

HP Operations Orchestration Software
Software Version: 7.60

Purging OO Run Histories from MySQL Databases

Document Release Date: January 2010

Software Release Date: January 2010

ii

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent
with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and
Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard
commercial license.

Copyright Notices

© Copyright 2009-2010 Hewlett-Packard Development Company, L.P.

Trademark Notices

For information on open-source and third-party software acknowledgements, see in the documentation set for
this release, Open-Source and Third-Party Software Acknowledgements (3rdPartyOpenNotices.pdf).

iii

On the Web: Finding OO support and documentation
There are two Web sites where you can find support and documentation, including updates to OO
Help systems, guides, and tutorials:

• The OO Support site

• BSA Essentials Network

Support

Documentation enhancements are a continual project at Hewlett-Packard Software. You can obtain
or update the HP OO documentation set and tutorials at any time from the HP Software Product
Manuals Web site. You will need an HP Passport to log in to the Web site.

To obtain HP OO documentation and tutorials

1. Go to the HP Software Product Manuals Web site
(http://support.openview.hp.com/selfsolve/manuals).

2. Log in with your HP Passport user name and password.

OR

If you do not have an HP Passport, click New users – please register to create an HP Passport,
then return to this page and log in.

If you need help getting an HP Passport, see your HP OO contact.

3. In the Product list box, scroll down to and select Operations Orchestration.

4. In the Product Version list, click the version of the manuals that you’re interested in.

5. In the Operating System list, click the relevant operating system.

6. Click the Search button.

7. In the Results list, click the link for the file that you want.

BSA Essentials Network

For support information, including patches, troubleshooting aids, support contract management,
product manuals and more, visit the following site: http://www.hp.com/go/bsaessentialsnetwork

This is the BSA Essentials Network Web page. To sign in:

1. Click Login Now.

2. On the HP Passport sign-in page, enter your HP Passport user ID and password and then click
Sign-in.

3. If you do not already have an HP Passport account, do the following:

a. On the HP Passport sign-in page, click New user registration.

b. On the HP Passport new user registration page, enter the required information and then
click Continue.

c. On the confirmation page that opens, check your information and then click Register.

d. On the Terms of Service page, read the Terms of use and legal restrictions, select the
Agree button, and then click Submit.

4. On the BSA Essentials Network page, click Operations Orchestration Community.

http://support.openview.hp.com/selfsolve/manuals�
http://www.hp.com/go/bsaessentialsnetwork�

iv

The Operations Orchestration Community page contains links to announcements,
discussions, downloads, documentation, help, and support.

Note: Contact your OO contact if you have any difficulties with this process.

In OO: How to find Help, PDFs, and tutorials
The HP Operations Orchestration software (HP OO) documentation set is made up of the following:

• Help for Central

Central Help provides information to the following:

• Finding and running flows

• For HP OO administrators, configuring the functioning of HP OO

• Generating and viewing the information available from the outcomes of flow runs

The Central Help system is also available as a PDF document in the HP OO home directory, in the
\Central\docs subdirectory.

• Help for Studio

Studio Help instructs flow authors at varying levels of programming ability.

The Studio Help system is also available as a PDF document in the HP OO home directory, in the
\Studio\docs subdirectory.

• Animated tutorials for Central and Studio

HP OO tutorials can each be completed in less than half an hour and provide basic instruction on
the following:

• In Central, finding, running, and viewing information from flows

• In Studio, modifying flows

The tutorials are available in the Central and Studio subdirectories of the HP OO home directory.

• Self-documentation for operations and flows in the Accelerator Packs and ITIL folders

Self-documentation is available in the descriptions of the operations and steps that are included
in the flows.

v

Table of Contents

Warranty .. ii

Restricted Rights Legend .. ii

Trademark Notices ... ii

On the Web: Finding OO support and documentation iii
Support .. iii

BSA Essentials Network .. iii

In OO: How to find Help, PDFs, and tutorials .. iv

About deleting run histories ... 1

Required knowledge ...1

About the OO database tables .. 1

The run table ...2

The run_history table ..2

The runstep_history table ...2

The property_history table ...2

The log_record table ...2

The flow_metrics table ...3

Physically deleting data ... 3

Appendices ... 4

Appendix A: Tables diagram..5

Appendix B: Upgrading older schemas ...6

Appendix C: Example cleanup stored procedure ..9

Appendix D: Example scheduling scripts ...17

vi

Appendix E: Performance implications ...18

1

About deleting run histories
This document is designed to provide a method for pruning old run history data for Central
administrators and DBAs involved in the management of the data stored by Central systems.

