
 Performance and Sizing Guide

HP Operations Manager 9.01 on Linux

Introduction... 2

Performance Findings... 2
Summary of Performance Findings ... 3
Unmeasured Performance Findings... 5

Executive Summary .. 5
Hardware Recommendations for Optimal Message Throughput ... 5
Peak Performance of HPOM on Linux ... 6
Startup time of the Java GUI .. 6

Test Environment.. 6
Management Server Test Setup.. 6
Display Stations Test Setup .. 8
Managed Nodes ... 8
Message Generation .. 8

Test Results.. 10
Message Throughput: Varying the Number of Active Java GUIs... 10
Message Throughput: Duplicates Message Suppression.. 12
Message Throughput: Diverting Messages to MSI Programs .. 14
Java GUI Startup Time: Varying the Number of Managed Nodes and Messages................................... 15
Java GUI Startup Time: Varying the Number of CMAs.. 16
Service Navigator .. 18
Throughput when forwarding... 19
Performance of the History Download: Varying the Number of Downloaded Messages 21

Appendix ... 22
Ext2 File System Tuning .. 22

Introduction
The biggest challenge when measuring the performance of distributed network and system
management applications such as HP Operations Manager (HPOM) on Linux is not measuring the
performance itself, but determining the parameters that affect the performance of the application.

The following types of parameters impact the performance:

 Static parameters
o For example, disk space requirements, kernel configuration, and so on

 Dynamic parameters
o For example, memory usage of HP Operations Manager on Linux processes and CPU

utilization
 Network parameters

o For example network usage and protocol overhead (for example, jumbo frames)
 Application related parameters

o Number of operators working in parallel
o Number of messages per second received by the management server
o Type and complexity of messages to be processed by the management server
o Number of active and history messages in the message browser
o Number of nodes in the topology/object database that are maintained and

monitored by HPOM on Linux
o Number of service objects in Service Navigator
o Number of custom message attributes in messages

There is no fixed limit for the number of nodes that an HP Operations Manager on Linux management
server can manage1. The capability of an HP Operations Manager on Linux management server is
based on the number and types of messages that must be processed. The number of nodes depends
on the setup of the management domain. The more processing HP Operations agents perform on the
managed node (for example, local automatic actions or message filtering), the less performance
impact can be observed on the management server.

This guide exclusively deals with performance values seen on Linux systems.

Performance Findings
In large-scale HP Operations Manager on Linux environments, many factors determine the optimal
setup with the best performance. In the long run, there are trade-offs between performance, security,
hardware and software costs, and the total cost of ownership. This document highlights a few key
performance findings:

 Various scenarios of HPOM message processing and throughput on the HPOM server
 Startup time of the HPOM Java UI (including Service Navigator)

1 Though we do not recommend connecting more than 3000 nodes fitted with agents (aka “managed nodes”) directly. The limitation is based on

the number of connected agents to the system in parallel. External/message allowed nodes can be connected in a much higher number:
customer databases have been seen with up to 100.000 external/message allowed nodes – increased history download time when not using
the “no orphan” settings have been observed though.

Note:
The HPOM on Linux server is a 64-bit application, running on a 64-bit
operating system only and uses a 64-bit Oracle database. This is the first
HPOM version ever to use and consist of 64-bit components only.

Summary of Performance Findings
The following HPOM on Linux performance findings have been measured:

 Management server

o The number of used CPUs depends heavily on the number of concurrent Java GUIs,
because each Java UI (with a different user login) is served by its own instance of an
opcuiwww process.

o Depending on the hardware, number, and usage profile of concurrent GUIs and MSI
applications, the HPOM server can sustainably process several hundred HPOM
messages per second.

o Although the number of managed nodes has no significant impact on both the Java
GUI and the Oracle database message throughput, it does have an impact on some
HPOM server processes.

o If HPOM duplicate message suppression is enabled, message keys should be
explicitly set for the messages. To prevent poor throughput a unique message key is
generated automatically (to suppress this feature set the variable
OPC_CREATE_AUTO_KEYS to FALSE in the opc namespace).

o Using MSI on the HPOM agent and the HPOM server with more than five
simultaneous MSI programs results in decreasing message throughput.

o Using MSI on the HPOM agent and the HPOM server each with MSI programs in
sequence can lead to message delay.

o HPOM servers can survive massive event storms and then continue normal operations
after a short period of time.

