
Peregrine

PART NO: OAA-2.2.3-ENG-01
Open Application Architecture
Platform
Tailoring Kit Guide
Version 2.2.3—For Windows
002-00119

Copyright © 2002 Peregrine Systems, Inc. or its subsidiaries. All rights reserved.

Information contained in this document is proprietary to Peregrine Systems, Incorporated, and may be
used or disclosed only with written permission from Peregrine Systems, Inc. This book, or any part thereof,
may not be reproduced without the prior written permission of Peregrine Systems, Inc. This document
refers to numerous products by their trade names. In most, if not all, cases these designations are claimed
as Trademarks or Registered Trademarks by their respective companies.

Peregrine Systems® is a registered trademark and Get-Resources™ and Get-It™ are trademarks of Peregrine
Systems, Inc. or its subsidiaries.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/)
and by Advantys (http://www.advantys.com). This product also contains software developed by the
following companies or individuals: Sun Microsystems, Inc., Jean-Marc Lugrin, Netscape
Communications Corporation, and Original Reusable Objects, Inc.

This document and the related software described in this manual are supplied under license or
nondisclosure agreement and may be used or copied only in accordance with the terms of the agreement.
The information in this document is subject to change without notice and does not represent a
commitment on the part of Peregrine Systems, Inc. Contact Peregrine Systems, Inc., Customer Support to
verify the date of the latest version of this document.

The names of companies and individuals used in the sample database and in examples in the manuals are
fictitious and are intended to illustrate the use of the software. Any resemblance to actual companies or
individuals, whether past or present, is purely coincidental.

If you have comments or suggestions about this documentation, please send e-mail to
support-sd@peregrine.com

This edition applies to version 2.2.3 of the licensed program.
Peregrine Systems, Inc.
Worldwide Corporate Campus and Executive Briefing Center
3611 Valley Centre Drive San Diego, CA 92130
Tel 800.638.5231 or 858.481.5000
Fax 858.481.1751
www.peregrine.com

Contents
Introducing the Peregrine OAA Tailoring Kit 9

About this Guide . 11

Conventions Used in this Guide. 11

Chapter 1 Installing the OAA Tailoring Kit . 13

Installing the OAA Tailoring Kit . 14

Opening your Web Application Project 19

Configuring your System for Tailoring 19

Setting up a Development Environment 19

Setting Up a Testing Environment 20

Chapter 2 Using Peregrine Studio . 23

The Studio Interface . 24

Project Explorer . 25

Drag and Drop . 27

Enabling the HTTP Listener and Form Information 28

Viewable XML Source Code . 30

Changes Indicated with Color Text 30

Chapter 3 Studio Projects and Packages . 31

Peregrine Studio Projects . 32

Project Components . 33

Project Component Descriptions 33

Example of Component Hierarchy 36

Project Files . 38
Contents 3

Peregrine OAA
Building a Project . 39

XML to JSPs . 39

Project Build Variables . 40

Setting Build Options . 41

Studio Project Packages . 41

Activating and Deactivating Packages 42

Package Dependencies . 43

Setting Package Dependencies . 43

Saving Changes with Package Extensions 44

Warnings for Conflicts . 45

Deploying to UNIX Platforms . 46

Requirements . 47

Configuring for FTP Deployment 47

Deploying via FTP . 47

International Builds . 48

Configuring for an International Build 48

Exporting Strings for Translation 49

Importing Strings for Translation 51

Adding to an Existing Frameset . 52

Chapter 4 Forms and Form Components . 53

Tailoring Forms . 54

Changing Form Titles . 55

Changing Form Instructions . 56

Changing a Form’s Onload Script 57

Changing Form Component Labels 59

Hiding Form Components . 60

Changing a Form Component to Read-only. 61

Changing the Schema that a Form Component Uses 62

Changing the Document Field that a Form Component Uses 63

Specifying a Document Field Name 64

Displaying Forms within a Frameset 67

Types of Form Components . 69

Component Template Containers 69

Fieldsection Containers . 70

Text Edit Fields . 71
4 Contents

Tailoring Kit Guide
Selectbox Fields. . 72

Hidden Data Fields . 74

Redirections . 74

Table Form Components . 75

Table Links . 76

Text Columns . 77

Actions . 77

Chapter 5 Adding Personalization Functionality 79

Supporting Personalization . 80

Activating Personalization . 80

Personalization Hierarchies. 82

Personalizing with DocExplorers . 82

DocExplorer Forms and Functions 83

Adding a DocExplorer Reference 83

Personalizing DocExplorer . 84

Adding Personalization to Lookup Fields 85

Creating a Nested Document Lookup 87

Using the Personalization Interface 88

Adding Fields to a Form . 89

Configuring Field Attributes . 89

Removing Fields from a Form . 90

Chapter 6 Scripting . 91
Types of Scripts. . 92

Where Scripts are Stored . 92

How Scripts are Used . 93

Where Scripts are Used . 94

Testing Scripts with URL Queries 95

URL Script Queries Template . 96

URL Schema Queries Template . 96

Using Variables to Provide Script Data 97

Common Message Operations . 100

About Script Pollers . 102

Enabling Script Polling . 102

Stopping Script Polling . 104
Contents 5

Peregrine OAA
Script Pollers in a Multiple JVM Environment. 104

Sample Scripts . 105

General Script Samples . 105

Selecting a Field from a Schema 105

Calling Other Scripts and Combining the Results 107

Form Script Sample . 109

Creating an XML Document from a Schema 109

Script Poller Sample . 112

Maintaining a Connection to AssetCenter 112

References . 115

Sources for Client-side JavaScript 115

JavaDocs for the Main Archway Package 115

Chapter 7 Document Schema Definitions . 117

How Schemas are Used. . 119

Schemas with ECMAScript . 119

ECMAScript Syntax . 120

Identifying the Back-end System Version 121

AssetCenter Feature Links . 122

Schema Naming Conventions . 123

Schema Elements And Attributes 123

<schema> . 123

<documents> . 123

<document> . 125

<document> attributes . 125

name . 125

table . 125

field . 126

joinfield . 126

joinvalue . 126

<attribute> . 127

name . 127

type. 127

Type values . 128

shortdesc . 129

search . 129
6 Contents

Tailoring Kit Guide
list . 129

detail . 129

create . 129

field . 130

link . 130

linktable . 130

linkfield . 130

linktype . 131

linkkey . 131

How to Create Schemas . 132

Creating Groups of Schemas . 132

Creating Schemas . 132

Schema Template . 132

Schema Template Entry Descriptions 133

Using Nested <Document> Elements to Call Linked Tables 134

Nesting the <Document> Element In-place 135

Nesting the <Document> Element by Reference to <Collection> 136

Nesting the <Document> Element by Reference Docname 139

Frequently Asked Questions . 141

How do I create document queries to linked tables? 141

Why do all query response messages contain ID elements? 143

Can schemas include SQL statements? 143

How are schema definitions converted into SQL statements? 143

Appendix A Peregrine Studio Components . 149

Appendix B Troubleshooting and FAQs . 161

Web Application Environment . 161

Out of memory error . 161

Peregrine Studio . 162

Cannot edit — components are displayed with grey background 162

Red exclamation point (conflict icon) displayed next to nodes 163

Import Errors . 165

Unable to import customized files 165

Bad magic number . 165

Scripting Errors . 166
Contents 7

Peregrine OAA
Cannot find script file . 166

Script produces an ECMAScript error 167

ECMAScript error: undefined value or property 167

Web Application Errors . 168

Wrong start form is displayed for activity 168

Script output not appearing in form component 168

Too few parameters error . 169

Web application always goes to redirection form. 170

JDBCCalls error at login . 170

Syntax error in FROM clause . 170

Index . 173
8 Contents

Introducing the Peregrine OAA
Tailoring Kit
The OAA Tailoring Kit includes:

Peregrine Studio

Source files for your Web applications

The OAA Tailoring Kit is intended for Web application developers
who are familiar with Extensible Markup Language (XML),
ECMAScript, Structured Query Language (SQL), and back-end
database systems such as AssetCenter and ServiceCenter.

Peregrine Studio is a graphical development tool that you can use to
customize Web applications built on the Peregrine OAA Platform.
Peregrine OAA Platform Web applications are a series of Web-based
interfaces that allow users to, for example, order and purchase goods,
search for documents, and submit requests. The Peregrine Portal
common login determines what portions of the interface are
dynamically generated for a user.
Introducing the Peregrine OAA Tailoring Kit 9

Peregrine OAA
The Web-based interfaces are the result of the following components:

A collection of Java Server Pages (JSPs) that provide the browser interfaces
for the Web application. The Web application JSP content is created
during the Studio build process.

A Web server to host the Web application JSP content.

A Java-enabled application server to run the Archway servlet. The
Archway servlet routes and formats data requests between Web
applications and back-end database systems.

A collection of ECMAScripts that allow for dynamic parsing and
formatting of Web application data sent to and received from the client
Web browser.

From an administrative perspective, Peregrine OAA Platform Web
applications are the output of one or more Studio project files. Studio
elements such as packages, modules, activities, and forms describe the end-
user interface. Other Studio elements such as ECMAScripts and document
schema definitions determine what data the Web application interfaces
receive or process from back-end databases.

The Web application produced during a build is the result of the following
Studio components:

A project file that describes all the Web applications available. Each project
file contains its own list of Web applications that you can use to produce
and deploy an installation.

Components that define the functionality of each Web application. All
Web applications are built from packages, modules, activities, forms, and
form components. Each of these components is saved as an XML file in the
project.

A back-end database or application to store the data accessed by Web
application forms, track workflow tasks, and store personalization
changes. Typical back-end systems include AssetCenter, ServiceCenter,
and JDBC-compliant databases.

Document schema definitions used by the Archway servlet to format
message objects sent to and received from back-end databases. All
Archway message objects are formatted as XML documents.

ECMAScripts to generate and send message objects to the Archway servlet.
The messenger objects can be used to query back-end databases for
specific data and format the results for display or processing by Web
application forms.
10 Introducing the Peregrine OAA Tailoring Kit

Tailoring Kit Guide
About this Guide

This guide is intended for use by a developer who will be tailoring a Web
application built on the Peregrine OAA Platform.

This guide should be used in conjunction with several other manuals, which
are:

The guides for the Peregrine Web applications you have installed.

Documentation for the Peregrine back-end systems you are using.

Documentation for the application server you are using.

Conventions Used in this Guide
Screen shots in this guide are included as examples only. A sample Web
application, Employee Lookup, is used for the Studio screens. Get-Resources
forms are shown using the Classic theme.

The following documentation conventions are used in this guide:

Object Example

Button Click Next

File name The login.jsp file

Sample script or XML code var msgTicket = new Message("Problem");

...
msgTicket.set("_event", "epmc");
The ellipsis (...) is used to indicate that portions of
a script have been omitted because they are not
needed for the current topic. Samples of code are
not entire files, but they are representative of the
information being discussed in a particular
section.

Menu option Select Start>Program Files.

Book title Refer to the Get-Resources Installation and
Administration Guide.
About this Guide 11

Peregrine OAA
12 Introducing the Peregrine OAA Tailoring Kit

CHAPTER

1
 Installing the OAA Tailoring Kit
The OAA Tailoring Kit installation will install Peregrine Studio and
the source files for your Web application.

Before you begin the installation, your Web application and associated
software (application server, back-end system) should already be
installed.
Installing the OAA Tailoring Kit 13

Peregrine OAA
Installing the OAA Tailoring Kit

The installation process has two sections:

In the first section, the source files for your Web application are copied to
the location you specify.

In the second section, Peregrine Studio is installed.

To install the OAA Tailoring Kit:

1 Insert the installation CD into the CD-ROM drive.

Setup is launched, and the Welcome dialog box is displayed.

2 Click Next.

3 In the License agreement dialog box, click Yes to accept the terms.

The Destination Location dialog box is displayed.

4 Click Next to install the source files to the default location, or click Browse
to select another location, and then click Next.
14 Installing the OAA Tailoring Kit

Tailoring Kit Guide
The Select Components dialog box is displayed.

5 Verify that both components are selected, and then click Next.

The Select Program Folder dialog box is displayed.

6 Click Next.
Installing the OAA Tailoring Kit 15

Peregrine OAA
The Start Copying Files dialog box is displayed.

7 Verify that the information is correct, and then click Next.

A Setup Status dialog box is displayed, indicating that the files are being
copied.

When the files have been copied, the installer for Peregrine Studio is
launched.

8 The Welcome dialog box recommends closing all active applications. When
you have done this, click Continue.
16 Installing the OAA Tailoring Kit

Tailoring Kit Guide
9 In the Installation Type dialog box, ensure that Full installation is selected
(the default), and then click Next.

A summary dialog box is displayed.

10 Verify that the information is correct. If necessary, browse to another
location where you want the files installed. Click Install.
Installing the OAA Tailoring Kit 17

Peregrine OAA
A prompt is displayed that the path you have chosen does not exist.

11 Click Yes to create this folder.

A dialog box is displayed indicating that files are being copied.

12 When a message is displayed that the process is complete, click OK.

13 Click Finish in the InstallShield Wizard.
18 Installing the OAA Tailoring Kit

Tailoring Kit Guide
Opening your Web Application Project

After the installation is complete, you can open your Web application project
in Peregrine Studio using the following procedure.

Important: If you have not already received a Studio authorization file,
contact Peregrine Customer Support. You will need this file in
order to edit your Web application files.

To open your Web application source files in Studio:

1 Go to Start>Programs>Peregrine>Studio>Peregrine Studio to open Studio.

2 From the Tools menu, select Authorization file.

3 In any text editor, open the authorization file provided for Studio.

4 Copy the contents of the authorization file into the Authorization file dialog
box in Studio. Click OK.

5 From the File menu, select Open project.

6 Browse to the location of the .adw file for your Web application. For
example, the default location for the get-resources.adw file is:

C:\Program Files\Peregrine Systems\GetItTailoringKit\getresources 2.2.0.61

7 Click Open.

Configuring your System for Tailoring

You can set up one or more development environments separately from your
deployment platform. A development environment lets you modify Web
applications from one computer system and build the Studio project to a
separate test or deployment environment.

