WebExtBook.js file.

To support retrieving the run-time values of the WebExtBook’s
identification properties:

Add the following lines to the WebExtBook.js file:

// Property retrieval implementation
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// The function provides values for all of the identification properties defined in
// the test object configuration XML file.

function get_property_value(prop)
{

if (prop == "title")
// For the "title" identification property,
// Return the inner text of the second cell in the first row

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

131

{
return _elem.rows[0].cells[1].innerText;

}

if (prop == "authors")
// To return a list of all the authors, look for all the children
// of the first cell in the second row.
{

var BookAuthors = "";
var AuthorsCount = 0;
for(var i = 0 ; i < _elem.rows[1].cells[0].children.length ; ++i)
{

if(_elem.rows[1].cells[0].children[i].tagName == "A")
{

if(AuthorsCount > 0)
BookAuthors += ",";

BookAuthors += _elem.rows[1].cells[0].children[i].innerText;
AuthorsCount++;

}
}
return BookAuthors;

}

if (prop == "price")
// To return the price of the book, return the innerText property of the
// first cell in the fourth row.
{

return _elem.rows[3].cells[0].children[0].innerText;
}

if (prop == "min_used_price")
// To return the lowest price available for a used copy of the book,
// return the innerText property of the second child of the first cell
// in the fourth row.
{

if(_elem.rows[3].cells[0].children.length > 2)
return _elem.rows[3].cells[0].children[2].innerText;

}
}

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

132

Note: You can modify the WebExtBook.js file in the toolkit support set
folder and then later deploy it to QuickTest for testing, or you can modify
<QuickTest installation folder>
\dat\Extensibility\Web\Toolkits\WebExtSample\WebExtBook.js directly.

Deploying and Testing the Toolkit Support Set

After developing support for retrieving run-time values of identification
properties, you deploy the updated toolkit support set to QuickTest and test
it.

To test the support for retrieving run-time values of identification
properties:

 1 Make sure that your most updated files are located in <QuickTest
installation folder>\dat\Extensibility\Web\Toolkits\WebExtSample.

 2 Close and reopen QuickTest. Select the check box for WebExtSample in the
Add-in Manager dialog box and click OK. QuickTest opens and loads the
support you designed.

 3 Close and rerun the sample control from Start > Programs > QuickTest
Professional > Extensibility > Samples > Web Add-in Extensibility Book
Sample.

 4 Create a new test, add a WebExtBook test object to your object repository,
and create a test step with this test object. Right-click the object and select
Insert Standard Checkpoint. The Checkpoint Properties dialog box opens.
Make sure that the identification properties you defined in the test object
configuration file (title, authors, price, and min_used_price) are included in
the list of properties and are selected.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

133

 5 Create and run a test that retrieves each identification property and checks
its value, or displays it in a message box. For example, you can run the
following test:

The first step checks the value of the authors property, the checkpoint in the
second step checks the properties selected in the checkpoint (in this case
price and min_used_price) and the third step displays the book’s title in a
message box.

 6 Click OK to close the message box. The test run is completed and the test
results are displayed. Expand the test results tree to view the step details.

Stage 6: Changing the Name of the Test Object
In this section, you modify the toolkit support set to instruct QuickTest to
name the WebExtBook test object according to its title, as per your plan
(“Planning Support for the Web Add-in Extensibility Book Sample Toolkit”
on page 109).

When QuickTest creates the test object that represents a control, it calls the
get_property_value function (used for retrieving test object identification
property values) with the argument logical_name to determine the name for
the test object. You can implement the get_property_value function
accordingly, to customize the name QuickTest gives the test object. If the
get_property_value function does not support the logical_name property,
the test object is given the name of the test object class (followed by an
index, if there is more than one object of the same test object class on the
same page).

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

134

To customize the name of the test object:

In the get_property_value function in the WebExtBook.js file, replace the
lines:

if (prop == "title")
// For the "title" identification property,

with the lines:

if (prop == "logical_name" || prop == "title")
// For the "title" identification property, as well as the "logical_name" property

Note: You can modify the WebExtBook.js file in the toolkit support set
folder and then later deploy it to QuickTest for testing, or you can modify
<QuickTest installation folder>
\dat\Extensibility\Web\Toolkits\WebExtSample\WebExtBook.js directly.

The get_property_value function now returns the same text for the
logical_name property that QuickTest uses to name the test object, as it does
for the title identification property. (Modify the comment that explains this
function accordingly. At the end of the comment, add the following: as well
as the hard coded "logical_name" property that QuickTest uses to name the test
object.)

Deploying and Testing the Toolkit Support Set

After developing support for naming the test object that represents the
control, you deploy the updated toolkit support set to QuickTest and test it.

To test the support for naming the WebExtBook test object:

 1 Make sure that your most updated files are located in <QuickTest
installation folder>\dat\Extensibility\Web\Toolkits\WebExtSample.

 2 Close and reopen QuickTest. Select the check box for WebExtSample in the
Add-in Manager dialog box and click OK. QuickTest opens and loads the
support you designed.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

135

 3 Close and rerun the sample control from Start > Programs > QuickTest
Professional > Extensibility > Samples > Web Add-in Extensibility Book
Sample.

 4 Open the Object Repository and use the Add Object to Local button to learn
the Book control. Make sure that the test object that QuickTest creates is
named The History of QuickTest Professional.

Stage 7: Implementing a Filter to Prevent Learning Child
Objects
When you instruct QuickTest to learn a Web page, the Define Object Filter
dialog box opens, enabling you to determine which of the Web page’s
descendants should be learned with it. When you select All object types,
instructing QuickTest to learn the WebExtBook control with its parent Web
page, all of the controls that the WebExtBook control contains are also
learned as children of that Web page (and siblings of the WebExtBook
control).

In the case of the Book control, there is no need to create test objects for all
of its children, as described in “Planning Support for the Web Add-in
Extensibility Book Sample Toolkit” on page 109.

To prevent QuickTest from learning all of the descendants of a control
supported by Web Add-in Extensibility, you can define a Learn Filter.
Complex filters can be implemented using a JavaScript function, in which
case you specify the location and name of the function in the toolkit
configuration file. Simple filters can be implemented directly in the toolkit
configuration file, without using JavaScript functions.

To prevent learning the controls contained in the Book control, a simple
filter is sufficient. Before you implement this filter, learn the Web page that
contains the Book control with all of its descendants to see that all of the
Book’s children are learned as well. To do this, you can follow the procedure
described in “Deploying and Testing the Toolkit Support Set” on page 136.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

136

To prevent learning the controls contained in the Book control:

In the WebExtSample.xml file, within the Control element defined for the
WebExtBook test object class, add the following Filter element:

<Filter>
<Learn learn_control="Yes" learn_children="No"/>

</Filter>

This instructs QuickTest to learn WebExtBook test objects when learning
their parent Web pages, but not to learn the child controls they contain.

Note: You can modify the WebExtSample.xml file in the toolkit support set
folder and then later deploy it to QuickTest for testing, or you can modify
<QuickTest installation folder>
\dat\Extensibility\Web\Toolkits\WebExtSample\WebExtSample.xml
directly.

Deploying and Testing the Toolkit Support Set

After defining the filter to prevent learning children, you deploy the
updated toolkit support set to QuickTest and test it.

