
HP Operations Orchestration Software

Software Version: 7.50

Software Development Kit Guide

Document Release Date: March 2009

Software Release Date: March 2009

 ii

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent
with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and
Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard
commercial license.

Copyright Notices

© Copyright 2009 Hewlett-Packard Development Company, L.P.

Trademark Notices

All marks mentioned in this document are the property of their respective owners.

 iii

Finding or updating documentation on the Web
Documentation enhancements are a continual project at Hewlett-Packard Software. You can obtain
or update the OO documentation set and tutorials at any time from the HP Support web site.

To obtain HP OO documentation and tutorials

1. Go to the HP Software Product Manuals web site
(http://support.openview.hp.com/selfsolve/manuals).

2. Log in with your HP Passport user name and password.

OR

If you do not have an HP Passport, click New users – please register to create an HP Passport,
then return to this page and log in.

If you need help getting an HP Passport, see your HP OO contact.

3. In the Product list box, scroll down to and select Operations Orchestration.

4. In the Product Version list, click the version of the manuals that you’re interested in.

5. In the Operating System list, click the relevant operating system.

6. Click the Search button.

7. In the Results list, click the link for the file that you want.

Where to Find Help, Tutorials, and More
The HP Operations Orchestration software (HP OO) documentation set is made up of the following:

• Help for Central

Central Help provides information to the following:

• Finding and running flows

• For HP OO administrators, configuring the functioning of HP OO

• Generating and viewing the information available from the outcomes of flow runs

The Central Help system is also available as a PDF document in the HP OO home directory, in the
\Central\docs subdirectory.

• Help for Studio

Studio Help instructs flow authors at varying levels of programming ability.

The Studio Help system is also available as a PDF document in the HP OO home directory, in the
\Studio\docs subdirectory.

• Animated tutorials for Central and Studio

HP OO tutorials can each be completed in less than half an hour and provide basic instruction on
the following:

• In Central, finding, running, and viewing information from flows

• In Studio, modifying flows

The tutorials are available in the Central and Studio subdirectories of the HP OO home directory.

• Self-documentation for operations and flows in the Accelerator Packs and ITIL folders

Self-documentation is available in the descriptions of the operations and steps that are included
in the flows.

http://support.openview.hp.com/selfsolve/manuals�

 iv

Support
For support information, including patches, troubleshooting aids, support contract management,
product manuals and more, visit the following site:

• http://support.openview.hp.com

http://support.openview.hp.com/�

 v

Table of Contents

Warranty .. ii

Restricted Rights Legend .. ii

Trademark Notices ... ii

Finding or updating documentation on the Web .. iii

Where to Find Help, Tutorials, and More ... iii

Support .. iv

Welcome to the Operations Orchestration SDK .. 1

SDK contents .. 1

About the SDK Guide .. 2

Content style guide and best practices .. 4

How default OO content is organized in Studio ... 4

Guidelines for flow layout .. 5

Best practices for flows .. 7

Best practices for steps .. 8

Best practices for operations .. 9

Naming convention guidelines ... 11

Authoring IActions .. 13

What is an IAction? .. 13

About RAS ... 13

Creating IActions .. 14

About the IAction interface ...14

 vi

getActionTemplate method ..15

RASBinding objects .. 20

execute method ..25

Guidelines for creating IActions ..28

Important points for creating Java IActions ... 28

Important points for creating .NET IActions ... 28

Implementing Java IActions .. 29

Required development files ..29

Loading your Java IActions into Studio ...29

Using third-party libraries for Java IActions ..30

Debugging your Java IActions ...31

Java IAction code example ..32

Implementing .NET IActions ... 34

Required development files ..34

Loading your .NET IActions into Studio ...34

Debugging your .NET IActions ...35

.NET IAction code example ...35

Useful Java Commons Library class ... 37

com.opsware.pas.content.commons.util StringUtils class ...37

Useful .NET Commons Library classes ... 38

Identities class ...38

Password class ..41

Finding and Running Flows from Outside Central ... 42

About finding and running flows from outside Central 42

Running flows with URLs created in Central .. 42

Running a flow from a command line .. 43

Guidelines for running a flow from a command line ..43

Creating a URL for running a flow ...43

Identifying the flow in the URL ... 44

Specifying the inputs for a flow in a URL ... 44

Running flows asynchronously using a URL .. 45

 vii

Finding and running flows with tools that access the REST service 46

Running flows using Wget ...46

Finding and running flows using RSFlowInvoke or JRSFlowInvoke ...48

Using RSFlowInvoke or JRSFlowInvoke from a command line ... 50

Using RSFlowInvoke or JRSFlowInvoke in a script or batch file 51

Searching for a flow using JRSFlowInvoke ... 51

RSFlowInvoke and JRSFlowInvoke results ... 53

Registering RSFlowInvoke with the Global Assembly Cache ... 53

Creating an encrypted password .. 54

Finding and running flows using the WSCentralService SOAP API 55

Accessing the WSCentralService WSDL ...55

Using the API documentation ...55

How WSCentralService manages security and authentication ...55

Importing the SSL Certificate ..56

Sample client code ..56

Service stubs sample .. 56

Working with repositories from outside Studio.. 58

Using the Repository Utility .. 58

Primary Repoutil options ..58

Secondary Repoutil options ..59

 viii

Publishing a repository .. 62

Updating from a repository .. 63

Publishing and updating a repository simultaneously 64

Exporting a repository ... 64

Verifying a repository ... 65

Upgrading a repository ... 65

Encrypting a repository ... 66

Decrypting a repository ... 66

Re-encrypting a repository ... 67

Setting default permissions for a repository .. 67

Packaging Content ... 69

Using the Content Packager ... 69

Creating the XML configuration file ... 69

The project element ..70

The ras element ..71

The archive element ...71

The repository element ...72

XML configuration file example ..73

Packaging the content ... 73

Configuring the OO home directory structure ... 74

Installing the content ... 74

Debugging OO client/server problems ... 76

 1

Welcome to the Operations
Orchestration SDK
The Operations Orchestration Software Development Kit (SDK) contains
documentation, tools, libraries, and code samples for developers and IT professionals
who want to:

• Learn best practices for designing a flow.

• Create IActions to run Operations Orchestration (OO) operations through a
Remote Action Service (RAS).

• Find and run flows from outside Central.

• Run repository functions from outside Studio.

• Package new and updated content for distribution on Central and RAS servers.

• Debug OO client/server problems.

SDK contents
The HP_OO_SDK.zip file that you unzip to install the SDK is available on HP Live
Network. You can install the SDK in any location on a Central or RAS server. In this
guide, the folder where you install the SDK is referred to as the OO SDK home
directory. The folder structure of the OO SDK home directory looks like this:

SDKGuide.pdf

\IActions

 \lib

\tools

 ContentPackager.jar

 repoutil.exe

 RSFlowInvoke.exe

 JRSFlowInvoke.jar

\WSCentralService

 \docs

 \lib

 \samples

 central.crt

 centra-perm.crt

 rc_keystore

 WSCentralService.wsdl

 2

The SDK contains the following components:

SDKGuide.pdf

The documentation for the entire SDK. It includes conceptual information,
descriptions of and step-by-step instructions for using tools, command syntaxes,
class and method syntaxes, code examples, and code samples.

The SDKGuide.pdf file is located in the OO SDK home directory.

IAction interface, methods, and classes

IAction interface, methods, and classes that allow you to author Java and .NET
IActions—code that implements OO operations through a Remote Action Service
(RAS).

The IAction interface, methods, and classes are located in the OO SDK home
directory, in the \IActions\ folder.

WSCentralService SOAP API

Java and .NET classes and interfaces, Javadocs, certificates, keystore, WSDL, and
sample code that allow you to search for and run OO flows outside of Central
using Web services.

The WSCentralService SOAP API is located in the OO SDK home directory, in the
\WSCentralService\ folder.

Content Packager

Tools and commands that allow you to package and install OO content updates.

The Content Packager is located in the OO SDK home directory, in the \tools\
folder.

repoutil.exe

A command-line utility that allows you to perform a number of repository
functions from outside Studio.

The repoutil.exe utility is located in the OO SDK home directory, in the \tools\
folder.

RSFlowInvoke.exe and JRSFlowInvoke.jar

The Windows and Java Versions of a utility with which you find and run OO flows
outside of Central from a command line, an application that uses a command
line, a script, or a batch file.

RSFlowInvoke.exe and JRSFlowInvoke.jar are located in the OO SDK home
directory, in the \tools\ folder.

About the SDK Guide
The SDK Guide is composed of the following chapters.

Welcome to the OO SDK

This chapter shows you the folder structure of the installed SDK, explains the
SDK contents, and describes the chapters of the OO SDK Guide.

 3

Content Style Guide and Best Practices

This chapter explains how OO content is organized in Studio, provides guidelines
for flow layout and naming conventions, and best practices for creating flows,
steps, and operations.

Authoring IActions

This chapter explains how to use the IAction interface, methods, and classes to
create Java and .NET IActions—OO operations that are implemented through a
RAS. It also explains how to load your IActions into Studio and debug them.

Finding and Running Flows from Outside Central

This chapter details the ways in which you can manage flows outside of Central
using:

• URLS created in Central.

• Command-line tools that access the REST service—Wget.exe,
RSFlowInvoke.exe, and JRSFlowInvoke.jar.

• The WSCentralService SOAP API.

Working with Repositories from Outside Studio

This chapter describes how to use the repoutil.exe utility to perform repository
functions from outside Studio.

Packaging content

This chapter explains how to use the Content Packager utility to package updated
content and publish it to Central and RAS servers in your network.

Debugging OO client/servers problems

This chapter explains how to allow HTTP connections to Central and RAS for
debugging purposes.

 4

Content style guide and best
practices
This chapter provides style guidelines and best practices for creating content—
operations and flows—in Hewlett-Packard Operations Orchestration (HP OO).

These guidelines and best practices are intended for use by content and QA
engineers, field engineers, and customers who want to create flows more quickly and
efficiently. You should follow these guidelines for any content that you create and
submit to the OO content community.

How default OO content is organized in Studio
Default OO content consists of all the flows and operations that come with your
installation of OO. These flows and operations are contained in folders in the Studio
Library.

Figure 1 - Folders in Studio Library

The following describes the Studio Library folders that contain default content.

Folder Folder Contents

Accelerator Packs Flows organized into subfolders by technologies,
and are designed to solve common IT problems.
For most networks, these flows:

• Perform complex health checks, triage,
diagnosis, or remediation.

• Gather one or more pieces of data and display
it to the user, or simply acknowledge alerts,
gather data, and place it into a ticket.

The flows at the top level of an Accelerator Pack
are usually full health check, triage, diagnosis, and
remediation flows.

 5

Folder Folder Contents

Integrations Operations that can be used to integrate OO with
other enterprise management software products,
such as Hewlett-Packard Network Node Manager
and BMC Remedy.

Because the enterprise software products used in
your datacenter may be highly customized, you
may need to create custom flows to use these
operations.

ITIL Flows that automate integrations with other
enterprise-level software in accordance with
Information Technology Infrastructure Library
(ITIL) specifications, such as Change Management.

Operations General-purpose operations and flows that work
with common technologies. These operations are
sealed and cannot be changed once you have
installed OO Central.

The flows in the Operations folder and its
subfolders are meant to be used as subflows. Flows
that are meant to be run on their own are in the
Accelerator Packs folder.

Templates Templates that provide steps for flows that perform
certain frequently used tasks. For example, the
Restart Service template restarts a service, so
you could use it in a flow that includes this task.

Utility Operations Operations and subflows that gather and display
data, replace simple command-line operations,
manipulate and analyze data, provide structure to
flows, and perform other tasks that are not specific
to a technology.

Note The MyOps folder is empty when you install OO. When you create flows from
templates, OO automatically stores them here. You can also store flows that you
create in this folder.

Guidelines for flow layout
The layout of a flow should be as clear and uncomplicated as possible. This makes it
easier for customers to understand what a flow does and how to use it as a subflow.
When arranging your flow, consider the following guidelines:

• Lay out flows so that the Start step is in the upper-left corner of the flow and the
flow reads down and to the right. However, you may occasionally need to bend or
break this rule. For example, if:

• The Start step of a flow has many responses, each of which leads to another
step.

 6

• Placing the Start step in the upper-left corner would cause excessive visual
complexity, such as the crossing of transitions.

• As much as possible, do not cross transition lines.

See how much easier it is to read the following flow graph once you uncross the
transitions.

Figure 2 - Flow with crossed transitions

Figure 3 - Transitions uncrossed

• Position transition labels so that they are not superimposed on the step labels.
The preceding illustration also demonstrates this principle.

• Place transition labels toward the outside of the flow when possible. For example,
labels for transitions between steps at the top of the flow canvas should be above

 7

the transition lines. Labels for transitions between steps at the bottom of the
canvas should be below the transition lines.

• If possible, and without doing violence to the other principles mentioned above,
fit your flow to the Authoring pane on a 1024x768 screen with Studio
maximized and a 1:1 view magnification.

If a flow is larger than that, see whether you can break out some of its sequences
of steps into subflows.

Best practices for flows
The following best practices will make it easier for customers to use the flows you
create.

For flow inputs

• Ideally, input values used by flow steps are supplied by flow inputs and passed to
the steps by flow variables.

This may not always be practical. For instance, a user might need to enter an
input in response to a prompt somewhere in the flow run. In general, though,
flow authors should assume that a user will begin a flow and then start another
task while the flow is running. Assigning as much data as possible to flow inputs
also simplifies making changes to the flow.

For flow descriptions

To help Central users who will use your flows and authors who will create other flows
using them as subflows, add the following information to the flow’s Description tab.
(If you create multiple flows or operations that interact with the same technology,
group them into a single folder and provide this information in the folder’s
Description tab. This is the practice for default HP OO content.) Note that putting
this information on the Description tab makes it available to authors and Central
users through the Generate Documentation feature. For more information on
Generate Documentation, see the Guide to Authoring Operations Orchestration
Flows.

• A description of what the flow does, including the following:

• Any special requirements or changes that are necessary for the flow to run
automatically (on a schedule or started from outside Central).

• Limitations to the flow’s usage. For example:
Limitations:

This flow only works:

-- On Windows 2003 or later.

-- If the Windows Telnet Service is enabled.

-- If RAS is installed on a host running Microsoft Operations
Manager.

• Inputs that the flow requires, including where authors can find the data that the
inputs require and the required format for the data

For instance, to enable schedules in Central to define different specific values for
the input, in the Input Type box of the Studio input editor, you can do one of
the following:

• Select Single Value.

 8

• Select Use Constant and then enter ${<flowvariablename>} in the
Constant Value box, where <flowvariablename> is the name of a flow
variable that exists and has had a value assigned to it by the time the flow
arrives at this point.

• Responses, including the meaning of each response

• Result fields, including a description of the data supplied in each result field

• Any additional implementation notes, such as:

• Supported platforms or applications, including version information

• Application or Web service APIs that the flow interacts with (this can be
particularly important for flows that require an RAS to run, because the RAS
operation can hide this information from the author or user of the flow.