Setting up a Development Environment
You need the following minimum components for a development
environment:

Peregrine Studio.

Java Runtime Environment 1.3 or later (necessary to run Studio), or the
Java Development Kit provided with your Web application installation.
Opening your Web Application Project 19

Peregrine OAA
Studio project files.

Java Development Kit 1.2.2 or later if you want to create or edit your own
wizards for Studio.

With this minimal development environment, you can modify Web
applications using the built-in Studio tools and wizards. You can then do one
of the following:

Build your Studio projects on the development computer and copy the
results to a deployment computer

or

Enter the network path to the deployment computer in your Studio Build
Settings.

Important: If you are using source control software to store your project
files, you will need to configure your Studio Project Settings to
check out and check in the source files.

Setting Up a Testing Environment
You need the following components to test or debug:

Peregrine Studio.

Java Runtime Environment 1.3 or later (necessary to run Studio).

Your Web application project files.

If you want to create or edit your own wizards for Studio, you will need to
install a Java Development Kit 1.2.2 or later. The Java 2 SDK Standard
Edition v1.3.1_01 is provided on the installation CD for your Web
application.

Your Peregrine Web application.

Web server (necessary to serve Web application JSP content).

Java-enabled application server (necessary to run the Archway servlet).
Tomcat is provided on the installation CD for your Web application.

JavaScript-enabled Web browser (necessary to view your Web
application).
20 Installing the OAA Tailoring Kit

Tailoring Kit Guide
With this testing environment, you can build and view your Web application
changes from a single computer. To set up a testing environment, perform a
full installation. Refer to the installation guide for your Peregrine Web
application for instructions and supported software versions.

You can test several configurations by storing each configuration as a
separate package extension within a project file. You can then activate a
package extension and build the project as you are ready to test each
configuration.
Configuring your System for Tailoring 21

Peregrine OAA
22 Installing the OAA Tailoring Kit

CHAPTER

2
 Using Peregrine Studio
This chapter provides an overview of the Studio interface. The primary
focus is on those elements most often used for Web application
development and debugging. For more information about configuring
or using Studio, refer to the Studio online help.

This chapter covers the following topics:

An introduction to the Studio interface, and how to use the Project
Explorer to navigate through a Studio project file and use context-
sensitive menus to change individual components.

How to enable Form Information to easily access the form you want
to modify in Studio.

How to view the source code in Studio.

Note: A sample Web application, Employee Lookup, was created to illustrate
how Studio is used. Sample schemas and scripts are provided throughout
the guide using the Employee Lookup application as an example.
Using Peregrine Studio 23

Peregrine OAA
The Studio Interface

The Studio interface includes:

Project Explorer

Properties window

Edit toolbar

General information display

Contextual help

Address

Package selector

Advanced information

All elements of the interface except the Project Explorer and the Properties
Window can be hidden by unselecting them on the View menu.

Project Explorer

Properties window

Package selector
Address

General information Contextual help Advanced information

Edit toolbar
24 Using Peregrine Studio

Tailoring Kit Guide
Project Explorer
The Project Explorer provides a hierarchal view of all the components that
comprise a Studio project. The Project Explorer window displays each
component as a separate node within the tree.

Left-click a node

Click the node listing the component you want to change and the properties
of the component display in a window of the Properties pane.

Right-click a node

Right-click a node to display a list of context-sensitive options.

Group of
Modules

Module
Activity

Group of Templates

Field Section
Form

Fields
The Studio Interface 25

Peregrine OAA
The options listed in the following table are available for all nodes.

Menu item Description

New (and/or Open) Provides a context-sensitive menu of allowed components that you can add
from the current node. The list of components in this menu is dynamically
updated for each node of the Project Explorer tree.

Open Displays the properties of the selected component in a window of the
Properties pane.

Open in New Window Displays the properties of the selected component in a new window of the
Properties pane.

Rename Renames the selected node to the new name typed by the user. This option
will only be available when a package extension has been activated as the
save location for changes.

Cut Removes the selected node, and all child nodes underneath, and places a
copy in the Windows clipboard.

Copy Copies the selected node, and all child nodes underneath, to the Windows
clipboard.

Paste Inserts the contents of the Windows clipboard. If the clipboard contains a
Studio component, it will be automatically placed within the tree according
to the type of component it is.

Delete Deletes the selected node and all child nodes. This option will only be
available when a package extension has been activated as the save location
for changes.

Help Displays the Studio help system.

Export node Saves a copy of the selected node, and all child nodes underneath, as an
XML file, which can be imported into a Studio project.

Import node Opens a user-selected XML file describing Studio nodes and inserts it into
the tree. The imported node will be inserted below the node you right-
clicked.

Add Bookmark Adds a bookmark link to the node you currently have open in Studio. If you
browse to another location and then want to return to this node, click the
Bookmarks tab in the General Information window and select the
appropriate bookmark.
26 Using Peregrine Studio

Tailoring Kit Guide
The following image shows how some of the common Studio components
are displayed in a Peregrine Web application interface.

The address bar

You can use the Address Bar to navigate directly to any Studio project
component. The address bar will display as a text box below the Edit Toolbar.

To display the address bar:

1 Open Studio.

2 Click View > Address Bar. The Address Bar displays below the menus.

Drag and Drop
Studio supports drag and drop movement of components within the Project
Explorer. Changing the order of nodes in the Project Explorer will change
how the items are presented in the Studio build.

To move a component within the Project Explorer:

1 Click and hold the left mouse button over the name of the node you want to
move.

2 Drag the node to the new location in the Project Explorer tree.

FormAction Form componentModule and activity
instructions

Module
Activities
The Studio Interface 27

Peregrine OAA
The node appears underneath the component (of the same level) where you
drop the node.

Note: You cannot move components out of the order enforced by the DSD.
For example, you cannot move a form out of an activity and place it at the
same level as a module. You can, however, change the order of the forms
listed under an activity.

Enabling the HTTP Listener and Form Information

Using the HTTP Listener, you can click on the Form Information address
listed for a given form and the appropriate form properties will be displayed
in Studio. This debugging feature allows you to navigate through Web
applications with a browser and quickly bring up any particular form that
needs modification.

To enable the HTTP Listener and Form Information functionality:

1 Enable the HTTP listener as follows:

a Open Studio.

b Click Tools > Options.

c Select the Use listener check box from the HTTP Listener section.

d Select the port number you want the HTTP listener to use (the default port
is 81), and then click OK.

e Save your Studio project.

2 Open the project file containing the form you want to change in Studio.

Note: Be sure to select or create a package extension in which to save any
changes.

3 Log in to your Web application as an administrator, or access the Admin
module directly from the Administrator login page (admin.jsp).

4 Click Admin > Settings to display the Settings form.

5 On the Common tab, set the Show form info setting to true.

6 Click Save at the bottom of the form to activate your new settings.
28 Using Peregrine Studio

Tailoring Kit Guide
7 On the Control Panel form of the Admin module, click Reset Server to
commit your changes.

8 In your Web application, navigate to the form you want to tailor.

9 Click the Studio address displayed in the Form Information banner of the
Web application form.

Studio will appear as the active window and display the current form’s
properties page.

Viewing Referenced Components
Whenever an item links to or references another component, Studio will

display a magnifying glass button next to the field.

You can click this button to display the form, image, schema, or script that is
called by the reference.

Use Go to Previous View (the orange arrow pointing to the left) to return
to the component making the reference.

With Show Form Info
enabled, click this link to
open the form in Studio.
Enabling the HTTP Listener and Form Information 29

Peregrine OAA
Viewable XML Source Code

All Web application information is saved in XML files that you can see from
Studio. Studio does not support direct editing to the XML source of Web
application components. All XML source views are listed with a grey
background which indicates that the item is read-only.

To view the XML source code of a Web application:

1 Select the node of the Web application or component you want to view from
the Project Explorer.

2 Click the Source view button (the blue capital A).

The XML source appears in the Properties window. The XML source code is
color coded as you define in the project settings.

Changes Indicated with Color Text

All changes or additions you make to your Studio project are highlighted
with blue text.

Within the Project Explorer view, Studio highlights each node of the tree that
contains a component that has been changed or added. This allows you to
navigate through the Project Explorer tree view and locate where you have
made changes and additions.

To view the changes made in a project:

1 Select a node displayed with blue text to view the component properties.

2 Review the properties listed in the window displayed to the right of the
Project Explorer (the Properties window). Changes that were made to this
component will be displayed with blue text. If no blue text is displayed in the
Properties window, then the change or addition is in one of the child nodes
below the current node.

3 If necessary, expand any child nodes highlighted with blue text and review
the Properties window for changes.
30 Using Peregrine Studio

CHAPTER

3
 Studio Projects and Packages
Peregrine Studio projects contain all of the packages that make up an
application. A new package, or multiple packages, must be created
when you are making changes to your project. These packages can
then be activated or deactivated, depending on which features you
want to be included in your current project.

Packages are not displayed in the Project Explorer Project tree. The list
of available packages (packages that have been activated) is included in
the Package Explorer drop-down list located below the toolbar in
Studio.
Studio Projects and Packages 31

Peregrine OAA
Peregrine Studio Projects

Studio saves all the source files for your Web applications as a project. A
Studio project consists of several components that are combined during the
build process.

*ECMAScript is the core language standard shared between the JavaScript
and JScript libraries.

Studio component Description

Web application
components

The XML files that define the functionality of your Web applications. All
Web applications consist of packages, modules, activities, forms, and form
components.

ECMAScripts* ECMAScripts create and format message objects to the Archway servlet.
Web application components will use ECMA message objects to display
and process data.

Document schema
definitions

The XML files that define how the Archway servlet should format the
ECMA message objects sent to and received from back-end databases.
Web application components will use the ECMA message objects to
display and process data.

Presentation files Any supporting files such as images, client-side JavaScript, hand-coded
HTML or JSP files, or translation strings that will be included with the
Web application.

Stylesheets The Cascading Style Sheet (CSS) files that define the colors and fonts that
will be used in your Web application pages.
32 Studio Projects and Packages

Tailoring Kit Guide
Project Components
Studio organizes Web application components into a hierarchy of parent and
child elements. The hierarchy of Web application components defines the
individual properties of each Web application component.

Properties include, for example, the valid parent-child configurations of a
component and the type of editor each component requires within Studio.
All Studio projects conform to the same hierarchy.

Project

Packages - Group of modules (saved as system packages and user packages)

Supporting files (templates, scripts, schemas, images, strings, etc.)

Module

Activity (or DocExplorer)

Form

Form components (action, field, table, etc.)

Project Component Descriptions
This table lists and describes some of the Studio components. For a complete
list of the components that make up a Studio project, refer to Appendix A,
beginning on page 149.
Peregrine Studio Projects 33

Peregrine OAA
Component Description

Project The project component:
is the container for all the elements that are part of your
current project file.
is always the top node of the Project Explorer tree.
is represented by an open package icon () in the
Project Explorer tree.

Templates (support files) The templates component:
is the container for all the Web application elements that
can be reused throughout the project.
appears with a yellow cube icon () in the Project
Explorer tree.

Group of modules The group of modules component:
is the container for all the supporting files and modules
that make up a Web application.
appears with a double red cubes icon () in the Project
Explorer tree.
does not have any one dedicated graphical representation
in the built Web application.

Module The module component:
is a container for the activities and forms that make up a
Web application.
appears with a double red box icon () in the Project
Explorer tree.
appears as a text link on the navigation sidebar and may
also appear on the Web application Menu.

The module component is usually where access restrictions
are defined. Setting access restrictions limits a module to
particular user roles.

Activity The activity component:
defines a particular Web application task or action such
as searching for records, displaying records, or entering
records.
is a container for a particular set of Web application
forms.
appears with a cube and two window panes icon () in
the Project Explorer tree.
appears as a text link on the navigation sidebar (Activity
Menu).

Form The form component:
is where Web application user interfaces and displays are
defined.
appears with a cube and a single window pane icon ()
in the Project Explorer tree.

Typically, the system displays each form component as a
page in the main Web application frame.
34 Studio Projects and Packages

Tailoring Kit Guide
*Portal Components are available only in the portal module.

Form components Form components such as fields, actions, tables, and
lookups define the actual user interfaces and displays used
in a Web application form.
Form components appear with a variety of icons in the
Project Explorer Tree.
Most form components also have a graphical element in the
Web application form.

Group of scripts The group of scripts component:
is a container for all the server-side ECMAScripts used by
a Web application.
appears with a document with a yellow border icon ()
in the Studio Project Explorer tree.

Group of schemas The group of schemas component:
is a container for all the document schema definitions
that a Web application uses.
appears with a data store and document icon () in the
Studio Project Explorer tree.

Group of files The group of files component:
is a container for supplemental files that your Web
applications can use. You can store images, client-side
JavaScript, localized string files, or initialization files here.
appears with a folder icon () in the Studio Project
Explorer tree.

Component Description
Peregrine Studio Projects 35

Peregrine OAA
Example of Component Hierarchy
This table shows how the hierarchy could be applied, using a sample travel
Web application as an example.

Component Description

Group of modules

 travel

This is the top node of the Travel Web
application.

Module

 reservations

This module contains all the activities
necessary to plan, reserve, and review the
status of travel reservations. This module
is accessible to all users.

Activity

 reservation

This activity is the container for all travel
reservation tasks.

Form

 search

This form allows users to search for and
book flights and ground transportation by
date and carrier.

Form

 billing

This form allows users to enter billing
information.

Activity

 confirmation

This activity is the container for all review
and confirmation tasks.

Form

 confirm

This form displays all the travel
reservations a user has made and allows
each trip to be confirmed, modified, or
cancelled.

Activity

 status

This activity is the container for all
reservation status requests.

Form

 current

This form allows users to access the
current status of a reservation request and
where it is in the approval process.

Module

 approvals

This module contains all the activities
necessary to review and approve travel
reservations. This module is limited to
users with an approver access right.

Activity

 review

This activity is the container for all search
and review tasks.
36 Studio Projects and Packages

Tailoring Kit Guide
Form

 search

This form allows approvers to search
through a list of travel reservations
needing approval.