 Manager-of-Manager (MoM)
o With forwarding enabled the data rate into the local database is more than 10%

slower than without forwarding enabled.
o The message rate into the forwarding target’s database is around 50% of the

sending one.
o Forwarding only those messages required on the destination HPOM server minimizes

performance overhead.
o The time to synchronize HPOM message acknowledgements is linear and based on

the number of acknowledged messages.
 Oracle Database

o Reducing the bulk of acknowledged messages to less than 5,000 messages avoids
disk and network bottlenecks.

o HPOM history message download speed is about 700 to 800 messages per second.
o Time required to download history messages depends on the configuration of the

Oracle database parameters, particularly the log file groups and buffers.
o When downloading a large number of HPOM history messages, using a higher bulk

commit size than the default improves the performance.

 Java GUI (including Service Navigator)
o As more Java GUIs are started, message throughput decreases in a linear fashion, as

long as there are still CPUs available to serve the associated GUI processes. If no
more CPUs are available, the message throughput decreases faster.

o HTTPS is the default communication method to the Java GUI. It is faster and more
secure than HTTP.

o Number of managed nodes has no significant impact on the start-up time of the Java
GUI.

o A significant impact on the start-up time of the Java GUI is observed with 50,000
and more active messages to be loaded. If there are too many messages to be
loaded, the frontend can run into a timeout. You can tweak this parameter2 on the
frontend to allow a longer load time.

o Keeping the number of active messages as low as possible (by using duplicate
suppression, event correlation, and so on) reduces the start-up time for the Java GUI.

o Java GUI preference “Show All Messages” should be used only if really needed.
o Only the number of Java GUIs needed at the moment should be started and running.
o When using CMAs, the additional performance degradation of the Java UI start-up

time and the message throughput is low. It is recommended that you keep the number
of CMAs at or below 10 CMAs per message.

o To increase the usability of the Java GUI, it is recommended that acknowledged
messages should be marked only (by setting the HPOM server configuration variable
OPC_DIRECT_ACKN_LIMIT to 0). Using this option will ensure that the
acknowledged messages get moved to the History table automatically at a later point
of time.

o If deep Service Navigator graphs are used (for example, service graphs with more
than five levels), it is recommended that you use the feature “Service Load on
Demand” to avoid long delays in the start-up time of the Java GUI.

 HTTPS agent

o Depending on the hardware and other competing applications, one HTTPS agent is
able to send up to 4000 messages per second (using opcle).

o Maximum transfer rate from the agents to the server is faster than the message
processing rate on the server.

 Server Pooling

o HPOM on Linux Server Pooling provides an easy-to-administer method for managing
large-scale environments combined with the capability to quickly switch the workload
to different HPOM servers if an HPOM server system is not reachable or is in
maintenance mode. For details, see the High Availability Through HPOM Server
Pooling white paper. HPOM on Linux Server Pooling is also an attractive alternative
to hardware-based high-availability setups3.

2 “reconnect_timeout” which can be found in the local itooprc of the GUI node
3 As seen during tests the forwarding rate is around 50% compared to the one without forwarding into the DB. With enabled forwarding the data

rate into the local database is 10% slower than without forwarding enabled.

Unmeasured Performance Findings
The following HPOM on Linux performance findings have not been measured:

 HTTPS agent performance
You can find some HPOM HTTPS agent performance-related measures in the HP Operations
Manager for UNIX 8.10 Performance and Configuration Guide.

 Local or remote Oracle database
Running a remote Oracle database offloads the HPOM server with CPU and main memory usage.
However, remote SQL statements may also have performance and security-related limitations.