• Other environmental or usage requirements

Other best practices for flows

• A flow that performs triage, diagnosis, or remediation should first verify that a
problem exists.

• A flow that sends a notification to the user should use notification subflows, which
enable the flow author to choose from several means of notifying the user.

For instance, the Web site Health Check flow uses the Notify subflow. Once
the user configures the Web site Health Check flow to his or her e-mail and
ticketing systems, all flows that use this flow will send notifications correctly.

• Annotate (that is, supply a description for) all transitions in a top-level parent
flow.

These transition descriptions should describe what happened in the step that
preceded the transition. In Central, the Results Summary for the run displays the
description for each transition, and so provides a running, high-level account of
what took place in the flow run. You need not annotate transitions in a subflow
unless the data is critical to see during a run in Central.

Best practices for steps
To streamline the steps in a flow, consider using the following best practices for
steps.

• Steps do not generally require descriptions, because (as described above) the
transition description of the step’s response tells what happened in the step.

• An operation may provide many results. Only results that the flow needs should
be assigned to flow variables by the step.

• If a step or transition needs the exact error that came back from an operation,
create a step result that captures the error code, and assign the error code to a
flow variable.

• To assign information to a flow variable, use the step’s Results tab. Filters on
the results greatly enhance your flexibility in obtaining data from step results.

• Any time a step makes a modification to the IT environment, consider recording
the data for Dashboard reporting in Central. If a change is made, reporting
information should be recorded on the next step following the success transition.
This often means that reporting information is recorded on flow return steps.

 9

Best practices for operations
To help authors who will create flows using the operations you create, use the
following best practices for operations.

• Add the following information to the operation’s Description tab. (If you create
multiple flows or operations that interact with the same technology, group them
into a single folder and provide this information in the folder’s Description tab.
This is the practice for default HP OO content.) Note that putting this information
on the Description tab makes it available to authors and Central users through
the Generate Documentation feature. For more information on Generate
Documentation, see the Guide to Authoring Operations Orchestration Flows.

• A description of what the operation does

• Inputs that the operation requires, including where authors can find the data
that the inputs require and the required format for the data

• Responses, including the meaning of each response

• Result fields, including a description of the data supplied in each result field

• Any additional implementation notes, such as:

• Supported platforms or applications, including version information

• Application or Web service APIs that the flow interacts with (this can be
particularly important for flows that require an RAS to run, because the
RAS operation can hide this information from the author or user of the
flow.

• Other environmental or usage requirements

• Base your operation descriptions on the following template.

Description template

Description of what the operation does.

Inputs:

Input1 - info about this input
Input2 - info about this input
Input3 - info about this input

Responses:

Response1 - info about this response
Response2 - info about this response

Result:

The primary result of the flow/operation

Extra Results:

Result1 - The first additional result
Result2 - The second additional result

 10

• Do not make copies of sealed operations, such as those in the Operations
folder. Instead, make changes to the steps that you have created from sealed
operations.

• By default, operations should use and set flow variables for inputs that are used
repeatedly in a particular flow. For example, multiple operations in a flow might
need the host, username, and password inputs to get information from a server
or the port of a mail server. Assigning those values to flow variables that are
used in the various steps that require such data simplifies maintenance of the
flow and makes it easier to adapt to different situations.

In contrast, the subject line of an e-mail is probably different for each step that
requires an e-mail subject line. Therefore, the subject line is probably not a good
candidate for being provided from a flow variable.

• Avoid creating multiple operations that run the same command. For example,
you can get both packet loss and maximum latency from a ping operation. Rather
than create multiple operations that use the ping command, a better practice is
to capture both pieces of information in one step by using multiple outputs of one
ping operation.

Exceptions to this principle are operations that are extremely generic, such as an
operation that runs a WMI command. It is better to create WMI command
operations that are specific to particular functions, instead of a single operation
that has a very generic input for the WMI command and very generic outputs.

• For capturing data from the output stream of a command, using result filters is
better than using a scriptlet. There are several reasons:

• Result filters are accessible and immediately visible on the Results tab editor
rather than residing separately, as scriptlets do on the Scriptlets tab.

• Scriptlets are more difficult for non-programmers to maintain.

• If one of the operation’s results is removed, the result filters are automatically
invalidated. Any scriptlets that the author fails to remove after deleting the
result that the scriptlet manipulates remain and can cause bugs in the flow.

If you need a scriptlet for the desired processing of the result data, you can use a
scriptlet filter.

• Most operations should have only two responses—success and failure. Using a
small number of responses makes flows easier to create and understand. Multiple
responses based on different types of failures should only be used when there are
obvious distinct paths to follow or there are circumstances where an outcome
may only be a failure because of the situation (such as a redirect response to an
HTTP Get).

However, don’t force this principle when it doesn’t make sense. For example, an
operation that gets data and checks a threshold may require three responses
(none of which is a success response)—failure, over threshold, and under
threshold.

• The default response for an operation should be failure. This way an incomplete
operation shows as a failure during flow debugging and points the author to the
problem before the flow goes into production.

 11

Naming convention guidelines
Using the following naming conventions will significantly help authors debug or
modify flows and operations as necessary:

• Use Title Case (first letter capitalized for all except helper words like ‘a’, ‘the’,
‘and’, ‘by’, ‘for’) for:

• Items in the Library (flows, folders, and operations, and items in the
Configuration folder).

For example: “Reboot a Server”, “Check the Log Files”, and, in the
\Configuration\Domain Terms folder, “CI Minor Type”.

• Step names.

• Use lower case for responses in an operation (spaces are permissible). For
example—failure, success, over threshold.

• Use camel case (first letter of the name is lower-case; subsequent first letters of
words contained in the name are upper-case) for:

• Input names, such as protocol and messageNumber.

• Output names, such as hopCountThreshold

• Result names, such as aclData

• Flow variable names, such as aclData, userId

No spaces or other non-alphanumeric characters are allowed in camel case
names.

• Some common input names occur across many operations and steps. To make it
as easy as possible to author using operations that are available immediately
upon installing OO, the following input names are used in OO content:

host

For Windows, the host is the machine on which the operation works (for
example, the host from which you are getting a performance counter or on
which you are restarting a service). For secure shell (SSH) operations, the
host is the machine on which the command is running.

username

The name of the account to use for logging on to the machine.

password

The password to use to log on to the machine.

Use the following boilerplate to list these inputs in an operation description:

Inputs boilerplate

Inputs:

host: The host to run the command against

username: The user name to use when logging on to this machine

password: The password to use when logging on to this machine

 12

Other common input names include:

mailHost
The host machine from which an e-mail is sent.

target
When the host affects another system, the system that is affected by the host
should be called the target. For example, if you SSH to server1 to run a ping
against server2, then the host is server1 and the target is server2.

 13

Authoring IActions
This chapter defines IActions and Remote Action Service (RAS), and explains how to:

• Use the IAction interface and methods to author Java and .NET IActions.

• Load your IActions into OO Studio.

• Debug your IActions.

It also provides code examples, and useful Java and .NET Commons Library classes
that may help you develop IActions.

What is an IAction?
Within a Remote Action Service (RAS) operation], an IAction is the code that
implements an operation through a RAS—a service that executes operations on
machines that are remote from the Central server. You can use RAS operations to
implement functionality that interacts with systems throughout your network or over
the Internet. A good example of this is using RAS operations to integrate OO with
other applications, platforms, and services.

Using a RAS operation instead of a scriptlet or command-line operation, allows the
operation to run hosted on a RAS. The advantage of this is that you can have
multiple RASes running in different network segments and run operations on any of
them.

RAS operations are written in either Java or .NET. The RAS operations for Java are
packaged in .jar files and those for .NET are packaged in .dll files.

Important: RAS installed on a Windows server supports both Java and .NET RAS
operations. However, RAS installed on a Linux server only supports Java RAS
operations—it does not support .NET RAS operations.

About RAS
OO Central is installed with a default RAS named RAS_Operator_Path. You can also
deploy OO RAS standalone—that is, on machines that are physically separate from
the Central server. This process is explained in the Installing HP Operations
Orchestration guide (InstallGuide.pdf).

The OO RAS contains the IAction interface which specifies how your action classes
must be built. For an operation to be accessible to the RAS for execution, the class
that holds that operation must implement the IAction interface.

The OO server uses HTTP over the Secure Socket Layer (HTTPS) protocol to initiate
communications between itself and the RAS, so you can deploy a RAS on the other
side of a firewall or domain boundary and have it execute code for OO.

 14

Currently the OO RAS supports the platform and language combinations shown in
the following table.

Platform Java .NET

Windows 32-bit X X

Windows 64-bit X X

Linux 32-bit X

Linux 64-bit X

Creating IActions
To create an IAction you implement the IAction interface. This section explains how
to use the IAction interface and provides you with guidelines and important points
for creating IActions.

About the IAction interface

The IAction interface specifies how to build your Action classes. These classes define
the RAS operations and are stored in the .jar or .dll files associated with the RAS.

The IAction interface uses the execute method as well as methods that are specific
to the Web application, standalone application, platform, or extension service for
which you want the actions performed. The IAction interface mediates between OO
and systems external to OO.

Syntax

Java

public interface IAction {

ActionTemplate getActionTemplate();

 ActionResult execute(ISessionContext sessionContext,

 ActionRequest actionRequest, IActionRegistry actionRegistry)
 throws Exception;

}

 15

.NET

public interface IAction
{
 ActionTemplate GetActionTemplate();

 ActionResult Execute(ActionRequest req, ISession s,

 IActionRegistry reg);

}

As you can see, the IAction interface defines the following public methods that are
needed to create IActions:

• getActionTemplate method

• execute method

getActionTemplate method

The getActionTemplate method returns the ActionTemplate object which describes
the properties of the IAction to OO. These properties are shown in the following
table.

Property Description

The description of your
operation.

Model the description after the operation
descriptions included with the built-in OO RAS
operations. The description should include the
following information for flow authors who may
use the operation:

• An explanation of what the operation does.

• Definitions of the inputs to the operation.

• Definitions of the responses that are returned
by the operation.

• Definitions of any other results that are
returned by the operation.

A map of the inputs the
operation needs.

Set the key to the name of the input. You can
leave the value as a blank string or set it to a
RASBinding object. A RASBinding object has
properties that correspond to most of the options
that are available on the Inputs tab of the
Inspector in Studio. The order in which you add
inputs to the map is the order in which they will
appear in the operation once it is imported.

A map of the responses the
operation returns

Set the key to the text that each response
transition will show. The value must be the
integer that is returned by the IAction’s
returnCode which tells Central the transition to
follow when the operation has completed.

 16

Property Description

A map of any other results
returned by the IAction that
are available for use in a flow.

Set the key to the name of the result; the value
must be a blank string.

Syntax

Java

public class ActionTemplate {

 private String description;

 private String overrideRas = "${overrideJRAS}";

 private Map parameters;

 private Map resultFields;

 private Map responses;

 public ActionTemplate() { }

 public ActionTemplate(String description, Map parameters,

 Map resultFields, Map responses) {

 this.description = description;

 this.parameters = parameters;

 this.resultFields = resultFields;

 this.responses = responses;

 }

 /**

 * Gets the description value for this ActionTemplate.

 * @return description

 */

 public String getDescription() {

 return description;

 }

 /**

 * Sets the description value for this ActionTemplate.

 * @param description

 */

 public void setDescription(String description) {

 this.description = description;

 }

 /**

 * Gets the parameters value for this ActionTemplate.

 17

 * @return parameters

 */

 public Map getParameters() {

 return parameters;

 }

 /**

 * Sets the parameters value for this ActionTemplate.

 * @param parameters

 */

 public void setParameters(Map parameters) {

 this.parameters = parameters;

 }

 /**

 * Gets the resultFields value for this ActionTemplate.

 * @return resultFields

 */

 public Map getResultFields() {

 return resultFields;

 }

 /**

 * Sets the resultFields value for this ActionTemplate.

 * @param resultFields

 */

 public void setResultFields(Map resultFields) {

 this.resultFields = resultFields;

 }

 /**

 * Gets the responses value for this ActionTemplate.

 * @return responses

 */

 public Map getResponses() {

 return responses;

 }

 /**

 * Sets the responses value for this ActionTemplate.

 * @param responses

 */

 public void setResponses(Map responses) {

 this.responses = responses;

 }

 18

 /**

 * Sets the overrideRas value for this ActionTemplate.

 * @param overrideRas

 */

 public String getOverrideRas() {

 return overrideRas;

 }

 /**

 * Gets the overrideRas value for this ActionTemplate.

 * @param overrideRas

 */

 public void setOverrideRas(String overrideRas) {

 this.overrideRas = overrideRas;

 }

}

.NET

public class ActionTemplate {

 private String description;

 private String overrideRas = "${overrideJRAS}";

 private Map parameters;

 private Map resultFields;

 private Map responses;

 public ActionTemplate () { }

 public ActionTemplate (String description, Map parameters,

 Map resultFields, Map responses) {

 this.description = description;

 this.parameters = parameters;

 this.resultFields = resultFields;

 this.responses = responses;

 }

 /**

 * Gets the description value for this ActionTemplate

 * @return description

 */

 public String getDescription() {

 19

 return description;

 }

 /**

 * Sets the description value for this ActionTemplate

 * @param description

 */

 public void setDescription(String description) {

 this.description = description;

 }

 /**

 * Gets the parameters value for this ActionTemplate.

 * @return parameters

 */

 public Map getParameters() {

 return parameters;

 }

 /**

 * Sets the parameters value for this ActionTemplate.

 * @param parameters

 */

 public void setParameters(Map parameters) {

 this.parameters = parameters;

 }

 /**

 * Gets the resultFields value for this ActionTemplate.

 * @return resultFields

 */

 public Map getResultFields() {

 return resultFields;

 }

 /**

 * Sets the resultFields value for this ActionTemplate.

 * @param resultFields

 */

 public void setResultFields(Map resultFields) {

 this.resultFields = resultFields;

 }

 /**

 * Gets the responses value for this ActionTemplate.

 20

 * @return responses

 */

 public Map getResponses() {

 return responses;

 }

 /**

 * Sets the responses value for this ActionTemplate

 * @param responses

 */

 public void setResponses(Map responses) {

 this.responses = responses;

 }

 /**

 * Sets the overrideRas value for this ActionTemplate.

 * @param overrideRas

 */

 public String getOverrideRas() {

 return overrideRas;

 }

 /**

 * Gets the overrideRas value for this ActionTemplate.

 * @param overrideRas

 */

 public void setOverrideRas(String overrideRas) {

 this.overrideRas = overrideRas;

 }

}

RASBinding objects

RASBinding objects expand the inputs in an ActionTemplate method. RASBindings
allow you to identify exactly how the input is to be defined once it is imported into
OO. This includes the default settings shown on the Inputs tab of the Inspector in
Studio as shown in the following figure.