Form

 results

This form displays a list of travel
reservations that meet a given search
criteria.

Form

 details

This form displays detailed information
about the travel reservation such as the
person who requested it, the travel times,
and the billing information entered.

Activity

 confirm

This activity is the container for all
confirmation activities.

Form

approve

This form allows approvers to approve
travel reservations.

Form

 update

This form allows approvers to change
travel reservations before approving them.

Form

 reject

This form allows approvers to reject a
travel reservation and enter reasons that
the reservation was rejected.

Component Description
Peregrine Studio Projects 37

Peregrine OAA
Project Files
This table describes the files that make up a Studio project and the
information they contain. Items listed in italics are variables. To determine
the actual file name, replace the italic text with the component name.

Warning: Do not edit these files outside of Studio. Manual changes you make
outside of Studio may be lost during the build process.

Component Saved as Contains

project ..\Peregrine Systems\GetItTailoringKit\
project\project.adw

<package> names
Path to package.xml

package Base system packages

..\Peregrine Systems\GetItTailoringKit
\web application name\package\package.xml

User package extensions

..\packages\getit\package\
package.xml

<package> name
<modules> name
<module> names
Path to module.xml
Schema Names
Path to schema.xml
Script Names
Path to script.xml

modules part of
..\Peregrine Systems\Get-ItTailoringKit\
package\package.xml

<modules> name

module ..\Peregrine Systems\Get-ItTailoringKit\
package\modules\module.xml

<module> name
XML code for <activity>,
<form>, and <form>
components

schema ..\Peregrine Systems\Get-ItTailoringKit\
package\modules\Schemas\schema.xml

XML code for <schema>

script ..\Peregrine Systems\Get-ItTailoringKit\
package\modules\ServerScripts\script.xml

XML code for <script>

presentation files ..\Peregrine Systems\Get-ItTailoringKit\
package\modules\Presentation

Directory where presentation files
can be stored to be included in a
Studio build.
38 Studio Projects and Packages

Tailoring Kit Guide
Building a Project

During the build process, Studio compiles the XML components of your
project into a collection of Java Server Pages (JSP). The JSP content will be
generated in whatever folder you selected in your Studio Build Settings.
Generally, Studio produces one JSP for each form in the Web application.

XML to JSPs
This table summarizes how the XML content of your project is converted
into JSPs during the build process. Items listed in italics are variables. To
determine the actual file name, replace the italic text with the component
name.

Warning: Do not edit these files outside of Studio. Manual changes you make
outside of Studio may be lost during the build process.

Example

Modules name = search
Module name = employees
Activity name = empsearch
Form name = search

XML files saved in project = search.xml and employees.xml.
JSP created during build = e_employees_empsearch_search.jsp.

Component Built as

package A collection of JSP files as detailed by the components listed below.

modules part of ..\webapps\oaa\apphead.jsp

module part of ..\webapps\oaa\apphead.jsp

activity part of ..\webapps\oaa\apphead.jsp

form e_module_activity_form.jsp

form components, fields, redirects,
tables, etc.

as part of e_module_activity_form.jsp
Building a Project 39

Peregrine OAA
Project Build Variables
Studio uses the following variables to build a Web application:

Root Build Directory—the root folder for the build.

Presentation folder—the directory from which your Web application Java
Server Pages (JSP) will be generated and run. You will need to create a
Web server virtual directory mapping to this directory to run your Web
application.

Deployment folder—the directory from which your ECMAScripts and
schemas will be generated and run. Normally, this is the WEB-INF\apps
directory under the Presentation folder.

Temporary folder—the directory where Peregrine Studio will generate
temporary files used in the build process. You can use the variable workdir
to save temporary files to your Windows NT profile temporary directory.

Exclude files—a semicolon-separated list of files or directories you want
to be excluded during the cleaning process.

Character encoding—Not used. JSP encoding is determined by the
character encoding setting on the Settings page of the Admin module.

Ejb User—Enterprise Java Beans. The BizDoc database user (rome).
40 Studio Projects and Packages

Tailoring Kit Guide
Setting Build Options
To set build options:

1 From the Build menu, select Project settings.

2 Click the Build variables tab.

3 Enter or browse to the proper directory for each of the three settings.

4 Click OK to save your settings.

Studio Project Packages

Packages are the Web application components that are installed as part of
your Web application suite. Packages contain all the XML documents,
ECMAScripts, and schemas necessary to run your Web applications. To
change or add to your Web applications, you create package extensions,
which are XML documents that list the changes or additions you make to
your existing Web applications.

Each Web application project is defined by one or more packages. Packages
are either system or extension.

System packages. The system packages provided by Peregrine define the
base functionality of a Web application.

Extension packages. Packages you create are called extensions. Package
extensions store all of your additions or modifications to a Web
application. Extensions store only the elements that you have added or
changed from the base system package.

You can see the base packages and the extensions that make up your project
from the Package Activation toolbar. This view displays the active packages
that can be edited and built in your project. When a package is activated, the
changes or additions will be included in the build. When a package is
deactivated, the changes or additions will not be included in the build. The
modular design of packages allows you to decide which changes, additions,
or entire Web applications will be included or excluded from the build
process.
Studio Project Packages 41

Peregrine OAA
Tip: Group similar Web application functions in the same package
extension. This will allow you to activate or deactivate groups of functions
using the Package Activation toolbar. For example, if you are testing
different interfaces with the same functionality, you may want to save each
interface in a different package extension. After you determine which
interface is better, you can implement the new interface by deactivating
the other test package extension and rebuilding the project.

Activating and Deactivating Packages
You can control the packages and package extensions that are part of your
Web application suite by activating or deactivating them from the Package
Activation menu. To include a package in your Web application installation,
activate the package, and then build the Studio project. To remove a package
from your installation, deactivate the package and then rebuild the Studio
project.

To activate a package:

1 To display the package activation toolbar, click View, and then click Package
Selector.

The Package Activation toolbar is displayed.

2 Click the Package activation button ().

3 Select the checkbox next to the package name or names you want to activate.

4 Click OK.

All active packages will be included in the next build.

To deactivate a package:

1 Click the Package activation button ().

2 Clear the check box next to the package name or names you want to
deactivate.

3 Click OK.

All deactivated packages will be excluded from the next build.
42 Studio Projects and Packages

Tailoring Kit Guide
Package Dependencies
Each package has a list of dependencies that define what other packages are
affected by a given current package’s changes or additions.

When you create package extensions, you must select the other packages that
your new extension will be dependent on. You will be able to make changes
or additions to only the packages that are listed in your extension’s
dependencies. If you try to make changes outside your extension’s
dependencies, you will produce a conflict.

You can use the package dependency list to determine what other packages a
particular extension affects. This information is particularly useful if you are
trying to resolve conflicts in your projects.

Package dependencies are first defined by the New Package wizard when you
create a package. You can manually change the package dependencies using
the procedures described below.

Setting Package Dependencies
To set package dependencies:

1 Go to Tools > Package Dependencies.

2 From the left pane, select the package name for which you want to set
dependencies.

The list of defined dependencies appears in the right pane.

3 Select the check boxes next to the package names you want to add as package
dependencies. Clear the check boxes next to the package names you want to
remove as package dependencies.

Note: Dependent packages activate or deactivate as a group. For example,
suppose you create a user extension called New_Interface that is
dependent on the Extension package. If you deactivate the Extension
package, you will also deactivate the New_Interface package. If you
activate the New_Interface package, you will also activate the Extension
package.

4 Click OK to set the dependencies.
Studio Project Packages 43

Peregrine OAA
Saving Changes with Package Extensions
All additions and changes to a project must be saved under a package
extension name. By default, all of the packages that ship with the Peregrine
Web applications are write-protected and cannot be used as the save location
for your tailoring efforts. To tailor your installation you need to create one or
more new package extensions where your changes and additions will be
saved.

Tip: By default, all new projects automatically include an Extension package
extension to store your changes. However, you may want to create
additional package extensions to group all changes of a particular Web
application into one package extension. For example, you could create one
package extension to store all Get-Resources changes and another package
extension to store all Get-Services changes.

To create a new package extension:

1 Open Studio.

2 Click File > New package to start the Create New Package wizard.

3 Enter the name and package dependencies for the new package.

Name. Enter a name for the new package extension. The package
extension name cannot contain spaces or special characters.

Dependencies. Select the existing package or packages that your package
extension will be dependent on. Your new package extension must be
dependent on at least one existing package. Clear the check boxes of the
packages that you do not want your new package to be dependent on.

Tip: If you are creating new Web applications, select the shared templates
package as your package dependency.

4 Click OK to complete the wizard.

The new package extension is automatically activated and selected from the
Package Selection menu. Any changes or additions you make to your Web
application will now be saved in your new package.
44 Studio Projects and Packages

Tailoring Kit Guide
Warnings for Conflicts

Studio validates your project and ensures that there are no conflicting
instructions or missing components. If Studio encounters a conflict, it

displays an exclamation point icon next to each node that contains a
conflicting component within the Project Explorer view.

Studio will display a conflict warning if any of the following conditions occur.

Two or more active components describe the same thing. For example, if
you have two active package extensions that rename the same button or
interface component, you will create a conflict.

You make changes or additions to a package that is not defined as a
dependent package. For example, if you create a package called test that is
solely dependent on the package common, then the test package cannot
make changes or additions to other packages, such as resources.
Attempting to make such changes will create a dependency conflict.

Resource conflicts
Resource conflicts occur when two or more activated package extensions
describe the same project components. For example, if the Extension package
extension adds a submit action to a form, then you will see a resource conflict
if another package extension (for example, called Demo) also adds a submit
action to that form. The submit action on that form can only be described by
one package extension at a time.

Resolving Resource Conflicts
To resolve a resource conflict, you can either deactivate the package
extension with the conflicting project component or you can delete the
project component creating the conflict from one of the package extensions.
Continuing the example from above, you could either deactivate the Demo
package extension or you could delete the submit action from the Demo
package extension.

Dependency Conflicts
Dependency conflicts occur when you change a project component in one of
the packages that is not listed as a dependency for your current package
extension. For example, if the Demo package extension is solely dependent
on the common package, then the Demo package extension cannot make
changes to the portal package without creating a dependency conflict.
Warnings for Conflicts 45

Peregrine OAA
Resolving Dependency Conflicts
To resolve a dependency conflict you can either add a dependency to the
package extension, or you can move the changes to another package
extension with the proper dependencies. Continuing the example above, you
could either make the Demo package extension dependent on the portal
package or you could move the changes from the Demo package extension to
another package extension such as Extension, which is already dependent on
the portal package.

Viewing Conflict Information
The Information on Selection tells you whether you have a resource or a
dependency conflict.

To view conflict information:

1 Select a node with an exclamation point icon displayed next to the name
from the Project Explorer view.

2 Click View > Information on Selection.

A new information window will be displayed at the bottom of the Studio
interface. This window displays information on the conflict.

You can do these from any computer with network access to your Web
application installation and a copy of Studio installed.

For additional information about a particular Web application component
and its possible settings, refer to the Studio Introduction and the Studio online
help.

Deploying to UNIX Platforms

Using Studio’s FTP connection feature, you can deploy tailored Web
applications from a Windows machine running Studio to a UNIX platform.
This feature will push the deployment files to a remote machine using an FTP
connection.
46 Studio Projects and Packages

Tailoring Kit Guide
Requirements
To use this feature you must have the following components:

An FTP server on the target UNIX machine.

A user name and password for the FTP connection.

Note: After the files are on your UNIX system, you will need to copy the files
from the FTP home directory to an existing Web server virtual directory.

An open network connection from the Studio source machine to the
target UNIX machine.

Configuring for FTP Deployment
To configure Studio to FTP deployment files to a remote machine:

1 From Studio, click Build > Project Settings.

2 Click the FTP Connection commands tab, and then enter the following
settings:

Host Name—the fully qualified domain name of the target machine to
which you want to open to an FTP connection.

Port—the FTP port connection to use. The default value is port 21.

User Name—the user name to be used with the FTP connection.

Password—the password to be used with the FTP connection.

3 Click OK to save the FTP settings.

Deploying via FTP
To deploy files via FTP:

1 From Studio, perform an Integral build of your project to build all project
files.

2 Click Tools > Deploy on FTP to transfer files to the remote machine.

Studio deploys files to the home folder of the user account you configured in
Project Settings.
Deploying to UNIX Platforms 47

Peregrine OAA
International Builds

The languages available are determined by the Web application you have
installed.

Peregrine OAA Platform 2.2 supports the following languages:

English

French

Italian

German

Spanish

Japanese

Polish

Configuring for an International Build
Follow these steps to create and display international builds of Peregrine
Web applications.

Configure Studio
1 Set the font to support the intended build language(s).

a Click Tools > Options.

b Click the Appearance node on the options tree.

c Use the Language selectbox to choose the language in which you want
Studio to display information.

d Use the Property Editor and Multi-language Text Editor selectboxes to
choose the font names associated with the Studio Text Editor.

e Click OK to save your new settings.

2 Set the Build Options to create an International build and select the
languages for which international strings will be built.

a Click Build > Project settings.

b Click the Build Options tab, and then click the International build
checkbox.

c Select the checkboxes next to the language strings you want to include in
your international build.

d Click OK to save your new settings.
48 Studio Projects and Packages

Tailoring Kit Guide
Configure the Web application
1 Define the languages supported using the Admin module.

a Log in as an administrator (the administrator login page is located at
admin.jsp).

b Click Settings.

c On the Common tab, enter the two letter ISO-639 language code for the
languages you want to support in the Locales field. The first code entered
will be the default language used. The other languages you define will be
available in a drop-down list.

d In the Content type encoding field, enter the character encoding of the JSP
files from the following table.

e Click Save at the bottom of the Settings form to save your changes.

f On the Console form, click Reset Server to implement your changes.

2 Select the display language at login.

a Log in from the user login page (login.jsp).

b Use the Language drop-down selectbox available underneath the User
Name and Password fields to select the display language for this session.
The languages in this list are determined by the languages listed in the
Locales setting defined above.

