
HP Operations Manager
Dependency Mapping Automation

For Windows®, UNIX®, and Linux Operating Systems

Software Version: 8.20
Extensibility Guide
Manufacturing Part Number: None

Document Release Date: July 2011

Software Release Date: July 2011

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Copyright Notices

© Copyright 2007-2011 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe® and Acrobat® are trademarks of Adobe Systems Incorporated.

AMD and the AMD Arrow symbol are trademarks of Advanced Micro Devices, Inc.

Google™ and Google Maps™ are trademarks of Google Inc.

Intel®, Itanium®, Pentium®, and Intel® Xeon® are trademarks of Intel Corporation in the
U.S. and other countries.

iPod is a trademark of Apple Computer, Inc.

Java is a registered trademark of Oracle and/or its affiliates.

Microsoft®, Windows®, Windows NT®, Windows® XP, and Windows Vista® are U.S.
registered trademarks of Microsoft Corporation.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

UNIX® is a registered trademark of The Open Group.
2 Chapter

Documentation Updates

This manual’s title page contains the following identifying information:

• Software version number, which indicates the software version

• Document release date, which changes each time the document is updated

• Software release date, which indicates the release date of this version of the software

To check for recent updates, or to verify that you are using the most recent edition of a
document, go to:

http://h20230.www2.hp.com/selfsolve/manuals

You will also receive updated or new editions if you subscribe to the appropriate product
support service. Contact your HP sales representative for details.
3

Support

You can visit the HP software support web site at:

www.hp.com/managementsoftware/services

HP software online support provides an efficient way to access interactive technical support
tools. As a valued support customer, you can benefit by using the support site to:

• Search for knowledge documents of interest

• Submit and track support cases and enhancement requests

• Download software patches

• Manage support contracts

• Look up HP support contacts

• Review information about available services

• Enter into discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many
also require a support contract.

To find more information about access levels, go to:

www.hp.com/managementsoftware/access_level

To register for an HP Passport ID, go to:

www.managementsoftware.hp.com/passport-registration.html
4 Chapter

Contents
1 Introduction . 11

Required Configurations . 13
Installation Locations . 14

2 Extending HPOM DMA - An Example . 15

Getting Started . 16
My Company Example - Creating Customized Service Navigator Views. 18

Making Changes in the UCMDB . 18
Adapting the HPOM DMA Enrichment Rules . 20
Applying Enrichment Rules . 22
Viewing the My Company Synchronization Package . 23
Activating the My Company Synchronization Package . 24

Web Server Example . 26
Prerequisites . 26
Designing the Web Server Synchronization Package . 26

Analyzing the UCMDB Data to be Synchronized . 26
Expected Outcome in HPOM . 27

Developing the Web Server Synchronization Package . 27
Developing Your TQL Queries to Collect Content to Synchronize 28
Developing Your Synchronization Package . 30

Testing and Fine-Tuning . 38
Preparing for Testing . 38

Enabling Automatic Service Type Definition and Node Group Creation. 38
5

Activating the Web Server Synchronization Package . 38
Running a Test Synchronization . 39
Iteratively Improving Your Package . 39

Activating Your Synchronization Package . 40
UCMDB Package . 40
HPOM DMA Package . 40

Advanced Topics . 42
Adding a New Relationship Between CIs to Correctly Model Your Service Map 42

Adding the Depend Relationship . 42
Creating an Enrichment Rule. 44
Changing your TQL Query to Reflect the Change. 46

Combining Multiple Synchronization Packages . 50
External Services . 51
Defining STDs. 51
Scripting . 52

3 TQL Queries . 53

Selecting TQL Attributes. 53
Setting Up a TQL Query in a UCMDB Development Environment 55
Setting Up a TQL Query in a UCMDB Production Environment. 57

4 Service Type Definition Files . 59

STDs in HPOM for Windows . 59
Example of STDs on Windows . 60
Uploading STDs into HPOM for Windows . 62

STDs in HPOM for UNIX or Linux . 62
Example of STDs on UNIX or Linux . 64
Uploading STDs into HPOM for UNIX or Linux . 65

ServiceTypeDefinitionCLI Command Parameters . 66

5 Contained Relationship Files . 67

Configuration File . 67
Default Configuration . 68
6

6 Node Types . 69

7 Synchronization Packages . 71

Synchronization Package Descriptor File. 72
Mappings . 73

Service Mappings . 73
Node Mappings . 73
Attribute Mapping . 73
User Profile Mapping . 73

Customizing Synchronization and Scripting . 74
Synchronization Package Locations . 74

8 Service Mapping . 75

Service Mapping File . 75
Example of a servicemapping.xml File . 78
Overriding STD Properties . 80

Simple Example of STD-Properties Overrides . 80
Complex Example of STD-Properties Overrides. 81

Setting Rules for Application Servers . 82
Setting Rules for WAN Connections. 84
Setting Rules for Network Probes . 85

Mapping UCMDB Information to Services. 87
Creating Dependencies from External CIs to Internal CIs . 87

Example . 88
Creating Dependencies from Internal CIs to External CIs . 89

Example . 89

9 Node Mapping . 91

Node Mapping File. 91
Example of Node Mapping . 92

10 Attribute Mapping . 93

Attribute Mapping File . 93
Example of Attribute Mapping . 94
7

11 User Profile Mapping . 97

User Profile Mapping File . 97
 Example of User Profile Mapping . 98

12 Scripting. 99

Script Syntax . 100
Script Files . 100
Script Variables . 100
Handling Errors . 101
Enabling and Disabling Scripts . 102
Sample Scripts . 102

Creating Dependency Associations to External Services . 102
Modifying Dependency Associations . 103
Submitting an opcmsg Message. 104
Grouping Multiple Host Resource Types. 105
Grouping Synchronized Nodes Alphabetically . 107
Organizing Nodes in Layout Groups . 109

13 Testing and Deployment . 111

Validating XML Configuration Files. 111
HPOM DMA XSD Files . 112
Validating Files Automatically. 112
Validating Files Manually . 113

Dumping Synchronization Data . 115
Creating a Synchronization Data Dump . 115
Viewing a Synchronization Data Dump . 117
Validating Mapping Rules . 117

Testing Mapping Rules . 118
Enrichment Simulator . 118
dmaenrichsim Command . 118
8

Examples . 119
Writing Rules . 120

Simplifying Rule Development . 120
Avoiding Complex XPath Queries . 120
Matching Against Existing Attributes Only . 120
Avoiding Broad XPath Expressions . 120

Exporting TQL Queries . 122
Creating a TQL Query Package . 122
Deploying and Registering UCMDB Packages . 123

A Mapping Syntax. 125

Common Mapping File Format . 125
Mapping File Syntax . 126

Rule Conditions. 126
Operator Elements . 126
Operand Elements . 129
Condition Examples . 133
Mapping Elements . 133

Service Mapping Syntax . 133
Override STD Properties. 134
Creating Dependencies from External CIs to Internal CIs. 135
Creating Dependencies from Internal CIs to External CIs. 135
Node Mapping Syntax . 136
Attribute Mapping Syntax . 136
User Profile Mapping Syntax . 136

 XPath Navigation . 138
Data Structure . 138

CI Data Structure . 138
Relationship Data Structure. 139

Example of an XPath-Navigated Data Structure . 140
XPath Expressions and Example Values. 141

B UCMDB Attributes . 143

Required Attributes . 144
Recommended Attributes . 145

Index . 147
9

10

1 Introduction
HP Operations Manager (HPOM) Dependency Mapping Automation (DMA)
uses Topology Query Language (TQL) queries to retrieve data from Business
Availability Center (BAC) or the Universal CMDB (UCMDB) to import nodes
and create service hierarchies in HPOM. HPOM DMA includes
synchronization packages that enable you to work with node and database
information without any need for customizing.

To get your own UCMDB data reflected in HPOM, you extend HPOM DMA by
adapting existing synchronization packages. You then create your own
synchronization packages, enabling you to:

• Discover your environment as maintained by the UCMDB

• Automatically populate the HPOM Node Bank and Service View

 Figure 1 shows how HPOM DMA links the UCMDB or BAC with HPOM.
 11

Figure 1 HPOM DMA Linking HPOM with BAC or the UCMDB
12 Chapter 1

Required Configurations

To integrate each type of application, such as a web server, you need to create
the following configurations:

• TQL Query

TQL queries define the node and service CIs in the UCMDB to be
synchronized with HPOM.

To find out how to create TQL queries for the UCMDB or BAC, see the
documentation available with these products. For a basic overview, see
Chapter 3, TQL Queries.

• Synchronization Package

A synchronization package is a set of mapping rules to transform
Configuration Items (CIs) into HPOM services and nodes and are used to
synchronize specified services and nodes in HPOM with data from the
UCMDB.

There is a default synchronization package that is always active.

For details, see Chapter 7, Synchronization Packages.

• Service Type Definitions

The service type definition specifies which calculation and propagation
rules are applied, and which icon is to be used to represent a CI from the
UCMDB on the HPOM service tree. The subsequent synchronization
updates the service instances in HPOM in accordance with the changes
made to the service type definition.

For details, see Chapter 4, Service Type Definition Files.
Introduction 13

Installation Locations

The HPOM DMA installation installs the files in the following locations:

• UNIX and Linux

— <InstallDir>

/opt/OV/

— <DataDir>

/var/opt/OV/

— <SharedDir>

/var/opt/OV/shared

• Windows
(default location dependent upon HPOM for Windows location)

— <InstallDir>

C:\Program Files\HP\HP BTO Software

— <DataDir>

32-bit: C:\Documents and Settings\All Users\Application
Data\HP\HP BTO Software

64-bit: C:\ProgramData\HP\HP BTO Software

— <SharedDir>

32-bit: C:\Documents and Settings\All Users\Application
Data\HP\HP BTO Software\shared

64-bit: C:\ProgramData\HP\HP BTO Software\shared
14 Chapter 1

2 Extending HPOM DMA - An Example
HP Operations Manager Dependency Mapping Automation (HPOM DMA)
uses TQL queries to retrieve data from BAC or the UCMDB, and import nodes
and create service hierarchies in HPOM.

You can adapt and extend the HPOM DMA synchronization between the
UCMDB and HP Operations Manager (HPOM). To extend the HPOM DMA
synchronization, do the following:

• Specify TQL queries in the UCMDB to collect the content you want to
synchronize.

• Adapt existing synchronization packages or create additional
synchronization packages.

Using synchronization packages, you take the content collected by the TQL
queries and use it to enrich the information in HPOM.

To get your own UCMDB data reflected in HPOM, you extend HPOM DMA by
adapting existing synchronization packages. You then create your own
synchronization packages. These packages enable you to discover your
environment, as maintained by the UCMDB. They also enable you to
automatically populate the HPOM Node Bank and Service View.
 15

Getting Started

Before you start changing or extending synchronization packages, it is very
important that you have a solid understanding of the following areas:

• The synchronization process used by HPOM DMA. See the Installation
and User’s Guide.

• The out-of-the-box synchronization packages delivered by HPOM DMA,
especially the mappings applied by the default package. To view these
mappings, go to:

HPOM DMA Console Extending DMA Synchronization Packages

• Viewing data in the UCMDB and creating TQL queries to match the
monitoring infrastructure.

• Creating HPOM service type definitions.

• HPOM User Profiles, if you want to automatically assign CIs to users.

• HPOM Nodes.

This guide includes two examples covering two aspects of extensions:

• My Company

You have all the CIs you need, but you want to add a different view of your
data. The My Company example shows you a geographical organization
view of your company. The example guides you through the following
steps:

— Making Changes in the UCMDB

— Adapting the HPOM DMA Enrichment Rules

— Applying Enrichment Rules

— Activating the My Company Synchronization Package

• Web Server

You want to add your own application CIs that are not currently included
in the synchronization. The Internet Information Services (IIS) web server
example helps you to extend the synchronization data with nodes hosting
IIS web servers and with an IIS service map in Service Navigator. The
example guides you through the following steps:
16 Chapter 2

— Prerequisites

— Designing the Web Server Synchronization Package

– Analyzing the UCMDB Data to be Synchronized

– Expected Outcome in HPOM

— Designing the Web Server Synchronization Package

– Developing the Web Server Synchronization Package

– Developing Your Synchronization Package

This chapter includes information on testing and fine-tuning your
synchronization packages. It guides you through the following steps:

• Preparing for Testing

• Running a Test Synchronization

• Iteratively Improving Your Package

This chapter includes information on activating your synchronization
packages. It guides you through the following steps:

• UCMDB Package

• HPOM DMA Package

This chapter includes some advanced topics:

• Adding a New Relationship Between CIs to Correctly Model Your Service
Map which includes:

— Adding the Depend Relationship

— Creating an Enrichment Rule

— Changing your TQL Query to Reflect the Change

• Combining Multiple Synchronization Packages

• External Services

• Defining STDs

• Scripting
Extending HPOM DMA - An Example 17

My Company Example - Creating Customized Service
Navigator Views

The My Company synchronization package helps you arrange your CIs in
Service Navigator quickly and easily. For example, you can arrange your CIs
to reflect the geographical organization of your company.

When you extend the synchronization, there are two general parts to consider:

• Specify TQL queries that contain the service view that you want to see in
Service Navigator. This is contained in the hpdmasamples.zip UCMDB
package.

For further information on modifying and previewing TQL queries, see
Making Changes in the UCMDB.

• Create a synchronization package referring to the TQL associated queries
enriching the data or customizing them with scripts. As the CIs are
already part of the synchronization in this example, you need to refer to
the TQL queries only. For further information, see Activating the My
Company Synchronization Package on page 24.

Making Changes in the UCMDB

You can view TQL queries in the UCMDB and preview their results using the
View Manager. If the results displayed are not as you expect, modify the TQL
query and generate a new preview.

To view a TQL query and see a preview of the results, follow these steps:

1 Open the View Manager:

• UCMDB 7 and 8:

Admin ➝ Modeling ➝ View Manager

• UCMDB 9:

Modeling ➝ Modeling Studio ➝ Resources: Views

Make sure that the hpdmasamples.zip package is uploaded and
deployed to the UCMDB/BAC system. For further information, see
the Installation and User’s Guide.
18 Chapter 2

• BAC:

Admin ➝ Universal CMDB ➝ Modeling ➝ View Manager

2 Select each of the My Example Company TQL queries in turn from the
following:

hpdma ➝ Organizations

The preview shows you the result, complete with the expected CIs.

Figure 2 illustrates the My Company EMEA TQL and its preview content.

Figure 2 Example of a My Company TQL Query
Extending HPOM DMA - An Example 19

Adapting the HPOM DMA Enrichment Rules

HPOM DMA populates your HPOM node banks and service tree. If you are
using BAC or UCMDB 7.5x or 8.0x, it is necessary that you adapt the node
filters to suit to your specific environment. (The following adaption is not
required for UCMDB 9.0x.)

To adapt the HPOM DMA enrichment rules, follow these steps:

1 Open the Enrichment Manager:

• UCMDB 7 and 8:

Admin ➝ Modeling ➝ Enrichment Manager

• BAC:

Admin ➝ Universal CMDB ➝ Modeling ➝ Enrichment Manager

2 Expand the hpdma view from the Enrichment Rules list.

The MyCompany*Nodes enrichment rules in the hpdma folders include
filters in the node types that you must adapt to your environment.

3 For each MyCompany*Nodes enrichment rule, make sure that you are in
the TQL mode, and select the node type (Host, UNIX or Windows).

4 From the context menu, open Node Properties.

5 Change the filter to your environment.

By default, only nodes that include running UCMDB probes are selected.
This is specified with the following node condition:

Created By Equal "ProbeGW_Topology_Task_"

You can delete this condition and add new ones to match your
environment. For example, use the condition restrict on domain and
specify domains to limit your search.

Setting filters for TQL queries in the Node Properties window is shown in
Figure 3.
20 Chapter 2

Figure 3 Setting Node Conditions for TQL Queries

After you have assigned nodes to your geography (EMEA, US, ASIAPAC), the
databases hosted on those nodes are also assigned to the corresponding
geographies.

Do not remove the HOST DNS Name is null filter, as it is required by HPOM
DMA.
Extending HPOM DMA - An Example 21

Applying Enrichment Rules

Apply each MyCompany* enrichment rule in the hpdma group.

To apply enrichment rules:

1 Open the Enrichment Manager:

• UCMDB 7 and 8:

Admin ➝ Modeling ➝ Enrichment Manager

• UCMDB 9:

Modeling ➝ Enrichment Manager

• BAC:

Admin ➝ Universal CMDB ➝ Modeling ➝ Enrichment Manager

2 Expand the hpdma group from the Enrichment Rules list.

3 Apply enrichment rules (for example, to place Windows nodes in Service
groups).

UCMDB enrichment rules only add the selected CI and relations to
the UCMDB. If you change the enrichment rule, for example,
change the list of nodes that should be added to a service group,
then the already existing CIs in the group are not automatically
removed.

Before you change an enrichment rule, you should remove the
already existing CIs.

If you want to remove all currently existing assignments:

1 Select the enrichment rule in the CMDB Enrichment Manager.

2 Click Remove Enrichment Results.

However, this might also remove CIs and relations that have been
added by other enrichment rules.
22 Chapter 2

Figure 4 Example of a My Example Company Enrichment Rule

You must execute each enrichment rule whenever you discover new instances.