 21

Figure 4 - Inputs tab of Studio Inspector

RASBindings have the properties shown in the following table.

Property Description

encrypted (Boolean, false) Determines whether the particular input should
be encrypted.

required (Boolean, false) Determines whether the particular input should
be required.

assignTo (Boolean, true) Determines whether the Assign to flow
variable check box is checked.

assignFrom (Boolean, true) Determines whether the Assign from flow
variable check box is checked.

assignFromText (String,
empty)

Determines the text in the Assign from flow
variable field.

assignToText (String, empty) Determines the text in the Assign to flow
variable field.

 22

Property Description

type (INPUT_TYPE,
INPUT_TYPE.Empty)

Determines the type of input:

• Empty. This is an empty binding that will
become a prompt if not changed.

• Static. This is a static binding. Whatever is
entered for the value property will become
the value of this input.

• Prompt. This is a prompt user binding.
Whatever is entered in the value property will
be the text that is used to prompt the user.

• value (String, empty). The value that is
assigned to either the static field or the
prompt user field depending on the type
specified.

You can also use the RASBindingFactory method whose main purpose is to quickly
create RASBindings with default style behaviors.

Syntax

Java

public class RASBindingFactory {

 /*
 * Empty Bindings
 */
 public static RASBinding createEmptyRASBinding(){
 return new RASBinding();
 }

 public static RASBinding createEmptyRASBinding(boolean required,
 boolean encrypted){
 return updateBinding(createEmptyRASBinding(), required,
 encrypted);
 }

 /*
 * Prompts
 */
 public static RASBinding createPromptBinding(String value){
 return createBinding(value, RASBinding.INPUT_TYPE.Prompt);
 }

 public static RASBinding createPromptBinding(String value,
 boolean required){
 return updateBinding(createPromptBinding(value), required,
 false);
 }

 public static RASBinding createPromptBinding(String value,
 boolean required,boolean encrypted){
 return updateBinding(createPromptBinding(value), required,
 encrypted);

 23

 }

 /*
 * Statics
 */
 public static RASBinding createStaticBinding(String value){
 return createBinding(value, RASBinding.INPUT_TYPE.Static);
 }

 public static RASBinding createStaticBinding(String value,
 boolean required){
 return updateBinding(createStaticBinding(value), required,
 false);
 }

 public static RASBinding createStaticBinding(String value,
 boolean required,boolean encrypted){
 return updateBinding(createStaticBinding(value), required,
encrypted);
 }

 /*
 * Private section
 */
 private static RASBinding createBinding(String value,
 RASBinding.INPUT_TYPE type){
 RASBinding r = new RASBinding();
 r.type = type;
 r.value = value;
 return r;
 }

 private static RASBinding updateBinding(RASBinding b,
 boolean required,boolean encrypted){
 b.required=required;
 b.encrypted=encrypted;
 return b;
 }
}

 24

.NET

 public class RASBindingFactory
 {
 public static RASBinding createEmptyRASBinding()
 {
 return createGenericRASBindingWithValue(null,
 RASBinding.BindingType.Empty);
 }

 public static RASBinding createEmptyRASBinding
 (Boolean required, Boolean encrypted)
 {
 return createGenericRASBindingWithValue(null, required,
 encrypted, RASBinding.BindingType.Empty);
 }

 public static RASBinding createPromptBinding(String value)
 {
 return RASBindingFactory.createGenericRASBindingWithValue(
 value, RASBinding.BindingType.Prompt);
 }

 public static RASBinding createPromptBinding(String value,
 Boolean required)
 {
 return RASBindingFactory.createGenericRASBindingWithValue(
 value, required, RASBinding.BindingType.Prompt);
 }

 public static RASBinding createPromptBinding(String value,
 Boolean required, Boolean encrypted)
 {
 return RASBindingFactory.createGenericRASBindingWithValue(
 value, required, encrypted,
 RASBinding.BindingType.Prompt);
 }

 public static RASBinding createStaticBinding(String value)
 {
 return RASBindingFactory.createGenericRASBindingWithValue(
 value, RASBinding.BindingType.Static);
 }

 public static RASBinding createStaticBinding(String value,
 Boolean required)
 {
 return RASBindingFactory.createGenericRASBindingWithValue(
 value, required, RASBinding.BindingType.Static);
 }

 public static RASBinding createStaticBinding(String value,
 Boolean required, Boolean encrypted)
 {
 return RASBindingFactory.createGenericRASBindingWithValue(
 value, required, encrypted,

 25

 RASBinding.BindingType.Static);
 }

 protected static RASBinding createGenericRASBindingWithValue(
 String value, RASBinding.BindingType type)
 {
 RASBinding r = new RASBinding();
 r.Binding = type;
 r.Value = (null != value ? value : "");
 return r;
 }

 protected static RASBinding createGenericRASBindingWithValue(
 String value, Boolean required,
 RASBinding.BindingType type)
 {
 RASBinding r = new RASBinding();
 r.Required = required;
 r.Binding = type;
 r.Value = (null != value ? value : "");
 return r;
 }

 protected static RASBinding createGenericRASBindingWithValue(
 String value, Boolean required, Boolean encrypted,
 RASBinding.BindingType type)
 {
 RASBinding r = new RASBinding();
 r.Encrypted = encrypted;
 r.Required = required;
 r.Binding = type;
 r.Value = (null != value ? value : "");
 return r;
 }
 }

execute method

The execute method returns the ActionResult object from an IAction to Central after
the code has been executed. The ActionResult object can return the results shown in
the following table.

Result Description

exception (String, empty) This result should be the stack trace for any
exception that your operation encounters. This
result is most often used inside of the try/catch
block for the operation. It should be left blank if
no exception is encountered.

 26

returnCode (int, 0) This result indicates which transition Central
should follow after the operation has completed.
It should be set to values that can be mapped to
the responses in the ActionTemplate for this
operation. See the getActionTemplate method
section for more information.

Results This is a map of the results that are sent back to
central. These results are available on the
Result tab in of Studio. They can be filtered or
used as flow variables or flow results by other
operations or flows.

The ActionResult object extends the Map object, so any other results that you have
defined in the ActionTemplate can also be returned to Central. The key field is the
result name and the value field is a string value.

Syntax

Java

public class ActionResult extends Map {

 private String exception;
 private int returnCode;
 private String sessionId;

 public ActionResult() {
 }

 public ActionResult(String exception, MapEntry[] entries,
 int returnCode, String sessionId) {
 super(entries);
 this.exception = exception;
 this.returnCode = returnCode;
 this.sessionId = sessionId;
 }

 /**
 * Gets the exception value for this ActionResult.
 * @return exception
 */
 public String getException() {
 return exception;
 }

 /**
 * Sets the exception value for this ActionResult.
 * @param exception
 */
 public void setException(String exception) {
 this.exception = exception;
 }

 /**

 27

 * Gets the returnCode value for this ActionResult.
 * @return returnCode
 */
 public int getReturnCode() {
 return returnCode;
 }

 /**
 * Sets the returnCode value for this ActionResult.
 * @param returnCode
 */
 public void setReturnCode(int returnCode) {
 this.returnCode = returnCode;
 }

 /**
 * Gets the sessionId value for this ActionResult.
 * @return sessionId
 */
 public String getSessionId() {
 return sessionId;
 }

 /**
 * Sets the sessionId value for this ActionResult.
 * @param sessionId
 */
 public void setSessionId(String sessionId) {
 this.sessionId = sessionId;
 }
}

.NET

public class ActionResult : Map
{
 public int code = (int)ResultCode.SUCCESS;
 public string sessionId = "new session";
 public string exception;

 public ActionResult () {}

 public int GetReturnCode() { return code; }
 public void SetReturnCode(int c) { code = c; }
 public string GetException() { return exception; }
 public void SetException(string ex) { exception = ex; }
 public string GetSessionId() { return sessionId; }
 public void SetSessionId(string sid) { sessionId = sid; }

 }

 28

Guidelines for creating IActions

When you create a Java or .NET IAction, you should adhere to the following
guidelines:

• Create any static constants you need.

• Define your ActionTemplate. (This defines the inputs, outputs, and responses for
the IAction. If an input, output, or response does not appear when you open the
IAction in Studio, then you have made an error in the ActionTemplate.)

• Add an execute method, and make sure that it uses a try/catch block.

• Convert the inputs from the ActionTemplate to variables in your code and run the
code.

• Make sure every result has a value defined, even if that value is an empty string.
This is necessary in case an exception is thrown.)

• Set a value for the return code. The response (return code) for success is always
0 and for failure it is always 1.

• When possible, write a meaningful error message in case your operation fails.

• Only the inputs, responses, and results defined in the ActionTemplate are created
automatically (see the getActionTemplate method section for more information).

• Make sure to handle system accounts properly. For Java IActions, use the
StringUtils.resolveString method; for .NET IActions, use the Identities methods.

Important points for creating Java IActions

When creating a Java IAction, keep the following important points in mind:

• Check inputs to make sure that they have non-null values. (If you use the
com.opsware.pas.content.commons.util.StringUtils.resolveString method, null
inputs are automatically converted into empty strings). See the Useful Java
Commons Library class section for more information. Optional inputs may be
strings of length zero.

• Use the StringUtils.resolveString method, as it will handle system accounts for
you. See the Useful Java Commons Library class section for more information.

• Any results you want the user to have access to must be included in the
ActionTemplate.

• Do not use an instance variable in an IAction if it is unique to a given run of the
IAction.

• Do not write to an instance variable.

Important points for creating .NET IActions

When creating a .NET IAction, keep the following important points in mind:

• Use the .NET Convert.ToString() method for handling all inputs except system
accounts.

• Handle system accounts by using the Identity methods in Commons.dll. See the
Identities class section for more information.

• Any results you want the user to have access to must be included in the
ActionTemplate.

 29

• Do not use an instance variable in the IAction if it is unique to a given run of the
IAction.

• Do not write to an instance variable.

Implementing Java IActions
Java IActions are Java classes that can be imported into and used by OO. This
section explains:

• The files you will need to implement your Java IActions.

• How to load your Java IActions into OO Studio.

• How to debug your Java IActions.

This section also contains a complete example of the code needed to create a Java
IAction.

Required development files

The following files are required for developing Java IActions:

• JRAS-sdk.jar

• ContentCommons.jar

These files are included in the OO SDK home directory, in the \lib\ folder.

Loading your Java IActions into Studio

To import your Java IActions into Studio

1. Create a .jar file with your IAction classes in it (you can create more than one
IAction .jar file).

2. Stop the RSJRAS service (the Windows service that runs the RAS).

3. Copy your .jar file to the \RAS\Java\Default\repository\ folder in the OO home
directory.

4. Copy any additional libraries you may be using for the IActions to one of the
following folders in the OO home directory:

• \RAS\Java\Default\repository\lib\

• \RAS\Java\Default\webapp\WEB_INF\lib\

• \RAS\Java\Default\repository\lib\<jarName>\ where jarName is the name of
the .jar file without the .jar extension.

For more information on IAction .jar files and third-party libraries, see Using
multiple versions of third-party libraries.

5. Restart the RSJRAS service.

6. In Studio, create a folder for the IActions.

7. Select the folder and then, from the File menu, click Create Operations from
RAS.

 30

8. In the RAS import dialog box, select RAS_Operator_Path (assuming you put
the .jar file into the default RAS) and then click OK. The IActions are imported.

Note Code in one IAction .jar file cannot use code in another IAction jar file.

Using third-party libraries for Java IActions

You can have multiple IAction .jar files that each reference different versions of
third-party libraries. The JRAS service looks for third-party Java libraries in the
following folders in the in the OO home directory:

• \RAS\Java\Default\repository\lib\

• \RAS\Java\Default\webapp\WEB_INF\lib\

• \RAS\Java\Default\repository\lib\<jarName>\ where jarName is the name of the
.jar file without the .jar extension.

In addition to these paths, if an IAction .jar file has a main manifest attribute named
Custom-Libraries, the value of this attribute will be processed as a comma-
delimited list of additional folders to load. These folders are relative to the
\RAS\Java\Default\repository\lib\ folder. Libraries referenced this way will be loaded
between the RAS\Java\Default\repository\lib\<jarName>\ and
RAS\Java\Default\repository\lib\ folders.

The folder \RAS\Java\Default\repository\lib\ is shared by all IAction .jar files. Do not
put your own third-party libraries in this folder. Adding libraries to this folder may
break out-of-the-box content.

The folder \RAS\Java\Default\webapp\WEB_INF\lib\ is intended to be used by the
RAS service itself. Iaction libraries should not put their own third-party libraries into
this folder. Adding libraries to this folder may break out-of-the-box content, or the
RAS service.

The preferred method is for each author of an IAction .jar file to add a folder named
\RAS\Java\Default\repository\lib\<jarName>\ where jarName is the name of the
IAction .jar file, without the .jar file extension. Third party libraries should go into
this folder.

If multiple IAction.jar files need to share a custom set of libraries, you can make one
or more specifically named subfolders of the \RAS\Java\Default\repository\lib\ folder,
and explicitly reference them through the Custom-Libraries manifest attribute.

 31

Figure 5 - How the RAS resolves third-party Java libraries at run time

Debugging your Java IActions

To enable remote RAS debugging for Java IActions

1. Stop the RSJRAS service.

2. Copy your .jar file to the \RAS\Java\Default\repository\ folder in the OO home
directory.

3. Copy any additional libraries you may be using for the IActions to the
\RAS\Java\Default\repository\lib\ folder in the OO home directory.

4. Open the \RAS\Java\Default\webapp\conf\wrapper.conf file in the OO home
directory using your preferred text editor.

5. Uncomment the following debug line:

(#wrapper.java.additional.2=-Xdebug -Xnoagent -Djava.compiler=NONE -
Xrunjdwp:transport=dt_socket,address=8070,server=y,suspend=y

This suspends the RSJRAS service startup until a remote debugger is configured
to use port 8070.

6. Find the debug line

 32

wrapper.java.additional.2

and change it to
wrapper.java.additional.3

or
 wrapper.java.additional.n

where n is the last number you used plus one.

7. Restart the RSJRAS service.

8. Configure your remote debugger to use the port specified in the wrapper.conf
file. Port 8070 is the default, but you can change it to any unused port.

9. Set a breakpoint in your Java source code at which you would like to stop and
connect to the remote debug session listening on the port specified in step 8.

10. Execute a flow that uses your operation.

11. Debug the IAction code.

To disable remote RAS debugging for Java IActions

1. Stop the RSJRAS service.

2. Open the \RAS\Java\Default\webapp\conf\wrapper.conf file in the OO home
directory.

3. Comment out the following debug line:

(#wrapper.java.additional.2=-Xdebug -Xnoagent -Djava.compiler=NONE -
Xrunjdwp:transport=dt_socket,address=8070,server=y,suspend=y)

4. Find the debug line
wrapper.java.additional.2

and change it to
wrapper.java.additional.3

or
wrapper.java.additional.n

where n is the last number you used plus one.

5. Start the RSJRAS service.

Java IAction code example

The following is an example of a Java IAction that reads a file and returns the
contents.

