HP Project and Portfolio Management Center

Software Version: 7.1

Commands, Tokens, and Validations Guide and Reference

Document Release Date: March 2007 ®
Software Release Date: March 2007 (bﬁ l

invent

Legal Notices

This document, and the accompanying software and other documentation, is protected by U.S.
and international copyright laws, and may be used only in accordance with the accompanying
license agreement. Features of the software, and of other products and services of Mercury
Interactive Corporation, may be covered by one or more of the following patents: United States:
5,511,185; 5,657,438; 5,701,139; 5,870,559; 5,958,008; 5,974,572; 6,137,782; 6,138,157,
6,144,962; 6,205,122; 6,237,006; 6,341,310; 6,360,332, 6,449,739; 6,470,383; 6,477,483;
6,549,944; 6,560,564; 6,564,342; 6,587,969, 6,631,408; 6,631,411; 6,633,912; 6,694,288;
6,738,813; 6,738,933; 6,754,701; 6,792,460 and 6,810,494. Australia: 763468 and 762554. Other
patents pending. All rights reserved.

U.S. GOVERNMENT RESTRICTED RIGHTS. This Software Documentation is a “commercial
item” as defined at 48 C.F.R. 2.101 (October 1995). In accordance with 48 C.F.R. 12.212
(October 1995), 48 C.F.R. 27.401 through 27.404 and 52.227-14 (June 1987, as amended) and 48
C.F.R. 227.7201 through 227.7204 (June 1995), and any similar provisions in the supplements to
Title 48 of the C.F.R. (the “Federal Acquisition Regulation”) of other entities of the U.S.
Government, as applicable, all U.S. Government users acquire and may use this Documentation
only in accordance with the restricted rights set forth in the license agreement applicable to the
Computer Software to which this Documentation relates.

Mercury, Mercury Interactive, the Mercury logo, the Mercury Interactive logo, LoadRunner,
WinRunner, SiteScope and TestDirector are trademarks of Mercury Interactive Corporation and
may be registered in certain jurisdictions. The absence of a trademark from this list does not
constitute a waiver of Mercury's intellectual property rights concerning that trademark.

All other company, brand and product names may be trademarks or registered trademarks of their
respective holders. Mercury disclaims any responsibility for specifying which marks are owned
by which companies or which organizations.

Intel®, Intel® Itanium®, Intel® Xeon™, and Pentium® are trademarks or registered trademarks
of Intel Corporation or its subsidiaries in the United States and other countries.

Java™ is a U.S. trademark of Sun Microsystems, Inc.

Microsoft®, Windows®, and Windows® XP are U.S. registered trademarks of Microsoft
Corporation.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City, California.
UNIX® is a registered trademark of The Open Group.

Mercury provides links to external third-party Web sites to help you find supplemental
information. Site content and availability may change without notice. Mercury makes no
representations or warranties whatsoever as to site content or availability.

© 1997- 2007 Mercury Interactive Corporation. All rights reserved.

Documentation Updates

This manual’s title page contains the following identifying information:

m Software version number, which indicates the software version

m Document release date, which changes each time the document is updated

m Software release date, which indicates the release date of this version of the software

To check for recent updates, or to verify that you are using the most recent edition of a document,
go to: http://ovweb.external.hp.com/lpe/doc_serv/.

You will also receive updated or new editions if you subscribe to the appropriate product support
service. Contact your HP sales representative for details.

Support

Mercury Product Support

You can obtain support information for products formerly produced by Mercury as follows:

If you work with an HP Software Services Integrator (SVI) partner (www.hp.com/
managementsoftware/svi_partner list), contact your SVI agent.

If you have an active HP Software support contract, visit the HP Software Support site and use
the Self-Solve Knowledge Search to find answers to technical questions.

For the latest information about support processes and tools available for products formerly
produced by Mercury, we encourage you to visit the HP-Mercury Software Support web site
at: support.mercury.com.

Contact your HP Sales Representative if you have additional questions.

HP Software Support

You can visit the HP Software Support web site at www.hp.com/managementsoftware/services.

HP Software online support provides an efficient way to access interactive technical support
tools. As a valued support customer, you can benefit by using the support site to:

Search for knowledge documents of interest

Submit and track support cases and enhancement requests
Download software patches

Manage support contracts

Look up HP support contacts

Review information about available services

Enter into discussions with other software customers

Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also
require a support contract. To find more information about access levels, go to: www.hp.com/
managementsoftware/access_level.

To register for an HP Passport ID, go to: www.managementsoftware.hp.com/passport-
registration.html.

Table of Contents

List OF FIGUIES .evvetieiieiect ettt ettt ae et et e e sseenaebesseensesseennensens Xi
List OF TABlESeiieiiiieiiecieceeeee et e eanas xiii
Chapter 1: Getting Started with Commands, Tokens, and Validations...............cccceeueneen. 17
Introduction to Commands, Tokens, and Validationsooeeeimeeeeioieeeeeeeeeeeeeeeeeee e, 18
Related DOCUMENES........coiiieiieeiiciieetteteesie ettt ettt e ebe e e taesseenseenseenseesnees 19
Chapter 2: Using Commandsooueieierieieieieieiee e 21
ABOU COMMANGS ...ttt sttt ettt e st e st este et e enseenseesaenseenneas 22
Obiject Type Commands and Workflowscccoovirieiiieniinicccieeee e 22
Request Type Commands and Workflows............c.cocvevieiiiiiiiiiniiecceeee e 23

Special CoMMANMSocueiiiieiieiicceeeeee ettt 24
CommANd LONGUAGE -....ceneienieeiie ettt ettt ettt ettt e e e seeenseenee e 24
Command CoNdIIONSeoeiieiiieiieciie ettt ettt et e et eebeessseestaeeseessseesneas 25

About the Commands Tabcc.ooiiiiiiie e 26
Configuring CoOmMMOANGSccueriiiiieiieieieieet ettt et es e et e s e ssesseeseennas 27
Examples of Command USes............ccueruieiiiieiiiiiiniieieieiesie ettt nsesse s 30
Chapter 3: Using Special Commands.............cccovieiiiniiiieniieieieeeee e 33
About Special Commandscc.ceciiiiiiiiiciecc e 34
Special Command Parameters............ccuieeiieiiieeiieiieeieeeie et ere e ee et e veesaee e e saseeaee s 34
Special Command Language...........cuevuieriieiiieiecie et e 35
Special Command CondifioNScecuiiiiriiniieiieie et 35

Using the PPM Workbench to List Special Commandscccoecvveeiiriiinieniieiecieeeeenee, 36

About the Special Command Builder..............cccoooviieiiiiiiiiiieeee e 37
Configuring Special Commands..........ccueiiiiiiiiieieee e 37
Using Special Commands............coueriiiiiiiieiiieeeee ettt 42
Using the Special Command Buildercocoiiiiiiiiie e 43
Nesting Special Commandscoiieiiiiiieee e 44

Using the Special Command Details Report to List Special Commands...........ccccccuveienneeee. 44
Examples of Using Special Commandsccccveieieriiniiiieieiese et 45
Chapter 4: Using TOKENSc.ecuiiiiiiieieie ettt ees 47
ADOUE TOKENS ...ttt ettt et e e et eesbeessteesbeeeaseestneensaeeanas 48
WHhere 10 Use TOKENS...........ccouiiiiieieiieiieeie ettt ettt eve e eteessbeesaseebeessseeneas 48

Token EVAIUGHONc..eiiieie et nean 49

About the Token BUIlder...........cccveiuieiiiiiiiiciceceee e 50

TOKEN FOIMOES ... et e e e e e e et eeaeaaas 51

Default FOrMQceiiiiieiieiieet ettt 54
Explicit Entity FOrMOE ..c..oiuiiiiiiiiiiiieiecee e 55
Nesting Explicit Entity Tokens within Other Tokens..........cccooeiiiiiiiieniriceieeee 56

User Data FOrmat.......c.uviiiiiiiiiiiiiiic e 57
Parameter FOrmat........c...oooiiiiiiiiii s 58
Request Field TOKENSccouiiiiiiiiicic et 59
Request Field Token Prefixescccoveiiiiiieiieiiiieeeeeee e 59
Tokens in Request Table CompPonentscecuereririeienieneneeeeeeseee e 59
SUB-ENtity FOrMQH......oiiuiiiieiieie ettt et sseenseense e 62
Environment and Environment Application Tokenscccovveviieviieciinienieiecie e 63
Using the Token Buildercoioieiiiiiiieeeee e 65
Chapter 5: Using Validahonscccoeviiiiiniiiiieieeeeeeeee e 67
ABOU ValIdOHONS ...ttt 68
Validation Component TYPes.c.ceruieieeierieriieieeieeteseesseesaeseesseesteesesaessnesseenseensens 69
Accessing Validations Through Packages and Requests...........cccocivieieniiniinieicieneccnes 71
Validations and Special Characterscooovieiiieeiieiiicieecieeee e 72
Viewing System Validationscooiiiiiiiiieeeee et 73
Configuring Validahonsccuiiiiiiieieecee ettt 74
Configuring Static List ValidGHionsccueririiieieierieieeeese e 76
Configuring Dynamic List Validationsccccieieieiienieieieiesececeeeie e 78
Configuring SQL Validations...........ccceiiiiinieieieiceceeeecee e 79
SQL ValidGHON TIPS c.vvevvieeieeiiesiiesieeie et eiesie ettt e e e aesseesteeseessesssessaensaensens 80
Command Validationscceeirieiiriiiiieees e e 81
Configuring Short List Auto-Complete Field Validations............cccocuevieiiieciiiienieieieeee 82
Configuring Long List Auto-Complete Field Validations.............cccocvevieiiieciiiieieiieeeeee 83
Configuring Automatic Value Matching and Interactive Select Pages.............ccccoveereeninnee. 85
An Overview of Matching for “Starts with” or “Contains”ccceeervirieienenieneennen. 85
CoNFIGUIGHION TIPS ...vevvieieiieieeie ettt sttt et se e esseeneens 87
Adding Search Fields to Long List Auto-Complete Validationsccccoeririiiinencnennes 88
Configuring the Filter Field Layout...........ccveiiieiiiieieeeeee e e 91
Configuring an Auto-Complete List of Users (Special Case).........cccvervieririenienieniieieenene, 92
Configuring the Auto-Complete Values...........ccoooveiiiiiiiniiniiiicieeeeeeee 93
Configuring Validations by Commands With Delimited Outputcccooveveveieniennnne. 94
Configuring Validations by Commands with Fixed-Width Outputccccccveveienienenne. 96
Configuring User-Defined Multi-Select Auto-Complete Fields.............cceovevierieierieieninnene. 98
Example of Token Evaluation and Validation by Command with Delimited Output100
Configuring Text Field Validations...........cccooieiiiiieiiiricicee e 103
Text Data Masks for Validatonscccceeiiiiiiiiiieeeeee e 104
Configuring the Numeric Data Mask..........cccoereiiiiiiiiiiieeeeee e 105
Configuring the Currency Data Mask..........cccooieieieiiniiieiceecee e 107
Configuring the Percentage Data Maskcceeieieieniiniiieieieieceeeeee e 109
Configuring the Telephone Data Maskccoeieieriiniiiiieieeeccee e 110

vi Table of Contents

Configuring a Custom Data Mask...........ccccueriiiiiiiieieieccceee e 112

Configuring Directory Chooser Validationscccieieieienienieieieiese e, 113
Configuring File Chooser Validationscceririeieiieniinieceeieeeeeeee e 114
Configuring Date Field Validations.............cccueieririiiieieiesece e 116
Configuring 1800 Character Text AreaScecuerverueeieienienieseeieeenseseeseesessesseeseesensens 117
Configuring the Table Component...........ccooiiieiiiiiiiiceee e 118
Configuring Table CompPOnentsccccueriiiieieieiese et 119
Configuring Table RUles............cccveriiiiiiicicicccceeeee e 121
Example of Using a Table Component on an Order Formccccocvevvveciiiieniiennene, 122
Example of Sething Unit Prices..........ccueiiririeiieniesiieiceeee e 124
Example of Calculating Totals..........cccueiuiiiiiiieieeeee e 125

Using Table Components...........coueiierieiieieeie et 126

Using Tokens in Table Componentsccceecuieierienieieee e 126
Calculating Column Totalscooeeiieieeeeee e 126
APPENdix A: TOKENS ..ottt 129
OVEIVIEW OF TOKENS. ..o e e e e et e e e e e e e e e eeseeesneseeneennes 131
Application Server TOKENSociiiiiiiice et 131
BUAGE! TOKENS ...ttt ettt et e sneen 131
CONMIACE TOKENS .ottt e e e et e e e e e e e e e aaa e e 133
DiISHIDUNON TOKENS ..ot e e e e e e e e e e e 134
Document Management TOKENS..........oouiiriiiiiiiiieeee e 135
ENVIFONMENT TOKENS ..ot e e e e e e e e e e e e 136
Environment > Dest ENV TOKENScovvveeeee e e e et eeeeeaeeaaeaaes 136
Environment > Dest Env > App TOKENScooueiiiiiiiiieiiiiiieeeeceeee e 139
Environment > Dest ENV > ENV TOKENS ...evvveeeeeieeeeeeeeeeeeeeeeeeeeeeeeee e, 141
ENVIFONMENT > ENV TOKENS. ... e e e e e e e e e e e e e e e e eeeaeeaeeaaaaaaeas 145
Environment > Env > App TOKENScc.oieiiiiiiiiiieiie e 147
Environment > ENV > ENV TOKENS ..coveeneeeeee et 150
Environment > SoUICE BNV TOKENS........eeeeeeeeeeeeeeeeeeeeeeee e e e eeeeaens 153
Environment > Source Env > App TOKENScc.couviieiiiiiiieieeeceeee e 156
Environment > Source ENV > ENV TOKENSeeeeeeeeeeeeeeeeeeeeeeeeeeeee e e aaeaaens 158
COMMOANG TOKENS <.t eeeenneennn 162
FINANCIal BeNefit TOKENS ..ceeveeeeeeeeeeeeeeeeeeeee e 163
INOHTICAHON TOKENS ..t e aeeaaaaeaaaaaes 164
Organization Unit TOKENS...........ccieiiieiiiieriieit ettt ettt eaesaaeeneens 164
PACKAGE TOKENS ...ttt et raeste e seeseenbeeneens 166
Package > Package Line TOKENScceueriiriiieieiesie e 168
Package > Pending Reference Tokenscccovieieiiniiniinieieececeee e 169
Package Line TOKENSc..iiuiiiieee et 171

Table of Contents vii

vilf

Program TOKENSi ittt ettt ettt et e ettt et eteeneeeneen 171

PrOJECt TOKENS.....ccutiiiiieiie ettt ettt e et e e be e st e este e st e eteeensaessseenseeeaseas 172
Project Detail TOKENSccuiiiiieiieeii ettt e e aaeereen 176
Release TOKENSouiieiee ettt et 176
Release > Distribution TOKENScceiiiiiiiriiiiieeeee e 177
REQUESE TOKENS ...ttt ettt 178
Request > Pending Reference Tokens...........cccoivieieriiiiiieiciesc e 182
Request > Field ToKens.......cc.ooiiiiiiiiiieieeecee e 183
Request Detil TOKENS.....c..eccviiiiieiecieee et 183
Request Detail > Field TOKENScc.evuiiiieiiiiiiiicee e 184
Resource Pool TOKENScouiiiiiiiiecec e 184
Security Group TOKENSccuiiiieiiicicciecte ettt ettt e a e e teeste e beebesaseeneens 185
SKIll TOKENS ..ttt ettt ettt ettt ese e ebenneas 185
Staffing Profile TOKENScoviiiiii e 186
Step TXN (Transaction) TOKENSc.cecuiiieiiieriieiiete ettt et et ste et ebe et esaeesreeseeaneeneens 187
SYSIEM TOKENSviiiiieiiieiieciieeteet ettt ettt ettt e e b e esbesseebeenbeessesssesseenseenseensans 188
TASK TOKENS ...ttt ettt et be s e ebeene s 189
Tasks > Pending TOKeNscoiiiiiiiiie e 191
Time Management Notfication TOKENScciiieieieniiiiiieieece e 193
USEI TOKENS ...ttt ettt ettt e et e s bt e teeteeneesaeesneens 193
Validation TOKENScoeiiuiiiee et 195
Validation > Value TOKENScooiiiiiiiiiieee e 196
WOTKHOW TOKENS ...ttt 197
Workflow > WorkHlow Step Tokens...........ccueviiriiriiieieieieseeeeeeiee e 198
WOTKHOW SIEP TOKENS........cvveeiiiitieiieieie ettt et e s e 200
Request > Field TOKENSooviiiiiieie e 203
CMBD Application TOKENScccuieiiriieiieiieie ettt ettt seenseeneas 203
Demand Management SLA TOKENScceeiuiiiiiiiiiecieie et 204
Demand Management Scheduling Tokensccceoieiiiiriiiinieeceee e 204
MAM Impact Analysis TOKENScccvieiiiiiiiiciiec e 204
Portfolio Management Asset TOKENSccueriiriirieieierieeeeee e 204
Portfolio Management Project TOKeNs..........c.cciiuieieieriiiieicieeseceeee e 205
Portfolio Management Proposal Tokens...........cccveriiiiieiiieiieieceece e 206
Program ISSUe TOKENSc.eeiiiiiiieiieeee ettt et eaeen 207
Program Reference TOKENScceriiiieiiriiii e 207
Project ISSUE TOKENSccuviiiiieiieciie ettt ettt et et e et e et eebeeesbeesseeenseeas 207
Project Reference Tokens............ccuiiuiiiiiiiiieii et 207
Project Risk TOKENSoouiiiiei e 208
Project Scope Change TOKENS............ccveriieriieieiieeieeiceie e 208
Quality Center Defect Information Tokens..........c.cccveviieiiiriinieieiececeee e 208

Table of Contents

Quality Center Information TOKens...........ccveieieieiieriieieieeee e 209
Resource Management Work ltem ToKenscoevieiiieniniriiienieecseees e, 209
e =5 OSSP URUPUPUPRPRIPN 211
Table of Confents ix

Table of Contents

List of Figures

Figure 2-1
Figure 3-1
Figure 3-2
Figure 4-1
Figure 4-2
Figure 4-3
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9
Figure 5-10
Figure 5-11
Figure 5-12
Figure 5-13
Figure 5-14
Figure 5-15
Figure 5-16
Figure 5-17
Figure 5-18
Figure 5-19
Figure 5-20
Figure 5-21
Figure 5-22

CommANds 1Aooiiiieiicic e 26
Special Command Builder..............ccooieiiiiiiiiccec e 37
RCS File Migration object lypecoveririieieieiereeteee e 42
Example of a token used in a SQL statementc.cccuevierieniieciiiieeeeee e 49
Token Builder Windowcc.eooiiiiiiieiceee s 50
Table component Formats............cveieieriiiieieieee e 60
Auto-complete using command validationccoooeiiiiiiiiiii 81
Short list auto-complete..........cc.oouiiiiiiiiieiieeeeeee e 82
Long list auto-completecc.eiuiiiiiiiiee e 84
Auto-complete field and matching values on the Select pageccccveevvevieeiennnnnne. 85
Filter fields in the auto-complete select Windowc.ccevuiriiiieienienicieiceee 88
Auto-complete list........ooeiirieiei s 94
Validation by command with delimited outputc..cccoieeiiiiiiiiieiieeeeee 95
Validation by command with fixed width outputcccoeoviiiiiiiiiiice 97
Validation window for the numeric data mask...........cccccoeieiiiiiiiiiicic 106
Validation window for the currency data maskccccoeveerienieniiiecieieee, 108
Validation window for the percentage data maskc..ccevverieciiiiienieieiee, 109
Validation window for the telephone data maskccccoovevieieiieniiiciceee, 111
Validation window for the custom data maskccccceeviieiiiiiiiiiiiiccice e 112
Validation window for static environment override in file chooser........................... 114
Validation window for token-based environment override in file chooser 115
Hardware information Window...........coeciiiiiiienieiicicieeee e 118
Rules window accessed from the Rules tabccoocveviiiiiiniii e 122
Validations WINAOW.........ccuieiiiieiieiieie e 123
RUIES WINAOW. ...ttt et eabaesaeeens 125
Hardware information Window...........c.ccviiiiiiiiiiciiciccicce e 126
Sample validation for a Simple Order table component.............cccovveviiiiniiennen. 127
Sample table component displaying a column totalccooieiiiiiiiiii, 128

X/

Xif List of Figures

List of Tables

Table 2-1
Table 3-1
Table 4-1
Table 4-2
Table 4-3
Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5
Table 5-6
Table 5-7
Table 5-8
Table 5-9
Table 5-10
Table 5-11
Table 5-12
Table 5-13
Table 5-14
Table 5-15
Table 5-16
Table 5-17
Table 5-18
Table 5-19
Table 5-20
Table 5-21
Table 5-22
Table 5-23
Table A-1
Table A-2
Table A-3

Example conditionscc.eieiiiiiieiiiciceecee e 25
Example conditionscceeiiiiiiiieiieiccecce e 36
ENHHES et 52
Sample environment and application attributes...........ccccooveviiiiiiiiiiiieee, 64
Sample environment tokens..............ooiiiiiiiiieicce e 64
COMPONENT FYPES «.vveeeeniiiieeeeeiieee ettt ee et e e ettt e e e et ee e e sttt e e e sttt e e e sennaeeeeenneeeas 69
Column heAErS. ... e e 79
Automatic character matching field behavior............cccoooiiiiiiiiii, 86
Automatic character matching Select page behaviorcccoooiiiiiiiniiiie 86
Fields in the Fields: New Window..........cccooiiiiiiiiiii e 90
Validation by command with delimited outputcccviiiiiiiiiiiiiiiee 96
Column heaErs........ooiieiiiieeee e e 96
Validation by command with fixed width outputcccoeovieiiiiiiiii, 97
Column heaErs........oeuiiiiieiiee e e 98
Data mask formatsoeveiiiiiieieeee e 104
Fields for configuring the numeric data mask for text fieldsccccevirieienienene. 106
Fields configuring the currency data mask for text fieldscccoereniriecieinnnnn 108
Fields configuring the percentage data mask for text fieldscccocevirieieinnene. 110
Fields configuring the telephone data mask for text fields.............cccoovvirieiennnene. 111
Sample telephone data mask formats............ccceeeiiiiiiiiiiiiiccceeeee e 111
Sample custom data mask formats.............ccveeiieviiiiiiiiiic e 113
File chooser Feld...........couiiiiiiieieieieceee s 114
Static environment OVerride.cocuiiierieiiieie et 115
Token-based environment overridec.ccooiiiiiiiiiiiie e 116
Date field formats..........coveiiriiiieieeeeeeee e 117
Example, table component validation settings...........cccevierierieiinerecee e, 123
Example - Set Unit Price rule setings...........ccooeeiieiiiiiiiieceeeee e 124
Example - Calculate Total rule setingscccoeoieiiiiiiiiiiieeee e, 125
Application server okens...........c..cocuiiiiiiiiiiiice e 131
BUAGE! TOKENS ... e 131
CONtACH FOKENS ...ttt ettt 133

XIlf

Table A-4

Table A-5

Table A-6

Table A-7

Table A-8

Table A-9

Table A-10
Table A-11
Table A-12
Table A-13
Table A-14
Table A-15
Table A-16
Table A-17
Table A-18
Table A-19
Table A-20
Table A-21
Table A-22
Table A-23
Table A-24
Table A-25
Table A-26
Table A-27
Table A-28
Table A-29
Table A-30
Table A-31
Table A-32
Table A-33
Table A-34
Table A-35
Table A-36
Table A-37

Xiv

Distribution toKeNSeoviiiieeee e 134
Document Management tokens.............coouiiiirierieiiee e 135
Environment > Dest ENV t0Kenscoouiiiiiiiiieiieecceeeeeee e 136
Environment > Dest Env > App tokens.........coooiieiiiiiiiiiiiciceeeecee e 139
Environment > Dest Env > Env tokenscooiiiiiiiiieiiee e 141
Environment > Env tokensooooiiiiiiiii e 145
Environment > Env > App tokens.........cociiiiiiiiiiiiiiceee e 147
Environment > Env > Env tokenscoooiiiiiiii, 150
Environment > Source Env tokenscooiiiiiiiiiiii e 153
Environment > Source Env > App foKensc.ccccvieriiieiiiiniieiieeieesee e 156
Environment Source Env > Env tokenscooooiiiiiiiiiiiieeee e 158
CommMANd HOKENScueeiieiieeee ettt 162
Financial Benefit tokensccoouiririeieieieceeeee e 163
NOHHCAHON TOKENS ..ottt 164
Organization Unit toKeNscccuiiiiiieiieie e 164
Package oKENScouiiieeeeee e 166
Package > Package Line tokenscccoiiiiiiiiiiiiieee e 168
Package > Pending Reference tokens.............cccovueviiriiiieiiiniiiiciecec e 169
Package Line tokensc.eoiuiiiiiiieee e 171
Program toKENSoouiiiiiieeee e 171
PrOJECt TOKENS.....eeviiiiiciieecie ettt ettt et ere e ebe e abeebaeenreens 172
Project Detail tokensc.cooiuiiiiiiiicieece e 176
Release toKeNsc.eoiiiiiiee e 176
Release > Distribution tokens............ooooiiiiiiiii e 177
REQUEST TOKENS ...ttt s 178
Request > Pending Reference tokensccoviiriiiiiiieniiniinicieee e, 182
Request Detail tokens...........c.coouiiiiiiiiiciiecii et 183
Resource Pool tokenscooieiiiiii e 184
Security Group fOKENScc.eeiiieiiiiiieieeite sttt e e sveebeeeenees 185
SKIllHOKENS .. e 185
Staffing Profile tokensccooviiiiiiiee e 186
Step TXN (Transachon) tokensccuveiiieiiiiiiiierie e 187
SYSIEM TOKENS ...ttt ettt ettt et stbe et e e reestaeenree s 188
TASKS TOKENS. .. ettt et sae et e aa e 189

List of Tables

Table A-38
Table A-39
Table A-40
Table A-41
Table A-42
Table A-43
Table A-44
Table A-45
Table A-46
Table A-47
Table A-48
Table A-49
Table A-50
Table A-51
Table A-52
Table A-53
Table A-54
Table A-55
Table A-56
Table A-57
Table A-58
Table A-59
Table A-60

List of Tables

Tasks > Pending tokens..........cociiiiiiiiieic e 191
Time Management Nohfication fOKenscccovererieierieninieieeeee e 193
USEr HOKENS ... et 193
Validation toKenscoiiiriiiiiee e 195
Validation > Value tokens............ccoiiiiiiiieieeeeee e 196
WOTKHOW 10KENS ... 197
Workflow > Workflow Step tokenscc.ooieviieiiiiiiiiiicecceeece e 198
Workflow Step tokens..........ccviivieiiiiiciccieeeeee e 200
CMBD Application tokenscccuiiiiiiiiiieiiccieee e 203
Demand Management SLA tokenscc.oouiiiiiiiiiiieeeeee e 204
Demand Management Scheduling tokens............cccoieiiiiiniiiiinece e 204
MAM Impact Analysis tokenscccviiiiiiiieiieiiee e 204
Portfolio Management Asset 1oKens............c.ceverierieriieieieiene e 204
Portfolio Management Project tokensccoviviieieieiienieiicieeee e 205
Portfolio Management Proposal tokens.............ccovuireiiieiienienicieieec e 206
Program Reference tokens...........ccoeieiiiiiiiiiiiieeeeee e 207
Project ISSUE TOKENS..........eiiiieeiiiciiecieece et 207
Project ISSUE TOKENS..........eieiiieiiieiie ettt et 207
Project ISSUE TOKENS..........eieiieiiieiie ettt et 208
Project Scope Change toKensccueiiiiuieiiieiecieeeee e 208
Quality Center Defect Information fokenscccevivieirienieninicieieee e, 208
Quality Center Information tokenscccceriririeieiiireceeeee e 209
Resource Management Work ltem tokens...........cccoooieiiiiiniininii e 209

XV

xvi List of Tables

1 Getting Started with Commands, Tokens,
and Validations

In This Chapter:

m [ntroduction to Commands, Tokens, and Validations
m Related Documents

17

Introduction to Commands, Tokens, and Validations

Commands, tokens, and validations are used throughout HP Project and
Portfolio Management Center to enable advanced automation and defaulting.

Commands are at the heart of the execution layer within the deployment
system. They determine which actions are executed at specific workflow steps.
Actions performed at a workflow step can include file migration, script
execution, data analysis, or code compilation. Chapter 2, Using Commandls,
on page 21 provides an overview of commands, and examples of how to use
them.

Special commands are commands with variable parameters and are used in
object types, request types, report types, workflows, and validation command
steps. (Workflows use special commands in their workflow step sources.)
These command steps perform a variety of functions, such as copying files
between environments and establishing connections to environments for
remote command execution. Chapter 3, Using Special Commands, on page 33
contains information about how to create, edit, and use special commands in
PPM Center.

Tokens are variables that PPM Center entities use to reference information that
is undefined until the entity is used in a specific context. For example, entities
use tokens to set variables in commands or within notifications to specify
recipients.

Field validations determine the field types (for example, a text field or
drop-down list) and the values the field can accept. Workflow step validation
controls the possible results of exiting steps. PPM Center uses two types of
tokens: standard tokens and custom tokens. Chapter 4, Using Tokens,

on page 47 shows how to use tokens.

Validations determine the valid input values for user-defined fields, such as
object type or request type fields. Validations also determine the possible
results that a workflow step can return. Validations are used for the field
component type and workflow step results. Chapter 5, Using Validations,
on page 67 provides detailed information on how to use tokens.

) To access the user interface components described in this document, you must be
granted the Configuration license.

18 Chapter 1

Related Documents

The following documents also include information related to using commands,
tokens, and validations:

m HP Demand Management Configuration Guide
m HP Deployment Management Configuration Guide

Gelting Started with Commands, Tokens, and Validations 19

20

Chapter 1

2 Using Commands

In This Chapter:

m About Commands

Object Type Commands and Workflows
Request Type Commands and Workflows
Special Commands

Command Language

Command Conditions

About the Commands Tab

Configuring Commands

Examples of Command Uses

O 000000

2]

About Commands

Commands are at the heart of the execution layer within PPM Center. They
determine which actions are executed at specific workflow steps. Actions
performed at workflow steps can include file migration, script execution, data
analysis, field behavior, or code compilation. The following PPM Center
entities use commands:

22

Object types

Request types

Report types
Validations

Workflow step sources

Special commands

Object Type Commands and Workflows

Object type commands are tightly integrated with the workflow engine. The
commands in an object type are executed at execution workflow steps in HP
Deployment Management package lines.

Keep in mind the following concepts regarding command and workflow
interaction:

To execute object type commands at a given workflow step, configure the
workflow step as follows:

o The workflow step must be an execution type step.
o Specify the following parameter values:
m Workflow Scope = Packages
m Execution Type = Built-in Workflow Event
m Workflow Command = execute object commands

When the object reaches the workflow step (Workflow Command =
execute_object commands), all object type commands with conditions
satisfied are run in the order in which they are listed on the command field
for the object type.

Chapter 2

® You can configure the object type to run only certain commands at a given
step. To do this, specify command conditions. For information about how
to specify command conditions, see Command Conditions on page 25.

Request Type Commands and Workflows

Like object type commands, request type commands define the execution layer
within HP Demand Management. While most of the resolution process for a
request is analytically based, cases may arise for specific request types for
which system changes are required. In such cases, you can use request type
commands to make these changes automatically.

Request type commands are tightly integrated with the workflow engine. The
commands in a request type are executed at execution workflow steps. Keep in
mind the following concepts regarding the interactions between command and
workflow:

m To execute request type commands at a given workflow step, configure the
workflow step as follows:

o The workflow step must be an execution type step
o Set the following parameter values:
m Workflow Scope = Requests
m Execution Type = Built-in Workflow Event
m Workflow Command = execute request commands

m When the request reaches the workflow step (Workflow Command =
execute_request commands), all commands with all conditions satisfied
are run in the listed order in which they are listed on the command field for
the request type.

m To set up command conditions so that the request type runs only certain
commands at a given step, specify command conditions. For information
about how to specify command conditions, see Command Conditions
on page 25.

Using Command's 23

Special Commands

>»

Object types, request types, report types, workflows and validations all use
commands to access the execution layer. To simplify the use of command
executions, PPM Center provides a predefined set of special commands.

Special commands are commands with variable parameters, and are used in
object type, request type, report type, workflow, and validation command
steps. These command steps perform a variety of functions, such as copying
files between environments and establishing connections to environments for
remote command execution.

PPM Center features the following two types of special commands:

m System special commands are shipped with PPM Center. System special
commands are read-only and have the naming convention ksc_command

name.

m User-defined special commands have the naming convention sc_command

name.

Special commands act as modules that you can reuse. It it often more efficient
to create a special command for a program that you can reuse than to place an
individual command into every object type or request type that requires it.

For more information about special commands, see Chapter 3, Using Special
Commands, on page 33.

Command Language

The command steps in a command define the system-level executions that
must be performed to realize the command function. Command steps can be
UNIX® commands, third-party application commands, or special commands.
Special commands are reusable routines defined in PPM Center.

PPM Center also supplies several system special commands that you can use to
perform common events (such as connecting to environments or copying files).

For more information about special commands, see Chapter 3, Using Special
Commands, on page 33.

Chapter 2

Command Conditions

Using Command's

In many situations, it may be necessary to run a different set of commands,
depending on the context of execution. To achieve this flexibility, you use
conditional commands. To define the situation under which the associated
command steps execute, you use the Condition field in the Edit Command or
New Command window.

Conditions are evaluated as boolean expressions. If the expression evaluates to
TRUE, the command is executed. If it evaluates to FALSE, the command is
skipped and the next command is evaluated. If no condition is specified, the
command is always executed. The syntax of a condition is identical to the
WHERE clause in an SQL statement. It provide enormous flexibility in
evaluating scenarios. Table 2-1 on page 25 lists some example conditions. The
condition can include tokens. For more information, see Chapter 4, Using
Tokens, on page 47.

Table 2-1. Example conditions

Condition® Evaluates to

BLANK Command is executed in all situations.

Command is executed if the
parameter with the token P_
VERSION_LABEL in the package line
is not null.

'[P.P_VERSION_LABEL]' IS NOT NULL

Command is executed when the

'IDEST_ENV.ENVIRONMENT_NAME] = o) .
destination environment is named

Archive Archive.
Command is executed if the
TAS.SERVER_TYPE_CODE]'="UNIX' application server is installed on a

UNIX machine.

a. You must place single quotes around string literals or tokens that are used to evaluate strings.

25

26

About the Commands Tab

Within PPM Center, commands are configured using the Commands tab for

the following entities:
m Object types
m Request types
m Report types
m Validations

m Workflow step sources

m Special commands

You can access the tab by opening one of the listed entities, and then selecting
the Commands tab. Figure 2-1 shows the Commands tab in the Object Type

window.

Figure 2-1. Commands tab

(D Object Type : ITG Report Type Migrator

(SRRl TG Report Typ |
Descriptior: |ITG Report Type Migrator |
Extension: | ~| Object Name Column: [PARAMETERZ |
Ohject Category: |Standard Ohjects V| Ohbject Revision Columin: | A |
Weta Layer View: [MPKGL_ | [KiNTAMA_REPORT_TYPE_ |
Enabilect @‘r‘es OND
Fields | Layout Commands I Ownershlp]
rComtnat rComtnand Step: A
Command Condition Command Description
=l Repart debugging info # ksc_comment Source password is [P.S0URCE_...
=l Default filename kst_mig_default_filename
=} Export using given password |[P.MIGRATOR_ACTI|| ksc_mig_exdract PASSWD="[P.50URCE_PASSWD]"
=} Transfer content bundle 'P.MIGRATOR_ACTI || kec_topy_serer_serer FILE_TYPE="BIN" n
=l Import using given password [[P.MIGRATOR_ACTI|| kse_mig_import PASSWD="[P.DEST_PASSWD]" v
< | 3 K3 | L&
L34
Raady

Chapter 2

The Commands tab is divided into two sections. The Commands section
defines the command-line directive or special command to be issued. The
Command Steps section displays the steps specified to execute the commands.
A command step can be an actual command-line directive that is sent to the
PPM Server or target machine, or it can be one of the many special commands.