Viewing the My Company Synchronization Package

The synchronization package for the My Company synchronization package is
automatically installed during HPOM DMA installation as a standard
synchronization package.

To view this synchronization package, go to:

HPOM DMA Console Extending DMA Synchronization Packages
Extending HPOM DMA - An Example 23

Figure 5 My Company synchronization package

Activating the My Company Synchronization Package

To activate the My Company Synchronization Package:

1 Open the Synchronization Packages page and check:

My Company: Sample synchronization package for an organization centric view
of systems and applications

2 Click Save.

3 Start a new synchronization from the Synchronization page.

On completion, the My Company view is synchronized into the HPOM
Service Navigator. The CI are arranged under their assigned regions, as
well as under System Infrastructure and Applications.
24 Chapter 2

You can activate the My Company synchronization package without the other
standard HPOM DMA synchronization packages.

If you do so, you might run into the following restrictions:

• Oracle Database Packages

There is a specific service mapping for Oracle databases in the dmaOracle
synchronization package. If this is inactive, the Oracle CIs are mapped to
the ucmdb_oracle STD. This STD is not available by default.

You must do one of the following:

— Enable automatic STD creation

— Create the ucmdb_oracle STD

— Activate the dmaOracle synchronization package

— Copy the service mapping from the dmaOracle synchronization
package to the dmaMyCompany synchronization package

• Non-Standard Packages

For CI types that are not covered in the standard HPOM DMA
synchronization packages, the corresponding STDs are also not available
by default. Either create the STD or enable automatic STD creation.

• Inactive Packages

For all other mappings used in inactive synchronization packages (for
example, node mapping, user mapping, and attribute mapping), the same
applies as for service mapping. If you need it, you can copy it to active
synchronization packages.
Extending HPOM DMA - An Example 25

Web Server Example

This section explains how to design and develop a new synchronization
package for IIS web servers.

Prerequisites

Make sure that you have the following systems installed, configured and
running:

• HPOM management server.

• UCMDB or BAC, including deployed HPOM DMA packages for UCMDB.

UCMDB should contain some discovery data. In particular, it should
contain some hosts and IIS CIs.

Designing the Web Server Synchronization Package

To design the Web Server synchronization package and the associated TQL
queries, you must first understand exactly what you want to achieve. The first
task is to:

• Analyze the UCMDB data to be synchronized

• Visualize the effect required in HPOM

Analyzing the UCMDB Data to be Synchronized

The first step in creating a new HPOM DMA synchronization package is to
investigate what data you want to synchronize and understand why you need
that data. HPOM DMA also provides some automation features. Decide which
you want to use for what.

So the most important question you should ask yourself is: What is the
expected outcome in HPOM?

This question leads to the following detailed questions:

• Which nodes in the UCMDB do you want to monitor in HPOM and need to
synchronize?

• What applications do you want to monitor with HPOM?
26 Chapter 2

• How do you plan to organize your data in HPOM?

• To which node groups do you want to assign the nodes?

• Do you need a service map in Service Navigator? Which services do you
need to create in Service Navigator?

• How do you want to propagate problems in Service Navigator?

These questions are answered in this chapter based on a simple development
example where your organization is required to provide a web server service
to internal customers. In this scenario, some host systems and web servers
running on these hosts, are synchronized from the UCMDB to HPOM.

Expected Outcome in HPOM

To achieve the expected outcome in HPOM, the following steps must be
completed:

• You must synchronize all hosts that are hosting your web servers and all
hosts on which your web servers depend.

• You must monitor the web server applications. As a result, you must also
synchronize the web server CIs.

• You want to organize your services under the application type.

As a result, you need a node group for the web server application.

• You must create a service map that shows a simple topology map.

Developing the Web Server Synchronization Package

To develop the Web Server synchronization package and the associated TQL
queries, you must:

• Create TQL queries in the UCMDB to collect the content that you want to
synchronize

• Develop your Web Server synchronization package in HPOM DMA
Extending HPOM DMA - An Example 27

Developing Your TQL Queries to Collect Content to Synchronize

To create TQL queries that can be used for synchronization, you create views
with the View Manager in the UCMDB. Each view you create also creates a
corresponding TQL query.

What you define in your view is finally displayed in Service Navigator. As a
result, it is essential that you define in this view everything that you want to
see in Service Navigator. In addition, you must make sure that you also have
the information that later enables you to decide how to assign nodes to node
groups.

Creating TQL Queries in the UCMDB

To define your UCMDB view:

1 Create a view named Web Server that can be used as a query in your
synchronization package.

2 Drag the IIS CI type from the CI type list to your view.

3 Add the Host CI type.

4 Select a dependency type between the Host CI type and the IIS CI type
which starts with contain.

By default, this type creates a containment relationship in Service
Navigator.

5 For the Host CI, enable the Host DNS Name (host_dnsname) attribute for
exporting as follows:

a Right-click Host and select Node Properties from the context menu.

The Node Properties dialog box opens.

b Click Advanced layout settings.

The Layout Settings window opens.

c Select the following attributes for calculation if not selected:

— CI Type (to distinguish the node type, for example, nt, host,
unix)

— Host DNS Name (to set the hosted_on attribute)

6 Make sure that your Hosts and IIS CIs have a common root, so that it is
easy to find your CIs in Service Navigator:
28 Chapter 2

a Add a Service Group and link the Host CIs using the Service Group
Contained relationship.

b To make sure that the Service Group is created first, execute the
HPOM DMA enrichment rules. They create two Service Group for:

— UNIX hosts

— Windows hosts

7 Preview your newly created view. Verify that it contains what you
specified.
Extending HPOM DMA - An Example 29

Figure 6 Preview of the UCMDB Web Server View

8 When the view is correctly specified, save your view.

Developing Your Synchronization Package

You have defined what you want to synchronize. The next step is to define in
HPOM DMA where to find it and what to do with it. To do this, you must
create a new synchronization package for your IIS model. HPOM DMA ships
with a default package that is always deployed. It handles some essential
steps, including:

• Assigning the hosted_on attribute for Smart Message Mapping

• Providing a useful default for labeling

You can take advantage of this standard functionality and concentrate on the
specific components that you need for your package.

Synchronization packages are containers that can have multiple TQL queries,
mapping rules and scripts. Each synchronization package has a priority that
determines in which sequence the mapping rules and scripts are executed.
The synchronization package concept supports easy extensibility.
30 Chapter 2

A synchronization package can contain the following files:

• bundle.xml (essential)

• attributemapping.xml

• servicemapping.xml

• nodemapping.xml

• usermapping.xml

• premapping.groovy

• preupload.groovy

• postupload.groovy

The bundle.xml file defines the package and is the only file essential to the
synchronization package. The file contains a name, a description, a priority
and, most importantly, one or more TQLs that define which views are used to
read the UCMDB data.

All mapping files are used to enrich the data with HPOM relevant
information:

• The attribute mapping file contains rules that enable you to modify the
content of a CI. You can define new attributes or you can modify existing
ones. Because all mappings required by the example are already available
in the default package, an additional attributemapping.xml file is not
required.

• The service mapping file contains rules that define how a CI type is
mapped to a service type definition (STD) in Service Navigator. Service
type definitions (STDs) are used to identify how CIs from the UCMDB are
to be handled when building services in HPOM on synchronization. For
further information, see Chapter 4, Service Type Definition Files.

• The node mapping file contains rules to specify to which node groups a
node is assigned.

• The user mapping file enables you to set up rules defining how services
are assigned to user profiles. So you can automatically set access
permissions to your services.

The script files enable you to execute your own scripts for every
synchronization:

• The premapping.groovy file is executed before the mapping rules are
executed.
Extending HPOM DMA - An Example 31

• The preupload.groovy file is executed when HPOM DMA has retrieved
all CIs from UCMDB but before they are uploaded to HPOM.

• The postupload.groovy file is executed as a last step.

These files enable you to modify the CIs before mapping, before upload, and
after upload.

Creating the Web Server Synchronization Package

To create a synchronization package:

1 Go to Synchronization Packages in the HPOM DMA Console:

HPOM DMA Console Extending DMA Synchronization Packages

2 Click Create new.

3 Enter the following information:

• Directory name: webserver

• Name: Web Server

• Description: Web Server sample to demonstrate
extensibility

• TQL: Web Server

• Priority: 6
32 Chapter 2

Figure 7 The Web Server Synchronization Package

4 Click Create.

This creates a new directory in the synchronization package folder called
webserver and adds the bundle.xml for this synchronization package.

You have created a synchronization package named Web Server that is
querying the Web Server TQL with priority 6. The priority defines in which
sequence the synchronization packages is executed. Priority 6 is
comparatively low. Synchronization packages with a higher priority, for
example, 3 may overwrite your results. The default package has the lowest
priority: 10.
Extending HPOM DMA - An Example 33

Creating Service Mapping

Service mappings define the relationship between the type of a CI in the
UCMDB and the service type definition (STD) of a service in HPOM.

In your view, you have defined three types of CIs:

• Hosts (nt or unix)

• IIS (iis)

• Service Groups (servicegroups)

To view the active service mappings, go to:

HPOM DMA Console Using DMA Enrichment Summary Service Mapping

The default mapping rules are active:

• Mapping Service groups to folder STD

• Mapping all other CI types to <ucmdb>_ CIType

Figure 8 Web Server Synchronization Package
34 Chapter 2

This means that, for example, all hosts of type nt are assigned to the STD
ucmdb_nt, and all web servers of type iis are assigned to STD ucmdb_iis. If
this does not meet your needs, you must add your own service mapping with a
higher priority.

In this example, it is assumed that you want to map to the STD UCMDB_IIS
instead of the default STD ucmdb_iis. You must add this mapping as follows:

1 Go to:

HPOM DMA Console Extending DMA Synchronization Packages

2 Open the Web Server synchronization package.

3 Click Create service mapping.

4 Enter the following content:

<?xml version="1.0" encoding="utf-8"?>
<Mapping>
 <Rules>
 <Rule name="IIS">
 <Condition>
 <Equals ignoreCase="true">
 <CiType/>
 <Value>iis</Value>
 </Equals>
 </Condition>
 <MapTo>
 <STD>
 <Value>UCMDB_IIS</Value>
 </STD>
 </MapTo>
 </Rule>
 </Rules>
</Mapping>

The IIS service mapping rule includes two parts:

• The <Condition> section defines when the rule is applied. In the
example, the rule is applied whenever a CI of type iis is found.

• The <MapTo> section defines the action. In the example, the rule specifies
that the resulting service has an STD called UCMDB_IIS.

The UCMDB distinguishes between a CI type label and a CI type
name. In the mapping files, you must always refer to the type
name. You can look up the type name in the CI type manager of the
UCMDB by selecting the properties of a type.
Extending HPOM DMA - An Example 35

HPOM DMA includes STDs for the out-of-the-box synchronization packages.
It is essential that the STDs used in the service mapping exist in HPOM. If
they do not exist, the synchronization fails. HPOM DMA can automatically
create STDs, if you have enabled automatic STD creation. However, if you
require a custom STD, you can create one.

Creating Node Mapping

HPOM node groups are used to organize your nodes and to automate the
deployment of the monitoring environment of nodes that are added to a node
group.

Assuming that you have the Web Server SPI installed on your HPOM server
and assign all nodes hosting IIS in your UCMDB to the node group IIS, you
can configure HPOM DMA to trigger the HPOM deployment mechanism when
HPOM DMA synchronizes the nodes. HPOM automatically deploys the Web
Server SPI onto your HPOM managed node, when the node is added to the IIS
node group.

You must define the node mapping to assign all nodes hosting IIS to the IIS
node group.

To define the node mapping, complete the following steps:

1 Go to:

 HPOM DMA Console Extending DMA Synchronization Packages

2 Open the Web Server synchronization package.

3 Click Create node mapping.

4 Enter the following content:

If you create your own STDs and you use the UI launch feature,
then you must assign the BAC Service UI Launch or UCMDB
Service UI Launch tool groups to those STDs.

This is done in the HPOM for Windows console under Tools
Configure Service Types.

In HPOM for UNIX or Linux, service type definitions are specified
in service type definition files, which must be in XML format and
must be of form DOCTYPE Services. For information on the
documentation type definitions and services, see the
Administrator’s Reference.
36 Chapter 2

<?xml version="1.0" encoding="utf-8"?>
<Mapping>
 <Rules>
 <Rule name="IIS Node Group">
 <Condition>
 <And>
 <Equals>
 <CiType/>
 <Value>nt</Value>
 </Equals>
 <Exists>
 <XPathResult>descendant::
 ci[type='iis']</XPathResult>
 </Exists>
 </And>
 </Condition>
 <MapTo>
 <NodeGroup>
 <Value>IIS</Value>
 </NodeGroup>
 </MapTo>
 </Rule>
 </Rules>
</Mapping>

5 Click Save.

The node mapping includes a rule that puts every host of type nt that
contains an iis CI into the IIS node group. An XPathResult expression is
used to detect these nodes. The XPath query checks through the children for
CIs of type iis.

When you synchronize, HPOM DMA can automatically create the
corresponding node groups, if you have enabled automatic node group
creation.
Extending HPOM DMA - An Example 37

Testing and Fine-Tuning

After you create the TQL query and synchronization package for the first
simple example, you should do a test run.

Preparing for Testing

You need to do some configuration changes in the HPOM web service:

• Enable the automatic service type definition creation

• Enable the automatic node group creation

• Activate the Web Server synchronization package

Enabling Automatic Service Type Definition and Node Group Creation

To enable automatic service type definition and automatic node group
creation:

1 Open a console.

2 Enter the following commands:

ovconfchg -ovrg server -ns
opc.WebService.ConfigurationItem -set StdCreationEnabled
true

ovconfchg -ovrg server -ns
opc.WebService.ConfigurationItem -set
NodeGroupCreationEnabled true

ovc -restart ovtomcatB

Activating the Web Server Synchronization Package

To activate your synchronization package:

1 Go to:

HPOM DMA Console Configuring DMA Content

2 Optional. To avoid possible side effects, deactivate all the other
synchronization packages.
38 Chapter 2

The default synchronization package is always executed during
synchronization.

3 Review the enrichment summary under:

HPOM DMA Console Using DMA Enrichment Summary

Step through the links and check the specified configurations.

Running a Test Synchronization

To execute the test synchronization:

1 Go to:

HPOM DMA Console Using DMA Synchronization

2 Click Start Synchronization.

HPOM DMA informs you that synchronization has been started.

3 Click log file to switch to the log file view.

4 Follow the synchronization steps.

If everything is working correctly, you get a Synchronization
successfully completed on <date and time> message.

In HPOM, there is a new node group containing your IIS hosts. In Service
Navigator, there should be a service map with all the CIs you have selected in
your UCMDB view.

Iteratively Improving Your Package

You can continue to modify your TQL queries and add additional CIs and
dependencies. Follow the above steps to add node and service mappings.

You can continue to further improve your model. For your first extension, you
could, for example, add Apache web servers to your existing views.
Extending HPOM DMA - An Example 39

Activating Your Synchronization Package

When you have finished your development work, you must prepare your
synchronization package for rollout. For this, you must create two deployment
packages that you can deploy to your production servers, one each for:

• UCMDB or BAC

• HPOM DMA

UCMDB Package

To create a UCMDB/BAC package:

1 From BAC or the UCMDB, open the Package Manager.

• UCMDB 7 and 8:

Admin ➝ Settings ➝ Package Manager

• UCMDB 9:

Administration ➝ Package Manager

• BAC:

Admin ➝ Universal CMDB ➝ Settings ➝ Package Manager

2 Click New button. The Create Custom Package wizard opens.

3 Enter a name and description for the new package and click Next..

4 Select your Web Server view and save your package.

You can copy and deploy this package to any other UCMDB.

HPOM DMA Package

To create and deploy the HPOM DMA package:

1 Compress the webserver directory in the synchronization package folder
to zip file, for example, webserver.zip:

<SharedDir>/server/conf/dma/sync-packages/webserver/
40 Chapter 2

2 To deploy the HPOM DMA package, extract your package file into the
package directory of your production HPOM DMA installation.

This package does not contain any configuration for automatic STD
and node group creation. This is a server configuration It is not part
of your package.
Extending HPOM DMA - An Example 41

Advanced Topics

The Web Server Example on page 26 illustrates how to extend the
synchronization package. This section covers some advanced topics.

Adding a New Relationship Between CIs to Correctly Model Your
Service Map

Looking at the result of your service map, you can see that the IIS servers
propagate their status up to the hosts. But the reality is actually the other
way around. When the host has a problem (for example, if the disk is full), the
IIS server application does not perform.

The UCMDB has not modeled the correct impact for you and you must do this
yourself. To do so you have to:

• Add, for example, the Depend relationship between the host CI Type and
the web server CI Type.

• Create an enrichment rule that adds this Depend relationship between all
hosts and web servers that have a contained relationship.