This document is divided into three main sections:

1. Descriptions of the tables involved in storing historical run data in the OO database.

2. The procedure for physically deleting old run history data.

3. Appendices that contain information such as a diagram of the tables in the 7.60 Run schema,
how to upgrade older schemas, and performance implications.

The code examples shown in the appendices and the script that calls the pruning process are
included in text form in the file MySQL_Run_History_Purge.zip (available on the Web site
where you downloaded this document). The code files are:

• To call the schema update process—

mysql_oo_upgrade_history_schema_call.sql

• To call the pruning process—

mysql_oo_prune_run_history_call.sql

• For Appendix B: Upgrading older schemas—

mysql_oo_upgrade_history_schema.sql

• For Appendix C: Example cleanup stored procedure—

mysql_oo_prune_run_history.sql

• For Appendix D: Example scheduling scripts—

mysql_oo_prune_job.sh

Before deciding whether to implement the procedures in this document, read the entire document
including Appendix E: Performance implications.

Required knowledge

MySQL database knowledge is required.

About the OO database tables
The tables involved in capturing run history information belong to the OO database. See Appendix A:
Tables diagram for a diagram of the tables in the schema. The tables in the Run schema are:

• The run table

• The run_history table

• The runstep_history table

• The property_history table

• The log_record table

• The flow_metrics table

2

The run table

The run table stores information about flows that have not yet finished running. Every time a run
performs a checkpoint, its current frame stack (including context variables) is placed into a binary
object and written to a row in this table. The primary key of the run table is the run id. As soon as
a run finishes, the entry in the run table is removed and placed in the run_history table.

There are no foreign keys between this table and any other table.

The run_history table

The run_history table stores run information that is used in reporting. There is one row in this table
stored for every execution of a flow. The table stores general information about the run, such as its
start time, end time, the number of its steps, and how the run ended.

Important Deleting data from the run_history table causes the loss of reporting information.
However, if storage space is critical, you can delete data from this table. Just be aware that flows
deleted from the run_history table will no longer be visible in any reports.

The runstep_history table

The runstep_history table stores reporting information for each step. There is a one-to-many
relationship between the run_history table and the runstep_history table, enforced by a foreign
key relationship between the runstep_history.run_history_id and run.oid fields, which uses
cascading deletes.

Important Deleting data from the runstep_history table causes the loss of reporting information
for each step of a flow, but the general flow information is still available for reporting. You will not
however, be able to "drill down" into the steps which were executed by a flow that has been pruned.
However, if storage space is critical, you can delete data from this table. Deleting data from the
runstep_history table also deletes any related records from the property_history table.

Note: OO versions older than 7.20 require schema altering in order to properly support cascading
deletes. See Appendix B: Upgrading older schemas.

The property_history table

The property_history table stores a row for each input of a step. There is a foreign key relationship
between the fields property_history.runstep_hist_id and runstep_history.oid, with cascading
deletes.

The log_record table

The log_record table stores a row for each step input that was designated to be recorded for
reporting under a domain-term name. Essentially, it stores a subset of the data in the
property_history table, but there is no foreign key relationship to the runstep_history table. If a
run_history row is deleted, rows will also be deleted from the runstep_history and
property_history tables, but the log_record table is left intact.

The data in the log_record table is used to plot dashboard charts, so deleting data from it will
result in loss of dashboard information. This may or may not be a problem depending on how often
you prune data. Since dashboard charts are meant to give a more "real-time" picture of what's going

3

on with OO, deleting data from the log_record table for a period past where the data is useful for
dashboards should be fine

The flow_metrics table

The flow_metrics table stores flow outcome counters. There is one entry for each flow, with
counters broken down into Resolved, Error, Diagnosed, No Action Taken, and Failed outcomes,
as well as the cumulative time taken by the flows.