Java IAction code example

public class ReadFile implements IAction {

 private static final String RETURNRESULT = "returnResult";
 public static final int PASSED = 0;
 public static final int FAILED = 1;

 @Override
 public ActionTemplate getActionTemplate() {
 ActionTemplate actionTemplate = new ActionTemplate();

 33

 actionTemplate.setDescription(ReadFile.DESCRIPTION);

 RASBinding arg1 = RASBindingFactory.createPromptBinding(

 "Source File:", true);

 Map parameters = new Map();
 parameters.add("source", arg1);
 actionTemplate.setParameters(parameters);

 Map resultFields = new Map();
 resultFields.add("fileContents", "");
 resultFields.add(RETURNRESULT, "");
 actionTemplate.setResultFields(resultFields);

 Map responses = new Map();
 responses.add("success", String.valueOf(PASSED));
 responses.add("failure", String.valueOf(FAILED));

 actionTemplate.setResponses(responses);

 return actionTemplate;
 }

 @Override
 public ActionResult execute(ISessionContext session,

 ActionRequest request, IActionRegistry registry)
 throws Exception {

 ActionResult result = new ActionResult();

 String seperator = (System.getProperty("line.seperator") != null)

 ? System.getProperty("line.seperator") : "\n" ;
 String line = null;
 File file = null;
 FileReader fReader = null;
 BufferedReader bReader = null;

 try {
 file = new File ActionRequestUtils.resolveStringParam(

 request, "source"));

 StringBuilder fileContents = new StringBuilder();
 fReader = new FileReader(file);
 bReader = new BufferedReader(fReader);

 while ((line = bReader.readLine()) != null) {
 fileContents.append(line);
 fileContents.append(seperator);
 }

 result.add("fileContents", fileContents.toString());
 result.add(RETURNRESULT, "successfully read file");
 result.setReturnCode(PASSED);

 } catch (Exception e) {
 result.setReturnCode(FAILED);
 result.setException(StringUtils.toString(e));
 result.add(RETURNRESULT, e.getMessage());

 34

 } finally {
 if (bReader != null)
 bReader.close();
 if (fReader != null)
 fReader.close();
 }

 return result;
 }

 private static String DESCRIPTION = ""
 +"<pre>Reads the contents of a file and returns it\n"
 +"Inputs:\n"
 +"source - path to file to read\n"
 +"\n"
 +"Responses:\n"
 +"success - successfully read file"
 +"failure - failed to read the file\n"
 +"\n"
 +"Extra Results:\n"
 +"fileContents - the contents of the file\n\n</pre>";
}

Implementing .NET IActions
.NET IActions are .NET assemblies that can be imported into and used by OO. This
section explains:

• The files you will need to implement your .NET IActions.

• How to load your .NET IActions into OO Studio.

• How to debug your .NET IActions.

This section also contains a complete example of the code needed to create a .NET
IAction.

Required development files

The following files are required for developing .NET IActions:

• IAction.dll

• RCAgentLib.dll

• Commons.dll

These files are included in the OO SDK home directory, in the \lib\ folder.

Loading your .NET IActions into Studio

To import your .NET IActions into Studio

1. Create a .dll file with your IAction classes in it.

 35

2. Stop the RSJRAS service (the Windows service that runs the RAS).

3. Copy your .dll file to the \RAS\Java\Default\repository\ folder in the OO home
directory.

4. Copy any additional .dll libraries you may be using for the IActions to the same
folder.

5. Restart the RSJRAS service.

6. In Studio, create a folder for the IActions.

7. Select the folder and then, from the File menu, click Create Operations from
RAS.

8. In the RAS import dialog box, select RAS_Operator_Path (assuming that you
put the .dll file into the default RAS) and then click OK. The IActions are
imported.

Debugging your .NET IActions

To enable remote RAS debugging for .NET IActions

1. Stop the RSJRAS service.

2. Copy your .dll and .pdb (.NET debug files) files to the
\RAS\Java\Default\repository\ folder in the OO home directory.

3. Copy any additional libraries you may be using for the IActions to the same
folder.

4. Restart the RSJRAS service.

5. Configure your debugger to use the java.exe process that hosts the RSJRAS
service.

6. Set a breakpoint in your .NET source code at which you would like to stop.

7. Run a flow that uses your operation.

8. Debug the IAction code.

To disable remote RAS debugging for .NET IActions

1. Disconnect your debugger from the java.exe process.

2. Stop the RSJRAS service.

3. Remove the .pdb files.

4. Restart the RSJRAS service.

.NET IAction code example

The following is an example of a .NET IAction that reads a file and returns the
contents.

.NET IAction code example

using System;
using System.IO;
using System.Text;
using System.Collections;
using System.Diagnostics;

 36

using System.Globalization;
using com.iconclude.agent;
using System.Text.RegularExpressions;

using DiskServices;
using dotNET_Commons;

namespace com.hp.oo.content.sdk
{
 public class ReadFile : IAction
 {
 public ActionResult Execute(ActionRequest request,

 ISession session, IActionRegistry registry)
 {
 ActionResult result = new ActionResult();
 StreamReader sReader = null;
 String line = null;

 try
 {
 string strSource = Convert.ToString(

 request.parameters["source"]);

 StringBuilder fileContents = new StringBuilder();

 Identities.ChangeUserContext(request);

 sReader = File.OpenText(strSource);

 while ((line = sReader.ReadLine()) != null)
 fileContents.AppendLine(line);

 }
 catch (Exception e)
 {
 ret.SetReturnCode(ReturnCodes.FAILED, e.Message);
 ret.SetException(e.ToString());
 }
 finally
 {
 Identities.UnchangeUserContext(req);
 }

 return ret.GetActionResult();
 }

 public ActionTemplate GetActionTemplate()
 {
 ActionTemplateEx template = new ActionTemplateEx();

 template.SetDescription("WriteToFile");

 RASBinding arg1 = RASBindingFactory.createPromptBinding(

 "FileName:");
 arg1.AssignFrom(true);
 arg1.AssignTo(true);

 37

 RASBinding arg2 = RASBindingFactory.createPromptBinding(
 "Text To Write:");

 arg2.AssignFrom(true);
 arg2.AssignTo(true);

 RASBinding arg3 = RASBindingFactory.createPromptBinding(

 "Alternate Credentials - UserName:", false, false);
 arg3.AssignFrom(true);
 arg3.AssignTo(true);

 RASBinding arg4 = RASBindingFactory.createPromptBinding(

 "Alternate Credentials - Password:", false, true);
 arg4.AssignFrom(true);
 arg4.AssignTo(true);

 template.AddParameter("File", arg1);
 template.AddParameter("Contents", arg2);
 template.AddParameter("user", arg3);
 template.AddParameter("password", arg4);

 template.AddResponse("success", (int)ReturnCodes.PASSED);
 template.AddResponse("failure", (int)ReturnCodes.FAILED);

 return template.GetActionTemplate();
 }
 }
}

Useful Java Commons Library class
The following class is available for general use and may be helpful as you develop
content. It is located in the ContentCommons.jar file in the OO home directory, in
the \RAS\Java\Default\repository\lib\ folder. This class will be maintained, for
backward compatibility.

com.opsware.pas.content.commons.util
StringUtils class

This is a helper class in Java for handling system account inputs and inputs that are
null or missing.

Properties

Name Description

none

 38

Constructors

Name Description

none All methods are static.

Methods (all are static)

Name Description

isNull(String) Boolean specifying whether the value
passed is null.

resolveString (ActionRequest, String) Resolves the value of String from the
input map in ActionRequest.

Useful .NET Commons Library classes
The following classes are available for general use and may be helpful as you
develop content. They are located in the Commons.dll file in the OO home directory,
in the \RAS\Java\Default\repository\ folder. These classes will be maintained to allow
for backward compatibility.

Identities class

The Identities class allows you to deal with user permissions (system accounts) and
to perform user impersonation for some operations.

There are two impersonation styles:

• The first (and the one that is attempted first) is an inter-process communication
(IPC) connection to the remote machine.

• If this fails or if the authentication is performed against the local machine instead
of the RAS, then local thread impersonation is attempted.

In most cases the Identities class uses an ActionRequest method and handles system
accounts.

Properties

Name Description

DestinationHost (Internal) The machine host value when dealing
with copying files.

File (Internal) The file path for impersonation
purposes.

Host The remote host to connect to.

Password The password to use for the connection.

SourceHost (Internal) The machine host for dealing with

 39

Name Description

copying files.

UserName The username to use for the connection.

Constructors

Name Description

Identities() Default.

Methods

Name Description

ChangeUserContext(ActionRequest) Assuming that ActionRequest has the
proper inputs defined, this method will
impersonate the user. If you use this
method, you must use the
UnchangeUserContext(ActionRequest)
method when the impersonation is
finished.

ChangeUserContext(string host, string
user, string password)

Attempts to make the connection and
impersonate the user specified. If you use
this method, you must use the
UnchangeUserContext(string) when the
impersonation is finished.

GetUserPass(ActionRequest, string
username key, string password key)

This is a useful method if you have inputs
that are system accounts but aren't valid
input names. ActionRequest must contain
the inputs username key and password
key which are passed in to tell which
input to use to pull the actual username
and password values. These values can
then be read back using the UserName
and Password properties.

GetUserPass(ActionRequest) This method is the same as
GetUserPass(ActionRequest, string
username key, string password key),
except that the username key and
password key inputs are passed
automatically

UnchangeUserContext(ActionRequest) If you used the
ChangeUserContext(ActionRequest)
method, use this method with the
ActionRequest used during the call to
reverse the impersonation.

 40

Name Description

UnchangeUserContext(string
hostname)

If you used the
ChangeUserContext(string) method,
use this method with the hostname used
during the call to reverse the
impersonation.

If you use the ChangeUserContext(ActionRequest) method, the names of the inputs
mapped in the ActionRequest have to conform to the inputs shown in the following
table (the inputs are case sensitive).

Input Type Valid Input Names

Host • host

• hostname

Username • username

• user

• User

• F5Username

• altuser

Password • password

• Password

• altpass

• pass

• F5Password

• Pass

If the inputs do not conform to these specifications, you must use the
ChangeUserContext(string host, string user, string password) impersonation method.

Important: If you use any of the impersonation functions, make sure you have the
unimpersonation area wrapped in a finally block. That way you can always roll back
your impersonation.

Remarks

The most flexible and secure way to communicate between Windows servers is by
making authenticated IPC connections. This can be done on the command line by
using net use \\machinename\ipc$ and supplying the necessary credentials.
Basically, this is how the Identities class does it as well. However, only one IPC
connection can exist between any two machines. Therefore, only one IPC connection
can exist between the RAS and a given server at any given time. Because of this the
RAS is designed as follows:

1. The RAS receives a request to impersonate a user. To check the request to see
whether a remote machine is requested, the RAS examines the hostname, the
fully qualified domain name (FQDN), and all of the IP addresses registered on the
machine. If the requested machine isn't remote, the RAS attempts thread
elevation. If the requested machine is remote, the RAS continues to the next
step.

 41

2. The RAS searches on the hostname to see whether an IPC connection with the
same username and password is currently mapped. If it is, the RAS adds a flag to
indicate that another operation is using the same connection, and the
impersonation class returns.

3. If a connection doesn't exist:

• A new request to map the remote machine’s IPC share is sent using the
standard Windows API.

• The RAS adds the first flag for this machine.

• The impersonation class returns.

4. Once the operation has completed and called the unimpersonation method in this
class, the RAS checks to see whether it used a thread impersonation or an IPC
connection.

• If the RAS used a thread impersonation, it restores the thread to its old
credential set.

• If the RAS used an IPC connection, the connection use count is decremented.
If the use count is now at zero, the IPC connection with the remote machine
is closed and the class returns. If the use count is not zero, the class just
returns.

Password class

This class generates random passwords.

Properties

Name Description

None

Constructors

Name Description

None

Methods

Name Description

static GenerateRandom(int length, int
numberOfNonAlphaNumericCaracters)

A static method to generate random
passwords.

 42

Finding and Running Flows from
Outside Central
In most cases, you use Central to run the flows you create in Studio. There may be
situations however, when you want to find or run flows without using Central. For
instance, you may want to run a flow from an external application, such as Microsoft
System Center Operations Manager, or from a script or batch file.

About finding and running flows from outside
Central

Ways in which you can find and run flows from outside Central include:

• Creating a URL in Central that can run a Guided or Run all flow from a Web
browser.

• From a command line or from an application that can use a command line.

• Using tools that access the REST (representational state transfer) service so you
can run flows using the Internet.

• Using the WSCentralService SOAP API to access Central features
programmatically.

Important Although you do not use it for managing flows externally, Central must
be running when you do so.

Running flows with URLs created in Central
In Central, you can obtain a valid URL and use it to run a Guided or Run all flow
from a Web browser.

To use a URL created in Central

1. In Central, click the Flow Library tab, navigate to the flow, and then click the
flow name to open the preview of the flow.

2. Under Execution Links in the left pane, select and copy the URL in the box
below the desired type of run—Guided Run or Run All.

 43

Figure 6 - Execution Links

3. Open a new browser window and paste the URL in the address box.

If the flow has any required inputs, modify the URL by adding input parameters
and values for the inputs. See Specifying the inputs for a flow in a URL for more
information.

Note You can also paste the URL in a document or e-mail, but if you paste it into an
e-mail you cannot pass input parameters in the URL.

Running a flow from a command line
You can run a flow from a command line using a correctly formatted URL.

Guidelines for running a flow from a command line

When running a flow from a command line:

• The flow must be self-contained—it cannot contain user prompts.

• You can pass input parameters and values to the flow in the URL.

• If an input requires a flow variable, the variable does not have to be defined
when you create the flow in Studio. You can create and pass the flow variable to
the input by using an input parameter in the URL.

Creating a URL for running a flow

The format for a URL that runs a flow from a command line is as follows:

https://<hostname>:<port>/<path>/<flow>

The main points to be aware of when creating a URL are:

• There are two ways to identify the flow—by its name or by its universally unique
ID (UUID).

• The initial inputs (flow input values) that are required for the flow to run must be
included in the URL.

• You can modify the URL to provide a result from the flow asynchronously—
without waiting for the flow to complete its run.

 44

Identifying the flow in the URL

In a URL that runs a flow, either of the following identifies the flow:

• The name of the flow.

• The flow’s Universally Unique Identifier (UUID).

The following examples illustrate these two methods.

Example 1

This URL identifies the flow by its name, TestFlow.
https://localhost:8443/PAS/services/rest/run/Library/MyFolder/TestFlow

Example 2

This URL identifies the flow by its UUID (503c2500-7aae-11dd-a3b5-0002a5d5c51b).
https://localhost:8443/PAS/services/rest/run/503c2500-7aae-11dd-a3b5-
0002a5d5c51b

Specifying the inputs for a flow in a URL

You can specify the inputs for a flow by using input parameters (also known as “init
params”) in the URL. This allows you to run the flow without any user interaction.