Adding the Depend Relationship

To add the Depend relationship between the host CI Type and the web server
CI Type:

1 Go to the CI Type Manager:

• UCMDB 7 and 8:

Admin ➝ Modeling ➝ CI Type Manager

• UCMDB 9:

Modeling ➝ CI Type Manager

• BAC:

Admin ➝ Universal CMDB ➝ Modeling ➝ CI Type Manager

2 In the navigation pane open:
42 Chapter 2

IT Universe ➝ System ➝ Software Element

3 Select Web Server.

4 Also in the navigation pane, select the Host (with CTRL + click).

A combined view opens in the content pane.

Figure 9 Add Depend Relationship

5 Select the Host and Web Server CI types in the content pane.

6 From the context menu for the Web Server CI types, select Add/
Remove Relationship.

The Add Depend Relationship dialog box opens, as shown in Figure 10.
Extending HPOM DMA - An Example 43

Figure 10 Add Depend Relationship Dialog Box

7 For the Depend relationship, select the check box for Web Server ➝ Host
and click OK.

The Depend relationship between the host CI Type and the web server CI
Type is established.

Creating an Enrichment Rule

An enrichment rule consists of two parts:

• TQL The TQL is the condition part and you need all IIS and
Host CI Types.

• Enrichment The Enrichment part is the action part of the rule and you
must add the Depend relationship.

To create an enrichment rule:

1 Open the Enrichment Manager:

• UCMDB 7 and 8:

Admin ➝ Modeling ➝ Enrichment Manager

• UCMDB 9:

Modeling ➝ Enrichment Manager

• BAC:

Admin ➝ Universal CMDB ➝ Modeling ➝ Enrichment Manager

2 Click New or CTRL + N.

The Create New Enrichment Rules dialog box opens.
44 Chapter 2

3 Enter the following information:

a Name: IIS

b Based on TQL: IIS

c Check the Active check box.

Figure 11 on page 45 illustrates the Create New Enrichment Rules dialog
box entries.

Figure 11 Create New Enrichment Rule Dialog Box

4 Add the TQL (condition) part:

a Drag the IIS and Host CI Types from the type selection pane into the
view.

b Add a containment relationship between both CIs.

5 Add the Enrichment part (action) part of the rule. Here you must add the
Depend relationship.

a Select the IIS and host CI Type and in the context menu select Add
Relationship. Direction should be from IIS to host.

b Browse to the Depend relationship:

IT World Links ➝ System Links ➝ Parent ➝ Depend

c Click OK.

The enrichment rule is shown in Figure 12.
Extending HPOM DMA - An Example 45

Figure 12 Enrichment Rule

d Save your enrichment rule.

6 Execute the enrichment.

Changing your TQL Query to Reflect the Change

Remove the containment relationship from Host to IIS, and add a depend
relationship from IIS to host.

Figure 13 TQL with depend relationship

With this change, the IIS is not contained any longer under host. Although
this is the desired behavior, it also makes all IIS web servers into root services
under the CMDB root service in your service map.

To display IIS web servers under a more appropriate service tree structure,
create the required new service groups.
46 Chapter 2

If you want to add your IIS web servers under:

Applications ➝ Web Servers ➝ IIS

1 Before changing your enrichment rule, remove the old enrichment results.

2 Go back to the Enrichment Manager:

• UCMDB 7 and 8:

Admin ➝ Modeling ➝ Enrichment Manager

• UCMDB 9:

Modeling ➝ Enrichment Manager

• BAC:

Admin ➝ Universal CMDB ➝ Modeling ➝ Enrichment Manager

3 Change the Enrichment part of your rule:

a Add the three service groups: Applications, Web Servers, and
IIS.

b Link the three service groups with the Service Group Contained
relationships, as shown in Figure 14.

c In the Node Definition, set the name as selected for the service groups
(IIS, Web Servers, Applications).
Extending HPOM DMA - An Example 47

Figure 14 Enrichment Rules With Service Groups

d Save your enrichment rule.

4 Execute the enrichment.
48 Chapter 2

5 Go back to the View Manager to change your view. Add the service groups
and link them with the appropriate relationship.

Figure 15 Web Server View with Depend Relationship
Extending HPOM DMA - An Example 49

6 Selecting preview should display the following:

Figure 16 Preview

7 Save your view.

You have changed your TQL query to reflect the enrichment rules change. You
can now test and fine-tune this example.

Combining Multiple Synchronization Packages

Until now, you have synchronized with your synchronization package only. It
is now time to consider other synchronization packages, for example, those
supplied with HPOM DMA, which you deactivated earlier. Now you want to
50 Chapter 2

have your hosts and host resources. You also want your databases in the
service map. How can you integrate your synchronization package with the
existing data or even add further extensions?

In HPOM DMA, you can select multiple synchronization packages. Each
synchronization package can have multiple TQL queries associated with it.
All the data retrieved from the UCMDB, based on the TQL queries, are
merged by HPOM DMA and uploaded as a single view into Service Navigator.
HPOM DMA helps to make this as easy as possible. However, there are some
points that you should keep in mind:

• A CI can be synchronized only once. Even though it can be selected in
multiple views, it occurs in Service Navigator just once. HPOM DMA
automatically merges multiple occurrences of a CI.

• A CI can have only one containment parent. Make sure that there are not
multiple containers for a CI in different views. If HPOM DMA finds
multiple containment parents for a CI, you are notified with a warning.

• There may be an unlimited number of dependencies for every CI.
However, you must make sure that there are no cycles in the dependency
graph. Cycles are not supported in Service Navigator. Review your view to
make sure that you have not introduced a cycle when HPOM DMA merges
multiple views.

For your Web Server example, these issues have been avoided. Go to the
HPOM DMA console and activate additional synchronization packages. Then
continue with testing and tuning.

External Services

When synchronizing, all services are added under the CMDB root service. If
you have your own top-level service structure for web servers, you might want
to add links into the CMDB service view. You can do this within service
mapping. See Mapping UCMDB Information to Services on page 87 for
details.

Defining STDs

This example assumes that new STDs are automatically created. If you want
to create your own STDs, see Chapter 4, Service Type Definition Files for
details.
Extending HPOM DMA - An Example 51

Scripting

The enrichment of HPOM DMA is a powerful tool that should meet most of
your extension needs. In addition, you can customize your synchronization
with scripts. There are the following types:

• Pre-mapping to set CI attributes before mapping.

• Pre-upload to tune your synchronization results before they get uploaded
to HPOM.

• Post-upload to trigger additional actions you need when the
synchronization is done.

See Chapter 12, Scripting for details.
52 Chapter 2

3 TQL Queries
TQL queries define the node and service configuration items (CI) in the
UCMDB to be synchronized with HPOM. All TQL queries that are referenced
in the bundle.xml file must exist in the UCMDB. You can either use existing
TQL queries or write specific TQL queries that match the monitoring
infrastructure.

Selecting TQL Attributes

When specifying the necessary TQL queries, make sure that the following
attributes are synchronized for each UCMDB CI type:

• display_label

• CiType

You can select the attributes that are exposed by the UCMDB web service in
the View Manager:

Right-click a node in the TQL definition tree.

From the context menu, select Node Properties Advanced layout settings and
select the appropriate attributes.

Typically, for each CI type in the UCMDB, one or more attributes are selected
to form the key attributes for Smart Message Mapping. For a list of required
and recommended attributes, see UCMDB Attributes on page 143.

Make sure that all key attributes that you choose are exposed by the UCMDB
web service.
 53

Figure 17 Selecting Attributes Exposed by the UCMDB Web Service
54 Chapter 3

Setting Up a TQL Query in a UCMDB Development
Environment

To set up a TQL query in a UCMDB development environment:

1 Create a view in the View Manager. Activate essential attributes, such as
CI Type and the ID to be able to launch tools. Attributes are selected to
form the key attributes for Smart Message Mapping. For a list of required
and recommended attributes, see UCMDB Attributes on page 143.

2 Make sure the created View has the desired CI result map. Figure 18 is an
example of a view.

Figure 18 Example of a View

If an object is found by more than one TQL query, it is merged to a
single object in HPOM, and includes all attributes and all links
defined in all of the queries. You can always split a topology into
multiple queries, if this is easier to define. This situation also
occurs if the TQL queries are defined in different bundles and all of
them are activated during synchronization.
TQL Queries 55

3 Use the Preview tab on the top of the view area to preview the result map
selected by the view TQL.

4 Open the Package Manager:

— UCMDB 7 and 8:

Admin ➝ Settings ➝ Package Manager

— UCMDB 9:

Administration ➝ Package Manager

— BAC:

Admin ➝ Universal CMDB ➝ Settings ➝ Package Manager

5 Create a package in the Package Manager.

a Click New.

The Create Custom Package wizard opens.

b Enter a name and description for the new package and click Next.

c Expand Query ➝ TQLs ➝ Enrichment and check <Package Name>,
where <Package Name> is the name of the package containing the
TQL query that you want to move.

d Expand Query ➝ TQLs ➝ View and check <Package Name>.

e Expand Query ➝ Views and check <Package Name>

f Expand Query ➝ Enrichments and check <Package Name>.

g Click Next.

A summary of the selections that you have made is displayed.

h Click Finish.
56 Chapter 3

Setting Up a TQL Query in a UCMDB Production
Environment

Import and deploy package in Package Manager. For an example, see
Figure 19.

Figure 19 Importing and Deploying Packages
TQL Queries 57

58 Chapter 3

4 Service Type Definition Files
Service type definitions (STDs) are used to identify how CIs from the UCMDB
are to be handled when building services in HPOM on synchronization. They
are a concept in HPOM for Windows to assign tools, propagation rules, and
calculation rules to services. HPOM DMA uses this concept to identify how
CIs from the UCMDB are handled when constructing services in HPOM. It
can also be applied to HPOM for UNIX or Linux.

Service type definition files in Windows use the MOF format. On UNIX and
Linux, they are XML files.

STDs in HPOM for Windows

A service type definition file for HPOM for Windows contains four parts:

• Propagation Rules

The status of most services in the service hierarchy are calculated from
the messages associated with the service and from the sub-services on
which the service is dependent. Status propagation refers to how a service
represents its status to its superordinate services.

The propagation rules section of an STD specifies whether the HPOM
propagation rules are used or whether they are modified. A value of zero
leaves the HPOM propagation rule unmodified. A positive value increases
the severity.

This is the section titled instance of OV_PropagationRule in Example
of STDs on Windows on page 60.
 59

• Calculation Rules

The calculation rule lets you indicate the threshold value that is used to
determine the status of a service. You can choose either most critical,
single threshold, or multiple threshold. All three rules have the same
functional principle: the highest-level severity with a rating that crosses a
threshold that you specify is the severity of the service.

The calculation rules section of an STD specifies whether the HPOM
calculation rules are used or whether they are modified. A value of zero
leaves the HPOM calculation rule unmodified. A positive value increases
the severity.

This is the section titled instance of OV_CalculationRule in Example
of STDs on Windows on page 60.

• Service Type Definitions

The service type definition specifies which calculation and propagation
rules are applied, and which icon is to be used to represent a CI from the
UCMDB on the HPOM service tree. The subsequent synchronization
updates the service instances in HPOM in accordance with the changes
made to the service type definition.

This is the section titled instance of OV_ServiceTypeDefinition in
Example of STDs on Windows on page 60.

Service type definitions file for Windows are specified using the Managed
Object Format (MOF).

• Service Type Component

The service type component specifies the parent-child association and the
propagation rule to be used for a matching UCMDB CI type.

This is the section titled instance of OV_ServiceTypeComponent in
Example of STDs on Windows on page 60.

Example of STDs on Windows

This example illustrates the common parts of the default service type
definition file:

#pragma namespace("\\\\.\\Root\\HewlettPackard\\OpenView\\Data")

instance of OV_PropagationRule
{

60 Chapter 4

Caption = "Generic UCMDB Service PR";
CriticalRule = 0;
DefaultRule = 0;
Description = "Generic UCMDB Service propagation.";
MajorRule = 0;
MinorRule = 0;
NormalRule = 0;
SettingID = "ucmdb_generic_PR";
WarningRule = 0;

};

instance of OV_CalculationRule
{

CalculationThresholdType = 0;
CalculationType = 1;
Caption = "Generic UCMDB Service CR";
CriticalSetTo = 0;
CriticalThreshold = 0;
Description = "Generic UCMDB Service calculation.";
MajorSetTo = 0;
MajorThreshold = 0;
MinorSetTo = 0;
MinorThreshold = 0;
NormalSetTo = 0;
SettingID = "ucmdb_generic_CR";
SingleSetTo = 0;
SingleThreshold = 0;
WarningSetTo = 0;
WarningThreshold = 0;

};

instance of OV_ServiceTypeDefinition
{

CalcRuleId = "ucmdb_generic_CR";
Caption = "Unix";
CaptionFormat = "folder";
Description = "Mapping of corresponding UCMDB type";
GUID = "ucmdb_unix";
Icon = "ServiceGrp.ico";
KeyFormat = "folder";
MsgPropRuleId = "ucmdb_generic_PR";

};

instance of OV_ServiceTypeComponent
{

GroupComponent = "OV_ServiceTypeDefinition.GUID=\"folder\"";
PartComponent = "OV_ServiceTypeDefinition.GUID=\"ucmdb_unix\"";
PropRuleId = "ucmdb_generic_PR";

};

For further information on STDs in HPOM for Windows, see the HPOM for
Windows Online Help.
Service Type Definition Files 61

Uploading STDs into HPOM for Windows

The command-line utility for MOF file compilation with WMI is mofcomp. This
utility can be used to deposit CIM information into the WMI repository or to
do a simple syntax check of the MOF file. Windows NT or later operating
systems include the mofcomp utility. You can execute the utility by entering
mofcomp at the DOS prompt.

To compile a MOF file into the WMI repository, use the command:

mofcomp default.mof

Make sure that a #pragma namespace... statement is included at the start of
the <service type definition>.mof file.

Example:

#pragma namespace("\\\\.\\Root\\HewlettPackard\\OpenView\\Data")

STDs in HPOM for UNIX or Linux

A service type definition file for HPOM for UNIX or Linux contains two parts:

• Service

The service specifies which calculation and propagation rules are applied,
and which icon is to be used to represent a CI from the UCMDB on the
HPOM service tree. Changing and uploading a service type definition is

If you create your own STDs and you use the UI launch feature, then you
must assign the BAC Service UI Launch or UCMDB Service UI Launch tool
groups to those STDs.

This is done in the HPOM for Windows console under Tools Configure
Service Types.

Propagation and Calculation rules referenced in a service type definition file
must exist in the HPOM for UNIX or Linux service engine repository. You can
create or update them using the opcservice tool. For information on the
opcservice tool, see the Administrator’s Reference.
62 Chapter 4

the main way to adapt the service hierarchy. The subsequent
synchronization updates the service instances in HPOM in accordance
with the changes made to the service type definition.

Service type definitions are specified using XML files.

The service type definition section is contained within the <Services>
section. Each service type definition is specified within a section titled
<Service>:

<Services>
<Service>
<Name>ucmdb_oracle_nt</Name>
<Label>ucmdb_oracle_nt</Label>
<Icon>database.32.gif</Icon>
<CalcRuleRef>ucmdb_generic_CR</CalcRuleRef>
<MsgPropRuleRef>ucmdb_generic_PR</MsgPropRuleRef>

</Service>
...

• Association

The service type association specifies the propagation rule to be used for
matching associations between UCMDB CI types that match the
referenced source and target service type definitions.

The association section is contained within the <Services> section. Each
association is specified within a section titled <Association>:

<Association>
<Composition/>
<SourceRef>ucmdb_oracle_nt</SourceRef>
<TargetRef>folder</TargetRef>
<PropRuleRef>ucmdb_generic_PR</PropRuleRef>

<Association>
..

Service type definitions are specified in service type definition files, which
must be in XML format. The XML files have to be of the form
DOCTYPE Services. For information on the documentation type definitions
and Services, see the Administrator’s Reference.

Unlike UCMDB relationships, associations are directed bottom up, that is,
from the child to its parent.
Service Type Definition Files 63

Example of STDs on UNIX or Linux

This example illustrates an extract from the default service type definition
file.

Figure 20 Service Type Definition Arrangement

<Services>
<Service>
<Name>folder</Name>
<Label>folder</Label>
<Icon>folder.32.gif</Icon>
<CalcRuleRef>ucmdb_generic_CR</CalcRuleRef>
<MsgPropRuleRef>ucmdb_generic_PR</MsgPropRuleRef>

</Service>
<Service>
<Name>ucmdb_nt</Name>
<Label>ucmdb_nt</Label>
<Icon>winnt.32.gif</Icon>
<CalcRuleRef>ucmdb_generic_CR</CalcRuleRef>
<MsgPropRuleRef>ucmdb_generic_PR</MsgPropRuleRef>

</Service>
<Service>
<Name>ucmdb_unix</Name>
<Label>ucmdb_unix</Label>
<Icon>server.32.gif</Icon>
<CalcRuleRef>ucmdb_generic_CR</CalcRuleRef>
<MsgPropRuleRef>ucmdb_generic_PR</MsgPropRuleRef>

</Service>
64 Chapter 4

<Service>
<Name>ucmdb_disk</Name>
<Label>ucmdb_disk</Label>
<Icon>hdisk.32.gif</Icon>
<CalcRuleRef>ucmdb_generic_CR</CalcRuleRef>
<MsgPropRuleRef>ucmdb_generic_PR</MsgPropRuleRef>

</Service>
...
<Association>
<Composition/>
<SourceRef>ucmdb_nt</SourceRef>
<TargetRef>folder</TargetRef>
<PropRuleRef>ucmdb_generic_PR</PropRuleRef>

</Association>
<Association>
<Composition/>
<SourceRef>ucmdb_unix</SourceRef>
<TargetRef>folder</TargetRef>
<PropRuleRef>ucmdb_generic_PR</PropRuleRef>

</Association>
<Association>
<Composition/>
<SourceRef>ucmdb_disk</SourceRef>
<TargetRef>ucmdb_nt</TargetRef>
<PropRuleRef>ucmdb_generic_PR</PropRuleRef>

</Association>
<Association>
<Composition/>
<SourceRef>ucmdb_disk</SourceRef>
<TargetRef>ucmdb_unix</TargetRef>
<PropRuleRef>ucmdb_generic_PR</PropRuleRef>

</Association>
...
</Services>

Uploading STDs into HPOM for UNIX or Linux

Service type definitions are uploaded into HPOM for UNIX or Linux using the
ServiceTypeDefinitionCLI utility located in <InstallDir>/bin.