This table is used to create the flow metrics bar::

Physically deleting data
To delete run histories, use the following approach

1. Upgrade the database schema if necessary (see Appendix B: Upgrading older schemas).

2. Establish a timestamp (date and time) when run histories older than it are deleted.

3. Determine how many run histories should be deleted.

4. Divide these run histories into batches to minimize the transaction size.

5. Starting with the oldest batch, delete the batches using one transaction per batch as follows:

a. Begin the transaction.

b. Delete data from the run_history table, if required.

c. Update the flow_metrics table to reflect the deleted rows, if run histories were deleted.

d. Delete data from the runstep_history table if data was not removed from the run_history
table.

e. Delete the rows for the deleted run steps from the log_record table, if necessary.

f. Commit the transaction.

These steps, excluding the first one (upgrading), can be performed on a periodic basis from a
scheduled job. An example stored procedure is provided in Appendix C: Example cleanup stored
procedure.

You can schedule the cleanup job, as explained in Appendix D: Example scheduling script.

4

Appendices
The appendices in this section are meant to help you perform the necessary tasks involved in
deleting run histories.

• Appendix A. Tables diagram

• Appendix B. Upgrading older schemas

• Appendix C. Example cleanup stored procedure

• Appendix D. Example scheduling scripts

• Appendix E. Performance implications

5

Appendix A: Tables diagram

run

PK,FK2 oid

 dlm_time
 start_time
I3 parent_id
 clob_state
 blob_state
 engine_version
FK1 history_id
 root_flow_uuid
 cmd_state
 exec_state
I4,I2 user_id
 is_relinquished
I1 is_headless
 node_startup_id
 node_name
 node_instance_id
 name
 annotation
 dri_time
 root_step_uuid

flow_metrics

PK oid

 dlm_time
 diagnosed_count
 error_count
 failed_count
U1 flow_uuid
U1 flow_version
 no_action_count
 resolved_count
 cumulative_time

log_record

PK oid

 item_type
I2 item_name
I1 creation_time
I5 item_value
I3 run_hist_id
I4 runstep_hist_id
 is_error
 error_msg

runstep_history

PK oid

 parent_hist_id
 end_time
 step_name
 step_description
 operation_name
 operation_path
 operation_type
 parent_flow_name
 parent_flow_path
 response_string
 result_string
 scriptlet_result_string
 run_time_millis
 start_time
I1 step_number
 tree_level
 is_simple
 bound_inputs
 transition_label
 transition_string
 transition_value
 user_id
 exception_message
 exception_trace
 return_code
 response_type
 uuid
 parallel_mode
I3 root_hist_id
 path_enc
FK1,I2 run_history_id
 step_pos

property_history

PK oid

 run_hist_id
I2 property_name
 value1
 value2
I4 value3
I5 value4
 property_type
I1 is_log_record
FK1,I3 runstep_hist_id

run_history

PK oid

 flow_dlm_time
I3 run_id
 run_name
I2 flow_name
 flow_last_modified_by
 flow_revision
 flow_path
I1 flow_uuid
I1 flow_version
 has_parallel_steps
 run_time_millis
I7 start_time
 end_time
 step_count
 direct_step_count
I8 user_id
 flow_description
I5 execution_state
I4 command_state
 run_value
I6 parent_id
 parallel_mode

7.50 Run Schema

Runstep_hist_id ->

fk_hist_prop2rstep

fk_hist_rstep2run

Run_hist_id

Updated asynchronously
at the end of each run:

Currently running flows: one row per run: one row per run step:

one row per step input:

one row per input marked
as domain term:

6

Appendix B: Upgrading older schemas

This appendix contains the following examples:

• A stored procedure named mysql_oo_upgrade_history_schema.sql

• A script to call the procedure named mysql_oo_upgrade_history_schema_call.sql

The mysql_oo_upgrade_history_schema.sql stored procedure

The following stored procedure detects older versions of the schema (OO versions 7.0 and earlier)
and alters the appropriate tables to support cascading deletes. We recommend that you use the text
copy of this stored procedure contained in the file mysql_oo_upgrade_history_schema.sql
instead of copying the code below, which has line breaks to make reading easier.