Exporting Strings for Translation
After you have completed the configuration steps described above, you are
ready to export the strings for translation and create an international build of
your Web application.

To export strings for translation:

1 From Studio, click Tools > Collect multilingual strings. This will start the
String Collector wizard.

Character Encoding Character Set

ISO-8859-1 U.S. and Western European character sets. This
is the default character set used by Studio.

Shift_JIS Japanese character set

ISO-8859-2 Polish character set
International Builds 49

Peregrine OAA
2 Click Next to go to the first page of the wizard.

3 Enter the following settings:

From which node do you want to collect?—select the Selection option to
collect strings from the current node in the Project Explorer tree, or select
Whole project to collect strings for all nodes in the project.

Languages collected—select the source language of the strings you want to
export.

Generation path—enter or use the folder icon to browse to the location
where you want the string file to be created. The string file for each
language will be saved under a separate folder. The folder name will be the
ISO code for the language you selected in the Languages collected field.

4 Click Next to go to the next page of the wizard. Click Finish to export string
files from your project.

5 Click Finish again to close the wizard.

To translate string files:

1 Open the string file to be translated in a text editor or translation program.

The string file uses the format illustrated below:

Studio_Address, "source string"

For example, if you had a form with an address of
EMPLOOKUP_EMPLOYEELOOKUP_SEARCH_LABEL, the string for the
label of this form would be:

EMPLOOKUP_EMPLOYEELOOKUP_SEARCH_LABEL, "Search"
50 Studio Projects and Packages

Tailoring Kit Guide
2 Change the "source string" portion of the string to the target language of your
translation. For example, to change the string listed above to French, enter
the following:

EMPLOOKUP_EMPLOYEELOOKUP_SEARCH_LABEL, "Recherche"

3 Save the new string file in the str folder for the target language of your
translation. This folder must use the default character encoding for the target
language.

Importing Strings for Translation
To import translated strings into a Studio project:

1 From Studio, click Tools > Import translated strings. This will start the
Imported translated strings wizard.

2 Click Next to go to the first page of the wizard.

3 Enter the following settings:

Which packages do you want to translate? Select the check boxes next to
the names of the packages you want to import strings into and clear the
checkboxes of packages you do not want to import translated strings into.

Language of the STR—select the target language of the translated strings
you want to import.

Import as an extension—select this option to create a separate package for
each language.

Path to the STR files—enter or browse to the location where the translated
string files are located.
International Builds 51

Peregrine OAA
4 Click Next to go to the next page of the wizard. Click Finish to import
translated string files into your project.

5 Click Finish again to close the wizard.

Adding to an Existing Frameset

You can add your Peregrine Web application to an existing frameset to
incorporate into your corporate intranet. To do this, you will need to edit a
JavaScript file within your project file and add a reference to your Peregrine
Web application to the parent frameset.

To add a Peregrine Web application to an existing frameset:

1 Open the following file in a text editor:

<tomcat installation>\webapps\oaa\js\setDomain.js

or locate the file in the equivalent directory in your application server.

2 Add the following line to the bottom of the script:

setDomain(server name);

where server name is the name of the server where the parent frameset is
located.

3 Save the file.

4 Add the following line to each JSP file that will include your Web application
in a frameset. These files must be saved on the server listed in step 2.

<script language="JavaScript" SRC="js/setDomain.js">
</script>

5 Save the updated JSP files.
52 Studio Projects and Packages

CHAPTER

4
 Forms and Form Components
This chapter provides an introduction to the components of a form in
your Web application and how to tailor a form.

Each page displayed in your Web application consists of a form and
several form components. Each form also has the following supporting
elements:

An onload script that gathers the data that the form displays or
processes information from the previous form.

A schema, which maps to fields in the database and determines what
information to display.

For a complete list of each component available in Studio, see
Appendix A, beginning on page 149.
Forms and Form Components 53

Peregrine OAA
Tailoring Forms

You can change a form’s title, instructions, onload script, and component
labels. You can also hide a form component and make a form read-only.

To tailor Web application forms:

1 Open the project file you want to tailor in Studio.

2 Select or create a package extension in which to save your changes.

3 Open your browser and log in to your Web application.

4 Navigate to the form you want to tailor by doing one of the following:

Click the Studio address in the Form Information banner of the Web
application form. Studio will appear as the active window and display the
current form’s properties page.

OR

In Studio, locate the form in the Project Explorer.

5 Make your changes to the Web application form in Studio.

6 Save the project file.

7 Rebuild the project file.

Tip: If you have only made changes to one or more forms in an activity or

module, use the Differential Build option () to build just the
components that have changed. This option will reduce the time needed
to build your Studio project.

8 Refresh the browser to reload the form you modified.

9 Review your changes and test the added functionality.

Tip: If you want to test new access right settings for your components, log on
to the Peregrine Portal with several different users with different access
rights.
54 Forms and Form Components

Tailoring Kit Guide
Changing Form Titles
Each Web application form can show a title at the top of the frame. If you
want to change or remove the title displayed for a particular form, set the
following form properties.

To change a form title:

1 Open the form’s properties in Studio.

2 In the Title (en) field, enter the new form title

3 Click the check mark button () at the right of the field to accept the new

title.

4 Save and build your project file.
Tailoring Forms 55

Peregrine OAA
Changing Form Instructions
Most forms display a set of instructions at the top of the frame. You can
change the instructions to match any changes you make to the form’s
interface.

To change form instructions:

1 Select the form in the Project Explorer.

2 Select the Instructions tab in the Properties window.

3 In the Instructions (en) field, enter the new form instructions.

4 Click the check mark button () at the right of the field to accept the new

form instructions.

5 Save your project file.

6 Build your project file.
56 Forms and Form Components

Tailoring Kit Guide
Changing a Form’s Onload Script
A form’s onload script gathers all the data that the form displays, or processes
information from the previous form. Many onload scripts also invoke
schemas to present back-end database information in a format that is easier
to map to particular form fields or form components.

Typical tailoring tasks include changing the script launched when a form is
loaded or directly editing the onload script itself. You can perform both of
these tasks from Studio.

To change the onload script invoked by a form:

1 Select the form in Studio.

2 Click the Script tab in the Properties window.

3 In the Server Onload Script field, enter or select the script you want to invoke
when this form is loaded. You can use the drop-down list to select any of the
scripts saved in your project file.

4 Save your project.

5 Build your project file.

To edit the onload script:

1 Select the form in the Project Explorer.
Tailoring Forms 57

Peregrine OAA
2 Click the Script tab in the Properties window.
58 Forms and Form Components

Tailoring Kit Guide
3 In the Server Onload Script field, click the magnifying glass button () to

view the script in the Studio text editor.

4 Make any changes to the script in the text editor.

5 Save your project.

6 Build your project file.

Changing Form Component Labels
Many form components contain a label that is displayed next to or above the
form component. Some of the most commonly configured form
components are the field form components (check box, select box, edit field,
and so forth).
Tailoring Forms 59

Peregrine OAA
To change a component label (field label):

1 Select the form in the Project Explorer.

2 On the General tab, select the Label (en) field, enter the new form component
label, and press ENTER.

3 Save your project.

4 Build your project file.

Hiding Form Components
All form components have a Visible flag property that hides or displays the
component in the Web application interface. If you want to remove a form
component from the interface but still have it available in Studio, you can
toggle the form component’s Visible flag to No. This prevents the form
component from being part of the next Studio build. Non-visible (and thus
non-built) form components are displayed with a red X over the form
component icon in the Project Explorer tree.
60 Forms and Form Components

Tailoring Kit Guide
To hide a form component in the interface:

1 Select the form in the Project Explorer.

2 On the Advanced tab, clear the Visible flag option.

3 Save your project.

4 Build your project file.

Changing a Form Component to Read-only
Certain form components such as edit fields and text areas are available for
users to enter and change information. If you want to restrict these form
components so that they only display data, you can set the readonly attribute
for the form component. The data displayed by a readonly form component
will no longer have a bounding box or area to indicate that it can be edited or
changed.

You can change a form component back to its original state by removing the
readonly attribute.
Tailoring Forms 61

Peregrine OAA
To make a form component read-only:

1 Select the form in the Project Explorer.

2 On the General tab, select the Readonly check box.

3 Save your project.

4 Build your project file.

Changing the Schema that a Form Component Uses
Certain form components such as selectfields and simple tables use a schema
to determine what information to display. You can change the information
these form components display by changing the schema defining the
document fields. In some cases you may also need to change other form
component attributes that depend on the fields defined in the schema.

To change the schema that a form component uses:

1 Select the form in the Project Explorer.

2 Click the Advanced tab.
62 Forms and Form Components

Tailoring Kit Guide
3 In the Databound section, Document field, enter or select the name of the
schema that you want to use as the source document for this form
component.

4 Save your project.

5 Build your project file.

Changing the Document Field that a Form Component Uses
Certain form components such as selectfields and table columns use a
particular document field of a schema to determine what information to
display. You can change the information these form components display by
changing the document fields these components use.

Note: The list of document fields available to a form component is
determined by the schema used. Studio does not validate the document
field you select.

To change the document field that a form component uses:

1 Select the form component in Studio to display the component’s properties.
Tailoring Forms 63

Peregrine OAA
2 In the Document Field field, enter the name of the field in the XML message
where this form component’s information is stored.

Note: The field you select must be defined as an attribute in the schema
defined in the form component’s properties.

3 Save your project.

4 Build your project file.

Specifying a Document Field Name
The Document Field attribute of forms is always mapped to an element in the
Message object returned by the form’s Onload script.

The Archway servlet formats Message objects as XML files using the tag
definitions and back-end database table and field information that the
schemas provide.

The Document Field attribute of a form component must map to an
<attribute> element in a schema.
64 Forms and Form Components

Tailoring Kit Guide
You can specify the Document Field attribute that a form component uses in
one of several ways:

If the Document Field attribute has a unique <attribute> name in the
schema, you can list just the <attribute> name.

If the Document Field attribute is repeated in the schema, you must
specify the nested <document> name or names and the <attribute>
name. The <document> name and the <attribute> name must be
separated by a slash character (/).

If the Document Field attribute is part of a nested <document> element,
you have the choice of either listing the <attribute> name by itself or
specifying the some or all of the path using the syntax of <documents>/
<document>/<attribute>. This syntax allows Web application developers
to specify as much or as little of the document path as is needed to create
a field attribute mapping.

Example

Suppose you are creating a form where users can review and submit asset
requests. A typical asset request may be formatted as the following XML
message:

<request>
 <Number>012345</Number>

 <Purpose>Asset Management</Purpose>

 <EndUser>

 <FirstName>Michaela</FirstName>

 <LastName>Tossi</LastName>

 </EndUser>

 <Requester>

 <FirstName>Richard</FirstName>

 <LastName>Hartke</LastName>

 </Requester>

</request>

In this case, the <FirstName> and <LastName> tags are repeated in two
different sections of the XML message. To display these tags in a form, you
will need to specify more of the document path when you enter the path of
the Document Field attribute. The entries below illustrate the minimum
document path needed for the Document Field attribute in a form
component.
Tailoring Forms 65

Peregrine OAA
Number
Purpose
EndUser/FirstName
EndUser/LastName
Requester/FirstName
Requester/LastName

You can also specify the Document Field attribute path using all the elements
of the XML message. The following entries illustrate the full document path
that can be used for the Document Field attribute in a form component.

request/Number
request/Purpose
request/EndUser/FirstName
request/EndUser/LastName
request/Requester/FirstName
request/Requester/LastName

The number of elements that you must specify in the document path is
determined by how you set up your schemas.
66 Forms and Form Components

Tailoring Kit Guide
Displaying Forms within a Frameset
You can display forms within multiple frames by creating a special frameset
form. All frames within a frameset form will be displayed within the frame
normally reserved for forms.

To display forms within a frameset:

1 Right-click the activity where you want the frameset form to be, point to
New, and then click Form.

2 Click the Others tab.

3 Select Frameset from the Formtype drop-down list box.

4 Enter row and column sizes in the Frameset pane.

Note: You can use percentage to describe frameset size properties.

5 Create a new form for each frame in the frameset form.

6 Create a redirection under the frameset form for each target form in the
frameset.
Tailoring Forms 67

Peregrine OAA
7 Save your project.

8 Build your project file.

To display the form title within a frameset:

1 Open the frameset form’s component properties in Studio.

2 Create a new server onload script within your project.

3 Add the following lines to the sript:

top.setTitle(TitleText)
Where TitleText is the title you want to display at the top of the frameset.

4 Open the component properties page for the target form within the frameset.

5 Click the Script tab.

6 Select the server script you created in step 2.

7 Save your project.

8 Build your project file.
68 Forms and Form Components

Tailoring Kit Guide
Types of Form Components

For a complete list and description of all Studio components, see Appendix
A, beginning on page 149.

Component Template Containers
The component template is a special type of container used to store groups
of preconfigured form components. The form components stored in a
component template can be reused through your project. After you create a
component template, the component template name appears in the
templates list of the Create and New menus. A component template
references all the child form components and attributes settings defined in
the template.

If you add a component template to a Web application and do not modify it,
Studio saves the form components as links to the component template. If you
make changes to the form components in the template, Studio saves the
changes you have made and links to the components that you did not change.

Tip: You can use component templates to save the common elements of your
forms. For example, if several of your forms contain search functionality,
then you could create a component template that automatically calls the
correct search schema, queries your back-end system, and displays the
proper search fields.

To create a component template:

1 Right click the Templates nodes and go to New > Field Container >
Component Template.

Studio adds a new component template node to the Project Explorer Tree.

2 Enter the name for the component template.

3 Right click the new component template node and use the New option to add
form components.

4 Configure the form components you add to the template component. Studio
uses these settings as the default settings of the template component.

5 Save and build your Studio project.

The new template component will now be an option in the New menu.
Types of Form Components 69

Peregrine OAA
Note: Do not copy and paste or drag and drop items between template
components. Instead add form components via the context-sensitive or
Create menus. Studio does not use the linking features of template
components on items that you copy from exisitng template components.

To add a component template to a form:

1 Right-click the form where you want the component template to be.

2 From the New menu, select the template you want to add.

Form components you can add to a component template

All except Action and Redirection.