The execution engine executes the commands and command steps in the order in
which they listed on the Commands tab. To change the order of the commands or the
) command steps:

= On the Commands tab, click the command or command step, and then use the up
and down arrow buttons to change the placement of the selected item.

Configuring Commands

Each object type, request type, validation, workflow step source, or report type
can have many commands, and each command can include many steps. You
can think of a command as a particular function for an object. Copying a file
can be one command, and checking that file into version control can be
another. For these functions to operate, a series of events must take place. You
define these events in the command steps. To define the events, you must
configure commands using the Commands tab.

You configure commands using the Commands tab in the following PPM
Center entity windows:

m Object Type

m Request Type

m Report Type

m Validation

m Workflow Step Source

m Special Command

Using Command's 27

28

Commands consist of command information and command steps. In the
examples presented in this chapter, commands are accessed through the HP
Deployment Management Object Type window. However, the controls are the
same in the other entity windows that you can use to configure commands.

To configure commands associated with an object type:
1. Log on to PPM Center.
2. From the menu bar, select Administration > Open Workbench.
The PPM Workbench opens.
3. From the shortcut bar, select Deployment Mgmt > Object Types.
The Object Type Workbench window opens.
4. Open an existing object type.

5. In the Object Type window, click the Commands tab.

(D Object Type : RCS File Migration

Ohject Type Mame: File Migration|

Description: |This object manages the checkout and distribution of code in RCS |

Extenzion: | v| Ohject Mame Colutnn: |PARAMETER1 V|
Object Category: |Standard Ohjects v| Ohject Revizion Colutmn: | v|
Weta Layer View: [MPKGL_ | |RCS_FILE_MIG |

Enabilact @‘r‘es OND

Fields | Layout Commands I Ownership]

rCotmtriamnc rCommand Step: ~
Commanc Commanc
® Connectto RCS Environment (not expanded)
#l Check out of RCS {not expanded)
=l Copy form RCS (server) fo client ksc_copy_server_client SOURCE_ENY="RCE" SUB_PATH="[F.
=l Copyform RCS (semver to server keo_copy_sener_serer SOURCE_EMNY="RCE" SUB_PATH="[F
Connectto RCS Environment {not expanded) =
[l Fiwm e s Film e P ot mmandody —
£ | > € >
L

Faady

Chapter 2

Using Command's

6. Click New Cmd.

The New Command window opens.

Cammand:
Condition:
Description
Timeout ()
Enabled:

a0

®ves O Mo

Steps:

[Tokens ” Special Cmd H Show Desc] [Ok H Add H Cancel

\Ready

7. Complete the fields described in the following table.

Field Name | Description
Command Command name.
Specific conditions under which the command steps are to be
Condition executed. This step is optional. For more information, see
Command Conditions on page 25.
Description Command description. This step is optional. For more information,
P see Command Conditions on page 25.
Length of time (in minutes) to run the command before stopping.
Timeout(s) The Timeout(s) setting is useful if a command hangs or takes too
long to execute.
Steps Command steps. (Enter at least one.)
Use the Yes and No option buttons to enable and disable the
Enable

command, respectively.

m Click Tokens to open the Token Builder window and find a token to
add to the command step. For information about tokens, see Chapter 4,
Using Tokens, on page 47.

m Click Special Cmds to open the Special Command Builder and find a
special command to add to a command step. For information about
special commands, see Chapter 3, Using Special Commands,
on page 33.

29

m To show or hide a Descriptions field in the Steps field, click Show
Desc or Hide Desc.

8. Do one of the following:

m To add the command to the Commands tab and close the New
Command window, click OK.

m To add the command to the Commands tab and leave the New
Command window open, click Add.

Examples of Command Uses
This section provides examples of commands.
To copy a file from one environment to another:

Command:
copy client client
Command Steps:

ksc _connect dest client

if [! d [P.P _SUB PATH] 1;
then mkdir -p [P.P_SUB PATH]; fi
ksc_exit

ksc_copy client client SUB PATH="[P.P_SUB PATH]"
FILENAME="[P. P_FILENAME] " FILE_TYPE:" [P. P_FILE_TYPE] "

To automatically update the staffing profile status to “In Planning:”
Command:

Update Staffing Profile Status

Command Steps:

ksc_set staffing profile status USE NAMES FLAG="N"
STAFF PROF IDS="[REQ.P.KNTA STAFFING PROFILE]"
STATUS NAME="In Planning"

To execute Oracle® SQL script against an Oracle Database using JDBC:

Command:

Execute SQL

30 Chapter 2

Command Steps:

ksc run java com.kintana.core.server.execution.KSCSQLQuery
jdbc:oracle:thin:@[ENV="[ENV_NAME]".DB NAME]:
[ENV="[ENV_NAME]".DB_PORT NUMBER] :

[ENV="[ENV NAME]".DB ORACLE SID]

[ENV="[ENV_NAME]".DB_ USERNAME]

"[ENV="[ENV_NAME]".DB PASSWORD]" " [QUERY STRING]"

-token SQL OUTPUT -delimiter "~" -file
[AS.PKGiTRKNSFERiPATH][SYS.USERﬁID].txt

[EXCEPTION OPTION]

To log a program issue using a request type:

Command:

ksc_store

Command Steps:

ksc _store KNTA ESCALATION LEVEL="PROGRAM", "Program"

To run a report using UNIX:

Command:
Run report.
Command Steps:

ksc local exec [AS.ORACLE HOME]/bin/[AS.SQLPLUS]
[AS.DB_USERNAME]/[AS.DB_PASSWORD]@[AS.DB_CONNECTION_STRINGJ
@./scripts/kntarpt special com

"[AS.REPORT DIR]"™ ~"[RP.FILENAME]" " [P.P_FROM COM]"
"[P.P_TO COM]"™ "[P.P SHOW REF]"

To run a report using Windows®:

Command:
Run report.
Command Steps:

ksc local exec [AS.ORACLE HOME]/bin/[AS.SQLPLUS]

[AS.DB USERNAME]/[AS.DB PASSWORD]@[AS.DB CONNECTION STRING]
@./scripts/kntarpt special com o B

' [AS.REPORT DIR]' '"[RP.FILENAME]"' '[P.P FROM COM]'

"[P.P TO COM]' '[P.P SHOW REF]' a o

ksc _run java o o
com.kintana.core.server.execution.CvtFileNameToLowerCaseCommand
" [AS.REPORT DIR] [RP.FILENAME].html"

Using Command's 317

32

Chapter 2

3 Using Special Commands

In This Chapter:

m About Special Commands
o Special Command Parameters
o Special Command Language
o Special Command Conditions
o Using the PPM Workbench to List Special Commands
o About the Special Command Builder
m Configuring Special Commands
m Using Special Commands
o Using the Special Command Builder
o Nesting Special Commands
o Using the Special Command Details Report to List Special Commands
m Examples of Using Special Commands

33

About Special Commands

34

Object types, request types, report types, workflows, and validations all use
commands to access the execution layer. To simplify command execution,
PPM Center provides a predefined set of special commands. Users can also
create their own special commands.

Special commands are commands with variable parameters and are used in
object types, request types, report types, workflows, and validation command
steps. (Workflows use special commands in their workflow step sources.)
These command steps perform various functions, such as copying files
between environments and establishing connections to environments for
remote command execution. PPM Center features two types of special
commands:

m System special commands are shipped with the PPM Center. System
special commands are read-only and have the naming convention ksc

command name.

m User-defined special commands have the naming convention sc_command

name.

This chapter provides information about how to create, edit, and use special
commands in PPM Center.

Special Command Parameters

Most special commands have parameters to override standard behavior. The
Parameters tab displays these. Nearly all parameters are optional.

If a parameter is not passed to a special command and the default value for the
parameter is a custom token, the entity using the command must contain a field
with that token.

For example, the ksc_copy server server special command is used in an
object type. The parameter FILENAME is not specified and defaults to [p.p_
FILENAME] because it is not explicitly passed.

ksc copy server server

This makes ksc_copy_server server equivalent to:

ksc _copy server server FILENAME="[P.P FILENAME]"

because [p.P FILENAME] is the default token for the parameter FILENAME .
The command execution engine evaluates the token [P.P FILENAME] soO it
must be defined for the entity (the specific object type, report type or request

type).

Chapter 3

To override the default token, pass in another value for the parameter. A few
examples are:

ksc copy server server FILENAME="document.txt"
ksc _copy server server FILENAME="[P.DOCUMENT NAME]"

This method of passing parameters is explained in more detail in the section
entitled About the Special Command Builder on page 37.

) Custom tokens are defined for specific object types, request types, and report types,
and are referenced using the [P.TOKEN NAME] syntax.

Special Command Language

The command steps in a special command define the system-level executions
that must be performed to realize the command function. Command steps can
be UNIX commands, third-party application commands, or special commands.
Special commands are reusable routines defined in PPM Center.

PPM Center also supplies several system special commands that you can use to
perform common events such as connecting to environments or copying files.

Special Command Conditions

Depending on the context in which commands are executed, you may need to
run a different set of commands. For example, one command may update a
Web page, while another may set up an account on the Sales Automation
application.

To achieve this flexibility, you use conditional commands. You can use the
Condition field for an object command to specify the conditions under which
the associated command steps are to be executed.

Conditions are evaluated as Boolean expressions. If the expression evaluates to
TRUE, the command is executed. If it evaluates to FALSE, the command is
skipped and the next command is evaluated to see if it should be run. If no
condition is specified, the command is always executed.

The syntax of a condition is identical to the WHERE clause of a SQL
statement, which allows flexibility when evaluating scenarios. Table 3-1
on page 36 provides some example conditions.

Using Special Commands 35

36

Table 3-1

. Example conditions

Condition

Evaluates to

BLANK

Command executes in all situations.

'[REQ.DEPARTMENT]' = 'SALES'

Command executes if the department for the
request is named SALES.

'[REQ.PRIORITYT = "HIGH'

Command executes if the priority assigned to
the request is HIGH.

) In conditional commands, you must

use single quotes to enclose strings.

A condition can include a token. For information on how to include tokens in

conditions, see Chapter 4, Using

Tokens, on page 47 for more information.

Using the PPM Workbench to List Special Commands

To see a list of the special commands on your PPM Center instance:

1. Log on to PPM Center.

2. From the menu bar, select Administration > Open Workbench.

The PPM Workbench opens.

3. From the shortcut bar, select Configuration > Special Commands.

The Special Command Workbench window opens.

4. Click List.

The Special Command Workbench window lists descriptions of all the special
commands and indicates the status (enabled or not) of each.

You can also use the Special Command Details report to view a list of special
‘, commands on your PPM Center instance. For information on how to access and run
this report, see Using the Special Command Details Report to List Special Commands

on page 44.

Chapter 3

About the Special Command Builder

The Special Command Builder (Figure 3-1) simplifies special command use
by ensuring that you format command steps correctly. After you select a
special command and specify its parameters, the Special Command Builder
populates the Command field with a line of text that you can use as a command
step.

Figure 3-1. Special Command Builder

£ Special Command Builder

Command Marme: Iks ¢_connect_source_client El

|SERNAME lishnsrith
I NT_DOMAIN [[SOURCE_ENY.CLIENT_NT_DOMAIN]
PASSWORD |[S0URGE_ENY. GLIENT_NT_PASSWORD]

SOURCE_BASE_PATH |[SOURCE_ENY.CLIENT_MNT_BASE_PATH]
CONNECTION_PROTOCOL [[SOURCE_ENY.CLIENT_CON_PROTOCOL_MEAMING]
SOURCE_ENY [[s0URCE_ENY

e AL TION_PROTOCOL="[SOURCE_ENV.CLIENT_CON_PROTOCOL_MEANING]]

Clear ‘ Show Default Tokens | Claze

For information about how to use the Special Command Builder, see Using the
Special Command Builder on page 43.

Configuring Special Commands
To configure a new special command:
1. Log on to PPM Center.

2. From the menu bar, select Administration > Open Workbench.
The PPM Workbench opens.

3. From the shortcut bar, select Configuration > Special Commands.
The Special Command Workbench opens.

4. Click New.

The Special Command window opens.

Using Special Commands 37

38

(D Special Command

Command Name: S5 | Enabled: @ ves O No
Description: | |
Parameters | commands | Cwnership | Used gy
Patameter Nate Default Taken Description
e &
[Ok H Save H Cancel
||Ready

5. Complete the fields as specified in the following table.

Field Name Description

The name of the special command. This can only be
Command : . . :
Name updated when generating or editing a user-defined special

command.

Determines whether or not the special command is
Enabled? enabled for use in workflows, object types, report types,
request types, and validations.

A description of the special command. This can only be
Description updated when generating or editing a user-defined special
command.

6. Configure a new parameter, as follows:
a. Click the Parameters tab.

Special Command 19 [=]

Cammand Name \sc_new_command Enabled: = Yes " Mo

Description \

Parameters I Commands] Ownersh\p] Used By

Parameter Mame | Default Token ‘ Description
FILEMAME [P.P_FILENAME [Filenama
. [
| E3ET

Ok | Save | Cancel |

Feady

Chapter 3

b. Click New.

The Parameter: New window opens.

fame: |

&
|
Description: | |
Detautt Taken: | |

[[ox J[A][cancel |

|Ready

c. Complete the fields as specified in the following table.

Field Name | Description

Name The name of the new parameter.

Description | A description of the new parameter.

The default token name. Type the token name, or
Token click Token to open the Token Builder and select the
name.

d. Inthe Name field, type a name for the new parameter.
e. To add the field to the Parameters tab, click OK.

7. Click the Commands tab.

Special Command 19 [=]

Carmmand Mame: |sc_new_command Enabled: = Yes " Mo

Description: |

Parameters Commands] Ownership | Used By |

P ricomimand Step:

Command | contion | Command |
Echovalue of FILEMAME sc_echo_html RAW_TEXT="The value of FILEMNAME is..."
sc_echo_html RAW_TEXT="[P.P_FILEMNAME]"

o | | KN | 5]
ﬂﬂ Mews Crd | | | ‘ +¥
0K | Save | Cancel |
|Ready

a. Click New Cmd.

The New Command window opens.

Using Special Commands

39

Cammand:
Condition:
Description
Tirmeout () a0

Enahled: ®ves O No

Steps:

[Tokens ” Special Cmd H Show Desc] [Ok H Add H Cancel

\Ready

b. Complete the fields as specified in the following table.

Field Name Description

Command Command name.

Specific conditions under which the command
steps are to be executed. This step is optional.
For more information, see Special Command
Conditions on page 35.

Condition

Command description. This step is optional. For
Description more information, see Special Command
Conditions on page 35.

Amount of time (in minutes) to run the command.
Timeout(s) This setting is useful if a command hangs or takes
too long to execute.

Steps Enter at least one command step.

Yes and No option buttons enable or disable the

Enable
command

m Click Tokens to open the Token Builder window. Use this window
to find a token to add to the command step. For information about
tokens, see Chapter 4, Using Tokens, on page 47.

m Click Special Cmds to open the Special Command Builder. Use this
tool to find a special command and add it to the command step. For
information about special commands, see Chapter 3, Using Special
Commands, on page 33.

Chapter 3

8.

10.

1.
12.

13.

Using Special Commands

m Click Show/Hide Desc to show or hide a Descriptions field in the
Steps field. If the Descriptions field is visible, you can add a
description to the command step.

c. To save the command, do one of the following:

m To add the command to the Commands tab and close the New
Command window, click OK.

m To add the command to the Commands tab and leave the window
open, click Add.

Click the Ownership tab.

() Special Command g@ﬁ|
Cammand Mame: [ksc_new_commmand Enahled: (%) Yes O Mo
Description: ||

Parameters] Commands Ownership] Uszed By]
Give ahility to edit this Special Command to
(%) All users with the Edit Special Commands Access Grant
() Only groups listed below that have the Edit Special Commands Access Grant

Security Group Description

[Ok ” Save H Cancel]

|\Ready

Under Give ability to edit this Special Command to, select Only groups
listed below that have the Edit Special Commands Access Grant.

Click Add.

The Add Security Groups window opens.

Select the security groups.

Click OK.

The security groups are listed on the Ownership tab.
To add the security group to the special command:

m To save the security group and close the Special Command window,
click OK.

m To save the security group and leave the window open, click Save.

41

14. To see a list of entities that reference the selected special command, click

the Used By tab.

15. To save the special command, click OK.

Using Special Commands

Special commands are added to command steps directly in the entity windows
(for object types, request types, report types, validations and workflows). For
example, Figure 3-2 shows an example of an object type that was generated
using a combination of special commands.

Figure 3-2. RCS File Migration object type

(D Object Type : RCS File Migration

Ohject Type Marme:

Descriptiorn: |This object mananes the checkout and distribution of code in RCS

Extension: |

v| Ohject Name Colutmr: |PARAMETER1

|
Ohject Category: |Standard Ohjects V| Ohject Revision Column: | v|
Meta Layer View: [MPKGL_ | |RCS_FILE_MIG |
Enabilect @‘r‘es OND
Fields | Layout Commancs I Ownership]
rComtriamnc rCommand Step: ~
Comtmanc Commanc
% Connectto RCE Environment {not expanded)
®| Checkoutof RCS {not expanded)
=l Copy form RCS (server) fo clisnt ksc_copy_semrer_client SOURCE_ENV="RCE" SUB_PATH="[F.I _
=l Copyform RCS (server to server ksc_copy_server_server SOURCE_EMNV="RCS" SUB_PATH="[P
®| Connectto RCS Environment {not expanded) =
[l Flwm e s Film e O et marnandndt —
< | sl|¢ >
3
Faad\f

42

Chapter 3

Using the Special Command Builder

You can add special commands to any set of command steps in the following

entities:

m Object types

m Request types

m Report types

m Validations

m Workflow step sources
m Other special commands

You can access the Special Command Builder on the Commands tab for each
of these entities.

To build a command step using the Special Command Builder:

—_

>»

Using Special Commands

. Log on to PPM Center.

. From the menu bar, select Administration > Open Workbench.
The PPM Workbench opens.

. From the shortcut bar, select Change Mgmt > Object Types.
The Object Type Workbench opens.

. Open an object type.

In the Object Type Window, click the Commands tab.

Click New Cmd or Edit Cmd.

The Command window opens.

Click Special Cmd.

The Special Command Builder window opens.

From the Command Name list, select the special command.

If you select a command name from the auto-complete, the Special
Command Builder lists the command parameters.

You can use predefined (ksc_command) and user-defined (sc_command) special
commands to build the command steps line.

43

9. Replace the associated default token value with parameter information.
a. To view the default tokens, click Show Default Tokens.

b. Copy the text in the Special Command Builder window Command field
to the Command window Steps field.

10. Enter information in the remaining fields in the Command window.
11. For the Enabled option, click Yes.
12. To add the command step to the Command tab, click OK.

You can now use the new special command in an object type, request type,
report type, validation, or workflow.

You can use special commands in an execution workflow step source. After you
) create the workflow step source (which contains the special commands), you can drag
and drop it into a workflow.

Nesting Special Commands

You can use special commands within other special commands, but only
within a command step. However, a special command cannot refer to itself.

Using the Special Command Details Report fo List Special Commands

PPM Center comes with pre-configured special commands. To see a list of all
special commands in your system, run the Special Commands Detail report.
This report provides information on special commands, how to use them, the
parameters of the special command, and where the special command is used.

To view the special commands on your instance:
1. Log on to PPM Center.
2. From the menu bar, select Reports > Create a Report.
The Reports window opens.
3. In the Report Category list, select Administrative.

4. From the displayed list of administrative reports, select Special Command
Details Report.

The Special Command Details Report window opens.

5. To view all special commands, leave the Special Command From and
Special Command To fields empty.

Chapter 3

6. Under Report Parameters, sclect Yes for Show References.

7. Click Submit, and then wait to see the report displayed.

You can also use the Special Command Workbench to list the special commands

" on your PPM Center instance. For information on how to access the Special
Command Workbench, see Using the PPM Workbench to List Special Commands
on page 36.

Examples of Using Special Commands
This section provides examples of special commands.
To copy a file from one server to another server:
Special Command Name:
copy server server
Special Command Example:

ksc connect dest server

if [! -d [P.P_SUB PATH]]; then mkdir -p [P.P SUB PATH]; fi
ksc_exit

ksc_copy server server SUB PATH="[P.P SUB PATH]"
FILENAME="[P.P FILENAME]" FILE TYPE="[P.P FILE TYPE]"

To import using a given password:

Special Command Name:

ksc mig import

Special Command Example:

ksc_mig import PASSWD="[P.DEST PASSWD]"
To change the status of a project:

Special Command Name:

ksc_run java

Special Command Example:

ksc_run java com.kintana.core.server.execution.SetProjectStatus
-project [REQ.P.KNTA PROJECT PLAN] -status [P.P_STATUS]
-user [SYS.USER ID]

Using Special Commands 45

46

To connect to a server and change permissions of a file:
Special Command Name:

ksc _connect dest server

Special Command Example:

ksc _connect dest server DEST ENV="[DEST ENV.ENVIRONMENT NAME]"

444 is read-only. if the locked flag
is no this is the permission set

the user requested

chmod 0444 "[P.P FILENAME]"

ksc_exit

Chapter 3

4 Using Tokens

In This Chapter:

m About Tokens

o Where to Use Tokens

o Token Evaluation

o About the Token Builder
m Token Formats
Default Format
Explicit Entity Format
User Data Format
Parameter Format
Sub-Entity Format
Environment and Environment Application Tokens
m Using the Token Builder

[R O R o R R |

47

About Tokens

48

PPM Center uses variables to facilitate the creation of general objects that can
be used in a variety of contexts. These variables are called fokens.

PPM Center uses two types of tokens: standard tokens and custom tokens.
Standard tokens come with the product. Custom tokens are generated to suit
specific needs. You can reference the fields of the following entities as custom

tokens:

m Object types

m Request types and request header types
m Report types

m User data

m Workflow parameters

In addition, numerous standard tokens are available that provide other useful
pieces of information related to the system. For example, PPM Center has a
token that represents the users currently logged onto the system.

Where to Use Tokens

You can use tokens in the following entity windows:

Object type commands

Request type commands

Validation commands and SQL statements
Report type commands

Executions and notifications for a workflow
Workflow step commands

Notifications in a report submissions

Special command commands

Notifications for tasks and time management

Notes for request details

Chapter 4

Figure 4-1. Example of a token used in a SQL statement

Validation : DRY - Project Mames - All - Depend on [P_SHOW _MASTER_ONLY]

Plame: |DRV- Project Mames - All - Depend on [P_SHOW_MASTER_ORMLY]
Descrigtion: |DRY - Projects

Enabled: [+ Use in Workflow? [
Companent Type: | J
alidated By: | J Expected list length: fs
Selection mode: % e Murrber of results per page: |50
Configurstion] Fitter Fields] Fitter Layout
olurmn Headers: ~| =aL =T
paren_praject_id=- =~
Seq | Columh Header | Displayved | Columny OR ([P.P_SHOW_MASTER_OMLY]=MT)
1]Hidden Code N AND template_flag = '
2|Project Mame [¥ AMD
3|Project I i KDRY_SECURITY.Can_User Access Project([5v5.USER J
_ID], master_project_jd) =
order by 2 -
1 [- ¥ =l
Use Bind Yariakles? [
| | o121 = [|
Used By | Dwnership | Ok | | Cancel |

Ready (Read-Orly, Seed Deta)

Token Evaluation

Using Tokens

Tokens are evaluated at the point when PPM Center must know their
context-specific values. At the time of evaluation, the token evaluation engine
gathers information from the current context and tries to derive the value for
the token. Values can only be derived for specific, known contexts (the current
context is defined as the current package, package line, request, work plan,
workflow step, or source and destination environments).

The token evaluation engine takes as many passes as necessary to evaluate all
tokens, so one token can be nested within another token. During each pass, if
the evaluation engine finds a valid token, it replaces that token with its derived
value. Invalid tokens (for example, if the token name is misspelled or no
context is available) are ignored.

For example, an object type command has the following Bourne-shell script
segment as one of its command steps:

if [! -f [PKGL.P. P_SUB_PATH] / [PKGL.P. P_BASE_FILENAME} fmx]
then exit 1; fi

When the command is executed, [PXGL.P.P_SUB PATH] = Forms and
[PKGL.P.P_BASE FILENAME] = obj maint. After token evaluation, this
command step reduces to:

if [! -f Forms/obj maint.fmx]; then exit 1; fi

49

50

As another example, suppose a user data field is generated for all users called
MANAGER. You could find the email address of the manager of the person
who generated a request by using the following token:

[USR="[USR="[REQ.CREATED BY NAME]".VUD.MANAGER]".EMAIL ADDRESS]

The token evaluation engine first evaluates the innermost token
([REQ.CREATED BY NAME]), and then the next token
([USR="<name>".VUD.MANAGER]) . Finally, token evaluation engine evaluates
the outermost token, which provides the email address.

Tokens are evaluated at different points based on the token type. Tokens used
in object type parameters and commands are evaluated during command
execution. Tokens in a validation SQL statement are evaluated just before that
statement is executed (such as generating a new package line). Tokens in an
email notification are evaluated when a notification is generated.

About the Token Builder

From each of the entity windows listed in Where to Use Tokens on page 48,
you can open the Token Builder window (Figure 4-2) to create a token. The
tokens available in the token builder are limited to those that you can build for
that entity. For example, if you open the token builder from the Request Type
Workbench, package tokens are excluded.

Figure 4-2. Token Builder window

(D Token Builder, 3

oken Context Tokens

{271 Token Context Token Description
{71 App Server COMPONENT_TYPE The GUI compy
7] Budget CREATED_EY The ugerid oft

F {77 Environment CREATION_DATE The date the Ve
{77 Execution DESCRIPTION The description

F {77 Financial Beneft LAST_UIPDATED_BY The ugerid of t
{71 Organization Lnit LAST_UPDATE_DATE The date the Va
{27 Program LOOKUP_TYPE The fareign key
{771 Resource Pool UD.USED_IN_TEXTAREA Denotes that th
{271 Security Groug WALIDATION_ID The internal ide
{271 Skl WALIDATION_MAME The name of th
{271 Staffing Profile WYALIDATION_SGL The SQL stater
7 System WORKBENCH_VALIDATION... |URL to access
071 User

® 3

< >
Context Yalue: I E
Token: | AL

The folders displayed in the left pane of the Token Builder window contain
groups of tokens that correspond to entities defined in PPM Center. For

Chapter 4

instance, the Packages folder contains tokens that reference various package
attributes. If you select the Packages folder, the available package tokens are
listed in the right pane.

Some entities (folders) have sub-entities (sub-folders) that can be referenced
by tokens. To view a list of sub-entities for an entity, click the plus character
(+) next to the entity. Each sub-entity also has tokens, and you can reference
any sub-entity tokens, as well as the parent entity tokens. For example, the
package line entity is a sub-entity of the package entity.

As you select entity folders and corresponding tokens in the list, a character
string is constructed in the Token field at the bottom of the Token Builder
window. This is the formatted string used to reference the token. You can
either copy and paste the character string, or type it where it is required.

Token Formats

Using Tokens

Tokens can use one of several different formats, depending on how they are
going to be evaluated. Tokens can be expressed in the following formats:

m Default Format

m Explicit Entity Format

m User Data Format

m Parameter Format

m Sub-Entity Format

m Environment and Environment Application Tokens

Table 4-1 on page 52 lists the entities and the formats that each entity supports.

51

52

Table 4-1. Entities (page 1 of 3)

Prefix (Entity) | Entity and Description ng;g“h Fg:;’gteter
AS Application server N N
BGT Budget Y N
CON Contact Y N
Destination environment. If
DEST ENV an app code is specified, it is Y N
- used. Otherwise, use only
values from ENV.
Destination environment (for
DEST_ the environment application). vy N
ENV.APP Only use app code values,
even if they are null.
DEST Destination environment.
ENV.ENV Ignores app codes and only | Y N
’ uses the ENV values.
DIST Distribution N
ENV Environment N
Environment (for the
ENV.APP environment application). v N
Only use app code values,
even if they are null.
Environment. Ignores app
ENV.ENV codes and only uses the Y N
ENV values.
EXEC Execution N N
FBEN Financial benefit Y N
NOTIF Notification N N
ORG Organization Unit Y N
PKG Package Y N
PKG.PKGL Package (package line) Y N
PKG.PEND Package (pending package) | Y N
PKGL Package line Y Y
PRG Program Y N

Chapter 4

Using Tokens

Table 4-1. Entities (page 2 of 3)

Prefix (Entity) | Entity and Description ngr:]gqh Fg:;’:teter
PRJ Work plan Y N
PRJD Work plan details N
REL Release N N
REL.DIST Release (distribution) Y N
REQ Request Y Y
REQ.FIELDS | Request field groups N Y
REQ.PEND Request (pending) N N
REQD Request details N Y
REQD.P Request details N Y
RP Report submission N Y
RSCP Resource pool Y N
SG Security group Y N
SKL Skill Y N
STFP Staffing profile Y N
gg\l;lRCE_ Source environment Y N
Source environment (for
SOURCE _ environment application). v N
ENV.APP Only use app code values,
even if they are null.
SOURCE_ | e and oy uses th, | ¥ N
’ ENV values.
SYS System N N
T™MG Time Management N N
TSK Task Y N
TSK.PEND Task (pending) N N
USR (User) User Y N
VAL Validation N N

53

54

Table 4-1. Entities (page 3 of 3)

Prefix (Entity) | Entity and Description E:f;gqh Fg:;’gfter

WF Workflow Y N
Workflow (step). Use this

WF.WFS format to specify a specific N Y
workflow.

WFS Workflow step Y N

Default Format

Tokens are expressed as a prefix (a short name for the entity) followed by a
token name. The prefix and token name are separated by a period and enclosed
in square brackets with no spaces:

[PREFIX.TOKEN NAME]

For example:
The token for the package number is expressed as:

[PKG.NUMBER]

The token for a request's workflow name is expressed as:

[REQ.WORKFLOW NAME]

Certain tokens also support a sub-format. This sub-format is required for
certain entities in order to evaluate to the correct context. For example, wr
tokens resolve to information related to the workflow, whereas wr.wrs tokens
resolve to workflow step information. Token sub-formats are included in the
prefix, appended to the parent prefix, and separated by a period:

[PREFIX.SUB-PREFIX.TOKEN NAME]

Tokens are evaluated according to the current context of PPM Center, which is
derived based on information known at the time of evaluation. For more
information, see Token Evaluation on page 49.

Chapter 4

Explicit Entity Format

Using Tokens

You can provide a specific context value for an entity so that the default

context can be overridden. Some tokens can never be evaluated in the default
context. In these cases, you must use the following explicit entity format to set

the context:

[PREFIX="<entity name>".<TOKEN NAME>]

The token builder generates tokens in the explicit entity format by providing a
list of possible values. When such a list is available, the Context Value field at
the bottom of the Token Builder window is enabled. You can either type in the

field to reduce the list, or click the auto-complete icon to open the Validate
window. The value you select is placed in the token in the Token field to

generate an explicit entity token.

(D Token Builder E|

oken Context Tokens

{271 Token Context Token Description
{71 App Server COMPOMENT_TYFE The GUI compy
7] Budget CREATED_BY The ugerid oft

{77 Environment CREATION_DATE The date the Ve
{171 Execution DESCRIPTION The description

(77 Financial Beneft LAST_UPCATED_BY The userid of t
{77 Organization Linit LAST_UPDATE _DATE The date the Ve
{7 Program LOOKUP_TYFE The foreign key
{77 Resource Pool UD.USED_IN_TEXTAREA Denotes thatth
{271 Security Groug WALIDATION_ID The internal ide
{271 Skl WALIDATION_MAME The narme of th
{77 Statfing Profile WALIDATION_SGQL The SQL stater
{7 System WORKBENCH_YALIDATION... |URL to access

3

< *
Context Value: | B
Token: | AL

For example, suppose you want to reference the email address for jsmith. The

token to specify this reference is:

[USR="jsmith" .EMAIL ADDRESS]

55

56

To construct the token [USR="jsmith".EMAIL ADDRESS] in the Token
Builder window:

1. Open the Token Builder window.
See About the Token Builder on page 50.
2. In the Token Builder window, select the User folder.

Available tokens are listed in the Tokens column, and the Context Value
field is enabled.

The Token field displays the string [USR.].
3. In the Context Value field, sclect jsmith.
The Token field displays the string [USR="7jsmith"].
4. In the Tokens column, click EMAIL_ADDRESS.
The Token field displays the string [USR="jsmith".EMAIL ADDRESS].

This is the complete token. Since the token is now complete, the Token
field becomes enabled.

5. Select and copy the text in the Token field.

6. Paste the text into another field.

) For a list of all explicit entity format tokens, see Appendix A, Tokens, on page 129.

Nesting Explicit Entity Tokens within Other Tokens

The explicit entity format can be used to nest tokens within other tokens to
generate a value. For example, to print the description of the workflow that is
associated with package #10203, the token would be:

[WE="[PKG="10203" .WORKFLOW NAME]" .DESCRIPTION]

This token would have to be built in two steps. First, build the Description
token for the workflow. Copy and paste that token into another field, then build
the Workflow Name token for the package. Copy and paste that token within
the Description token that was previously pasted.

Chapter 4

Internally, this token is evaluated in two stages. The inner token is evaluated
and the token has the following internal representation:

[WE="Workflow Name".DESCRIPTION]

The remaining token is evaluated and the final result is printed:

description of my workflow

User Data Format
User data fields use tokens differently, as shown below:

[PREFIX.UD.USER DATA TOKEN]

The prEFIX is the name of the entity that has user data. The modifier up
indicates that user data for that entity is being referenced. USER_DATA TOKEN is
the name of the token for the specific user data field. For example, suppose that
a field for package user data is generated, and its token is GAP_NUMBER. In the
default format, the token would be:

[PKG.UD.GAP NUMBER]

In this context, PkG indicates that the package entity is referenced, up indicates
that user data is referenced, and GAp_NUMBER is the token name.

When user data fields are generated, a validation that has both a hidden and
visible value can be used. For example, if the validation KNTA - Usernames -
All is used, the hidden value is the user ID and the displayed value is the
username. The previous syntax references the hidden value only. To reference
the visible value for a user data field, the syntax shown below must be used:

[PREFIX.VUD.USER DATA TOKEN]

If the modifier vuD is used instead of UD, the visible user data value is
referenced.

) Drop-down lists and auto-completes may have different hidden and displayed values.
For all other validations, hidden and displayed values are identical.

If context can be determined, user data tokens are displayed with the
system-defined tokens in the Token Builder window.

Using Tokens 57

58

Parameter Format

Object type custom fields, request type custom fields, request header type
fields, work plan fields, and workflow parameters use the parameter format for
tokens as shown below:

[PREFIX.P.PARAMETER TOKEN]

In this specific case, PREFIX is the name of the entity that uses a custom field.
The modifier p indicates that parameters for that entity are referenced.
PARAMETER TOKEN is the name of the token for the specific parameter field.

Package lines reference object type fields. Requests reference request type and
request header type fields. Workflows reference workflow parameters.