DELIMITER $$

DROP PROCEDURE IF EXISTS `upgrade_history_schema` $$

CREATE DEFINER=`dharma_user`@`localhost` PROCEDURE `upgrade_history_schema`()

BEGIN

 /* find out the build version so we know if we need to do some schema altering */

 SET @need_alters = 0 ;

 SELECT build_info.version

 INTO @current_version

 FROM build_info

 WHERE dri_time IN (SELECT max(dri_time) FROM build_info);

 SELECT CASE WHEN (@current_version LIKE '7.0%') OR (@current_version LIKE '7.10%')

 THEN 1

 ELSE 0

 END

 INTO @need_alters;

 /* only do this if version is < 7.11 !!! */

 IF @need_alters = 1 THEN

 SELECT CONCAT('Schema is at version ', @current_version, '. Updating.. (This
may take some time)') AS "Message";

 /* drop constraint, if it exists*/

 IF EXISTS (SELECT NULL FROM information_schema.TABLE_CONSTRAINTS

 WHERE CONSTRAINT_SCHEMA = DATABASE() AND CONSTRAINT_NAME =
'fk_hist_rstep2parent') THEN

 ALTER TABLE runstep_history DROP FOREIGN KEY fk_hist_rstep2parent;

7

 END IF;

 /** create index if not there already */

 IF EXISTS (SELECT NULL FROM information_schema.statistics

 WHERE INDEX_SCHEMA = DATABASE() AND index_name =
'idx_hist_prop_runhist_id') THEN

 ALTER TABLE property_history

 DROP INDEX idx_hist_prop_runhist_id;

 END IF;

 CREATE INDEX idx_hist_prop_runhist_id

 ON property_history(run_hist_id);

 /* replace some of the foreign keys generated by hibernate

 with the same foreign keys, but with DELETE CASCADE */

 IF EXISTS (SELECT NULL FROM information_schema.TABLE_CONSTRAINTS

 WHERE CONSTRAINT_SCHEMA = DATABASE() AND CONSTRAINT_NAME =
'fk_hist_rstep2run') THEN

 ALTER TABLE runstep_history

 DROP FOREIGN KEY fk_hist_rstep2run;

 END IF;

 ALTER TABLE runstep_history

 ADD CONSTRAINT fk_hist_rstep2run

 FOREIGN KEY (run_history_id)

 REFERENCES run_history(oid)

 ON DELETE CASCADE;

 IF EXISTS (SELECT NULL FROM information_schema.TABLE_CONSTRAINTS

 WHERE CONSTRAINT_SCHEMA = DATABASE() AND CONSTRAINT_NAME =
'fk_hist_prop2rstep') THEN

 ALTER TABLE property_history

 DROP FOREIGN KEY fk_hist_prop2rstep ;

 END IF;

 ALTER TABLE property_history

 ADD CONSTRAINT fk_hist_prop2rstep

 FOREIGN KEY (runstep_hist_id)

 REFERENCES runstep_history(oid)

 ON DELETE CASCADE;

 ELSE

 SELECT CONCAT('Schema is at version ' , @current_version, '. No update is
required.') as "Message";

8

 END IF;

END $$

DELIMITER ;

The mysql_oo_upgrade_history_schema_call.sql script

You can use the following script to call the above stored procedure. We recommend that you use the
text copy of this script contained in the file mysql_oo_upgrade_history_schema_call.sql instead
of copying the code below, which has line breaks to make reading easier.

/* mysql_oo_upgrade_history_schema_call.sql

 *

 * example script to run upgrade_history_schema

 */

/* there are no options to this procedure */

call upgrade_history_schema();

To run this script

• Use the mysql utility as follows:
 mysql -u database_user -p=password database_name <
 mysql_oo_upgrade_history_schema_call.sql

9

Appendix C: Example cleanup stored procedure

This appendix contains the following examples:

• A stored procedure named mysql_oo_prune_run_history.sql.

• A script to call the procedure named mysql_oo_prune_run_history_call.sql.

The mysql_oo_prune_run_history.sql stored procedure

The following stored procedure does the actual pruning from the database. Before you use this
procedure, review Appendix E: Performance implications to choose suitable parameters for your
system.

We recommend that you use the text copy of this example contained in the file
mysql_oo_prune_run_history.sql instead of copying the code below, which has line breaks to
make reading easier.