 Physical system or virtual machine
HPOM on Linux can be run on a physical system or on a virtual machine (VM). Although running
HPOM on Linux on a VM can decrease performance somewhat, the ease of administration (for
example, setting up multiple HPOM servers using VM images, separating “competing” applications
in different VMs, and so on) makes it an option worth considering4.

 Speed of name resolution on the management server
During the startup of the HPOM server, all node names currently recognized by HPOM on Linux are
resolved to fill the corresponding HPOM server process caches for fast processing. Depending on
the speed of Domain Name Service (DNS), this name resolution could take a considerable amount
of time. Best answer time has been experienced using the local /etc/hosts file.

Executive Summary
The tests show how HPOM 9.01 on Linux (64 bit) performs. For details about the HPOM 9.00 on HP-
UX performance tests, see the corresponding Performance and Sizing Guide.

Note:
The core components of the HP Operations agent can send messages at a
higher rate than an HPOM management server on any platform can
process. (This was verified with the logfile encapsulator process opcle,
which uses the fewest resources.) This document therefore does not cover
the agent performance.

The tests are described in detail in the section “Test Results” on page 10. For your reference, the
description of each test includes the metrics that were measured, the parameters that were varied, the
test scenario, the test results, and any conclusions that can be drawn from the test results.

Hardware Recommendations for Optimal Message Throughput
CPU5
 3 cores for the base system
 1 core for message forwarding

4 From other tests done on virtual machine we expect a performance decrease of more than 30% by running in a virtual environment compared to

the one seen on the same physical hardware
5 If the number of CPUs is lower than the calculated one, the system will run anyway without problems in a normal production environment. The

peak performance mentioned in this document will not be reached though.

 1 core for each starting Java GUI6
 1 core per 50 nodes (sending messages in parallel – currently “silent” nodes do not count)
 1 core per active Admin UI
 0.1 cores per running Java GUI
In general, it is recommended to use cores that are faster rather than many. (The process that
represents the bottleneck (opcmsgm) is single threaded.)

Memory7
 Oracle 11g default memory depends on the number of CPU cores in your system – see Oracle

documentation for further information
 1.2GB for the Admin UI
 256MB per opened Admin UI
 3GB for other HPOM processes (4GB for more than 200,000 messages in the database)
 More than 256MB per Java GUI (depends on the number of messages in the database and the size

of the service tree)
 1GB for base system

Disks
 20 to 30GB for the database, fast disks, non-journaling8,9
 More than 4GB for /var/opt/OV (depends on the number of downloads to the default location)
 4GB for /opt/OV
 500MB for /etc/opt/OV

Peak Performance of HPOM on Linux
The tests with HPOM on Linux show a maximum message throughput of up to 2,800 messages per
second (in bulked mode from the agent) on a dedicated system. This system was only available for
basic throughput tests – all given values have been measured with the machine mentioned.

Two different systems were tested: 4Core Xeon at 2.83GHz with 8GB memory (~1,400 msg/s peak)
and 32Core Opteron at 2.9GHz with 256GB memory (~2,800 msg/s). The performance boost
observed with the latter system is due to better IO architecture of the Opteron CPUs.

Startup time of the Java GUI
The startup time of the HPOM on Linux Java GUI is faster than on any HP-UX systems seen. Though
the speedup (less than 20%) is not as significant as the increased message throughput rate.

Test Environment

Management Server Test Setup
Hardware System

Network Dedicated 1GigaBit network for the display stations and for the managed nodes.