For example, suppose a field for an object type named Gap Number (Token =
GAP_NUMBER) is been generated for use on package lines. In the default format,
the token would be:

[PKGL.P.GAP_ NUMBER]

In this context, PKGL is the prefix, because the package lines entity is
referenced, p indicates that parameters are referenced, and GAP_ NUMBER is the
token name.

Custom fields store both a hidden and visible value. For example, if the field
uses the validation KNTA - Usernames - All, the hidden value is the user ID
and the displayed value is the username. The previous syntax references the
hidden value only. To reference the visible value for a parameter, use the
syntax as shown:

[PREFIX.VP.PARAMETER TOKEN]

If the modifier vp is used instead of p, the visible parameter value is
referenced.

Drop-down lists and auto-completes may have different hidden and displayed values.
For all other validations, the hidden and displayed values are identical.

Chapter 4

Request Field Tokens

Tokens can access information on custom fields included on a request. These
fields can be defined in a:

m Custom request type field

m Request header field (standard)

m Request header field (custom fields)
m Request header field (field groups)

m Table component field

Request Field Token Prefixes

All fields defined in the request header type (field group fields, custom header
fields, and standard header fields) use the rEQ prefix. The following examples
could use P or vp.

REQ.<standard header Token>

REQ.DEPARTMENT CODE

REQ.P.<custom header field Token>
REQ.P.BUSINESS UNIT

REQ.P.<field group Token starting with KNTA >
REQ.P.KNTA SKILL

Fields defined in the request type use the REQD prefix. You can also access
standard header fields using the reEQD prefix. For example:

REQD.P.<custom detail field>
REQD.<standard header Token>

Tokens in Request Table Components

Using Tokens

To refer to items in a table component, tokens must follow specific formats.
The formats used depends on the table item referenced. Figure 4-3 on page 60
shows the basic elements of a sample table. These elements are used as
examples for referencing data within the table using tokens.

59

60

Figure 4-3. Table component formats

Hardware Information

Select the Product and Quantity of the items you wish to order.

Seq Products Quantity Price Total

O 1 PC 3 1200 3600

4 0o e PC 2 1200 2400
L]
Check All Clear All Add Edit Copy Delete

Done Cancel

The format [REQD.T.<TABLE TOKEN>] is used to represent the table. The
format [REQD.T.<TABLE TOKEN>.<SPECIFIC TOKENS>] is used to represent
specific tokens. The following sections provide examples of the formats used
for tokens that reference items related to the table component:

To access the table row count from a Request context:

To access the Salary Column Total value from a Request context:

To access the Name of the first employee in the table from a Request:
To access the Code of the first employee in the table from a Request:

To access the Department Cell value of the current row (Table Row
Context):

To obtain a delimited list of a column’s contents (Request Context)

In these examples, a table component named Employee has the following four

columns:

m Employee Name
m Years of Service
m Department

m Employee Salary

Chapter 4

These columns are defined as follows:

Table Component "Employee" table with [EMPLOYEE] as the Token.

Column 1 - Employee Name; Token = [NAME]

Column 2 - Years of Service; Token = [YEARS OF SERVICE]
Column 3 - Department; Token = [DEPARTMENT]

Column 4 - Employee Salary; Token = [SALARY]

To access the table row count from a Request context:

[REQD.P.EMPLOYEE] - returns the raw row count without any
descriptive information.

[REQD.VP.EMPLOYEE] - returns the row count with descriptive
information. Example "13 Entry(s)".

WHERE: EMPLOYEE is the Token given to a table component type.
To access the Salary Column Total value from a Request context:

[REQD.T.EMPLOYEE.TC.VP.SALARY.TOTAL]

WHERE: EMPLOYEE is the Token given to a table component type and
SALARY is the Token name given the table's first column.

To access the Name of the first employee in the table from a Request:
[REQD.T.EMPLOYEE.TE="1".VP.NAME]

To access the Code of the first employee in the table from a Request:
[REQD.T.EMPLOYEE.TE="1".P.NAME]

To access the Department Cell value of the current row (Table Row Context):

[TE.VP.DEPARTMENT]

You can use this table component token in a Table Column Header validation
SQL or in a table component rule SQL.

To obtain a delimited list of a column’s contents (Request Context)

[REQD.T.EMPLOYEE.TC.VP.NAME]

where EMPLOYEE is the token given to a table component type and SALARY is
the token name given the first column of the table. This is very useful if a
column lists user names. This list can be used to send the users notification.

Using Tokens 61

62

Sub-Entity Format

Some entities have sub-entities that can be referenced. To see a list of
sub-entities for an entity, in the Token Builder window, click the plus character
(+) next to the entity. To reference a token from a sub-entity, in the context of a
parent entity, use the following syntax:

[PREFIX.SUB ENTITY PREFIX.TOKEN]

In this case, the PREFIX is the name of the entity, the suB_ENTITY prefix is the
prefix for a sub-entity, and TOKEN is a token of the sub-entity. Typically, it is
not necessary to use this syntax. However, you can reference specific
sub-entities using the explicit entity syntax. For example, to reference the step
name of the workflow step in the current context, both of the following tokens
have the same meaning;:

[WES.STEP NAME]
[WE.WFS.STEP NAME]

However, to reference the step name of the first workflow step for the current
workflow, use the following token:

[WE.WES="1".STEP_ NAME]

By not using the explicit entity format for the workflow entity, the token
indicates that the workflow in the current context should be used. But by using
the explicit entity format for the workflow step entity, the current context is
overridden and a specific workflow step is referenced. In contrast, to reference
the step name of the first workflow step in a workflow whose name is 'my
workflow,' use the following token:

[WE="<workflow name>".WEFS="1".STEP NAME]

With this token, the current context for both the workflow and the workflow
step are overridden.

Chapter 4

Environment and Environment Application Tokens

Using Tokens

Tokens for the environments and environment application entities can have
many different forms depending on the information to be referenced. During
object type command execution, there is generally a source and a destination
environment. The token prefixes SOURCE_ENV and DEST_ENV are used to
reference the current source and destination, respectively, as shown in the
following example:

[SOURCE_ENV.DB USERNAME]
[DEST ENV.SERVER BASE PATH]

In addition, you can use a general ENV prefix in the explicit entity format to
reference specific environments, as shown in the following example:

[ENV="Prod" .CLIENT USERNAME]

During normal environment token evaluation, the evaluation engine first
evaluates the app code on the package line (if one is specified). If the
corresponding app code token has a value, then the value is used. Otherwise, if
no app code was specified or the app code token has no value, the
corresponding base environment information is used.

To override the normal environment token evaluation and only evaluate the
environment information (without first checking for the app code), construct
the SouRCE_ENV and DEST ENV tokens as shown in the following examples:

[SOURCE_ENV.ENV.DB USERNAME]
[DEST_ ENV.ENV.SERVER BASE PATH]
[ENV="Prod" .ENV.CLIENT USERNAME]

The evaluation engine can be instructed to look only at the app code
information (without checking the base environment information if the app
code token has no value). Construct the sOouRCE_ENV and DEST_ENV tokens as
shown in the following example:

[SOURCE_ENV.APP.DB USERNAME]
[DEST ENV.APP.SERVER BASE PATH]
[ENV="Prod" .APP.CLIENT USERNAME]

You can only use the prefix App in the sub-entity format. For example, the
following token is invalid because a context environment that includes the app
code has not been specified.

[APP.SERVER BASE PATH]

63

64

In addition, you can use the explicit entity format with the app code entity to
reference a specific app code, as shown in the following examples:

[SOURCE_ENV.APP="AR".DB USERNAME]
[DEST ENV.APP="OE".SERVER BASE PATH]

[ENV:"Prod".APP:"HR".CLIENT_USERNAME]

For example, suppose objects are migrated on a package line at a given
workflow step, and the line uses the app code HR. The workflow step has QA as
the source environment, and Prod as the destination environment. Table 4-2
shows other attributes of the environments and applications.

Table 4-2. Sample environment and application attributes

Environment | App Code Server Base Paths
QA /qa

QA OE /qaloe

QA HR /ga/hr

Prod /prod

Prod OE /prod/oe

Prod HR no value

Table 4-3 lists some sample tokens and the evaluation of each within the

sample environment.

Table 4-3. Sample environment tokens

Token Evaluation
[SOURCE_ENV.SERVER BASE_PATH] /qalhr
[DEST_ENV.SERVER_BASE_PATH] Jprod
[SOURCE_ENV.ENV.SERVER_BASE_PATH] /qa
[DEST_ENV.ENV.SERVER_BASE_PATH] Jprod
[SOURCE_ENV.APP.SERVER_BASE_PATH] Iqalhr
[DEST_ENV.APP.SERVER_BASE_PATH] no value
[ENV="QA" APP="OE".SERVER_BASE_PATH] /qaloe

If PPM Center Extensions are installed, there are more environment tokens with the
prefix ‘AC.’ For information about these tokens, see the documentation for the PPM

Center Extension(s).

Chapter 4

Using the Token Builder

Using Tokens

Some tokens can never be evaluated in the default format. In these cases, you
must use the explicit entity format to set the context, such as:

[PREFIX="<entity name>".<TOKEN NAME>]

Token Builder generates tokens in the explicit entity format by providing a list
of possible entity name values. When such a list is available, the Context Value
field at the bottom of the Token Builder is enabled. You can either type in the
field to reduce the list, or click the auto-complete icon to open the Validate
window (see About the Token Builder on page 50). The selected value is
inserted into the token in the Token field to generate an explicit entity token.

For example, you need to reference the email address for jsmith. The token to
specify this reference is:

[USR="jsmith" .EMAIL ADDRESS]

To configure the token [USR="jsmith".EMAIL ADDRESS] in the Token Builder
window:

1. Log on to PPM Center.

2. From the menu bar, select Administration > Open Workbench.
The PPM Workbench opens.

3. From the shortcut bar, select Demand Mgmt > Request Types.
The Request Types Workbench opens.

4. Open a new or existing request type.
The Request Type window opens.

5. Click the Commands tab.

6. Click New Cmd.

The Commands window opens.

65

66

7.

10.
1.

12.

13.

Click Tokens.
The Token Builder window opens.

(D Token Builder @

oken Context [Tokens

{271 Token Context Token Description
{71 App Server
7] Budget

F {27 Environment
{171 Execution

F {17 Financial Benefit
{21 Crganization Lnit
{7 Program
{271 Resource Pool
{271 Security Group
{271 Skl
{271 Staffing Profile
{07 System
071 User

F {17 walidation

Context Yalue: I
Taoken: |[]

Select the User folder.

Available tokens are listed in the right pane, and the Context Value field is
available at the bottom of the window

The Token field displays the string: [USR].

Click the auto-complete icon in the Context Value field.

A Validate window opens.

In the list of users, scroll down to and select jsmith.

Click OK.

The Token field displays the string: [USR="jsmith"].

In the Tokens column, select EMAIL_ADDRESS.

The Token field displays the string: [USR="jsmith".EMAIL ADDRESS].
Because this is the complete token, the Token field is enabled.

Copy the text in the Token field, and then paste it into another field.

Chapter 4

5

Using Validations

In This Chapter:

About Validations

o Validation Component Types

o Accessing Validations Through Packages and Requests

o Validations and Special Characters

o Viewing System Validations

Configuring Validations

Configuring Static List Validations

Configuring Dynamic List Validations

o Configuring SOL Validations

Configuring Short List Auto-Complete Field Validations
Configuring Long List Auto-Complete Field Validations

o Configuring Automatic Value Matching and Interactive Select Pages
o Adding Search Fields to Long List Auto-Complete Validations
o Configuring the Filter Field Layout

o Configuring an Auto-Complete List of Users (Special Case)

o Configuring User-Defined Multi-Select Auto-Complete Fields
Configuring Text Field Validations

Text Data Masks for Validations

Configuring the Numeric Data Mask

Configuring the Currency Data Mask

Configuring the Percentage Data Mask

Configuring the Telephone Data Mask

Configuring a Custom Data Mask

Configuring Directory Chooser Validations

Configuring File Chooser Validations

Configuring Date Field Validations

Configuring 1800 Character Text Areas

Configuring the Table Component

o Configuring Table Components

o Configuring Table Rules

[o O o R o R A |

67

About Validations

68

Validations determine the acceptable input values for user-defined fields (such
as object type or request type fields). Validations also determine the possible
results that a workflow step can return. Validations are used for the following
two functions:

m Field component type. Users can create fields for several entities,
including object types, request types, request header types, and user data.
Validations determine the field component type (for example, text field or
drop-down list) and define possible field values.

m Workflow step results. Validations determine the possible results of
exiting a workflow step. For example, the validation WF - Standard
Execution Results contains the possible execution step results of
Succeeded or Failed.

Every PPM Center installation includes predefined system validations, which
you can use as you configure your system. If no system validation meets your
specific requirements, you can use the Validation Workbench to create your
own validation. (For details, see Configuring Validations on page 74.)

Chapter 5

Validation Component Types

Using Validations

You can only use certain component types in a workflow step source
validation. 7Table 5-1 summarizes the field component types available.

Table 5-1. Component types (page 1 of 2)

_(r:)?prgponent \L}jg rll?ﬂ ow? | Description and Example

Text entry fields displayed on a single line. You

can configure text fields to display the data in a

specific format. For example, you can configure a

i text field to accept and format a hyphenated

Text field Yes nine-digit social security number or a ten-digit

phone number.

Max Length: |

Field that displays a list of values.

Drop-down list | Yes
Validated By: [SOL - Custam =l

Option buttons Field that accepts yes/no input.
Yes/No) No
(Expected izt lenothe % Shart O Long

Field that lets you open a dialog box that lists
Auto-complete choices.
. Yes
list

Sutnrmary Condition: EE}
Text entry field that can include multiple lines.
Initial “ersion Comment:

Text area No

Field that lets you specify date and time in one
Date field No long, medium, short, or no format.

Start Date From: I

Text entry field for entering a URL. Clicking U

opens a browser window to the specified Web
Web address No address.

(URL)

URL: | u

69

70

Table 5-1. Component types (page 2 of 2)

Component
Type

Use In
Workflow?

Description and Example

File chooser

No

Used only in object types. Requires that two fields
be defined with the tokens P FILE LOCATION
and P SUB_ PATH. For configuration details, see
Accessing Validations Through Packages and
Requests on page 71.

File Mame: | E

Directory
chooser

No

Used only in object types. Requires a parameter
field defined with the token P FILE LOCATION.

Sub-Path; | =

Attachment

Field used to locate and attach files.

File:

Password field

No

Field used to capture passwords.

Passwiard: | ﬂ

Table
component

No

Used to enter multiple records into a single
component. The table component can be
configured to include multiple columns of varied
data types. This component supports rules for
populating elements within the table and provides
functionality for capturing column totals. For
details, see Configuring the Table Component

on page 118.

You can only add fields of this component type to

request types, request header types and request
user data.

Hardware Information

2 Entries E

Budget,
staffing profile,
financial
benefit

No

Field that you can add to the request type to
enable access to view, edit or create budgets,
staffing profiles, or financial benefits associated
with a request, project, or work plan.

You can only add fields of this component type to a
request type.

Budlget: Team T Allocations _%

Chapter 5

Accessing Validations Through Packages and Requests

>»

Using Validations

You can access the package and request group validations directly from the

Package window. You do not have to use the Validation Workbench to specify

that a package belongs to a new or unique package group that is not named in

the auto-complete validation list.

To access the package and request groups validation window from the Package

Workbench:
1. Log on to PPM Center.

2. From the menu bar, select Administration > Open Workbench.

The PPM Workbench opens.

3. From the shortcut bar, select Package > New Package Group.

The Validation window opens and lists the existing HP Deployment

Management package groups.

€D Validation : PPM - Package and Request Groups @
Marre: [and Ra Ins |
Description: |groupings for packages and requests |
Enabled: Use inWorkflow? []
ComponemType:|
Validated By:|
Walidation Values:
Seq | Code eaning Enabled = Description Detault
1{CUSTOMIZATION Customization v Customization [N
2[SETUP Setup id Setup M
3|UPGRADE Uparade v Upgrade I
Mew CopyFrom | 4+ &
(ussasy] ovnern |
I|Ready (Read-0nly, Seed Data)

Although all users can view this window, only users with the required security

privileges can change the package and request groups validation list.

71

72

To access the CRT - Request Type Category validation directly from the

Request Types Workbench:
1. Log on to PPM Center.

2. From the menu bar, select Administration > Open Workbench.

The PPM Workbench opens.

3. From the shortcut bar, select Request Type > Request Type Category Setup.

The Validation window opens and lists the existing request type categories.

(D Validation : CRT - Request Type Categor E]

NEMEH|CRT - Reguest Type Category

Description: |This validation contains a list of categories used for organizing Request Types

Enabled:

Use inWorkflow? []

Corponent Type: |

Validated By: |

Walidation Values:

Seq Code
1MISCELLANEQUS

Mesning
|Miscellanenus |

Description
[

Enahled Default

[

KL

[Used By ” Crwnership]

[Comrom] 4+

Cancel

I|Heady {Read-Only, Seed Data)

>»

Validations and Special Characters

Although all users can view this window, only users with the required security
privileges can change the CRT - Request Type Category validation list.

You cannot enter the question mark character (?) in the validation Name field.
The PPM Workbench prevents users from typing this character in the field.

Chapter 5

Viewing System Validations

PPM Center comes with several pre-configured validations. Note that some of
these validations may have been altered to better match the specific business
needs of your organization. To see a list of all validations in your system, run
the Validations report. This report provides information on validation values
and commands.

To view the existing validations on your instance:
1. Log on to PPM Center.
2. From the menu bar, select Reports > Create a Report.
The Reports window opens.
3. In the Report Category list, select Administrative.
The Reports window lists the Administrative reports.
4. Select Validations Report.
The Validations Report window opens.
5. Provide the following information:

m To view all of the special commands, leave the fields Validations From
and Validations To empty.

m Under Report Parameters:
o For Show Validation Values, select Yes.
o For Show Validation Commands, select Yes.
o For Expand Special Commands, select Yes.

6. Click Submit, and then wait to see the report displayed.

Using Validations 73

Configuring Validations

You can create, edit, and delete validations using the Validations Workbench.
Be sure to exercise caution if you edit existing validations that are in use by
fields or workflow step sources. Both field and workflow step validations can
be tied to workflow logic. Changing the validation values can invalidate a
process. To create, edit, or delete a validation requires the correct access
grants. For more information about access grants, see the Security Model
Guide and Reference.

Guide and Reference.
You cannot delete a validation if it is:
m A system validation (delivered with the product as seed data).

m Currently used by a workflow step source. You can only disable
validations referenced by workflow step sources. Although a disabled
validation continues to function in existing workflow steps, you cannot use
it to define a new step source.

m Currently used by a field in a product entity (object type, request type, user
data, report type, or project template field). You can only disable
validations referenced by entity fields. Although a disabled validation
continues to function in existing fields, you cannot use it to define a new
field.

Although you may not be able to delete a custom validation, you can disable it.
) This allows any active workflows or product entities to use the validation, but
keeps it from being used in new workflows or entity definitions.
To configure a new validation:
1. Log on to PPM Center.
2. From the menu bar, select Administration > Open Workbench.
The PPM Workbench opens.

3. From the shortcut bar, select Configuration > Validations.

The Validations Workbench opens.

74 Chapter 5

4. Click New Validation.

The Validation window opens.

¢H Validation : Untitled4

Name.|CRT-Requesl Header Types - Enabled |

Descrigtion: | |
Enabled: Use in Wiorkflow? I:‘
Componert Type: |Autu Comalete List b
“alideted By: |BQL- Custom - Expected list length: () Short (3 Long
Selection mode: @ Starts With O Contains Mumber of results per page:
Configuretion | Firer Fisids | Fiter Lavout |
olumn Heaclsrs: e
Seq | Colutn Header | Displayed | Colurn Width select REQUEST_HEADER_TYFE_ID,
1|nigden code |n | REQUEST_HEADER_TYPE_NAME, parameter_set_context_id from
2fvalue [[KCRT_REQUEST_HEADER_TYPES. \ where ENABLED_FLAG = '

and UPPER(REQUEST_HEADER_TYFE_NAME) like UPPER('?%" and
(REQUEST_HEADER_TYFE_MAME like upper(substr(?' 1,15 || %' or
REQUEST_HEADER_TYPE_NAME like lowet(sunstr(?,1,13) || "%

<4 | ¥
e f * Use Bind Yariables? |:|
(o) o) s
JReacy

5. Provide the information described in the following table.

Field Name Description

Name Name of the new validation.

Description Brief description of the validation.

Enabled Select this checkbox to enable the validation.

Select this checkbox to use the validation in a workflow step
Use in Workflow source. You can only use text field, list, and auto-complete
component types within workflow step sources.

Select a validation type. Selecting a listed value dynamically
updates the Validation window to display fields used to
configure the selected validation type.

The component types are:
m Text Field

m Drop Down List

= Radio Buttons

m Auto Complete List

m Text Area

= Date Field

= Web Address

m File Chooser

Component Type

Using Validations

6. Enter any additional information required for the selected component type.

Additional information depends on the component type selected. Selecting
a components type dynamically changes the remaining fields. The
remainder of this chapter details how to configure the difference
component types.

Specify which users through security groups can edit, copy, and delete this
validation.

a. Click Ownership.
The Ownership window opens.

b. Select Only groups listing below that have the Edit Validations Access
Grant.

c. Click Add.
The Add Security Group window opens.
d. Add security groups to the validation.

e. Click Apply to add a security group. Click OK to add a security group
and close the Add Security Group window.

8. Click OK.

Configuring Static List Validations

76

A static list validation can be a drop-down list or an auto-complete component.
You can create static list validations that provide a static list of options to the
user. For example, XYZ Corporation creates a validation called Engineering
Teams for its engineering teams. The validation consists of the values New
Product Introduction, Product One, and Product Two.

To create a static list validation for the engineering teams:

1.
2.

Log on to PPM Center.

From the menu bar, select Administration > Open Workbench.
The PPM Workbench opens.

From the shortcut bar, select Configuration > Validations.

The Validations Workbench opens.

Chapter 5

Using Validations

4. Open a validation.

The Validations window opens.

5. In the Component Type ficld, select Drop Down List or Auto Complete List.

The fields in the Validation window change dynamically, depending on
your selection.

6. In the Validated By field, select List.

7. Click New, and then add a value.

The Add Validation Window opens.

) Add Validation Value 3

“alue Infarmation]]
Code:‘

Meaning:
De=c:

Enablz? Default: |:|

‘Fx’eady

8. Provide the information for the validation value as described in the

following table.
Iliililri e Description

Underlying code for the validation value. The code is the value stored

Code in the database or passed to any internal functions, and is rarely
displayed.
. Displayed meaning for the validation value in the drop-down list or
Meaning
auto-complete.
Default value for the list. This value is initially displayed in drop-down
Default lists (it is not used for auto-completes). There can be only one default

value per list.

9. To set the validation value as the default, select the Default checkbox.

The default option is only available for drop-down lists.

77

10. To add the value to the validation:

m To add the value to the validation and close the Add Validation Value
window, click OK.

m To add the value and keep the Add Validation Value window open,
click Add.

11. To save your changes and close the window, click OK.

12. To change the order in which validation values are listed, use the up and
down arrow buttons. The sequence of the validation values determines the
order that the values are displayed in the list.

You can copy existing values defined in other validations using the Copy From

button. Click Copy From and query an existing list-validated validation and choose

any of the validation values. Click Add or OK in the Copy From window and the
) selected value or values are added to the list.

Be careful when creating validations (drop-down lists and auto-complete fields) that
are validated by lists. Each time the set of values changes, you must update the
validation. Consider, instead, validating using an SQL query or PL/SQL function to
obtain the values from a database table.

Configuring Dynamic List Validations

You can create validations that provide a dynamic list to the user. This is often
a better approach than defining static list validations. Static list validations
must be updated manually. Dynamic list validations can be constructed to
automatically pick up and display changed values. A dynamic list validation
can be created using a drop-down or an auto-complete component.

For example, XYZ Corporation needs a field validation that lists all users on
their support team. They have a static validation that is validated by a list of
users, but any time members join or leave the support team, the list must be
manually updated.

XYZ decides to create a dynamic list validation. To do this, they create an
auto-complete validation that is validated by an SQL statement. The SQL
statement returns the names of all users who belong to the Support Team
security group. If Security Team membership changes, the validation is
automatically updated with the current values.

78 Chapter 5

Configuring SQL Validations

You can use an SQL statement to generate the values in a validation. SQL can
be used as a validation method for drop-down lists and auto-complete

components. To define a dynamic list of choices, set a drop-down list or
auto-completes to Validated By - SQL. Then in the SQL field, enter the Select
statement that queries the necessary database.

€D Validation : Untitled4

Name:|CRT—Request Header Types - Enabled |

Description: |

Enabled:

Use inWorkflow? D

Camnponert Type: |Auto Camplete List

validated By: |SQL - Custom

Expected list length: (O Shot (3 Long

Selection mode: @ Starts With O Contains

Configurstion | Fiter Fields | Fiter Layaut |

Mumber of results per page:

alumn Heacers:

EaL:

Seq | Colutn Header | Displayed | Column YWidth
1|hidden code N |

select REQUEST_HEADER_TYFE_ID,

lvalue

[|

REQUEST_HEADER_TYPE_MAME, parammeter_set_corntext_id from
KCRT_REQUEST_HEADER_TYPES Y where ENABLED_FLAG = '

and UPPER(REQUEST_HEADER_TYPE_NAME) like UPPER('?%" and
(REQUEST_HEADER_TYPE_NAME like uppersubstr?,1,13) || %' of
REQUEST_HEADER_TYPE_MAME like lowerisubstrt,1,13) || ‘%1

Mewr ¥ Use Bind variables? [
=)
lheady

If you are using an auto-complete component, you can define headers for the
selected columns. These column headers are used in the window that opens if a
value from an auto-complete is selected. Under the Column Headers table,
click New. Table 5-2 shows the fields that can be entered for a column header.
If a column header is not defined for each column in an SQL query, a default

name is used.

Table 5-2. Column headers

Field Name

Description

Column Header

Column name to display in the auto-complete window.

Display

Determines whether or not the column is visible. The first
column is never visible and the second column is always
visible.

Using Validations

79

80

>»

For example, XYZ Corporation creates an auto-complete field that lists all
users in the Engineering department. They choose to validate the list by SQL.

SELECT U.USER ID, U.USERNAME, U.FIRST NAME, U.LAST NAME

FROM KNTA USERS U, KNTA SECURITY GROUPS SG, KNTA USER SECURITY
Us

WHERE SG.SECURITY GROUP_ID
ID = U.USER ID

AND SG.SECURITY GROUP NAME = 'Engineering'

and UPPER (u.username) like UPPER('?%')

and (u.username like upper (substr('?',1,1)) ||
or u.username like lower (substr('?',1,1)) || '
order by 2

US.SECURITY GROUP_ ID AND US.USER

After a new user account is created and added to the Engineering security
group, that user is automatically included in the auto-complete.

A validation may already exist that meets your process requirements. If it does,
consider using that validation in your process. Also consider copying and modifying
validations that are similar to the validation you want. for a complete list of validations
that are delivered with the product, see Viewing System Validations on page 73.

SQL Validation Tips

The following guidelines are helpful in writing an SQL statement for an
SQL-validated validation:

m The SQL statement must query at least two columns. The first column is a
hidden value that is never displayed, and is typically stored in the database
or passed to internal functions. The second column is the value that is
displayed in the field. All other columns are for information purposes and
are only displayed in the auto-complete window. Extra columns are not
displayed for drop-down lists.

m When something is typed into an auto-complete field, the values displayed
in the auto-complete window are constrained by what was first typed in the
field. Typically, the constraint is case-insensitive. To do this, you write the
SQL statement to query only values that match text that was typed.

Before the auto-complete list is displayed, all question marks in the SQL
statement are replaced by the text that the user typed. Typically, if the
following conditions are added to the WHERE clause in an SQL statement,
the values in the auto-complete window are constrained by what the user
typed.

where UPPER (<displayed column>) like UPPER('?%'")
and (<displayed column> like upper (substr('?',1,1)) ||
or <displayed column> like lower (substr('?',1,1)) || '%

Chapter 5

Any column aliases included directly in the SQL statement are not used.
The names of the columns, as displayed in auto-completes, are determined

from the section Column Headers. Drop-down lists do not have column
headers.

Command Validations

Using Validations

An auto-complete can contain command line executions that return and display
a list of values. To define a dynamic list of choices, set an auto-complete to
Validated By - Command with Delimited Output or Command with Fixed
Width Output. Then enter commands the Commands section. See Configuring
the Auto-Complete Values on page 93 for detailed instructions.

Figure 5-1. Auto-complete using command validation

¢P Validation : Untitled6

hlame: | |

Description: | |

Enabled: Use in Wiorkflow? |:|
Companent Type: |Autu Complete List >
Walidated By: |Command With Delimited Qutput v Expected list length: () Shot (&) Long
Selection mode; @ Starts \With O Containg Mumber of results per page:
Configuration] }]
olumn Heaclers: Commat Command Step
Seq | Column Hesder | Displayed | Column Width L -
1|hidden code [n | | Carmmmand Condition Descriptic || Command
2value [| |
< | || £
Mewy + ¥
Dtz Delimiter: | | < | >
Uszed By [(a4][Save][Cancel

heady

87

Configuring Short List Auto-Complete Field Validations

82

Auto-complete fields are used throughout the PPM Center to provide users
with an efficient way to select field values from a set of valid choices.
Auto-complete fields can be used for validations with a small or large number
of choices. The auto-complete can be configured to behave differently
depending on the expected number of values. For example, if you expect a
large number of entries, the auto-complete window includes an interface that
lets you page through your results. You can configure how the auto-complete
feature for the field behaves. For example, you can configure the field to
automatically complete entries that either start with or contain a text string.

Auto-complete fields configured to display a short list of entries, displaying all
of the values on a single page. Figure 5-2 shows the Select window for a short
list auto-complete field.

Figure 5-2. Short list auto-complete

2 Select Primary Organization Unit - Microsoft Internet Explorer g@g|

Primary Organization Unit starts with: w

Page: 1 Showing 1-6 of 6

Click a value to select
value

Architecture Mairtenance
Dev

Information Enginecrs
Operations

Primary Info Systems
Tech Faciltators

Cloge Window [

To configure a short list auto-complete field:
1. From the PPM Workbench shortcut bar, select Configuration > Validations.
The Validations Workbench opens.
2. Create a new validation or open an existing validation.
The Validation window opens.
3. From the Component Type field, sclect Auto Complete List.

4. In the Expected list length ficld, select Short.

Chapter 5

>»

5. Click Save.

Auto-completes configured as short lists load all values when the window is opened.
This can lead to a slower load time and an unfavorable user experience. For fields
with many possible values, consider formatting the auto-complete using the long list
format.

Configuring Long List Auto-Complete Field Validations

Using Validations

Auto-complete fields are used throughout the PPM Center to provide users
with an efficient way to select field values from a set of valid choices.
Auto-complete fields can be used for validations with a small or large number
of choices. The auto-complete can be configured to behave differently
depending on the expected number of values. For example, if you expect a
large number of entries, the auto-complete window includes an interface that
lets you page through your results. You can configure how the auto-complete
feature for the field behaves. For example, you can configure the field to
automatically complete entries that either start with or contain a text string.

Auto-complete fields configured to display a long list of entries, dividing the
results between multiple pages. By default, 50 results are shown per page. End
users can page through the results or further limit the results by specifying text
in one of the available filter fields at the top of the page. Figure 5-3 on page 84
shows the Select window for a long list auto-complete field.

83

84

Figure 5-3. Long list auto-complete

-2 Selact Project Manager: - Microsoft Internet Explorer

Project Manager:

First lame: Last Hame: _ Fnd |

Page: 1 2 |[®]| Showing1-50 of 59

Click a value to select b

Full Hame Username Department Ermail

=Authar Mot Known= author_unknown

Admin User admin

Belinda Malan hefindanalan helindanolan@company com

Betty Molan hettyniolzn bettynolan@@company .com

Bill Molan bilnolan bilnolanEcompany .com

Bk Brown hbrown hbrovnE@mercury .com

Bk Fell bfel

Buokr Malan bobnolsn bobnolanEcompany . com

Bobaite brovaite

Buok Wong brweong breeong@hycorpa.com

Brad Molan bradnolan bradnolani@oompany com

Bret Wans bvans wansE@hy CorpE . Com

Chrizs Browwn chrown chrownigmercury] .com

David Eliis delliz delliz@mercury! .com

Dinize Newel dnewel

Eric: Blunk ehlunk ehlunk@hycorpa.com

Fred Bieko thieko [

Fredrick Schmict techmict fechmicki@mercury .com

Hans Lopez hlopez hlopezi@hycorpa com

ITG Service ity_service

Jane Smith jasmith jasmith@mercury com

Jane Smith janesmith janesmith@company .com

Janet Ortez jortez jortezEBmercuryl com

Jason Camper joamper JEAmper@mercuryl .com

Jeremiah Smith igzmith iezmith@mercuryl .com b
Cloge Window: [

To configure a long list auto-complete field:

1.

From the PPM Workbench shortcut bar, select Configuration > Validations.
The Validations Workbench opens.

Open a validation.

The Validations window opens.

Create a new validation or open an existing validation.

The Validation window opens.

In the Component Type ficld, select Auto Complete List.

In the Expected list length ficld, select Long.

Chapter 5

>»

6. Click Save.

Auto-completes configured as long lists only load a limited set of values when the
window is opened. For extremely long lists or lists that are at risk of loading slowly
(for example the values are obtained from an alternate database), consider using
the long list format.

All auto-completes that are validated by SQL - User must use the long list

auto-complete format. This selection is automatically defaulted when the user
selects SQL - User in the Validated By list in the Validation window.

Configuring Automatic Value Matching and Interactive Select Pages

This section provides instructions for configuring auto-complete fields to filter
a list of possible values based on a matching character string. It also provides
instructions for configuring the automatic value-limiting that occurs on the
auto-complete’s Select page. Figure 5-4 shows an auto-complete field that has
opened to display matching values.

Figure 5-4. Auto-complete field and matching values on the Select page

<2 Select Project Manager: - Microsoft Internet Explorer

Project Manager: |0

First Hame: Last Hame: %

Page: 1 Showving 1-T of T

Click a value to select

Full Hame
Janet Ortez
Joe Smith
John Smith
John Smith
John Wiang
Joze Orega
Joze Smith

Username Department
jortez

Joestnith

josmith

johnsmith

Jwvang

jortega

josesmith

Email

jortez@mercury! com

josmith@mercury? .com
johrEmithE@company.com
JovangiEmercuryl .com
jortega@E@mercury .com
josesmithE@company.com

Close Window [

An Overview of Matching for “Starts with” or “Contains”

Auto-complete field behavior can be divided into the following areas:

Using Validations

Field behavior. A user types a character in the field and type the Tab key.
If an exact match is not available, the Select page opens.

Select page behavior. For lists that are configured appropriately, when a
user types a character or characters into the field at the top of the page, the
results are automatically limited to display only matching entries.

85

86

For both the field and Select page behaviors, automatic value matching can be
based on either “starts with” character matching or “contains” character
matching. The following table summarizes this behavior:

Table 5-3. Automatic character matching field behavior

Character

maiching mode Description of Behavior

Type characters and then type the Tab key. The selection
Starts with window opens and lists entries that begin with the specified
characters.

Type characters, and then type the Tab key. The selection
window opens and lists entries that contain the specified
Contains character string. This is the same behavior as a wild card
search, which uses the% character at the beginning of the
search text.

Table 5-4. Automatic character matching Select page behavior

Character Matching

Selection Mode Description of Behavior

Type characters and the list is automatically filtered for

Starts with entries that begin with those characters.

Type characters and the list is automatically filtered for

Contains entries that contain the character string.