Any init params are separated from the flow identifier by a question mark (?). Each
init param takes the form name=value. If you use more than one init param,
separate the init params with an ampersand (&).

Example

The URL in this example runs the flow MyFlow, passing the input parameter name0
with a value of val0 and the init param input1 with a value of yes.

https://localhost:8443/PAS/services/rest/run/Library/MyFolder/MyFlow?na
me0=val0?input1=yes

When naming init params:

• Do not name init params “service” or “sp”, as these are reserved names.

• If a flow uses one of the reserved names for an input, protect your flows from
errors that can result from using these reserved names, by defining a prefix for
all init param names used in the URL. As long as a required init param prefix is
specified, you must use it for all the init params for flows started by means of a
URL in Central, including those that do not use the reserved names.

To define a prefix for init param names

1. Log on to Central with an account that has OO administrative rights.

2. On the Administration tab, click the System Configuration tab.

3. In the General Settings area, in the Value box of the Prefix for init params
for flow invocation through URLs using the GUI row, type the prefix that
you want to use for the input parameters in a URL.

4. Click Save General Settings.

5. Restart Central.

 45

When defining a prefix for input parameters, avoid using the types of characters
shown in the following table.

Types of characters to avoid using Examples

Characters that are reserved in URLs. ; / ? : @ = &

Characters that can be misunderstood in
URLs.

{ } | \ ^ ~ [] `

If the flow you are starting has a multi-instance step or for any other reason has an
input whose value is a list of values, use the separator character defined by the
flow’s author in Studio (by default, a comma) to separate the values for the input
that has multiple values. You should also do this if your flow has an input that is a
list of values.

The following examples show how to use a prefix for initial inputs in a URL and how
to specify a list of values for a single input.

Example

In the following example:

• The prefix for the init params has been defined as _xx.

• The flow specified in the URL has a multi-instance step with the separator
character defined as an ampersand (&).

• The init param _xx_input1 has two values—the IP addresses 10.0.0.100 and
10.0.0.101 (with the default value-list separator character of comma [,]).

https://localhost:8443/PAS/services/rest/run/Library/MyFolder/TestFlow?
_xx_input1=10.0.0.100,10.0.0.101&_xx_input2=8443&_xx_input2=8443

Note

• You only have to specify values for inputs that get their values from user prompts
or that have not been assigned a value (or a way to get a value).

• You do not have to specify a value for an input that has a specific value assigned
to it (or a set of values, as in multi-instance steps or steps that get their values
from an Iterator operation).

• You do not have to specify a value for an input that gets its value from a system
account or from the logged-in user’s credentials.

Running flows asynchronously using a URL

You can obtain a result from a flow without waiting for it to finish by running the flow
asynchronously. This can be very useful if you run flows with multi-instance steps or
multiple input values.

To run a flow asynchronously

• In the URL that runs the flow, replace:

/run/

with

/run_async/

Example

 46

The following URL runs the flow Connectivity Test asynchronously using the
run_async parameter. This flow has a multi-instance step with multiple values for
the target input.

https://localhost:8443/PAS/services/http/run_async/Library/MyFolder/Con
nectivity Test?&host=localhost&target=55.55.0.47,55.55.0.49

Finding and running flows with tools that
access the REST service

REST (representational state transfer) is an architectural style that uses existing
Internet technology and protocols such as HTTP and XML. This section describes two
command-line tools that access the REST service, allowing you to find and run flows
using the Internet:

• The Wget tool allows you to send a username and password in the command line,
but does not provide feedback as to whether your call worked correctly.

• With RSFlowInvoke.exe or JRSFlowInvoke.jar, you can send encrypted passwords
over the Internet. In addition, RSFlowInvoke and JRSFlowInvoke return XML or
HTML feedback that verifies whether your call worked.

Important: Wget, RSFlowInvoke.exe, and JRSFlowInvoke.jar can take command-
line parameters or URLS to specify the flows you want to manage with them. If you
use a URL, you must enclose it with quotation marks.

Running flows using Wget

Wget is a command-line tool that you can use to download and run flows from the
Internet. You can download Wget from the GNU Wget Web page.

The basic syntax of Wget is:

wget {<options>} {<URL>}

Wget downloads and runs flows specified in the URL contained on the command line.
It can use the HTTP, HTTPS, and FTP protocols. The Wget options are explained in
the GNU Wget Manual.

Important: Enclose the URL on the command line with quotation marks.

The following examples show how to download and run flows using a URL in a Wget
command line.

Example 1

The following example downloads the flows in the MyFolder folder.

• The Wget –O option specifies that all error messages should be logged to the
default log file wget.log.

• The Wget http-user=user and http-password=password options specify a
username of rsadmin and a password of iconclude for the HTTP server.

wget --http-user=rsadmin --http-password=iconclude
"https://localhost:8443/PAS/services/rest/list/MyFolder/"

 47

Example 2

This example uses the Wget no-check-certificate option to skip Secure Sockets
Layer (SSL) checking.

wget --no-check-certificate --http-user=rsadmin --http-passwd=iconclude
"https://localhost:8443/PAS/services/rest/list/MyFolder/"

Example 3

This example runs the flow specified in the URL and passes the input variable name0
with a value of val0.

wget --http-user=rsadmin --http-passwd=iconclude
"https://localhost:8443/PAS/services/rest/run/Library/MyFolder/MyFlow?n
ame0=val0"

The next examples work with an XML file that has the following basic layout.

XML file layout

<?xml version="1.0"?>

<run>

 <request>

 <arg name="name1">value1</arg>

 <arg name="name2">value2</arg>

 </request>

</run>

Example 4

This example uses POST as the method to run an XML-encoded flow from the file
C:\run-config.xml.

wget --http-user=rsadmin --http-passwd=iconclude --post-file="C:\run-
config.xml"
"https://localhost:8443/PAS/services/rest/run/Library/MyFolder/MyFlow"

Example 5

This example runs an XML-encoded flow from a command line using the Wget post-
data=string option.

wget --http-user=rsadmin --http-passwd=iconclude --post-data="<?xml
version=\"1.0\" ?><run><request><arg name=\"name0\">value0</arg><arg
name=\"name1\">value1</arg><arg
name=\"name2\">value2</arg></request></run>"
"https://localhost:8443/PAS/services/rest/run/Library/MyFolder/MyFlow"

The following shows the XML format that is returned.

Example returned XML format

<?xml version="1.0" encoding="UTF-8"?>

<runResponse>

 48

 <runReturn>

 <item>

 <name>runId</name>

 <value>23</value>

 </item>

 <item>

 <name>runReportUrl</name>

<value>https://localhost:8443/PAS/app?service=RCLinkService/ReportLinkDispatch
&sp=SINDIVIDUAL_REPAIR_LEVEL&sp=Sc2bcb72f-6d6b-4a2d-a678-
de21a1feac81&sp=l0&sp=l23</value>

 </item>

 <item>

 <name>runStartTime</name>

 <value>09/17/08 13:00:54</value>

 </item>

 <item>

 <name>runEndTime</name>

 <value>09/17/08 13:00:54</value>

 </item>

 <item>

 <name>runHistoryId</name>

 <value>23</value>

 </item>

 <item>

 <name>flowResponse</name>

 <value>success</value>

 </item>

 <item>

 <name>flowResult</name>

<value>{Field 1=value0;Field
2=value1;FailureMessage=;TimedOut=;Result=;}</value>

 </item>

 <item>

 <name>flowReturnCode</name>

 <value>Resolved</value>

 </item>

 </runReturn>

Finding and running flows using RSFlowInvoke or
JRSFlowInvoke

RSFlowInvoke.exe, or the Java version JRSFlowInvoke.jar, is a command-line utility
that you can use to list, run, and search for flows outside of Central.

 49

You can use RSFlowInvoke or JRSFlowInvoke:

• From a command-line window or an application that can use a command line.

• As part of a script or batch file.

You can run RSFlowInvoke or JRSFlowInvoke on any machine from which you can log
on to Central (using HTTPS to the default port 8443). This makes RSFlowInvoke and
JRSFlowInvoke useful for starting a flow from an external system or application that
can use a command—for example, a monitoring program such as Microsoft System
Center Operations Manager.

RSFlowInvoke and JRSFlowInvoke are available in the OO SDK home directory, in the
\tools\ subfolder. They are also available in the HP OO home directory, in the
\Studio\tools\ folder. Run RSFlowInvoke and JRSFlowInvoke from this subfolder or
from a path that includes this subfolder.

The basic syntax of RSFlowInvoke.exe is:

RSFlowInvoke.exe {–host <hostname>:<port number> –flow <flow name> |
<URL>} [-inputs <input name>=<value>] [-u <user>] -p <password>|-ep
<encrypted password>][-a <authentication type>] [-async] [-rc <number
of retries>] [-rw <number of seconds>] [-t <timeout>] [-v]

The basic syntax of JRSFlowInvoke.jar is:

java –jar JRSFlowInvoke.jar {–host <hostname>:<port> –flow <flow name>|
<URL>} [-inputs <input name>=<value>] [-u <user>] [-p <password>|-ep
<encrypted password>] [-a <authentication type>] [-async] [-rc <number
of retries>] [-rw <number of seconds>]

You can reference the flow in RSFlowInvoke or JRSFlowInvoke using:

• The –host and –flow options.

• A URL. The URL must have the correct format for managing a flow and be
enclosed in quotation marks. For information on building a correctly-formatted
URL, see Creating a URL for managing a flow.

Option Syntax

Following are the syntax and descriptions of the RSFlowInvoke and JRSFlowInvoke
options.

-a <authentication type>

Specifies the authentication type (Basic or Digest).

-async

Specifies that the flow runs asynchronously—in other words, that it returns a
result before completing its run.

-ep <encrypted password>

Specifies the encrypted password for the host. If you use the –p option to specify
a nonencrypted password, do not use this option. For information about creating
an encrypted password from within RSFlowInvoke, see Creating an encrypted
password.

-flow <flow name>

Specifies the flow name or UUID.

 50

-host <hostname>:<port number>

Specifies the hostname and port number, separated by a colon.

-inputs <input name>=<value>

Specifies the inputs for the flow, using the format name=value&name2=value2.If
any of the inputs or their values contain a space, then the
name=value&name2=value2 argument should be wrapped in quotes
("name=value&name2=values").

Note To be used with RSFlowInvoke or JRSFlowInvoke, an input must have a
flow variable assigned to it in the Assign to Variable drop-down box on the
Input Summary tab in Studio.

-p <password>

Specifies the password for the host. If you use the –ep option to specify an
encrypted password, do not use this option.

-rc <number of retries>

Specifies the number of times to retry a flow that fails. The default is 0; the
maximum is 30.

-rw <number of seconds>

Specifies the number of seconds to wait between retries. The default is 5
seconds.

-t <timeout>

Specifies the timeout, in seconds. The default value is 100 seconds.

-u <username>

Specifies the username for the host.

-v

-verbose

Specifies that all output is to be written to the screen.

Using RSFlowInvoke or JRSFlowInvoke from a command line

The examples in this section demonstrate how to list and run flows using
RSFlowInvoke or JRSFlowInvoke from a command line or from any application that
can take input from a command line.

Example 1

The following example lists the flows specified in the URL.

RSFlowInvoke.exe
“https://localhost:8443/PAS/services/rest/list/MyFolder/” -u rsadmin -
ep BKmIQF6o0dItQkcUYNEeGw==

Example 2

This example runs the flow specified in the URL.

 51

RSFlowInvoke.exe
“https://localhost:8443/PAS/services/rest/run/Library/MyFolder/TestFlow
” -u admin -ep BKmIQF6o0dItQkcUYNEeGw==

Example 3

This example lists the flows specified using the –host and –flow options.

RSFlowInvoke.exe –host localhost:8443 –flow
/PAS/services/rest/list/MyFolder/ -u admin -ep BKmIQF6o0dItQkcUYNEeGw==

Example 4

This example runs the flow specified using the –host and –flow options.

RSFlowInvoke.exe –host localhost:8443 –flow
/PAS/services/rest/run/Library/MyFolder/TestFlow -u rsadmin -ep
BKmIQF6o0dItQkcUYNEeGw==

Using RSFlowInvoke or JRSFlowInvoke in a script or batch file

In a script or batch file, the syntax for using RSFlowInvoke.exe is the same as it is
for using it in a command line. The syntax for JRSFlowInvoke.jar is slightly different.

The syntax of RSFlowInvoke.exe in a script or batch file is:

RSFlowInvoke.exe {–host <hostname>:<port number> –flow <flow
name>|<URL>} [-inputs <input name>=<value>] [-u <user>] -p <password>|-
ep <encrypted password>] [-a <authentication type>] [-rc <number of
retries>] [-rw <number of seconds>] [-t <timeout>] [-v]

The syntax of JRSFlowInvoke.jar in a script or batch file is:

java -jar JRSFlowInvoke.jar {–host <hostname>:<port> –flow <flow
name>|<URL>} [-inputs <input name>=<value>] [-u <user>] [-p
<password>|-ep <encrypted password>] [-a <authentication type>] [-rc
<number of retries>] [-rw <number of seconds>]

Searching for a flow using JRSFlowInvoke

You can use JRSFlowInvoke.jar to search for a flow outside of Central. The search
uses the Apache Lucene search syntax. For more information on this syntax, see the
Apache Software Foundation Query Parser Syntax Web page.

Use the following syntax which includes a properly formatted query string:

java -jar JRSFlowInvoke.jar
“https://{<host>:<port>}/PAS/services/http/search? queryString =
{<sequence_of_term_expressions>}” [-u <user>] [-p <password>]

Option Syntax

<host>

Specifies the Central server on which the search is to be performed.

<port>

Specifies the port number on the Central server which Central uses to
communicate with the client.

<sequence_of_term_expressions>

A search string, which can be one of the following:

 52

• A single term expression of the form:
{<fieldname>:<term>}

• A sequence of terms of the form:
{<fieldname>:<term> + (<operator> +
<sequence_of_term_expressions>)}

<fieldname>

Specifies one of the fields shown in the following table (these are not case-
sensitive).

Field Description

Category The category that has been assigned to the flow.

Description The flow’s description.

Domain A domain term that has been associated with the flow.

ID The flow’s UUID.

Input An input to an operation used in the flow.

Name The flow’s name.

Type The type of an operation used in the flow. The terms that
you can match in this field and the operation types that
they represent include:

• cmd – Command

• flow – An operation that is a flow

• http – Http (also known as shell)

• other - Scriptlet

• script.perl – Perl script

• ssh – SSH (Secure Shell)

• telnet - Telnet

• lock = Acquire Lock

• unlock = Release Lock

Stepdescription The description of one of the flow’s steps.

Stepname The name of one of the flow’s steps.

<term>

Specifies the particular value of the field that may find the desired flow.

<operator>

Is one of the operators supported in the Apache Lucene search syntax:

AND, “+”, OR, NOT, and “-“.
-u <user>

Specifies a user account that has the permissions to view and start a flow.