Tip: You can use a component template as the container for any form
components that require a container. This is typically done for form
components such as hiddenfields where you are not concerned about the
display of the fields.

Attribute categories you can set for a component template

Name, Access rights, and Geometry.

Fieldsection Containers
The fieldsection is a container that aligns fields into a column. The
fieldsection displays each field on its own line in the column. The fieldsection
also aligns the field labels along the left of each field. Each fieldsection can
have a border that surrounds the columns and visually indicates that the
fields in the container are related. You can also add a header or instructions
to your fieldsection as well as add labels and instructions to the individual
fields in the fieldsection.

Tip: You can use the fieldsection form component to group and align related
input fields. For example, if you have several fields to input search
information, you can align the fields in a single fieldsection and add a
header and instructions that will apply to all fields.

To create a fieldsection:

1 Right click the form where you want the fieldsection to be.

2 Go to New > Field Container and click Field section.

Form components you can add to a fieldsection

Field, HTML, Header, and Instructions.
70 Forms and Form Components

Tailoring Kit Guide
If you select the Header or Instructions form components, Studio will display
the text editor screen for you to enter HTML code for your header and
instructions. Studio will not check the validity of your HTML code.

Attribute categories you can set for a fieldsection

Name, Access rights, Geometry, and Presentation.

If you plan on having multiple fieldsections in a form, you can use the border
Presentation property to display a line around a fieldsection to help visually
distinguish the fieldsection from other elements in your Web application
interface. You may also want to add a Form Columns layout container to
display your fieldsections in two or more facing columns rather than a single
column down the form.

Text Edit Fields
A text edit field provides a bordered field in which to display or enter a value
as plain text. Text edit fields can only be added to forms within a container
such as a component template or fieldsection.

Peregrine Web applications use text edit fields to provide a space for user
keyboard input. The text edit field saves the text entered into a particular
schema field when a user submits the form.

Tip: To use a text edit field for text input, add an action to the form that
submits the field information to another form. Set the Document Field
attribute of the text edit field to the corresponding attribute name used in
the document schema.

You can also use text edit fields to display information. To display
information in a text edit field, create an onload server script that performs a
document query, and then map the text edit field to one of fields of the
schema.

Tip: To use a text edit field for display of information only, add a schema to
the parent form that defines the information to be displayed. Set the
Document Field attribute of the text edit field to the corresponding
attribute name used in the schema. Set the readonly attribute under
Presentation to Yes if you do not want users to change the information
displayed.
Types of Form Components 71

Peregrine OAA
To create a text edit field:

1 Right-click the container where you want the field to be. This displays the
context-sensitive menu.

2 Go to New > Field and click Text Edit.

Form components you can add to a text edit field

None.

Attribute categories you can set for a text edit field

Name, Access rights, Advanced, Data, Events, Geometry, Presentation, and
Strings.

Selectbox Fields
A selectbox provides a drop-down list box from which users can select
predefined values. You can add items to the selectbox in one of two ways:

Explicitly define the options. The selectbox always displays the options
you enter and always displays them in the order they are defined in by the
Geometry Order attribute.

Query a back-end system and generate an XML document. The selectbox
displays options gathered from your database and the schema used to
generate the XML document. Typically, the selectbox uses the same
schema as that used by the parent form of the selectbox. If you use a
schema to display the items in the selectbox, then the Document field
attribute you enter must match the corresponding attribute name defined
in schema.

Tip: Use the schema query method to avoid duplicating information that is
already stored in your back-end databases. If you explicitly enter the
options in the selectbox, then you have to update, rebuild, and re-deploy
every time you change the list of selectbox options. If you store the
selectbox options on your database, then you only need to change the
database values, and your schema query automatically picks up the
changes.

When you are working with selectboxes, keep in mind that:

You can only add selectbox fields within a container such as a component
template or fieldsection.

Users cannot add entries to selectbox fields. To implement such
functionality, Web application developers would have to write a client-
side JavaScript to allow updates to the selectbox.
72 Forms and Form Components

Tailoring Kit Guide
Web applications use selectbox fields to constrain user input to a list of
predefined items. The selectbox field saves the selected item to a particular
field when a user submits the form. The field used to save the information
must match a field defined in a document schema.

If you have a large number of selections for users to choose from you may
want to use a lookupfield in place of a selectbox. The advantages of
lookupfields are that they can be personalized and that they do not require
page loading until the lookupfield is selected, which reduces the amount
of time necessary to render the form.

To create a selectbox field:

1 Right click the container where you want the field to be.

2 Go to New > Field and click Selectbox.

Form components you can add to a selectbox field

Option. The Option form component allows you to explicitly define the
entries displayed in the selectbox.

Attribute categories you can set for a selectbox field

Name, Access rights, Advanced, Data, Databound, Events, Geometry,
Presentation, Strings.

Databound attributes

The Databound attributes are where you will define what schema and
schema attributes provide the information for the selectbox. The following
list describes what information to enter in the Databound attributes.

Captions. Enter the attribute name from your schema that defines the
information you want displayed in the selectbox.

Document. Enter the schema name you want to use to query and display
the information requested in the selectbox.

Values. Enter the attribute name from your schema that defines what
information you want to use to sort and identify the information in the
selectbox. This value can be identical to the displaylist attribute, but it is
recommended that you use the Id attribute name defined in the schema.
The Id attribute is the preferred choice because it is a unique value and
requires less memory to sort since it is just a number.
Types of Form Components 73

Peregrine OAA
Hidden Data Fields
A hidden data field stores form information without displaying it to the user.
The information stored in a hidden data field is passed to other forms when
the form is submitted.

Tip: You can use hidden data fields to prevent users from having to input the
same information on multiple forms. For example, if a user enters contact
information in one form, then you can use hidden data fields to store this
contact information in later forms.

To create a hidden data field:

1 Right click the container where you want the field to be.

2 Go to New > Field and click Hidden Data field.

Form components you can add to a hidden data field

None.

Attribute categories you can set for a hidden data field

Name and Data.

Redirections
A redirection takes users to another form when the onload server script
generates a certain condition. A conditional redirection requires the parent
form to run a server script when it is loaded. The server script must check for
a particular condition and output a condition message when this condition
occurs.

You can only add a redirection to a form; you cannot add a redirection to a
form component.

Tip: You can use a redirection to take users to a form when they enter
particular information or a particular result, such as an error or no results,
is generated.

To create a redirection:

1 Right-click the form where you want the redirection to be.

The context-sensitive menu is displayed.

2 Go to New and click Redirection.
74 Forms and Form Components

Tailoring Kit Guide
Form components you can add to a redirection

None.

Attribute categories you can set for a fieldsection

Name, condition, Access rights, Link Parameters, Presentation, and Strings.

Redirection attributes

For most redirections, the two most important attributes to set are the
condition and the target form.

Condition. Enter the message that your server script generates when a user
should be redirected to another form. If there is no condition, the
redirection will take effect every time the page is loaded.

Target form. Enter the full Studio path to the form where the user should
be redirected.

Table Form Components
A simple table is a container to display information generated from a schema
document query. The simple table form component only has two basic
functions by itself. The simple table form:

Calls the schema that will generate the table data, and

Describes how the data will be displayed in the child columns of the table.

A simple table requires child columns to actually display data.

To create a simple table:

1 Right-click the form where you want the table to be.

2 Go to New > Table and click Simple Table.

Form components you can add to a simple table

Link, Text Column, Entry Column, Spinner Column, Select Column, Radio
Button Column, Checkbox Column, Image Column, Link Column, and
Lookup Column.

Attribute categories you can set for a simple table

Name, Document, Geometry, Dynamic Columns and Headings, Access
rights, Columns, Links, and Advanced.

The Document attribute defines the schema the simple table uses. You can
enter a schema name or select one from the drop-down list box.
Types of Form Components 75

Peregrine OAA
Simple tables include a built interface to view large tables in smaller pages.
You can use the size attribute in the Geometry section to set the number of
rows to display on one page. When users want to view more of the table
results, they can click on the next x rows button to view the next page of table
rows. All simple tables will include the link icons to browse forward and
backward in the table.

Table Links
A table link allows the user to click on a table row and be redirected to
another form. The table link also saves some field information about the row
the user selects and submits this information to the target form. Table links
are typically used for two functions:

To display more information about an item selected in the table, or

To copy certain information about the item selected in the table into a new
form such as, for example, the price of an item in a purchase request form.

To create a table link:

1 Right-click the table where you want the table link to be.

2 Go to New > Link and click Table Link.

Form components you can add to a table link

None.

Attribute categories you can set for a simple table

Name, Access rights, Data, Link Parameters, Presentation, and Strings.

Table link attributes

For most table links, the two most important attributes to set are the
Document field and the target form.

Document field. Enter the field that describes what information should be
passed when a table link is submitted. The Document Field attribute
should match the attribute name of an item in your schema. The attribute
is typically set to the Id schema attribute.

Target form. Enter the full Studio path to the form where the user should
be redirected when they click on a table row.
76 Forms and Form Components

Tailoring Kit Guide
Text Columns
A text column displays the results of a document query in plain text. Each
text column displays one field of information from a back-end database. The
field must match an attribute name listed in the document schema of the
parent table.

When working with text columns, keep in mind that they:

Are always read-only and cannot be used to update information in the
back-end database.

Can only be added as child nodes of a simple table.

To create a text column:

1 Right click the table where you want the text column to be.

2 Go to New and click Text Column.

Form components you can add to a text column

None.

Attribute categories you can set for a text column

Name, Access rights, Data, Geometry, Image, Presentation, and Strings.

Text column attributes

For most text columns, the two most important attributes to set are the
Document field and the Label_en.

Document Field. Enter the field that describes what information should be
displayed in the text column. The Document Field attribute should match
the attribute name of an item in your schema.

Label_en. Enter the label you want displayed in the first row of the table as
the column heading. If you are using dynamic headers and columns, you
will want to leave this attribute blank.

Actions
An action displays a button on the form to submit form information or
follow a particular link. The following is a list of the possible actions you can
include in your forms:

Action. Use to submit form information or follow a link.

Back. Use to navigate back to the previous form.

Close. Use to close pop-up windows.
Types of Form Components 77

Peregrine OAA
Default Action. Use to define a form’s submit action when no buttons are
displayed in a form.

Home. Use to navigate to the portal home page.

Print. Use to print the current form.

To create an action:

1 Right-click the form where you want the action to be.

2 Go to New > Action and click the action type you want to add.

Form components you can add to an action

None.

Attribute categories you can set for an action

Name, Access rights, Image, Link Parameters, Presentation, and Strings.

Action attributes

For most actions, the three most important attributes to set are the Image
Folder, Target form and the Label_en.

Image Folder. Enter the file name of the image to be used for the button.

Target form. Enter the full Studio path to the form where the user should
be redirected when they click on the button.

Label_en. Enter the label you want displayed in the button.
78 Forms and Form Components

CHAPTER

5
 Adding Personalization Functionality
Personalization of Peregrine Web applications is provided in two
ways:

Personalization is available to end users in Peregrine Web
applications that have been built using Document Explorers
(DocExplorers). Authorized users can change the appearance and
functionality of certain Web applications directly from the
application interface.

Pages with Personalization capabilities can be added to Web
applications by creating new DocExplorers. This functionality can
be enabled only by using Peregrine Studio.
Adding Personalization Functionality 79

Peregrine OAA
Supporting Personalization

To add Personalization capabilities to your Web application, you must have
these components:

An AssetCenter or ServiceCenter back-end database, or a back-end system
that uses BizDoc, such as Oracle. Personalization requires you to store
users’ login rights and personalization changes in one of these databases.

A user account with Personalization rights enabled. A user’s login profile
determines the level of Personalization rights the Web Application grants
a user. Users’ Personalization rights determine not only what personalized
components they can see and change, but also determine whether other
users will see their personalization changes. A Peregrine Web application
may display some personalization changes for an entire organization or
specific user groups, but it may also limit the display of changes to a
specific user.

A schema that supports Personalization. There are a number of
personalization-specific schema entries that determine how Studio
displays fields in personalized forms.

A configured DocExplorer activity for each Web application for which
you want to provide Personalization. Each DocExplorer activity must have
an adapter name and a schema. A DocExplorer can only use one schema
at a time.

Activating Personalization
Access to Personalization features is defined using the getit.personalization
access right/capability word stored in the Web application database. You can
define the scope of end users’ personalization rights by selecting one of the
options from the End User Personalization options on the Settings page of
the Admin module.

The End User Personalization setting can have one of three values:

Disabled. End-users see only the default Personalization settings made by
the administrator. This setting prevents any further personalization from
being made by non-administrators. Your Web application does not
display the Personalization wrench icon to end-users.
80 Adding Personalization Functionality

Tailoring Kit Guide
Limited. End-users will inherit the default Personalization settings made
by the administrator, but they can also make limited changes to the Web
application interface. This setting allows end-users to add or remove only
the fields that were originally included in the administrator’s default
personalization. This setting also prevents end-users from changing read-
only fields to editable fields.

Enabled. End-users will inherit the default Personalization settings made
by the administrator, but they can also make substantial changes to the
Web application interface. This setting allows end-users to add or remove
any field listed in the schema.

You can also grant users administrator rights by adding the
getit.personalization.admin access right/capability word to the user profile
stored in the Web application database. Administrator users will have the
following additional rights:

Create. A Create button is displayed in search forms that enables users to
create new entries in the back-end database.

Update. An Update button is displayed in detail forms that enables users
to change the information that is listed for entries. Changes are also
submitted to the back-end database.

Delete. A Delete button is displayed in detail forms that allows users to
delete records from the list of entries. The record is also deleted from the
back-end database.

Settings will be inherited by other users. This settings enables all
personalization changes made by an administrator to be inherited by
personalization end-users.

After you set up a Studio project to use Personalization, some or all interface
changes and additions can be accomplished using the Personalization
interface. Typically, an administrator or user with administrative rights will
personalize the interface for all other users. If you want the personalization
changes from one user to be inherited by other users and groups, you will
need to set up a hierarchy of users.
Supporting Personalization 81

Peregrine OAA
Personalization Hierarchies

Personalization changes cascade down to other users based on the
personalization hierarchy defined in the personalize.getHierarchy
ECMAScript. By default, this script assigns users with getit.admin or
getit.personalization.admin rights to the /admin group. Changes made by
members of the /admin group cascade down to all other users.