To upload service type definitions, enter the following command, specifying
the location and name of the service type definition xml file:

/opt/OV/bin/ServiceTypeDefinitionCLI -o -a <filename>
Service Type Definition Files 65

ServiceTypeDefinitionCLI Command Parameters

ServiceTypeDefinitionCLI [-l] [-a FILENAME] [-o]
[-d definition]

-l Lists all STDs and associations that have been uploaded
and are currently registered.

-a <filename> Adds service type definitions and their associations from
the specified XML file. Requires an additional parameter
containing the file name.

Example:

/opt/OV/bin/ServiceTypeDefinitionCLI -a std.xml

-o Overwrite existing entries.

Example:

/opt/OV/bin/ServiceTypeDefinitionCLI -o -a std.xml

-d <definition> Deletes the named service type definitions and their
associations. Requires an additional parameter containing
the name of the service type definition.

Example:

/opt/OV/bin/ServiceTypeDefinitionCLI -d ucmdb_nt
66 Chapter 4

5 Contained Relationship Files
The HPOM Service Navigator distinguishes between two major types of
relationships:

• Containments

A containment relationship defines the hierarchy between services.
Containments are one-to-many relationships. That is, every service can
have only one parent CI, but any number of children.

• Dependencies

A dependency relationship models a cross-hierarchy dependency between
arbitrary services. Dependencies are many-to-many relationships, that is,
every service can have dependencies pointing to any number of services.

The hierarchy of a service tree is defined by a TQL query. HPOM DMA must
convert these UCMDB relationships to containment relationships to create a
valid service tree. This can be accomplished by classifying certain UCMB
relationship types as containment relationships for Service Navigator. This
classification is done by the containment relationship mapping configuration
file.

Configuration File

The configuration file is an XML file that holds a list of regular expressions.
All UCMDB relationship type names that match this regular expression
become containment relationships, when the relationship is synchronized into
Service Navigator using HPOM DMA.

The file is located in the following directory:

<InstallDir>/newconfig/DataDir/conf/dma/containmentrelations.xml
 67

Syntax of the configuration file:

<containmentrelations>
<match>[RegularExpression]</match>
[<match>[RegularExpression]</match>]
...

</containmentrelations>>

An XML schema for validating and easier editing of this file is available on the
system at:

<InstallDir>/misc/dma/schemas/containmentrelations.xsd

It is also available at the following location:

http://<DMA_Host>:8081/schemas/containmentrelations.xsd

Default Configuration

The default configuration maps all UCMDB relationships that start with the
string container-to-containment relationships:

<containmentrelations>
<match>^container.*</match>
<match>contained.*</match>

</containmentrelations>

Regular expressions are matched against the relation types name and not the
display name.

If a configuration item (CI) has more than one containment relationship,
there is a clash and one relationship is discarded.
68 Chapter 5

6 Node Types
The node type list defines which UCMDB CI types are imported as nodes into
the HPOM node groups.

The node types available in the UCMDB and required by HPOM must be
specified in the nodetypes.xml file:

<SharedDir>/server/conf/dma/nodetypes.xml

Format:

<nodetypes>
<type>[UCMDB Node Type]</type>
... more node types

</nodetypes>

Example:

<nodetypes>
<type>unix</type>
<type>nt</type>
<type>host</type>

</nodetypes>
 69

70 Chapter 6

7 Synchronization Packages
Synchronization packages are sets of configuration files. They are used to:

• Transform CIs into HPOM services and nodes

• Synchronize specified services and nodes in HPOM with data from the
UCMDB

A synchronization package can be created and delivered by SPI or application
developers, and deployed on an HPOM DMA installation.

A synchronization package must include the synchronization package
descriptor file (bundle.xml) to define the synchronization package.

Optional files include:

• Service Mappings (servicemapping.xml)

• Node Mappings (nodemapping.xml)

• Attribute Mapping (attributemapping.xml)

• User Profile Mapping (usermapping.xml)

• Pre-mapping script File (premapping.groovy)

• Pre-synchronization script File (preupload.groovy)

• Post-synchronization script File (postupload.groovy)

HPOM DMA includes the synchronization packages for nodes and selected
databases. For example, if web servers are required, an appropriate additional
mapping is required. Integrators can create these synchronization packages to
enable UCMDB to HPOM synchronization to suit the needs of the IT
environment.

For basic information on mapping, see Appendix A, Mapping Syntax.
 71

Synchronization Package Descriptor File

The bundle.xml file specifies the synchronization package name, its priority,
and the associated TQL queries.

The highest priority is represented by 1. The default synchronization package
is assigned the lowest priority of 10. A higher priority rule result overwrites a
result from a lower priority rule.

Users are then able to activate these synchronization packages in the HPOM
DMA console under Configuration.

The following is an example of a bundle.xml file:

<Bundle>
<Name>MS SQL</Name>
<Description>Out of the box synchronization package for
Microsoft SQL Server databases</Description>
<Priority>7</Priority>
<TQLs>
<TQL>MS SQL Server (Operations)</TQL>

</TQLs>
</Bundle>

The MS SQL Server (Operations) TQL query is queried and the results are
synchronized.

There may be more than one synchronization package with the same priority.
The order of execution of the rules between synchronization packages with
the same priority is not specified.
72 Chapter 7

Mappings

HPOM DMA supports the following types of mapping files.

Service Mappings

Service mappings define the relationships between the type of a CI in the
UCMDB and the service type definition of a service in HPOM.

For details, see Chapter 8, Service Mapping.

Node Mappings

The nodes selected from the UCMDB are mapped to the HPOM node groups
as defined by the node mapping file (nodemapping.xml) from the associated
synchronization package.

For details, see Chapter 9, Node Mapping.

Attribute Mapping

Attribute mapping enables you to change CI attributes and add new
attributes to better describe a service and create a more detailed view of the
environment.

For details, see Chapter 10, Attribute Mapping.

User Profile Mapping

User profile mapping enables you to map a service to an HPOM user profile.
After synchronization, the service is assigned to all operators that are
included in any specified HPOM user profile.

For details, see Chapter 11, User Profile Mapping.
Synchronization Packages 73

Customizing Synchronization and Scripting

Scripting enables you to perform additional processing and customization
during the synchronization process before the mapping and before and after
the upload of nodes and services to HPOM. One pre-mapping, one pre-upload,
and one post-upload script can be associated with each synchronization
package.

For details, see Chapter 12, Scripting.

Synchronization Package Locations

The sync-packages directory contains dedicated subdirectories for each
synchronization package. It is recommended but not essential that you use
directory names that match the synchronization package name.

Synchronization packages are deployed by placing them into the following
directory:

<SharedDir>/server/conf/dma/sync-packages/<SyncPackageName>

The default location is:

• Windows

32-bit: C:\Documents and Settings\All Users\Application
Data\HP\HP BTO Software\shared\server\conf\
dma\sync-packages\<SyncPackageName>

64-bit: C:\ProgramData\HP\HP BTO Software\shared\server\conf\
dma\sync-packages\<SyncPackageName>

• UNIX and Linux

/var/opt/OV/shared/server/conf/dma/sync-packages/
<SyncPackageName>

The synchronization package is then available in the HPOM DMA console.
You can select and activate it.
74 Chapter 7

8 Service Mapping
Service mappings define the relationships between the type of a configuration
item (CI) in the UCMDB and the service type definition of a service in HPOM.
For example, if the UCMDB CI type oracle is a child of CI type unix, they are
mapped to the HPOM service type definition ucmdb_oracle_unix.

The type of incoming objects from the UCMDB must be mapped to a service
type definition. This is handled by the Mapping Engine. For generating
services in HPOM, it is necessary to map a CI type (Source Type) in the
UCMDB or BAC to a Target Type in HPOM.

Service Mapping File

Service mappings are specified in the servicemapping.xml file of the
associated synchronization package. Based on the condition, a service is
assigned to an STD. For information on STDs, see Chapter 4, Service Type
Definition Files.

The default service mapping maps UCMDB CI types to service type
definitions using the following relationship:

<citype> in the UCMDB is mapped to the STD ucmdb_<citype>

Example:

If the CI type is disk, the STD maps this as ucmdb_disk.

If you map to service type definitions and definitions for associations, they
must exist in HPOM and fulfill the constraints of the STD associations.
 75

For mapping syntax information, see Appendix A, Mapping Syntax.

If the default patterns meet your needs, there is no need to write a dedicated
service mapping file for your synchronization package. For example, a specific
service mapping is required for the standard SQL Server database package, to
fetch different versions of SQL Servers. Example of a servicemapping.xml File
on page 78 illustrates how this service mapping is specified.

Rules are applied in reverse order to the CI to make sure that the top-most
and higher prioritized rules overwrite values set by lower prioritized rules.
Service mapping is applied by all matching rules and are executed according
to the priority of the synchronization package and the position within the
rules declarations. A service that is set by a rule that is contained in a higher
prioritized bundle and is above other rules in the same mapping file overrides
values set by lower prioritized rules or set by rules that are located below the
current rule.

The default STD mapping is defined in the servicemapping.xml file of the
default bundle. The contents of this synchronization package should not be
changed. If you require additional service mapping, it is recommended that
you create a new synchronization package with additional service mappings.
76 Chapter 8

Figure 21 Synchronization Package Priority

In Example of a servicemapping.xml File, the service mapping for SQL
Servers contained in the SQL Server synchronization package contains two
rules:

<Rule name="SqlServer 6.5">

<Rule name="SqlServer">

The rule SqlServer is executed first. This sets the STD to ucmdb_sqlserver
for all CIs that are of the type sqlserver. The rule SqlServer 6.5 is checked
next. If the CI contains the attribute database_dbversion and this is set to
6.5, the previously set STD ucmdb_sqlserver is overwritten to the new value
ucmdb_sqlserver65.
Service Mapping 77

Example of a servicemapping.xml File

The following example show the contents of a servicemapping.xml file in a
synchronization package.

In this example, all discovered services with the UCMDB CI type sqlserver
and where database_dbversion attribute value is 6.5 are mapped to the
service type definition ucmdb_sqlserver65. All other CIs of type sqlserver
are mapped to service type definition ucmdb_sqlserver.

The SqlServer rule (<Rule name="SqlServer">) is not strictly necessary as
the service mapping in the default synchronization package achieve the same
result.

All elements are described in detail in Mapping Syntax on page 125.
78 Chapter 8

<?xml version="1.0" encoding="utf-8"?>
<Mapping>
<Rules>
<Rule name="SqlServer 6.5">
<Condition>
<And>
<Equals ignoreCase="true">
<CiType />
<Value>sqlserver</Value>

</Equals>
<Contains>
<Attribute>database_dbversion</Attribute>
<Value>6.5</Value>

</Contains>
</And>

</Condition>
<MapTo>
<STD>
<Value>ucmdb_sqlserver65</Value>

</STD>
</MapTo>

</Rule>
<Rule name="SqlServer">
<Condition>
<Equals ignoreCase="true">
<CiType />
<Value>sqlserver</Value>

</Equals>
</Condition>
<MapTo>
<STD>
<CiType />
<Value>ucmdb_sqlserver</Value>

</STD>
</MapTo>

</Rule>
</Rules>

</Mapping>
Service Mapping 79

Overriding STD Properties

Using these additional mapping actions, you can override default values of an
STD assigned to matched CIs. All actions can be specified independently of
each other and independently of the STD mapping action. As a result, you can
override only selected values. For example, you can change only the icon of a
specified CI that is mapped to the fallback default STD.

ParentPropagationRule and ParentWeight determine the propagation to
the parent of the service.

MessagePropagationRule and MessageWeight determine the propagation of
the messages to the service.

Simple Example of STD-Properties Overrides

This example shows the content of a servicemapping.xml file in a
synchronization package with Service Type Definition Properties overrides.

As in Example of a servicemapping.xml File on page 78, the CI is mapped to
ucmdb_apache_std by the first rule. However, the propagation rule with the
name least_critical is used as the Apache server in this example is part of
a load balancing cluster. The second rule sets the icon names for all CIs to
<CI Type>_icon unless the icon is already specified in a previous rule, for
example, the Apache web server CI to apache_icon.

<?xml version="1.0" encoding="utf-8"?>
<Mapping>

<Rules>
<Rule name="Apache Server">

<Condition>
<And>

<Equals ignoreCase="true">
<CiType />
<Value>apache</Value>

</Equals>
<Equals>

<Attribute>cluster</Attribute>
<Value>true</Value>

Calculation and Propagation Rules must exist prior to synchronization.

For more information about Calculation Rules, Propagation Rules and the
Weight, see the HPOM documentation.
80 Chapter 8

</Equals>
</And>

</Condition>

<MapTo>
<STD>

<Value>ucmdb_</Value>
<CiType />
<Value>_std</Value>

</STD>
<MessagePropagationRule>

<Value>least_critical</Value>
</MessagePropagationRule>

</MapTo>
</Rule>
<Rule name="Set Icons">

<Condition>
<True />

</Condition>
<MapTo>

<Icon>
<CiType />
<Value>_icon</Value>

</Icon>
</MapTo>

</Rule>
</Rules>

</Mapping>

Complex Example of STD-Properties Overrides

This examples describes the environment of a imaginary online music shop.
The desired service tree is shown in Figure 22 on page 82.

The online shop is powered by an application server cluster composed of three
Apache Geronimo application servers. This cluster is monitored by network
probes that are installed in three different locations according to the markets

Names of CMDB types, calculation rules, propagation rules, icons and STDs
are not part of the out of the box data. If you wish to recreate a similar
example in a production environment, you must make sure that these rules,
icons and STDs exist. You may need to create some manually. For more
information, see the UCMDB and HPOM documentations.
Service Mapping 81

in Americas, Asia, and Europe with the primary market being the Americas.
Another application server powered by a Sun Glassfish application server
provides an internal billing system.

Figure 22 Service Tree for the Online Music Shop

There are three main steps to consider:

• Setting Rules for Application Servers on page 82

• Setting Rules for Application Servers on page 82

• Setting Rules for Network Probes on page 85

Setting Rules for Application Servers

First we create the rules in a servicemapping.xml for the application
servers. There are two different application servers. To be able to differentiate
these servers at a glance, different icons are required. The rule Set STD and
icons for Application Servers sets the STD and provides different icons
depending on the application server type.

Because the application servers for the shop are arranged in a cluster, the
failure of up to two nodes does not result in a failure of the cluster and the
application remains available. The cluster should only reflect the state of the
82 Chapter 8

least critical message of any cluster node. To get the cluster to reflect the state
of the least critical message, use the calculation rule least_critical, which
is set by the rule Set calculation rule for cluster.

Although any outage of the online shop may result in the loss of business, the
billing system is less critical. If customers receive bills a few days late, they
are not unduly upset. The status of the billing system is not as critical as that
of the shop web site. To reduce the severity, we set the parent propagation rule
of the billing application server using the rule Set parent propagation
rule for billing below Music Shop to decrement_severity. We do this
on the parent propagation rule because we do not want to change the general
propagation rule of the billing application server, as it might be critical in a
different context. Only in the context of this tree, it is less critical.

<?xml version="1.0" encoding="UTF-8"?>
<Mapping xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://localhost:8081/hpdma/schemas/
mapping.xsd">

<Rules>
<Rule name="Set parent propagation rule for billing below Music
Shop">

<Condition>
<And>

<Equals>
<CiCaption/>
<Value>Billing AppServer</Value>

</Equals>
<Equals>

<XPathResult>/caption</XPathResult>
<Value>Music Shop</Value>

</Equals>
</And>

</Condition>
<MapTo>

<ParentPropagationRule>
<Value>decrement_severity</Value>

</ParentPropagationRule>
</MapTo>

</Rule>
<Rule name="Set calculation rule for cluster">

<Condition>
<Equals>

<CiCaption/>
<Value>Online Shop Cluster</Value>

</Equals>
</Condition>
<MapTo>

<CalculationRule>
<Value>least_critical</Value>

</CalculationRule>
</MapTo>

</Rule>
Service Mapping 83

<Rule name="Set STD and icons for Application Servers">
<Condition>

<Or>
<Equals>

<CiType />
<Value>glassfish</Value>

</Equals>
<Equals>

<CiType />
<Value>jboss</Value>

</Equals>
<Equals>

<CiType />
<Value>geronimo</Value>

</Equals>
</Or>

</Condition>
<MapTo>

<STD>
<Value>app_server</Value>

</STD>
<Icon>

<CiType/>
<Value>.gif</Value>

</Icon>
</Rule>

</Rules>
</Mapping>

Setting Rules for WAN Connections

After creating the rules for the application servers, we consider the WAN
connection of our server to the Internet. Even a warning here may result in
slow response times. So this is very critical to the overall availability. In
contrast to the billing application server, this is true in every context, so we
set the message propagation rule of the CI itself to the calculation rule
increment_severity, which increments the severity of each message by one.