To configure “starts with” matching from the auto-complete window to the
selection window, add the following to the SQL WHERE clause:

UPPER (value) like UPPER('?%
upper (substr('?',1,1)) '

| or value like
lower (substr('?',1,1)) |

)

) and (value like
]
)

| '3
| '3
To configure “contains” matching from the auto-complete window to the
selection window, add the following to the SQL WHERE clause:

UPPER (value) like UPPER('
upper (substr('?',1,1)) ||
lower (substr('?',1,1)) ||

%72

) and (value like '%' ||
[

)
' or value like '%'
)

o o o

')
To configure “starts with” matching within the interactive selection window:
1. Open the auto-complete Validation window.
2. From the Expected list length ficld, select Short.

This feature is only available for short lists.

3. From the Selection option, select Starts With.

Chapter 5

>»

Save the validation.

This setting only controls the matching on the Select page. Matching in the
auto-complete field is controlled by including specific clauses in the
auto-complete's SQL. See above for details.

To configure “contains” matching within the interactive selection window:

1.

From the PPM Workbench shortcut bar, select Configuration > Validations.

The Validations Workbench opens.

. Open the auto-complete Validation.

The Validation window opens.

. From the Expected list length field, select Short.

This feature is only available for short lists.

. From the Selection option, select Contains.

Save the validation.

This setting only controls the matching on the Select page. Matching in the
auto-complete field is controlled by including specific clauses in the
auto-complete's SQL. See above for details.

Contiguration Tips

Using Validations

Consider the following tips as you configure the “starts with” versus
“contains” functionality for auto-complete fields and the Select page:

m Auto-completes should be configured such that the field matching behavior

works the same way as the Select page matching behavior. Specifically, if
the auto-complete field uses the STARTING WITH clauses in the SQL,
then the selection window should use the “Starts With” Selection Mode.

Consider using the “Contains” selection mode for fields with multi-word
values. For example, possible values for the request type auto-complete
field are:

Development Bug
Development Enhancement
Development Issue
Development Change Request
IS Bug

IS Enhancement

IS Issue

IS Change Request

Support Issue

87

The “contains” mode can be useful here. The user knows that he must log a
bug against one of the IS-supported financial applications. The user types
“bug” into the auto-complete field and types the Tab key. The following
items are returned:

Development Bug
IS Bug

The user selects “IS Bug.” Without the “contains” feature enabled, typing
“bug” would have returned the entire list. He might have also typed
“Financial,” thinking that there might be a separate request type used for
each type of supported application. This, too, would have returned the
entire list. At that point, the user would be forced to try another “starts
with” phrase or simply read the entire (potentially long) list.

Adding Search Fields to Long List Auto-Complete Validations

Auto-completes with a long list of values can be configured to display
additional filter fields in the Select window. These fields can be used to search
other properties than the primary values in the list. Users can enter values in
the filter fields, and then click Find to display only the values that match the
search criteria. Figure 5-5 shows the Select window with additional filter
fields.

Figure 5-5. Filter fields in the auto-complete select window

2} Select Assigned To: - Microsoft Internet Explorer,

Assigned To: Department: b

First lame: Last Hame: _ Fnd |

Page: 1 Showving 1-50 of 50

Click a value to select ke

Full Hame Username Department Enail

Admin User admin

Belinda Molan belindanalzn belindanolani@oompany .com

Betty MNolan bettynolan hettynolan@company . com

Bill Molan hillnolan bilnolanE@company .corm

Buokr Brown bbrovwen bhbrownE@mercury] com

Bob Fell el

Buok Malan babnolan hobnolsn@companty Com

Bob Waite brwesite

Bk wiong bwvong brvongi@hy Corpa.com

Brad Molzan bradnolan bradnolan@@compsny . com o
Cloge Window: [

) Filter fields cannot be configured when validating your list by List, Command With
Delimited Output, or Command With Fixed Width Output.

Chapter 5

Using Validations

To add a filter field to the auto-complete validation:
1. From the PPM Workbench shortcut bar, select Configuration > Validations.
The Validations Workbench opens.
2. Open the validation for the auto-complete.

Auto-complete validations must display Auto Complete List in the
Component Type field.

3. In the Expected list length field, select Long.

Only long formatted auto-completes can include filter fields.
4. Click the Filter Fields tab.
5. Click New.

The Field: New window opens.

(D Field: New
Field Protipt: Token:
Procuct: | | De=cription: | |
Commponert Type: | |
“alidation I Default Yalue: | |
ey Enabled: @ Yes O Mo
Display: @ Wes O Mo
Dizplay Only: O Yes @ Mo
When the auto-complete user chooses & walue for this field, append toWhere Clause:

(o rao] o]

I|Ready

6. Enter the required information and any optional information you want to
provide.

Table 5-5 on page 90 lists the controls in the Field window.

89

90

Table 5-5. Fields in the Fields: New window

Field Name | Description
Field Prompt Name displayed for the field in the auto-complete Select window.
Product PPM Center product that uses the field.
Validation for the filter field. You can select any type of validation,
L except for auto-complete type validations.
Validation i .
Valid values are appended to the WHERE clause in the SQL
query that determines the ultimate auto-complete display.
Opens the Validation window, where you can construct a new
New validation for the filter field. Note that you cannot use an
auto-complete type validation for the filter field.
Open Opens the Validation window and displays the definition of the
P validation specified in the Validation field.
Token for the field value. The token value is appended to the
Token WHERE clause in the SQL query that determines the ultimate
auto-complete display.
Description Filter field description.
_CIE;F:\;ponent Component type for the filter field, determined by its validation.

Default Value

Default value for the filter field, determined by its validation.

Enabled Determines whether the filter field is enabled.
. Determines whether the filter field is visible to the user in the
Display , .
auto-complete’s Select window.
. Determines whether the filter field is updatable. When Display
Display Only . '
Only is set to Yes, the field can not be updated.
AND clause appended to the portlet's WHERE clause if the user
When the enters a value in this filter field. Each filter field appends its term

auto-complete
user chooses
a value for this

to the portlet query if the user enters a value in the Select window.

For example, if the filter field uses the CRT-Priority-Enabled
validation and a filter field token of P_PRIORITY, enter the

Poel\(/jv :gg%”d following in this field:

clause: AND R.PRIORITY CODE = '[P.P PRIORITY]'
Note: The value in this field must start with 'AND.'

View Full . .

Query Opens a window that displays the full query.

Chapter 5

7. Click OK.

Filter fields offer users a powerful way to efficiently locate specific values in large
lists. As you add filter fields to an auto-complete validation, consider the following:

m Ensure that the filter fields are functionally related to the listed values. For
example, a validation that provides a list of request types can include a filter
field for a specific Department associated with the request types.

) m Consider reusing (copying) an auto-complete validation and modifying the filter
fields to display a subset of the list. Use the Displayed, Display Only, and
Default fields in the Filter Field window, to configure the auto-complete values
to automatically limit the results.

m Performance can degrade if you join tables over database links.
Use this functionality only for complex fields.
Configuring the Filter Field Layout
To modify the filter field layout:
1. From the PPM Workbench shortcut bar, select Configuration > Validations.
The Validations Workbench opens.

2. Open the auto-complete validation that includes filter fields on the Filter
Fields tab.

3. Click the Filter Layout tab.

The Filter Layout tab lists the primary field and all filter fields that have
been defined for the auto-complete list. The primary field, which is named
Field Value, holds the eventual selected value.

(D Validation : CRT - Assigned To - Enabled

EERCRT - Assigned To - Enabled
Description: |Returns a list of users filtered by knta_security_groups.used_by_requests_flag

Enabled: Use in Wiorkflow? |:|
Componert Type:
Yalidated By: Expected list length:
Selection mocs: Mumbet of results per page: |50

Configuration | Fiter Fields Filter Layout

LI Field ¥alue LI Department: A

LI First Marme: LI Last Marne:

= = ~
Field Wicth Componert Lines Move Fieid I+ 4 4= =

JReady (Read-Only, Seed Data)

Using Validations 91

4. Select the field that you would like to move.

To select more than one field, type the shift key while selecting a range.
It is only possible to select a continuous set of fields (multiple selection
using ctrl key is not supported).

5. Use the arrow pointers to move the fields to the desired location in the
layout builder.

) A field or a set of fields cannot be moved to an area where other fields already
exist. The other field(s) must be moved out of the way first.

6. To switch the positions of two fields:
a. Select the first field, and then and select the Swap Mode option.
An S is displayed in the checkbox area of the selected field.
b. Double-click the second field that you want to reposition.
The two fields switch positions and the Swap Mode option is cleared.
7. To preview the layout, click Preview.
A window opens and shows the fields as they are to be displayed.

) Rows with no fields are ignored. They are not displayed as blank lines.
Hidden fields are treated the same as blank fields, and do not affect the layout.

Configuring an Auto-Complete List of Users (Special Case)

User auto-completes or validations (Validated by: SQL-User) have the
following three default filter fields:

®m Primary field - this field takes the name of the auto-complete field
m First name
m Last name

The user auto-complete always appears in the long list format, which uses the
paging interface to display the items. Additionally, user auto-completes
display a different icon.

Chapter 5

To configure a user auto-complete validation:

1.

6.

From the PPM Workbench shortcut bar, select Configuration > Validations.
The Validations Workbench opens.

Create a new validation.

The Validation window opens.

From the Component Type field, select Auto Complete List.

. From the Validated By field, select SQL - User.

Configure the SQL query that is to determine the users listed in the
validation.

See Configuring the Auto-Complete Values on page 93 for details.
Click Save.

Configuring the Auto-Complete Values

Using Validations

The values in an auto-complete can be specified in the following ways. In the
Validate By field, select one of the following:

List. Used to enter specific values.
SQL. Uses an SQL statement to build the contents of the list.

SQL - User. Identical to SQL configuration, but includes a few additional
preconfigured filter fields.

Command With Delimited Output. Uses a system command to produce a
character-delimited text string and uses the results to define the list.

Command With Fixed Width Output. Uses a system command to
produce a text file and parses the result on the basis of the width of
columns, as well as the headers.

93

94

Figure 5-6. Auto-complete list

Validation : Untitled9 1 =]
Mame: |
Description: |
Enabled: [v Usze in Workflow? [
Companent Type: |Autu Cornplete List j
Walidated By: Expected list length: & Shot 7 Long

Sz T List Murmber of resutts per page: |50
Configuration Command With Delimited Qutput

ammand With Fixed Width Output

alurnn Headds oL - User QL
Seq | Colurmn Header | Displayed | Column '

1|hidden code M

2fvalue [¥ |
| [l

Tokens Use Bind Yariakles? [

New | | o121 = _taens |

Used By | Dwnership | Ok | Save | Cancel |

Feady

For more information on creating auto-completes validated by List or SQL, see

Configuring Static List Validations on page 76 and Configuring Dynamic List
Validations on page 78.

Configuring Validations by Commands With Delimited Output

Validations that are validated by commands with delimited output can be used
to get data from an alternate source, and use that data to populate an
auto-complete. This functionality provides additional flexibility when
designing auto-completes.

Many enterprises need to use alternate sources of data within their
applications. Examples of these sources are a flat file, an alternate database
source, or output from a command line execution. Special commands may be
used in conjunction with these alternate data sources, in the context of a
validation, to provide a list of values.

Chapter 5

Using Validations

To configure a validation by command with delimited output:

1. In the Validation Workbench, under Validated By, choose Command With
Delimited Output, and then enter the delimiting character.

2. Under New Command, enter the command steps.

These can include PPM Center special commands. Include the special
command ksc_capture output, which captures and parses the delimited
command output. If you place the ksc _capture output special command
between the ksc_connect and ksc_disconnect commands, the command
is run on the remote system. Otherwise, the command is run locally on the
PPM Server (like ks c_local_exec).

The following simple example uses a comma as the delimiter and includes the
validation values red, blue, and green. The script places the validations into the
newfile.txt file, and then uses the special command ksc capture output
to process the text in the file.

ksc _begin script[AS.PKG TRANSFER PATH]newfile.txt

red, red

blue,blue

green,green

ksc_end script

ksc_capture output cat[AS.PKG TRANSFER PATH]newfile.txt

Table 5-6 shows the Validation window for Command with Delimited Output.

Figure 5-7. Validation by command with delimited output

(D Validation : Untitledé

Matne: |

Description: | |
Enabled:
Camponent Type: |Aum Cormplete List e

Use in Wiorkflow? |:|

“Walidated By: |Command with Delimited Output + Expected list lencth: () Short (3 Long

Mumber of results per page:

Selection mode: @ Starts With O Contains

Configuration] }]

olumn Headers: Commamnc Command Step
Seq | Column Header | Displayed | Column Wicth - -
1|hidden i |N | Comnarnd Condition Descriptic| | Comtnatd
value [v | |
Tl 4+ _ I =&
Diata Delimiter: | | < | 5
) G) os
F’eady

95

96

Table 5-6. Validation by command with delimited output

Field Name | Description

Field where new commands can be added to capture validation

Commands

values.
Data Indicates the character or key by which the file is separated into the
Delimiter validation columns.

You can also define headers for the selected columns. These column headers
are used in the window that opens when a value is selected from an
auto-complete. To define a new header, click New in the Column Header
section. Table 5-7 shows the fields that you can enter for a column header. If
you do not define a column header for each column in a command, a default
header is used.

Table 5-7. Column headers

Field .

Name | Description

(H:Zgj(;g? The name of the column that is displayed in the auto-complete window.
Display | Determines whether the header is displayed in the validation.

Configuring Validations by Commands with Fixed-Width Output

Validations by Command with Fixed Width Output can be used to obtain data
from an alternate source, and use that data to populate an auto-complete. This
functionality provides additional flexibility when designing auto-completes.

Many enterprises need alternate data sources within their applications.
Example sources are a flat file, an alternate database source, or output from a
command-line execution. You can use special commands together with these
alternate data sources, in the context of a validation, to provide a list of values
on the fly.

In the Validation Workbench, under Validated By, choose Command With Fixed
Width Output and enter the width information. Then, under New Command,
type the command steps. These can include special commands. Include the
special command ksc capture output in you commands. This command
captures and parses the delimited command output. If you place the ksc
capture output between ksc_connect and ksc_disconnect, the command
is run on the remote system. Otherwise, it is run locally on the PPM Server (as
ksc_local exec is).

Chapter 5

The following example includes the validations red, blue, and green. The
column width is set to 6. The script places the validations into the
newfile.txt file.

ksc_begin script[AS.PKG TRANSFER PATH]newfile.txt

red red

blue blue

green green

ksc_end script

ksc_capture output cat[AS.PKG TRANSFER PATH]newfile.txt

Figure 5-8. Validation by command with fixed width output

Validation : Untitledg 1 [=]
Ilarne: |
Description: |
Enabled: [Use in Workflow? [
Component Type: |Autu Complete List ﬂ
walidsted By: [Comrmand with Fixed Width output ¥ | Expected list length: & Short Long
Selection mode: % Starts With O Contains Mumber of results per page: |50
Configuration]]
olutnin Headers: > ozl Command Steps—
Saq1 h.(ZCloDllumn Hzader ND\sp\ayed Calun i |] ‘ Condition | Desc
Idden code " "
ksc_hegin_scri
valus v =l execute [[_hegin_scrip
3jred '
4[blue i | | | K
Algreen i
1] e gea| =] p
Uszed By | Dvwenership | OH | Save | Cancel |
Feady

Table 5-8. Validation by command with fixed width output

Field Name | Description

Field where new commands can be added to capture validation

Commands
values.

Headers can also be defined for the columns selected. These column headers
are used in the window that opens when a value is selected from an
auto-complete. To define a new column header, click New in the Column
Header section. 7able 5-9 shows the fields can be entered for a column header.
If a column header is not defined for each column in a command, a default
name is used.

Using Validations o7

98

Table 5-9. Column headers

Field Name | Description

Column The name of the column that is displayed in the auto-complete.

Header

Displa Whether or not the column is displayed. The first column is never
play displayed and the second column is always displayed.

Column Width The number of characters in each column of the output generated

as a result of the command.

Configuring User-Defined Multi-Select Auto-Complete Fields

A number of auto-completes in the PPM Workbench have been pre-configured
to allow users to open a separate window for selecting multiple values from a
list. Users can also define custom auto-completes to have multi-select
capability when creating various product entities.

The user-defined multi-select capability is supported for:

m User data fields

m Report type fields

m Request type fields

m Project template fields

The user-defined Multi-Select capability is not supported for:

m Request header types

m Object types

In order to use this feature when creating a new entity, users must:

m Select a validation for the new entity that has Auto-Complete List as the
Component Type. This enables the Multi-Select Enabled field in the Field:
New window.

m In the Field: New window, users must click Yes for the Multi-Select
Enabled option.

The step-by-step procedure for defining multi-select capability in user data,
report type, request type, or project template fields is very similar. The
procedure for enabling this capability for request type field is shown below as
an example.

Chapter 5

Using Validations

To define a multi-select auto-complete for a request type:

1. From the PPM Workbench shortcut bar, select Demand Mgmt > Request
Types.

The Request Types Workbench opens.
2. Open a Request Type.

The Request Type window opens.
3. Click New.

The Field: New window opens.

Figld Prompt: Token:
Description:

Enablect @ Yes O Mo

Componert Type:
walidation " "

Hew Multi-Select Enabled:

Adfributes] Default 1 Storage] Security]

Section Matne : Display Only, () Yes () Mo
Transaction History: () Yes () Mo Motes History, () Yes () Mo
Display on Search and Fiter: (33 Yes O o Display; (3 Yes O o
Search Validstion: I
Copy Fram... [ox J[aaa [cancal |

I|Ready

4. Select a validation of type Auto-Complete List from the Validation field.
The Multi-Select Enabled option is enabled.
5. To the right of Multi-Select Enabled, click Yes.

The Possible Conflicts window opens and displays a warning not to use a
multi-select auto-complete for advanced queries, workflow transitions and
reports. If this field is not to be used in advanced queries, workflow
transitions or reports, click Yes.

6. Configure any other optional settings for the new request type.
7. Click OK.

The field is now enabled for multi-select auto-complete.

99

100

Example of Token Evaluation and Validation by Command with Delimited Output

The validation functionality can be extended to include field-dependent token
evaluation. You can configure validations to change dynamically, depending
on the client-side value entered in another field.

To use field dependent token evaluation, you must configure a validation in
conjunction with an object type, request type, report type, project template, or
user data definition. Consider the following example of how to set up an object

type using field-dependent tokens.

1. Generate a validation and set the following parameters as shown here:

a

b

. Name: demo_client_token_parsing
. Component Type: Auto Complete List
. Validated By: Command With Delimited Output
. Data Delimiter: | (bar)
. Command
m Command: Validate_from_file
m Steps

ksc_connect source server SOURCE ENV="Your Env"
ksc capture output cat [P.P FILENAME]

ksc_exit

€D Validation : demo_client_token_parsing

Mane: |demo_cliem_token_parsing

Description: |

Enabled:

Use inWorkflow? D

Camnponert Type: |Auto Complete List

Walidsted By: |Cnmmand With Delimited Output v

Selection mode: (%) StartsWith () Contains

Expected list length: () Shot (3 Long

Mumber of resutts per page:

Configuration] I]
nlurin Headers: Comman Comimand Steps
Seq | Column Headsr | Displayed | Column Wicth Command Condition Command
;}:;TS;H code I\P: i =] validate_from_file ksc_connect_source_server
ksc_capture_output cat [F.P_
ksc_exit
< | ¥
< 2| €
Mew f ‘
Data Delimiter. || ' = i 3

I'Sava“successful.

Chapter 5

When called, this validation connects to an environment called “Your Env”
and retrieves data from a file specified by the token P FrLENAME. The file
resides in the directory specified in the Base Path in the Environment
window.

2. Generate an object type named token parsing demo.

(D Object Type : Untitled3

Ohject Type Mame: |tu ken_parsing_demao |

Description: | |
Extension: | v| Object Name Cotrmn [PARAMETERY |
Ohject Category: |Custnm Objects V| Ohject Revision Columr; | v|
Meta Laver View: |MPRGL_ | TOKEN_PARSING_DEMD |

Enablect: @ Yes ONO

Figlds] Layuui] Commands I Owenership]

Protnpt Taken Paratneter Col. Displayed | Component Type “alidation Reguired | Display Only
AutoCo.. [P_AUTOC.. |[PARAMETERZ | ¥ |Auto Complete List |demo_client_token_parsing | N | N
Filename|[FP_FILEMA [PARAMETERT | v [TestField [Test Field - 40 [] ™
< | &
ey
[O] [Save] [Cancel
lFeady

a. Generate a new field with the following parameter settings:
m Name: Filename
m Token: P FILENAME
m Validation: Text Field - 40

b. Generate a new field with the following parameter settings:
= Name: AutoComp
m Token: P AuTOCOMP

m Validation: demo client token parsing (the validation defined
in step 2)

Using Validations 107

3. For this example to return any values in the auto-complete, a file must be
generated in the directory specified in the Base Path in the Environment
Detail of “Your Env” environment. Generate a file named parse
testl.txt that contains the following delimited data:

DELIMITED TEXTI1|Parameter
DELIMITED TEXT2|Parameter
DELIMITED:TEXT3IParameter
DELIMITED TEXT4|Parameter

SN

The object type token parsing demo can now use this token evaluation.
To test the configuration sample:
1. From the PPM Workbench shortcut bar, select Deploy Mgmt > Packages.
The Packages Workbench opens.
2. Open a new package.
3. In the Package window, select a workflow, and click Add Line.
The Add Line window opens.
4. In the Object Type ficld, select token_parsing_demo.
The Filename and AutoComp fields are displayed:
5. In the Filename field, type parse_testl.txt.

6. In the AutoComp ficld, select parse_test1.txt.

%\“_E

rohiect Type Information
GEE] < validate 3
Sequ|
Autocamp starts with H
Paramel
value e
Filenam:
Autocomgl |Parameter 2
Parameter 3
Parameter 4
g | U]
Cancel
Fetumed 4 choices.
Claar | ok | s | cancel |
|'token_parsing_demu'parameters loaded.

102 Chapter 5

Configuring Text Field Validations

Using Validations

Text fields displayed on a single line. Text fields can be configured to display
the data according to a certain format. For example, you can configure a text
field to accept and format a ten-digit telephone number or display a specific
number of decimal places for a percentage.

To create a text field validation:

1.

From the PPM Workbench shortcut bar, select Configuration > Validations.
The Validations Workbench opens.

Open a validation.

The Validations window opens.

In the Name field, type the validation name.

In the Component Type fiecld, select Text Field.

In the Data Mask field, select the data mask that represents the format you
want for the field data.

For more information, see Text Data Masks for Validations on page 104.
Configure the selected data mask. (Optional)

For information about data masks, see Text Data Masks for Validations
on page 104.

. To view the results of your data mask settings:

a. In the Sample Input field, enter a value to preview based on your
settings.

b. Click Format.
The Formatted Output window displays the results.
Click OK.

103

104

Text Data Masks for Validations

PPM Center includes a number of preconfigured data masks that can be used
when creating text field validations. Each of these data masks can be
configured to meet your specific data requirements. The data masks delivered
with PPM Center are described in Table 5-10.

Table 5-10. Data mask formats (page 1 of 2)

Data Mask

Description

Alphanumeric

Field allows all alphanumeric characters. You can specify the
maximum field length for fields using this validation.

Alphanumeric
Uppercase

Field allows alphanumeric characters and formats all characters as
uppercase text. You can specify the maximum field length for fields
using this validation.

Numeric

Field allows only numeric characters. You can specify the following
characteristics for this data mask:

m Range of values (maximum and minimum) that the field accepts
m Whether to display a zero if the field contains no data

m Whether to use a group separator such as a comma to display
large numbers

= Negative number format
m Maximum number of decimal places

For more detailed information, see Configuring the Numeric Data
Mask on page 105.

Currency

Field is used to display currency data and accepts only numeric
characters. You can specify the following characteristics for this
data mask:

m Range of valid values (maximum and minimum) for the field
m Whether a zero is displayed if no data is entered

m Whether a group separator such as a comma is used to display
large numbers

m Negative number display
= Number of decimal places

For more detailed information, see Configuring the Currency Data
Mask on page 107.

Chapter 5

Table 5-10. Data mask formats (page 2 of 2)

Data Mask | Description

Field is used to display percentages and accepts only numeric
characters. You can specify the following characteristics for this
data mask:

m Range of valid values (maximum and minimum) for the field
m Whether a zero is displayed if no data is entered

Percentage m Whether a group separator such as a comma is used to display
large numbers

= Negative number display
= Number of decimal places

For more detailed information, see Configuring the Percentage
Data Mask on page 109.

Field is used to display telephone numbers and accepts only
numeric characters. You can specify the following characteristics
for this data mask:

m Format - specify the number of digits included, and the delimiter
to be used between groups of numbers. For example, you can
specify dashes (-) or periods (.) between numbers
(555-555-5555 or 555.555.5555).

m Maximum and minimum number of digits

For more detailed information, see Configuring the Telephone Data
Mask on page 110.

Telephone

Field allows a range of custom inputs. You can customize the field
to accept digits, letters, spaces, and custom delimiters. For more
detailed information, see Configuring a Custom Data Mask

on page 112.

Custom

Configuring the Numeric Data Mask

The numeric data mask allows only numeric characters. When creating a
validation using this data mask, you can specify the following field
characteristics:

m Range of values (maximum and minimum) accepted
m Whether to display a zero if the field contains no data

m Whether to use a group separator such as a comma to display large
numbers

m Negative number format

® Maximum number of decimal places accepted

Using Validations 105

106

Figure 5-9 shows the fields that you can configure for this data mask.
Table 5-11 provides descriptions of these configurable fields.

Figure 5-9. Validation window for the numeric data mask

(D Yalidation : Untitledd

Marne: | |
Drescription: | |
Enabled: Use in Wiotkflow? |:|
Component Type: |Tex‘t Field b’
Data Mask: |Numeric he |
Maimum alue: | jelefelele] | Sample Input:
Wiriitriun % alue: |-9999 | |4SUUU.22 |
If Dt ot Ertered, then display a zero: @ Mes O Mo
Use Group Separstor @ Yes O Mo
Negative Mumber looks like: |—1 oo b | Formetted Output
Mumber of Decimal Places: |2 | 45,000.22
Uszed By [(a4] [Save] [Cancel]
lheady

Table 5-11. Fields for configuring the numeric data mask for text fields

(page 1 of 2)

Field Name

Description

Maximum Value

Largest value allowed for this field. You can specify a
positive or negative number.

Minimum Value

Smallest accepted value for the field. You can specify
positive or negative number.

If Data not Entered,
then display a zero

Determines whether a field with no data displays a zero.

Chapter 5

Table 5-11. Fields for configuring the numeric data mask for text fields
(page 2 of 2)

Field Name Description

Determines if the field uses a group separator (such as a
comma) to divide characters within large numbers (for
example, whether 1000000 is displayed as 1,000,000). The
default character used as the separator depends on the
locale setting for the machine, but you can use the Regional
Settings window in the PPM Workbench (select Edit >
Regional Settings) to change the delimiter.

Use Group
Separator

Used to select one of the following four formats for the
display of negative numbers:

Negative Number | ® (1000)—parentheses and black text
looks like m (1000)—parentheses and red text

m -1000—minus character (-) and black text
m -1000—minus character (-) and red text

Number of Decimal | Determines the maximum number of decimal places used to
Places display values.

Configuring the Currency Data Mask

The currency data mask allows only numeric characters and is used to display
currency data. When creating a validation using this data mask, you can
specify the following characteristics:

m Range of values (maximum and minimum) allowed for this field
m Whether or not a zero is displayed when data is not entered into the field

m Whether a group separator such as a comma is used to display large
numbers

m Negative number display
m Number of decimal places

Figure 5-10 on page 108 shows the fields that you can configure for this data
mask. Table 5-12 on page 108 provides descriptions of these fields.

Using Validations 107

108

Figure 5-10. Validation window for the currency data mask

¢P Validation : Untitledé

hlame:

Descrigtion:

Enabled: Use in Wiorkflow? D
Component Type: | Text Field N
Data Mask: (Currency b
Region: |MercquS El Sarnple Input:
Mzt Yalug: | 1000000 500000.22
Mirimurn value: |0
If Data not Ertered, then display a zera: @ Yes O Mo
Use Group Separator @ Yes O Mo (Pt) G s
a00,000.32
Megative Mumber looks like: -1000 e Ll =
Murrber of Decimal Places: |2
Uszed By [QK] [Save] [Cancel]

F’eady

Table 5-12. Fields configuring the currency data mask for text fields

Field Name Description

Largest value allowed for this field. You can enter a positive

Maximum Value .
or negative number.

Smallest value allowed for this field. You can enter a positive

Minimum Value .
or negative number.

If Data not Entered, | Determines whether a field that contains no data displays a
then display a zero | zero.

Determines if the field should use a group separator (such
as a comma) to divide characters within large numbers. For
example: 1000000 versus 1,000,000. The character used for
the separator defaults based on the machine’s local, but can
be configured in the Regional Settings window in the PPM
Workbench. Select Edit > Regional Settings to access this
window.

Use Group
Separator

Determines the text used to display negative numbers. The
four possible options are:

Negative Number = (1000)—parentheses and black text
looks like m (1000)—parentheses and red text

m -1000—minus character (-) and black text
m -1000—minus character (-) and red text

Number of Decimal

Places The maximum number of decimal places displayed.

Chapter 5

The INSTALLATION CURRENCY server parameter determines the currency symbol
displayed in the field and the position of the text in the field. For example, the following
) parameter setting specifies the dollar currency sign, and right-aligned text:

INSTALLATION CURRENCY=$;RIGHT
For help with changing this setting, contact your system administrator.

Configuring the Percentage Data Mask

The percentage data mask allows only numeric characters and is used to
display percentages. When creating a validation using this data mask, the
following characteristics can be specified:

Range of values (maximum and minimum) allowed for this field
Whether or not a zero is displayed when data is not entered into the field

Whether a group separator such as a comma is used to display large
numbers

Negative number format

Maximum number of decimal places

Figure 5-11 shows the fields that you can configure for this data mask, and
Table 5-13 on page 110 provides descriptions of these fields.

Using Validations

Figure 5-11. Validation window for the percentage data mask

[Yalidation : Untitled$

arme: | |

Drescription: | |

Enabled: Use in workflow? []

Componert Type: |Tex‘t Field M

Data Mask: |F‘ercentage V|

aimun alue: |1 ao | Sample Input:
Mt % alue: |EI | |SD 22 ‘

If Dista not Ertered, then display & zero: @ Mes O Mo

Use Group Separstor @ Yes O Mo

Formatted Output:
Negative Mumber looks like: |—1 oo v| ot "

Murrer of Decimal Places: |2 | 50.22%

T

heady

109

170

Table 5-13. Fields configuring the percentage data mask for text fields

Field Name

Description

Maximum Value

Largest value allowed for this field. You can specify a
positive or negative value.

Minimum Value

Smallest value allowed for this field. You can specify a
positive or negative value.

If Data not Entered,
then display a zero

Determines whether the field displays a zero if no value is
entered.

Use Group Separator

Determines whether a group separator such as a comma
is used to display large numbers (for example, 1000000
versus 1,000,000). The default character used for the
separator is based on the local machine setting, but you
can modify the setting from the PPM Workbench, in the
Regional Settings window. To open this window in the
PPM Workbench, select Edit > Regional Settings.

Negative Numberlooks
like

Determines the text used to display negative numbers.
The four possible options are:

m (1000)—parentheses and black text
(1000)—parentheses and red text

m -1000—minus character (-) and black text
m -1000—minus character (-) and red text

Number of Decimal
Places

Determines the maximum number of decimal places
accepted.

Configuring the Telephone Data Mask

Use the percentage data mask to specify telephone number display. As you
create a validation using this data mask, you can specify the following
characteristics for the field:

m Specify the number of digits to include, and the delimiter to use between
groups of numbers. For example, you can specify dashes (-) or periods (.)
between numbers (555-555-5555 or 555.555.5555).

® Maximum and minimum number of digits.

Figure 5-12 on page 111 shows the fields that you can configure for this data
mask, and Table 5-14 on page 111 provides descriptions of these fields.

Chapter 5

Using Validations

Figure 5-12. Validation window for the telephone data mask

¢P VYalidation : Untitledé

hlame: | |

Description: | |
Enabled: Use in Wiorkflow? D
Component Type: |Tex‘l Field N
Data Masic [Telephane v|
Format: | DDOD-0ODD-DDDD Sample Input:
Wi # of Digits: |15 1234567980 |
Minirmum # of Digits: |10
Formatted Output:
123-456-7890
Use the following to specify custom format:
D Digit {0 to 9, pound "#' and start"*', entry required, plus"+" and minus "-" not
allowed)
Allowed Allowed Delimiters are open parenthesis "', close parenthesis ")", dot".",
Delimiters minus"-", space"" and the plus "+" sign.
(o] Com) (o)
F’eady

Table 5-14. Fields configuring the telephone data mask for text fields

Field Name Description

Format

The rule that determines how digits are formatted,
including the use of spaces or delimiters. The format
definition can include the following delimiters:

m Parentheses ()

Period (.)

m Dash (-)

m Space

m Plus character (+)

For telephone format examples, see Table 5-15.

Maximum # of Digits The maximum number of digits that the field accepts.

Minimum # of Digits The minimum number of digits that the field accepts.

Table 5-15. Sample telephone data mask formats

Format Rule User Input Output
D-DDD-DDD-DDDD 15555555555 1-555-555-5555
DDD DDD DDDD 5555555555 555 555 5555
(DDD) DDD-DDDD 5555555555 (555) 555-5555

177

1712

Special behavior applies to the extra characters if you define a format that lets
users enter a range of number of characters. Extra characters are always
grouped with the first set of characters. For example, if you configure the
telephone data mask with a minimum of ten characters and a maximum of 15
characters, the results are as follows:

Format: DDD-DDD-DDDD
Min: 10

Max: 15

Input: 1234567890
Output: 123-456-7890
Input 2: 12345678901
Output 2: 1234-567-8901

Configuring a Custom Data Mask

You can define a custom data mask that allows a range of inputs, and specify
the format for the input. You can customize the field to accept numeric values,
alphabetic characters, spaces, and custom delimiters.

Figure 5-13 shows the fields that you can configure for this data mask.

Figure 5-13. Validation window for the custom data mask

¢H Validation : Untitled6

fame: | |
Description: | |
Enabled: Use in Wiorkflow? |:|
Componert Type: |Tex‘l Field b/
Data Mask: [Customn v|
Forrat: ” | Sample Input:
Formatted Output:
Use the following to specify custom format:
[n] Digit {0 to 9, entry required, plus "+" and minus "-" not allowed)
L Letter (A to Z entry required).
A Ay character or a space {entry required).
| Causes the character that follows to be displayed as the literal character (4 is
displayed as A).
Uszed By [a4 ” Save ” Cancel
JReacy

Chapter 5

To configure a custom format, in the Format field, type a combination of the
following symbols.

Use D to specify that the user must enter a numeric value between 0 and 9.

Use L to specify that the user must enter an alphabetic character between A
and Z.

Use A to specify that the user must type a character or space.

Use a \ (backslash) to specify that the next character is to be displayed as
the literal character. For example: “\A” is displayed as “A”.

Table 5-16 lists two examples of custom formatting.

Table 5-16. Sample custom data mask formats

Format Rule User Input Output
DDD\-DD\-DDDD 555555555 555-55-5555
AA\-DDD BC349 BC-349

Configuring Directory Chooser Validations

Using Validations

The Directory Chooser field can be used to select a valid directory from an
environment. HP Deployment Management connects to the first source
environment on a workflow and allows navigation through the directory
structure and the selection of a directory from the list.