If a user does not have the admin rights described above, the script will assign
the user to a unique group called /admin/user name. Such users will see all
personalization changes made by administrators plus any personalization
changes they have personally made.

You can change the default hierarchy of users by modifying the
personalize.getHierarchy ECMAScript. The output of this script must meet
the following criteria:

The script output must begin with a slash character (/).

Each hierarchy level must be separated with a slash character (/).

Personalizing with DocExplorers

DocExplorers allow Web application end users a means to create and
customize searches of connected databases. From the end user perspective, a
DocExplorer is a special activity that allows someone to personalize part of
the interface. The user’s profile determines the Personalization rights
granted.

From the Web application developer’s perspective, a DocExplorer is a
template activity that allows for the rapid development of Web applications
without the need to rebuild a Studio project for every change. A DocExplorer
enables you to add or remove fields, change the layout of a form, and change
interface elements such as headers and buttons in real time using the browser
interface.
82 Adding Personalization Functionality

Tailoring Kit Guide
DocExplorer Forms and Functions
All DocExplorers provide the following forms and functionality:

A search form for defining search criteria.

A list form for displaying search results.

A details form for displaying detailed information about search results.

By default, only a user with getit.admin user rights can personalize all
DocExplorer forms. Typically, this person will be an administrator who
decides what document fields and layout will be available in the Document
Explorer forms. End-users will then inherent the administrator’s
personalized forms. This may be the only form of Web application tailoring
that is enabled at some organizations.

If you grant your end-users administrative rights, they can use
Personalization for the following actions:

Add a new record to the database.

Update existing records in the database.

Delete existing records from the database.

To use a DocExplorer, you must have defined a schema for the back-end
database you want to query. Peregrine Web applications come with a set of
fully functional schemas that you can use for your DocExplorers. You can
put commands in a schema that will then be picked up by a DocExplorer. For
example, you could define a field to be read only, such as a problem ticket
number, or establish user access restrictions to certain forms.

Adding a DocExplorer Reference
A DocExplorer reference creates a link to a set of reusable JSPs. These pages
provide functionality to search, display a list of data returned from the
search, and ability to drill down into this data for more detail. Adding a
DocExplorer reference is the procedure that will provide the functionality
you need for most instances. You can then use Personalization to tailor the
pages as desired.

To add a DocExplorer Reference:

1 Right-click on a Module component in your project. Select
New>DocExplorerReference.

2 Include the shared templates package in the project as follows:
Personalizing with DocExplorers 83

Peregrine OAA
a From the New menu, select Add package to project.

b Browse to the location of the shared templates file in the source code for
your Web application. Select the file, and then click Open.

3 Expand the DocExplorerReference node.

4 Select the redirect node, and then click the Link Params tab in the properties
window.

The Param field has the following line filled in:

_DocExplorerDocument=<DOCUMENT_NAME>&_DocExplorerBackend=<TARGET_
NAME>
Replace <DOCUMENT_NAME> with the schema name you want to use for
this DocExplorer.

Replace <TARGET_NAME> with the alias that will designate the connection
to an adapter. This setting should be defined according to the purpose of
your DocExplorer. For example, if you added a DocExplorer reference to a
request module in Get-Resources, using AssetCenter as the back-end system,
you would set the target_name parameter to ac, as designated on the Get-
Resources tab, Get-Resources Target field on the Admin Settings page. This
setting could also be the Default capabilities setting on the Portal DB tab—
portalDB(getit.portal).

5 Save your project.

6 Click the Differential build of project button to rebuild your project.

Personalizing DocExplorer
After you have added a DocExplorer Reference, you can personalize the
template pages.

To personalize your DocExplorer pages:

1 Log in to your Web application.

2 Click the activity name for your Document Explorer from the navigation
sidebar. By default, the Document Explorer will be called DocExplorer. If this
is the first time you have accessed the Document Explorer, the interface will
display a blank search form.

3 Click the wrench icon on the upper right of the interface.

4 Make your changes to the search form, and then click Save.

Your personalized search form is displayed.

5 Click Search to display the results list form.
84 Adding Personalization Functionality

Tailoring Kit Guide
6 Click the wrench icon from the upper right of the interface.

7 Make your changes to the list form, and then click Save.

8 Click on any of the results displayed in your personalized list form to go to
the detail form.

9 Click the wrench icon from the upper right of the interface.

10 Make your changes to the detail form, and then click Save.

11 If you have user rights to create documents, click the activity name for your
Document Explorer from the navigation sidebar to return to the search form.

12 Click Create to display the create form.

13 Click the wrench icon from the upper right of the interface. Make your
changes to the create form, and then click Save.

Adding Personalization to Lookup Fields
You can create automatically-generated lookup fields using Personalization.
These personalization features reduce the number of forms and
configuration necessary to create a pop-up window with lookup
information. You can use Personalization features to configure two types of
lookup fields:

Field Lookup—use this lookup to select one particular field from your
schema. For example, you might want to select just the Name field from
your Employee schema.

Nested Document Lookup—use this lookup to select one or more fields
that are nested under a subdocument in your schema. For example, you
could lookup the Location subdocument from your Employee schema to
update several fields such as address, state, zip, and country.

Note: When you select an entry from a Nested Document Lookup, all the
fields used by the lookup schema are returned. Any other form
components that use these fields will be automatically updated. This
allows users to quickly change multiple fields on a form.

To create a field lookup:

1 Right click the form to which you want to add the lookup, point to New,
point to Field, and then click Lookup.

2 Enter the following settings for the Data attribute:
Personalizing with DocExplorers 85

Peregrine OAA
Display Field—the name field that you want to be displayed in the Web
application form when a user makes a selection from the lookup field. If
you do not enter a value for this parameter it defaults to the Document
Field parameter described below.

Document Field—the name of the key field used to uniquely identify each
individual document record. The value of this field is used to lookup the
document field defined in step 3 below. This value will also be posted to
the onload script when a particular lookup entry is selected.

3 Enter settings for the following DocExplorer Adapter attributes:

Adapter—the name of the database adapter where your lookup
information is stored.

Document Path—the name of the schema and field name that you want
to lookup and enter into the Web application form. The naming
convention used with this parameter is schema name.field name with a
period (.) between them. For example, the entry employee.name will
lookup the name field from the employee schema.

4 Enter the following setting for the Link Parameters attribute:

Target Form—enter docExplorer.fieldlookup.start as the form name. This
value enables personalization if the end-user has sufficient personalization
rights.

5 Click the Differential build of project button to rebuild your project.

6 Log in to your Web application, browse to the updated form, and click the

magnifying glass lookup icon () to display a pop-up lookup form.

The lookup field displays a list of values that match the Document Path you
entered in step 3 above.

7 If you want to change the field used for the lookup, click the Personalize this
page link and select the new field you want to use.
86 Adding Personalization Functionality

Tailoring Kit Guide
Creating a Nested Document Lookup
To create a nested document lookup:

1 Right click the form to which you want to add the lookup.

2 Go to New > Field > Lookup.

3 Enter the following settings for the Data attribute:

Display Field—the name field that you want to be displayed in the Web
application form when a user makes a selection from the lookup field. If
you do not enter a value for this parameter it defaults to the Document
Field parameter described below.

Document Field—the name of the key field used to uniquely identify each
individual document record. The value of this field is used to lookup all
other document fields of the subdocument. This value is posted to the
onload script when a particular lookup entry is selected.

4 Enter settings for the following for the DocExplorer Adapter attributes:

Adapter—the name of the database adapter where your lookup
information is stored.

Document Path—the name of the schema and subdocument name that
defines the subdocument you want to lookup. The naming convention
used here is schema name.subdocument name with a period (.) between
them. For example, the entry employee.location will lookup the location
subdocument from the employee schema.

5 Enter the following setting for the Link Parameters attribute:

Target Form. Enter docExplorer.documentlookup.start as the form name.

6 Click the Differential build of project button to rebuild your project.

7 Log in to your Web application, browse to the updated form and click the

magnifying glass lookup icon () to display a pop-up lookup form.

The lookup field will display a list of values that match the Document Path
you entered in step 3 above.

8 If you want to change the subdocument used for the lookup, click the
Personalize this page link and select the new subdocument you want to use.
Personalizing with DocExplorers 87

Peregrine OAA
Using the Personalization Interface

You can personalize any Web application interface that displays a wrench
icon in the top right of the interface frame. The wrench icon will appear only
in activities where a Personalization form has been defined. The
Personalization form determines what options are displayed in the
Personalization pop-up window.

When you click on the Personalization icon, a pop-up window is displayed
for the current form you are viewing.

All personalization pop-up windows have the format described below.

Available <columns>—shows all the document fields and subdocument
collections that can be added to the current form. The name of this
column will vary depending on the type of form you are viewing. Studio
generates the list of available fields by dynamically reading the schema
used by the form. Any items listed between dashes are form components
you can use to organize and arrange how document fields are displayed in
the form.

Current Configuration—shows all the document fields, subdocument
collections, and displays components that have been selected for the
current form. The first time a form is personalized, this column will be
empty.
88 Adding Personalization Functionality

Tailoring Kit Guide
Options—allows you to define how your Web application displays results
and also determines whether users can update, create, or delete records
from the back-end database system. Users will see the Options section
only if they have sufficient Personalization rights.

Set as Default—sets the revised configuration as the default.

Revert to Default—removes all personalization entered by the end-user
and returns the form to the default state. A default form may still display
fields if the administrator or the form’s schema has defined any default
fields to be displayed.

Save—saves and applies your Personalization changes to the current form.

Close—closes the Personalization window saving any changes made to the
form.

Note: The first time you browse to a form in a DocExplorer activity, the form
will be blank. Administrators can add content to DocExplorer forms by
personalizing each form or specifying what schema elements will appear
in each form.

Adding Fields to a Form
To add fields to a form:

1 Select a field from the Available Columns list.

2 Click Add, and the field will appear in the Current Configuration list.

3 Click Save.

To arrange the order of fields:

1 Select a field from the Current Configuration list.

2 Click the up arrow or down arrow to change the field’s position in the
Current Configuration list.

3 Click Save.

Configuring Field Attributes
To configure field attributes:

1 Double-click a field from the Current Configuration list. A new
Personalization pop-up window is displayed.

2 Enter the new field attributes:
Using the Personalization Interface 89

Peregrine OAA
Label—the name to be used as the field label. This name appears next to
the field in the interface.

Readonly—enter true if you do not want users updating information
displayed in the field.

Required—enter true if this field must have a value before a form can be
submitted.

3 Click Save.

Removing Fields from a Form
To remove fields from a form:

1 Select a field from the Current Configuration list.

2 Click the X button to remove the field.

3 Click Save.
90 Adding Personalization Functionality

CHAPTER

6
 Scripting
Since scripts provide much of the functionality of Peregrine Web
applications, this chapter provides an overview of how scripts are put
together and used. You should be familiar with JavaScript or
ECMAScript and should have access to the JavaDocs provided with
your Web application installation.

Web applications built on the Peregrine OAA Platform use server
scripts to query back-end databases and to format the results into XML
documents based on schemas. Generally, you will only need to create
new server scripts if you create new Web application forms. Most
customized Web application forms do not require changes to the
server script, but rather to the schema that the server script uses to
display data. When you need to create or make changes to a server
script, make sure you have created or activated a package extension in
which to save your changes.
Scripting 91

Peregrine OAA
Tip: You can use the existing server scripts from your Web applications as
templates for your custom server scripts. Try and find a server script that
has similar functionality to what you want, and then copy and paste the
server script into your Web application.

Types of Scripts
Peregrine Web applications use two types of scripting to transfer and format
data between your back-end databases and Web application forms:

Server-side scripting—Server-side scripts run from a Web server. Server-
side scripts have access to both user-submitted form data and any data
generated by a back-end system. The output of server-side scripts can be
returned to both a back-end system and the remote browser. All Get-It
Platform Web application server-side scripts are written in ECMAScript.
An example of server-side scripting would be querying a back-end system
for the list of items to be displayed in an order form.

Client-side scripting—Client-side scripting runs from a JavaScript-
capable browser. Client-side scripts have access to user data before it is
submitted to a Web server and any back-end data that was uploaded with
the current Web page. The output of client-side scripts can be used only
by the client browser. All Peregrine OAA Platform client-side scripts are
written in JavaScript. An example of using client-side scripting would be
updating the total price displayed on an order form when an amount is
entered in another field of the page.

Where Scripts are Stored
The following table describes how you can include both types of scripting
into your projects.

Script type Language used Where created and stored

Server-side ECMAScript You can author server-side scripts only in Peregrine Studio.
Each script then becomes an object available for use
throughout the project.

Client-side JavaScript You can author client-side scripts outside of Studio and add
them to a project Presentation folder. You can also include
client-side scripts as part of the HTML code stored with a
form. You must add your scripts to a Presentation folder of
one of the Web application modules.
92 Scripting

Tailoring Kit Guide
Studio stores all server-side ECMAScripts as part of your project file. At build
time, Studio copies the scripts over into the deployment Web server’s scripts
folder and creates all necessary Web application JSP pages. At run time, the
deployment Web server executes the Web application JSP pages along with
any server-side scripts called by the JSP pages and sends the output to the
client browser. The client browser will execute any client-side JavaScript
present in the rendered JSP page.

How Scripts are Used
The Archway servlet supports several different methods to invoke and utilize
scripts within Peregrine OAA Platform Web applications. The following
sections describe the different ways in which ECMAScript and JavaScript can
be used within your Web application.