<?xml version="1.0" encoding="UTF-8"?>
<Mapping xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://localhost:8081/hpdma/schemas/
mapping.xsd">

<Rules>
<Rule name="Set propagation rule for WAN connection">

<Condition>
<And>

<Equals>
<CiType/>
<Value>networklink</Value>

</Equals>
<StartsWith>

<CiCaption/>
84 Chapter 8

<Value>WAN</Value>
</StartsWith>

</And>
</Condition>
<MapTo>

<MessagePropagationRule>
<Value>increment_severity</Value>

</MessagePropagationRule>
</MapTo>

</Rule>
</Rules>

</Mapping>

Setting Rules for Network Probes

After creating the WAN connection of our server to the Internet, we take care
of the network probes that monitor the external availability of the shop. There
are three different network probes located in the regions of the target
markets. These are collected under the Network Probes CI, which calculate
the overall network probe status using the average of these three locations.
The rule Set calculation rule for top level network probe CI sets
the calculation rule average for this purpose.

Because most customers are located in the Americas region, availability is
most important here. By setting the message weight to 2.0, the status of the
Americas network probe is propagated with twice the importance. So the
calculation of the Network Probes CI is biased towards the result of the
Americas network probe.

All other STDs properties of the network probe CIs may be derived by DMA
from the default STD that is mapped by the default synchronization package.
We want an alternative icon here, which is set through the rule Set icon for
network probes. Use the DMA supplied default STD.

<?xml version="1.0" encoding="UTF-8"?>
<Mapping xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://localhost:8081/hpdma/schemas/
mapping.xsd">

<Rules>
<Rule name="Set calculation rule for top level network probe CI">

<Condition>
<Equals>

<CiCaption/>
<Value>Network Probes</Value>

</Equals>
</Condition>
<MapTo>

<CalculationRule>
<Value>average</Value>

</CalculationRule>
Service Mapping 85

</MapTo>
</Rule>
<Rule name="Set a higher weight for probes in key markets">

<Condition>
<And>

<Equals>
<CiType/>
<Value>networkprobe</Value>

</Equals>
<Equals>

<Attribute>location</Attribute>
<Value>americas</Value>

</Equals>
</And>

</Condition>
<MapTo>

<MessageWeight>2.0</MessageWeight>
</MapTo>

</Rule>
<Rule name="Set icon for network probes. Use DMA supplied
default STD.">

<Condition>
<Equals>

<CiType/>
<Value>networkprobe</Value>

</Equals>
</Condition>
<MapTo>

<Icon>
<CiType/>
<Value>probe.gif</Value>

</Icon>
</MapTo>

</Rule>
</Rules>

</Mapping>
86 Chapter 8

Mapping UCMDB Information to Services

HPOM DMA imports data from the UCMDB into HPOM. The automation
process can synchronize this data on a regular basis. You may have already
defined services directly in HPOM, and want to incorporate the data imported
from the UCMDB with the data already present in Service Navigator.

The term ExternalCi refers to CIs that exist in HPOM but do not originate
from the UCMDB and have not been imported using HPOM DMA. External
service CIs are service CIs which are not synchronized during the
synchronization task.

Dependency relations of services are “owned” by the target service (source and
target is defined by the direction of the status propagation). Only those
dependencies where a UCMDB service is the target can be completely
controlled by the synchronization task (create, update, delete). Dependencies
where a UCMDB service is the source can only be created or updated by the
synchronization task, if necessary they need to be deleted manually.

External dependencies can be achieved using Service mapping.

Creating Dependencies from External CIs to Internal CIs

External CI dependency creation associates service CIs to services that are
already present in Service Navigator, and that are not part of the HPOM DMA
synchronization. The following syntax is used:

<DependencyFromExternalCi>
<ExternalCiId>

[Operand]
...

</ExternalCiId>
<DependencyType>

[Operand]
...

</DependencyType>
<PropagationRuleName>

[Operand]
...

</PropagationRuleName>
<PropagationWeight>[Double]</PropagationWeight>

</DependencyFromExternalCi>
Service Mapping 87

This service mapping creates a dependency from the external service CI
identified by the CI referenced in the <ExternalCiId> tag. The type of the
dependency is specified in the value of the <DependencyType> tag. Both
values can be concatenated by any operands.

Optionally, the propagation rule and propagation weight of the dependency
can be specified in the <PropagationRuleName> and <PropagationWeight>
tags.

Example

<?xml version="1.0" encoding="UTF-8"?>
<Mapping xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="schemas/mapping.xsd">
<Rules>
<Rule name="Create dependency from external CI">
<Condition>
<Contains>
<CiType />
<Value>unix</Value>

</Contains>
</Condition>
<MapTo>
<DependencyFromExternalCi>
<ExternalCiId>
<Value>SVCDISC</Value>
<Value>:</Value>
<Value>Cluster</Value>

</ExternalCiId>
<DependencyType>
<Value>Dependency</Value>

</DependencyType>
<PropagationRuleName>
<Value>test_PR</Value>

</PropagationRuleName>
<PropagationWeight>2.0</PropagationWeight>

</DependencyFromExternalCi>
</MapTo>

</Rule>
</Rules>

</Mapping>
88 Chapter 8

Creating Dependencies from Internal CIs to External CIs

Internal CI dependency creation associates service CIs to services that are
already present in the HPOM DMA synchronization, and that are not part of
Service Navigator. The following syntax is used:

<DependencyToExternalCi>
<ExternalCiId>

[Operand]
...

</ExternalCiId>
<DependencyType>

[Operand]
...

</DependencyType>
[<PropagationRuleName>

[Operand]
...

</PropagationRuleName>
<PropagationWeight>[Double]</PropagationWeight>]

</DependencyToExternalCi>

This service mapping creates a dependency to the external service CI
identified by the CI referenced in the <ExternalCiId> tag. The type of the
dependency is specified in the value of the <DependencyType> tag. Both
values can be concatenated by any operands.

Optionally the propagation rule and propagation weight of the dependency
can be specified in the <PropagationRuleName> and <PropagationWeight>
tags.

Example

<?xml version="1.0" encoding="UTF-8"?>
<Mapping xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="schemas/mapping.xsd">
<Rules>
<Rule name="Create dependency to external CI">
<Condition>
<Contains>
<CiType />
<Value>nt</Value>

</Contains>
</Condition>
<MapTo>
<DependencyToExternalCi>
Service Mapping 89

<ExternalCiId>
<Value>SVCDISC</Value>
<Value>:</Value>
<Value>Applications</Value>

</ExternalCiId>
<DependencyType>
<Value>Dependency</Value>

</DependencyType>
<PropagationRuleName>
<Value>test_PR</Value>

</PropagationRuleName>
<PropagationWeight>3.0</PropagationWeight>

</DependencyToExternalCi>
</MapTo>

</Rule>
</Rules>

</Mapping>
90 Chapter 8

9 Node Mapping
HPOM node groups are used to organize your nodes and to automate the
deployment of the monitoring environment of nodes that are added to a node
group. Node mapping is used by HPOM DMA to specify the rules required to
assign nodes imported from the UCMDB to node groups in HPOM.

Node Mapping File

The nodes selected from the UCMDB are mapped to the HPOM node groups
as defined by the node mapping files (nodemapping.xml) from all activated
synchronization packages.

The default node group is CMDB and all synchronized nodes are sent to this
node group in addition to any node groups specified in the dedicated
nodemapping.xml files.

The node type list defines which UCMDB CI types are imported as nodes into
the HPOM node groups. For further information, see Node Types on page 69.
 91

Example of Node Mapping

<?xml version="1.0" encoding="utf-8"?>
<Mapping>
 <Rules>
 <Rule name="Unix Oracle Nodes">
 <Condition>
 <And>
 <Equals>
 <CiType/>
 <Value>unix</Value>
 </Equals>
 <Equals>
 <Attribute>host_servertype</Attribute>
 <Value>oracle</Value>
 </Equals>
 </And>
 </Condition>
 <MapTo>
 <NodeGroup>
 <Value>DBSPI_Oracle_Unix_Nodes</Value>
 </NodeGroup>
 </MapTo>
 </Rule>
 <Rule name="Oracle Windows Nodes">
 <Condition>
 <And>
 <Equals>
 <CiType/>
 <Value>nt</Value>
 </Equals>
 <Equals>
 <Attribute>host_servertype</Attribute>
 <Value>oracle</Value>
 </Equals>
 </And>
 </Condition>
 <MapTo>
 <NodeGroup>
 <Value>DBSPI_Oracle_Windows_Nodes</Value>
 </NodeGroup>
 </MapTo>
 </Rule>
 </Rules>
</Mapping>

In this example:

• The rule Unix Oracle Nodes searches for nodes of the CI type unix
where the attribute host_servertype is set to oracle and places these
nodes into the node group DBSPI_Oracle_Unix_Nodes.

• The rule Oracle Windows Nodes searches for nodes of the CI type nt
where the attribute host_servertype is set to oracle and places these
nodes into the node group DBSPI_Oracle_Windows_Nodes.
92 Chapter 9

10 Attribute Mapping
Attribute mapping enables you to do the following:

• Change CI attributes and add new attributes to:

— Better describe a service and create a more detailed view of the
environment.

— Enable Smart Message Mapping to enrich HPOM messages with
custom message attributes.

• Set the hosted_on attribute to the fully qualified hostname so that Smart
Message Mapping can work correctly.

• Customize the default service ID that HPOM DMA assigns to services
synchronized from UCMDB.

Attribute mapping is applied by all matching rules and is executed according
to the priority of the bundle and the position within the rules declarations in a
a similar way to STD mapping. For details, see Service Type Definition Files
on page 59.

An attribute that is set by a rule that is contained in a higher prioritized
bundle and is above other rules in the same mapping file overrides attributes
set by lower prioritized rules or set by rules that are located below the current
rule.

Attribute Mapping File

Attribute mappings are specified in the attributemapping.xml file from the
associated synchronization package.

In the default attributemapping.xml file, the following attributes are
mapped:

• Attribute required for Smart Message Mapping:
 93

The hosted_on attribute is required by Smart Message Mapping.

• Attributes required for BAC and UCMDB for UI Launch:

— CmdbCiCaption

— CmdbCiType

— CmdbObjectID

• Attributes for nodes:

— system_type

— os_type

— version

Example of Attribute Mapping

The example attribute mapping in this section illustrates how to set specific
attributes for a selected CI type with particular attributes. For all CIs that are
of the CI type unix and that have the following attributes:

• host_os set to HP-UX

• host_model set to ia64

• data_description containing B.11.23

The following attributes are set:

• ovo_osType to HP-UX_64

• ovo_systemType to Itanium Compatible

• ovo_osVersion to B.11.23

For further information about mapping syntax, see Mapping Syntax on
page 125.

These attributes can be used as parameters to call tools in HPOM.

Syntax: $OPC_SERVICE_VALUE[<attribute>]

Example: $OPC_SERVICE_VALUE[hosted_on]

To view a working example, see the standard UI Launch tools.
94 Chapter 10

<?xml version="1.0" encoding="utf-8"?>
<Mapping>

<Rules>
<Rule name="Set node attributes for HP-UX B11.23 Itanium">

<Condition>
<And>

<Equals>
<CiType />
<Value>unix</Value>

</Equals>
<Equals>

<Attribute>host_os</Attribute>
<Value>HP-UX</Value>

</Equals>
<Equals>

<Attribute>host_model</Attribute>
<Value>ia64</Value>

</Equals>
<Contains>

<Attribute>data_description</Attribute>
<Value>B.11.23</Value>

</Contains>
</And>

</Condition>
<MapTo>

<Attribute>
<Name>ovo_osType</Name>
<SetValue>

<Value>HP-UX_64</Value>
</SetValue>

</Attribute>
<Attribute>

<Name>ovo_systemType</Name>
<SetValue>

<Value>Itanium Compatible</Value>
</SetValue>

</Attribute>
<Attribute>

<Name>ovo_osVersion</Name>
<SetValue>

<Value>B.11.23</Value>
</SetValue>

</Attribute>
</MapTo>

</Rule>
</Rules>

</Mapping>
Attribute Mapping 95

96 Chapter 10

11 User Profile Mapping
User profile mapping enables you to map a service to an HPOM user profile.
After synchronization, the service is assigned to all operators that are
included in any specified HPOM user profile.

For all services, the mapping starts with the rules of the highest priority and
executes all rules with progressively lower priority until the rules with the
lowest priority have been executed.

User Profile Mapping File

User profile mappings are specified in the usermapping.xml file of the
associated synchronization package:

<SharedDir>/server/conf/dma/sync-packages/<syncPackage>/
usermapping.xml

For user profile mapping, the order of rule execution is not
important. CIs are assigned to all user profiles that match and
matching rules do not conflict with each other.
 97

 Example of User Profile Mapping

In this example, Apache web server CIs are assigned to the global operators
responsible for web server operations as well as to the local web server
operations users, for example, London_web_op for Apache web servers that
are located in London:

<?xml version="1.0" encoding="utf-8"?>
<Mapping>

<Rules>
<Rule name="Assign Apache Server users">

<Condition>
<Equals ignoreCase="true">

<CiType/>
<Value>apache</Value>

</Equals>
</Condition>
<MapTo>

<UserProfile>
<Value>global_web_op</Value>

</UserProfile>
<UserProfile>

<Attribute>location</Attribute>
<Value>_web_op</Value>

</UserProfile>
</MapTo>

</Rule>
</Rules>

</Mapping>

For further information about mapping syntax, see Mapping Syntax on
page 125.
98 Chapter 11

12 Scripting
Scripting enables you to perform additional processing and customization
during the synchronization process:

• Pre-mapping scripts are executed before the mapping rules are applied.

• Pre-upload scripts are executed before the upload of nodes and services to
HPOM.

• Post-upload scripts are executed after the upload of nodes and services to
HPOM.

One script of each type can be associated with each synchronization package.
These optional script files are located in the associated synchronization
package directory. For details of synchronization package locations, see
Synchronization Packages on page 71.

Associating script files with synchronization packages simplifies the
distribution of scripts and enables script development to be handled
independently of the working environment. The execution of synchronization
scripts follows the settings of the synchronization packages:

• Only scripts in active synchronization packages are executed.

• Scripts are executed in the order of the priority of the synchronization
packages.

Script execution is potentially insecure. In particular, the use of
DMA.exec(...) commands can cause damage to an installation. To enhance
security, script access for editing is allowed on the file system level only. This
makes sure that only users with log-on credentials to the HPOM DMA host
can edit scripts. This protects the scripts by the log-on security of the HPOM
DMA host.
 99

Script Syntax

Groovy is an object-oriented programming language for the Java platform. It
can be used as a scripting language for the Java platform. HPOM DMA
supports Groovy for its scripting capabilities.

Groovy uses a Java-like curly bracket syntax that is dynamically compiled to
JVM bytecodes, and that works well with other Java code and libraries. For
more information about Groovy and documentation describing the Groovy
language, visit: http://groovy.codehaus.org

Script Files

Script files are identified using fixed names within synchronization package
directories:

• preMapping.groovy— script to be executed before mapping

• preUpload.groovy — script to be executed before upload

• postUpload.groovy — script to be executed after upload

The upload is performed between execution of the active preUpload.groovy
scripts and the postUpload.groovy scripts. The Script Summary page of the
HPOM DMA console displays the execution order and the data upload.

Script Variables

Each script has two predefined variables:

DMA

Object Type: com.hp.ov.om.dma.scripting.IDmaScriptingInterface

Description: Enables access to DMA function calls to manipulate
synchronization data and control the synchronization.

syncData

Object Type: com.hp.ov.om.dma.common.data.sync.ISyncData
100 Chapter 12

Description: Provides access to the data that is synchronized.

For more information about the object types, see the online API
documentation, which can be accessed on every DMA installation at:

http://<hostname>:8081/hpdma/apidoc/index.html

Scripts within a synchronization package share the same variable scope. That
means variables assigned in preMapping.groovy can be later used in the
corresponding preUpload.groovy and postUpload.groovy. Scripts from
different synchronization packages do not share variables with the same
name, which avoids name clashes and undesired side effects.

Handling Errors

Errors in scripts result in the generation of exceptions. The error handling is
around each script invocation. By default, an exception in a script aborts the
synchronization. This behavior can be changed by calling the command:

DMA.setAbortSyncOnError(boolean)

When set to false, you can enforce a script failure using the method
DMA.abortSync(“...“). For example, your script checks conditions, and
because of these forced failures, a synchronization cannot be completed.