DELIMITER $$

DROP PROCEDURE IF EXISTS dharma.prune_oo_data $$

CREATE PROCEDURE dharma.`prune_oo_data`(hoursToKeep int -- default 2160

 , prune_batch_size int -- default 1000

 , prune_run_history varchar(5) -- default 'false'

 , prune_dashboards varchar(5) -- default
'true'

 , verbose int -- default 1

)

 MODIFIES SQL DATA

BEGIN

 declare lastRunDate datetime;

 declare deleteOlderThan datetime;

 declare deleteFromIndex int;

 declare deleteToIndex int;

 declare deleteRowCount int;

 declare lastPruneTableIndex int;

 SELECT max(start_time)

 INTO lastRunDate

 FROM run_history;

 IF verbose > 0 THEN

 SELECT CONCAT('Last entry in the run_history table occurred on ',

 lastRunDate) AS "INFO";
 END IF;

10

 SET hoursToKeep = hoursToKeep * -1;

 SET deleteOlderThan = TIMESTAMPADD(HOUR, hoursToKeep, lastRunDate);

 IF verbose > 0 THEN

 SELECT CONCAT('Deleting entries older than ', deleteOlderThan) AS
"INFO";

 END IF;

 -- drop the temp table just in case it's still around from a failed run

 DROP TEMPORARY TABLE IF EXISTS oo_prune_table;

 CREATE TEMPORARY TABLE oo_prune_table

 (

 `oid` bigint(20) NOT NULL AUTO_INCREMENT,

 `run_hist_id` bigint(20) NOT NULL,

 `execution_state` int(11) DEFAULT NULL,

 `flow_uuid` varchar(255) DEFAULT NULL,

 `flow_version` bigint(20) DEFAULT NULL,

 `run_time_millis` bigint(20) DEFAULT NULL,

 PRIMARY KEY (`oid`),

 KEY `idx_oo_prune_table_run_hist_id` (`run_hist_id`)

)

 ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

 -- get the info for the records to delete, making sure not to remove

 -- anything that's still in the run table.

 INSERT INTO oo_prune_table(run_hist_id,

 execution_state,

 flow_uuid,

 flow_version,

 run_time_millis)

 SELECT oid,

 execution_state,

 flow_uuid,

 flow_version,

 CAST(run_time_millis as UNSIGNED)

 FROM run_history AS h

 WHERE (start_time < deleteOlderThan

 AND

 oid NOT IN (SELECT history_id FROM run)

)

 ORDER BY h.oid ASC;

11

 -- get the first and last indexes from oo_prune_table

 SELECT count(*), min(oid), max(oid)

 INTO deleteRowCount, deleteFromIndex, lastPruneTableIndex

 FROM oo_prune_table;

 -- loop through oo_prune_table, stepping by batch_size, and delete the
data

 IF verbose > 0 THEN

 SELECT CONCAT('Pruning information for ', deleteRowCount,

 ' flow runs from the database. This may take a while...') AS
"INFO";

 END IF;

 WHILE deleteFromIndex <= lastPruneTableIndex DO

 -- calculate the end of the delete range

 SET deleteToIndex = deleteFromIndex + prune_batch_size;

 -- on the off chance that a batch ends on the end of the batch table,

 -- we would end up in an infinite loop without this check.

 IF deleteToIndex = deleteFromIndex THEN

 SET deleteFromIndex = deleteFromIndex + 1;

 END IF;

 IF verbose > 1 THEN

 SET @msg = CONCAT('Deleting chunk: ',

 deleteFromIndex, ' to ',

 deleteToIndex);

 SELECT @msg as "INFO";

 END IF;

 START TRANSACTION;

 -- delete dashboard data from log_record if requested

 IF (LOWER(prune_dashboards) = 'true') THEN

 IF (verbose > 1) THEN

 SELECT 'Deleting dashboard data...' AS "INFO";

 END IF;

12

 DELETE l

 FROM log_record l

 INNER JOIN oo_prune_table p

 ON ((p.oid BETWEEN deleteFromIndex AND
deleteToIndex)

 AND (l.run_hist_id = p.run_hist_id));

 ELSE

 -- notify the user that we're not deleting dashboards

 IF (verbose > 1) THEN

 SELECT 'Not deleting dashboard data...' AS "INFO";

 END IF;