DATABASEADAPTER

Sends
response

to Adapter

Calls Java
Class

Transforms
XML Msg
object to

SQL/action

Formats XML
Msg object

Formats
XML Msg
object for
Adapter

Executes
SQL/action

Sends
response to
DocManager

Formats
response
as XML

Msg object

Sort, add,
or delete
data from

Msg object

Add and
delete data
from Msg

object

DOC

MANAGER

Creates XML
Msg object

View XML
Msg object
from Script

input

Renders
Web

application
data

View XML
Msg object
from Script

output

1 2 3 4 5

678910

SCRIPT

RUNNER
ECMASCRIPT

WEB

APPLICATION

JSP
 93

Peregrine OAA
Where Scripts are Used

Forms—Server Side
All Peregrine OAA Platform Web application forms support invoking
onload server-side scripts. Typically, the onload script creates an XML
message to gather and format information from a back-end database. The
script message can contain queries or updates to the database or an XML
document built from a schema. The scripts typically use a schema, one or
more input parameters, and a back-end database query to create an XML
document.

Many server onload scripts use one of the following Archway API calls:

sendDocQuery—sends an SQL or XML document query to the back-end
database. Archway queries only the tables and fields listed in the SQL
statement or those listed in the schema definition and then return the
results of the query as an XML document formatted as defined in the
schema.

sendDocInsert—sends an XML document to the back-end database that
describes a new record. Archway creates the new record in the database
using the table and field information supplied by the schema.

sendDocUpdate—sends an XML document to the back-end database that
describes an update to an existing database record. Archway updates the
record using the table and field information supplied by the schema.

sendDocDelete—sends an XML document to the back-end database that
describes a record in the database to be deleted. Archway deletes the
record using the table and field information supplied by the schema.

The Web applications typically use the following ECMAScript syntax to refer
to schemas. For additional methods of formatting these messages, refer to the
JavaDocs API documentation provided with your Web application
installation.

archway.sendDocQuery("adapter name", "schema name", input msg);
archway.sendDocInsert("adapter name", message object);
archway.sendDocUpdate("adapter name", message object);
archway.sendDocDelete("adapter name", message object);
94 Scripting

Tailoring Kit Guide
For adapter name, enter the name for the back-end database adapter. For most
applications, the adapter will be a two letter name (for example, sc for
ServiceCenter).

For schema name, enter the name defined in the <document name=“schema
name”> element of the schema file.

For the input msg, enter the variable name that Archway uses to store input
parameters for the ECMAScript function. The default input message is the
msg object that Archway expects in all onload functions. The input message
is the XML message containing the HTML page parameters.

For message object, enter a variable name that Archway can use to store the
schema name and any input message.

The script sample below defines a variable called msgReturn that sends a
document query to AssetCenter using the empdetail schema and any input
parameters stored in the msg message object. The variable msgReturn then
returns the result of the document query.

var msgReturn = archway.sendDocQuery("ac", "empdetail", msg);
return msgReturn;

Client Side
The browser handles all client-side scripting when a user views a Web
application.

Note: Peregrine does not provide customer support for custom client-side
scripts.

Testing Scripts with URL Queries
You can test your server-side onload scripts and schemas by using URL
queries to the Archway servlet.

Archway will invoke the server script or schema as an administrative user and
return the output as an XML document. Your browser will need an XML
renderer to display the output of the XML message.

Using URL queries can be useful for debugging your Web applications and
for using the Archway servlet without requiring a Web application to process
the data.
 95

Peregrine OAA
URL Script Queries Template
Archway URL script queries use the following format:

http://server name/oaa/servlet/archway?script name.function name

For server name, enter the name of the Java-enabled Web server. If you are
testing the script from the computer running the Web server, you can use
the variable localhost as the server name.

The servlet mapping assumes that you are using the default URL mapping
that the Peregrine OAA Platform automatically defines for the Archway
servlet. If you have defined another URL mapping, replace the servlet
mapping with the appropriate mapping name.

For script name, enter the name of the script as defined in Studio.

For function name, enter the name of the function used by the script.

Note: If you are using Netscape 4.x, the browser will prompt you to save the
XML output of the URL query to an external file.

URL Schema Queries Template
Archway URL schema queries use the following format:

http://server name/oaa/servlet/archway?adapter name.Querydoc&_document=
schema name

For adapter name, enter the name for the back-end database adapter the
schema uses. The adapter listed here will use the ODBC connection that
you have defined in the Admin module Settings page. For most Peregrine
OAA Platform Web applications, the adapter will be a two letter name.

For schema name, enter the name defined in the <document name=“schema
name”> element of the schema file.

The servlet mapping assumes that you are using the default URL mapping
that is automatically defined for the Archway servlet. If you have defined
another URL mapping, replace the servlet mapping with the appropriate
mapping name.
96 Scripting

Tailoring Kit Guide
Your script output should be similar to this.

Note: If you are using Netscape 4.x, the browser will prompt you to save the
XML output of the URL query to an external file.

Using Variables to Provide Script Data

You can use variables to reuse the information gathered from your scripts in
components such as form titles and instructions.

All variables begin with a double dollar sign and then display the variable
name in parentheses; for example, $$(FirstName). All variable names map to
an XML element name in the script output of a form. Thus the
$$(FirstName) variable maps to a <FirstName> element in the XML output
of a script.
Using Variables to Provide Script Data 97

Peregrine OAA
Studio maps the variables $$(FirstName) and $$(LastName) to XML
elements <FirstName> and <LastName> in the script output.
98 Scripting

Tailoring Kit Guide
In the case of a search for an employee named Richard Hartke, the script
output would look like the following.

The contents of each variable are displayed in the form title.
Using Variables to Provide Script Data 99

Peregrine OAA
Variable names can also include attribute names or nested elements names
using a slash notation. For example, the Get-Resources buyer script uses the
$$(Price/currency) variable to pass information from the currency attribute
of the <Price> element. Using the sample data, the $$(Price/currency)
variable would pass 1119.00 for the <Price> and USD for the currency.

Common Message Operations

The following section includes some common XML messages that can be
used to modify server-side scripts.

Creating a new generic message. archway.sendDocQuery() can process
generic messages because the schema is passed as one of its other
arguments.

var msgQuery = new Message();

Creating a new message with a specific root element tag.
archway.sendDocUpdate() and archway.sendDocInsert() use the root
element tag as the schema to use for updating the database.

var msgRequest = new Message("Request");

Adding an XML element to a message:

msgQuery.add("LastName", "Jones");
100 Scripting

Tailoring Kit Guide
Setting an XML element (will overwrite an existing element if one exists
with the same name):

msgQuery.set("LastName", "Jones");

Getting a value out of a message. This will return an empty string "" if the
tag does not exist.

var strName = msg.get("Name");

Getting a submessage out of a message:

var msgRequest = msg.getMessage("Request");

Getting a list of submessages out of a message. This is useful for processing
a response message with a list of records from sendDocQuery.

var list = msgResponse.getList("Location");
if (list.getLength() == 0)
msg.setCondition("noresults")
var i = 0;
while (i < list.getLength())
{
// process records in the list ...
}

Logging the contents of a message. The output will go to archway.log if
Debug Logging is enabled on the Settings Common tab. This should be
done only during development—remove or comment out these lines on a
production system because it is CPU-intensive on the server.

env.debuglog("sendDocQuery returned the message " +
msgResponse.getContent());

Setting the response condition that is checked by redirections and access
fields in different Studio elements:

if (msg.get("Name") == "")
{ // need the name for the query
msgResponse.setCondition("error");
return msgResponse;
}

See the com.peregrine.oaa.core.Message JavaDoc for more information and
examples.
Common Message Operations 101

Peregrine OAA
About Script Pollers

The script poller process runs scripts in the background at a regular interval.
The Archway servlet creates a script poller process when it finds a
scriptpollers.ini file in one of the Files folders of your Studio project.

Peregrine OAA Platform Web applications use Script Pollers for the
following types of tasks:

Maintaining open connections to back-end databases.

Clearing form data from caches.

Checking for new messages or requests.

The scripts run by a script poller are written exactly like any other server-side
ECMAScript: they are authored in Studio, include a header and functions,
and must be stored in a Group of Scripts node. However, script poller scripts
must have a function named start that runs once to initialize the script poller,
and a function named run that runs once per time interval.

Each Web application can only have one scriptpollers.ini file, but each
scriptpollers.ini file can contain multiple scripts. For each function that you
want to run, you create a separate scriptpollers.ini file entry. The entry must
contain the script name, function to be run, and the interval in seconds
between each run time. You can set each function of a script to run at a
different interval.

Enabling Script Polling
To enable script polling:

1 Log in to the Admin page (admin.jsp).

2 Click Settings.

3 On the Common tab, set Enable Script Pollers to true.

To create a group of files:

1 Open your Studio Project.

2 Select the Group of Modules node that contains the scripts you want to run
from the script poller.

3 Click Create > Group of Files.
102 Scripting

Tailoring Kit Guide
A node called Files will appear beneath the group of modules node you
selected in step 2.

To add an entry to the scriptpollers.ini file:

1 Open your Studio project file.

2 Select the group of modules node that contains the scripts you want to run
from the script poller.

3 Right click the Files node, go to New and click Ini File.

A new node called Ini File is created underneath the Files node.

4 Rename the new node to scriptpollers_ini.

5 In the OutputFileName field enter scriptpollers.ini.

6 Using the text editor window, add the entries listed below.

<pollers>
<poller>

<name>script.function</name>

<interval>seconds</interval>

<parms>script input parameters</parms>

</poller>

</pollers>

For script.function, enter the script and function name that you want the
script poller to run.

For seconds, enter the number of seconds between each run of the script.

For script input parameters, enter any input parameters to send to the
script.

7 If you want to have multiple scripts run with this script poller, add an
additional <poller> entry for each script that you want to be run regularly.

8 Save and build your project file.

The computer builds the scriptpoller.ini file to the WEB-INF\apps folder of
your installation.
About Script Pollers 103

Peregrine OAA
Stopping Script Polling
To stop script polling:

1 Open your Studio project.

2 Select the Group of Modules node that contains the scripts you want to stop.

3 Expand the Files node and then do one of the following:

Delete the scriptpollers_ini file.

OR

Select the scriptpollers_ini file and rename the OutFileName value from
scriptpoller.ini to any other name. This will disable the script polling but
still preserve the file in your WEB-INF\apps folder.

4 Save and build your project file.

The script poller is removed or renamed during the build.

Script Pollers in a Multiple JVM Environment
If you have installed multiple Java Virtual Machines (JVMs) on your server,
you can designate the JVM that runs any particular script. If you do not
designate a JVM, the script poller will behave as if it were in a single JVM
environment.

To designate which JVM runs a script:

1 Open your Studio project file.

2 Select the Group of Modules node that contains the scripts you want to run
from the script poller.

3 Expand the group of files node, and then select the scriptpoller_ini file.

4 Using the text editor window, add the following entry between the <parms>
tags for the script you want to change.

<Parms>
<ArchwayJVMName>Java Virtual Mahcine Name</ArchwayJVMName>
</Parms>

5 For Java Virtual Machine Name enter the name of the Java Virtual Machine
that you want to run this script.
104 Scripting

Tailoring Kit Guide
Sample Scripts

The following sections provide sample ECMAScripts and descriptions of
how you can use them in your Web applications. The samples presented
below use only server-side scripting.

It is beyond the scope of this guide to detail all that you can do with client-
side scripting. However, a list of suggested reference materials for client-side
scripting is provided on page 115.

General Script Samples
You can use ECMAScript to serve a number of different functions such as
creating an XML document from a schema, running a SQL query, or
formatting the data received from a database query. The following samples
show some of the ways in which you can use ECMAScript in your Web
applications.

Selecting a Field from a Schema
function getCityList (msg)
{
//Query sample database for the records using the citylist
//schema
var msgQuery=newMessage();
msgQuery.set(“_return”, “Name”);
var msgReturn=archway.sendDocQuery (“xx”,”citylist”, msgQuery);

return msgReturn;
}

Input

A message object, msg. This script does not typically have input from any
previous form. If you change this script to be part of a results form, then the
input message could contain form fields or values for these form fields that
could be added to the XML document produced.

Output

The script produces an XML document built from the schema and adapter
specified in the sendDocQuery function. The XML output below is an
example of the kind of data that could be returned using a similar script.
Sample Scripts 105

Peregrine OAA
<recordset _count="-1" _countFound="3" _more="0" _start="0">
<citylist>

<Id>1</Id>

<Name>Burbank</Name>

</citylist>

<citylist>

<Id>2</Id>

<Name>London</Name>

</citylist>

<citylist>

<Id>3</Id>

<Name>Santa Clara</Name>

</citylist>

</recordset>

Although the sendDocQuery function specifies only the Name element,
Archway automatically includes the ID element in the XML document
produced. This is expected behavior of the Archway servlet.

Description

This script gathers a list of city names for the an employee search form. The
sendDocQuery function uses a SQL-like query to select the Name element
from a schema called citylist. You can use SQL statements in your script
messages to limit or add to the elements returned by a schema. Likewise, you
can use a SQL statement in place of a schema to specify exactly the data you
want returned or to use complex selection criteria.
106 Scripting

Tailoring Kit Guide
Calling Other Scripts and Combining the Results
function getSearchInfo(msg)
{
//Create empty variable msgResponse
var msgResponse = new Message();

//Call getDepList function and add results to msgResponse.
msgResponse.add(this.getDepList(msg));
// Call getCityList function and add results to msgResponse
msgResponse.add(this.getCityList(msg));

return msgResponse;
}

Input

A message object, msg. This script does not typically have input from any
previous form. If you changed this script to be used as part of a results form,
then the input message could contain form fields or values for these form
fields that could be added to the XML document produced.

Output

The script produces an XML document built from two other scripts,
getDepList and getCityList. Each script adds to the XML document stored in
the msgResponse variable by running a sendDocQuery function with a
schema. The XML output below is an example of the kind of data that could
be returned using a similar script.

<_doc>
<recordset _count="-1" _countFound="19" _more="0" _start="0">

<departmentlist>

<Id>1</Id>

<DepartmentName/>

</departmentlist>

<departmentlist>

<Id>2</Id>

<DepartmentName>Administration</DepartmentName>

</departmentlist>

<departmentlist>
Sample Scripts 107

Peregrine OAA
<Id>3</Id>

<DepartmentName>Administrative Services</DepartmentName>

</departmentlist>

<departmentlist>

<Id>4</Id>

<DepartmentName>Burbank Agency</DepartmentName>

</departmentlist>

...