-p <password>

Specifies the password for the user account.

 53

-ep <encrypted password>

Specifies the encrypted password for the user account. See Creating an
encrypted password for more information.

Example

This example searches for flows that have the field Name with a value of John’s
flow.

java -jar JRSFlowInvoke.jar
“https://{localhost:8443}/PAS/services/http/search? queryString =
{Name:John’s Flow}” -u admin -ep BKmIQF6o0dItQkcUYNEeGw==

RSFlowInvoke and JRSFlowInvoke results

RSFlowInvoke and JRSFlowInvoke use the return codes shown in the following table
to tell you what happened when they were run.

Return
Code

Description

0 The flow was run. This code is not related to the flow's response.

1 Central responded with HTTP code 503. This usually means that Central
lacked the resources needed to run the flow.

2 An unknown internal server error occurred in Central.

3 RSFlowInvoke was unable to authenticate against Central.

4 The specified URL or flow was not found.

5 A socket timeout occurred. A socket is a software object that connects an
application to a network protocol.

6 An unknown socket (communication) error occurred.

7 An unknown error occurred.

Registering RSFlowInvoke with the Global Assembly Cache

The Global Assembly Cache (GAC) is a store on a local .NET machine for assemblies
of .NET code. If you register RSFlowInvoke.exe with GAC, you can start a flow from
within a .NET application, using any .NET-compatible language, such as C#.

To register or unregister RSFlowInvoke in GAC

1. On a .NET machine, open a command-line window and type the following
command:

gacutil.exe [/i|/u] RSFlowInvoke.exe

Option syntax

/i

Registers RSFlowInvoke.exe with GAC.

 54

/u

Unregisters RSFlowInvoke.exe with GAC.

2. Once RSFlowInvoke.exe is registered with GAC, type the following to view the
assembly (compiled code) information:

RSFlowInvoke.exe –s

The following is an example of the output of the RSFlowInvoke.exe –s command:

Example output from RSFlowInvoke.exe –s command

Assembly Name:

 RSFlowInvoke, Version=1.0.3098.16154, Culture=neutral,
PublicKeyToken=4c0918

1d83b84dbc

Fully Qualified Type Name:

 RepairSystem.RSFlowInvoke

Method Name:

 ExecuteHeadlessFlow(

 System.String url,

 System.String username,

 System.String password,

 System.String authType,

 System.Boolean encryptedPassword)

Creating an encrypted password

RSFlowInvoke and JRSFlowInvoke allow you to send encrypted passwords over the
Internet.

To create an encrypted password for use with RSFlowInvoke or
JRSFlowInvoke

1. In a command window, type and run one of the following commands:
RSFlowInvoke.exe –cp

java –jar JRSFlowInvoke.jar –cp

2. At the Enter password prompt, type the password.

3. At the Enter password again prompt, retype the password.

RSFlowInvoke or JRSFlowInvoke encrypts the password. When you run
RSFlowInvoke or JRSFlowInvoke with the encrypted password, use the -ep option
instead of the usual –p option for the password.

 55

Finding and running flows using the
WSCentralService SOAP API

The WSCentralService service basically does two things—search and execution. The
WSCentralService service provides a SOAP API with which you can:

• Search for a flow by querying the flow library using criteria provided by a query
string. Query strings are based on an Apache Lucene indexed search. For more
information on the Lucene search, see the Apache Lucene Web page.

• Control flow execution—this includes running, pausing, resuming, and canceling a
flow, and viewing the status of a flow run.

The WSCentralService SOAP API, Javadocs, Java and .NET client libraries, and the
WSCentralService Web Services Description Language (WSDL) file are included in the
OO SDK home directory, in the \WSCentralService\ subfolder.

Accessing the WSCentralService WSDL

The WSCentralService WSDL describes the WSCentralService service and the
operations it can perform. You can access the WSCentralService WSDL at the
following URL:

https://central_server:8443/PAS/services/WSCentralService?wsdl

where central_server is the name of the server running Central. Samples included
in the OO SDK home directory, in the \WSCentralService\samples\ subfolder,
demonstrate using the service with Java and .NET.

Using the API documentation

The WSCentralService SOAP API reference documentation is included in the OO SDK
home directory, in the \WSCentralService\docs\ subfolder. The reference
documentation covers the WSCentralService API and objects plus a wrapper class,
WSCentralServiceSession, that implements the service public interface.

How WSCentralService manages security and
authentication

WSCentralService supports HTTP basic authentication. The client must provide the
username and password of a user account that can run and manage flows started
outside of Central. The message context associated with a client session must
include the username and password, or the session will fail and a security violation
will be issued to the client. For examples, see the test client code
(TestWebService.java) included in the OO SDK home directory, in the
\WSCentralService\samples\ subfolder.

The service also supports Kerberos single sign-on authentication based on the Oasis
Web Services Security Kerberos Token Profile. The format of the
BinarySecurityToken node in the header security node is shown below.

https://central_server:8443/PAS/services/WSCentralService?wsdl�

 56

Format of BinarySecurityToken node

<soapenv:Header
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

 <wsse:Security xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">

 <wsse:BinarySecurityToken

 EncodingType="wsse:Base64Binary"

 ValueType="wsse:Kerberosv5_AP_REQ"

 Id="CentralKrbSSOToken">YIIJAQYJKoZIhvcSAQICAQBuggjwMIII....

 </wsse:BinarySecurityToken>

 </wsse:Security>

</soapenv:Header>

The Id attribute of <wsse:BinarySecurityToken> must be included and must be set
to “CentralKrbSSOToken”. The name and value of the Id attribute are case
sensitive.

Importing the SSL Certificate

To enable the service to handle the SSL handshake that begins an SSL session, you
can import the central.crt security certificate included in the OO SDK home directory,
in the \WSCentralService\ subfolder, into any keystore you choose. A keystore is a
file containing keys, certificates, and trusted roots. The root certificates of signing
authorities are kept in a file called a cacert.

To import the certificate into the default keystore provided with the Java Runtime
Environment (JRE), open a command window and change directories to the
\lib\security\ subfolder in the Java home directory and run the following command
under $(java.home)/lib/security:

keytool -import -alias pas -file central.crt –keystore cacerts

When prompted for the password for the JRE cacert, type changeit.

Sample client code

Sample client code for WSCentralService is included in the OO SDK home directory,
in the \WSCentralService\samples\ subfolder. The \WSCentralService\lib\ subfolder
contains a wrapper for WSCentralService service named WSCentralServiceSession.
You can use this class in developing your client. It wraps the service API stubs and
includes additional functionality for Java and .NET.

Service stubs sample

The following sample .cmd file generates the Java service stubs, which you can use if
you choose not to use the supplied WSCentralService.jar file.

 57

Sample .cmd file

@echo off

Rem replace %axis-1_4% and %wsdl_path% with the actual paths on your
machine.

Rem your path statement must include the folder where java.exe exist.

set JLIBS=%axis-1_4%\lib

set SERVICE_ADDRESS=%wsdl_path%\WSCentralService.wsdl

set
SERVICE_PACKAGE=com.iconclude.dharma.services.wscentralservice.client

set BUILD_PATH=.

set CLASS_PATH=.

set CLASS_PATH=%CLASS_PATH%;%JLIBS%\axis.jar

set CLASS_PATH=%CLASS_PATH%;%JLIBS%\jaxrpc.jar

set CLASS_PATH=%CLASS_PATH%;%JLIBS%\commons-codec.jar

set CLASS_PATH=%CLASS_PATH%;%JLIBS%\commons-httpclient.jar

set CLASS_PATH=%CLASS_PATH%;%JLIBS%\commons-logging-1.0.4.jar

set CLASS_PATH=%CLASS_PATH%;%JLIBS%\commons-discovery.jar

set CLASS_PATH=%CLASS_PATH%;%JLIBS%\wsdl4j-1.5.1.jar

set CLASS_PATH=%CLASS_PATH%;%JLIBS%\activation.jar

set CLASS_PATH=%CLASS_PATH%;%JLIBS%\saaj.jar

set CLASS_PATH=%CLASS_PATH%;%JLIBS%\mail.jarset command1=java -
classpath %CLASS_PATH% org.apache.axis.wsdl.WSDL2Java -a -p
%SERVICE_PACKAGE% -v -o %BUILD_PATH% %SERVICE_ADDRESS%

%command1%

 58

Working with repositories from
outside Studio
As someone who works with OO repositories frequently, you may occasionally find it
easier and less time-consuming to perform common OO repository functions outside
of Studio.

The OO SDK Repository Utility is a command-line utility (repoutil.exe) that you can
use to perform the following repository functions outside of Studio:

• Publish new or changed OO objects, including flows and operations, from a
source repository to a target repository.

• Update a source repository with new or changed OO objects from a target
repository.

• Publish and update in one operation.

• Export a repository.

• Verify a repository, finding problems with the OO objects in it, and optionally
fixing them.

• Upgrade a repository to the latest version.

• Encrypt, decrypt, and re-encrypt a repository.

• Set default permissions for a repository.

Note The target repository is always a Central public repository.

Using the Repository Utility
You run the Repository Utility, also known as Repoutil, from a command line using
one of the Repoutil primary options. Repoutil has ten primary options, each of which
tells Repoutil which repository function to perform. Repoutil also has secondary
options that provide information that is required by the primary options.

Syntax

repoutil [<primary option>] [<secondary options>……]

The Repoutil executable (repoutil.exe) is located in the OO SDK home directory, in
the \tools folder.

Primary Repoutil options

The primary Repoutil options specify the repository functions to be performed.

Primary Option Description

-publish Copies flows and objects from a source
repository to a target repository.

 59

Primary Option Description

-update Copies flows and objects from a target
repository to a source repository.

-publishupdate Publishes and updates at the same time.
-export Exports a source repository, making flows and

OO objects available to users who do not
share the same public repository as you.

-verify Verifies the structural integrity of a repository,
then lists and optionally fixes any problems.

-upgrade Upgrades a repository to the latest version.
-encrypt Encrypts a copy of a repository.
-decrypt Decrypts an encrypted repository.
-reencrypt Creates a second encrypted copy of a

repository with a different password.
-defaultperms Sets default permissions for a repository.

Secondary Repoutil options

Most of the secondary Repoutil options work with more than one primary option. If a
secondary option works with only one primary option, it is described in the section
that explains how to use the primary option.

The rest of the secondary Repoutil options and the primary options they work with
are shown here:

Secondary Option Description Used With

-1 <repository1>

Specifies the path and name of
<repository1>. For most of the
primary Repoutil options, this is the
source repository.

For the following options,
<repository1> can only be a local
repository:

• -verify

• -upgrade

• -encrypt

• -decrypt

• –reencrypt

For the following options,
<repository1> can be a local or
Central repository:

• –publish

• -update

-publish

-update

-publishupdate

-export

-verify

-upgrade

-encrypt

-decrypt

-reencrypt

-defaultperms

 60

Secondary Option Description Used With

• -publishupdate

• -export

• -defaultperms

A local repository is specified by a path,
for example c:\MyFolder\MyRepository.

A Central repository is specified with a
URL, for example https://central-
host2:8443.

-2 <repository2>

Specifies the path and name of
<repository2>. For most of the
primary Repoutil options, this is the
target repository.

For the following options,
<repository2> can only be a local
repository:

• -encrypt

• -decrypt

• –reencrypt

For the following options,
<repository2> can be a local or Central
repository:

• -publishupdate

• -export

A local repository is specified by a path,
such as c:\MyFolder\MyRepository.

A Central repository is specified with a
URL, such as https://central-host2:8443

-publish

-update

-publishupdate

-export

-encrypt

-decrypt

-reencrypt

-c <value> Specifies how conflicts are resolved. A
conflict can occur if changes have been
made to the same object in both the
target and source repositories. The
<value> is one of the following:

• 0 Skips the conflicts.

• r1 Conforms <repository1> to
<repository2>.

• r2 Conforms <repository2> to
<repository1>.

See Publishing a repository for more
information about using the –c option.

-publish

-update

-publishupdate

https://central-host2:8443/�
https://central-host2:8443/�
https://central-host2:8443/�

 61

Secondary Option Description Used With

-excludepath
<path>

Specifies a path in <repository1> to
exclude when publishing or updating
(for example, -excludepath
“/Library/My Repairs”). The path
must be enclosed in quotation marks.
The flows and objects in the excluded
path will not be published or updated.

-publish

-update

-publishupdate

-includepath
<path>

Specifies the only path in
<repository1> to include when
publishing or updating (for example, -
includepath “/Library/My
Repairs”). Only the path specified in
<repository1> will be published or
updated.

-publish

-update

-includereferences You can only use this option when you
use the -includepath option. The
-includereferences option specifies
that any flows or operations used by the
flows in the path specified in the
-includepath option will also be
published.

-publish

-update

-publishupdate

-loginurl
<loginurl>

Specifies the URL of the Central server
with which to authenticate if
<repository1> or <repository2> is
remote.

-publish

-update

-publishupdate

-export

-n Specifies that Repoutil should not
perform the –publish, -update, -
publishupdate, or -export option with
which the –n option is used, but instead
should print the results that would occur
if the option was performed.

-publish

-update

-publishupdate

-export

-p <password> Specifies the password for the Central
or remote server.

-publish

-update

-publishupdate

-export

-upgrade

-encrypt

-decrypt

-defaultperms

-q <repo2password> Specifies the encryption password for
<repository2>. It is ignored if
<repository2> is a remote repository

-publish

-encrypt

-reencrypt

 62

Secondary Option Description Used With

or if it is not encrypyted.

-r <repo1password>

Specifies the encryption password for
<repository1>. It is ignored if
<repository1> is a remote repository
or if it is not encrypted.

-publish

-update

-publishupdate

-export

-verify

-upgrade

-decrypt

-reencrypt

-defaultperms

-u <username> Specifies the username for the Central
or remote server.

Note The username must belong to an
administrator for the options shown in
the Used With column except for the
–publish option, where the username
can belong to a member of the
PROMOTER group.

-publish

-update

-publishupdate

-export

-upgrade

-encrypt

-decrypt

-defaultperms

Publishing a repository
The –publish option copies new or changed objects—such as flows and operations—
from a source repository (<repository1>) to a target repository (<repository2>).

Syntax

repoutil -publish -loginurl <loginurl> -u <username> -p <password>
-1 <repository1> [-r <repo1password>] -2 <repository2>
[-q <repo2password>] -c 0|r1|r2 [-n] [-excludepath <path>] [-
includepath <path>] [-includereferences]

Both <repository1> and <repository2> stand for paths to local repositories or
URLs of Central repositories.

The –c option tells Repoutil what to do if a conflict is reported because changes have
been made to an object with the same name in the target and source repositories.

The following scenario illustrates how this works:

1. Local repository <repository1> and Central repository <repository2> contain a
flow named testflow and are synchronized.

2. You import a new version of testflow to <repository1>.

3. From a second local repository, you publish another version of testflow to
<repository2>. Now testflow has changed in both <repository1> and
<repository2>. A conflict will be reported for testflow1 when you preview

 63

publishing from <repository1> to <repository2>. Use the –c <value> option to
specify how you want to resolve a potential conflict.