To test the support for learning the WebExtBook test object without its
children:

 1 Make sure that your most updated files are located in <QuickTest
installation folder>\dat\Extensibility\Web\Toolkits\WebExtSample.

 2 Close and reopen QuickTest. Select the check box for WebExtSample in the
Add-in Manager dialog box and click OK. QuickTest opens and loads the
support you designed.

 3 Close and rerun the sample control from Start > Programs > QuickTest
Professional > Extensibility > Samples > Web Add-in Extensibility Book
Sample.

 4 Open a test and open the Object Repository. Use the Add Objects to Local
button in the Object Repository dialog box to learn the Web page that
contains the Book control. The Define Object Filter dialog box opens.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

137

 5 Select All object types and click OK. The WebExtBook object named The
History of QuickTest Professional is added to the object repository, but the
controls in contains are not.

Stage 8: Implementing Support for Recording on the
Book Control
By this point in the tutorial, your toolkit support set already enables full
QuickTest functionality. QuickTest recognizes the Book control, can learn it
and can run tests on it.

An additional, optional way to create tests in QuickTest is by recording
operations that a user performs on the application. As you can see in
“Planning Support for the Web Add-in Extensibility Book Sample Toolkit”
on page 109, by default QuickTest records plain click operations on the
various Web link and image objects within the Book control. It would be
more helpful to record Select, GoToAuthorPage, and GoToUsedBooksPage
operations on the Book control itself, in response to those same clicks.

To support customized recording on your control, you must instruct
QuickTest to listen to the relevant events and inform QuickTest what test
steps to record in response to each event.

To do this you write two types of JavaScript functions:

➤ One JavaScript function uses the RegisterForEvent function in the _util
utility object that QuickTest exposes in the Web Add-in Extensibility SDK
to register for listening to the correct events on the correct elements. The
arguments of this function also determine what JavaScript functions
QuickTest calls when each event occurs.

In the toolkit configuration file, you specify the name and, optionally,
the location of this JavaScript function.

➤ One or more JavaScript functions that handle the events by calling the
Record function in the _util utility object to inform QuickTest what step
to add to the test.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

138

Note: The Record function, and other utility object functions, require a
SafeArray type argument. To convert an array to a SafeArray, you can use
the toSafeArray (array) function that Web Add-in Extensibility provides.
This function is defined in <Web Add-in Extensibility installation
folder>\dat\Extensibility\Web\
Toolkits\common.js.

For information on the syntax of the utility object functions, see the
QuickTest Web Add-in Extensibility API Reference (available with the Web
Add-in Extensibility SDK online Help).

To develop support for recording on the Book control:

Note: You can modify the WebExtSample.xml and WebExtBook.js files in
the toolkit support set folder and then later deploy them to QuickTest for
testing, or you can modify these files in <QuickTest installation folder>
\dat\Extensibility\Web\Toolkits\WebExtSample directly.

 1 In the toolkit configuration file, within the Control element add the
following Record\EventListening element:

<Record>
<EventListening

use_default_event_handling_for_children="false"
use_default_event_handling="false"
type="javascript" function="ListenToEvents"/>

</Record>

This instructs QuickTest not to use the default Web Event Configuration for
handling events on the Book control and its children, but to call the
JavaScript function ListenToEvents. Because you did not specify a JavaScript
file, QuickTest looks for the JavaScript function in the WebExtBook.js file
that you specified at the Control level for the WebExtBook test object class.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

139

 2 In the WebExtBook.js file, add the following ListenToEvents function:

function ListenToEvents(elem)
{

// Connect to the "Select" event: When the book name or the book icon is
// clicked, call OnSelectClicked.
_util.RegisterForEvent(_elem.rows[0].cells[0].children[0], "onclick" ,

"OnSelectClicked");
_util.RegisterForEvent(_elem.rows[0].cells[1].children[0], "onclick" ,

"OnSelectClicked");

// Connect to the "Author" event: When an author name is clicked, call
// OnAuthorClicked.
for(var i = 0 ; i < _elem.rows[1].cells[0].children.length ; ++i)
{

if(_elem.rows[1].cells[0].children[i].tagName == "A")
{

_util.RegisterForEvent(_elem.rows[1].cells[0].children[i], "onclick" ,
"OnAuthorClicked");

}
}

// Connect to the "UsedBooks" event: When "Used" is clicked, call
// OnUsedBooksClicked.
if(_elem.rows[3].cells[0].children.length > 1)

_util.RegisterForEvent(_elem.rows[3].cells[0].children[1], "onclick" ,
"OnUsedBooksClicked");

return true;
}

This function registers QuickTest to listen to click events on the book’s title,
image, and authors, and on the Used link. When registering for an event,
this function specifies what JavaScript function QuickTest must call when
the event occurs.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

140

 3 In the WebExtBook.js file add the following event handler JavaScript
functions:

function OnSelectClicked(handlerParam , eventObj)
{

// Record the "Select" step
var arr = new Array();
_util.Record("Select", toSafeArray(arr) , 0);
return true;

}

function OnAuthorClicked(handlerParam , eventObj)
{

// Record the "GoToAuthorPage" step
var arr = new Array();
arr[0] = eventObj.srcElement.innerText;
_util.Record("GoToAuthorPage", toSafeArray(arr) , 0);
return true;

}

function OnUsedBooksClicked(handlerParam , eventObj)
{

// Record the "GoToUsedBooksPage" step
var arr = new Array();
_util.Record("GoToUsedBooksPage", toSafeArray(arr) , 0);
return true;

}

These functions record Select, GoToAuthorPage, and GoToUsedBooksPage
on the WebExtBook test object, as planned in “Planning Support for the
Web Add-in Extensibility Book Sample Toolkit” on page 109.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

141

Deploying and Testing the Toolkit Support Set

After developing the support for recording on the Book control, you deploy
the updated toolkit support set to QuickTest and test it.

To test the support for recording operations performed on the Book
control:

 1 Make sure that your most updated files are located in <QuickTest
installation folder>\dat\Extensibility\Web\Toolkits\WebExtSample.

 2 Close and reopen QuickTest. Select the check box for WebExtSample in the
Add-in Manager dialog box and click OK. QuickTest opens and loads the
support you designed.

 3 Close and rerun the sample control from Start > Programs > QuickTest
Professional > Extensibility > Samples > Web Add-in Extensibility Book
Sample.

 4 Click the Record button or choose Automation > Record. Click on different
links in the Book control (you must return to the previous page after each
click, to return to the Book control): the book title, the image in the control,
an author name, and the Used link.

With each click, a new step is added to the test:

Click the Stop button or choose Automation > Stop to end the recording
session.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

142

Stage 9: Implementing Support for Dynamic List of Values
for AuthorName
Using Web Add-in Extensibility, you can provide the QuickTest user a list of
possible values to use for a test object method argument, based on the
run-time values of the specific control. For example, the GoToAuthorPage
test object method of the WebExtBook test object class receives an
AuthorName argument. It is easier for the QuickTest users if they can select
an author name from a list of possibilities instead of typing the name.
However, this list is different for each WebExtBook control.

In the test object configuration file, you defined the DynamicListOfValues
attribute for the AuthorName argument as true, instructing QuickTest to
request the list of possible values from the control when creating a test step.