Table 1 Relation to Synchronization Status

Status Script behavior

 Synchronization OK Scripting completed without errors and without
forced synchronization interruption within a
script.

Scripting completed without errors even if an
exception is thrown, and AbortSyncOnError is set
to false.

 Synchronization failed A script execution caused an exception or the
script forced a failure because of a scripting
condition using the DMA.abortSync(String)
command.
Scripting 101

Enabling and Disabling Scripts

To help identify the cause synchronization failure, scripting can be disabled. If
there is an error in a script, disabling scripting should enable successful
synchronization.

To disable synchronization package script execution, clear the Enable Script
Execution check box from the Content page of the HPOM DMA console and
click Save.

Sample Scripts

The following examples are also available on your HPOM DMA host system
after installation at:

<InstallDir>/misc/dma/samples

Creating Dependency Associations to External Services

This example iterates through all the services that are synchronized from the
UCMDB.

For all services of the cmdb CI type nt, the script creates a dependency
association so that the DNS_Server service propagates its status to these
services.

For all services of the cmdb CI type unix, the script creates a dependency
association so that the Unix_Domain service propagates its status to these
services.

If script execution is disabled, a warning is displayed on the Script Summary
page of the HPOM DMA console.
102 Chapter 12

import com.hp.ov.om.dma.common.data.ci.ICi
import com.hp.ov.om.dma.common.data.ci.ICiRelation

// create two external Cis to use as reference.
ICi toCi = DMA.getExternalCiStub("DNS_Server")
ICi fromCi = DMA.getExternalCiStub("Unix_Domain")
// iterate over all Cis
for (ICi ci : syncData.getConfigurationItems()) {
 if (ci.getAttributeValue("CmdbCiType") == "nt") {
 // if type is nt, add a dependency from this ci to the DNS_Server.
 DMA.createRelation(ci, toCi, "Dependency")
 }
 if (ci.getAttributeValue("CmdbCiType") == "unix"){
 // if type is unix, add a dependency from Unix_Domain to this ci.
 DMA.createRelation(fromCi, ci, "Dependency")
 }
}

Modifying Dependency Associations

This sample modifies the dependency association from test1 to test2 (test2
propagates its status to test1) and sets the propagation rule of the
dependency association to test_PR and its weight to 2.

import com.hp.ov.om.dma.common.data.ci.ICi
import com.hp.ov.om.dma.common.data.ci.ICiRelation

// iterate over all cis
for (ICi ci : syncData.getConfigurationItems()) {
// iterate over all the dependency associations
for (ICiRelation rel : ci.getDependencyRelations()) {
if (rel.getFrom().getId() == "test1" && rel.getTo().getId() ==
"test2") {
// if the dependency is from test1 to test2, set the properties
rel.setPropagationRuleName("test_PR")
rel.setPropagationWeight(new Double(2))

}
}

}

Scripting 103

Submitting an opcmsg Message

This sample script executes opcmsg after a synchronization submitting its
outcome.

/* (C) Copyright 2008 Hewlett-Packard Development Company, L.P. */

/*
* This sample script executes opcmsg after a sync submitting its
* outcome.
*/

import com.hp.ov.om.dma.common.data.ci.CiMessageSeverity

def command = "opcmsg"

def application = "application=hpdma"
def targetObject = "object=HPDMA"

def severitySyncSucceeded = "severity=normal"
def severitySyncFailed = "severity=major"

def messageSuccess = "msg_text=The sync finished successfully."
def messageFailure = "msg_text=The sync failed."

def message = []

if (syncData.hasConfigurationItemsWithMessages(
CiMessageSeverity.SEVERE)) {
message = ["$command", "$severitySyncFailed", "$application",

"$targetObject", "$messageFailure"]
} else {
message = ["$command", "$severitySyncSucceeded", "$application",

"$targetObject", "$messageSuccess"]
}
// message is a ArrayList in the Groovy context
// so it has be casted to a String[]
DMA.exec((String[]) message)
104 Chapter 12

Grouping Multiple Host Resource Types

If a node has multiple host resources of the same type, the resources are
grouped under a new subgroup. Figure 23 illustrates the grouping of disks
under a disk subgroup.

Figure 23 Grouping Multiple Disks Under a New Subgroup

This example is also available as an out-of-the-box synchronization package.
Scripting 105

/* (C) Copyright 2008 Hewlett-Packard Development Company, L.P. */

/*
 * This sample iterates through all the nodes and checks for multiple
 * occurrences of host resources of the same type. Host resource types that
 * occur more than once will then be grouped under a new virtual service.
 */

import com.hp.ov.om.dma.common.data.ci.ICi
import com.hp.ov.om.dma.common.data.ci.INode
import com.hp.ov.om.dma.common.data.ci.ICiRelation

// Grouping host resources is nice-to-have, but not critical.
DMA.setAbortSyncOnError(false)

// create two external Cis to use as reference.
for (INode node in syncData.getNodes()) {
 def childrenTypes = node.getNavigator().getValues("./children/ci/type")
 def multipleTypes = [:]
 childrenTypes.each {
 def typeCount = childrenTypes.count(it)
 if (typeCount > 1 && ! multipleTypes.containsKey(it)) {
 multipleTypes[it] = typeCount
 }
 }

 for (String resourceType in multipleTypes.keySet()) {
 DMA.logInfo("Node $node has multiple host resources of the type

$resourceType. Grouping host resources.");
 // Create virtual service for the host resource group
 ICi virtualService = DMA.createCi(resourceType + "@@" +

UUID.randomUUID());
 virtualService.setCaption(resourceType);
 virtualService.setType("servicegroup");
 DMA.performEnrichment(virtualService);

 // Add the virtual service to the node
 DMA.createRelation(node, virtualService, "container")

 // Move the host resources below the virtual service
 def hostResources = node.getNavigator().getCiValues("./children/

ci[type='$resourceType']");
 for (ICi hostResource in hostResources) {
 node.removeRelation(hostResource.getParentRelation())
 DMA.createRelation(virtualService, hostResource, "container")
 }
 }
}

106 Chapter 12

Grouping Synchronized Nodes Alphabetically

This sample creates an alphabetical sub-grouping of the synchronized nodes
in Service Navigator.

/* (C) Copyright 2008 Hewlett-Packard Development Company, L.P. */

/*
* This sample script creates an alphabetical hierarchy
* of the synchronized nodes.
*/

import com.hp.ov.om.dma.common.data.ci.ICi
import com.hp.ov.om.dma.common.data.ci.INode

// instance of IDmaScriptingInterface --> DMA
// instance of ISyncData --> syncData

// A map that will map letters to corresponding new CIs
def letterCIs = [:]

for (INode node : syncData.getNodes()) {
// Checks all synced UCMDB/BAC nodes and caches their caption's first letter
String captionStart = node.getCaption().toUpperCase().charAt(0)
String nodeCiType = node.getAttributeValue("CmdbCiType")
String mapEntry = "${captionStart}_${nodeCiType}"

// Create a CI for each letter corresponding to the first letter of each synced
//node
letterCIs["$mapEntry"] = DMA.createCi("$mapEntry")
letterCIs["$mapEntry"].setCaption("$captionStart")
letterCIs["$mapEntry"].setType("$nodeCiType")

// Perform enrichment on the created CI for the letter
DMA.performEnrichment(letterCIs["$mapEntry"])

// Automatic STD creation has to be enabled for setServiceTypeDefinitionID to
//succeed
letterCIs["$mapEntry"].setServiceTypeDefinitionID("$nodeCiType")
letterCIs["$mapEntry"].setIsService(true)
letterCIs["$mapEntry"].addAttribute("CmdbCiType", "${nodeCiType}")
DMA.logInfo("Created letter CI for $mapEntry")

}

// Iterate over all nodes to create containment relations to the letter CIs
for (INode node : syncData.getNodes()) {

String captionStart = node.getCaption().toUpperCase().charAt(0)
String nodeCiType = node.getAttributeValue("CmdbCiType")
String mapEntry = "${captionStart}_${nodeCiType}"

String nodeId = node.getId()

DMA.logInfo("Altering relations between CI $nodeId and letter CI
$captionStart")

This script creates new STDs. You must either create these STDs manually or
enable the automatic STD creation. For details, see the Installation and
Configuration Guide.
Scripting 107

// Create appropriate dependencies
parentCI = node.getParentCi()

if (parentCI != null) {

String parentCiId = parentCI.getId()

DMA.logInfo("Got parent CI $parentCiId")

// Save original relation type for replacement
String relationType = node.getParentRelation().getType()

// Remove original containment association
if (parentCI.removeRelation(node.getParentRelation())) {
DMA.logInfo("Successfully removed parent CI ($parentCiId) relation from

$nodeId")
}

// Assign new relations with the same relation type as before
letterCIs["$mapEntry"].addRelation(

DMA.createRelation(letterCIs["$mapEntry"], node, "$relationType"))
parentCI.addRelation (DMA.createRelation(parentCI, letterCIs["$mapEntry"],

"$relationType"))
}

}

108 Chapter 12

Organizing Nodes in Layout Groups

This example script moves all Windows nodes into the managed/windows node
layout group and all UNIX nodes to the managed/unix node layout group.

/* (C) Copyright 2008 Hewlett-Packard Development Company, L.P.
 *
 * This sample script moves all Windows nodes into the node layout
 * group 'managed/windows' and all unix nodes to 'managed/unix'.
 */

import com.hp.ov.om.dma.common.data.ci.INode
import com.hp.ov.om.dma.common.data.ci.CiMessageSeverity

String windowsNodes = ""
String unixNodes = ""

// Iterate over all nodes
for (INode node : syncData.getNodes()) {
 if (!node.hasMessages(CiMessageSeverity.SEVERE)){
 if (node.getType() == "nt"){
 // if the CI-Type is nt, add the DnsName to the list of Windows nodes
 if (windowsNodes.length() == 0){
 windowsNodes = node.getDnsName()
 } else {
 windowsNodes += " " + node.getDnsName()
 }
 }
 if (node.getType() == "unix"){
 // if the CI-Type is unix, add the DnsName to the list of UNIX nodes
 if (unixNodes.length() == 0){
 unixNodes = node.getDnsName()
 } else {
 unixNodes += " " + node.getDnsName()
 }
 }
 }
}

if (windowsNodes.length() > 0){
 // move the nodes to the layout group
 def cmd=["/opt/OV/bin/OpC/utils/opcnode", "-move_nodes", "node_list=\"" +
windowsNodes + "\"", "layout_group=managed/windows"]

 DMA.exec((String[])cmd)
}
if (unixNodes.length() > 0){
 // move the nodes to the layout group
 def cmd=["/opt/OV/bin/OpC/utils/opcnode", "-move_nodes", "node_list=\"" +
unixNodes + "\"", "layout_group=managed/unix"]

 DMA.exec((String[])cmd)
}

Scripting 109

110 Chapter 12

13 Testing and Deployment
This chapter contains information on:

• Validating XML Configuration Files on page 111

• Dumping Synchronization Data on page 115

• Testing Mapping Rules on page 118

• Writing Rules on page 120

• Exporting TQL Queries on page 122

Validating XML Configuration Files

You can use the supplied XML schema definitions to validate the correctness
of XML configuration files. You can also use the supplied XML schema
definition files to make writing new configuration files easier when using an
XML editor such as Eclipse.

XML Schema Definition (XSD) is a standard from World Wide Web
Consortium (W3C) for describing and validating the contents of XML files.
HPOM DMA provides XSD files for all XML configuration files.

For more information, see the XML Schema documentation by W3C available
from the http://www.w3.org/XML/Schema web site.
 111

HPOM DMA XSD Files

The HPOM DMA schema files are stored in the following directory:

<InstallDir>/misc/dma/schemas

They are also available from the following location:

http://<HPOM DMA Host>:8081/hpdma/schemas/<Schema File Name>

The files are:

bundle.xsd Validates the bundle.xml file in each
synchronization package.

containmentrelations.xsd Validates the containmentrelations.xml file.

datadump.xsd Validates synchronization data files that are
created through enabling data dumps or used as
input for the enrichment simulator.

mapping.xsd Validates the following mapping files contained
in the synchronization packages:

• Service mapping - servicemapping.xml

• Node mapping - nodemapping.xml

• Attribute mapping - attributemapping.xml

• User profile mapping - usermapping.xml

nodetypes.xsd Validates the node type mapping file
nodetypes.xml.

schedule.xsd Validates the scheduler configuration file
schedule.xml.

Validating Files Automatically

Each configuration file is automatically validated against the associated XSD
file whenever it is read by HPOM DMA. If a file cannot be validated, an error
message is written to the error log that describes the location of the error in
the validated file.
112 Chapter 13

Validating Files Manually

Modern XML editors, such as Eclipse, enable you to validate a file against a
schema. Eclipse, for example, can validate an XML file against a schema, if
the top level element of the document contains a reference to an XSD file. To
enable validation, add the following attributes to the top level element of an
XML file:

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="<path or URL to schema file>"

Replace <path or URL to schema file> with the respective path or URL to
the schema file against which you want to validate. For example, for a
mapping rules file add the following on UNIX installations:

<?xml version="1.0" encoding="UTF-8"?>>
<Mapping xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://localhost:8081/hpdma/
schemas/mapping.xsd">
...
</Mapping>

When you create or edit a mapping file using the HPOM DMA console, the
schema definition is added automatically. In this case, you only have to copy
and paste the XML code from the console into your editor.

After you have added the reference, the Eclipse editor validates the file and
suggests valid elements when pressing CTRL+SPACE during editing. See
Figure 24 for an example.
Testing and Deployment 113

Figure 24 Example of Validating a File

You may have to reopen the XML file after you have added the XSD reference
to the XML file before Eclipse starts to validate it and provides suggestions.
114 Chapter 13

Dumping Synchronization Data

You can use a dump of the synchronization data to:

• Troubleshoot mapping rules to discover incorrect mappings.

• Compare the data sent by the UCMDB and the data changed and added
during the enrichment.

• Create a dump file that you can use in the enrichment simulator or to
check XPath expressions of rules. See Testing Mapping Rules on page 118.

Creating a Synchronization Data Dump

A synchronization data dump contains the synchronized CIs in XML files
using the data format as exposed to the XPath Expression matching in the
mapping rules.

There are two separate dumps:

• The first is recorded following CI data normalization.

• The second is recorded following the processing of the mapping rules.

To activate the creation of synchronization data dumps:

1 Open the following file for editing:

<SharedDir>/server/conf/dma/DefaultSyncTask.settings

2 Change the following line:

sync.dumpData=true

3 Start a synchronization using the HPOM DMA console.

Figure 25 is a example of a data dump after enrichment has been performed.
Testing and Deployment 115

Figure 25 Synchronization Data Dump
116 Chapter 13

Viewing a Synchronization Data Dump

To view synchronization data dumps, navigate to the directory:

<SharedDir>/server/log/dma/

The directory contains two subdirectories:

• normalized

Contains the synchronization data after the CI data structure has been
normalized. The data reflects what has been submitted by the UCMDB.

• enriched

Contains the synchronization data after the mapping rules have been
executed on the normalized data.

Each directory contains one file per CI that is the root of a sub-hierarchy
placed under the top-level root service. This is the root service configured on
the Configuration page (default is CMDB).

The file names follow the schema:

<rootCiCaption>_<rootCiId>.xml

Validating Mapping Rules

To validate mapping rules, complete the following steps:

• Compare File Differences

Using a file comparison tool of your choice you can easily see what has
been changed during enrichment.

• Validate XPath Expressions

You can validate XPath Expressions that are used in mapping rules by
loading the normalized synchronization data dumps into an XML editor
that supports XPath queries.

An XML document must have a single root element (<ci>) in the data dumps.
When running XPath queries in the mapping rules, this root element does not
exist. For testing with dump files, when you create absolute expressions,
prepend the expression /ci to your test expression.
Testing and Deployment 117

Testing Mapping Rules

You can test mapping rules using the HPOM DMA Enrichment Simulator
command-line tool.

Enrichment Simulator

The enrichment simulator enables you to execute a “dry run” of the
enrichment process. This applies the mapping rules for service mapping, node
mapping, and attribute mapping. Data is acquired from the UCMDB or BAC,
or read from an XML file that has been written manually or that has been
created through a data dump during a synchronization. The result is dumped
to an XML file and placed in the specified output directory.

For more information on data dumps, see Creating a Synchronization Data
Dump on page 115.

The start script is located in the following directory:

• Windows

<InstallDir>\support\dmaenrichsim.bat

• UNIX and Linux

<InstallDir>/support/dmaenrichsim.sh

dmaenrichsim Command

The dmaenrichsim command incorporates the following options:

-c,-cmdb Reads the input data from the web service
endpoint currently configured.

-h,-help Shows a detailed help message.

-i,-input <input file> Reads the input data from the specified file.
Cannot be applied in combination with the -c
option.

-o,-output <output dir> Writes the resulting XML output files into the
specified directory.

-version Prints the version.
118 Chapter 13

Examples

dmaenrichsim.sh -i /tmp/input.xml -o /tmp/output

Reads the input data from the /tmp/input.xml file and writes the resulting
XML output files into the /tmp/output directory.

dmaenrichsim.sh -c -o /tmp/output

Reads the input data from the web service endpoint currently configured and
writes the resulting XML output files into the /tmp/output directory.
Testing and Deployment 119

Writing Rules

This section contains a set of guidelines for writing rules.