As you implement the Directory Chooser, note the following:
® You can only use the Directory Chooser field on an object type.

m On every object type that a Directory Chooser is chosen, it is also

necessary to have a field whose token is p FILE rocaTION and whose
validation is DLV - File Location. The possible values for this field are
Client and Server. If Client is chosen, the Directory Chooser connects to the
Client Base Path of the source environment. If Server is chosen, the
Directory Chooser connects to the Server Base Path of the source
environment.

113

Configuring File Chooser Validations

A File Chooser field can be used by object types to select a valid file from an

environment. HP Deployment Management connects to the first source

environment on a workflow and provides the ability to view all files within a

specific directory and select one from the list.

On every object type that a File Chooser is chosen, it is necessary to define the

following fields:

m The first is a field for the file location for the directory chooser, described

in the previous section.

m The second is a field whose token is p_sus_paTH. This field is the directory

from which the file is selected and is usually a directory chooser field.

Figure 5-14. Validation window for static environment override in file chooser

¢H VYalidation : Untitled6

hlame: |

Description: |

Enabled:

Use in Warkflow?

Component Type: |F\Ie Chooser

Baze File Matne Only:

Environment Override Behavior:

]

|Static Environment Override

Owverriding Ervirontert ||

Overriding Server Basepath: |

Ovetriding Client Basepath: |

[Cor [Csave [cones
heady
Table 5-17. File chooser field
Field Name Description

Base File Name Only

Defines whether the base file name only (without its
suffix) or the complete name is displayed.

Environment Override
Behavior

Used to select files from a specific environment other
than the default environment.

174

Chapter 5

The Environment Override Behavior drop-down list contains three options:
Default Behavior, Static Environment Override, and Token-Based Environment

Override.

Static Environment Override lets you override one environment at a time. The
fields for static environment override are shown in Figure 5-14 on page 114
and described in 7able 5-18.

Table 5-18. Static environment override

Field Name Description

Overriding

; Selects the environment to be overridden.
Environment

Overriding Server

The server basepath of the environment can be overridden.
Basepath

Overriding Client

The client basepath of the environment are overridden.
Basepath

Token-based Environment Override provides the ability to select a token that is
to resolve to the overriding environment. The fields for Token-based
Environment Override are shown in Figure 5-15 and defined in Table 5-19

on page 116.

Figure 5-15. Validation window for token-based environment override in file
chooser

(D Yalidation : Untitled6

Marne: | |

Description: | |

Enabled: Use in Workflow?

Companent Type: |Fi|e Chooser

Base File Mame Cnly:

Environment Override Behavior:

Ervvironment Token: | |

Cwerriding Server Basepath: | |

Crverriding Clignt Basepath: | |

T

==t

Using Validations 115

Table 5-19. Token-based environment override

Field Name Description
Environment Select the token that is to resolve to the overriding
Token environment.

Overriding Server | Specify a basepath to override the server basepath of the
Basepath environment to be resolved by the token.

Overriding Client | Client basepath of the environment that is to be resolved by the
Basepath token can be overridden.

Configuring Date Field Validations

Date fields can accept a variety of formats. The current date field validations
are separated into two categories: all systems and systems using only the
English language. These formats are described in Table 5-20 on page 117.

176 Chapter 5

Table 5-20. Date field formats

Field
Name

Systems

Description

Date
Format

All

Formats for the date part of the field. Choices are:
m Long. January 2, 1999

m Medium. 02-Jan-99

= Short. 1/2/99

= None. Date is not displayed.

Date
Format

English
Only

Available formats for the date section of the field are:
= MM/DD/YY (06/16/99)

= DD-MON-YY (16-Jun-99)

m MONTH DD, YYYY (June 16, 1999)

= Day, Month DD, YYYY (Monday, June 16, 1999)
m DD-MON (16-JUN, defaults to current year)

s DD-MON-YYYY (16-JUN-1999)

= MM-DD-YYYY (06-16-1999)

= MM-DD-YY (06-16-99)

m DD (Defaults to the current month and year)

= MM/DD (06/16, defaults to current year)

= MM/DD/YYYY (06/16/1999)

Time
Format

All

Available formats for the time section of the field are:
= Long. 12:00:00 PM PST

= Medium. 12:00:00 PM

= Short. 12:00 PM

= None. Time is not displayed.

Configuring 1800 Character Text Areas

Standard text areas are either 40 or 200 characters. You can, however, create a
Text Area validation with a character length of 1800.

To create a validation with a character length of 1800:

1. From the PPM Workbench shortcut bar, select Configuration > Validations.

The Validations Workbench opens.

2. Search for Text Area - 1800.

Using Validations

117

>»

3. In the results tab, select Text Area - 1800.
4. Click Copy.
5. Rename the validation.

You can use the Text Area validation (1800 characters long) as you define a
custom field in the product.

You can only create a text field or area of length 40, 200, 1800, or 4000.

Contiguring the Table Component

118

The table component is used to enter multiple records into a single field on a
request. You can configure the table component to include multiple columns of
varied data types. This component also supports rules for populating elements
within the table and provides functionality for capturing column totals.

For example, XYZ Corporation creates a request type to request quotes and
parts for hardware. Each entry of this type has four elements: Product,
Quantity, Price, and Total. XYZ creates a Table Component field called
Hardware Information to collect this information.

When the user logs a request for new hardware, the request displays the
Hardware Information field. The user opens the Hardware Information window
and selects a product, which triggers a rule to populate the fields in the Price
and Total columns. He submits the request, which now contains all of the
information required to successfully order the hardware.

Figure 5-16. Hardware information window

Hardware Information

Select the Product and Quantity of the tems you wish to order

Seq Products Guantity Price Total

O 1 PC 3 1200 3600

4 o2 PC 2 1200 2400
[}
chech All Clear All Add Edit Copy Delete

Done Cancel

Chapter 5

You can only add fields of this component to request types, request header

types, and request user data.

Configuring Table Components

To create a table component field:

1. From the PPM Workbench shortcut bar, select Configuration > Validations.

The Validations Workbench opens.
2. Click New Validation.

The Validation window opens.

3. From the Component Type list, select Table Component.

(D ¥alidation : Untitled6

Iarne: |

Drescription: |

Enabled: Use in Workflom?

Component Type: |Tab\e Campanent

User Instructions: |

heta Layer View: |MRE@_ ||

Tahle Columns] Form Layout 1 Rules]

Column Seq. | Column Header Column Token | Parameter Col Enshled Component Type

Yalidation Editable Required

L Jhd Mew
(o) o) (s
lheady

4. Enter a validation name and description.

5. Enter any user instructions to display at the top of the table entry page.

6. Create the table columns, as follows:
a. Click New in the Table Columns tab.

The Field window opens.

b. Define the type of information to store that column.

) This may require that you create a validation for the column.
You cannot use file attachments in a table component column.

Using Validations

179

120

< Field: New

Column Header: Colurnn Token:
Description: |
Enablec: % Yes ™ Mo
alidstion E Camponent Type: J
Mew Multi-Select Enabled; &
Adtributes] Default I Storaga]
Editable: * ‘es " Mo o «
Required: |Never j
Copy From... 0K | Cancel |
I|Ready

c. Specify the attributes (editable or required) and any default behavior.

d. To save the column information and add another column, click Add.

e. To close the Field window after you finish adding columns, click OK.

7. Configure the form layout, as follows:

a. Click the Form Layout tab.

b. To move a field, select it, and then use the arrow pointers to change its

position in a given direction.

() ¥alidation : Staffing

(ETTE | Staffing

Description: |

Enabled: Use in Wiorkflow?

Component Type: |Tame Companent

Uszer Instructions:

3

Meta Laver Yiew: [MREG_ |[5TAFFING

Table Columns Form Layout I Rules]

Contractors

Skill

C(CC

Security Group

Role

Fisldl Vidth |:| comporent Lines || Move it 4+ 4= =

|:| Swvap Mode

Presiewy

[Ok ” Save ” Cancel]

|

c. To see the layout you configured, click Preview.

Chapter 5

Layout Preview: Table

Products

Quantity

Price | |

Total

) The preview loads a window in the PPM Workbench, but the table component
itself is only available to those using the standard (HTML) interface.

8. To set up rules for advanced defaulting behavior or calculating column
totals, configure any required table logic, as follows:

a. Click the Rules tab.
b. Click New.

c. Create a rule.

) For detailed instructions on how to create a rule, see Configuring Table Rules
on page 121.

9. Click OK.
The new Table Component field can be included on a request type, request
header type or request user data field.
Configuring Table Rules

Table rules are configured in the same manner as advanced request type rules.
Essentially, you can configure fields (columns) in the table to default to certain
values based on an event or value in another field in the table. Because the
table component rules are configured using an SQL statement, you are given
enormous flexibility for the data that is populated in the table cells.

Table rules are configured using the Rules tab on the Validation window.

Using Validations 127

122

Figure 5-17. Rules window accessed from the Rules tab

£ Rules Window

Rule Matne: |Set Unit Ptice
Descriptior: |
Enabled: = ‘Yes " Mo
Rule Event: |App|y0n Field Change j
Dependen
Calumn Header walue |
Products [aIvalues |
I |
Results: e
Colurn Header | Colurmn | Token SELECT
Price [1 [TE.P.PRICE DECODE(TE P PRODUCTS], PG,
|2 [TENP.PRICE 1200,
Mouse’, 50,
‘Maonitor, 560,
‘Kevboard', 110, 0y,
DECODE([TE.P.PRODUCTS], PC",
1200,
Mouse' 50,
‘Maonitor, 560,
‘Keyboard', 110, 0y
4 | | || FroM sys.dual
Py
0K | | Cancel

I\Rules Cinly Apply within the same Entry.

Example of Using a Table Component on an Order Form

The following example illustrates the table component rules functionality.

XYZ Corporation uses a request for creating and tracking employee computer
hardware equipment orders. XYZ has included a table component field on their
request type for gathering the order information. When the employee selects a
Product, the Unit Price is automatically updated. Then, when they update the
Quantity, the total line cost is automatically calculated and displayed in the

table.

Chapter 5

Using Validations

To enable this functionality, XYZ first has to configure a new validation with
the following specifications:

Table 5-21. Example, table component validation settings

Sefting

Value / Description

Validation Name

Product Order Information

Component Type

Table Component

Column 1

Column Header = Products
Column Token = PRODUCTS

Validation = Auto-complete with the following list values:
PC, MOUSE, MONITOR, KEYBOARD

Column 2

Column Header = Quantity
Column Token = QUANTITY
Validation = Numeric Text Field

Column 3

Column Header = Price
Column Token = PRICE
Validation = Numeric Text Field

Column 4

Column Header = Total
Column Token = TOTAL
Validation = Numeric Text Field

€D Validation : Staffing

Figure 5-18. Validations window

Maitne: |Stafﬁng
Description: | |
Enabled: Use inWorkflow?
Camponert Type: |Tab|e Campanent hd
. ~
User Instructions: =
A
Meta Layer View: [MREQ_ | [5TAFFING
Tahle Columns] Form Layout I Ru\es]
Colurnn Sedg Colurnn Header Columnn Token Parameter Col. Enabled ' Component Type Walidation
1|Contractors LSERID PARAMETER1 i Auto Complete List Pl - Resources Assi
2|Skill SKILL_MAME PARAMETERZ | Auto Complete List [RSC - Skill Mame - Al
3[Security Group [SECURITY_GROU.. [PARAMETERI Y Auto Complete List PP - Security Group
4|Role FPRIMARY_ROLE_ID |PARAMETER4 | Drop Down List RSC - Roles- Drop O
< ¥
+¥ e
(o) o) o]
lFeady

After you define the columns for the validation, you can set up the rules.

123

124

Example of Setting Unit Prices

XYZ Corporation uses the rule described in 7able 5-22 and shown in

Figure 5-19 on page 125 to set the default unit price based on the product

selected.

Table 5-22. Example - Set Unit Price rule settings

Setting

Value / Description

Rule Name

Set Unit Price

Rule Event

Apply on Field Change

Dependencies

Column = Products
All Values = Yes

Results

Column Header = Price

SQL

SELECT DECODE (' [TE.P.PRODUCTS]"'

'Mouse', 50,
560,

110, 0),
DECODE (' [TE.P.PRODUCTS] ",
50,

560,

110, 0)
FROM sys.dual

'Monitor',

'Keyboard',

'Mouse',
'Monitor',

'Keyboard',

'PC',

'PC',

1200,

1200,

Chapter 5

Figure 5-19. Rules window

£ Rules Window

Rule Matne: |Set Unit Ptice
Descriptior: |
Enabled: = ‘Yes " Mo
Rule Event: |App|y0n Field Change j
Dependen
Calumn Header walue |
Products [aIvalues |
I | |
Results: e
Colurn Header | Colurmn | Token SELECT
Price [1 [TE.P.PRICE DECODE(TE P PRODUCTS], PG,
|2 [TENP.PRICE 1200,
Mouse’, 50,
‘Maonitor, 560,
‘Kevboard', 110, 0y,
DECODE([TE.P.PRODUCTS], PC",
1200,
Mouse' 50,
‘Maonitor, 560,
‘Keyboard', 110, 0y
4 | | || FroM sys.dual
Py
0K | | Cancel

I\Rules Cinly Apply within the same Entry.

Example of Calculating Totals

XYZ Corporation uses the following rule to set the calculate and display the

total line price in the Total column based on the values in the Products and

Quantity ficlds.

Table 5-23. Example - Calculate Total rule settings

Setting Value / Description
Rule Name Calculate Total
Rule Event Apply on Field Change

Dependencies

Column = Price [All Values = Yes]
Column = Quantity [All Values = Yes]

Results Column Header = Total
SELECT [TE.P.PRICE] * [TE.P.QUANTITY],
sSQL [TE.P.PRICE] * [TE.P.QUANTITY]

from sys.dual

Using Validations

125

126

Using Table Components

Add a field to a request type that is validated by this table component

validation. After a user opens the window to enter information, the table rules

are applied to each row created.

Figure 5-20. Hardware information window

Hardware Information - New Entry

Products

Quantity

Price [|

Total

Add Another Reset
Add Cancel

Using Tokens in Table Components

Each column in the table component has an associated token. You can use
these tokens in the same manner as other field tokens, such as for commands,
notifications, or advanced field defaulting. For detailed information about
referencing tokens related to table components, see Chapter 4, Using Tokens,

on page 47.

Calculating Column Totals

You can configure columns that are validated by a number to calculate the total
for that column. This is configured in the validation’s Field window. The
following example illustrates how to configure a column to calculate and

display the column total.

XYZ Corporation uses a request for creating and tracking simple employee

equipment orders. XYZ has included a table component field on their request
type for gathering the order information. Employees enter the Purchase Items
and Cost for each item. The table component automatically calculates the total

cost for the Cost column.

Chapter 5

Using Validations

XYZ creates a validation with the following settings:
m Component Type = Table Component

m Column 1 = Purchase Item (text field)

m Column 2 = Cost (number). In the Field window for the Cost column,
select Display Total = Yes. The Display Total field is only enabled if the

field’s validation is a number.

Figure 5-21. Sample validation for a Simple Order table component.

Yalidation : Simple Order Form 1 =] B3

Mame: | Sirnple Order Form

Drescription: ‘

Enabled. [Use in Workflow? [

Componerit Type ‘Table Campaonent

User Instructions: || ENter the purchase item and the costfor each itern.

Weta Layer view: |MREQ_ |SIMPLE_ORDER_FORM

Tahle Columns 1 Form Layout] Rules}

Columh Seq | Column Header | Column Token Parameter Col | Enahled| Cotmponhent Type Validation

1|Purchase ltem \PURCHASE | [PARAMETER1 [Test Field - 20
WWMETER2 Y TextField Murmeric Text Field

= Field: New

Colurnh Header: | Cost Coluran Toker: |COST
_‘ Description: |
Enablect * Yes " Mo
Used By | Ownership | walidation | Mumeric Text Field Ef | Component Type: =

Eadly
F Mews | Open | | wuti-Select Enabled:

Aftributes I Defaun] Storage}

Editable: % es " ho Display Total: % ‘Yes

Required: |Never j

Copy From...

8128 | Add | Cancel ‘

I'Add" Successiul

XYZ Corporation includes adds a field to their Order request type that uses this
validation. If a user creates a request of that type, he can click the table
component icon next to the field to open the order form. The total for the Cost

column is displayed at the bottom of the table.

127

Figure 5-22. Sample table component displaying a column total

Simple Order Form

Enter the purchase tem and the cost for each item.

Seq Purchase tem Cost
O 1 Flatzcreen Monitor 1800
O 2 Cable 40
ﬂ O 3 Monitor Switch an
Total 1920
cCheck All Clear All Add Edit Copy Delete
Done Cancel

128 Chapter 5

A

Tokens

In This Appendix:

Overview of Tokens

Application Server Tokens

Budget Tokens

Contact Tokens

Distribution Tokens

Document Management Tokens
Environment Tokens

Environment > Dest Env Tokens
Environment > Dest Env > App Tokens
Environment > Dest Env > Env Tokens
Environment > Env Tokens
Environment > Env > App Tokens
Environment > Env > Env Tokens
Environment > Source Env Tokens
Environment > Source Env > App Tokens
Environment > Source Env > Env Tokens
Command Tokens

Financial Benefit Tokens

Notification Tokens

Organization Unit Tokens

Package Tokens

o Package > Package Line Tokens

o Package > Pending Reference Tokens
Package Line Tokens

Program Tokens

Project Tokens

Project Detail Tokens

Release Tokens

o Release > Distribution Tokens
Request Tokens

o Request > Pending Reference Tokens

o Request > Field Tokens

Request Detail Tokens

o Request Detail > Field Tokens
Resource Pool Tokens

Security Group Tokens

Skill Tokens

O0O0OO0OO0OOOOSO Qa o o

129

m Staffing Profile Tokens
m Step TXN (Transaction) Tokens
m System Tokens
m Task Tokens
o Tasks > Pending Tokens
m Time Management Notification Tokens
m User Tokens
Validation Tokens
o Validation > Value Tokens
m Workflow Tokens
o Workflow > Workflow Step Tokens
Workflow Step Tokens
Request > Field Tokens
o CMBD Application Tokens
o Demand Management SLA Tokens
o Demand Management Scheduling Tokens
o MAM Impact Analysis Tokens
o Portfolio Management Asset Tokens
o Portfolio Management Project Tokens
o Portfolio Management Proposal Tokens
o Program Issue Tokens
o Program Reference Tokens
o Project Issue Tokens
o Project Reference Tokens
o Project Risk Tokens
o Project Scope Change Tokens
o Quality Center Defect Information Tokens
o Quality Center Information Tokens
o Resource Management Work Item Tokens
130 Appendix A

Overview of Tokens

PPM Center uses variables to facilitate the creation of general objects that can
be applied to a variety of contexts. These variables are called tokens.

The Token Builder generates tokens in the explicit entity format by providing a
list of possible values. When such a list is available, the Context Value
auto-complete field at the bottom of the Token Builder is enabled and the
appropriate prefix is assigned. You then select the token from the list of
provided tokens.

Application Server Tokens

Table A-1. Application server tokens

Prefix Tokens Description

Temporary directory used for files

AS PKG_TRANSFER_PATH . :
during command executions.

Other application server properties tokens are generated from the parameters in
the server.conf file. For a description of each server parameter, see the
System Administration Guide and Reference.

Budget Tokens

Tokens

Table A-2. Budget tokens (page 1 of 2)

Prefix Tokens Description

BGT ACTIVE_FLAG Active flag for the budget.

ID of the budget (defined in the

BGT BUDGET_ID table KCST_BUDGETS).

Entity name (work plan, program,

BUDGET_IS_FOR_ENTITY_ or org unit) to which the budget is

BGT

NAME linked.
ID of the work plan/program/org
BGT BUDGET_IS_FOR_ID unit to which the budget is linked.
Name of the work plan/program/
BGT BUDGET_IS_FOR_NAME org unit to which the budget is

linked.

137

132

Table A-2. Budget tokens (page 2 of 2)

Prefix Tokens Description

BGT BUDGET_NAME Name of the budget.

BGT BUDGET_ROLLS UP_TO_ ID of the budget into which this
ID budget rolls up.

BGT BUDGET_ROLLS _UP_TO_ N_ame of the budget into which
NAME this budget rolls up.

BGT BUDGET_URL URL used to view this budget.

BGT CREATION_DATE Date the budget was created.

BGT DESCRIPTION Budget description.

BGT END_PERIOD Budget end period.

BGT INITIATION_REQ Budget initiation request ID.

BGT PERIOD_SIZE Budget period size.

BGT REGION Ejgéc;r; associated with the

BGT START_PERIOD Budget start period.

BGT STATUS _CODE Budget status code.

BGT STATUS_NAME Budget status name.

Appendix A

Contact Tokens

Tokens

Table A-3. Contact tokens

Prefix Tokens Description
CON COMPANY Company ID for which the contact works.
CON COMPANY_NAME Eljr:‘tr‘:cfxgigompa”y for which the
CON CONTACT_ID gc())n,\tﬁl_(iélzl)_g.eﬁned in the table KCRT _
CON CREATED_BY ID of the user who created the contact.
CON CREATION_DATE Date the contact was created.
CON EMAIL_ADDRESS Email address of the contact.
CON FIRST _NAME First name of the contact.
CON FULL_NAME Full name of the contact.
CON LAST_NAME Last name of the contact.
CON LAST UPDATED_BY Iclgr?t;tcrf user who last updated the
CON LAST_UPDATE_DATE Date the contact was last updated.
CON PHONE_NUMBER Phone number of the contact.
Contact username (if applicable). This
CON USERNAME can be the username for an external
system, and not PPM Center.
CON USER_ID UserlD of the contact, if the contact is a

PPM Center user.

133

Distribution Tokens

134

Table A-4. Distribution tokens

Prefix Tokens Description
DIST CREATED_BY ID of the user who created the distribution.
DIST CREATED_BY_ PPM Center username for the user who
USERNAME created the distribution.
DIST DESCRIPTION Release description.
Distribution ID (defined in table KREL_
DIST DISTRIBUTION_ID DISTRIBUTION).
DIST DISTRIBUTION_NAME Distribution name.
DIST DISTRIBUTION_STATUS | Distribution workflow status.
Determines whether the distribution has
DIST FEEDBACK_FLAG fed back a specified value to the package
lines being distributed.
DIST FEEDBACK VALUE Value to b_e returned to the original
- package lines.
DIST LAST UPDATED BY IIZ_) 01_‘ th(=T user who last updated the
- - distribution.
DIST LAST_UPDATED_BY_ PPM Center username for the user who
USERNAME last updated the distribution.
DIST LAST_UPDATE_DATE Date the distribution was last updated.
DIST RELEASE ID IIZ_) 01_‘ th(—*‘T release that created this
- distribution.
DIST RELEASE NAME N_an*!e of the release that created this
- distribution.
DIST WORKFLOW workflow used to process the distribution.

Appendix A

Document Management Tokens

Table A-5. Document Management tokens

Prefix Tokens Description

Resolves to a URL which, when clicked,
opens the latest version of the document.

Forces user authentication before the
document is delivered.

DMS DOC_LINK

Resolves to a URL which, when clicked,
displays a view of the version history of
DMS DOC_HISTORY the document.

Forces user authentication before the
information is delivered.

Resolves to the author field stored with the

DMS AUTHOR
document.
DMS DESCRIPTION Rgsolves to the description field stored
with the document.
DMS LAST CHECK IN DATE Resolv_es to the timestamp of the last
- - = check-in.
Resolves to the full name of the PPM
DMS LAST_CHECKED_IN_ Center user who added or last checked in
BY_ NAME
- the document.
Resolves to the ID of the PPM Center user
DMS LAST _CHECKED_IN_BY | who added or last checked in the

document.

Tokens 135

Environment Tokens

136

Environment > Dest Env Tokens

If any PPM Center Extensions are installed, there are more environment tokens
with the prefix “AC.” For information about these tokens, see the PPM Center
Extensions documentation.

Table A-6. Environment > Dest Env tokens (page 1 of 3)

Prefix Tokens Description
DEST_ENV CLIENT_BASE_PATH Base (root) path of the client.
CLIENT_CON_ L
DEST_ENV PROTOGOL Protocol used to connect to this client.
CLIENT_CON_ Visible value of the client connect
DEST_ENV PROTOCOL_MEANING | protocol.
DEST ENV CLIENT NAME DNS name or IP address of the client
- - computer.
DEST ENV | CLIENT_NT DOMAIN | Domain name for the client, if the
- - - client machine is running Windows.
DEST ENV CLIENT_ENABLED _ Flag that indicates whether the client
- FLAG portion of the environment is enabled.
Password PPM Center uses to log on
DEST_ENV CLIENT_PASSWORD to or access the client. This value is
encrypted.
CLIENT_SQL_ Default command line SQL*Plus
DEST_ENV COMMAND command name.
DEST ENV CLIENT TYPE CODE Vallde_ztlon value code of the client
- - - machine type.
DEST_ENV CLIENT _USERNAME Username PPM C_enter uses to log on
to or access the client.
CLIENT_TRANSFER _ Protocol used to transfer files to or
DEST_ENV PROTOCOL from this client.
CLIENT_TRANSFER_ Visible value of the client transfer
DEST_ENV PROTOCOL_MEANING | protocol.
DEST ENV CREATED BY ID qf the user who created the
- - environment.
DEST_ENV CREATION_DATE Date the environment was created.

Appendix A

Tokens

Table A-6. Environment > Dest Env tokens (page 2 of 3)

Prefix

Tokens

Description

DEST_ENV

DATABASE_ENABLED_
FLAG

Flag that indicates whether the
database portion of the environment is
enabled.

DEST_ENV

DATABASE_TYPE

Validation value code of the database
type.

DEST_ENV

DB_CONNECT_STRING

For Oracle database type, the connect
string used to access the database
from the command line.

DEST_ENV

DB_JDBC_URL

JDBC URL used in Oracle 9i RAC
configuration.

DEST_ENV

DB_LINK

For Oracle database type, the
database link from the PPM Center
schema to the environment’s
database schema.

DEST_ENV

DB_NAME

DNS name or IP address of the
database server.

DEST_ENV

DB_ORACLE_SID

For Oracle database type, the SID of
the database (often the same as the
DB_CONNECT_STRING).

DEST_ENV

DB_PASSWORD

Password PPM Center uses to log on
to or access the database. This value
is encrypted.

DEST_ENV

DB_PORT_NUMBER

For Oracle database type, the port
number on which SQL*Net is listening
for remote SQL connections on the
database server.

DEST_ENV

DB_USERNAME

Username or schema name PPM
Center uses to log on to or access the
database.

DEST_ENV

DB_VERSION

Database version (for example, 8.1.7).

DEST_ENV

DESCRIPTION

Environment description.

DEST_ENV

ENABLED_FLAG

Flag that indicates whether the
environment is enabled and available
for use in workflows.

DEST_ENV

ENVIRONMENT_ID

ID of the environment in the table
KENV_ENVIRONMENTS.

DEST_ENV

ENVIRONMENT_NAME

Environment name.

137

138

Table A-6. Environment > Dest Env tokens (page 3 of 3)

Prefix Tokens Description
DEST ENV LAST UPDATED BY ID qf the user who last updated the
- - - environment.
DEST ENV LAST UPDATE DATE Date the environment was last
- - - updated.
DEST_ENV LOCATION Environment location.
For a Microsoft® SQL Server
database type, the database name
DEST_ENV MSSQL_DB_NAME used to access the database from the
command line.
DEST_ENV SERVER_BASE_PATH Base (root) path of the server.
SERVER_CON_ Protocol used to connect to this
DEST_ENV PROTOCOL server.
SERVER_CON_ Visible value of the server connection
DEST_ENV PROTOCOL_MEANING protocol.
SERVER_SQL Default command line SQL*Plus
DEST_ENV COMMAND command name.
SERVER_TRANSFER_ Protocol used to transfer files to or
DEST_ENV PROTOCOL from this server.
DEST ENV SERVER_TRANSFER _ Visible value of the server transfer
- PROTOCOL_MEANING protocol.
DEST ENV SERVER_ENABLED _ Flag that indicates whether the server
- FLAG portion of the environment is enabled.
DEST ENV SERVER NAME DNS name or IP address of the server
- - computer.
DEST ENV | SERVER_NT_DOMAIN | Domain name for the server, if the
- - - server machine type is Windows.
Password PPM Center uses to log on
DEST_ENV SERVER_PASSWORD to or access the server. This value is
encrypted.
DEST ENV SERVER TYPE CODE Vallde_ztlon value code of the server
- - - machine type.
DEST ENV SERVER USERNAME Username PPM Center uses to log on
- - to or access the server.
URL to access the Environment
DEST_ENV WORKBENCH_ window for this environment in the

ENVIRONMENT_URL

PPM Workbench.

Appendix A

Environment > Dest Env > App Tokens

Tokens

Table A-7. Environment > Dest Env > App tokens (page 1 of 3)

Prefix Tokens Description

DEST_ENV.APP | APP_CODE Short name (code) for the application.

DEST_ENV.APP | APP_NAME Descriptive name for the application.

DEST_ENV.APP ICD:,I&I'll'El—TT_BASE_ ﬁ)r;p(l;llci::rt:ﬁn—spemflc base (root) path of
CLIENT Encrypted, application-specific

DEST_ENV.APP PASSWORD password PPM Center uses to log on

to or access the client.

DEST_ENV.APP

CLIENT_USERNAME

Application-specific username PPM
Center uses to log on to or access the
client.

CLIENT_CON_ Application-specific protocol used to
DEST_ENV.APP | proTocoL connect to this client.

CLIENT_CON _ - . .
DEST_ENV.APP | PROTOCOL._ V;ilttz)lso\llalue of the client connection

MEANING P :

CLIENT_ Application-specific protocol used to
DEST_ENV.APP | TRANSFER_ trgr?sfer files tpo and fF;om this client

PROTOCOL '

CLIENT _

TRANSFER_ Visible value of the client transfer
DEST_ENV.APP PROTOCOL _ protocol.

MEANING
DEST ENV.APP | CREATED_BY ID of the user who created the

application.

DEST_ENV.APP

CREATION_DATE

Date the application was created.

For Oracle database type, the
application-specific database link from

DEST_ENV.APP | DB_LINK the PPM Center schema to the
database schema for the
environment.

For a Microsoft SQL Server database,

DEST_ENV.APP | DB_NAME the application-specific database

name used to access the database
from the command line.

139

140

Table A-7. Environment > Dest Env > App tokens (page 2 of 3)

Prefix

Tokens

Description

DEST_ENV.APP

DB_PASSWORD

Encrypted, application-specific
password PPM Center uses to log on
to or access the database.

DEST_ENV.APP

DB_USERNAME

Application-specific username or
schema name that PPM Center uses
to log on to or access the database.

DEST_ENV.APP

DESCRIPTION

Application description.

DEST_ENV.APP

ENABLED_FLAG

Flag that indicates whether the
application is enabled and available
for selection in package lines.

DEST_ENV.APP

ENVIRONMENT _
APP_ID

ID of the application in the table
KENV_ENVIRONMENT_APPS.

DEST_ENV.APP

ENVIRONMENT_ID

ID of the environment with which the
application is associated.

DEST_ENV.APP

ENVIRONMENT_
NAME

Name of the environment with which
the application is associated.

DEST_ENV.APP

LAST_UPDATED_BY

ID of the user who last updated the
application.

DEST_ENV.APP

LAST_UPDATE_

Date the application was last updated.

DATE

SERVER_CON_ Application-specific protocol used to
DEST_ENV.APP PROTOCOL connect to this server.

SERVER_CON_ Visible value of the server connection
DEST_ENV.APP | PROTOCOL_ rotocol

MEANING P '

SERVER_ Application-specific protocol used to
DEST_ENV.APP | TRANSFER_ trgr?sfer files ’?o and gom thisuserver

PROTOCOL ’

SERVER_

TRANSFER _ Visible value of the server transfer
DEST_ENV.APP PROTOCOL _ protocol.

MEANING
DEST ENV APP SERVER_BASE_ Application-specific base (root) path of

- PATH the server.

Appendix A

Table A-7. Environment > Dest Env > App tokens (page 3 of 3)

Prefix Tokens Description
SERVER Encrypted, application-specific
DEST_ENV.APP PASSWORD password PPM Center uses to log on
to or access the server.
SERVER Application-specific username PPM
DEST_ENV.APP USERNAME Center uses to log on to or access the
server.
WORKBENCH _ . . .
DEST ENVAPP | ENVIRONMENT URL of the environment window in the
- URL - PPM Workbench.

Environment > Dest Env > Env Tokens

Tokens

Table A-8. Environment > Dest Env > Env tokens (page 1 of 4)

Prefix Tokens Description
DEST_ CLIENT_BASE_PATH Base (root) path of the client
ENV.ENV —PASE_ P '
DEST _ Protocol used to connect to this
ENV ENV CLIENT_CON_PROTOCOL client.
DEST_ CLIENT_CON_PROTOCOL _ | Visible value of the client connect
ENV.ENV MEANING protocol.
DEST _ DNS name or IP address of the
ENV.ENV CLIENT_NAME client computer.
DEST Domain name for the client, if the
= CLIENT_NT_DOMAIN client machine is running
ENV.ENV)
Windows.
DEST Flag that indicates whether the
= CLIENT_ENABLED_FLAG client portion of the environment
ENV.ENV - - .
is enabled.
DEST Encrypted Password that PPM
= CLIENT_PASSWORD Center uses to log on to or access
ENV.ENV ;
the client.
DEST _ Default command line SQL*Plus
ENV.ENV CLIENT_SQL_COMMAND command name.
DEST_ Validation value code of the client
ENV.ENV CLIENT_TYPE_CODE machine type.

47

Table A-8. Environment > Dest Env > Env tokens (page 2 of 4)

Prefix Tokens Description

DEST _ CLIENT_USERNAME Username PPM Center uses to

ENV.ENV log on to or access the client.
DEST _ CLIENT_TRANSFER _ Protocol used to transfer files to
ENV.ENV PROTOCOL or from this client.

DEST _ CLIENT_TRANSFER _ Visible value of the client transfer
ENV.ENV PROTOCOL_MEANING protocol.

DEST _ ID of the user who created the
ENV.ENV CREATED_BY environment.

DEST _ Date the environment was
ENV.ENV CREATION_DATE created.

DEST DATABASE_ENABLED Flag that indicates whether the

database portion of the

ENV.ENV FLAG . .
environment is enabled.

DEST _ Validation value code of the
ENV.ENV DATABASE_TYPE database type.
DEST For Oracle database type, the

= DB_CONNECT_STRING connect string used to access the
ENV.ENV .

database from the command line.

DEST_ JDBC URL used in Oracle 9i RAC
ENV.ENV DB_JDBC_URL configuration.

For Oracle database type, the
DEST _ database link from the PPM

ENV.ENV DB_LINK Center schema to the
environment’s database schema.
DEST _ DNS name or IP address of the
ENV.ENV DB_NAME database server.
DEST For Oracle database type, the SID
ENV.ENV DB_ORACLE_SID of the database (often the same
’ as the DB_CONNECT_STRING).
DEST Encrypted password that PPM
= DB_PASSWORD Center uses to log on to or access
ENV.ENV
the database.
For Oracle database type, the
DEST port number on which SQL*Net
ENV.ENV DB_PORT_NUMBER listens for remote SQL

connections on the database
server.