The values for the –c option and descriptions of the other secondary options used in
the -publish syntax, are shown in Secondary Repoutil options.

To learn how to publish a repository using Studio, see the material on publishing a
repository in the Guide to Authoring Operations Orchestration Flows.

The following examples show some of the ways you can use the Repoutil
–publish option.

Example 1

This example publishes the contents of the exported repository at c:\MyFolder\export
to the Central server central-host2. The option –c r2 tells Repoutil that if conflicts
occur, it should change central-host2 to resolve them.
repoutil -publish -loginurl https://central-host2:8443 -u admin
-p iconclude -1 c:\MyFolder\export -2 https://central-host2:8443 -c r2

Note This is comparable to connecting Studio to central-host2 and to the repository
at c:\MyFolder\export.

Example 2

This example publishes the contents of the folder /Library/My Ops Flows/Network
Flows/ from the Central host central-host1 to the Central host central-host2.

repoutil -publish -loginurl https://central-host1:8443 -u admin
-p iconclude -1 https://central-host1:8443 -2 https://central-
host2:8443 -c r2 -includepath "/Library/My Ops Flows/Network Flows"

Updating from a repository
The –update option is the opposite of the –publish option. When you update a
source repository (<repository2>) from a target repository (<repository1>), any
flows and objects that are new or have changed in the target repository are copied to
the source repository.

Syntax

repoutil -update -loginurl <loginurl> -u <username> -p <password>
-1 <repository1> [-r <repo1password>] -2 <repository2> -c 0|r1|r2 [-n]
[-excludepath <path>] [-includepath <path>] [-includereferences]

The parameter <repository1> represents the repository from which you initiate the
update. Both <repository1> and <repository2> can be paths to local repositories
or URLs of Central repositories.

The secondary options used in the -update syntax are described in Secondary
Repoutil options.

To learn how to update a repository using Studio, see the material on updating from
a repository in the Guide to Authoring Operations Orchestration Flows.

Example

In this example, Repoutil updates the path /Library/My Ops Flows/TestFlow/ in the
central2 repository from the local repository My Repository. The

https://central-host2:8443/�
https://central-host1:8443/�
https://central-host1:8443/�
https://central-host2:8443/�
https://central-host2:8443/�

 64

-includereferences option tells Repoutil to include all references to the flows and
operations used by TestFlow.
repoutil -update -1 c:\MyFolder\My Repository -2
https://central2:8443 -includepath "/Library/My Ops Flows/TestFlow" -
includereferences

Publishing and updating a repository
simultaneously

The –publishupdate option copies objects that are new or have changed from a
source repository (<repository1>) to a target repository (<repository2>) and
copies flows and objects that are new or have changed from a target repository
(<repository1>) to a source repository (<repository2>).

Syntax

repoutil -publishupdate -loginurl <loginurl> -u <username> -p
<password> -1 <repository1> [-r <repo1password>] -2 <repository2> -c
0|r1|r2 [-n] [-excludepath <path>][-includepath <path>]
[-includereferences]

The secondary options used in the -publishupdate syntax, are described in
Secondary Repoutil options.

Exporting a repository

To make flows and OO objects available to authors with whom you do not share a
public repository, you can use the –export option to export one repository
(<repository1>), which can be a local repository or a Central repository, to a target
location (<repository2>), which specifies a directory on the local file system. Other
Studio authors can then import the repository from that location.

Note The Repoutil –export option creates <repository2>. The <repository2>
directory should not exist prior to exporting <repository1>.

 Syntax

repoutil -export -loginurl <loginurl> -u <username> -p <password>
-1 <repository1> [-r <repo1password>] -2 <repository2> [-x <path1>
-x <path2>] [-n]

The -x <path> option sets the path in the repository or library to be exported (for
example, -x “/Library/My Repairs/”). The path specified in the –x option must be
enclosed in quotation marks. You can specify multiple paths using more than one –x
option. The default is -x “/Library” -x “/Configuration/”.

The other secondary options used in the -export syntax, are described in Secondary
Repoutil options.

To learn how to export a repository using Studio, see the material on exporting a
repository in the Guide to Authoring Operations Orchestration Flows.

https://central2:8443/�

 65

Example

This example exports the folders /Library/My Ops Flows/Network Flows/ and
/Library/My Ops Flows/Database Flows/ from the repository of the Central host
central-host1 to a new local repository named My Repository.

repoutil -export -loginurl https://central-host1:8443 -u admin
-p iconclude -1 https://central-host1:8443 -2 c:\MyFolder\My Repository
-x "/Library/My Ops Flows/Network Flows/" -x "/Library/My Ops
Flows/Database Flows/"

Note This is comparable to connecting Studio to central-host1, selecting the folders
\Library\My Ops Flows\Network Flows\ and \Library\My Ops Flows\Database Flows\,
and exporting them to c:\MyFolder\My Repository.

Verifying a repository
The –verify option allows you to verify the structural integrity of a local repository.

Syntax

repoutil -verify [-f] -1 <repository1> [-r <repo1password>]

The –f option specifies that Repoutil will attempt to fix any structural integrity
problems it encounters in <repository1>.

The other secondary options used in the -verify syntax, are described in Secondary
Repoutil options.

Example

This example verifies the repository at C:\MyFolder\MyRepo, lists any problems that
exist in the flows and other objects in the repository, and then attempts to fix the
problems.

repoutil -verify -f -1 C:\MyFolder\MyRepo

Upgrading a repository
The –upgrade option upgrades a local repository to the latest version. This option is
designed to be used mainly by OO authors, since upgrades are normally done
automatically in a production environment.

Syntax

repoutil -upgrade -u <username> -p <password> -1 <repository1>
[-r <repo1password>]

The secondary options used in the -upgrade syntax are described in Secondary
Repoutil options.

Example

This example upgrades the repository C:\MyFolder\MyRepo to the latest version.

repoutil -upgrade -1 C:\MyFolder\MyRepo

https://central-host1:8443/�
https://central-host1:8443/�

 66

Encrypting a repository
The –encrypt option makes a copy of a local repository (<repository1>), encrypts
it, and then saves it as <repository2>. You can use encryption to protect your
repository from unauthorized users.

Syntax

repoutil -encrypt [-u <username> -p <password>] -1 <repository1>
[-r <repo1password>] -2 <repository2> -q <repo2password>

If you modify, publish to, update from, import to, or export <repository2>, you
must use the <repo2password> password.

The secondary options used in the -encrypt syntax are described in Secondary
Repoutil options.

To learn how to encrypt a repository using Studio, see the material on encrypting a
repository in the Guide to Authoring Operations Orchestration Flows.

Example

This example copies the repository My Repository, encrypts it, and then saves it as
My Encrypted Repository.

repoutil -encrypt -1 c:\MyFolder\My Repository -r iconclude -2
c:\MyYFolder\My Encrypted Repository -q iconclude2

Decrypting a repository
The –decrypt option decrypts an encrypted repository (<repository1>) and saves it
as a decrypted repository (<repository2>).

Syntax

repoutil -decrypt [-u <username> -p <password>] -1 <repository1>
[-r <repo1password>] -2 <repository2>

For <repo1password>, use the password you set when you encrypted the repository.
See Encrypting a repository for more information.

Figure 7 - Using the password you set when you encrypted the repository

The secondary options used in the -decrypt syntax are described in Secondary
Repoutil options.

To learn how to decrypt a repository using Studio, see the material on decrypting a
repository in the Guide to Authoring Operations Orchestration Flows.

 67

Example

This example decrypts My Encrypted Repository using the password iconclude2 and
saves it as the decrypted repository My Decrypted Repository.

repoutil -decrypt -1 c:\MyFolder\My Encrypted Repository
-r iconclude2 -2 c:\MyFolder\My Decrypted Repository

Re-encrypting a repository
The –reencrypt option allows you to create a second encrypted copy of a repository
with a different password.

Syntax

repoutil -reencrypt -1 <repository1> -r <repo1password>
-2 <repository2> -q <repo2password>

Using –reencrypt, Repoutil makes and encrypts a second copy of the encrypted
repository <repository1> named <repository2> and re-encrypts it with a new
password specified in <repo2password>.

The secondary options used in the -reencrypt syntax are described in Secondary
Repoutil options.

To learn how to re-encrypt a repository using Studio, see the material on creating a
second encrypted copy of a repository in the Guide to Authoring Operations
Orchestration Flows.

Example

This example creates a second copy of the encrypted repository My Encrypted
Repository named My Second Encrypted Repository with the new password
iconclude4.

repoutil -reencrypt -1 c:\MyFolder\My Encrypted Repository –r
iconclude2 -2 c:\MyFolder\My Second Encrypted Repository
-q iconclude4

Setting default permissions for a repository
The –defaultperms option allows you to set the default access permissions for
<repository1>. This applies the default permissions to all of the contents of
<repository1>. The default permissions for a newly-created object are Read,
Write, Execute, and Link To for the group EVERYBODY.

Syntax

repoutil -defaultperms -u <username> -p <password> -1 <repository1>
[-r <repo1password>]

To learn more about access permissions in Studio, see the material on setting default
access permissions for groups in the Guide to Authoring Operations Orchestration
Flows.

 68

 The secondary options used in the -defaultperms syntax are described in
Secondary Repoutil options.

Example

This example sets default permissions for My Repository, so that all of the users in
the group EVERYBODY have read, write, execute, and link permissions for it.

repoutil -defaultperms -1 My Repository

 69

Packaging Content
The HP OO Content Packager allows you to package content—repositories and RAS
libraries—into content modules, then install the packaged content on Central and
Remote Action Service (RAS) servers in your network.

Important: RAS installed on a Windows server supports both Java and .NET RAS
operations. However, RAS installed on a Linux server only supports Java RAS
operations—it does not support .NET RAS operations.

Using the Content Packager
The process of packaging content for distribution involves the following steps:

1. Create an XML configuration file that defines:

• The content to be installed on the target Central or RAS servers.

• The RAS libraries to be updated on the target RAS servers.

• The repositories to be updated on the target Central servers.

See Creating the XML configuration file to learn how to create the XML
configuration file.

2. Package the content. The Content Packager uses the information in the XML
configuration file to incorporate the content into a content module. It then
creates a file named ContentInstaller.jar which contains the content module and
the classes needed to install it. See Packaging the content for directions.

3. Create the OO home directory folder structure on the target server where you
plan to install the content. If the target server has Studio installed on it, you can
skip this step. See Configuring the OO home directory folder structure to learn
what the structure should look like.

4. Install the packaged content. The Content Packager extracts the content into the
OO home directory, in the \updates\content\module\version folder on the target
server and then updates the Central repository, the local repository, or a RAS,
depending on the arguments you use when you install the package. See
Installing the content for instructions.

When you update a Central repository, it is important to let the authors who access
that repository know that they should update their local repositories. For information
about updating from a Central repository, see the material on publishing to and
updating from the public repository in the Guide to Authoring Operations
Orchestration Flows.

Creating the XML configuration file
The first step in packaging content is to create an XML configuration file that contains
the information needed to package and install the content. This includes the location

 70

of the repository that contains the content on the source server and the path in the
repository or library to be published to Central or a RAS.

The XML configuration file requires the following XML elements:

• A project element that defines the properties of content module.

• A ras element that specifies the location on the source server of the libraries to
be updated on the target RAS servers.

• An archive element that provides information about how and where to install the
updated content on the RAS servers.

• A repository element that specifies the location on the source server of the
repositories to be updated and where to install them on the target Central
servers.

These elements are described in the following sections.

The project element

The project element contains information about the content module that the Content
Packager creates from your content.

Syntax

<project schema_version="value" name="value" version="value"
fullname="value"></project>

Following are the project element attributes and their values:

Attribute Value

schema_version Always set this attribute to a value of 1.

This attribute is reserved for future use.

name A short name for the content package. The name
cannot contain spaces or special characters such
as quotation marks (“), asterisks (*), slash
marks (/ and \), colons (:), angle brackets (< or
>), questions marks (?), vertical bars (|),
apostrophes (), ampersands (&), semicolons
(;), and number sign (#).

fullname The full display name of the content package.
The full name can contain spaces, but not special
characters, and should be understandable and
reflect the contents of the package.

version The content package version number. The
version number is unique to the content package,
and does not need to be related to the HP OO
version numbering scheme.

Example

<project schema_version="1" name="sample" version="1.0.0" fullname="HP
OO Sample Content Package"></project>

 71

The ras element

The ras element defines the RAS libraries (.jar or .NET files) to be updated on the
target RAS servers. The ras elements must be nested inside project elements.

Syntax

<ras type="value" inJar="value" basePath="value"></ras>

Following are the ras element attributes and their values:

Attribute Value

type The language in which the RAS libraries are
written—Java or .NET. Valid values are java and
dot_net.

inJar Always set this attribute to a value of false.
Since the archives are already packaged in the
.jar file, the false value tells the Content
Packager not to place them in the .jar file again.

basePath The path where the libraries are located on the
source server, relative to the path from which
you are running the Content Packager.
Subfolders in this path will be packaged if they
include at least one file.

Example

<ras type="java" inJar="false" basePath="dist/RAS"></ras>

The archive element

The archive element provides information needed to install the RAS libraries on the
target RAS servers and determine which files should be packaged for installation on
the RAS. Each archive element must be nested inside a ras element.

Syntax

<archive isLib="value" [libFolderName=”value”]>path</archive>

where path is the path to the archive relative to the basePath established in the ras
element, using an asterisk (*) as a wildcard character.

The following describes the archive element attribute isLib and its value:

Attribute Attribute value

isLib Set this attribute to a value of false if the
library contains IActions.

Set it to a value of true if the library does not
contain libraries IActions.

libFolderName The subfolder of the content \lib\ folder where
the libraries are installed. If the isLib attribute is
set to true, the libFolderName attribute must be

 72

Attribute Attribute value

specified.

Examples

<archive isLib="false">*.jar</archive>

<archive isLib="true" libFolderName=”JBoss”>lib\JBoss*.jar</archive>

The second example installs the specified libraries into the HP OO home folder, in the
\RAS\Java\Default\repository\lib\JBoss\ folder.

The repository element

The repository element tells the Content Packager where to find the repository on
the source server and which path to publish to Central. The repository element must
be nested inside a project element. Only one repository per configuration file is
supported.

Syntax

<repository rootPath="value" inJar="value">path</repository>

where path is the source repository directory. The path attribute should be the path
for the whole repository directory. Only relative paths are supported.

Following are the repository element attributes and their values:

Attribute Value

rootpath The path of the source content within the source
repository, relative to the path from which you
are running the Content Packager. It can also be
the path of the target content within the target
repository.

inJar Set to false.

Since the repositories are already packaged in
the .jar file, the false value tells the Content
Packager not to place them in the .jar file again.

Example

The following example of the repository element instructs the packager to package
all of the repository information under “dist/repository/repo”, and to install or update
all of the contents under source /Library to target /Library.