In the toolkit configuration file, you can specify the file name and function
name of the JavaScript function that QuickTest must call to retrieve the list
of values. By default, QuickTest requests the list of values by calling the
get_list_of_values JavaScript function from the WebExtBook.js file that you
specified at the Control level for the WebExtBook test object class. QuickTest
calls the JavaScript function for every argument whose DynamicListOfValues
attribute is set to true in the test object configuration file. The parameters
provided to this function indicate the test object method and argument for
which the values are being requested.

In this section, you implement the get_list_of_values JavaScript function, to
return the author names from the Book control.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

143

To provide a dynamic list of values for the AuthorName argument in the
GoToAuthorPage test object method:

In the WebExtBook.js file add the JavaScript functions:

// Dynamic list of values implementation
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
function get_list_of_values(method, argIndex)
{

// When creating a step with the GoToAuthorPage test object method,
// provide a list of the authors of this book, that can be used for the method's

// argument.
if (method == "GoToAuthorPage")
{

return get_GoToAuthorPage_list_of_values(argIndex);
}

return null;
}

function get_GoToAuthorPage_list_of_values(argIndex)
{

var arr = new Array();
if(argIndex > 1)

return toSafeArray(arr);

// Retrieve all authors
var AuthorsCount = 0;
for(var i = 0 ; i < _elem.rows[1].cells[0].children.length ; ++i)
{

if(_elem.rows[1].cells[0].children[i].tagName == "A")
{

arr[AuthorsCount]="\""+_elem.rows[1].cells[0].children[i].innerText+"\"";
AuthorsCount++;

}
}
return toSafeArray(arr);

}

This returns a list of the book’s authors, each enveloped in quotation marks.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

144

The Book custom control is now fully supported, according to the
specifications you decided on when planning your custom support.

Note: You can modify the WebExtSample.xml file in the toolkit support set
folder and then later deploy it to QuickTest for testing, or you can modify
<QuickTest installation folder>
\dat\Extensibility\Web\Toolkits\WebExtSample\WebExtSample.xml
directly.

Deploying and Testing the Toolkit Support Set

After implementing the get_list_of_values JavaScript function, you deploy
the updated toolkit support set to QuickTest and test that the dynamic list of
author names is properly provided.

To test the support for recording operations performed on the Book
control:

 1 Make sure that your most updated files are located in <QuickTest
installation folder>\dat\Extensibility\Web\Toolkits\WebExtSample.

 2 Close and reopen QuickTest. Select the check box for WebExtSample in the
Add-in Manager dialog box and click OK. QuickTest opens and loads the
support you designed.

 3 Close and rerun the sample control from Start > Programs > QuickTest
Professional > Extensibility > Samples > Web Add-in Extensibility Book
Sample.

 4 Open a test and create a step with a WebExtBook test object and the
GoToAuthorPage test object method. The names of the authors displayed
on the Book control are displayed in a drop-down menu in the Value
column in the Keyword View.

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

145

Lesson Summary

In this lesson you created a new test object class, WebExtBook, defining its
identification properties and test object methods. You created support for
the Book control, enabling QuickTest to recognize it as an WebExtBook test
object.

➤ You learned to understand the test object configuration file.

➤ You learned to understand the toolkit configuration file.

➤ You learned to support new identification properties and test object
methods.

➤ You learned to create a filter for preventing child controls from being
learned.

➤ You learned to support recording and you made use of the Record and
RegisterForEvent utility methods.

➤ You learned how to provide a dynamic list of values for a test object
argument.

Where Do You Go from Here?
For more information on the structure and content of a toolkit support set,
see “Developing Support for Your Toolkit” on page 59.

For more information on the structure and content of the test object
configuration file, see the QuickTest Test Object Schema Help (available with
the Web Add-in Extensibility SDK online Help).

For more information on the structure and content of the toolkit
configuration file, see the QuickTest Web Add-in Extensibility Toolkit
Configuration Schema Help (available with the Web Add-in Extensibility SDK
online Help).

For more information on the _util utility object methods, see the QuickTest
Web Add-in Extensibility API Reference (available with the Web Add-in
Extensibility SDK online Help).

Lesson 1 • Learning to Create QuickTest Support for a Simple Custom Web Control

146

In the next lesson you learn how to create support for the Used Books
custom control. The test object class that represents the Used Books control
extends the existing WebTable test object class. In developing QuickTest
support for this control you will learn to use some of the more advanced
options that Web Add-in Extensibility has to offer.

147

2
Learning to Create QuickTest Support for
a Complex Custom Web Control

In this lesson you create support for the Used Books control in the Web
Add-in Extensibility Book Sample toolkit. The test object class that
represents the Used Books control extends the existing WebTable test object
class. Creating support for the Used Books control teaches you how to use
some of the more advanced options of Web Add-in Extensibility.

In the lesson “Learning to Create QuickTest Support for a Simple Custom
Web Control” on page 107, you learned to create support for a simple
custom control. You are now familiar with the basics of Web Add-in
Extensibility, therefore this lesson explains only the more advanced
information.

The <QuickTest Professional Web Add-in Extensibility SDK installation
folder>\samples\WebExtSample\Toolkit Support Set folder contains a
complete toolkit support set for this sample to which you can refer while
you perform this lesson.

This chapter includes:

 ➤ Preparing for This Lesson on page 148

 ➤ Planning Support for the Web Add-in Extensibility Used Books Control
on page 149

 ➤ Developing the Toolkit Support Set on page 157

 ➤ Lesson Summary on page 174

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

148

Preparing for This Lesson

Before you extend QuickTest support for a custom control, you must have
access to its source file. You do not need to modify any of the custom
control’s sources to support it in QuickTest, but you do need to be familiar
with them. Make sure you know what elements and attributes comprise the
control, the events that may occur on this control, and so on. You use this
information when you design the support.

The source file for the Used Books control is located in <QuickTest
Professional Web Add-in Extensibility SDK installation
folder>\samples\WebExtSample\Application\UsedBooks.htm.

You can run the sample control from Start > Programs > QuickTest
Professional > Extensibility > Samples > Web Add-in Extensibility Book
Sample. The Book control opens. In the Book control, click Used to run the
Used Books control.

Run the control, open its source file, and study the control’s behavior and
implementation.

The Used Books control is implemented as a div element that comprises a
Web table containing information about the available used copies of this
book and radio buttons, and a Select link (outside the table element) used to
select a book from the list. Selecting a book and opening the page about the
selected book (which is not implemented in this sample) requires selecting
the radio button in the relevant row in the table and then clicking Select.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

149

Planning Support for the Web Add-in Extensibility Used
Books Control

In this section, you analyze how QuickTest currently recognizes the Used
Books control versus the way it should recognize it, based on your
knowledge of the control. Next, you determine the answers to the questions
in the “Understanding the Web Add-in Extensibility Planning Checklist” on
page 54, and fill in the “Web Add-in Extensibility Planning Checklist” on
page 155, accordingly.

The best way to do this is to analyze the Used Books control from a
QuickTest perspective on the one hand using the Object Spy, Keyword View,
and Record option, and on the other hand, to consider how the control is
implemented and the purposes for which it is used.

 1 Open QuickTest and Run the Used Books control.

Open QuickTest and load the Web Add-in.