Machine Type HP dl460c

6 Each CPU spent on an Admin UI and Java GUI requires an additional one for the DB server (independently if the DB is local or remote).
7 The memory can be lower than the calculated one. If given memory is too low, swap will be heavily used and – in case of a message storm –

will slow down the system additionally due to its increased memory consumption.
8 The default DB can only extend up to 8GB at max – contact your DBA for your current settings
9 Spreading the tablespaces over a number of disks does not give a huge boost

Processor 1 x Intel Xeon E5440 (4core@2.83Ghz)

Main Memory 8 GB

Disk space fiber channel (EVA 4000)

OS RedHat Enterprise Linux 5.3

Swap space 10 GB 10

OS-Patches none

Kernel Configuration
The kernel parameters were checked during the HPOM setup according to the answers given in this
phase:

Parameters used for the configuration:

Configuration Parameter Value

Number of Java GUIs11 50

Service Navigator GUIs 5

Number of HTTPS agents 10000

HPOM on Linux Version
 Base Version A.09.01

10 Swap space was actually never used since the system never required more memory than RAM existed. There always was RAM available for

caching.
11 On RHEL5.3, the number of simultaneous xinetd-started processes had to be extended for this test.

RDBMS Installation
 ORACLE 11.1.0.7
 Configurable parameters in file initopenview.ora [default values in brackets].

Parameter Value [Default Value]

memory_target 512M [0]

db_files 80 [50]

db_file_multiblock_read_count 32 [16]

log_buffer 1572864 [65536]

The redo logs 5 x 100 MB [3 x 20 MB]

5 log groups with one log file each.

 Tablespaces in Oracle were created as unlimited bigfiles.

Display Stations Test Setup
Windows
Used for JAVA GUIs.

Machine Type 2 x dl460c

Main Memory 6 GB

CPU Xeon E5450 (Quad,
3GHz)

OS Windows 2003 R2

Managed Nodes
No physical nodes were connected (except for the management server itself). The database was
loaded with real IP nodes (proxied by the existing server).

Message Generation
HP LoadRunner 9.50 was used to send messages. To test bulking, the logfile encapsulator (opcle) was
used. CPU load showed that the logfile encapsulator is faster than the message agent (opcmsga),
which in turn is faster than the message manager (opcmsgm) on the server. So any agent can fully
load the server with a simple logfile policy.
When there are lots of messages generated on a node the sending part of the agent will go into bulk
mode; that is, it will send the messages not one by one but multiple of them in one large package
(similar to jumbo frames in networking). Using this bulking mode speeds up database throughput by
100% (HP LoadRunner versus bulking agent) because of easier preprocessing on message reception.

Miscellaneous
 All nodes in the node groups are defined as ordinary managed nodes of type WIN32, with a name

and IP address (these nodes were not reachable via IP though). Since the agents on these nodes
cannot directly send messages, they are referred to as proxied nodes. All IP addresses were
resolved via /etc/hosts to achieve faster IP and name resolution (/etc/nsswitch.conf was
changed accordingly).

 Real managed nodes (that also generate a few messages for themselves) are used to generate the
messages for the proxied nodes. The HP Operations agent is installed on the real managed nodes.

 Tests have shown that there are differences in the message throughput regarding real nodes versus
proxied nodes (probably due to increased lookups for assignments). From these results, a better
performance in message throughput may be expected for real nodes.

The Message Profiles
The Message Generator is able to create messages of various types. These types are flagged with a
special code in the message text which triggers a dedicated condition in the assigned Message
Interface template.

The following message types are available:

NO Normal messages

OL Normal messages, but with flag “on server log only”

AA messages with automatic action (Echo50)

AN see profile AA, but output of automatic action is recorded as annotation (size of annotation for the
Echo50action is 50 characters)

AC see profile AA, but message is automatically acknowledged

ACN see profile AC, but output of automatic action is recorded as annotation

NT messages which are forwarded to the notification service

TT messages which are forwarded to the trouble ticket service

IN messages with fixed instructions

Test Results
The following sections describe the executed tests in more detail.

Message Throughput: Varying the Number of Active Java GUIs
Table 1 Metrics and Parameters

Metric Number of messages per second (message throughput), until all
messages are shown in all Java GUIs.

Number of messages per second (message throughput), until all
messages are stored in the HPOM database.

Parameter Number of Java GUIs.