 END IF;

 -- check to see if we want to delete rows from run_history

 IF (LOWER(prune_run_history) = 'true') THEN

 -- delete all data from run_history table

 -- this requires recalculation of flow_metrics as well

 IF (verbose > 1) THEN

 SELECT 'Deleting run history data...' AS "INFO";

 END IF;

 -- delete rows from run_history

 DELETE r

 FROM run_history AS r

 INNER JOIN oo_prune_table as p

 ON

 p.oid >= deleteFromIndex AND

 p.oid < deleteToIndex AND

 r.oid = p.run_hist_id;

 IF (verbose > 1) THEN

 SELECT 'Updating flow metrics...' AS "INFO";

 SELECT 'BEFORE:' AS "INFO";

 SELECT * FROM flow_metrics;

 END IF;

 -- now recalculate the totals for flow_metrics

 -- (this only needs to be done if we delete from
run_history)

 UPDATE flow_metrics AS f

 INNER JOIN (SELECT flow_uuid,

 flow_version,

13

 sum(if(execution_state = 0, 1, 0))

 AS
diagnosedCount,

 sum(if(execution_state = 1, 1, 0))

 AS
resolvedCount,

 sum(if(execution_state = 2, 1, 0))

 AS
noActionCount,

 sum(IF(execution_state = 3, 1, 0))

 AS errorCount,

 sum(IF(execution_state =
2147483647, 1, 0))

 AS failedCount,

 sum(run_time_millis) AS
cumulativeTime

 FROM oo_prune_table

 WHERE oid BETWEEN deleteFromIndex AND
deleteToIndex

 GROUP BY flow_uuid, flow_version

) AS d

 ON f.flow_uuid = d.flow_uuid AND f.flow_version =
d.flow_version

 SET f.diagnosed_count = f.diagnosed_count -
d.diagnosedCount,

 f.resolved_count = f.resolved_count -
d.resolvedCount,

 f.failed_count = f.failed_count -
d.failedCount,

 f.no_action_count = f.no_action_count -
d.noActionCount,

 f.resolved_count = f.resolved_count -
d.resolvedCount,

 f.cumulative_time = f.cumulative_time -
d.cumulativeTime,

 f.dlm_time = NOW();

 -- now delete the metrics for those flows that are

 -- left with 0 counts across the board

 DELETE FROM flow_metrics

 WHERE diagnosed_count = 0

 AND failed_count = 0

 AND no_action_count = 0

 AND resolved_count = 0

 AND error_count = 0

 AND EXISTS (SELECT 1 FROM oo_prune_table p

 WHERE oid
BETWEEN deleteFromIndex

14

 AND deleteToIndex

 AND
flow_uuid = p.flow_uuid);

 IF (verbose > 1) THEN

 SELECT 'AFTER:' AS "INFO";

 SELECT * FROM flow_metrics;

 END IF;

 ELSE

 -- we are not deleting from run_history.

 -- we just need to delete rows from runstep_history.

 IF (verbose > 1) THEN

 SELECT 'Deleting step details' AS "INFO";

 END IF;

 DELETE r

 FROM runstep_history AS r

 INNER JOIN oo_prune_table as p

 ON

 (p.oid BETWEEN deleteFromIndex AND
deleteToIndex)

 AND

 (r.run_history_id =
p.run_hist_id);

 END IF;

 COMMIT;

 -- move the start index to start one after the last index deleted.

 SET deleteFromIndex = deleteToIndex;

 END WHILE;

 IF verbose > 0 THEN

 SELECT 'Pruning complete.' AS "INFO";

 END IF;

 -- drop the temp table to free up resources.

 DROP TEMPORARY TABLE oo_prune_table;

END $$

15

DELIMITER ;

The mysql_oo_prune_run_history_call.sql script

You can use the following script to call the above stored procedure. We recommend that you use the
text copy of this script contained in the file mysql_oo_prune_run_history_call.sql instead of
copying the code below, which has line breaks to make reading easier.

/*

* sample script to call prune_oo_data

*

* USAGE EXAMPLE:

* mysql -u database_user database < mysql_oo_execute_prune_run_history.sql

*/

/**

** modify parameters below to suit your needs.

**

** See "Appendix E: Performance Implications" of the documentation

** for guidlines

**/

/* The number of hours to keep in run_history. Anything older than this many

 hours will be removed from the database.