142 Appendix A

Tokens

Table A-8. Environment > Dest Env > Env tokens (page 3 of 4)

Prefix Tokens Description
DEST Username or schema name PPM
= DB_USERNAME Center uses to log on to or access
ENV.ENV
the database.
DEST_ .
ENV ENV DB_VERSION Database version (such as 8.1.7).
DEST _ : .
ENV.ENV DESCRIPTION Environment description.
DEST Flag that Indicates whether the
= ENABLED_FLAG environment is enabled and
ENV.ENV - . .
available for use in workflows.
DEST _ The ID of the environment in the
ENV.ENV ENVIRONMENT_ID table KENV_ENVIRONMENTS.
DEST _ :
ENV.ENV ENVIRONMENT_NAME Environment name.
DEST _ ID of the user who last updated
ENV.ENV LAST_UPDATED_BY the environment.
DEST _ Date the environment was last
ENV.ENV LAST_UPDATE_DATE updated.
DEST _ : .
ENV.ENV LOCATION Environment location.
For a Microsoft SQL Server
DEST _ database type, the database
ENV.ENV MSSQL_DB_NAME name used to access the
database from the command line.
DEST_ SERVER_BASE_PATH Base (root) path of the server
ENV.ENV —BASE_ P '
DEST_ Protocol used to connect to this
ENV ENV SERVER_CON_PROTOCOL server.
DEST _ SERVER_CON_ Visible value of the server
ENV.ENV PROTOCOL_MEANING connection protocol.
DEST_ Default command line SQL*Plus
ENV.ENV SERVER_SQL_COMMAND command name.
DEST_ SERVER_TRANSFER_ Protocol used to transfer files to
ENV.ENV PROTOCOL or from this server.
DEST _ SERVER_TRANSFER _ Visible value of the server transfer
ENV.ENV PROTOCOL_MEANING protocol.

143

Table A-8. Environment > Dest Env > Env tokens (page 4 of 4)

Prefix Tokens Description
DEST Fag that indicates whether the
= SERVER_ENABLED FLAG server portion of the environment
ENV.ENV .
is enabled.
DEST _ DNS name or IP address of the
ENV.ENV SERVER_NAME server computer.
DEST_ Domain name for the server, if the
ENV.ENV SERVER_NT_DOMAIN server machine type is Windows.
DEST Password PPM Center uses to
= SERVER_PASSWORD log on to or access the server.
ENV.ENV . .
This value is encrypted.
DEST _ Validation value code of the
ENV.ENV SERVER_TYPE_CODE server machine type.
DEST_ Username PPM Center uses to
ENV.ENV SERVER_USERNAME log on to or access the server.
DEST_ | WORKBENGH_ window for s environment n the
ENV.ENV ENVIRONMENT_URL PPM Workbench.

144 Appendix A

Environment > Env Tokens

Tokens

Table A-9. Environment > Env tokens (page 1 of 3)

Prefix Tokens Description
ENV CLIENT_BASE_PATH Base (root) path of the client.
CLIENT_CON_ L
ENV PROTOGOL Protocol used to connect to this client.
ENV CLIENT_CON_ Visible value of the client connect
PROTOCOL_MEANING | protocol.
ENV CLIENT NAME DNS name or IP address of the client
- computer.
ENV CLIENT NT DOMAIN Doma!m name fqr the _cllent, if the client
- - machine is running Windows.
ENV CLIENT_ENABLED _ Flag that indicates whether the client
FLAG portion of the environment is enabled.
Password PPM Center uses to log on to
ENV CLIENT_PASSWORD or access the client. This value is
encrypted.
ENV CLIENT_SQL_ Default command line SQL*Plus
COMMAND command name.
ENV CLIENT TYPE CODE Vahdaﬁon value code of the client
- - machine type.
ENV CLIENT USERNAME Username PPMl Center uses to log on to
- or access the client.
ENV CLIENT_TRANSFER _ Protocol used to transfer files to or from
PROTOCOL this client.
CLIENT_TRANSFER _ - .
ENV PROTOCOL_MEANING Visible value of the client transfer protocol.
ENV CREATED BY ID qf the user who created the
- environment.
ENV CREATION_DATE Date the environment was created.
ENV DATABASE_ENABLED | Flag that indicates whether the database
FLAG portion of the environment is enabled.
ENV DATABASE_TYPE Xf:\)l;datlon value code of the database
For Oracle database type, the connect
ENV DB_CONNECT_STRING | string used to access the database from

the command line.

145

146

Table A-9. Environment > Env tokens (page 2 of 3)

Prefix Tokens Description
ENV DB JDBC URL JDB_C UR!_ used in Oracle 9i RAC
- - configuration.
For Oracle database type, the database
ENV DB_LINK link from the PPM Center schema to the
environment’s database schema.
ENV DB NAME DNS name or IP address of the database
- server.
For Oracle database type, the SID of the
ENV DB_ORACLE_SID database (often the same as the DB_
CONNECT_STRING).
ENV DB PASSWORD Encrypted password that PPM Center
- uses to log on to or access the database.
For Oracle database type, the port
number on which SQL*Net is listening for
ENV DB_PORT_NUMBER remote SQL connections on the database
server.
ENV DB USERNAME Username or schema name PPM Center
- uses to log on to or access the database.
ENV DB_VERSION Database version (such as 8.1.7).
ENV DESCRIPTION Environment description.
Flag that Indicates whether the
ENV ENABLED_FLAG environment is enabled and available for
use in workflows.
ID of the environment in the table KENV _
ENV ENVIRONMENT_ID ENVIRONMENTS.
ENV ENVIRONMENT_NAME Environment name.
ENV LAST UPDATED BY ID qf the user who last updated the
- - environment.
ENV LAST_UPDATE_DATE Date the environment was last updated.
ENV LOCATION Environment location.
For a Microsoft SQL Server database
ENV MSSQL_DB_NAME type, the database name used to access
the database from the command line.
ENV SERVER_BASE_PATH Base (root) path of the server.

Appendix A

Table A-9. Environment > Env tokens (page 3 of 3)

Prefix Tokens Description
SERVER_CON_ .
ENV PROTOCOL Protocol used to connect to this server.
ENV SERVER_CON_ Visible value of the server connection
PROTOCOL_MEANING protocol.
ENV SERVER_SQL Default command line SQL*Plus
COMMAND command name.
ENV SERVER_TRANSFER _ Protocol used to transfer files to or from
PROTOCOL this server.
ENV SERVER_TRANSFER _ Visible value of the server transfer
PROTOCOL_MEANING protocol.
ENV SERVER_ENABLED _ Flag that indicates whether the server
FLAG portion of the environment is enabled.
ENV SERVER NAME DNS name or IP address of the server
- computer.
ENV SERVER NT DOMAIN Doma!m name_for t_he server, if the server
- - machine type is Windows.
ENV SERVER PASSWORD Encrypted password that PPM Center
— uses to log on to or access the server.
ENV SERVER TYPE CODE Vahdgtlon value code of the server
- - machine type.
ENV SERVER USERNAME Username PPM Center uses to log on to
- or access the server.
URL to access the Environment window
ENV WORKBENCH_ for this environment in the PPM

ENVIRONMENT_URL

Workbench.

Environment > Env > App Tokens

Tokens

Table A-10. Environment > Env > App tokens (page 1 of 3)

Prefix Tokens Description

ENV.APP | APP_CODE Short name (code) for the application.

ENV.APP | APP_NAME Descriptive name for the application.

ENV APP CLIENT_BASE _ Appllcatlon—spemflc base (root) path of the
PATH client.

147

148

Table A-10. Environment > Env > App tokens (page 2 of 3)

Prefix Tokens Description
CLIENT Encrypted application-specific password PPM
ENV.APP s Center uses to log on to or access the client.
PASSWORD : ;
This value is encrypted.
ENVAPP | CLIENT USERNAME Application-specific username PP_M Center
- uses to log on to or access the client.
CLIENT_CON_ Application-specific protocol used to connect
ENV.APP PROTOCOL to this client.
CLIENT_CON_
ENV.APP | PROTOCOL _ Visible value of the client connection protocol.
MEANING
CLIENT_ _ .
ENV.APP | TRANSFER ngl;(;agsg-;g?nc;fgcizspélci):r)ﬁol used to transfer
PROTOCOL '
CLIENT _
TRANSFER _ - .
ENV.APP PROTOCOL_ Visible value of the client transfer protocol.
MEANING
ENV.APP | CREATED _BY ID of the user who created the application.
ENV.APP | CREATION_DATE Date the application was created.
For Oracle database type, the
application-specific database link from the
ENV.APP | DB_LINK PPM Center schema to the database schema
for the environment.
For a Microsoft SQL Server database, the
ENV.APP | DB_NAME application-specific database name used to
access the database from the command line.
Encrypted, application-specific password PPM
ENV.APP | DB_PASSWORD Center uses to log on to or access the
database.
Application-specific username or schema
ENV.APP | DB_USERNAME name that PPM Center uses to log on to or
access the database.
ENV.APP | DESCRIPTION Application description.
Flag that indicates whether the application is
ENV.APP | ENABLED_FLAG enabled and available for selection in package

lines.

Appendix A

Tokens

Table A-10. Environment > Env > App tokens (page 3 of 3)

Prefix Tokens Description
ENV APP ENVIRONMENT _ ID of the application in the table KENV_
' APP_ID ENVIRONMENT_APPS.
ENVAPP | ENVIRONMENT ID ID 01_‘ thg en_wronmept with which the
- application is associated.
ENVIRONMENT Name of the environment with which the
ENV.APP - o :
NAME application is associated.
ENV APP | LAST UPDATED BY ID 01_‘ thg user who last updated the
- - application.
ENV.APP LAST_UPDATE_ Date the application was last updated.
DATE
ENV APP SERVER_CON_ Application-specific protocol used to connect
' PROTOCOL to this server.
SERVER_CON_ Visible value of the server connection
ENV.APP | PROTOCOL _ rotocol
MEANING P '
SERVER_ _ o
VAR | TRANSFER | APBicslon spectc prtocolused o enster
PROTOCOL ’
SERVER _
TRANSFER _ -
ENV.APP PROTOCOL_ Visible value of the server transfer protocol.
MEANING
ENV APP SERVER_BASE _ Application-specific base (root) path of the
PATH server.
SERVER Application-specific password PPM Center
ENV.APP PASSWORD uses tf’ log on to or access the server. This
value is encrypted.
ENV APP SERVER_ Application-specific username that PPM
| USERNAME Center uses to log on to or access the server.
WORKBENCH_ . . .
ENVAPP | ENVIRONMENT URL of the environment window in the PPM
URL - Workbench.

149

150

Environment > Env > Env Tokens

Table A-11. Environment > Env > Env tokens (page 1 of 3)

Prefix Tokens Description
ENV.ENV CLIENT_BASE_PATH Base (root) path of the client.
CLIENT_CON_ L
ENV.ENV PROTOGOL Protocol used to connect to this client.
CLIENT_CON_ Visible value of the client connect
ENV.ENV PROTOCOL_MEANING protocol.
ENV.ENV CLIENT NAME DNS name or IP address of the client
- computer.
ENV.ENV | CLIENT_NT DOMAIN | Domain name for the client, if the
- - client machine is running Windows.
ENV.ENV CLIENT_ENABLED_ Flag that indicates whether the client
’ FLAG portion of the environment is enabled.
Password PPM Center uses to log on
ENV.ENV CLIENT_PASSWORD to or access the client. This value is
encrypted.
CLIENT_SQL_ Default command line SQL*Plus
ENV.ENV COMMAND command name.
ENV.ENV CLIENT TYPE CODE Valldgtlon value code of the client
- - machine type.
ENV.ENV CLIENT USERNAME Username PPM anter uses to log on
- to or access the client.
ENV ENV CLIENT_TRANSFER _ Protocol used to transfer files to or
’ PROTOCOL from this client.
ENV.ENV CLIENT_TRANSFER _ Visible value of the client transfer
’ PROTOCOL_MEANING protocol.
ENV ENV CREATED BY ID qf the user who created the
- environment.
ENV.ENV CREATION_DATE Date the environment was created.
Flag that indicates whether the
ENV.ENV DATABASE_ENABLED_ database portion of the environment
FLAG .
is enabled.
ENV.ENV DATABASE_TYPE Validation value code of the database

type.

Appendix A

Tokens

Table A-11. Environment > Env > Env tokens (page 2 of 3)

Prefix

Tokens

Description

ENV.ENV

DB_CONNECT_STRING

For Oracle database type, the
connect string used to access the
database from the command line.

ENV.ENV

DB_JDBC_URL

JDBC URL used in Oracle 9i RAC
configuration.

ENV.ENV

DB_LINK

For Oracle database type, the
database link from the PPM Center
schema to the environment’s
database schema.

ENV.ENV

DB_NAME

DNS name or IP address of the
database server.

ENV.ENV

DB_ORACLE_SID

For Oracle database type, the SID of
the database (often the same as the
DB_CONNECT_STRING).

ENV.ENV

DB_PASSWORD

Password PPM Center uses to log on
to or access the database. This value
is encrypted.

ENV.ENV

DB_PORT_NUMBER

For Oracle database type, the port
number on which SQL*Net is listening
for remote SQL connections on the
database server.

ENV.ENV

DB_USERNAME

Username or schema name PPM
Center uses to log on to or access the
database.

ENV.ENV

DB_VERSION

Database version (such as 8.1.7).

ENV.ENV

DESCRIPTION

Environment description.

ENENV.ENV

ENABLED_FLAG

Flag that Indicates whether the
environment is enabled and available
for use in workflows.

ENV.ENV

ENVIRONMENT_ID

ID of the environment in the table
KENV_ENVIRONMENTS.

ENV.ENV

ENVIRONMENT_NAME

Environment name.

ENV.ENV

LAST_UPDATED_BY

ID of the user who last updated the
environment.

ENV.ENV

LAST_UPDATE_DATE

Date the environment was last
updated.

157

Table A-11. Environment > Env > Env tokens (page 3 of 3)

Prefix Tokens Description
ENV.ENV LOCATION Environment location.
For a Microsoft SQL Server database
ENV.ENV MSSQL_DB_NAME type, database name used to access
the database from the command line.
ENV.ENV SERVER_BASE_PATH Base (root) path of the server.
SERVER_CON_ Protocol used to connect to this
ENV.ENV PROTOCOL server.
ENV ENV SERVER_CON_ Visible value of the server connection
’ PROTOCOL_MEANING protocol.
SERVER_SQL Default command line SQL*Plus
ENV.ENV COMMAND command name.
ENV ENV SERVER_TRANSFER _ Protocol used to transfer files to or
’ PROTOCOL from this server.
ENV ENV SERVER_TRANSFER _ Visible value of the server transfer
’ PROTOCOL_MEANING protocol.
ENV.ENV SERVER_ENABLED _ Flag that indicates whether the server
) FLAG portion of the environment is enabled.
ENV ENV SERVER NAME DNS name or IP address of the server
- computer.
ENV ENV SERVER NT DOMAIN Domain name forthe_ser\{er, if the
- - server machine type is Windows.
Password PPM Center uses to log on
ENV.ENV SERVER_PASSWORD to or access the server. This value is
encrypted.
ENV.ENV SERVER TYPE CODE Valldgtlon value code of the server
- - machine type.
ENV.ENV SERVER USERNAME Username PPM Center uses to log on
- to or access the server.
URL to access the Environment
ENV.ENV WORKBENCH_ window for this environment in the

ENVIRONMENT_URL

PPM Workbench.

152

Appendix A

Environment > Source Env Tokens

Tokens

Table A-12. Environment > Source Env tokens (page 1 of 3)

Prefix Tokens Description
gg\lf RCE_ CLIENT_BASE_PATH Base (root) path of the client.
SOURCE_ CLIENT_CON_ o
ENV PROTOGOL Protocol used to connect to this client.
SOURCE _ CLIENT_CON _ Visible value of the client connect
ENV PROTOCOL_MEANING | protocol.
SOURCE _ CLIENT NAME DNS name or IP address of the client
ENV - computer.
SOURCE_ Domain name for a client running
ENV CLIENT_NT_DOMAIN Windows.
SOURCE _ CLIENT_ENABLED _ Flag that indicates whether the client
ENV FLAG portion of the environment is enabled.
SOURCE Password PPM Center uses to log on
ENV - CLIENT_PASSWORD to or access the client. This value is

encrypted.
SOURCE_ CLIENT_SQL_ Default command line SQL*Plus
ENV COMMAND command name.
SOURCE_ CLIENT TYPE CODE Vallda.tlon value code of the client
ENV - - machine type.
SOURCE_ CLIENT USERNAME Username PPM anter uses to log on
ENV - to or access the client.
SOURCE _ CLIENT_TRANSFER _ Protocol used to transfer files to or
ENV PROTOCOL from this client.
SOURCE _ CLIENT_TRANSFER _ Visible value of the client transfer
ENV PROTOCOL_MEANING | protocol.
SOURCE _ CREATED BY ID qf the user who created the
ENV - environment.
ES\L/JRCE— CREATION_DATE Date the environment was created.
SOURCE DATABASE ENABLED Flag that |nd|c.ates whether lthe

- - — | database portion of the environment

ENV FLAG .

is enabled.
SOURCE _ DATABASE TYPE Validation value code of the database
ENV - type.

153

Table A-12. Environment > Source Env tokens (page 2 of 3)

Prefix Tokens Description
SOURCE For Oracle database type, connect
ENV - DB_CONNECT_STRING | string used to access the database
from the command line.
SOURCE _ DB JDBC URL JDB_C URI_. used in Oracle 9i RAC
ENV - - configuration.
For Oracle database type, database
SOURCE_ DB _LINK link from the PPM Center schema to
ENV - . .
the environment’s database schema.
SOURCE _ DNS name or IP address of the
ENV DB_NAME database server.
SOURCE For Oracle database type, SID of the
ENV - DB_ORACLE_SID database (often the same as the DB_
CONNECT_STRING).
SOURCE Password PPM Center uses to log on
ENV - DB_PASSWORD to or access the database. This value
is encrypted.
For Oracle database type, port
SOURCE_ number on which SQL*Net is listening
ENV DB_PORT_NUMBER for remote SQL connections on the
database server.
Username or schema name PPM
SOURCE_ DB_USERNAME Center uses to log on to or access the
ENV
database.
SSSRCE— DB_VERSION Database version (such as 8.1.7).
ES\L/JRCE— DESCRIPTION Environment description.
Flag that Indicates whether the
ES\L/JRCE— ENABLED_FLAG environment is enabled and available
for use in workflows.
SOURCE _ ID of the environment in the table
ENV ENVIRONMENT_ID KENV_ENVIRONMENTS.
ES\L/JRCE— ENVIRONMENT_NAME Environment name.
SOURCE_ LAST UPDATED BY ID qf the user who last updated the
ENV - - environment.

Appendix A

Tokens

Table A-12. Environment > Source Env tokens (page 3 of 3)

Prefix Tokens Description
SOURCE _ LAST UPDATE DATE Date the environment was last
ENV - - updated.
SOURCE_ LOCATION Environment location.
ENV

For a Microsoft SQL Server database
SOURCE _ type, the database name used to
ENV MSSQL_DB_NAME access the database from the

command line.
ES\L/J RCE_ SERVER_BASE_PATH Base (root) path of the server.
SOURCE _ SERVER_CON_ Protocol used to connect to this
ENV PROTOCOL server.
SOURCE _ SERVER_CON_ Visible value of the server connection
ENV PROTOCOL_MEANING | protocol.
SOURCE_ SERVER_SQL_ Default command line SQL*Plus
ENV COMMAND command name.
SOURCE _ SERVER_TRANSFER _ Protocol used to transfer files to or
ENV PROTOCOL from this server.
SOURCE_ SERVER_TRANSFER _ Visible value of the server transfer
ENV PROTOCOL_MEANING | protocol.
SOURCE _ SERVER_ENABLED _ Flag that indicates whether the server
ENV FLAG portion of the environment is enabled.
SOURCE _ SERVER NAME DNS name or IP address of the server
ENV - computer.
SOURCE _ SERVER NT DOMAIN Domain name for the_ser\{er, if the
ENV - = server machine type is Windows.
SOURCE _ SERVER PASSWORD Encrypted password PPM Center
ENV - uses to log on to or access the server.
SOURCE_ SERVER TYPE CODE Vallda.tlon value code of the server
ENV - - machine type.
SOURCE_ SERVER USERNAME Username PPM Center uses to log on
ENV - to or access the server.
SOURCE_ | WORKBENCH_ window ot s environment m the
ENV ENVIRONMENT_URL

PPM Workbench.

155

156

Environment > Source Env > App Tokens

Table A-13. Environment > Source Env > App tokens (page 1 of 3)

Prefix Token Description

SOURCE _ Short name (code) for the

ENV.APP APP_CODE application.

SOURCE _ Descriptive name for the

ENV.APP APP_NAME application.

SOURCE_ Application-specific base (root)

ENV.APP CLIENT_BASE_PATH path of the client.

SOURCE Encrypted, application-specific

- CLIENT_PASSWORD password PPM Center uses to log

ENV.APP :
on to or access the client.

SOURCE Application-specific username

- CLIENT_USERNAME PPM Center uses to log on to or

ENV.APP)
access the client.

SOURCE _ CLIENT_CON _ Application-specific protocol used

ENV.APP PROTOCOL to connect to this client.

SOURCE _ CLIENT_CON_ Visible value of the client

ENV.APP PROTOCOL_MEANING | connection protocol.
Application-specific protocol used

SOURCE_ CLIENT_TRANSFER_ to transfer files to and from this

ENV.APP PROTOCOL i
client.

SOURCE_ CLIENT_TRANSFER _ Visible value of the client transfer

ENV.APP PROTOCOL_MEANING | protocol.

SOURCE _ ID of the user who created the

ENV.APP CREATED_BY application.

SOURCE_ _—

ENV APP CREATION_DATE Date the application was created.
For Oracle database type,
application-specific database link

ES\L/JTF:’E_ DB_LINK from the PPM Center schema to

’ the database schema for the
environment.
For a Microsoft SQL Server

SOURCE database, the application-specific

ENV APP DB_NAME database name used to access

the database from the command
line.

Appendix A

Tokens

Table A-13. Environment > Source Env > App tokens (page 2 of 3)

Prefix Token Description
SOURCE Encrypted, application-specific
— DB_PASSWORD password PPM Center uses to log
ENV.APP
on to or access the database.
Application-specific username or
SOURCE _ schema name that PPM Center
ENV.APP DB_USERNAME uses to log on to or access the
database.
SOURCE_ _— .
ENV.APP DESCRIPTION Application description.
Flag that indicates whether the
SOURCE _ application is enabled and
ENV.APP ENABLED_FLAG available for selection in package
lines.
SOURCE _ ID of the application in the table
ENV.APP ENVIRONMENT_APP_ID KENV_ENVIRONMENT_APPS.
SOURCE _ ID of the environment with which
ENV.APP ENVIRONMENT_ID the application is associated.
Name of the environment with
SOURCE_ ENVIRONMENT_NAME | which the application is
ENV.APP .
associated.
SOURCE _ ID of the user who last updated
ENV.APP LAST_UPDATED_BY the application.
SOURCE _ Date the application was last
ENV APP LAST_UPDATE_DATE updated.
SOURCE _ SERVER_CON_ Application-specific protocol used
ENV.APP PROTOCOL to connect to this server.
SOURCE_ SERVER_CON_ Visible value of the server
ENV.APP PROTOCOL_MEANING connection protocol.
ENV.APP PROTOCOL
server.
SOURCE _ SERVER_TRANSFER _ Visible value of the server transfer
ENV.APP PROTOCOL_MEANING | protocol.
SOURCE_ Application-specific base (root)
ENV.APP SERVER_BASE_PATH path of the server.

157

158

Table A-13. Environment > Source Env > App tokens (page 3 of 3)

Prefix Token Description
SOURCE Encrypted, application-specific
— SERVER_PASSWORD password PPM Center uses to log
ENV.APP
on to or access the server.
SOURCE Application-specific username
- SERVER_USERNAME PPM Center uses to log on to or
ENV.APP
access the server.
SOURCE _ WORKBENCH _ URL of the environment window
ENV.APP ENVIRONMENT_URL in the PPM Workbench.

Environment > Source Env > Env Tokens

Table A-14. Environment Source Env > Env tokens (page 1 of 4)

Prefix Tokens Description
SOURCE_ENV.ENV CLIENT_BASE_ Base (root) path of the client.

PATH

CLIENT_CON_ Protocol used to connect to this
SOURCE_ENV.ENV | ppoTocoL dlient.

CLIENT_CON_ . :
SOURCE_ENV.ENV | PROTOCOL V:gl[t())lso\llalue of the client connect

MEANING P '
SOURCE_ENV.ENV | CLIENT_NAME DNS name or IP address of the

- - client computer.
Domain name for the client, if the

SOURCE_ENV.ENV ggﬁﬁTﬁNT_ client machine is running

Windows.

SOURCE_ENV.ENV

CLIENT_ENABLED_
FLAG

Flag that indicates whether the
client portion of the environment
is enabled.

Encrypted password PPM Center

CLIENT_
SOURCE_ENV.ENV PASSWORD uses to log on to or access the
client.
CLIENT_SQL_ Default command-line SQL*Plus
SOURCE_ENV.ENV COMMAND command name.
SOURCE ENV ENV CLIENT_TYPE_ Vallda.tlon value code of the client
- CODE machine type.

Appendix A

Tokens

Table A-14. Environment Source Env > Env tokens (page 2 of 4)

Prefix

Tokens

Description

SOURCE_ENV.ENV

CLIENT_USERNAME

Username PPM Center uses to
log on to or access the client.

CLIENT_ Protocol used to transfer files to
SOURCE_ENV.ENV | TRANSFER_ or from this client

PROTOCOL '

CLIENT _

TRANSFER _ Visible value of the client transfer
SOURCE_ENV.ENV PROTOCOL_ protocol.

MEANING
SOURCE_ENV.ENV | CREATED_BY ID of the user who created the

environment.

SOURCE_ENV.ENV

CREATION_DATE

Date the environment was
created.

SOURCE_ENV.ENV

DATABASE_
ENABLED_FLAG

Flag that indicates whether the
database portion of the
environment is enabled.

SOURCE_ENV.ENV

DATABASE_TYPE

Validation value code of the
database type.

For Oracle database type, the

SOURCE_ENV.ENV DB_CONNECT_ connect string used to access the
STRING .
database from the command line.
SOURCE_ENV.ENV | DB_JDBC_URL JDBC URL used in Oracle 9i RAC
- - - configuration.
For Oracle database type, the
SOURCE ENVENV | DB LINK database link from the PPM
- - Center schema to the
environment’s database schema.
SOURCE_ENV.ENV | DB_NAME DNS name or IP address of the

database server.

SOURCE_ENV.ENV

DB_ORACLE_SID

For Oracle database type, the SID
of the database (often the same
as the DB_CONNECT_STRING).

SOURCE_ENV.ENV

DB_PASSWORD

Encrypted password PPM Center
uses to log on to or access the
database.

159

160

Table A-14. Environment Source Env > Env tokens (page 3 of 4)

Prefix

Tokens

Description

SOURCE_ENV.ENV

DB_PORT_NUMBER

For Oracle database type, the
port number on which SQL*Net is
listening for remote SQL
connections on the database
server.

SOURCE_ENV.ENV

DB_USERNAME

Username or schema name PPM
Center uses to log on to or access
the database.

SOURCE_ENV.ENV

DB_VERSION

Database version (such as 8.1.7).

SOURCE_ENV.ENV

DESCRIPTION

Environment description.

SOURCE_ENV.ENV

ENABLED_FLAG

Flag that Indicates whether the
environment is enabled and
available for use in workflows.

SOURCE_ENV.ENV

ENVIRONMENT_ID

ID of the environment in the table
KENV_ENVIRONMENTS.

SOURCE_ENV.ENV

ENVIRONMENT _
NAME

Environment name.

SOURCE_ENV.ENV

LAST_UPDATED_BY

ID of the user who last updated
the environment.

SOURCE_ENV.ENV

LAST_UPDATE_
DATE

Date the environment was last
updated.

SOURCE_ENV.ENV

LOCATION

Environment location.

SOURCE_ENV.ENV

MSSQL_DB_NAME

For a Microsoft SQL Server
database type, the database
name used to access the
database from the command line.

SOURCE_ENV.ENV

SERVER_BASE_

Base (root) path of the server.

PATH

SERVER_CON_ Protocol used to connect to this
SOURCE_ENV.ENV PROTOCOL server.

SERVER_CON_ Visible value of the server
SOURCE_ENV.ENV | PROTOCOL _ connection protocol

MEANING P '

SERVER_SQL Default command line SQL*Plus
SOURCE_ENV.ENV COMMAND command name.

Appendix A

Tokens

Table A-14. Environment Source Env > Env tokens (page 4 of 4)

Prefix Tokens Description

SERVER _)
SOURCE_ENV.ENV | TRANSFER_ Protoco used to fransfer files to

PROTOCOL '

SERVER _

TRANSFER _ Visible value of the server transfer
SOURCE_ENV.ENV PROTOCOL _ protocol.

MEANING

SERVER_ The flag that indicates whether

SOURCE_ENV.ENV

ENABLED_FLAG

the server portion of the
environment is enabled.

SOURCE_ENV.ENV

SERVER_NAME

DNS name or IP address of the
server computer.

SERVER_NT _ Domain name for the server, if the
SOURCE_ENV.ENV DOMAIN server machine type is Windows.

SERVER Password that PPM Center uses
SOURCE_ENV.ENV PASSWORD to log on to or access the server.

This value is encrypted.

SOURCE_ENV.ENV

SERVER_TYPE_
CODE

Validation value code of the
server machine type.

SERVER _ Username PPM Center uses to
SOURCE_ENV.ENV USERNAME log on to or access the server.
WORKBENCH_ URL to access the Environment
SOURCE_ENV.ENV | ENVIRONMENT_ window for this environment in the
URL PPM Workbench.

161

Command Tokens
Table A-15. Command tokens

Prefix Tokens Description
EXEC EXIT_CODE Exit code of a command execution.
EXEC OUTPUT Last line of output from a command execution.

You can use the command execution tokens, [EXEC.OUTPUT] and
[EXEC.EXIT CODE]in the following contexts:

m Inside command step segments that use the ksc_connect and ksc_exit
special commands.

m Immediately after command step segments that use the ksc_local exec
special command.

For example, the following code segment demonstrates how to use both of
these command execution tokens to retrieve the output and exit code
immediately upon execution. The tokens are used immediately after the ksc_
local exec special command.

ksc_local exec pwd

ksc set MY PATH="[EXEC.OUTPUT]"

ksc set MY EXIT CODE="[EXEC.EXIT CODE]"
ksc local exec echo '[MY PATH]/bin'

ksc _local exec echo '[MY EXIT CODE]'

162 Appendix A

Financial Benefit Tokens

Tokens

Table A-16. Financial Benefit tokens

Prefix Tokens Description
FBEN ACTIVE_FLAG Active flag of the financial benefit.
FBEN BENEFIT_ID ID of the financial benefit.
FBEN BENEFIT_IS FOR _ Entity name to which the financial benefit
ENTITY_NAME is linked.
ID of the asset, project, or proposal to
FBEN BENEFIT_IS_FOR_ID which the financial benefit is linked.
FBEN BENEFIT_IS_FOR _ Name of the asset, project, or proposal to
NAME which the financial benefit is linked.
FBEN BENEFIT_NAME Name of the financial benefit.

FBEN BENEFIT_URL URL to view the financial benefit.
FBEN CREATED BY Qsem_ame of the user who created the
- financial benefit.

FBEN CREATION DATE Date when the financial benefit was
- created.
FBEN DESCRIPTION Description of the financial benefit.
FBEN END_PERIOD End period of the financial benefit.
FBEN INITIATION_REQ |n|t|atI.0n request ID of the financial
benefit.
FBEN PERIOD_SIZE Period size of the financial benefit.
FBEN REGION Reglo.n associated with the financial
benefit.
FBEN START_PERIOD Start period of the financial benefit.
FBEN STATUS_CODE Status code of the financial benefit.
FBEN STATUS_NAME Status name of the financial benefit.

163

Notification Tokens

Table A-17. Notification tokens

Prefix Tokens Description

List of users on the Cc: header of the

NOTIF CC_USERS s
notification.

Field that changed to trigger a

NOTIF CHANGED FIELD e 4
- notification.

Exception rule that was met by the
NOTIF EXCEPTION_RULE task exception that caused the
notification to be sent.

Name of the task exception that

NOTIF EXCEPTION_RULE_NAME caused the notification to be sent.

Specific violation of the exception that

NOTIF EXCEPTION_VIOLATION caused the notification to be sent.

NOTIF NEW_VALUE New value of the changed field.

NOTIF NOTIFICATION_DETAILS Notification details for linked tokens.

NOTIF OLD_VALUE Previous value of the changed field.

List of users on the To: header of the

NOTIF TO_USERS o
- notification.

Organization Unit Tokens
Table A-18. Organization Unit tokens (page 1 of 2)

Prefix Tokens Description

ORG BUDGET_ID ID of the budget linked to this org unit.

ORG BUDGET NAME ll:lr?izne of the budget linked to this org
Lookup code of the org unit category

ORG CATEGORY_CODE (lookup type = RSC - org unit
Category)

ORG CATEGORY_NAME Category name of the org unit.

ORG CREATED_BY Ll?]i?f the user who created the org

164 Appendix A

Tokens

Table A-18. Organization Unit tokens (page 2 of 2)

Prefix Tokens Description
ORG CREATED_BY_ USERNAME El:irtne of the user who created the org
ORG CREATION DATE Date on which the org unit was
- created.
Lookup code of the org unit
ORG DEPARTMENT_CODE department (lookup type = DEPT)
ORG DEPARTMENT_NAME Department name of the org unit.
Lookup code of the org unit location
ORG LOCATION_CODE (lookup type = RSC - Location)
ORG LOCATION_NAME Location name of the org unit.
ORG MANAGER_ID ID of the org unit manager.
ORG MANAGER_USERNAME Name of the org unit manager.
Org unit ID (defined in table KRSC _
ORG ORG_UNIT_ID ORG_UNITS).
ORG ORG_UNIT_NAME Org unit name.
ORG PARENT_ORG_UNIT_ID Parent org unit ID.
ORG PARENT_ORG_UNIT_NAME | Parent org unit name.
ORG REGIONAL CALENDAR Name _of the regional calendar for the
- org unit.
ORG REGION Region associated with the Org Unit.
Lookup code of the org unit category
ORG TYPE_CODE (lookup type = RSC - org unit
Category)
ORG TYPE_NAME Type name of the org unit.

165

Package Tokens

166

Table A-19. Package tokens (page 1 of 3)

Prefix Tokens Description
PKG ASSIGNED TO EMAIL Email ad«;iress pf the user to whom the
- - package is assigned.
PKG ASSIGNED_TO _ ID of the security group to which the
GROUP_ID package is assigned.
PKG ASSIGNED_TO _ Security group to which the package is
GROUP_NAME assigned.
PKG ASSIGNED_TO _ Name of the user to whom the package is
USERNAME assigned.
ASSIGNED_TO_USER_ | ID of the user to whom the package is
PKG .
ID assigned.
PKG CREATED_BY ID of the user who created the package.
PKG CREATED BY EMAIL Email address of the user who created
- - the package.
PKG CREATED_BY _ PPM Center username of the user who
USERNAME created the package.
PKG CREATION_DATE Date the package was created.
PKG DESCRIPTION Package description.
Package ID in the table KDLV_
PKG ID PACKAGES.
PKG LAST UPDATED BY ID of the user who last updated the
- - package.
PKG LAST_UPDATED_BY_ Email address of the user who last
EMAIL updated the package.
PKG LAST_UPDATED BY _ PPM Center username of the user who
USERNAME last updated the package.
PKG LAST _UPDATE_DATE Date the package was last updated.
PKG MOST_RECENT_NOTE_ | First and last names of the author of the
AUTHOR_FULL_NAME most recent note.
PKG MOST_RECENT_NOTE_ | Username of the author of the most
AUTHOR_USERNAME recent note.
PKG MOST_RECENT_NOTE_ Date of the most recent note.