Table 2 Test Scenario

Measured Value Time until the last expected message is shown in all message browsers
is taken as the result of this test.

Time on server to receive all messages (Receive Time of message)
divided by number of messages is taken as the “Rate of messages
stored in the HPOM database”.

Message Generator 5,000 messages, severity normal.

Messages are targeted to 100 nodes in four node groups, that is 50
messages per node.

Operators used are responsible for 400 nodes.

Node Bank has 2,000 managed nodes.

No history messages.

Java GUI Options Same HPOM user account.12

Show all messages.

Refresh interval 5 seconds. 13

Test Results
“Figure 1 Message Throughput - Number of Java GUIs” shows the message throughput based on the
number of running Java GUIs. The message generator is the local HP Operations agent.

Compared to the HPOM for HP-UX tests, a performance decrease can be observed already for the
first Java GUI. This is because the opcuiwww process uses most CPU power, which is already at its
limit with only four CPUs. (This test could not be carried out on the dedicated, more powerful test
system.)

12 Given that there are enough CPUs, different user account won’t slow down the system very much – but keep in mind that there is some

additional overhead in the server though (opcdispm).
13 The refresh interval has an impact on the outcome of the bulk transfer of messages to the Java GUI: the smaller the refresh interval, the smaller

the performance gain of the bulk transfer. For most of the Java GUI tests, the smaller refresh value was used to get more timely results. The
recommendation for production use is still 30 seconds – which is the default in the Java GUI.

Figure 1 Message Throughput - Number of Java GUIs

0

1

10

20

0 100 200 300 400 500 600 700

580

568

453

385

153

131

79

Throughput to DB/GUI per #of GUIs

to GUI

to DB

Number of messages per second

N
u

m
b

e
r

o
f G

U
Is

The impact of the network communication protocol of the Java GUI (HTTP versus HTTPS
communication) was not part of this test. Tests with HPOM for HP-UX show a performance penalty of
50% for using HTTP instead of HTTPS.

Message Throughput: Duplicates Message Suppression
Table 3 Metrics and Parameters

Metric Number of messages per second (message throughput), until all
messages are shown in the Java GUI.

Parameter Message duplicate counter active versus inactive.

Number of different message keys (0, 1, 10,000).

Table 4 Test Scenario

Measured Value Time until the last expected message has arrived in the database.

Message Generator 500,000 messages, severity normal, all messages were different
(message text contained a unique number) but only 1 respectively
10,000 different message keys were used, bulked.

All messages are delivered during the tests (to conform to HPOM for
Windows tests). Since the local agent is faster than the opcmsgm
(opcle seen at 3125msg/s, opcmsga at 2270msg/s), except for the
CPU load, there is no penalty to deliver the messages online.

Messages are targeted to 10,000 nodes in four node groups, that is
50 messages per node.

1 CMA per message.

Operators used are responsible for 400 nodes.

Node Bank has 50,000 managed nodes.

No history messages.

Java GUI Options No Java GUIs were started.

Miscellaneous The feature “Add duplicates as annotations” was turned off (default).

Because of the delivery speed, it was not possible to monitor the throughput decrease while receiving
the 10,000 message keys (less than 9s).

Test Results
The OPC_CREATE_AUTO_KEYS feature reduces performance problems with empty message keys.

Table 5 Message Throughput - Duplicates Counter

Message Keys OFF Deduplication enabled/no message key explicitly set by
policy14 (0)

1 10,000

Msgs/sec 1400 90015 1562 1100

OFF HPOM feature Message Duplicates Counter was turned off

0 Message Duplicates Counter turned on, no message keys explicitly set

1 Message Duplicates Counter turned on, same key for all messages

10,000 Message Duplicates Counter turned on, using 10,000 different keys

14 Message keys are automatically created when OPC_CREATE_AUTO_KEYS is set to TRUE. Setting this value to FALSE as seen in previous

HPOM performance guides will degrades performance exponentially with the number of active messages!
15 At 100,000 messages.