Simplifying Rule Development

You can ease the writing of rules by selecting an XML editor that can validate
and suggest elements according to an XML schema. See Validating XML
Configuration Files on page 111 for more information.

After you create rules, you can test these rules easily using the Enrichment
Simulator. See Testing Mapping Rules on page 118 for more information.

Avoiding Complex XPath Queries

Avoid complex XPath queries, especially in general conditions, where such
queries must be applied to every CI. If you cannot avoid a complex XPath
query, try to narrow the condition using operators such as CiType, combined
using the And operator. Make sure that the simpler, non-XPath conditions are
checked first (hint: And is an exclusive operator).

Matching Against Existing Attributes Only

Accessing attributes that do not exist for all CI types is very performance
intensive in combination with a relative expression depending on the
complexity of the CI hierarchy.

Avoiding Broad XPath Expressions

Certain complex XPath expressions can result in excessive processing loads.
For example, XPath expressions that include the following characteristics:

• Apply to multiple nodes, such as expressions that contain // or
descendants:*/

• Do not match nodes or match only on nodes that are very distant from the
current node
120 Chapter 13

The same applies to the XPathResultList operator that returns all matched
values. The time required for such operations grows approximately
quadratically with the size of a hierarchy. Avoid such expressions where
possible.

When using the descendants operator, do not use the star symbol (*) as node
test, but specify the name of the node of interest. For example, do not use
descendants:*/caption but use descendants:ci/caption.

If you cannot avoid such an XPath expression within a condition, try to limit
its execution by using the exclusive And operator and perform simple tests
before the XPathResult operand is being used. For example, you could first
check for the CI type.
Testing and Deployment 121

Exporting TQL Queries

Exporting TQL queries, requires you to:

• Create a new package containing the existing UCMDB resources (views
and enrichments), for example, from a development environment.

• Copy the package to another BAC or UCMDB installation, for example, to
a production system.

• Upload and deploy the TQL query package.

Creating a TQL Query Package

To create a TQL query package containing queries and enrichments, follow
these steps:

1 Open the Package Manager:

• UCMDB 7 and 8:

Admin ➝ Settings ➝ Package Manager

• UCMDB 9:

Administration ➝ Package Manager

• BAC:

Admin ➝ Universal CMDB ➝ Settings ➝ Package Manager

2 Click New.

The Create Custom Package Wizard opens.

3 Enter a name and description for the new package and click Next.

4 Expand Query ➝ TQLs ➝ Enrichment and check hpdma.

5 Expand Query ➝ TQLs ➝ View and check hpdma.

6 Expand Query ➝ Views and check hpdma.

7 Expand Query ➝ Enrichments and check hpdma.

8 Click Next.
122 Chapter 13

A summary of your selections is displayed.

9 Click Finish.

Deploying and Registering UCMDB Packages

To upload and deploy HPOM DMA packages to your UCMDB or BAC
installation, complete the following steps:

1 Copy the HPOM DMA packages into a temporary directory on the BAC or
UCMDB system.

The HPOM DMA packages reside in the following directory on the HPOM
DMA system:

Version 7.5x

<InstallDir>/misc/dma/ucmdb/7

Version 8.0x

<InstallDir>/misc/dma/ucmdb/8

Version 9.0x

<InstallDir>/misc/dma/ucmdb/9

2 Open the Package Manager:

• UCMDB 7 and 8

Select Admin ➝ Settings ➝ Package Manager.

• UCMDB 9

Select Administration ➝ Package Manager.

• BAC

Select Admin ➝ Universal CMDB ➝ Settings ➝ Package Manager.

3 Click Deploy Packages to Server (from local disk).

4 In the Deploy Packages to Server dialog box, click Add.

5 Browse to the temporary directory on the BAC or UCMDB system where
you stored the HPOM DMA packages.

6 Select the hpdmacore.zip file and click Open.
Testing and Deployment 123

This package must be deployed before any of the other HPOM DMA
packages.

7 In the Deploy Packages to Server dialog box, click OK.

8 Deploy any of the following packages that you want to use:

• hpdmaos.zip

Used for operating systems.

• hpdmadb.zip

Used for databases.

• hpdmasamples.zip

Used for the My Company Sample synchronization package.

• hpdmaEUM.zip

HP BAC only: Used for End User Monitors

For each required package, repeat step 3 to step 7.
124 Chapter 13

A Mapping Syntax
Mapping is the mechanism used to map CIs from the UCMDB to services,
attributes, or nodes within HPOM. The file format, mapping syntax, and
XPath query language used to navigate through the CI data structure is
described in the following sections:

• Common Mapping File Format on page 125

• Mapping File Syntax on page 126

• XPath Navigation on page 138

Common Mapping File Format

This example illustrates the common parts of the mapping file:

<?xml version="1.0" encoding="utf-8"?>
<Mapping>
 <Rules>
 <Rule name="Apache Server">
 <Condition>
 <!-- ... Boolean operators ... -->
 </Condition>
 <MapTo>
 <!-- ... Target Mappings ... -->
 </MapTo>
 </Rule>
 <!-- ... More Rules ... -->
 </Rules>
</Mapping>

The components of the mapping files are described in Mapping File Syntax on
page 126.

The rule name must be unique for all rules in the current file.
 125

Mapping File Syntax

The following subsections describe the valid syntax used in HPOM DMA
mapping files.

Rule Conditions

The <Condition> element of a rule contains a Boolean operator that specifies
how the individual conditions relate to each other.

Each operator can implement an operation against operands. For example,
attribute hosted_on has a value ending with .europe.example.com.
(attribute hosted_on and .europe.example.com are operands) or an
operation against one or a set of other nested operators like <And>, <Or> or
<Not>.

Operator Elements

True

<True/>

This operator always returns true when all nested operators return true. It is
useful for declaring default (fall-back) rules. In a mapping engine that is using
the early-out mode, make sure that this operator is only used at the end of the
synchronization package with the lowest priority.

False

<False/>

Always returns false. You can use the False element to temporarily disable
rules.

And

<And>
 <!-- Operator -->
 <!-- Operator -->
 [... more operators ...]
</And>
126 Appendix A

Returns true when all nested operators return true.

The <And> operator is exclusive. This means that if the result of the first
operator is false, the next operator is not evaluated. You should use this
operator to implement rules with higher performance by placing the simplest
condition first and the most complex condition at the end.

Or

<Or>
 <!-- Operator -->
 <!-- Operator -->
 [... more operators ...]
</Or>

Returns true if at least one of the operators returns true.

Not

<Not>
 <!-- Operator -->
</Not>

Returns true if the operator does not return true.

The <Not> operator is exclusive. This means that evaluation stops as soon as a
sub-operator returns true.

Exists

<Exists>
 <!-- Operand -->
<Exists>

The value of the operand may not be null.

Is Node

<IsNode/>

True if the CI is imported as a node, which is the case if the CI type is listed in
the nodetypes.xml file. For further information, see Node Types on page 69
Mapping Syntax 127

Equals

<Equals>
 <!-- Operand -->
 <!-- Operand -->
 <!-- ... -->
</Equals>

<Equals ignoreCase="[true|false]">
 <!-- Operand -->
 <!-- Operand -->
 <!-- ... -->
</Equals>

The values of the operands must be equal. If there are more than two
operands, all operands must be equal to each other. Using the optional
attribute ignoreCase, you can also compare the string values of the operands
independent of capitalization. By default the equals operator does not ignore
case.

Starts With

<StartsWith>
 <!-- Operand -->
 <!-- Operand -->
</StartsWith>

The string value of the first operand must start with the value of the second
operand.

Ends With

<EndsWith>
 <!-- Operand -->
 <!-- Operand -->
</EndsWith>

The string value of the first operand must end with the value of the second
operand.

Contains

<Contains>
 <!-- Operand -->
 <!-- Operand -->
<Contains>
128 Appendix A

The value returned by the first operand must contain the value of the second
operand. If the operand’s return type is a list, the list must contain at least
one element that is equal to the second operand. If the operand’s return type is
a string, the value of the second operand must be a substring of the first
operand.

Matches

<Matches>
 <!-- Operand -->
 <!-- Operand -->
</Matches>

The string value of the first operand must match the regular expression of the
second operand.

Example:

<Matches>
 <Attribute>host_dnsname</Attribute>
 <Value>.*\.example\.com</Value>
</Matches>

For more information on applicable regular expressions, see:

http://download.oracle.com/javase/1.5.0/docs/api/java/util/regex/
Pattern.html

http://download.oracle.com/javase/6/docs/api/java/util/regex/
Pattern.html

Operand Elements

CI Type

<CiType/>

Return type: String

Returns the CI type string if the CI exists in the UCMDB or BAC.

This is not the display label of the CI Type.
Mapping Syntax 129

CI Caption

<CiCaption/>

Return type: String

Returns the caption string of the CI in the UCMDB or BAC.

Attribute

<Attribute>[Name]</Attribute>

Return type: String

Returns the value of the UCMDB CI attribute with the given name.

Service Name

<ServiceName/>

Return type: String

Returns the service ID string of the CI in the UCMDB or BAC.

Replace

<Replace [regExp="true|false"]>
<In>

<!-- 1st. Operand -->
</In>
<For>

<!-- 2nd. Operand -->
</For>
<By>

<!-- 3rd. Operand -->
</By>

</Replace>

Return type: String

The CI Caption has the same value as the attribute display_label.

This is not the display label of the CI Type.
130 Appendix A

Replaces the sub-strings in the return value of the first operand for all
occurrences of the return value of the second operator by the return value of
the third operand. For example, to replace all occurrences of a backslash in the
CI caption by an underscore, you must declare the following:

<Replace>
<In>

<CiCaption/>
</In>
<For>

<Value>\</Value>
</For>
<By>

<Value>_</Value>
</By>

</Replace>

Optionally, you can use regular expressions for the second operand. You can
also use back references in the third operand.

For more information on applicable regular expressions, see:

http://download.oracle.com/javase/1.5.0/docs/api/java/util/regex/
Pattern.html

http://download.oracle.com/javase/6/docs/api/java/util/regex/
Pattern.html

This example uses regular expressions to extract part of a domain name:

<Replace regExp="true">
<In>

<Attribute>host_dnsname</Attribute>
</In>
<For>

<Value>^[^.]*\.([^.]*).*</Value>
</For>
<By>

<Value>$1</Value>
</By>

</Replace>

If the attribute host_dnsname contains the value server.rio.example.com,
the result of the Replace operand is rio.

XPath Result

<XPathResult>[XPath]</XPathResult>
Mapping Syntax 131

Return type: String

Returns the value of the XPath expression, which enables you to access data of
any CI that is contained in the same hierarchy. The XPath expression must
select a string value, if there are multiple matches an arbitrary element is
returned.

For more information on XPath, see XPath Navigation on page 138.

XPath Result List

<XPathResultList>[XPath]</XPathResultList>

Return type: List

Returns a list of all matched values.

For more information on XPath, see XPath Navigation on page 138.

Value

<Value>[String]</Value>

Return type: String

Return the constant value.

List

<List>
 <!--Operand-->
 <!--Operand-->
 <!--...-->
</List>

Return type: List

The list operand is designed for use with operators that accept lists as input
parameters, such as the contains operator. The list operand contains a list of
other operands, the values of which are to be added to the returned list.
132 Appendix A

Condition Examples

Check if the type of the current CI is unix.

<Condition>
 <Equals>
 <Type/>
 <Value>unix</Value>
 </Equals>
</Condition>

Check if the CI is related to a node that is located in the europe.example.com
domain.

<Condition>
 <EndsWith>
 <XPathResult>//.[node='true']/attributes/

host_dnsName<XPathResult>
 <Value>.europe.example.com</Value>
 </EndsWith>
</Condition>

Mapping Elements

<MapTo> defines the mappings. Each concrete implementation of an engine
adds its own XML elements for its individual mappings here.

Service Mapping Syntax

Valid element for the <MapTo> section:

<STD>
[Operand]
...

</STD>

Maps the CI to the specified service type definition that is the concatenated
string of the results of the operators. There must not be more than one <STD>
element in the <MapTo> section of a servicemapping.xml file. For more
information about operands, see Operand Elements on page 129.
Mapping Syntax 133

Override STD Properties

You can override certain attributes of an STD, as described in Service Type
Definition Files on page 59, for selected CIs:

Override a Calculation Rule for a CI:

<CalculationRule>
[Operand]
...

</CalculationRule>

Override a Message Propagation Rule for a CI:

<MessagePropagationRule>
[Operand]
...

</MessagePropagationRule>

Override a Parent Propagation Rule for a CI:

<ParentPropagationRule>
[Operand]

...
</ParentPropagationRule>

Override an Icon for a CI:

<Icon>
[Operand]
...

</Icon>

Override the Message Weight for a CI:

<MessageWeight>[Double]</MessageWeight>

Override the Parent Weight for a CI:

<ParentWeight>[Double]</ParentWeight>
134 Appendix A

Creating Dependencies from External CIs to Internal CIs

External CI dependency creation associates service CIs to services that are
already present in Service Navigator and which are not part of the HPOM
DMA synchronization.

<DependencyFromExternalCi>
<ExternalCiId>

[Operand]
...

</ExternalCiId>
<DependencyType>

[Operand]
...

</DependencyType>
<PropagationRuleName>

[Operand]
...

</PropagationRuleName>
<PropagationWeight>[Double]</PropagationWeight>

</DependencyFromExternalCi>

Creating Dependencies from Internal CIs to External CIs

Internal CI dependency creation associates service CIs to services that are
already present in the HPOM DMA synchronization, and that are not part of
Service Navigator.

<DependencyToExternalCi>
<ExternalCiId>

[Operand]
...

</ExternalCiId>
<DependencyType>

[Operand]
...

</DependencyType>
[<PropagationRuleName>

[Operand]
...

</PropagationRuleName>
<PropagationWeight>[Double]</PropagationWeight>]

</DependencyToExternalCi>
Mapping Syntax 135

Node Mapping Syntax

Node CIs with attributes that match a particular node mapping are assigned
to the associated node group. For each rule that matches, the node is also
added to all node groups defined in the rule.

Map the node with the matched conditions to the specified node group, which
is the concatenated value of the values of the operands.

Valid element for the <MapTo> section:

<NodeGroup>
[Operand]
...

</NodeGroup>

Multiple node groups are supported and the node is added to each node group.

For more information about operands, see Operand Elements on page 129.

Attribute Mapping Syntax

Attribute mappings are specified using the following syntax:

<Attribute>
 <Name>[Attribute Name]</Name>
 <SetValue>
 [Operands]
 </SetValue>
</Attribute>

Sets the value of the attribute of the given name to the returned value of the
given operand. If more than one operand is given, the values are
concatenated. For more information about operands, see Operand Elements
on page 129.

User Profile Mapping Syntax

User profile mappings are specified using the following syntax:

<UserProfile>
[Operands]
...

</UserProfile>
136 Appendix A

Assigns the current CI to the user profile that is the returned value of the
given operand. If more than one operand is given, the values are
concatenated. You may simultaneously assign a CI to multiple user profiles by
specifying more than one UserProfile mapping action in the same way as
specifying the NodeGroup mapping action. For more information about
operands, see Operand Elements on page 129.
Mapping Syntax 137

 XPath Navigation

XPath is used in the mapping engines to navigate through the CI data
structure.

If you are not familiar with the XPath query language, an XPath tutorial can
be found at the following web site:

http://www.w3schools.com/xpath/

Data Structure

The data structure that is exposed to the XPath expression matching used in
mapping rules is shown in Figure 26.

CI Data Structure

Attributes Contains a map of all original UCMDB CI attributes. The
key of this map is the name of the UCMDB CI attribute that
references the UCMDB value of the UCMDB CI attribute.

Caption Represents the name of the CI to be displayed in Service
Navigator. Caption has the same value as the UCMDB CI
attribute display_label.

Children References a list of relations to CIs that have a containment
relationship from the current CI to other CIs. Using this
field, you can create complex XPath queries to retrieve
values of children as well as parents using the “..” XPath
selector.

Dependencies References a list of relations to dependent CIs. Similar to
Children. However, referenced objects are contained in a
different hierarchy.

id Unique ID of a CI.

Node Boolean value that indicates, whether this CI is imported as
a service only or also as a node into the HPOM Node Bank.

Type Contains the type ID string of a CI.

This is not the display label of the CI Type.
138 Appendix A

Relationship Data Structure

CI Contains the reference to the CI to which the current CI is
related.

Type Relationship type as stored in the UCMDB.

Figure 26 illustrates the data structure exposed to the navigation.

Figure 26 Data Structure Exposed to the Navigation

This is not the display label of the CI Type.
Mapping Syntax 139

Example of an XPath-Navigated Data Structure

An example of an XPath-navigated data structure is shown in Figure 27. The
host is a UNIX system that has an Oracle application running on the HP-UX
operating system. The starting point or context for the navigation is the CI
that represents the Oracle application (orange background).

Figure 27 illustrates some XPath examples.