AUTHORED_DATE

Appendix A

Tokens

Table A-19. Package tokens (page 2 of 3)

Prefix Tokens Description
PKG MOST_RECENT_NOTE_ Text of the most recent note.
TEXT
PKG NOTES All notes for the package.
PKG NUMBER Package name/number.
PACKAGE_GROUP_
PKG CODE Package group code.
PACKAGE_GROUP_
PKG NAME Package group name.
PKG PARENT REQUEST ID ID of the r.equeslt that created this
- - package (if applicable).
PKG PRIORITY Package priority.
PKG PRIORITY CODE Vgllqatlon value code for the package
- priority.
PKG PRIORITY NAME Vgll(ﬂ_atlon value meaning of the package
- priority.
PKG PRIORITY_SEQ Package priority sequence.
PKG PROJECT CODE Val_ldatlon value code of the work plan to
which the package belongs.
PKG PROJECT NAME Valldgtlon value meaning of the work plan
- to which the package belongs.
PKG SUBMIT DATE Date on which the package was
- submitted.
PKG REQUESTED_BY_ Email address of the user who requested
EMAIL the package.
PKG REQUESTED_BY_ PPM Center username of the user who
USERNAME requested the package.
PKG REQUESTED_BY_ ID of the user who requested the
USER_ID package.
ID of the package in the table KDLV _
PKG PACKAGE_ID PACKAGES.
Standard hyperlink to the package in
PKG PACKAGE_NO_LINK HTML-formatted notifications.
PKG PACKAGE_TYPE Validation value meaning of the package

type.

167

168

Table A-19. Package tokens (page 3 of 3)

Prefix Tokens Description
PKG PACKAGE_TYPE_CODE X;I;datlon value code for the package
PKG PACKAGE URL URL of the package in the standard
- interface.
PKG PERCENT_COMPLETE Percent complete of the package.
PKG RUN_GROUP Package run group.
PKG STATUS Validation value meaning for the package
status.
PKG STATUS CODE Validation value code for the package
- status.
WORKBENCH_ .
PKG PACKAGE_NO_LINK Package URL in the PPM Workbench.
PKG WORKBENCH_ Package screen URL in the PPM
PACKAGE_URL Workbench.
PKG WORKFLOW_ID ID of the workflow that the package uses.
PKG WORKFLOW_NAME Name of the workflow that the package

uses.

Package > Package Line Tokens

Table A-20. Package > Package Line tokens (page 1 of 2)

Prefix Tokens Description
PKG. PKGL APP_CODE Application code for the package line.
PKG. PKGL APP NAME Name of t.he application for the
- package line.
ID of the package line in the table

PKG. PKGL ID KDLV_PACKAGE_LINES.

OBJECT_CATEGORY_ Validation value code of the object
PKG. PKGL CODE type category of the line.

OBJECT_CATEGORY_ Validation value meaning of the object
PKG. PKGL NAME type category of the line.
PKG. PKGL OBJECT_NAME Object name of the package line.

Appendix A

Table A-20. Package > Package Line tokens (page 2 of 2)

Prefix Tokens Description
Value of the object revision column (if
PKG. PKGL OBJECT_REVISION any) as specified by the object type of
the package line.
PKG. PKGL OBJECT_TYPE Object type of the package line.
PKG. PKGL OBJECT TYPE_ID :iEeOf the object type of the package
PKG. PKGL PACKAGE_LINE_ID ID of the package line.
Sequence of the package line
PKG. PKGL SEQ (relative to other lines in the same
package).
URL to access the object type window
PKG. PKGL WORKBENCH_ for this object type in the PPM

OBJECT_TYPE_URL

Workbench.

Package > Pending Reference Tokens

Tokens

Table A-21. Package > Pending Reference tokens (page 1 of 2)

Prefix Tokens Description

PKG.PEND D ID of the entity that is blocked by the
package.

PKG.PEND NAME Name of the entity that is blocked by
the package.

PKG.PEND DETAIL Detail information for the entity that is
blocked by the package.

PKG.PEND DESCRIPTION Description of the entity that is
blocked by the package.
ID of the state or code of the status of

PKG.PEND STATUS_ID the entity blocked by the package.

PKG.PEND STATUS NAME Name of the status (or state) of the

- entity blocked by the package.

PKG.PEND STATE Name of the state of the entity of the
request blocked by the package.
Name of the assigned user (or

ASSIGNED_TO_)
PKG.PEND USERNAME resource) of the entity blocked by the

package.

169

Table A-21. Package > Pending Reference tokens (page 2 of 2)

Prefix Tokens Description
Username of the assigned user (or
PKG.PEND %SSlGNED—TO—USER— resource) of the entity blocked by the
package.
Name of the assigned group (or
PKG.PEND ASSIGNED_TO_ resource group) of the entity that is
GROUP_NAME
- blocked by the package.
ID of the assigned group (or resource
PKG.PEND ASSIGNED_TO_ group) of the entity that is blocked by
GROUP_ID
- the package.
Name of the resource associated with
RESOURCE_ ; .
PKG.PEND USERNAME the entity that is blocked by the
package.
Username of the assigned user (or
PKG.PEND RESOURCE_ID resource) associated with the entity
that is blocked by the package.
Name of the assigned group (or
PKG.PEND Eisl(éURCE—GROUP— resource group) associated with the
entity blocked by the package.
ID of the assigned group (or resource
PKG.PEND RESOURCE_GROUP_ID | group) associated with the entity that
is blocked by the package.
Current percent complete value
PKG.PEND PERCENT_COMPLETE associated with the entity that is
blocked by the package.
PKG PEND ENTITY TYPE ID ID of the type of entity that is blocked
- - by the package.
PKG PEND ENTITY_TYPE_NAME Name of the type of entity blocked by

the package.

170

Appendix A

Package Line Tokens

Table A-22. Package Line tokens

Prefix Tokens Description
PKGL APP_CODE Application code for the package line.
PKGL APP_NAME Il;lnaeme of the application for the package
ID of the package line in the table KDLV _
PKGL ID PACKAGE_LINES.
PKGL OBJECT_CATEGORY_ Validation value code of the object type
CODE category of the line.
PKGL OBJECT_CATEGORY_ Validation value meaning of the object
NAME type category of the line.
PKGL OBJECT_NAME Object name of the package line.
Value of the object revision column (if
PKG OBJECT_REVISION any) as specified by the object type of the
package line.
PKGL OBJECT_TYPE Object type of the package line.
PKGL OBJECT _TYPE_ID ID of the object type of the package line.
PKGL PACKAGE_LINE_ID ID of the package line.
PKGL SEQ Seque_nce (_)f the package line (relative to
other lines in the same package).
PKGL WORKBENCH_ URL to access the object type window for

OBJECT_TYPE_URL

this object type in the PPM Workbench.

Program Tokens

Tokens

Table A-23. Program tokens (page 1 of 2)

Prefix Tokens Description

PRG CREATED_BY ID of the user who created the program.

PRG CREATED_BY _ Name of the user who created the
USERNAME program.

PRG LAST UPDATED_BY ID of the user who last updated the

program.

171

Table A-23. Program tokens (page 2 of 2)

Prefix Tokens Description

PRG LAST_UPDATED BY _ Name of the user who last updated the
USERNAME program.

PRG MOST_RECENT_NOTE_ | First and last name of the author of the
AUTHOR_FULL_NAME most recent note.

PRG MOST_RECENT_NOTE_ | Username of the author of the most recent
AUTHOR_USERNAME note.
MOST_RECENT_NOTE_

PRG AUTHORED_DATE Date of the most recent note.

PRG MOST_RECENT_NOTE_ Text of the most recent note.
TEXT

PRG PROGRAM_MANAGER ID(s) of the user(s) assigned to manage

the program.

Project Tokens

172

Table A-24. Project tokens (page 1 of 5)

Prefix Tokens Description

PRJ ACTUAL_DURATION Actual duration of the work plan.

PRJ ACTUAL_EFFORT Sc;t:al effort associated with the work

PRJ ACTUAL _FINISH_DATE | Actual finish date of the work plan.

PRJ ACTUAL_START_DATE | Actual start date of the work plan.

PRJ BUDGET _ID ID of the budget linked to the work plan.

PRJ BUDGET NAME gllzr:e of the budget linked to the work

PRJ CONFIDENCE CODE Code of the confidence value entered by
- the user.

PRJ CONFIDENCE NAME Name of the confidence value entered by
- the user.

PRJ CREATED_BY User who created the work plan.

PRJ CREATED_BY EMAIL Email address of the user who created the

work plan.

Appendix A

Tokens

Table A-24. Project tokens (page 2 of 5)

Prefix Tokens Description
PR CREATED_BY_ Username of the person who created the
USERNAME work plan.
PRJ CREATION_DATE Creation date of the work plan.
PRJ DEPARTMENT CODE Code of the department value entered by
- the user.
PRJ DEPARTMENT NAME Name of the department value entered by
- the user.
PRJ DESCRIPTION Description of the work plan.
PRJ ESTIMATED_ Estimated time remaining for the work
REMAINING_DURATION | plan.
PRJ ESTIMATED _ Estimated remaining effort involved in the
REMAINING_EFFORT work plan.
PRJ ESTIMATED_FINISH_ Estimated finish date of the work plan.
DATE
PRJ LAST UPDATE DATE Date on which the work plan was last
- - updated.
PRJ LAST_UPDATED_BY Last person to update the work plan.
PR LAST_UPDATED_BY_ Email address of the last person to update
EMAIL the project plan.
PRJ LAST_UPDATED_BY _ Username of the last person to update the
USERNAME work plan.
PRJ MASTER_PROJECT_ID | ID of the master project.
MASTER_PROJECT _ :
PRJ NAME Name of the master project.
PRJ MOST_RECENT_NOTE_ | First and last names of the author of the
AUTHOR_FULL_NAME most recent note.
PRJ MOST_RECENT_NOTE_ | Username of the author of the most
AUTHOR _USERNAME recent note.
MOST_RECENT_NOTE_
PRJ AUTHORED_DATE Date of the most recent note.
PRJ MOST_RECENT_NOTE_ Text of the most recent note.
TEXT
PRJ MOST_RECENT_NOTE_ | Type of the most recent note (USER or

TYPE

FIELD CHANGE).

173

174

Table A-24. Project tokens (page 3 of 5)

Prefix Tokens Description
MOST_RECENT_USER_ | _.

PRJ NOTE AUTHOR FULL First and last name of the author of the

— - — | most recent user note.
NAME
MOST_RECENT_USER _

PR NOTE_AUTHOR_ isceer:tal:r;ro;ct:: author of the most
USERNAME ’
MOST_RECENT_USER _

PRJ NOTE_AUTHORED_ Date of the most recent user note.
DATE
MOST_RECENT_USER _

PRJ NOTE_TEXT Text of the most recent user note.

PRJ PARENT_PROJECT_ID ID of the parent work plan.
PARENT_PROJECT _

PRJ NAME Name of the parent work plan.

PRJ PERCENT_COMPLETE Percent of the work plan completed.

PRJ PRIORITY Priority of the work plan.

PRJ PROGRAM ID Delimited list of program ids of aII.

- programs associated with the project.

PRJ PROGRAM_ID_ Delimited list of manager ids of all
MANAGER programs associated with the project.

PRJ PROGRAM_ID Delimited list of manager usernames of all
MANAGER_USERNAME | programs associated with the project.

PRJ PROGRAM NAME Delimited list of program names qf all

- programs associated with the project.
Number that uniquely identifies the work
PRJ PROJECT _ID plan (same as PROJECT_NUMBER) in
the table KDRV_PROJECTS.
Manager of the work plan. Use this token

PRJ PROJECT_MANAGER to get the project manager information

from the project container.

PRJ PROJECT_MANAGER_ Email address of the project manager.
EMAIL
PROJECT_MANAGER_ :

PRJ USERNAME Username of the project manager.

PRJ PROJECT_NAME Work plan name.

Appendix A

Tokens

Table A-24. Project tokens (page 4 of 5)

Prefix Tokens Description
Standard hyperlink to the work plan in
PRJ PROJECT_NAME_LINK HTML-formatted notifications.
Number that uniquely identifies the work
PRJ PROJECT_NUMBER plan (same as PROJECT_ID).
Work plan path. This is a hierarchy of
PRJ PROJECT_PATH parent work plans that contain this work
plan.
Request ID for this project. Returns the
PRJ PROJECT_REQUEST_ request_id associated with the project.
ID You can feed this into a request token to
get at all the request details.
PR PROJECT _ Delimited list of user ids of the project
STAKEHOLDER stakeholders.
PRJ PROJECT _ Delimited list of emails of the project
STAKEHOLDER_EMAIL | stakeholders.
PROJECT_ : . :
PRJ STAKEHOLDER_ Sthlgrlﬁgellrsst of usernames of the project
USERNAME '
PRJ PROJECT_STATE Work plan state.
PRJ PROJECT TEMPLATE Name of the p_rOJect template used to
- create the project plan.
PRJ PROJECT TYPE CODE Returns TASK for tasks and PROJECT
- - for work plans.
PRJ PROJECT URL URL for the Project Overview page of the
- work plan.
PRJ REGIONAL CALENDAR Name of the regional calendar for the
- work plan
PRJ SCHEDULED_EFFORT Scheduled effort defined in the work plan.
SCHEDULED _ .
PRJ DURATION Scheduled duration for the work plan.
PRJ SCHEDULED_FINISH_ Finish date scheduled for the work plan.

DATE

175

Table A-24. Project tokens (page 5 of 5)

Prefix Tokens Description

PRJ SCHEDULED_START_ Start date scheduled for the work plan.
DATE

PRJ SUMMARY_CONDITION | Summary condition of the work plan.

PRJ WORKBENCH_ URL used to access this work plan in the
PROJECT_URL PPM Workbench.

Project Detail Tokens
Table A-25. Project Detail tokens

Prefix Tokens Description

Project detail ID of the work plan in the

PRID - | PROJECT_DETAILID |\ c KDRV PROJECTS.

Project ID of the work plan in the table

PRJD PROJECT_ID KDRV_PROJECTS.

Parameters are accessible with this prefix (similar to request detail):
[PRJD.P.CUSTOM TOKEN] .

Release Tokens
Table A-26. Release tokens (page 1 of 2)

Prefix Tokens Description
ID of the release in the KREL _
REL RELEASE_ID RELEASES table.
REL RELEASE_NAME Release name.
REL RELEASE_STATUS Release status.
REL CREATED_BY ID of the user who created the release.
REL CREATED_BY_ PPM Center username of the user who
USERNAME created the release.
REL LAST UPDATED BY ID of the user who last updated the
- - release.

176 Appendix A

Table A-26. Release tokens (page 2 of 2)

Prefix Tokens Description
REL LAST_UPDATED BY _ PPM Center username of the user who
USERNAME last updated the release.
REL LAST UPDATE DATE Date on which the release was last
- - updated.
REL MOST_RECENT_NOTE_ | First and last name of the author of the
AUTHOR_FULL_NAME most recent note.
REL MOST_RECENT_NOTE_ | Username of the author of the most
AUTHOR _USERNAME recent note.
MOST_RECENT_NOTE_
REL AUTHORED_DATE Date of the most recent note.
REL MOST_RECENT_NOTE_ Text of the most recent note.
TEXT
REL RELEASE MANAGER PPM Center user designated as the
- release manager.
REL RELEASE TEAM G_roup of PPM Center users associated
- with the release.
REL RELEASE_GROUP High-level categorization of the release.
REL DESCRIPTION Release description.
REL NOTES Notes contained within the release.

Release > Distribution Tokens

Tokens

Table A-27. Release > Distribution tokens (page 1 of 2)

Prefix Tokens Description
REL DIST CREATED BY U.ser ID_of the user who created the
- distribution.
CREATE_BE_ Username of the user who created the
REL.DIST USERNAME distribution.
REL.DIST DESCRIPTION Description of the release.
REL DIST DISTRIBUTION ID Internal identifier of the distribution for
- the release.
REL DIST DISTRIBUTION_NAME Name of the distribution for the

release.

177

Table A-27. Release > Distribution tokens (page 2 of 2)

Prefix Tokens Description
REL DIST DISTRIBUTION STATUS Status of the distribution for the
- release.

REL.DIST FEEDBACK_FLAG Feedback flag for the release.
REL.DIST FEEDBACK_VALUE Feedback value for the release.
REL.DIST | LAST UPDATED_BY ;’izfr'i'gai‘;:he user who updated the
REL DIST LAST _UPDATED BY_ Username of t.he_use_r who last

USERNAME updated the distribution.
REL.DIST LAST_UPDATE_DATE Last update date of the distribution.
REL.DIST RELEASE_ID Internal identifier of the release.
REL.DIST RELEASE_NAME Name of the release.
REL.DIST WORKFLOW Workflow assigned to the release.

Request Tokens

178

Table A-28. Request tokens (page 1 of 4)

Prefix Tokens Description
REQ APPLICATION_CODE VaI'|dat|on value che for.the application to
which the request is assigned.
Validation value meaning of the
REQ APPLICATION_NAME application to which the request is
assigned.
REQ ASSIGNED_TO_EMAIL Email anres§ of the user to whom the
request is assigned.
REQ ASSIGNED_TO _ ID of the security group to which the
GROUP_ID request is assigned.
REQ ASSIGNED_TO _ Name of the security group to which the
GROUP_NAME request is assigned.
REQ ASSIGNED_TO _ PPM Center username of the user to
USERNAME whom the request is assigned.
REQ ASSIGNED_TO_NAME Full name of the assigned user.

Appendix A

Tokens

Table A-28. Request tokens (page 2 of 4)

Prefix Tokens Description
ASSIGNED_TO _USER_ | ID of the user to whom the request is
REQ :
ID assigned.
REQ COMPANY Company employing the user who created
the request.
REQ COMPANY NAME Name of the company employing the user
- who created the request.
REQ CONTACT_EMAIL Email address of the contact for the
request.
REQ CONTACT_NAME Full name of the contact for the request.
REQ CONTACT_PHONE_ Phone number of the contact for the
NUMBER request.
REQ CREATED_BY ID of the user who created the request.
REQ CREATED_BY EMAIL Email address of the user who created the
request.
REQ CREATED_BY_NAME Full name of the created by user.
REQ CREATED_BY _ PPM Center username of the user who
USERNAME last updated the request.
REQ CREATION_DATE Date on which the request was created.
REQ DEPARTMENT CODE Validation value code of the department
- for the request.
REQ DEPARTMENT NAME Validation value meaning of the
department for the request.
REQ DESCRIPTION Request description.
REQ LAST UPDATED BY ID of the user who last updated the
- - request.
REQ LAST_UPDATED BY _ Email address of the user who last
EMAIL updated the request.
REQ LAST_UPDATED_BY _ PPM Center username of the user who
USERNAME last updated the request.
REQ LAST UPDATE DATE Date on which the request was last
- - updated.
REQ MOST_RECENT_NOTE_ | First and last name of the author of the

AUTHOR_FULL_NAME

most recent note.

179

180

Table A-28. Request tokens (page 3 of 4)

Prefix Tokens Description

REQ MOST_RECENT_NOTE_ | Username of the author of the most recent
AUTHOR_USERNAME note.

MOST_RECENT_NOTE_

REQ AUTHORED_DATE Date of the most recent note.

REQ MOST_RECENT_NOTE_ Text of the most recent note.
TEXT

REQ MOST_RECENT_NOTE_ | Type of the most recent note (USER or
TYPE FIELD CHANGE).

REQ MOST_RECENT_NOTE_ | In the case of requests, this is the request
CONTEXT status; blank in all other cases.
MOST_RECENT_USER_ | .

REQ NOTE AUTHOR FULL First and last names of the author of the

— - — | most recent user note.
NAME
MOST_RECENT_USER _

REQ NOTE_AUTHOR_ Hss:rrnne;?;e of the author of the most recent
USERNAME '

MOST_RECENT_USER _

REQ NOTE_AUTHORED _ Date of the most recent user note.
DATE
MOST_RECENT_USER _

REQ NOTE _TEXT Text of the most recent user note.

REQ MOST_RECENT_USER_ | Type of the most recent user note (USER
NOTE_TYPE or FIELD CHANGE).
MOST_RECENT_USER _

REQ NOTE_CONTEXT Request status.

REQ NOTES All notes for the request.

REQ PERCENT_COMPLETE Percent of the request that is completed.

REQ PRIORITY_CODE Vghqauon value code of the request

priority.

REQ PRIORITY NAME V::_\Ild_atlon value meaning of the request

- priority.

REQ PROJECT CODE Val_ldatlon value code of the work plan to

which the request belongs.

REQ PROJECT NAME Validation value meaning of the work plan

to which the request belongs.

Appendix A

Tokens

Table A-28. Request tokens (page 4 of 4)

Prefix Tokens Description
REQ SUBMIT_DATE Date on which the request was submitted.
REQUEST_GROUP_
REQ CODE Request group code.
REQUEST_GROUP_
REQ NAME Request group name.
ID of the request in the table KCRT _
REQ REQUEST_ID REQUESTS.
Standard hyperlink to display for the
REQ REQUEST_ID_LINK request in HTML-formatted notifications.
REQ :TDEQUEST—SUB—TYPE— ID of the sub-type for the request.
REQ REQUEST_SUB_TYPE_ Name of the sub-type for the request.
NAME
REQ REQUEST_TYPE_ID ID of the request type of the request.
REQ REQUEST_TYPE_NAME | Name of the request type.
REQ REQUEST URL URL of the request in the standard
interface.
REQ STATUS_ID ID of the request status.
REQ STATUS_NAME Request status.
REQ WORKBENCH _ URL of the request type in the PPM
REQUEST_TYPE_URL Workbench.
REQ WORKBENCH_ URL of the request in the PPM
REQUEST_URL Workbench.
REQ WORKFLOW_ID ID of the workflow that the request uses.
REQ WORKFLOW_NAME Name of the workflow that the request

uses.

187

182

Request > Pending Reference Tokens

Table A-29. Request > Pending Reference tokens (page 1 of 2)

Prefix Tokens Description
REQ.PEND D ID of lthe entity that the request is
blocking.
REQ.PEND NAME Namg of the entity that the request is
blocking.
REQ.PEND DETAIL Detail mformathn for the entity that the
request is blocking.
REQ.PEND DESCRIPTION Descrlptlon of the entity that the request is
blocking.
REQ.PEND STATUS_ID ID c_)f the state or code_of the s_tatus of the
entity that the request is blocking.
REQ.PEND STATUS_NAME Name of the stat'us (or s.tate) of the entity
that the request is blocking.
Name of the state of the entity of the
REQ.PEND STATE request that is blocked by the request.
REQ.PEND ASSIGNED_TO_ Name of the assigned user (or resource)
’ USERNAME of the entity that the request is blocking.
Username of the assigned user (or
REQ.PEND ASSIGNED_TO_ resource) of the entity that the request is
USER_ID .
- blocking.
Name of the assigned group (or resource
ASSIGNED_TO_ . :
REQ.PEND GROUP NAME group) of the entity that the request is
- blocking.
ID of the assigned group (or resource
REQ.PEND ASSIGNED_TO_ group) of the entity that the request is
GROUP_ID :
- blocking.
REQ.PEND RESOURCE _ Name of the resource associated with the
’ USERNAME entity that the request is blocking.
Username of the assigned user (or
REQ.PEND RESOURCE_ID resource) associated with the entity that
the request is blocking.
Name of the assigned group (or resource
RESOURCE_ . . : .
REQ.PEND GROUP_NAME group) associated with the entity that is

blocked by the request.

Appendix A

Table A-29. Request > Pending Reference tokens (page 2 of 2)

Prefix Tokens Description
ID of the assigned group (or resource
REQ.PEND RESOURCE_ group) associated with the entity that is
GROUP_ID .
- being blocked by the request.
Current percent complete value
PERCENT_ : . :
REQ.PEND COMPLETE _assoma_ted with the entity that the request
is blocking.
REQ.PEND ENTITY TYPE ID ID of Fhe type of entity that the request is
- - blocking.
ENTITY_TYPE_ Name of the type of entity that the request
REQ.PEND NAME is blocking.

Request > Field Tokens

The request field tokens are the tokens associated with field groups. Field
groups are attached to request header types to enable additional pre-configured
fields on requests. For more information concerning request field tokens, see

Request > Field Tokens on page 203.

Request Detail Tokens

Tokens

Table A-30. Request Detail tokens

Prefix Tokens

Description

REQD CREATED_BY

ID of the user who created the request
detail.

REQD CREATION_DATE

Date on which the request detail was
created.

REQD LAST_UPDATED_BY

ID of the user who last updated the
request detail.

REQD LAST_UPDATE_DATE

Date on which request detail was last
updated.

REQD REQUEST_DETAIL_ID

ID for the request detail in the table
KCRT_REQUEST_DETAILS.

REQD REQUEST_ID

ID of the request for the request detail.

REQD REQUEST_TYPE_ID

ID of the request type for the request
detail.

183

The rEQD prefix is typically used for accessing custom fields, such as:
[REQD.P.CUSTOM TOKEN].

Request Detail > Field Tokens

Within the token builder, Request Detail Field is an empty folder.

Resource Pool Tokens

184

Table A-31. Resource Pool tokens

Prefix Tokens Description
RSCP CREATED BY The username of the user who created
- the resource pool.
RSCP CREATION DATE The date on which the resource pool was
- created.
RSCP DESCRIPTION The resource pool description.
RSCP END_PERIOD The resource pool end period.
RSCP PERIOD_SIZE The resource pool period size.
RSCP RESOURCE_POOL_URL | The URL used to view the resource pool.
The ID of the resource pool in table
RSCP RSC_POOL_ID KRSC_RSC_POOLS.
RSCP RSC_POOL_IS_FOR_ The entity name to which the resource
ENTITY_NAME pool is linked (program or org unit).
RSCP RSC POOL IS FOR ID The ID of the program or org unit to which
- - - the resource pool is linked.
RSCP RSC _POOL_IS FOR _ The name of the program or org unit to
NAME which the resource pool is linked.
RSCP RSC_POOL_NAME The resource pool name.

Appendix A

Security Group Tokens
Table A-32. Security Group tokens

Prefix Tokens Description
SG CREATED BY ID of the user who created the security
- group.
sG CREATION DATE The date on which the security group was
- created.
SG DESCRIPTION The security group description.
SG LAST UPDATED BY ID of tlhe user who last updated the
- - security group.
SG LAST UPDATE DATE Date on which the security group was last
- - updated.
ID of the security group in the table

SG SECURITY_GROUP_ID KNTA_SECURITY_GROUPS.
SECURITY_GROUP_ .

SG NAME Security group name.

Skill Tokens
Table A-33. Skill tokens

Prefix Tokens Description

SKL CREATED_BY User ID of the user who created the skill.
CREATED_BY_ .

SKL USERNAME Name of the user who created the skill.

SKL CREATION_DATE Date on which the skill was created.

SKL SKILL_CATEGORY _ Lookup code for the skill Category (lookup
CODE type = RSC - skill Category).
SKILL_CATEGORY_ .

SKL NAME Name of the skill category.

SKL SKILL_ID ID of the skill in table KRSC_SKILLS.

SKL SKILL_NAME Skill name.

Tokens 185

Staffing Profile Tokens

186

Table A-34. Staffing Profile tokens

Prefix Tokens Description
STFP CREATED BY User'name qf the user who created the
- staffing profile.
STFP CREATION DATE Date on which the staffing profile was
- created.
STFP DESCRIPTION Description of the staffing profile.
STFP END_PERIOD End period of the staffing profile.
STFP 3&';“_FFING—PROFILE— URL to view this staffing profile.
ID of the staffing profile in table KRSC_
STFP STAFF_PROF_ID STAFF_PROFS.
STFP STAFF_PROF_IS FOR_ | Entity name to which the staffing profile is
ENTITY_NAME linked.
STFP STAFF_PROF_IS_FOR_ | ID of the work plan, program or org unit to
ID which the staffing profile is linked.
Name of the work plan, program or org
STFP STAFF_PROFL_IS_ unit to which the staffing profile is linked
FOR_NAME ;
- (work plan, program, or org unit).
STFP STAFF_PROF_NAME Staffing profile name.
STFP START_PERIOD Staffing profile start period.
STFP STATUS CODE Staffing profile status code.
STFP STATUS_NAME Staffing profile status name.

Appendix A

Step TXN (Transaction) Tokens

Table A-35. Step TXN (Transaction) tokens (page 1 of 2)

Tokens

Prefix Tokens Description
Identifier for the Oracle Concurrent
CONCURRENT _
WST REQUEST ID Request .for the Workflow Step
Transaction.
User ID of the user who created the
WST CREATED_BY Workflow Step Transaction.
WST CREATION DATE Date the Workflow Step Transaction was
- created.
Any system level error message
WST ERROR_MESSAGE associated with the Workflow Step
Transaction.
WST EXECUTION BATCH ID Executlop batch ID for the Workflow Step
- - Transaction.
WST HIDDEN STATUS Hidden s_tatus of the Workflow Step
- Transaction.
WST LAST UPDATED BY User ID of the user whonlast updated the
- - Workflow Step Transaction.
WST LAST_UPDATED_BY_ Email address of the user who last
EMAIL updated the Workflow Step Transaction.
WST LAST _UPDATED BE Username of the user who last updated
USERNAME the Workflow Step Transaction.
WST LAST UPDATE DATE Date the Workflow Step Transaction was
- - last updated.
WST STATUS Status of the Workflow Step Transaction.
STEP_TRANSACTION__ | Transaction ID for the Workflow Step
WST .
ID Transaction.
WST TIMEOUT DATE Date of the Ia§t timeout on the Workflow
- Step Transaction.
Any comments a user added to the
WST USER_COMMENT Workflow Step Transaction.
WST WORKELOW 1D Workflow_ ID for the Workflow Step
- Transaction.
WST WORKFLOW STEP_ID Workflow step ID for the Workflow Step

Transaction.

187

Table A-35. Step TXN (Transaction) tokens (page 2 of 2)

Prefix Tokens Description

WST NEW HIDDEN STATUS New h|dQen status of the Workflow Step
- - Transaction.

WST OLD HIDDEN STATUS Old hldd(_en status of the Workflow Step
- - Transaction.

WST NEW STATUS New statgs of the Workflow Step
- Transaction.

WST OLD_STATUS Old status of the Workflow Step

Transaction.

System Tokens

188

Table A-36. System tokens

Prefix Tokens Description
SYS DATE Date on which the token is parsed.
SYS FULL_NAME Full name of the PPM Center user.
Date and time stamp when the token is
SYS ITG_TIME_STAMP parsed. You can use this token with the ksc_
store command.
SYS NEWLINE New line character.
SYS TIME_STAMP Date and time stamp. (Deprecated)
Used to obtain a unique number from the
SYS UNIQUE_ database. It can be used to generate unique
IDENTIFIER filenames, for example. It is often necessary
to use with the ksc_set special command.
SYS UNIX_NEWLINE UNIX new line character.
PPM Center username for the user currently
SYS USERNAME logged on to PPM Center.
sYs USER_ID ID of the user currently logged on to PPM

Center.

Appendix A

Task Tokens

Table A-37. Tasks tokens (page 1 of 3)

Prefix Tokens Description

TSK ACTUAL_DURATION Actual task duration.

TSK ACTUAL_EFFORT Actual effort associated with the task.

TSK ACTUAL _FINISH_DATE | Actual date the task finished.

TSK ACTUAL_START_DATE | Actual date the task started.

TSK CONFIDENCE_CODE Confidence code that the user entered.

TSK CONFIDENCE_NAME Confidence name that the user entered.

TSK CONSTRAINT_DATE Task constraint date.

TSK CREATED_BY User who created the task.

TSK CREATED_BY_EMAIL Er:zil address of the user who created the

TSK CREATED_BY_ Username of the user who created the
USERNAME task.

TSK CREATION_DATE Date the task was created.

TSK DEPARTMENT_CODE Department code value the user entered.

TSK DEPARTMENT_NAME Department name the user entered.

TSK DESCRIPTION TASK description.

TSK ESTIMATED _ Estimated time remaining to complete the
REMAINING_DURATION | task.

TSK ESTIMATED_ Estimated remaining effort involved in the
REMAINING_EFFORT task.

TSK EiPéVIATED—FlNISH— Estimated finish date of the task.

TSK HAS_EXCEPTIONS E)I(acge:)?is:gw whether or not the task has

TSK LAST_UPDATE_DATE Date on which the task was last updated.

TSK LAST_UPDATED_BY Last user to update the task.

TSK LAST _UPDATED BY_ Email address of the last user to update
EMAIL the task.

TSK LAST_UPDATED_BY _ Username of the last person to update the
USERNAME task.

Tokens 189

190

Table A-37. Tasks tokens (page 2 of 3)

Prefix Tokens Description

TSK MASTER_PROJECT _ID | ID of the master project.
MASTER_PROJECT _ .

TSK NAME Name of the master project.

TSK MOST_RECENT_NOTE_ | First and last name of the author of the
AUTHOR_FULL_NAME most recent note.

TSK MOST_RECENT_NOTE_ | Username of the author of the most
AUTHOR_ USERNAME recent note.
MOST_RECENT_NOTE_

TSK AUTHORED_DATE Date of the most recent note.

TSK MOST_RECENT_NOTE_ Text of the most recent note.
TEXT

TSK PARENT_PROJECT_ID ID of the parent work plan.
PARENT_PROJECT _

TSK NAME Name of the parent work plan.

TSK PERCENT_COMPLETE Percentage of the task completed.

TSK PRIORITY Task priority.

TSK PROJECT PATH Work plan path._Hler_archy of parent work

- plans that contain this task.
Name of the project template used to
TSK PROJECT_TEMPLATE create the work plan that contains the
task.
TSK PROJECT TYPE CODE Returns TASK for tasks and PROJECT
- - for work plans.

TSK RESOURCE_ID ID of the resource assigned to the task.

TSK RESOURCE_EMAIL Email address of the resource.

TSK RESOURCE_GROUP_ID :gsif the resource group assigned to the

TSK RESOURCE_GROUP_ Name of the resource group assigned to
NAME the task.
RESOURCE_

TSK USERNAME Username of the resource.

TSK SCHEDULED_EFFORT Scheduled effort involved in the task.
SCHEDULED _ .

TSK DURATION Duration scheduled for the task.

Appendix A

Table A-37. Tasks tokens (page 3 of 3)

Prefix Tokens Description
TSK SCHEDULED_FINISH_ Finish date scheduled for the task.
DATE
TSK SCHEDULED_START_ Start date scheduled for the task.
DATE
SCHEDULING . .
TSK CONSTRAINT Scheduling constraint for the task.
The number that uniquely identifies the
task (same as TASK_NUMBER). This
TSK TASK_ID corresponds to the PROJECT _ID column
in table KDRV_PROJECTS.
TSK TASK_NAME Task name.
Standard hyperlink to the task in
TSK TASK_NAME_LINK HTML-formatted notifications.
Number that uniquely identifies the task
TSK TASK_NUMBER (same as TASK_ID).
TSK TASK_STATE The task state.
TSK TASK_URL URL for the task Detail page.
TSK WORKBENCH_TASK _ URL to access this task in the PPM
URL Workbench.

Tasks > Pending Tokens

Tokens

Table A-38. Tasks > Pending tokens (page 1 of 2)

Prefix Tokens Description

TSK.PEND ID ID of the entity that is blocked by the task.

TSK.PEND NAME Name of the entity that is blocked by the task.
Detail information for the entity that is blocked

TSK.PEND DETAIL by the task as shown in the References field.

TSK_PEND DESCRIPTION giicrlptlon of the entity that is blocked by the
ID of the state or the code of the status of the

TSK.PEND STATUS_ID entity that is being blocked by the task.