Figure 2 Message Throughput - Duplicates Counter

no dedup

1

10000

100000

0 200 400 600 800 1000 1200 1400 1600 1800

1400

1562

1100

900

Message Keys

Influence of number of keys

msgs/s into DB

N
u

m
b

e
r

o
f k

e
ys

The following facts may be derived from these results:

 The number of different message keys has an impact on the performance: the more message keys
there are already in the database, the longer the time to process the messages.

Hints for own message key creation and message key mapping in general:

 The message key should be reasonable short:
less than 255 characters

 When mapping for pattern use anchoring:
“^” and/or ”$”

 Use pattern instead of multiple possible matches:
for example, “^UP_<*>” instead of “^UP_foo|^UP_bar|^UP_blah”

 Avoid pattern combinations:
for example, do not use “some<*><@><*>thing”

Message Throughput: Diverting Messages to MSI Programs
Table 6 Metrics and Parameters

Metric Number of messages per second (message throughput), into the
database via the message stream interface (MSI).

Parameter Number of MSI programs.

MSI active on server.

Table 7 Test Scenario

Measured Value Throughput into the database.

Message Generator 100,000 messages, severity normal, not bulked.

Messages are targeted to 100 nodes in four node groups, that is 50
messages per node.

Simple messages (1 CMA, no message mix).

Operators used are responsible for 400 nodes.

Node Bank has 50,000 managed nodes.

No history messages.

Java GUI Options No Java GUIs were started.

Test Results
The following table shows the results of this test.

of MSIs Throughput into database [msgs/s]

0 800

1 800

2 800

10 80016

The internal mechanism of diverted MSIs in sequence works like “read message from input queue”
“process in MSI1” “put message back to input queue” “read message from input queue”
“process in MSI2” and so on.

Under heavy load and very lightweight MSIs, we saw on the HPOM on Linux system a ratio of 1:2
processed to new events in the incoming queue. In the very rare circumstance of 10 MSIs, the ratio of
messages into the database versus incoming messages would be 1:210. This will lead to a massive
growth of the message queue (msgm) and a perceived low incoming rate to the database while the
message storm continues. It is therefore strongly advised to use the tools provided to prevent such a
message storm.

The following facts may be derived from these results:

 The number of MSI programs does not affect the throughput into the database.
 Too many MSI programs will delay message delivery in case of a message storm.
Conclusions:

 Using a small number of MSI programs results in no performance loss.

16 Peak rate after all messages have been processed in the MSIs.

Java GUI Startup Time: Varying the Number of Managed Nodes and
Messages
Table 8 Metrics and Parameters

Metric Startup time of two Java GUIs.

Parameter Number of managed nodes for which users are responsible.

Number of active messages.

Table 9 Test Scenario

Measured Value Time until the last GUI is started and fully functional.

Message Generator 5,000 and 50,000 messages, severity normal, were generated before
the test started.

Messages are targeted to 100 nodes in four node groups, that is 50
and 500 messages per node.

Operators used are responsible for 500 and 2,000 nodes.

Node Bank has 50,000 managed nodes.

No history messages.

Java GUI Options Different HPOM user accounts.

Show all messages.

Refresh interval 5 seconds.

Test Results
“Table 10 GUI Startup Time - Managed Nodes / Active Messages” lists the results of this test: the time
in seconds needed to start two GUIs with different HPOM on Linux user accounts.

For the GUIs, we observed a significant difference between the time for the first and the following
GUIs where 50,000 active messages were shown. The time for the first GUI is listed first, then the time
for the following GUIs. Note that the times seen varied over a wider range – the more GUIs the larger
the times varied.

Table 10 GUI Startup Time - Managed Nodes / Active Messages

Responsible Nodes

 500 2.000

Active Messages: 5,000 6 10

Active Messages: 50,000 63 / 70 43 / 79

The following facts may be derived from these results:

 The number of managed nodes in the HPOM user’s realm has almost no impact on the startup time
of the Java GUI.