Close any open instances of the Used Books control and open it by selecting
Start > Programs > QuickTest Professional > Extensibility > Samples > Web
Add-in Extensibility Book Sample and then clicking Used in the Book
control that opens.

 2 Use the Object Spy to view the Used Books test object methods.

In QuickTest, choose Tools > Object Spy or click the Object Spy toolbar
button to open the Object Spy dialog box. Click the Methods tab and select
Test Object Methods.

In the Object Spy dialog box, click the pointing hand, then click the Used
Books table.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

150

The Used Books control contains a Web table, for which QuickTest support
is built in, therefore it recognizes the control as a WebTable, named
according to the title of the table. The icon used for the test object is the
standard WebTable class icon. QuickTest ignores the div element, which is
actually the root of the Used Books control.

Close the Object Spy.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

151

 3 Record operations on the Used Books control.

In QuickTest, choose Automation > Record and Run Settings to open the
Record and Run Settings dialog box. In the Web tab, select Record and run
test on any open browser. Click OK.

Click the Record button or choose Automation > Record. In the Used Books
table, select one of the radio buttons and then click Select.

With each click, a new step is added to the test:

Click the Stop button or choose Automation > Stop to end the recording
session.

The recorded steps reflect the selection of the radio button and the clicking
of the link separately, and do not recognize these operations as related to the
Used Books control.

 4 Determine the custom toolkit to which the Used Books control belongs.

When you extend QuickTest support for a control you always do so in the
context of a toolkit. For the purpose of this tutorial, two custom Web
controls are grouped to form the custom toolkit named WebExtSample:
Book and UsedBooks.

You created the toolkit support set for this toolkit in the previous lesson. In
this lesson you add support for the Used Books control in the
WebExtSample toolkit support set.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

152

 5 Complete the custom control support planning checklist.

This section describes the required support for the Used Books control, and
then summarizes the information in the support planning checklist.

 a Choosing the test object class that represents the custom control:

The internal content of the Used Books control is implemented as a Web
table control because of the type of information it contains. For the
purpose of performing tests on the Used Books control and checking the
information it contains, it is appropriate that QuickTest recognize this
control as a table. However, to optimally support the Used Books control,
the test object that represents the control must support a SelectBook test
object method that selects a book from the table by selecting the radio
button in the correct row in the table, and clicking Select.

In addition, because the first row in the Used Books table contains the
column names, it would be helpful to replace (or override) the RowCount
test object method supported for WebTable objects to reduce the row
count and return the number of used copies available for this book. To
support the SelectBook test object method and override the
implementation of RowCount, you create a new test object class named
WebExtUsedBooks, which extends WebTable. You then teach QuickTest
to identify this test object class as the one that represents the Used Books
control.

 b Defining how QuickTest will identify which test object class to use to
represent the control:

If the following conditions are met, use a WebExtUsedBooks test object
to represent the control:

➤ The control’s tagName property is div.

➤ The tagName property of the control’s first child is table.

➤ The className property of the control’s first child is UsedBooks.

 c Deciding the details for the new test object class:

➤ The new test object class is represented by the icon file:
<QuickTest installation folder>\dat\Extensibility\Web\Toolkits\
WebExtSample\res\WebBookList.ico

➤ No Help file is provided.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

153

➤ The WebExtUsedBooks test object class needs to support all of the test
object methods supported by the WebTable test object class. In addition,
it needs to support a title identification property (used to uniquely
identify the control, and selected by default in the checkpoint properties
dialog box, not used for Smart Identification) and the SelectBook test
object method.

➤ All of the methods inherited from the base class, WebTable, can be
supported by the table element contained in the Used Books control.
However, because the table element is a not the root element of the
Used Books control, QuickTest does not recognize this element as the
base element. You must implement a JavaScript function that returns
the table element as the base element for the Used Books control. This
instructs QuickTest to use the table element to support the operations
inherited from the base WebTable test object class.

➤ The SelectBook test object method simulates selecting the radio
button for the specified book and clicking Select.

➤ The WebTable test object method RowCount needs to be overridden,
to return the actual number of books in the table instead of the
number of rows.

➤ The name of the test object itself should be the same as its title
identification property.

 d Defining which of the control’s children QuickTest should learn when
learning the control:

For the purpose of this tutorial, when a WebExtUsedBooks test object is
learned as part of a Web page, the radio buttons within in should be
learned as well.

 e Deciding whether the Object Spy should display WebExtUsedBooks test
objects: Yes.

 f Defining whether to support recording, and what events to record:

Listen to mouse clicks that occur on the Select link. When this link is
clicked, record a test step that selects the book whose radio button is
selected.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

154

 g Deciding what parts of the support need to be designed in the toolkit
configuration file and what parts need JavaScript functions:

➤ For the Used Books control, test object class identification is performed
by a JavaScript function, specified in the toolkit configuration file. To
avoid unnecessary calls to the JavaScript function, a condition element is
defined in the toolkit configuration file, instructing QuickTest to call the
JavaScript function only if the control is defined as a div element.

➤ The table base element must be returned by a JavaScript function
specified in the toolkit configuration file.

➤ Test object identification properties can be supported by JavaScript
functions using the default naming convention, therefore no changes are
required in the toolkit configuration file.

➤ The WebTable’s RowCount test object method is overridden by a new
implementation, provided by a JavaScript function named BookCount.
Therefore, the name of the function needs to be specified in the toolkit
configuration file.

➤ Filtering the children that are learned with the Used Books control is
done by calling a JavaScript function that needs to be specified in the
toolkit configuration file.

➤ To support recording, you modify the toolkit configuration file to turn
off the default Web Event Configuration and specify the JavaScript
function that registers QuickTest to listen to the correct event. In
addition, you design one JavaScript function that handles event
registration, and additional JavaScript functions that instruct QuickTest
to record the relevant steps when the events occur.

Below, you can see the checklist, completed based on the information
above.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

155

Web Add-in Extensibility Planning Checklist

Custom Control Support Planning Checklist
Specify in
Toolkit
XML?

Support by
JavaScript
function?

The sources for this custom control are located in:
<QuickTest Professional Web Add-in Extensibility SDK installation
folder>\samples\WebExtSample\Application\UsedBooks.htm

n/a n/a

Specify the Web test object base class that the new test object class
extends: (Default—WebElement)
WebTable

n/a n/a

Is the base test object class WebElement? No

If No, is there a base element (an element that matches the base
test object class)?Yes

If there is a base element, do you need a JavaScript function to
return it? Yes

Yes Yes

Specify the New Web test object class details:

➤ Test object class name: WebExtUsedBooks
➤ Icon file location (optional):

<QuickTest installation folder>\dat\Extensibility\Web\Toolkits\WebE
xtSample\res\WebBookList.ico

➤ Identification properties for description:title
➤ Default test object method:SelectBook
➤ Help file location: n/a

n/a n/a

Specify the basis for identifying the test object class to use for the
control:
tagName = div
tagName of 1st child = table
className of 1st child = UsedBooks.