TSK PEND STATUS NAME Name of the status (or state) of the entity that

- is blocked by the task.

191

Table A-38. Tasks > Pending tokens (page 2 of 2)

Prefix Tokens Description
TSK PEND STATE Name of the state of the entity blocked by the
task.
TSK PEND ASSIGNED_TO_ | Name of the assigned user (or resource) of
' USERNAME the entity blocked by the task.
TSK PEND ASSIGNED_TO_ | Username of the assigned user (or resource)
' USER_ID of the entity blocked by the task.
TSK PEND ASSIGNED_TO_ | Name of the assigned group (or resource
' GROUP_NAME group) of the entity blocked by the task.
TSK PEND ASSIGNED_TO_ | ID of the assigned group (or resource group)
' GROUP_ID of the entity that is being blocked by the task.
TSK PEND RESOURCE_ Name of the resource associated with the
' USERNAME entity that is blocked by the task.
Username of the resource (or assigned user)
TSK.PEND RESOURCE_ID associated with the entity blocked by the task.
Name of the resource group (or assigned
RESOURCE_ : : .
TSK.PEND GROUP_NAME ;Jassekr) associated with the entity blocked by the
TSK PEND RESOURCE_ ID of the resource group (or assigned group)
' GROUP_ID associated with the entity blocked by the task.
TSK PEND PERCENT _ Current percent complete value associated
' COMPLETE with the entity blocked by the task.
TSK.PEND FDNTITY—TYPE— ID of the type of entity blocked by the task.
ENTITY_TYPE_ | Name of the type of entity that is being
TSK.PEND NAME blocked by the task.

Appendix A

Time Management Notification Tokens

User Tokens

Tokens

Table A-39. Time Management Notification tokens

Prefix Tokens Description
CREATE_TIME_SHEET_ | URL for creating a new time sheet time
TMG .
URL period.
TMG SEEN—TIME—SHEET— URL for opening time sheet.
TMG TIME_PERIOD Time period.
TIME_SHEET _ : -
TMG DESCRIPTION Time sheet description.
Table A-40. User tokens (page 1 of 3)
Prefix Tokens Description
USR AUTHENTICATION_ Authentication mode for the user (such as
MODE_CODE LDAP).
USR AUTHENTICATION _ Authentication mode for the user (such as
MODE_NAME LDAP).
USR COMPANY Company that employs the user.
USR COMPANY_NAME ll:lsaerrrle of the company that employs the
USR CREATED_BY ID of the user who created the user.
CREATED_BY_FULL_ p »
USR NAME Full name of the “created by” user.
USR CREATED_BY_ PPM Center username of the user who
USERNAME created the user.
USR CREATION_DATE Date on which the user was created.
Lookup code of the department the user
USR DEPARTMENT_CODE belongs to (lookup type = DEPT).
USR DEPARTMENT NAME Name of the department to which the user
- belongs.
USR EMAIL_ADDRESS Email address of the user.

193

194

Table A-40. User tokens (page 2 of 3)

Prefix Tokens Description
USR END DATE Date on_whl_ch the user is made inactive in
- the application.

USR FIRST_NAME First name of the user.

USR LAST_NAME Last name of the user.

USR LAST_UPDATED_BY ID of the user who last updated the user.
LAST_UPDATE_BY_

USR FULL_NAME Full name of the last updated by user.

USR LAST_UPDATED_BY_ PPM Center username of the user who
USERNAME last updated the user.

USR LAST_UPDATE_DATE Date the user was last updated.

USR LOCATION CODE LookEp code of the user's location (lookup

- type = RSC - Location).

USR LOCATION_NAME Name of the user’s location.

USR MANAGER_USERNAME | Username of the user’'s manager.

USR MANAGER_USER_ID ID of the user's manager.

Password for the user to use to log on to

USR PASSWORD PPM Center. This value is encrypted.

USR PASSWORD _ Date the password needs to be reset for
EXPIRATION_DATE the user.

USR PASSWORD _ Number of days until the password must
EXPIRATION_DAYS be reset for the user.

USR PHONE_NUMBER Phone number of the user.

USR PRIMARY ROLE_ID LDseorf the primary role associated with the

USR PRIMARY ROLE NAME Name of the primary role associated with

- - the user.
USR REGION Region associated with the user.
USR REGIONAL_CALENDAR ll:l:;:e of the regional calendar for the
Lookup code of resource category (lookup
USR RESOURCE_ type = RSC - Category) to which the user

CATEGORY_CODE

belongs.

Appendix A

Table A-40. User tokens (page 3 of 3)

Prefix Tokens Description

USR RESOURCE_ Name of the category to which the user
CATEGORY_NAME belongs.

USR RESOURCE_TITLE Lookup code of the user’s resource title
CODE (lookup type = RSC - Resource Title).
RESOURCE_TITLE_ , .

USR NAME Name of the user’s resource title.

USR START DATE Datg thg user is made active in the

- application.
Username for the user to use to log on to

USR USERNAME PPM Center.

USR USER_ID ID of the user in the table KNTA_USERS.

USR WORKLOAD_CAPACITY | Workload capacity of the user (% of FTE)

Validation Tokens
Table A-41. Validation tokens (page 1 of 2)

Prefix Tokens Description
VAL COMPONENT TYPE Co!*npqnent type associated with the
- validation.

VAL CREATED_BY ID of the user who created the validation.
VAL CREATION_DATE Date the validation was created.
VAL DESCRIPTION Description of the validation.
VAL LAST UPDATED BY ID _of the user who last updated the

- - validation.
VAL LAST_UPDATE_DATE Date the validation was last updated.
VAL LOOKUP TYPE Loc_)kup typg assqmated with the

- validation (if applicable).
ID of the validation in the table KNTA _

VAL VALIDATION_ID VALIDATIONS.

Tokens 195

Table A-41. Validation tokens (page 2 of 2)

Prefix Tokens Description
VAL VALIDATION_NAME Name of the validation.
VAL VALIDATION_SQL SQL st.aterT.\ent a§300|ated with the
validation (if applicable).
VAL WORKBENCH_ URL for the validation in the PPM
VALIDATION_URL Workbench.

Validation > Value Tokens

Table A-42. Validation > Value tokens

Prefix Tokens Description
VAL.VALUE | CREATED_BY ID of the user who created the value.
VAL.VALUE | CREATION_ DATE Date the value was created.
Flag to indicate whether the value is the
VAL.VALUE | DEFAULT_FLAG default value for the associated lookup
type.
VAL.VALUE DESCRIPTION Description of the value.
VAL VALUE ENABLED FLAG Flag that indicates _whgther.the value is
- available for selection in a list.
VAL.VALUE | LAST_UPDATED_BY | ID of the user who last updated the value.
VAL.VALUE LAST_UPDATE_ Date the value was last updated.
DATE
VAL.VALUE | LOOKUP_CODE Code associated with the value.
VAL.VALUE | LOOKUP_TYPE Value lookup type.
VAL.VALUE MEANING Meaning associated with the value.
Sequence relative to other values in the
VAL.VALUE SEQ associated lookup type in which this value

is to be displayed as a list item.

Appendix A

Workflow Tokens

Tokens

Table A-43. Workflow tokens

Prefix Tokens Description

WF CREATED_BY ID of the user who created the workflow.

WF CREATION_DATE Date on which the workflow was created.

WF DESCRIPTION Workflow description.

Flag that indicates whether the workflow

WF ENABLED_FLAG is enabled for use in packages and/or

requests.

WE FIRST_WORKFLOW_ ID of the first workflow step in the
STEP_ID workflow.

WE FIRST _WORKFLOW _ Name of the first workflow step in the
STEP_NAME workflow.

WF ICON_NAME Name of the workflow step icon.

WE LAST UPDATED BY ID of the user who last updated the

- - workflow.

WF LAST_UPDATE_DATE Date the workflow was last updated.

WE PRODUCT_SCOPE_ Validation value code for the product
CODE scope of the workflow.
REOPEN_WORKFLOW _

WF STEP_ID ID of the reopened workflow step.
REOPEN_WORKFLOW_

WF STEP_NAME Name of the reopened workflow step.

WE SUBWORKFLOW FLAG Specifies whether this workflow can be

- used as a subworkflow.
ID of the workflow defined in the table

WF WORKFLOW_ID KWFL_WORKFLOWS.

WF WORKFLOW_NAME Name of the workflow.

WE WORKBENCH_ URL to open the workflow in the PPM

WORKFLOW_URL

Workbench.

197

198

Workflow > Workflow Step Tokens
Table A-44. Workflow > Workflow Step tokens (page 1 of 3)

Prefix

Tokens

Description

WF.WFS

ACTION_BUTTON_
LABEL

Label displayed on the package or
request action button for the workflow
step.

WF.WFS

AVERAGE_LEAD_TIME

Average lead time in days defined for
the workflow step.

WF.WFS

CREATED_BY

ID of the user who created the
workflow step.

WF.WFS

CREATION_DATE

Date the workflow step was created.

WF.WFS

DESCRIPTION

Workflow step description.

WF.WFS

DEST_ENV_GROUP_ID

ID of the destination environment
group for the workflow step.

WF.WFS

DEST_ENV_GROUP_
NAME

Name of the destination environment
group for the workflow step.

WF.WFS

DEST_ENVIRONMENT_
ID

ID of destination environment for the
workflow step.

WF.WFS

DEST_ENVIRONMENT_
NAME

Name of the destination environment
for the workflow step.

WF.WFS

ENABLED_FLAG

Flag that indicates whether the
workflow step is enabled and can be
traversed in a package or request.

WF.WFS

GL_ARCHIVE_FLAG

For GL object migration, a flag that
indicates whether to save the GL
object being migrated to the HP GL
Migrator archive.

WF.WFS

INFORMATION_URL

Workflow step information URL.

WF.WFS

JUMP_RECEIVE_
LABEL_CODE

Code for a Jump/Receive workflow
step.

WF.WFS

JUMP_RECEIVE_
LABEL_NAME

Name of a Jump/Receive workflow
step.

WF.WFS

LAST_UPDATED_BY

ID of the user who last updated the
workflow step.

WF.WFS

LAST_UPDATE_DATE

Date the workflow step was last
updated.

Appendix A

Tokens

Table A-44. Workflow > Workflow Step tokens (page 2 of 3)

Prefix Tokens Description
For AOL object migration, a flag that
WE.WES OM ARCHIVE FLAG |nd_|cates _whether to save the AOL
- - object being migrated to the
Object*Migrator archive.
ID of the security group that the
WE. WES PARENT_ASSIGNED _ current package or request is
' TO_GROUP_ID assigned to (determined by context at
time of evaluation).
Security group that the current
WE. WES PARENT_ASSIGNED _ package or request is assigned to
' TO_GROUP_NAME (determined by context at time of
evaluation).
Name of the user to whom the current
WE. WES PARENT_ASSIGNED _ package or request is assigned
' TO_USERNAME (determined by context at time of
evaluation).
ID of the user to whom the current
WE. WES PARENT_ASSIGNED _ package or request is assigned
' TO_USER_ID (determined by context at time of
evaluation).
Validation value code of the status of
WF.WFS PARENT_STATUS the request that is using the workflow
step.
Validation value meaning of the status
WF.WFS PARENT_STATUS_ of the request that is using the
NAME
workflow step.
Validation value code for the product
WF.WFS PRODUCT_SCOPE_ scope of the workflow containing the
CODE
workflow step.
ID of the workflow parameter to which
RESULT_WORKFLOW _ .
WF.WFS PARAMETER ID thg result of the workflow step is
- written.
Name of the workflow parameter to
RESULT_WORKFLOW_ .
WF.WFS PARAMETER NAME yvh|ch the result of the workflow step
- is written.
Display sequence of the workflow
WF.WFS SORT_ORDER step relative to all other steps in the

workflow.

199

Table A-44. Workflow > Workflow Step tokens (page 3 of 3)

Prefix Tokens Description
WE. WES SOURCE_ENV_ ID of the source environment group
' GROUP_ID for the workflow step.
WE. WES SOURCE_ENV_ Name of the source environment
' GROUP_NAME group for the workflow step.
WE. WES SOURCE_ ID of the source environment for the
ENVIRONMENT _ID workflow step.
WE. WES SOURCE_ Name of the source environment for
' ENVIRONMENT_NAME | the workflow step.
WF.WFS STEP_NAME Workflow step name.
Display sequence of the workflow
WF.WFS STEP_NO step relative to all other steps in the
workflow.
WF.WFS STEP_SOURCE_NAME | Name of the workflow step source.
WE. WES STEP_TYPE_NAME gl/?)g\e of the workflow step source
WF.WFS WORKFLOW 1D ID of the workflow containing the
- workflow step.
WE. WES WORKELOW NAME Name of the workflow containing the
- workflow step.
ID of the workflow step in the table
WF.WFS WORKFLOW_STEP_ID KWFL_WORKFLOW_STEPS.
Workflow Step Tokens
Table A-45. Workflow Step tokens (page 1 of 4)
Prefix Tokens Description
Label displayed on the package or
WFS ACTION_BUTTON_ request action button for the workflow
LABEL
step.
WES AVERAGE LEAD TIME Average lead time in days defined for the
- - workflow step.
WES CREATED_BY Isli)egf the user who created the workflow

200

Appendix A

Tokens

Table A-45. Workflow Step tokens (page 2 of 4)

Prefix Tokens Description

WEFS CREATION_DATE Date the workflow step was created.

WFS DESCRIPTION Description of the workflow step.

WFS DEST ENV GROUP ID ID of the destination environment group

- - - for the workflow step.

WES DEST_ENV_GROUP_ Name of the destination environment
NAME group for the workflow step.
DEST_ENVIRONMENT_ | ID of destination environment for the

WFS
ID workflow step.

WFS DEST_ENVIRONMENT_ | Name of the destination environment for
NAME the workflow step.

Flag that indicates whether the workflow

WEFS ENABLED_FLAG step is enabled and can be traversed in a
package or request.

For GL object migration, a flag that
indicates whether to save the GL object

WFS GL_ARCHIVE_FLAG being migrated to the HP GL Migrator
archive.

WFS INFORMATION_URL Workflow step information URL.

JUMP_RECEIVE_ .

WEFS LABEL_CODE Code for a Jump/Receive workflow step.
JUMP_RECEIVE_ .

WFS LABEL NAME Name of a Jump/Receive workflow step.

WES LAST UPDATED BY ID of the user who last updated the

- - workflow step.

WEFS LAST_UPDATE_DATE Date the workflow step was last updated.
For AOL object migration, the flag that
indicates whether to save the AOL object

WFS OM_ARCHIVE_FLAG being migrated to the Object*Migrator
archive.

ID of the security group to which the

WES PARENT_ASSIGNED _ current package or request is assigned

TO_GROUP_ID

(determined by context at time of
evaluation).

207

202

Table A-45. Workflow Step tokens (page 3 of 4)

Prefix Tokens Description
Security group to which the current
WES PARENT_ASSIGNED _ package or request is assigned to
TO_GROUP_NAME (determined by context at time of
evaluation).
Name of the user to whom the current
WES PARENT_ASSIGNED _ package or request is assigned
TO_USERNAME (determined by context at time of
evaluation).
ID of the user to whom the current
WES PARENT_ASSIGNED _ package or request is assigned
TO_USER_ID (determined by context at time of
evaluation).
WES PARENT STATUS Validation vglue c_ode of the status of the
- request that is using the workflow step.
Validation value meaning of the status of
WFS PARENT_STATUS_ the request that is using the workflow
NAME
step.
Validation value code for the product
WES PRODUCT_SCOPE_ scope of the workflow containing the
CODE
workflow step.
WES RESULT_WORKFLOW _ | ID of the workflow parameter to which the
PARAMETER_ID result of the workflow step is written.
WES RESULT_WORKFLOW_ | Name of the workflow parameter to which
PARAMETER_NAME the result of the workflow step is written.
WES SORT ORDER Dlsp_lay sequence of the \{vorkflow step
- relative to all other steps in the workflow.
WES SOURCE_ENV_ ID of the source environment group for
GROUP_ID the workflow step.
WFS SOURCE_ENV _ Name of the source environment group
GROUP_NAME for the workflow step.
WES SOURCE_ ID of the source environment for the
ENVIRONMENT _ID workflow step.
WES SOURCE_ Name of the source environment for the
ENVIRONMENT_NAME | workflow step.
WEFS STEP_NAME W workflow step name.
WES STEP_NO Display sequence of the workflow step

relative to all other steps in the workflow.

Appendix A

Table A-45. Workflow Step tokens (page 4 of 4)

Prefix

Tokens

Description

WEFS

STEP_SOURCE_NAME

Name of the workflow step source.

WFS

STEP_TYPE_NAME

Name of the workflow step source type.

WFS

WORKFLOW_ID

ID of the workflow containing the workflow
step.

WEFS

WORKFLOW_NAME

Name of the workflow containing the
workflow step.

WFS

WORKFLOW_STEP_ID

ID of the workflow step in the table
KWFL_WORKFLOW_STEPS.

Request > Field Tokens

The request field tokens are the tokens associated with field groups. Field
groups are attached to request header types to enable additional pre-configured
fields on requests. Field groups are often delivered as a part of PPM Center
best practice functionality. You only have access to field groups associated
with products that are licensed at your site.

CMBD Application Tokens

Table A-46. CMBD Application tokens

Prefix Tokens Description
REQ.P KNTA_CMDB _ CMDB application referenced by the
’ APPLICATION request.

Tokens

203

204

Demand Management SLA Tokens
Table A-47. Demand Management SLA tokens

Prefix Tokens Description

REQ.P KNTA_SLA_LEVEL SLA level.

REQ.P gxpé—SLA—VIOLATION— SLA violation date.
REQ.P EEE?J_ES;I'A\E_SE;}I/ - Service request date.
REQ.P KNTA_SLA_SERV_ Service satisfied date.

SATISFIED_ON

Demand Management Scheduling Tokens

Table A-48. Demand Management Scheduling tokens

Prefix

Tokens

Description

REQ.P

KNTA_EST_START DATE

Estimated start date.

REQ.P

KNTA_EFFORT

Estimated effort.

REQ.P

KNTA_REJECTED_DATE

Reject date.

REQ.P

KNTA_DEMAND_SATISFIED_DATE

Demand satisfied date.

MAM Impact Analysis Tokens
Table A-49. MAM Impact Analysis tokens

Prefix

Tokens

Description

REQ.P

KNTA_MAM_RFC_ID

MAM RFC ID number.

REQ.P

KNTA_MAM_IMPACT_RESULT

MAM impact results.

Portfolio Management Asset Tokens

Table A-50. Portfolio Management Asset tokens (page 1 of 2)

Prefix

Tokens

Description

REQ.P

KNTA_ASSET_DEPENDENCIES

Asset Dependencies.

REQ.P

KNTA_BUSINESS_UNIT

Business Unit.

REQ.P

KNTA_PROJECT_NAME

Asset Name.

Appendix A

Table A-50. Portfolio Management Asset tokens (page 2 of 2)

Prefix Tokens Description

REQ.P KNTA_PROJECT_HEALTH Asset Health.
REQ.P KNTA_PROJECT_CLASS Project Class.
REQ.P KNTA_ASSET_CLASS Asset Class.

REQ.P KNTA_BUSINESS_OBJECTIVE Business Objective.
REQ.P KNTA_PROJECT_MANAGER Project Manager.
REQ.P KNTA_PROJECT_PLAN Work Plan.

REQ.P KNTA_BUDGET Budget.

REQ.P KNTA_FINANCIAL_BENEFIT Financial Benefit.
REQ.P KNTA_STAFFING_PROFILE Staffing Profile.
REQ.P KNTA_NPV Net Present Value.
REQ.P KNTA_VALUE_RATING Value Rating.
REQ.P KNTA_RISK_RATING Risk Rating.

REQ.P KNTA_ROI Return on Investment.
REQ.P KNTA_CUSTOM_FIELD_VALUE Custom Field Value.
REQ.P KNTA_TOTAL_SCORE Total Score.

REQ.P KNTA_DISCOUNT_RATE Discount Rate.

Portfolio Management Project Tokens

Tokens

Table A-51. Portfolio Management Project tokens (page 1 of 2)

Prefix Tokens Description

REQ.P KNTA_BUSINESS_UNIT Business Unit.

REQ.P KNTA_PROJECT_DEPENDENCIES Project Dependencies.
REQ.P KNTA_PROJECT_NAME Project Name.

REQ.P KNTA_PROJECT_HEALTH Project Health.

REQ.P KNTA_PROJECT_CLASS Project Class.

REQ.P KNTA_ASSET_CLASS Asset Class.

REQ.P KNTA_BUSINESS_OBJECTIVE Business Objective.
REQ.P KNTA_PROJECT_PLAN Work Plan.

205

206

Table A-51. Portfolio Management Project tokens (page 2 of 2)

Prefix Tokens Description

REQ.P KNTA_PROJECT_MANAGER Project Manager.
REQ.P KNTA_BUDGET Budget.

REQ.P KNTA_FINANCIAL_BENEFIT Financial Benefit.
REQ.P KNTA_STAFFING_PROFILE Staffing Profile.
REQ.P KNTA_NPV Net Present Value.
REQ.P KNTA_VALUE_RATING Value Rating.
REQ.P KNTA_RISK_RATING Risk Rating.

REQ.P KNTA_CUSTOM_FIELD_VALUE Custom Field Value.
REQ.P KNTA_ROI Return on Investment.
REQ.P KNTA_TOTAL_SCORE Total Score.

REQ.P KNTA_DISCOUNT_RATE Discount Rate.
REQ.P KNTA_PLAN_START_DATE Start Date.

REQ.P KNTA_PLAN_FINISH_DATE Finish Date.

Portfolio Management Proposal Tokens

Table A-52. Portfolio Management Proposal tokens (page 1 of 2)

Prefix Tokens Description

REQ.P KNTA_BUSINESS_UNIT Business Unit.
REQ.P KNTA_PROJECT_NAME Project Name.
REQ.P KNTA_PROJECT_CLASS Project Class.
REQ.P KNTA_ASSET_CLASS Asset Class.
REQ.P KNTA_BUSINESS_OBJECTIVE Business Objective.
REQ.P KNTA_PROJECT_PLAN Project Plan.
REQ.P KNTA_PROJECT_DEPENDENCIES Project Dependencies.
REQ.P KNTA_PROJECT_MANAGER Project Manager.
REQ.P KNTA_PROJECT_TYPE Project Type.
REQ.P KNTA_BUDGET Budget.

REQ.P KNTA_FINANCIAL_BENEFIT Expected Benefit.

Appendix A

Table A-52. Portfolio Management Proposal tokens (page 2 of 2)

Prefix Tokens Description

REQ.P KNTA_STAFFING_PROFILE Staffing Profile.
REQ.P KNTA_NET_PRESENT_VALUE Net Present Value.
REQ.P KNTA_VALUE_RATING Value Rating.
REQ.P KNTA_RISK_RATING Risk Rating.

REQ.P KNTA_RETURN_ON_INVESTMENT Return on Investment.
REQ.P KNTA_CUSTOM_FIELD_VALUE Custom Field Value.
REQ.P KNTA_TOTAL_SCORE Total Score.

REQ.P KNTA_DISCOUNT_RATE Discount Rate.
REQ.P KNTA_PLAN_START_DATE Start Date.

REQ.P KNTA_PLAN_FINISH_DATE Finish Date.

Program Issue Tokens

Within token builder, Program Issue is an empty folder.

Program Reference Tokens

Table A-53. Program Reference tokens

Prefix

Tokens

Description

REQ.P

KNTA_PROGRAM_REFERENCE

Program reference.

Project Issue Tokens

Table A-54. Project Issue tokens

Prefix

Tokens

Description

non-app

KNTA_ESCALATION_LEVEL

Escalation level.

Project Reference Tokens

Table A-55. Project Issue tokens

Prefix

Tokens

Description

REQ.P

KNTA_MASTER_PROJ_REF

Master project reference.

Tokens

207

Project Risk Tokens
Table A-56. Project Issue tokens

Prefix Tokens Description
REQ.P KNTA_IMPACT_LEVEL Impact level.
REQ.P KNTA_PROBABILITY Probability level.

Project Scope Change Tokens
Table A-57. Project Scope Change tokens

Prefix Tokens Description
non-app KNTA_CR_LEVEL Critical level.
non-app KNTA_IMPACT_LEVEL Impact level.

Quality Center Defect Information Tokens
Table A-58. Quality Center Defect Information tokens

Prefix Tokens Description
REQ.P KNTA_QC_DEECT_DOMAIN Quality Center domain name.
REQ.P KNTA_QC_DEFECT_PROJECT Quality Center project.

Quality Center defect

REQ.P KNTA_QC_DEFECT_ASSIGNED_TO !
assigned to.

Quality Center defect

REQ.P KNTA QC DEFECT NO
- = - number.

REQ.P KNTA_QC_DEFECT_STATUS Quality Center defect status.

Quality Center defect ATT

REQ.P | KNTA_QC_DEFECT ATT_URL ORL

Quality Center defect instant

REQ.P KNTA_QC_DEFECT_INT_MSG
- - - - message.

Quality Center defect

REQ.P KNTA_QC_DEFECT_INSTANCE .
instance.

208 Appendix A

Quality Center Information Tokens

Table A-59. Quality Center Information tokens

Prefix Tokens Description

REQ.P KNTA_QC_DOMAIN Quality Center domain name.

REQ.P KNTA_QC_ASSIGNED_TO Quality Center assigned to user.

REQ.P KNTA_QC_PROJECT Quality Center project.

REQ.P E'(\;TA—QC—REQUIREMENT— Quality Center requirement number.
KNTA_QC_REQUIREMENT_ . .

REQ.P STATUS Quality Center requirement status.
KNTA_QC_REQUIREMENT_ . .

REQ.P ATT URL Quality Center requirement ATT URL.
KNTA_QC_REQUIREMENT_ | Quality Center requirement instant

REQ.P)
INT_MSG messaging.

REQ.P KNTA_QC_INSTANCE Quality Center instance.
KNTA_QC_DASHBOARD_ . .

REQ.P SUBJECT Quality Center dashboard subject.
KNTA_QC_REQUIREMENT _ . .

REQ.P COVERAGE Quality Center requirement coverage.

REQ.P KNTA_QC_OPEN_DEFECTS | Quality Center open defects.

Resource Management Work Iltem Tokens

Tokens

Table A-60. Resource Management Work ltem tokens (page 1 of 2)

Prefix Tokens Description

REQ.P KNTA_USR_SCHED_START_DATE | Scheduled Start Date
REQP | KNTA_USR_ACTUAL_START DATE | Actual Start Date
REQ.P KNTA_USR_SCHED_FINISH_DATE | Scheduled Finish Date
REQ.P KNTA_USR_ACTUAL_FINISH_DATE | Actual Finish Date
REQ.P KNTA_SCHED_DURATION Scheduled Duration
REQ.P KNTA_ACTUAL_DURATION Actual Duration
REQ.P KNTA_SCHED_EFFORT Scheduled Effort
REQ.P KNTA_ACTUAL_EFFORT Actual Effort

209

210

Table A-60. Resource Management Work Item tokens (page 2 of 2)

Prefix Tokens Description

REQ.P KNTA_WORKLOAD Workload

REQ.P KNTA_WORKLOAD_CATEGORY Workload Category

REQ.P KNTA_ROLE Role

req.p | KNTA_ALLOW_EXTERNAL_ Allow External Update of
UPDATE Actual Effort

REQ.P KNTA _SCHED_START_DATE Scheduled Start Date

REQ.P KNTA_ACTUAL_START_DATE Actual Start Date

REQ.P KNTA_SCHED_FINISH_DATE Scheduled Finish Date

REQ.P KNTA_ACTUAL_FINISH_DATE Actual Finish Date

REQ.P | KNTA_SCHED_EFF_OVER_DUR Scheduled Effort Over

Duration

Appendix A

Index

A

application server properties 131

auto-complete
command with delimited output 94
command with fixed width output 96
configuring the values 93
example 100
list of users 92
long lists 83
search fields 88
short lists 82
user-defined multi-select 98

C

command conditions 25, 35
examples 25
command language 24
command tokens 162
command with delimited output 94
command with fixed width output 96
commands
create new command 29
creating 39
special 24
triggering from workflow 22
validation 81
component types 69
auto-complete 98
directory chooser 113
file chooser 114
file chooser (static environment
override) 115
file chooser (token-based environment
override) 115
configuring
filter field layout 91

contact 131, 133

creating 74
custom data masks 112

currency data mask 107

custom data masks
creating 112

D

date field

valid format 117
directory chooser 113
dynamic list validations 78

command 81
SQL 79

entity token
application server properties 131
command execution 162
contacts 131, 133
demand management fields 204
distributions 134
document management 135
environment applications 139
environments 136, 141
extension 64
notifications 163, 164, 177
organization units 164
package lines 168, 171
package pending 169
program 171, 176
project plan 172
releases 176
requests 178
requests pending 182
resource pools 184
security groups 185
skills 185
staffing profile 186, 187, 193

2117

tasks 189
tasks pending 191
users 193
workflow steps 198, 200
workflows 197
entity tokens
validation values 196
validations 195

F

field group tokens 203
asset 204
demand management 204
PMO 203, 204, 208, 209
program reference 207, 208
project 205
proposal 206
work item 209

fields
preview layout 92

file chooser 114
static environment override 115
token-based environment override 115

filter field layout
configuring 91

format masks
for text fields 104

formats
for tokens 51

N

nesting tokens 56
New Command window 29, 39
numeric data mask 105

O

object types
commands and workflow 22

212

P

percentage data mask 109

R

request field tokens 59
prefixes 59
table components 59

S

special command
parameters tab 34
special command builder 37
using to build steps 43
special commands 24
about 34
building steps with command builder 43
language 35
nesting 44
using 42
viewing 36
SQL validations 79
tips 80
static list validations
configuring 76

swap mode 92
system special commands 24

T

table component validations 118
column totals 126
creating rules 121
defining 119
rules example 122
tokens 126
table components
using tokens in 59

telephone data mask 110

text fields
configuring 103
currency 104

Index

custom format 105
format masks 104
numeric 104
percentage 105
telephone 105

token

evaluation example 100

Token Builder

using 65

token builder

about 50

token evaluation 49

tokens

U

building 56, 65

default format 54
environment tokens 63
explicit entity format 55
field groups 203

for use with commands 162
formats 51

nesting within tokens 56
overview 48

parameter format 58
request fields 59
sub-entity format 62
user data format 57
where to use 48

user-defined special commands 24

\'}

validations 74

accessing through packages and requests 71
command 81

command with delimited output 94
command with fixed width output 96
configuring for static lists 76

creating 74

date format 117

defined 68

directory chooser 113

Index

dynamic list 78

file chooser 114

file chooser (static environment
override) 115

file chooser (token-based environment
override) 115

list of all 73

overview 69

seeded 73

special characters and 72

SQL 79

SQL tips 80

system 73

table component 118

text area 1800 117

213

214 Index

	Documentation Library
	List of Figures
	List of Tables
	1 Getting Started with Commands, Tokens, and Validations
	Introduction to Commands, Tokens, and Validations
	Related Documents

	2 Using Commands
	About Commands
	Object Type Commands and Workflows
	Request Type Commands and Workflows
	Special Commands
	Command Language
	Command Conditions
	About the Commands Tab

	Configuring Commands
	Examples of Command Uses

	3 Using Special Commands
	About Special Commands
	Special Command Parameters
	Special Command Language
	Special Command Conditions
	Using the PPM Workbench to List Special Commands
	About the Special Command Builder

	Configuring Special Commands
	Using Special Commands
	Using the Special Command Builder
	Nesting Special Commands
	Using the Special Command Details Report to List Special Commands

	Examples of Using Special Commands

	4 Using Tokens
	About Tokens
	Where to Use Tokens
	Token Evaluation
	About the Token Builder

	Token Formats
	Default Format
	Explicit Entity Format
	Nesting Explicit Entity Tokens within Other Tokens

	User Data Format
	Parameter Format
	Request Field Tokens
	Request Field Token Prefixes
	Tokens in Request Table Components

	Sub�Entity Format
	Environment and Environment Application Tokens

	Using the Token Builder

	5 Using Validations
	About Validations
	Validation Component Types
	Accessing Validations Through Packages and Requests
	Validations and Special Characters
	Viewing System Validations

	Configuring Validations
	Configuring Static List Validations
	Configuring Dynamic List Validations
	Configuring SQL Validations
	SQL Validation Tips
	Command Validations

	Configuring Short List Auto�Complete Field Validations
	Configuring Long List Auto�Complete Field Validations
	Configuring Automatic Value Matching and Interactive Select Pages
	An Overview of Matching for “Starts with” or “Contains”
	Configuration Tips

	Adding Search Fields to Long List Auto�Complete Validations
	Configuring the Filter Field Layout
	Configuring an Auto�Complete List of Users (Special Case)
	Configuring the Auto�Complete Values
	Configuring Validations by Commands With Delimited Output
	Configuring Validations by Commands with Fixed�Width Output

	Configuring User�Defined Multi�Select Auto�Complete Fields
	Example of Token Evaluation and Validation by Command with Delimited Output

	Configuring Text Field Validations
	Text Data Masks for Validations
	Configuring the Numeric Data Mask
	Configuring the Currency Data Mask
	Configuring the Percentage Data Mask
	Configuring the Telephone Data Mask
	Configuring a Custom Data Mask

	Configuring Directory Chooser Validations
	Configuring File Chooser Validations
	Configuring Date Field Validations
	Configuring 1800 Character Text Areas
	Configuring the Table Component
	Configuring Table Components
	Configuring Table Rules
	Example of Using a Table Component on an Order Form
	Example of Setting Unit Prices
	Example of Calculating Totals
	Using Table Components
	Using Tokens in Table Components
	Calculating Column Totals

	A Tokens
	Overview of Tokens
	Application Server Tokens
	Budget Tokens
	Contact Tokens
	Distribution Tokens
	Document Management Tokens
	Environment Tokens
	Environment > Dest Env Tokens
	Environment > Dest Env > App Tokens
	Environment > Dest Env > Env Tokens
	Environment > Env Tokens
	Environment > Env > App Tokens
	Environment > Env > Env Tokens
	Environment > Source Env Tokens
	Environment > Source Env > App Tokens
	Environment > Source Env > Env Tokens

	Command Tokens
	Financial Benefit Tokens
	Notification Tokens
	Organization Unit Tokens
	Package Tokens
	Package > Package Line Tokens
	Package > Pending Reference Tokens

	Package Line Tokens
	Program Tokens
	Project Tokens
	Project Detail Tokens
	Release Tokens
	Release > Distribution Tokens

	Request Tokens
	Request > Pending Reference Tokens
	Request > Field Tokens

	Request Detail Tokens
	Request Detail > Field Tokens

	Resource Pool Tokens
	Security Group Tokens
	Skill Tokens
	Staffing Profile Tokens
	Step TXN (Transaction) Tokens
	System Tokens
	Task Tokens
	Tasks > Pending Tokens

	Time Management Notification Tokens
	User Tokens
	Validation Tokens
	Validation > Value Tokens

	Workflow Tokens
	Workflow > Workflow Step Tokens

	Workflow Step Tokens
	Request > Field Tokens
	CMBD Application Tokens
	Demand Management SLA Tokens
	Demand Management Scheduling Tokens
	MAM Impact Analysis Tokens
	Portfolio Management Asset Tokens
	Portfolio Management Project Tokens
	Portfolio Management Proposal Tokens
	Program Issue Tokens
	Program Reference Tokens
	Project Issue Tokens
	Project Reference Tokens
	Project Risk Tokens
	Project Scope Change Tokens
	Quality Center Defect Information Tokens
	Quality Center Information Tokens
	Resource Management Work Item Tokens

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