 The number of active messages has an impact on the startup time of the Java GUI, although a
significant increase is seen only in the range of 50,000 messages and above.

Conclusions:

 Up to 2,000 managed nodes and 50,000 active messages, the startup times of the Java GUI are
approximately 80 seconds. Thus, too many active messages should be prevented (use duplicate
suppression, event correlation, and so on).

Java GUI Startup Time: Varying the Number of CMAs
Table 11 Metrics and Parameters

Metric Startup time of two Java GUIs displaying all CMAs attached to the
HPOM messages.

Parameter Number of CMAs attached to the messages.

Table 12 Test Scenario

Measured Value The time until the last Java GUI is up and functional, that is messages
are displayed in the message browser. The Java GUI was configured
in such a way that all CMAs were shown in the browser.

Message Generator 10,000 messages, severity normal, generated before the test started.

A varying number of CMAs was attached to each message. Each
CMA had a length of 20 characters.

Messages are targeted to 100 nodes in four node groups, that is 10
and 100 messages per node.

Operators used are responsible for 500 nodes.

Node Bank has 10,000 managed nodes.

No history messages for this test.

Java GUI Options Different HPOM user accounts.

Show all messages.

Refresh interval 5 seconds.

Test Results
“Table 13 Java GUI Startup Time - CMAs in Active Messages” lists the results of this test: the time in
seconds needed to start two Java GUIs with different HPOM user accounts, with a varying number of
active messages (and CMAs), and no history messages.

Table 13 Java GUI Startup Time - CMAs in Active Messages

Number of CMAs 1 10 50

Active Messages: 10,000 14 35 53

“Figure 3 Java GUI Startup Time - CMAs” shows the test results. (There is no graph showing tests with
history messages only.)

Figure 3 Java GUI Startup Time - CMAs

1 10 50
0

10

20

30

40

50

60

14

35

53

GUI startup time vs. # of CMAs

startup time of GUI [s]

of CMAs

se
co

nd
s

The following facts may be derived from these results:

 The number of CMAs per message itself has only a small impact on the startup time of the Java
GUI.

 The delay in the startup time of the Java GUI depends on the absolute number of different CMAs
per message in a non-linear function.

Conclusions:

 CMAs increase the startup time of the Java GUI.17

17 Tests regarding the message flow into the database showed that already the delivery into the database suffers when using many CMAs

(throughput with 50 CMAs/message is reduced to nearly a seventh of the maximum peak rate).

Service Navigator

Note:
Service Navigator wasn’t part of this performance test. Performance tests
for HPOM Service Navigator are planned for a later revision of this
document.
Taking the other found values into account we would at least expect the
system to perform equally to an HP-UX system.

Throughput when forwarding
Table 14 Metrics and Parameters

Metric The message rate into an equally fitted system

Parameter none

Table 15 Test Scenario

Measured Value Throughput to local and remote DB

Status of queues on both systems

Message Generator Messages of severity normal are generated by the local agent of the
master server

No active messages before starting test

Node Bank has 50,000 managed nodes

Java GUI Options No Java GUIs were started for this test

Environment Two identical machines building server pool

Machines are different from those used in the other tests: 32 core
Opterons with 256GB of memory

Test Results

Figure 4 DB throughput local and remote MoM

The following facts may be derived from these results:

 Processing is slightly decreased on the source server (not visible in the graph)
 Message rate into target DB is roughly half of the one on the source server
 The queue of the forward manager increases => the forward manager is unable to get rid of

the message to the bbc transport mechanism in time
 No queue for https builds up (not shown here) –> https is not a bottleneck

Conclusions:

 In case of using server pooling cut down the throughput expectations into half: the secondary
server’s rate into the DB is ~50% of the primary one. After the message storm the secondary
server needs some time to catch up with the primary one.

Note:
 The machines used are the second ones mentioned in Hardware System and the results have

to be cut at least by half to compare them to the other values in this guide

Performance of the History Download: Varying the Number of
Downloaded Messages
Table 16 Metrics and Parameters

Metric The time to download a varying number of history messages.