<repository rootPath="/Library"
inJar="false">dist/repository/repo</repository>

 73

XML configuration file example

The following is an example of the XML configuration file you need to create for use
with the Content Packager.

XML configuration file example

<?xml version="1.0"?>

<project schema_version="1" name="sample" version="1.0.0" fullname="HP OO
Sample Installer">

 <ras type="java" inJar="false" basePath="dist/RAS">

 <archive isLib="false">*.jar</archive>

 <archive isLib="true” libFolderName=”myLibFolder”>lib/*.jar</archive>

 </ras>

 <ras type="dot_net" inJar="false" basePath="dist/NRAS">

 <archive isLib="false">*.dll</archive>

 <archive isLib="true">lib/*.dll</archive>

 </ras>

 <repository rootPath="/Library"
inJar="false">dist/repository/repo</repository>

</project>

Packaging the content
The Content Packager uses the XML configuration file to:

• Package your content into a content module.

• Generate the ContentInstaller.jar file which contains the content module and
installation classes.

For information about the makeup of the XML configuration file, see Creating the
XML configuration file.

To package the content

• In a command window, type:
java -Xmx1024m -jar Packager.jar {destination directory}
{configuration file.xml}

Option syntax

destination directory

Specifies the directory where the Content Packager will generate the
ContentInstaller.jar file.

configuration file.xml

Specifies the name of the XML configuration file.

 74

Configuring the OO home directory structure
The OO home directory is the folder where HP OO is installed. By default, this is
C:\Program Files\Hewlett-Packard\Operations Orchestration\.

Before you can install the packaged content, the OO home directory structure must
be in place on the target server. If the server has Studio installed on it, the structure
is already in place. If not, configure the OO home directory structure on the target
server as shown in the following figure. The \conf and \plugins folders should contain
all of the files from the version of Studio that was used to develop the content.

Figure 8 - OO home directory structure

After you create the needed folder structure, set the operating system environment
variable ICONCLUDE_HOME to the OO home directory.

Installing the content
When you install the content, the Content Packager extracts the packaged libraries
and repositories from the ContentInstaller.jar file into the OO home directory, in the
\updates\content\module\version\ folder on the target server. It then updates the
Central server repository, local repository, or RAS specified in the arguments passed
to it. By default, the Central repository at https://localhost:8443 is updated, as are
all RASes referenced by it.

 75

To install the content

• In a command window, type:
java -Xmx1024m -jar ContentInstaller.jar [-ep encrypted repository
<password>] [-centralURL url] [-centralUsername <username>]
-centralPassword <password> | -ras RAS URL [-home iconclude_home] [-
repo localRepo]

Option syntax

-ep

Specifies the encrypted password to the target repository.

-centralURL

Specifies the URL of the Central repository to be updated. The default URL is
https://localhost:8443

-centralUsername

Specifies the user name for accessing Central. The default is admin.

-centralPassword

Specifies the password for accessing Central.

-ras

Specifies the URL of the RAS to be updated. If you don’t specify a RAS URL, the
content is installed on all RASes that are registered in the target repository.

-home

Specifies the path of your OO installation. This defaults to the value of the
ICONCLUDE_HOME environment variable.

-repo

Specifies the path of the repository to update. This defaults to the centralURL
repository.

You can specify a local repository, but it is a best practice to update a Central
repository and then have the authors who use that Central repository update
their local repositories. For more information, see the material on publishing to
and updating from the public repository in the Guide to Authoring Operations
Orchestration Flows.

 76

Debugging OO client/server
problems
Communication between OO components is accomplished using SSL (Secure Sockets
Layer), which encrypts data that is transmitted between clients and servers through
the Internet. When a client/server problem occurs with OO—such as a call to the
Central Web Service not working correctly—SSL does not allow you to capture the
data packets transmitted between the client and the server to validate that data is
being sent properly.

The solution is to enable HTTP access, which allows you to capture live data packets,
and inspect or compare them. This is usually the best way to debug OO client/server
problems.

Following are two procedures that you can use for debugging:

• The first procedure allows HTTP access to Central.

• The second procedure does the same thing for RAS.

To allow HTTP access to Central

1. Stop the RSCentral service.

2. In a text editor, open the file applicationContext.xml, which is located in the
\Central\WEB-INF\ folder of the OO home directory.

3. Comment out all sections labeled HTTPS_SECTION_BEGIN, and then save the file.

4. Open the file web.xml, which is located in the \Central\WEB-INF\ folder of the OO
home directory.

5. Comment out all sections labeled HTTPS_SECTION_BEGIN, and then save the file.

6. Restart the RSCentral service.

7. Connect to port 8080 using HTTP rather than port 8443 using HTTPS.

To allow HTTP access to RAS

1. Stop the RSJRAS service.

2. In a text editor, open the file jetty.xml, which is located in the
\RAS\Java\Default\webapp\conf\ folder of the OO home directory.

3. Comment out the line:
<New class="org.mortbay.jetty.security.SslSelectChannelConnector">

4. Add the following line directly under the line you commented out in the previous
step:
 <New class="org.mortbay.jetty.nio.SelectChannelConnector">

5. Comment out the lines starting with:

• <Set name="Keystore">

• <Set name="Password">

• <Set name="KeyPassword">

• <Set name="NeedClientAuth">

6. Save the file.

 77

7. Open the file applicationContext.xml, which is located in the
\RAS\Java\Default\webapp\WEB-INF\ folder of the OO home directory.

8. Comment out all sections labeled HTTPS_SECTION_BEGIN and save the file.

9. Open the file web.xml, which is located in the \RAS\Java\Default\webapp\WEB-
INF\ folder in the OO home directory.

10. Comment out the sections labeled HTTPS_SECTION_BEGIN, and then save the file.

11. Restart the RSJRAS service.

12. Connect to port 9004 using HTTP instead of HTTPS.

To turn off the allowance of HTTP connections for either procedure, just reverse the
procedure.

 78

Index
batch file, using to run flows from outside Central, 51

best practices
for OO content, 4

client/server problems, debugging, 76

command line, running flows from, 43

Content Packager
archive element, 71
Central repository, 69
content module, 69, 70, 73
ContentInstaller.jar, 69, 73, 74
ICONCLUDE_HOME environment variable, 74
install the packaged content, 69
Installing the content, 74
local repositories, 69
OO home directory folder structure, 69, 74
packaging content, 73
project element, 70
ras element, 71
RAS libraries, 71
repository element, 72
source server, 70
target server, 69, 74
updating RAS libraries, 69
updating repositories, 69
XML configuration file, 69, 73

archive element, 70
example, 73
project element, 70
ras element, 70
repository element, 70
XML elements, 70

content, how it is organized in Studio, 4

debugging OO client/server problems, 76

decrypting a repository, 66

encrypting a repository, 66

exporting a repository, 64

flows
guidelines for layout, 5
running flows asynchronously, 45

flows, running from outside Central, 42
about, 42
accessing the WSCentralService WSDL, 55
creating a URL for running a flow, 43
creating an encrypted password, 54
from a command line, 43
how WSCentralService manages security, 55
identifying the flow in the URL, 44
importing the SSL certificate for

WSCentralService, 56

programmetically using the WSCentralService
API, 55

registering RSFlowInvoke with GAC, 53
RSFlowInvoke and JRSFlowInvoke results, 53
searching for a flow using RSFlowInvoke, 51
specifying the inputs for a flow in a URL, 44
using RSFlowInvoke or JRSFlowInvoke, 48
using RSFlowInvoke or JRSFlowInvoke from a

command line, 50
using RSFlowInvoke or JRSFlowInvoke in a

script or batch file, 51
using the WSCentralService API documentation,

55
using Wget, 46
with tools that access the REST service, 46
with URLs created in Central, 42
WSCentralService SOAP API sample client code,

56

guidelines
for flow layout, 5
for naming conventions, 11

HTTP connections, allowing for debugging, 76

IAction
RAS operations, 13
Remote Action Service, 13

IActions
.dll files, 13, 14
.dll libraries, 35
.jar files, 13, 14
.NET Commons Library classes, 38
.NET Convert.ToString() method, 28
.NET IAction code example, 35
.NET, required development files, 34
About RAS, 13
ActionResult object, 25
ActionResult object, .NET syntax, 27
ActionResult object, Java syntax, 26
ActionTemplate, 20
authoring, 13
com.opsware.pas.content.commons.util, 37
Commons.dll, 34
Commons.dll file, 38
ContentCommons.jar, 29
creating, 14
debugging .NET IActions, 35
debugging your Java IActions, 31
disabling .NET IAction debugging, 35
disabling RAS debugging, 32
execute method, 25
getActionTemplate method, 15
getActionTemplate method, .NET syntax, 18
getActionTemplate method, Java syntax, 16
guidelines for creating, 28

 79

IAction interface, 13, 14
IAction.dll, 34
Identities class, 38
Identities methods, 28
impersonation styles, 38
implementing .NET IActions, 34
IPC connections, 38, 40
Java Commons Library class, 37
Java IAction code example, 32
Java IActions, implementing, 29
Java IActions, using multiple versions of third-

party libraries, 30
JRAS-sdk.jar, 29
languages supported by RAS, 14
loading your .NET IActions into Studio, 34
loading your Java IActions into Studio, 29
Password class, 41
platforms supported by RAS, 14
RASBinding object, 15
RASBinding objects, 20
RASBindingFactory method, 22
RasBindingFactory method, .NET syntax, 24
RasBindingFactory method, Java syntax, 22
RCAgentLib.dll, 34
required development files for Java IActions, 29
RSJRAS service, 29, 31, 32, 35
StringUtils class, 37
StringUtils.resolveString method, 28
system accounts in, 28
try/catch block, 25, 28

JRSFlowInvoke
encrypting a password for, 54
results, 53
using from a command line, 50
using in a script or batch file, 51
using to run flows from outside Central, 48

naming conventions, 11

OO SDK
about the SDK Guide, 2
components, 1
Content Packager, 2
contents, 1
folder structure, 1
functionality, 1
IActions, 2
JRSFlowInvoke.jar, 2
repoutil.exe, 2
RSFlowInvoke.exe, 2
SDKGuide.pdf, 2
WSCentralService SOAP API, 2

publishing a repository, 62

publishing and updating a repository, 64

RAS

Overview, 13

reencrypting a repository, 67

Remote Action Service. See RAS

repoutil.exe, 58
-1 option, 59
-2 option, 60
-c option, 60, 62
-decrypt option, 59, 66
decrypting a repository, 66
-defaultperms option, 59, 67
definition, 58
-encrypt option, 59, 66
encrypting a repository, 66
-excludepath option, 61
-export option, 59, 64
exporting a repository, 64
-f option, 65
-includepath option, 61
-includereferences option, 61
-loginurl option, 61
-p option, 61
primary options, 58
-publish option, 58, 62
publishing a repository, 62
publishing and updating a repository, 64
-publishupdate option, 59, 64
-q option, 61
-r option, 62
-reencrypt option, 59, 67
reencrypting a repository, 67
secondary options, 59
setting default permissions for a repository, 67
-u option, 62
-update option, 59, 63
updating from a repository, 63
-upgrade option, 59, 65
upgrading a repository, 65
using, 58
-verify option, 59, 65
verifying a repository, 65
-x option, 64

REST service
running flows with tools that access, 46
using JRSFlowInvoke.jar, 48
using RSFlowInvoke.exe, 48
using the Wget utility, 46

RSFlowInvoke
encrypting a password for, 54
registering with GAC, 53
results, 53
using from a command line, 50
using in a script or batch file, 51
using to run flows from outside Central, 48

 80

using to search for flows, 51

scripts, using to run flows from outside Central, 51

searching for a flow using RSFlowInvoke, 51

setting default permissions for a repository, 67

Studio Library
folders, 4
how content is organized in, 4

style guide for OO content, 4

updating from a repository, 63

upgrading a repository, 65

URLs created in Central, using to run flows from
outside Central, 42

verifying a repository, 65

Wget utility, running flows using, 46

WSCentralService SOAP API
accessing the WSCentralService WSDL, 55
API documentation, 55
importing the SSL certificate for, 56
sample client code, 56
security and authentication with, 55
using to run flows from outside Central, 55

	Warranty
	Restricted Rights Legend
	Trademark Notices
	Finding or updating documentation on the Web
	Where to Find Help, Tutorials, and More
	Support
	Welcome to the Operations Orchestration SDK
	SDK contents
	About the SDK Guide
	Content style guide and best practices
	How default OO content is organized in Studio
	Guidelines for flow layout
	Best practices for flows
	Best practices for steps
	Best practices for operations
	Naming convention guidelines
	Authoring IActions
	What is an IAction?
	About RAS
	Creating IActions
	About the IAction interface
	getActionTemplate method
	RASBinding objects

	execute method
	Guidelines for creating IActions
	Important points for creating Java IActions
	Important points for creating .NET IActions

	Implementing Java IActions
	Required development files
	Loading your Java IActions into Studio
	Using third-party libraries for Java IActions
	Debugging your Java IActions
	Java IAction code example

	Implementing .NET IActions
	Required development files
	Loading your .NET IActions into Studio
	Debugging your .NET IActions
	.NET IAction code example

	Useful Java Commons Library class
	com.opsware.pas.content.commons.util StringUtils class

	Useful .NET Commons Library classes
	Identities class
	Password class

	Finding and Running Flows from Outside Central
	About finding and running flows from outside Central
	Running flows with URLs created in Central
	Running a flow from a command line
	Guidelines for running a flow from a command line
	Creating a URL for running a flow
	Identifying the flow in the URL
	Specifying the inputs for a flow in a URL
	Running flows asynchronously using a URL

	Finding and running flows with tools that access the REST service
	Running flows using Wget
	Finding and running flows using RSFlowInvoke or JRSFlowInvoke
	Using RSFlowInvoke or JRSFlowInvoke from a command line
	Using RSFlowInvoke or JRSFlowInvoke in a script or batch file
	Searching for a flow using JRSFlowInvoke
	RSFlowInvoke and JRSFlowInvoke results
	Registering RSFlowInvoke with the Global Assembly Cache
	Creating an encrypted password

	Finding and running flows using the WSCentralService SOAP API
	Accessing the WSCentralService WSDL
	Using the API documentation
	How WSCentralService manages security and authentication
	Importing the SSL Certificate
	Sample client code
	Service stubs sample

	Working with repositories from outside Studio
	Using the Repository Utility
	Primary Repoutil options
	Secondary Repoutil options

	Publishing a repository
	Updating from a repository
	Publishing and updating a repository simultaneously
	Exporting a repository
	Verifying a repository
	Upgrading a repository
	Encrypting a repository
	Decrypting a repository
	Re-encrypting a repository
	Setting default permissions for a repository
	Packaging Content
	Using the Content Packager
	Creating the XML configuration file
	The project element
	The ras element
	The archive element
	The repository element
	XML configuration file example

	Packaging the content
	Configuring the OO home directory structure
	Installing the content
	Debugging OO client/server problems