Figure 27 XPath Examples
140 Appendix A

XPath Expressions and Example Values

The following table lists typical XPath expressions and provides an example
for each expression.

caption Oracle 10g

./caption Oracle 10g

/caption Databases

../caption server.example.com

../type container

../../type servicegroup

/type servicegroup

//.[type='dbtablespace']/caption Customers
Products

//dependencies[type='hosted_on']/ci/caption db

//.[type='unix']/attributes/host_dnsname db.example.com

//host_dnsname db.example.com

//children/ci/caption Oracle 10g
Customers
/var/customers.ora
Products
/var/products.ora

//dependencies/ci/caption db

If the Xpath expression selects a node below the starting database node, the
“..” reads back one step. The following expression reads down to the node db
and then links back to the starting database node.

//dependencies[type='hosted_on']/ci/../..

However, if the node db is the starting node, the expression ../.. follows the
containment links of the node db, which is not the dependency relation that is
shown in this example. The result depends on the parent container of the
node, which is a different hierarchy.
Mapping Syntax 141

142 Appendix A

B UCMDB Attributes
When you are developing TQL queries, make sure that certain necessary
attributes are set in the UCMDB and enabled on the Advanced Layout
Settings page of the Node Properties.

Figure 28 Enable Attributes in Layout Settings

Must be enabled to be Visible
 143

Required Attributes

The following attributes are required for proper operation of DMA, when the
mentioned synchronization packages are selected. Note that the Default
synchronization package is always enabled.

Table 2 UCMDB Attributes Required by HPOM DMA

CI Types Attribute Name Required For
Synchronization
Package

All display_label Setting caption
in Service
Navigator

 Default

All node types host_dnsname a Setting
hosted_on
attribute for
Smart Message
Mapping

Default

database database_dbtype Determining
database
vendor

Informix

All node types host_servertype Determining
the database
running on a
node

Informix, Oracle,
MSSQLServer,
Sybase

sqlserver database_dbversion Determining
the version of
the SQL Server

MSSQLServer

All node types host_os OS type
detection

UNIX operating
systems, Windows
operating systems

a. With BAC or UCMDB 8.0x and higher, the host_dnsname attribute is
deprecated. Because HPOM DMA 8.20 requires this attribute, the script
preMapping.groovy sets the host_dnsname attribute based on other
attributes.
144 Appendix B

Recommended Attributes

DMA can work without the following attributes. However there may be
drawbacks such as a decrease of synchronization performance. Note that the
Default synchronization package is always enabled.

Table 3 UCMDB Attributes Recommended for HPOM DMA

CI Types Attribute Name Required For
Synchronization
Package

All node types host_os OS type detection Default

All node types host_osversion OS type detection Default

All node types host_model OS type detection Default

All node types data_description OS type detection Default
UCMDB Attributes 145

146 Appendix B

Index
A
activate

synchronization package, 40

activate package, 24

And operator
element, 126
usage, 120

applications, integrating, 13

associations, service type definition, 63

attributemapping.xml file
attributes, 93
usage, 71

Attribute operand element, 130

attributes
changing CI, 93
mapping

examples, 136
overview, 93

matching, 120
overriding, 93
synchronizing, 53
UCMDB, 143

Attributes field, 138

B
BAC

retrieving data from, 11

Bank, Node. See Node Bank

bundle.xml file
synchronization packages

example, 72
TQL queries, 53
usage, 71

bundle.xsd file, 112

C
calculation rules, 60

Caption field, 138

changing
CI attributes, 93

Children field, 138

CI
attributes, 93
data structure, 138
defining node and service, 53
importing types, 69, 91
matching types, 120
new relationships, 42

CICaption operand element, 130

CiType
attribute, 53
operand element, 129
operator element, 120

CmdbCIcaption attribute, 94

CmdbCiType attribute, 94

CmdbObjectID attribute, 94

command-line utility, MOF, 62
147

commands
dmaenrichsim, 118
ServiceTypeDefinitionCLI, 66

common mapping file format, 125

comparing files, 117

compiling MOF files, 62

components, service type, 60

Condition operator element
description, 126
example, 133

conditions
examples, 133
rules, 126

containmentrelations.xml, 67

containmentrelations.xsd file, 112

Contains operator element, 128

creating
service hierarchies, 11
synchronization data dumps, 115 to 116
UCMDB packages, 56

customized Service Navigator views, 18

D
data directory, 14

datadump.xsd file, 112

data structure, 138 to 139

default
node group, 91
service mapping, 75

definitions, service type, 60

Dependencies field, 138

Dependency Mapping Automation
overview, 11
validating applications, 112

depend relationship, 42

deploying UCMDB packages
figure, 57
procedure, 123

directories
DMA XSD files, 112
locations, 14
synchronization data dumps, 117

discovering environment, 11

display_label attribute
TQL queries, 53

DMA. See Dependence Mapping
Automation; DMA XSD files

dmaenrichsim command, 118

DMA XSD files, 112

document type, Services, 36, 63

domain names, 131

dumping synchronization data, 115 to 117

E
Eclipse, 114

editors, XML. See XML editors

elements
mapping, 133
operand, 129 to 132
operator, 126 to 129

Ends With operator element, 128

enriched directory, 117

enrichment rule
applying, 22
creating, 44

enrichment rules, 20

enrichment simulator, 118

environment, discovering, 11

Equals operator element, 128

error messages, 112
148

examples
attribute mapping, 94, 136
bundle.xml file, 72
conditions, 133
node mapping, 92
service mapping, 78
service mapping with attribute override,

80
service type definitions

Linux, 64 to 65
UNIX, 64 to 65
Windows, 60 to 61

user profile mapping, 136
XML file validation, 114
XPath, 140

Exists operator element, 127

expressions
regular, 129, 131
relative, 120

external services, 51

F
False operator element, 126

figures
data structure, 139
Dependency Mapping Automation, 12
examples

file validation, 114
XPath, 140

synchronization data dump, 116
UCMDB

development environment, 55
production environment, 57

file
locations, 14
nodetypes.xml, 67

files
comparing, 117
DMA XSD, 112
testing, 118 to 119
XML

descriptions, 71
Linux, 59
UNIX, 59
validating, 111

fine tuning, 38

H
hierarchies, creating service, 11

hosted_on attribute, 94

HPOM
map UCMDB data, 87

HP-UX operating system, 140

I
id field, 138

importing
CI types, 69, 91
TQL queries, 11
UCMDB packages, 57

installing
directory, 14

integrating applications, 13

Is Node operator element, 127

J
Java data structure, 138
149

L
Linux

file locations, 14
locations

enrichment simulator, 118
synchronization packages, 74

service type definitions, 62 to 65
XML files, 59

List operand element, 132

location
file, 14

locations
DMA XSD files, 112
enrichment simulator, 118
synchronization data dumps, 117
synchronization packages

sync-packages directory, 74

logs, error, 112

M
maintaining environment, 11

Managed Object Format. See MOF files

mapping
attributes, 93 to 95
elements, 133
file

format, 125
syntax, 126 to 133

nodes, 91 to 92
rules

overview, 71
testing, 118
validating, 117

service, 75 to 78
syntax, 125 to 141
user profiles, 97

mapping.xsd file, 112

Matches operator element, 129

matching
attributes, 120
rules, 76, 93

messages, error, 112

mofcomp utility, 62

MOF files
compiling, 62
service type definitions

Windows, 60
Windows, 59

My Company synchronization package, 18,
24
viewing, 23

N
navigation, XPath, 138 to 139

Node Bank
importing nodes, 138
populating, 11

node CIs, defining, 53

Node field, 138

node groups
default

node mapping, 91
types, 69, 91

node mapping
creating, 36
overview, 91
syntax, 92, 136

nodemapping.xml file
default node group, 91
usage, 71

node type lists, 69

nodetypes.xml file, 69

nodetypes.xsd file, 112

non-matching XPath expressions, 120
150

normalized directory, 117

Not operator element, 127

O
operand elements, 129 to 132

operator elements, 126 to 129

Oracle applications, 140

Or operator element, 127

os type attribute, 94

OV_CalculationRule, 60

OV_PropagationRule, 59

OV_ServiceTypeComponent, 60

OV_ServiceTypeDefinition, 60

overriding attributes, 93

overriding values, 76

P
Package Manager

creating and exporting packages, 56
importing and deploying packages, 57

packages, synchronization. See
synchronization packages

parameters, ServiceTypeDefinitionCLI, 66

parent-child associations, 60

populating Node Bank and Service View, 11

propagation rules, 59

Q
queries

TQL, 55 to 57
XPath, 120

R
registering UCMDB packages, 123

regular expressions, 129, 131

relation data structure, 139

relationship
depend, 42

relative expressions, 120

Replace operand element, 130

retrieving data, 11

root service, 117

rules
attribute mapping, 93
calculation, 60
conditions, 126
mapping

overview, 71
testing, 118
validating, 117

matching, 76, 93
names, 125
propagation, 59
service mapping, 76
testing, 118 to 119
writing, 120 to 121

S
schedule.xsd file, 112

scripting, 52
error handling, 101
examples, 102
naming convention, 100
synchronization, 99
syntax, 100
variables and scope, 100

servers, integrating web, 13
151

service
CIs, 53
creating hierarchies, 11
mapping

overview, 75 to 77
syntax, 133

root, 117
tree, 13, 60
type components, 60
type definitions

description, 60
files, 59
increasing severity, 59
Linux, 62 to 65
UNIX, 62 to 65
Windows, 59 to 62
XML file, 65

service mapping
creating, 34
creating dependencies, 87, 89

servicemapping.xml file
example, 78
specifying service mappings, 75
usage, 71

servicemapping.xml file with attribute
override
example, 80

ServiceName operand element, 130

Services document type, 36, 63

ServiceTypeDefinitionCLI
command parameters, 66
utility location, 65

Service View, populating, 11

setting up TQL queries, 55 to 57

severity, service type definition, 59

shared directory, 14

simulator, enrichment, 118

smart message mapping, 93

SQL Server, 76

Starts With operator element, 128

STD
override, 80 to 86

STDs
define, 51

STDs. See service

structure, data, 138 to 139

synchronization
customizing, 99

error handling, 101
examples, 102
naming convention, 100
scope, 100
syntax, 100
variables, 100

synchronization data dump
creating, 115 to 116
overview, 115
viewing, 117

synchronization package
activate, 40
creating, 32
designing, 26
developing, 27, 30
My Company, 23, 24

synchronization packages
attribute mapping, 73
bundle.xml file, 72
combine, 50
databases, 11
locations

sync-packages directory, 74
node mapping, 73
nodes, 11
overview, 71
scripts, 74
service mapping, 73
user profile mapping, 73
152

sync-packages directory, 74

syntax
STD override, 80 to 86

syntax, mapping
files, 126 to 133
nodes, 136
services, 133

system type attribute, 94

T
testing, 38

preparing, 38
run synchronization, 39

testing rules and files, 118 to 119

TQL queries
changing, 46
creating, 28
developing, 28
overview, 53
setting up, 55 to 57

True operator element, 126

Type field, 138, 139

U
UCMDB

creating packages, 56
deploying packages, 57, 123
importing

CI types, 69
packages, 57

map to HPOM, 87
preview, 18
registering packages, 123
retrieving data from, 11
synchronizing attributes, 53
viewing, 18

UNIX
file locations, 14
locations

enrichment simulator, 118
synchronization packages, 74

service type definitions, 62 to 65
XML files, 59

uploading
service type definitions

Linux, 65
UNIX, 65
Windows, 62

usermapping.xml file
specifying user profile mappings, 97
usage, 71

user profiles
mapping

examples, 98
overview, 97
syntax, 136

V
validating

DMA applications, 112
mapping rules, 117
XML files

automatically, 111
manually, 113 to 114

XPath Expressions, 117

Value operand element, 132

values
overriding, 76

version attribute, 94

viewing package, 23

viewing synchronization data dumps, 117

View Manager, 55
153

W
W3C, 111

web servers, integrating, 13

Windows
locations

enrichment simulator, 118
synchronization packages, 74

MOF files, 59
service type definitions, 59 to 62

WMI repository, 62

writing rules, 120 to 121

X
XML editors

validating
files, 113
XPath expressions, 117

writing rules, 120

XML files
descriptions, 71
Linux, 59
output, 119
root elements, 117
Services document type, 36, 63
service type definition, 65
synchronized CIs, 115
UNIX, 59
validating configuration, 111

XML Schema Definition, 111

XPath
examples, 140 to 141
expressions, 141
matching expressions, 120
navigation, 138 to 139
validating expressions, 117
writing queries, 120

XPathResultList
operand element, 132
operator element, 121

XPathResult operand element
description, 131
usage, 121

XSD. See XML Schema Definition
154

	Extensibility Guide
	Contents
	1 Introduction
	Required Configurations
	Installation Locations

	2 Extending HPOM DMA - An Example
	Getting Started
	My Company Example - Creating Customized Service Navigator Views
	Making Changes in the UCMDB
	Adapting the HPOM DMA Enrichment Rules
	Applying Enrichment Rules
	Viewing the My Company Synchronization Package
	Activating the My Company Synchronization Package

	Web Server Example
	Prerequisites
	Designing the Web Server Synchronization Package
	Analyzing the UCMDB Data to be Synchronized
	Expected Outcome in HPOM

	Developing the Web Server Synchronization Package
	Developing Your TQL Queries to Collect Content to Synchronize
	Developing Your Synchronization Package

	Testing and Fine-Tuning
	Preparing for Testing
	Enabling Automatic Service Type Definition and Node Group Creation
	Activating the Web Server Synchronization Package

	Running a Test Synchronization
	Iteratively Improving Your Package

	Activating Your Synchronization Package
	UCMDB Package
	HPOM DMA Package

	Advanced Topics
	Adding a New Relationship Between CIs to Correctly Model Your Service Map
	Adding the Depend Relationship
	Creating an Enrichment Rule
	Changing your TQL Query to Reflect the Change

	Combining Multiple Synchronization Packages
	External Services
	Defining STDs
	Scripting

	3 TQL Queries
	Selecting TQL Attributes
	Setting Up a TQL Query in a UCMDB Development Environment
	Setting Up a TQL Query in a UCMDB Production Environment

	4 Service Type Definition Files
	STDs in HPOM for Windows
	Example of STDs on Windows
	Uploading STDs into HPOM for Windows

	STDs in HPOM for UNIX or Linux
	Example of STDs on UNIX or Linux
	Uploading STDs into HPOM for UNIX or Linux
	ServiceTypeDefinitionCLI Command Parameters

	5 Contained Relationship Files
	Configuration File
	Default Configuration

	6 Node Types
	7 Synchronization Packages
	Synchronization Package Descriptor File
	Mappings
	Service Mappings
	Node Mappings
	Attribute Mapping
	User Profile Mapping

	Customizing Synchronization and Scripting
	Synchronization Package Locations

	8 Service Mapping
	Service Mapping File
	Example of a servicemapping.xml File
	Overriding STD Properties
	Simple Example of STD-Properties Overrides
	Complex Example of STD-Properties Overrides
	Setting Rules for Application Servers
	Setting Rules for WAN Connections
	Setting Rules for Network Probes

	Mapping UCMDB Information to Services
	Creating Dependencies from External CIs to Internal CIs
	Example

	Creating Dependencies from Internal CIs to External CIs
	Example

	9 Node Mapping
	Node Mapping File
	Example of Node Mapping

	10 Attribute Mapping
	Attribute Mapping File
	Example of Attribute Mapping

	11 User Profile Mapping
	User Profile Mapping File
	Example of User Profile Mapping

	12 Scripting
	Script Syntax
	Script Files
	Script Variables
	Handling Errors
	Enabling and Disabling Scripts
	Sample Scripts
	Creating Dependency Associations to External Services
	Modifying Dependency Associations
	Submitting an opcmsg Message
	Grouping Multiple Host Resource Types
	Grouping Synchronized Nodes Alphabetically
	Organizing Nodes in Layout Groups

	13 Testing and Deployment
	Validating XML Configuration Files
	HPOM DMA XSD Files
	Validating Files Automatically
	Validating Files Manually

	Dumping Synchronization Data
	Creating a Synchronization Data Dump
	Viewing a Synchronization Data Dump
	Validating Mapping Rules

	Testing Mapping Rules
	Enrichment Simulator
	dmaenrichsim Command
	Examples

	Writing Rules
	Simplifying Rule Development
	Avoiding Complex XPath Queries
	Matching Against Existing Attributes Only
	Avoiding Broad XPath Expressions

	Exporting TQL Queries
	Creating a TQL Query Package
	Deploying and Registering UCMDB Packages

	A Mapping Syntax
	Common Mapping File Format
	Mapping File Syntax
	Rule Conditions
	Operator Elements
	Operand Elements
	Condition Examples
	Mapping Elements
	Service Mapping Syntax
	Override STD Properties
	Creating Dependencies from External CIs to Internal CIs
	Creating Dependencies from Internal CIs to External CIs
	Node Mapping Syntax
	Attribute Mapping Syntax
	User Profile Mapping Syntax

	XPath Navigation
	Data Structure
	CI Data Structure
	Relationship Data Structure

	Example of an XPath-Navigated Data Structure
	XPath Expressions and Example Values

	B UCMDB Attributes
	Required Attributes
	Recommended Attributes

	Index