Parameter Oracle Log Buffer and Log File Groups.

Table 17 Test Scenario

Measured Value This test measures the time needed to download a varying number of
history messages. The download tool opchistdwn was started on the
command line.

Message Generator 100,000 history messages of severity normal were generated before
this test

No active messages

No messages were generated during the test

Node Bank has 10,000 managed nodes.

Java GUI Options No Java GUIs were started for this test.

Environment Automatic downloading of history messages was disabled.

Default HPOM configuration regarding marking and moving
acknowledged messages was used.

The HPOM message mover process was disabled
(OPC_ACK_MOVE_INTERVAL=0).

Test Results
“Table 18 Performance of History Download” lists the results of this test. Shown are the times in
seconds beginning with the start of the opchistdwn utility until its termination. In addition, the
messages downloaded per second are shown, too.

Table 18 Performance of History Download

Configuration Config A Config B

Time for download [s] 1,846 183

Time [s] / 1.000 messages 18.46 1.83

Messages per second 54.2 546

Legend:

Config A Oracle Log Buffer size = 1.5MB

3 Log File Groups, one file per group, 20MB per file

Config B Oracle Log Buffer size = 1.5MB

6 Log File Groups, one file per group, 100MB per file

HPOM configuration variable OPC_UPDWN_COMMIT_COUNT = 1000

The opchistdwn process took approximately 50% of one CPU, the Oracle database disk array was
used up to 20%.

The following facts may be derived from these results:

 The download speed can be optimized to reach about 540 messages per second.
 The time needed for the download of history messages depends on the configuration of the Oracle

database parameters, especially the log file groups and buffers.
Conclusions:

 The download of history can be simply extrapolated once a reference download has been timed.
 The number of nodes has a huge influence on the orphan search after the download part. Omit the

“-no_orphan” option only from time to time

Appendix

Ext2 File System Tuning
 No file system parameters were tuned.
 To find out if the file system has any influence on the performance, all agent and server queues

were put on a RAM disk but without any noticeable results.

© 2010 Hewlett-Packard Development Company, L.P. The information contained herein is
subject to change without notice. The only warranties for HP products and services are set
forth in the express warranty statements accompanying such products and services.
Nothing herein should be construed as constituting an additional warranty. HP shall not
be liable for technical or editorial errors or omissions contained herein.

Adobe®, Acrobat®, and PostScript® are trademarks of Adobe Systems Incorporated.
AMD is a trademark of Advanced Micro Devices, Inc. Intel®, Itanium®, and Pentium®
are trademarks of Intel Corporation in the U.S. and other countries. Java™ is a US
trademark of Sun Microsystems, Inc. Microsoft®, Windows®, Windows NT®, and
Windows® XP are U.S. registered trademarks of Microsoft Corporation. Windows Vista™
is either a registered trademark or trademark of Microsoft Corporation in the United States
and/or other countries. Oracle® is a registered US trademark of Oracle Corporation,
Redwood City, California. UNIX® is a registered trademark of The Open Group.

May 2010

	Performance and Sizing Guide
	Introduction
	Performance Findings
	Summary of Performance Findings
	Unmeasured Performance Findings

	Executive Summary
	Hardware Recommendations for Optimal Message Throughput
	Peak Performance of HPOM on Linux
	Startup time of the Java GUI

	Test Environment
	Management Server Test Setup
	Display Stations Test Setup
	Managed Nodes
	Message Generation

	Test Results
	Message Throughput: Varying the Number of Active Java GUIs
	Message Throughput: Duplicates Message Suppression
	Message Throughput: Diverting Messages to MSI Programs
	Java GUI Startup Time: Varying the Number of Managed Nodes and Messages
	Java GUI Startup Time: Varying the Number of CMAs
	Service Navigator
	Throughput when forwarding
	Performance of the History Download: Varying the Number of Downloaded Messages

	Appendix
	Ext2 File System Tuning