*/

SET @keep_this_many_hours = 336; -- keep 2 weeks’ worth of data

/* batch size. deletes will be committed to the database for this many rows */

SET @batch_size = 1000;

/* prune run history. If set to 'true', records will be removed from the

 * run_history table. If set to false, the default value, records will no

 * be removed from the run_history table, and data will only be removed

 * from the runstep_history table.

 * Please see "About the OO 7.60 Run schema and tables" in the

 * documentation for further details. And be sure to understand all

 * implications before setting this to true

 */

SET @prune_run_history = 'false'

16

/* prune dashboards. If set to 'true', information will be removed from the

 * log_record table. See "About the OO 7.60 Run schema and tables" in the

 * documentation for further details.

*/

SET @prune_dashboards = 'true';

/* verbosity. Higher numbers will produce more detailed output. 2 is the

 * highest level at the moment

*/

SET @verbosity = 2;

/***/

call prune_oo_data(@keep_this_many_hours, @batch_size, @prune_dashboards,
@verbosity);

17

Appendix D: Example scheduling scripts

The preferred method to schedule a pruning job is to use your operating system’s scheduling facility.
In a UNIX environment, you can place a cron script like the one shown below under /etc/cron.daily
or use it in a custom schedule as desired, as shown in the following script. In a Windows system,
you can achieve similar results using Microsoft Windows Scheduler and a .bat file modeled after the
following script.

We recommend that you use the text copy of this script contained in the file
mysql_oo_prune_job.sh instead of copying the code below, which has line breaks to make
reading easier.

See Appendix E: Performance implications for performance considerations and make sure that the
file mysql_oo_prune_run_history_call.sql has been tailored to your needs before running this
script. For more information on setting parameters in mysql_oo_prune_run_history_call.sql,
see Appendix C: Example cleanup stored procedure.

#!/bin/sh

example shell script to call prune_oo_data.

edit the values below to match your system configuration

enter your database information below

NOTE: entering passwords here might be a security issue. please

be sure you understand the implication before you do
so.

db_user="root"

db_password="roots_password"

db_name="oo_database_name"

change this to the location of your mysql scripts.

script_dir="/your_script_location"

cd $script_dir

/usr/bin/mysql -u $db_user --password=$db_password $db_name <
mysql_oo_prune_run_history_call.sql > hp_oo_prune_log_`/bin/date +"%Y-%m-%d"` 2>&1

18

Appendix E: Performance implications

Here are some recommendations for using the pruning code:

• Choose a pruning set size that is appropriate to your particular situation. This is important for
maintaining the well being of your OO system. The number of hours retained should be
calculated so that the pruning stored procedure deletes small amounts of history while allowing
Central to make progress in running flows.

• The stored procedure uses a temporary table which is usually allocated in memory, but should be
placed on disk if there is not enough memory for it. Make sure there is enough free space for this
temporary table.

• In general, it is better to run the pruning procedure more often with small batches, than less
frequently with larger batches. This helps both Central and MySQL’s throughput, as the pruning
jobs can be interleaved with normal processing jobs.

• Although beyond the scope of this document, note that proper allocation of disk space is
important when considering the performance of the database. Having separate physical drives
for the database file and the transaction log (separate from the operating system) is a good
start.

	Warranty
	Restricted Rights Legend
	Trademark Notices
	On the Web: Finding OO support and documentation
	Support
	BSA Essentials Network

	In OO: How to find Help, PDFs, and tutorials
	About deleting run histories
	Required knowledge

	About the OO database tables
	The run table
	The run_history table
	The runstep_history table
	The property_history table
	The log_record table
	The flow_metrics table

	Physically deleting data
	Appendices
	Appendix A: Tables diagram
	Appendix B: Upgrading older schemas
	The mysql_oo_upgrade_history_schema.sql stored procedure
	The mysql_oo_upgrade_history_schema_call.sql script

	Appendix C: Example cleanup stored procedure
	The mysql_oo_prune_run_history.sql stored procedure
	The mysql_oo_prune_run_history_call.sql script

	Appendix D: Example scheduling scripts
	Appendix E: Performance implications