Yes Yes

Specify the basis for naming the test object:
Use the Used Books table title

n/a Yes

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

156

List the identification properties to support, and mark which
should be available (and which selected by default) for
checkpoints and which (if any) should be used for Smart
Identification:
title (available for checkpoints and selected by default, not used
for Smart Identification)

No Yes

List the test object methods to support (if required, include
arguments, return values, Help file location and Help ID):
SelectBook (BookIndex)

RowCount

Yes Yes

Provide a dynamic list of values for any test object method
arguments?
No

If so, list the arguments:

n/a No

Specify the types of children that QuickTest should learn with the
control:
Radio buttons

Yes Yes

Display test objects of this class in the Object Spy?
Yes

No n/a

Provide support for recording?
Yes

If so, list the events that should trigger recording:

Click on Select

Yes Yes

Custom Control Support Planning Checklist
Specify in
Toolkit
XML?

Support by
JavaScript
function?

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

157

Developing the Toolkit Support Set

Follow the steps in this section to develop the toolkit support set for the
WebExtSample toolkit and learn more about Web Add-in Extensibility.
Developing this toolkit support set comprises the following stages:

➤ Stage 1: Expanding the Toolkit Support Set to Support an Additional
Control, described on page 157

➤ Stage 2: Teaching QuickTest to Identify, Spy, and Learn the Used Books
Control, described on page 159

➤ Stage 3: Implementing Support for the WebExtUsedBooks’ Test Object
Methods, described on page 164

➤ Stage 4: Implementing Support for the WebExtUsedBooks’ Identification
Properties and the Test Object Name, described on page 167

➤ Stage 5: Implementing a Filter to Prevent Learning Child Objects, described
on page 169

➤ Stage 6: Implementing Support for Recording on the Used Books Control,
described on page 171

Stage 1: Expanding the Toolkit Support Set to Support an
Additional Control
To add support for the Used Books control, you first add the definition for
the WebExtUsedBooks test object class to the
WebExtSampleTestObjects.xml file.

To expand the toolkit support set to support the Used Books control:

 1 Copy the icon file for the Used Books control, WebBookList.ico, from <Web
Add-in Extensibility installation folder>\samples\WebExtSample\Toolkit
Support Set\Toolkits\WebExtSample\res to the <toolkit support set
folder>\Toolkits\WebExtSample\res folder.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

158

 2 Add the following definition for the WebExtUsedBooks test object class to
the WebExtSampleTestObjects.xml file (within the TypeInformation
element, after the ClassInfo element for the WebExtBook test object class):

<ClassInfo BaseClassInfoName="WebTable" GenericTypeID="Table"
DefaultOperationName="SelectBook" Name="WebExtUsedBooks">
<IconInfo IconFile="INSTALLDIR\dat\Extensibility\Web\Toolkits\

WebExtSample\res\WebBookList.ico"/>
<TypeInfo>

<Operation ExposureLevel="CommonUsed" Name="SelectBook"
PropertyType="Method">

<Description>Selects the radio button for the specified book and clicks
Select.</Description>

<Documentation><![CDATA[Select the radio button for the book with
index %a1 and click Select.]]></Documentation>

<Argument Name="BookIndex" IsMandatory="true" Direction="In">
<Type VariantType="Integer"/>

</Argument>
</Operation>

</TypeInfo>
<IdentificationProperties>

<IdentificationProperty ForDefaultVerification="true"
ForVerification="true"
ForDescription="true" Name="title"/>

</IdentificationProperties>
</ClassInfo>

This defines the WebExtUsedBooks test object class according to the details
described in the “Web Add-in Extensibility Planning Checklist” on
page 155.

For more information on the elements and attributes in the test object
configuration file, see the QuickTest Test Object Schema Help (available with
the Web Add-in Extensibility SDK online Help).

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

159

Stage 2: Teaching QuickTest to Identify, Spy, and Learn
the Used Books Control
After you define the new test object class you must enable QuickTest to
identify the Web controls for which to use this test object class.

As described in “Planning Support for the Web Add-in Extensibility Used
Books Control” on page 149, a WebExtUsedBooks test object is used to
represent a control whose tagName property is div, if the tagName and
className properties of the control’s first child are table and UsedBooks
respectively.

For the WebExtUsedBooks test object class, identification is carried out by a
combination of Condition elements in the toolkit configuration file and a
JavaScript function.

To define the identification rules for the WebExtUsedBooks test object class:

 1 In the WebExtSample.xml file, within the Controls element, add the
following Control element for this test object type:

<Control TestObjectClass="WebExtUsedBooks">
<Settings>

<Variable name="default_imp_file" value="WebExtUsedBooks.js"/>
</Settings>
<Identification type="javascript" function="IsWebExtUsedBooks">

<Conditions type="CallIDFuncIfPropMatch" logic="and">
<Condition prop_name="tagName" expected_value="div"/>

</Conditions>
</Identification>

</Control>

This defines that QuickTest will look for JavaScript functions in the file
WebExtUsedBooks.js unless another file is specified. The Identification
element includes one Conditions element that specifies that if the tagName
property of the control being handled is div (case-insensitive compare), the
JavaScript function IsWebExtUsedBooks is called to identify whether to use
this test object class to represent the control.

 2 In the toolkit support set folder, in the Toolkits\WebExtSample folder, create
a file named WebExtUsedBooks.js (This is the file for all of the JavaScript
functions you design to support the Used Books control).

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

160

 3 In WebExtUsedBooks.js, add the following JavaScript function:

function IsWebExtUsedBooks()
{ // Verify that the tagName property is "div" and the className property of the

// first child (a TABLE element) is "UsedBooks".
var firstChild = _elem.children[0];
if (_elem.tagName == "DIV" &&

 firstChild.tagName == "TABLE" &&
 firstChild.className == "UsedBooks")
return true;

return false;
}

This JavaScript function checks whether the control meets the conditions
that determine that a control should be represented by a WebExtUsedBooks
test object.

Deploying and Testing the Toolkit Support Set

After defining the WebExtUsedBooks test object class in the test object
configuration file and the identification rules for this test object class in the
toolkit configuration file and JavaScript functions, you can test the effect of
using the toolkit support set with QuickTest.

To test the toolkit support set:

 1 Deploy the test object configuration file, toolkit configuration file, icon file,
and JavaScript file to their correct locations within the QuickTest
installation folder.

 2 Open QuickTest and load the WebExtSample support (select it in the Add-in
Manager dialog box).

 3 Run the sample control from Start > Programs > QuickTest Professional >
Extensibility > Samples > Web Add-in Extensibility Book Sample and click
Used.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

161

Note: QuickTest establishes its connection with an application when the
application opens. Therefore, if the Used Books control is open, you must
close it and run it again.

 4 Perform the following QuickTest options on the Used Books control, to see
how QuickTest recognizes the control:

➤ Use the Object Spy to view the test object properties and test object methods
that are supported for the Used Books control. No value is displayed for the
title property because you have not yet implemented a JavaScript function
that returns its value.

The test object created for the Used Books control is given the name of its
test object class, and uses the custom icon you defined. Later in this lesson,
you customize your toolkit support set to provide a more specific name.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

162

The WebExtUsedBooks test object includes all of the test object methods of
a WebTable test object, as well as the Select method that you defined in the
test object configuration file.

➤ Use the Add Objects to Local button in the Object Repository dialog box to
learn the Used Books control. The custom icon is used to represent the test
object in the object repository.

➤ In the Keyword View, create a test step choosing the WebExtUsedBooks
object from the object repository in the Item column.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

163

➤ The list of available operations in the Operation column reflects the
definitions in the test object configuration file. All of the test object
methods supported by WebTable test objects are available, because in the
test object configuration file, you defined that the WebExtUsedBooks test
object extends (and therefore inherits from) the WebTable test object
class.

➤ After you choose an operation, the Value cell is partitioned according to
the number of arguments of the selected operation. For example, when
you create a step with the operation SelectBook, the value cell requires
one argument and displays the argument’s Name attribute in a tooltip.

➤ The descriptions and documentation strings you defined for test object
methods in the test object configuration file are displayed in tooltips and
in the Documentation column, respectively.

➤ In the Expert View, create a test step with a WebExtBook test object.
Intellisense displays all of the operations available for the test object,
including the ones inherited from WebTable.

For more information on working with these options in QuickTest, see the
HP QuickTest Professional User’s Guide.

 5 Run a test with a step that performs the SelectBook test object method on a
WebExtUsedBooks test object. QuickTest searches for a JavaScript function
that will run the test object method on the control. Because you have not
yet implemented support for running test object methods, a run-time error
occurs. In the next section, you implement this support.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

164

Stage 3: Implementing Support for the
WebExtUsedBooks’ Test Object Methods
In the test object configuration file you defined the test object methods
available for WebExtUsedBooks test objects. For QuickTest to run these test
object methods, the methods must actually be implemented.

You must provide implementation for different types of test object methods:

➤ Test object methods inherited from the WebTable base test object class

➤ Test object methods added for the new test object class

➤ Test object methods inherited from the base class that need to be
implemented differently

Implementing Test Object Methods Inherited from WebTable

In the test object configuration file, you defined that the WebExtUsedBooks
test object class extends the base class WebTable. For the inherited WebTable
test object methods that you do not override, QuickTest can use its internal
implementation by interacting with the table base element defined within
the Used Books control. Because the table element is not the root level of
the Used Books control, you must inform QuickTest that the table element
is the base element. To do this you must write a JavaScript function that
returns the base element, and specify its name in the toolkit configuration
file.

To instruct QuickTest to use the table Web element as the base element:

 1 In the WebExtSample.xml file, within the Settings element that you defined
in the Control element for the WebExtUsedBooks test object class, add the
following Variable element:

<Control TestObjectClass="WebExtUsedBooks">
<Settings>

<Variable name="func_to_get_base_elem" value="GetTableElem"/>
</Settings>

</Control>

This instructs QuickTest to call a JavaScript named GetTableElem (in the file
WebExtUsedBooks.js) to return the base element that supports the inherited
WebTable test object methods.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

165

 2 In the WebExtUsedBooks.js file, add the following JavaScript function:

function GetTableElem()
{

// Get the <table> element (the first child of the <div> element which is the
// root of the Used Books control)
return _elem.children[0];

}

This JavaScript function returns the table element, which is the first element
within the div element that defines the Used Books control. This element
supports the test object methods inherited from WebTable that are not
implemented by WebExtUsedBooks.

Other JavaScript functions that you write in this file can also use the
GetTableElem() function to access the table element in the Used Books
control.

Implementing the New Test Object Method SelectBook

To support the SelectBook test object method for the WebExtUsedBooks test
object class, write the SelectBook JavaScript function in
WebExtUsedBooks.js. This is the function that QuickTest calls to run the
SelectBook test object method. It simulates selecting the radio button for
the specified book, and clicking Select.

Add the following JavaScript function to the WebExtUsedBooks.js file:

function SelectBook(BookIndex)
// Select the radio button for the specified index and clicks the "Select" link.
{

if(BookIndex > BookCount())
throw "Book index is out of range !"

// Select the radio button corresponding to the specified index
GetTableElem().rows[1+BookIndex].cells[0].children[0].click();
// Click the "Select" link (the 3rd child of the <div> element)
_elem.children[2].click();
// Add a log message to the Event Viewer to assist in debugging
_util.LogLine("Book Selected",1);

}

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

166

Overriding the Implementation of the Inherited Test Object
Method RowCount

 1 In the WebExtSample.xml file, add the following Run element within the
Control element that defines the WebExtUsedBooks support.

<Run>
<Methods>

<Method name="RowCount" type="javascript"
function="BookCount" />

</Methods>
</Run>

This defines that the RowCount test object method is implemented by the
JavaScript function BookCount.

 2 In the WebExtUsedBooks.js file, add the BookCount JavaScript function,
which decreases the row count of the Used Books control, to return the
number of books in the table:

function BookCount()
// This function overrides the RowCount test object method inherited from
// WebTable, so that it counts only book rows.
{

var table = GetTableElem();
if(table.rows.length < 2)

return 0;
return table.rows.length - 2;

}

Deploying and Testing the Toolkit Support Set

After you develop support for running the test object methods, you deploy
the updated toolkit support set to QuickTest and test it.

To test the support for running test object methods:

 1 To deploy the updated toolkit support set to QuickTest, copy the
WebExtUsedBooks.js file (and WebExtSample.xml if necessary) to
<QuickTest installation folder>
\dat\Extensibility\Web\Toolkits\WebExtSample.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

167

 2 Close and reopen QuickTest. Select the check box for WebExtSample in the
Add-in Manager dialog box and click OK. QuickTest opens and loads the
support you designed.

 3 Close and rerun the sample control from Start > Programs > QuickTest
Professional > Extensibility > Samples > Web Add-in Extensibility Book
Sample. Click Used.

 4 Use the Add Objects to Local button in the Object Repository dialog box to
learn the Used Books control.

 5 Create a test that runs the SelectBook and RowCount methods and make
sure they perform correctly.

Stage 4: Implementing Support for the
WebExtUsedBooks’ Identification Properties and the Test
Object Name
In the WebExtUsedBooks.js file, implement the get_property_value as
follows:

function get_property_value(prop)
// The function provides values for all of the identification properties defined in
// the test object configuration XML file, as well as the hard coded "logical_name"
// property that QuickTest uses to name the test object.
{

if (prop == "logical_name" || prop == "title")
// For the "title" identification property, as well as the "logical_name"
// property, return the inner text of the first cell in the first row
{

return GetTableElem().rows[0].cells[0].innerText;
}

}

This function returns the title of the object for the title property, as well as
for the test object name.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

168

Note: You can modify the WebExtUsedBooks.js file in the toolkit support set
folder and then later deploy it to QuickTest for testing, or you can modify
<QuickTest installation folder>\dat\Extensibility\Web\Toolkits\
WebExtSample\WebExtUsedBooks.js directly.

Deploying and Testing the Toolkit Support Set

After you develop support for retrieving run-time values of identification
properties, you deploy the updated toolkit support set to QuickTest and test
it.

To test the support for retrieving run-time values of identification
properties:

 1 Make sure that your most updated files are located in <QuickTest
installation folder>\dat\Extensibility\Web\Toolkits\WebExtSample.

 2 Close and reopen QuickTest. Select the check box for WebExtSample in the
Add-in Manager dialog box and click OK. QuickTest opens and loads the
support you designed.

 3 Close and rerun the sample control from Start > Programs > QuickTest
Professional > Extensibility > Samples > Web Add-in Extensibility Book
Sample. Click Used.

 4 Create a new test, add a WebExtUsedBooks test object to your object
repository, and create a test step with this test object. Make sure that the test
object name is based on the table’s title. Right-click the object and select
Insert Standard Checkpoint. The Checkpoint Properties dialog box opens.
Make sure that the title identification property you defined in the test object
configuration file is included in the list of properties and selected.

 5 Create and run a test that retrieves each identification property and checks
its value, or displays it in a message box.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

169

Stage 5: Implementing a Filter to Prevent Learning Child
Objects
In this section, you create a filter to prevent QuickTest from learning all of
the Used Books control’s children along with the control.

You implement this in the toolkit configuration file and in the JavaScript
file.

To filter the children learned with the Used Books control:

 1 In the WebExtSample.xml file, within the Control element defined for the
WebExtBook test object class, add the following Filter element:

<Filter>
<Learn learn_control="Yes" learn_children="CallFilterFunc"

type="javascript" function="GetChildrenToLearn" />
</Filter>

This instructs QuickTest to learn WebExtUsedBooks test objects when
learning their parent Web pages, and to call the JavaScript function
GetChildrenToLearn to determine which children to learn. The JavaScript
function returns a SafeArray of the controls descendants that should be
learned with the control.

Note: You can modify the WebExtSample.xml file in the toolkit support set
folder and then later deploy it to QuickTest for testing, or you can modify
<QuickTest installation folder>
\dat\Extensibility\Web\Toolkits\WebExtSample\WebExtSample.xml
directly.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

170

 2 In the WebExtUsedBooks.js file, add the following functions:

// Learn filtering
// This function instructs QuickTest which child objects of a UsedBooksTable
// should be learned with the object is learned.

function GetChildrenToLearn()
{ // Return all of the radio buttons in the used books table

return toSafeArray(GetTableElem().getElementsByTagName("input"));
}

This ensures that only the radio buttons are learned, as planned in the
outset of this lesson.

Deploying and Testing the Toolkit Support Set

After defining the filter to customize learning children, you deploy the
updated toolkit support set to QuickTest and test it.

To test the support for learning the WebExtUsedBooks test object without
its children:

 1 Make sure that your most updated files are located in <QuickTest
installation folder>\dat\Extensibility\Web\Toolkits\WebExtSample.

 2 Close and reopen QuickTest. Select the check box for WebExtSample in the
Add-in Manager dialog box and click OK. QuickTest opens and loads the
support you designed.

 3 Close and rerun the sample control from Start > Programs > QuickTest
Professional > Extensibility > Samples > Web Add-in Extensibility Book
Sample. Click Used.

 4 Open a test and open the Object Repository. Use the Add Objects to Local
button in the Object Repository dialog box to learn the Web page that
contains the Used Books control. The Define Object Filter dialog box opens.

 5 Select All object types and click OK. The WebExtUsedBooks object named
The History of QuickTest is added to the object repository, as is the
SelUsedBook radio button group. However, none of the other element
contained in the control are learned.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

171

Stage 6: Implementing Support for Recording on the Used
Books Control
In this section, you implement support for recording on the Used Books
control.

 1 In the WebExtSample.xml file, and the following Record element within the
Control element that defines the WebExtUsedBooks class:

<Record>
<EventListening use_default_event_handling_for_children="false"

use_default_event_handling="false"
type="javascript" function="ListenToEvents"/>

</Record>

This instructs QuickTest not to use the default Web Event Configuration to
record events on the Used Books control, but to call the ListenToEvents
JavaScript function instead.

In the WebExtUsedBooks.js file add the ListenToEvents JavaScript function:

function ListenToEvents(elem)
{// Connect to the "Select" event:
//When "Select" is clicked, call OnSelectUsedBooksClicked.

_util.RegisterForEvent
(_elem.children[2], "onclick", "OnSelectUsedBooksClicked");

return true;
}

This function registers QuickTest to listen to clicks on the Select link, and
call the appropriate event handler when the event occurs.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

172

 2 In the WebExtUsedBooks.js file add the OnSelectUsedBooksClicked event
handling JavaScript function:

function OnSelectUsedBooksClicked(handlerParam , eventObj)
{

var arr = new Array();
var booksCount = BookCount();
// Find the index of the selected radio button and record a step that runs the
// SelectBook test object method with that index
var BookIndex = -1;
for(var i = 0 ; i < booksCount ; i++)
{

if(_elem.rows[2+i].cells[0].children[0].status == true)
{ // This is the selected item

arr[0] = i+1;
_util.Record("SelectBook", toSafeArray(arr) , 0);
_util.LogLine("SelectBook Recorded",1);
break;

}
}
return true;

}

This function checks which book’s radio button is selected, and instructs
QuickTest to record a step selecting that book (and add the relevant log
message to the Event Viewer).

Deploying and Testing the Toolkit Support Set

After developing the support for recording on the Used Books control, you
deploy the updated toolkit support set to QuickTest and test it.

To test the support for recording operations performed on the Used Books
control:

 1 Make sure that your most updated files are located in <QuickTest
installation folder>\dat\Extensibility\Web\Toolkits\WebExtSample.

 2 Close and reopen QuickTest. Select the check box for WebExtSample in the
Add-in Manager dialog box and click OK. QuickTest opens and loads the
support you designed.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

173

 3 Close and rerun the sample control from Start > Programs > QuickTest
Professional > Extensibility > Samples > Web Add-in Extensibility Book
Sample. Click Used.

 4 Click the Record button or choose Automation > Record. In the Used Books
table, select one of the radio buttons and then click Select.

A new step is added to the test only after you click Select:

Click the Stop button or choose Automation > Stop to end the recording
session.

The Book custom control is now fully supported, according to the
specifications you decided on when planning your custom support.

Lesson 2 • Learning to Create QuickTest Support for a Complex Custom Web Control

174

Lesson Summary

In this lesson you created a test object class, WebExtUsedBooks, that extends
the WebTable test object class. You created support for the Used Books
control, enabling QuickTest to recognize it as an WebExtUsedBooks test
object.

➤ You learned to understand more options in the toolkit configuration file.

➤ You learned to implement the support using more complex JavaScript
functions and specifying their location in the toolkit configuration file.

Where Do You Go from Here?
Now that you have performed the lessons in this tutorial, you are ready to
apply the Web Add-in Extensibility concepts and the skills you learned to
creating your own custom toolkit support.

For more information on the structure and content of a toolkit support set,
see “Developing Support for Your Toolkit” on page 59.

For more information on the structure and content of the test object
configuration file, see the QuickTest Test Object Schema Help (available with
the Web Add-in Extensibility SDK online Help).

For more information on the structure and content of the toolkit
configuration file, see the QuickTest Web Add-in Extensibility Toolkit
Configuration Schema Help (available with the Web Add-in Extensibility SDK
online Help).

For more information on the _util utility object methods, see the QuickTest
Web Add-in Extensibility API Reference (available with the Web Add-in
Extensibility SDK online Help).

175

A

Add-in Manager dialog box 101
Alert API function 74
API functions 73

Alert 74
LogLine 74
Record 74, 97
RegisterForEvent 74, 97
Report 74
toSafeArray 73

ASP .NET AJAX controls
support for 32, 60
support Help file 32

B

base class 66
base element 66

C

checklist 54, 57
example 116, 155

CommonIdentification XML element 75
Condition XML element 75, 77

examples 79
Conditions XML element 75, 77

examples 79
Control XML element 71
conventions. See typographical conventions
custom toolkit support

activating 102
debugging 84
deploying 102
filtering learned child controls 95
for identification properties 92
for recording 97

for test object methods 86
implementing 61
log messages 84
modifying 103
new test object classes 63
planning 51
planning checklist 54, 57

example 116, 155
planning for toolkit 53
planning per control 54
removing 103
testing 81

custom toolkit support set. See toolkit
support set

D

deploy toolkit support 102
Dynamic List of Values 89

E

_elem 73
EventListening XML element 97
Extensibility

example 22, 32
file locations 102
implementing 61
introduction 17
when to use 20
workflow 28

Extensibility SDK
install 31, 33
repair installation 40
uninstall 45

Index

Index

176

F

Filter XML element 95

G

get_list_of_values function 89
get_property_values function 92

H

Help file, in toolkit support set 70
HP Software Web site 13

I

IControlImplUtils interface 73
identification properties 19

support for 92
Identification XML element 75, 77

examples 79

J

JavaScript functions 73

K

Knowledge Base 12

L

Learn XML element 95
logical_name identification property 93
LogLine API function 74

M

Mercury Customer Support Web site 12
Mercury Tours 12

O

Object Model Reference, for supported
environment 70

online documentation 10
online resources 12
Operation XML element 86

P

planning checklist 54, 57
example 116, 155

properties. See identification properties

R

Readme 10
Record API function 74, 97
Record XML element 97
recording 20

support for 97
RegisterForEvent API function 74, 97
Report API function 74
Run XML element 86

S

samples, locating and using 32
Send Feedback 13
support See custom toolkit support

T

test object class
extend existing 66
identifying when to use 75
mapping to Web element 71, 75

test object classes 18
merging definitions 68

test object configuration file 63
test object identification properties. See

identification properties
test object methods 19

providing list of values for argument
89

support for 86
test object model, supporting 63
test object name, customizing 93
test object names 19
test object properties. See identification

properties
toolkit configuration file 71

Index

177

toolkit support set 61
Help file 70
JavaScript functions 73
test object configuration file 63
toolkit configuration file 71

toolkit support set See also custom toolkit
support

toSafeArray API function 73
tutorial

advanced 147
basic 107

typographical conventions 14

U

_util 73
utility interface 73
utility object 73

W

Web element, mapping to test object
class 71, 75

workflow 28
Working with Web Add-in Extensibility 15

Index

178

	HP QuickTest Professional Web Add-in Extensibility Developer’s Guide
	Table of Contents
	Welcome to This Guide
	How This Guide Is Organized
	Who Should Read This Guide
	QuickTest Professional Online Documentation
	Additional Online Resources
	Typographical Conventions

	Working with Web Add-in Extensibility
	Introducing QuickTest Professional Web Add-in Extensibility
	About QuickTest Professional Web Add-in Extensibility
	Identifying the Building Blocks of Web Add-in Extensibility
	Test Object Classes
	Test Object Names
	Test Object Identification Properties
	Test Object Methods
	Recording Events

	Deciding When to Use Web Add-in Extensibility
	Analyzing the Default QuickTest Support and Extensibility Options for a Sample Custom Control

	Understanding How to Implement Web Add-in Extensibility

	Installing the QuickTest Professional Web Add-in Extensibility SDK
	About Installing the QuickTest Professional Web Add-in Extensibility SDK
	Using the Web Add-in Extensibility Samples

	Installing the QuickTest Professional Web Add-in Extensibility SDK
	Repairing the QuickTest Professional Web Add-in Extensibility SDK Installation
	Uninstalling the QuickTest Professional Web Add-in Extensibility SDK

	Planning QuickTest Support for Your Toolkit
	About Planning QuickTest Support for Your Toolkit
	Preparing to Create Support for a Custom Toolkit
	Determining the Toolkit Related Information
	Determining the Support Information for Each Custom Control Type
	Understanding the Web Add-in Extensibility Planning Checklist
	Web Add-in Extensibility Planning Checklist

	Where Do You Go from Here?

	Developing Support for Your Toolkit
	About Custom Toolkit Support
	Creating a Custom Toolkit Support Set
	Introducing the Custom Toolkit’s Object Model to QuickTest
	Extending an Existing Test Object Class
	Understanding How QuickTest Merges Test Object Configuration Files
	Providing a Help File for Customized Test Object Classes

	Understanding the Toolkit Configuration File
	Designing JavaScript Functions for Your Toolkit Support Set
	Using the Utility Object Interface

	Teaching QuickTest to Identify the Test Object Class to Use for a Custom Web Control
	Using the Identification\Conditions Elements

	Testing the Toolkit Support Set During Development
	Logging and Debugging the Custom Support
	Implementing Support for Test Object Methods
	Supporting Dynamic Lists of Values for Method Arguments

	Implementing Support for Identification Properties
	Customizing the Test Object Name

	Implementing a Filter for Learning Child Controls
	Implementing Support for Recording

	Deploying the Toolkit Support Set
	About Deploying the Custom Toolkit Support
	Deploying the Custom Toolkit Support
	Removing Deployed Support

	Tutorial: Learning to Create Web Custom Toolkit Support
	Learning to Create QuickTest Support for a Simple Custom Web Control
	Preparing for This Lesson
	Planning Support for the Web Add-in Extensibility Book Sample Toolkit
	Web Add-in Extensibility Planning Checklist

	Developing the Toolkit Support Set
	Stage 1: Creating the Toolkit Support Set
	Stage 2: Introducing the WebExtSample Environment to QuickTest
	Stage 3: Teaching QuickTest to Identify, Spy, and Learn the Book Control
	Stage 4: Implementing Support for the WebExtBook’s Test Object Methods
	Stage 5: Implementing Support for the WebExtBook’s Identification Properties
	Stage 6: Changing the Name of the Test Object
	Stage 7: Implementing a Filter to Prevent Learning Child Objects
	Stage 8: Implementing Support for Recording on the Book Control
	Stage 9: Implementing Support for Dynamic List of Values for AuthorName

	Lesson Summary
	Where Do You Go from Here?

	Learning to Create QuickTest Support for a Complex Custom Web Control
	Preparing for This Lesson
	Planning Support for the Web Add-in Extensibility Used Books Control
	Web Add-in Extensibility Planning Checklist

	Developing the Toolkit Support Set
	Stage 1: Expanding the Toolkit Support Set to Support an Additional Control
	Stage 2: Teaching QuickTest to Identify, Spy, and Learn the Used Books Control
	Stage 3: Implementing Support for the WebExtUsedBooks’ Test Object Methods
	Stage 4: Implementing Support for the WebExtUsedBooks’ Identification Properties and the Test Object Name
	Stage 5: Implementing a Filter to Prevent Learning Child Objects
	Stage 6: Implementing Support for Recording on the Used Books Control

	Lesson Summary
	Where Do You Go from Here?

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /JPXEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG2000
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /JPXEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG2000
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings when submitting to HP. These settings require font embedding.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