</recordset>
<recordset _count="-1" _countFound="3" _more="0" _start="0">

<citylist>

<Id>1</Id>

<Name>Burbank</Name>

</citylist>

<citylist>

<Id>2</Id>

<Name>London</Name>

</citylist>

<citylist>

<Id>3</Id>

<Name>Santa Clara</Name>

</citylist>

</recordset>
<_form>e_employeelookup_search_search.jsp</_form>
</_doc>

Description

This script generates the city and department names that a user can select
from in the employee search form. The .add function appends the output of
the getDepList and getCityList functions to the msgResponse variable. The
two script references use the relative naming convention (this) to indicate
that the functions called are part of the same script as getSearchInfo.
108 Scripting

Tailoring Kit Guide
Form Script Sample
Most ECMAScripts run during a form’s onload processing. Typically, form
scripts query and format data for display in a Web application form, but you
can also use them to update existing database records or insert new ones. The
following samples show server onload scripts used by a Web application that
searches a database for employee information.

Creating an XML Document from a Schema
function getEmpList(msg)
{
//Add Department subdocument to the input message
var strReturn = msg.get("_return");
if (strReturn.length > 0)

 msg.set("_return", strReturn + ";Department");

//In msg, set sort to LastName and then FirstName
msg.add("_sort", "LastName,FirstName");

//Query sample database for the records using the
//employeedetail schema and the criteria found in the msg object
var msgReturn = archway.sendDocQuery("xx", "employeedetail", msg);

//Test if the number of items returned is zero, if true set
//ListEmpty condition
if (msgReturn.get("_countFound") == "0")

 msgReturn.setCondition("ListEmpty");

//Return the contents of the msgReturn variable
return msgReturn;
}

Sample Scripts 109

Peregrine OAA
Input

A message object, msg. This script has an input message from a previous
search form. In this case, the input message is amended to include a
subdocument, Department, in addition to any other input data passed to the
script. This subdocument looks up the DepartmentName field data that the
database stores in a separate table. In addition to adding a subdocument, the
script sorts the input message by the LastName and FirstName elements. The
following XML demonstrates what the input message would look like if a
search were conducted on the CityName of Burbank (CityID=1).

<_doc>
<_form>e_employeelookup_employee_emplist.jsp</_form>
<_start>0</_start>
<_return>;employeedetail;CityName;OfficePhone;DepartmentName;FirstName;Last
Name;Id;</_return>
<_count>10</_count>
<_ctxobj/>
<_ctxidfld/>
<_ctxidval/>
<CityID>1</CityID>
<search>1</search>
<_blankFields>;FirstName;false;LastName;false;DepartmentID;false</_blankFields>
<__x>__y</__x>
<_callingform>e_employeelookup_search_search.jsp</_callingform>
<FirstName insertblank="false"/>
<LastName insertblank="false"/>
<DepartmentID insertblank="false"/>
</_doc>

Output

The script produces an XML document built from the schema and adapter
specified in the sendDocQuery function. The XML output below is an
example of the kind of data that could be returned using a similar script.

<recordset _count="10" _countFound="2" _more="0" _start="0">
<employeedetail>

<Id>10</Id>

<FirstName/>

<LastName>Burbank Agency</LastName>

<OfficePhone>(408) 422-5501</OfficePhone>
110 Scripting

Tailoring Kit Guide
<CityName>Burbank</CityName>

<DepartmentID>16</DepartmentID>

<Department>

<DepartmentName>Sales</DepartmentName>

</Department>

</employeedetail>

<employeedetail>

<Id>11</Id>

<FirstName/>

<LastName>Burbank Unit</LastName>

<OfficePhone>(650) 572-9000</OfficePhone>

<CityName>Burbank</CityName>

<DepartmentID>19</DepartmentID>

<Department>

<DepartmentName>Technical Support</DepartmentName>

</Department>

</employeedetail>

<_form>e_employeelookup_employee_emplist.jsp</_form>
</recordset>

Description

This script displays the results list generated by the search form. The script
uses two functions to change the data in the msg input message object. The
first function checks the input message to determine the number of elements
returned by the search results. If there any search results to return, the scripts
adds the Department subdocument to the msg message object. The second
function sorts the input message by LastName and then FirstName. Using
the adapter name and document schema name, this script then runs a
SendDocQuery function to gather any search results that match those listed
in the input message. The script then checks the <_countfound> tag
generated by the query and determines if the return list is empty. If the list is
empty, the script sets the msgReturn variable to the ListEmpty condition.
This condition redirects users to the listempty form.
Sample Scripts 111

Peregrine OAA
Script Poller Sample
Scripts added to the script poller are the same as all other ECMAScripts and
may use any of the scripting techniques described above.

Get-It Platform Web applications use script pollers to keep the connection
alive between the application and the back-end systems, ServiceCenter and
AssetCenter.

The scriptpoller.ini file defines the interval between runs and the input
parameters used.

Note: Get-It Platform Web applications include adapters for AssetCenter
and ServiceCenter that automatically reconnect when a connection is lost.
The following script poller scripts are provided for illustration purposes
only.

Maintaining a Connection to AssetCenter
//--
// KeepAliveAC
// (c) Peregrine Systems 2000
// Creation: August 2000
//
// Used to poll and keep-active the AssetCenter connection by
// performing a query at regular intervals. If the query fails,
// the archway connection will then be disconnected and
// re-connected.
//
// Two functions are defined:
// start() - executes exactly once
// run() - executes on the polling interval
//
//--

import global;

//--
// Start function .. can build parameters for run method
//--
112 Scripting

Tailoring Kit Guide
function start(msg)
{
 // Before trying to run this script on a regular basis, make sure
 // the ac adapter is registered

 if (archway.getArchway().supportsAdapter("ac", false))
 {

 var msgRet = new Message();

 msgRet.set("message","ok");

 return msgRet;

 }
 else
 {
 env.log("AC Adapter is not registered; terminating");

 return null; // Suppress calling of run function
 }
}

//--
// run function .. subsequent invocations
//--
function run(msg)
{
 var msgRes = null;
 var msgRet = new Message();

 msgRes = archway.sendQuery("ac",
 "SELECT lOptId, memOptValue FROM amOption WHERE OptSection='TimeZone'
AND OptEntry='DBSERVER_TZ'",
 0, 1);

 if (msgRes.get("message")) // if nothing is found, try to reconnect
 {

 env.debuglog("Attempting to reconnect to AssetCenter.");

 var adapter = Archway.Archway.getInstance().findAdapter("ac");

 if (adapter != null)

 {

 adapter.disconnect();
Sample Scripts 113

Peregrine OAA
 adapter.connect();

 }

 }
 msgRet.set("message","ok");

 return msgRet;
}

Input

A message object, msg, although the script does not use the input message.

Output

The start function of the script checks to see if there is an AssetCenter
adapter. If there is an adapter present, the script returns the XML document
<message>ok</message>. If the adapter is not present, the message document
will be blank and the script will return a null message to stop running.

The run function of the script runs a sendDocQuery to AssetCenter. If the
query returns the blank XML document <message></message>, then the
script will disconnect and reconnect the AssetCenter adapter. If the query
returns a response, then the connection is successful, and the script returns
the XML document <message>ok</message>.

Description

This script sends a periodic query to AssetCenter to see if it responds. If
AssetCenter returns a blank message, then the script will disconnect and
reconnect the adapter. If AssetCenter responds with a message, then the
connection is alive and the script returns an OK message.
114 Scripting

Tailoring Kit Guide
References

This section contains reference material to help you with your scripting.

Sources for Client-side JavaScript
Devguru (JavaScript, VB script, HTML, etc.): http://www.devguru.com/

HTML Writer’s Guild: http://www.hwg.org/

JavaScript, The Definitive Guide, David Flanagan, 3rd Edition, O’Reilly
Publishing.

JavaScript articles at IRT.org: http://www.tech.irt.org/articles/script.htm

JavaScript Made Easy: http://www.easyjavascript.com/

JavaScript Source: http://javascriptsource.com/

JavaScript Source master list: http://javascript.internet.com/master-list/

Netscape’s Developer Site:: http://developer.netscape.com

Netscape’s online JavaScript documentation.:
http://developer.netscape.com/docs/manuals/index.html?content=
javascript.html

Web Monkey: http://www.webmonkey.com/

ZDNet JavaScript introduction:
http://www.zdnet.com/devhead/filters/0,,2133214,00.html

JavaDocs for the Main Archway Package
For in-depth information about the Archway servlet and all the functions it
supports, refer to the JavaDocs that are installed with your application. The
JavaDocs are located in the \docs\api folder of your installation. To view the
docs, launch the index.html file from this folder.
References 115

Peregrine OAA
116 Scripting

CHAPTER

7
 Document Schema Definitions
A document schema definition (also called a schema) is an XML file
that instructs the Document Manager how to query back-end
databases and generate XML documents containing the query
response. Schemas are mapping tools that determine which XML tags
used in the forms map to the table and field names in a given back-end
database. These generated XML documents provide the data that your
Web applications display and process.

All document schemas consist of two types of definitions:

Base definitions—a definition of the XML tags to be generated. The
Document Manager will create the XML tags listed in the schema
when it performs a document query. The name of the XML tag
generated is determined by the attribute name schema entry. The
type of information stored in the XML tag is determined by the
attribute type schema entry. The schema entries that define XML
tags are collectively referred to as the schema base definitions.
Document Schema Definitions 117

Peregrine OAA
Derived definitions—a definition of the tables and fields each XML tag
will map to in the back-end database. Archway will query the tables and
fields listed in the schema and add the results of the query to the
appropriate XML tags. The name of the table queried is determined by the
document table schema entry. The name of the field queried is determined
by the attribute field schema entry. The schema entries that define the
database mappings are collectively referred to as the schema derived
definitions.

Note: The document schema definitions used by Studio are not the same as
the schemas being proposed and developed by the W3C. Studio schemas
are used to map logical document and field names in Studio to back-end
database table and field names.

The Studio interface requires that schemas be grouped under a group of
schemas node. A group of schemas can be added only to a group of modules.

You will need to create schemas to instruct the Document Manager how to
query, update, or insert information to your back-end databases. Your
schemas determine what XML documents the Archway servlet generates,
which in turn determine what data your Web applications can display and
process. Generally, you will need to create a schema for each back-end
database table you want to query, update, or insert. You can however, create
one schema that maps one set of interface fields to several different back-end
databases. When you need to create or make changes to a schema, make sure
you have created or activated a package extension in which to save your
changes.

Tip: You can use the existing schemas from your Web application as
templates for your custom schemas. Try and find a schema that has similar
functionality to what you want, and then copy and paste the schema into
your Web application.
118 Document Schema Definitions

Tailoring Kit Guide
How Schemas are Used

Each of the document definition types, Base or Derived, has its own set of
schema entries and requirements.

Your Web applications can use a schema in one of two ways:

A server ECMAScript can use a schema to construct a message. There are
four API calls that use schemas to interpret messages: sendDocQuery,
sendDocInsert, sendDocUpdate, and sendDocDelete.

A form component, such as a simple table or a selectbox, can use a schema
to determine what information is to be displayed by the component.
Typically, the form components use the record attribute to determine
what part of a message to display.

Schemas with ECMAScript
All Peregrine OAA Platform Web application forms support invoking
onload server-side scripts. Typically, the onload script will be used to create
an XML message to gather and format information from a back-end
database. The script message can contain hard-coded SQL statements to the
database or an XML document built from a schema. The scripts typically use
a schema to create an XML document constructed from one or more input
parameters and any queries to the back-end databases.

Most server onload scripts will use one of the following Archway API calls:

sendDocQuery—sends a SQL or XML document query to the back-end
database. OAA will only query the tables and fields listed in the SQL
statement or those listed in the schema definition and then return the
results of the query as an XML document formatted as defined in the
schema.

sendDocInsert—sends an XML document to the back-end database that
describes a new record. Archway will create the new record in the database
using the table and field information supplied by the schema.

sendDocUpdate—sends an XML document to the back-end database that
describes an update to an existing database record. Archway will update
the record using the table and field information supplied by the schema.

sendDocDelete—sends an XML document to the back-end database that
describes a record in the database to be deleted. Archway will delete the
record using the table and field information supplied by the schema.
How Schemas are Used 119

Peregrine OAA
ECMAScript Syntax
Peregrine OAA Platform Web applications use the following ECMAScript
syntax to refer to schemas. For additional methods of formatting these
messages, refer to the OAA API documentation provided with your
installation.

archway.sendDocQuery("adapter name", "schema name", input msg);
archway.sendDocInsert("adapter name", message object);
archway.sendDocUpdate("adapter name", message object);
archway.sendDocDelete("adapter name", message object);

For adapter name, enter the name for the back-end database adapter. The
adapter listed here will use the ODBC connection that you have defined in
the achway.ini file. For most applications, the adapter will be a two letter
name.

For schema name, enter the name defined in the <document
name="schema name"> element of the schema file.

For the input msg, enter the variable name of a message that OAA uses to
store input parameters for the ECMAScript function. The default input
message is the msg object that is defined in all onload functions. The input
message is the XML message containing the HTML page parameters.

For message object, enter a variable name of a message object containing a
schema name and any input parameters.

For example, the script sample below will define a message called msgReturn
that contains the results of a document query to AssetCenter using the
empdetail schema and any input parameters stored in the msg message
object. The result of the document query is then returned as the variable
output.

var msgReturn = archway.sendDocQuery("ac", "empdetail", msg);
return msgReturn;
120 Document Schema Definitions

Tailoring Kit Guide
Identifying the Back-end System Version
Document schemas can be modified to allow mapping to specific versions of
the back-end systems. Each adapter determines the version of the back-end
system to which it is connected.

The extension is made possible by an optional “version” attribute that can be
used as shown in the following example for AssetCenter:

<schema>
 <documents name="base">
 (base definition)
 </documents>

 <documents name="ac" version="3.02">
 (AC 3.02 definition)
 </documents>

 <documents name="ac" version="3.5">
 (AC 3.5 definition)
 </documents>
</schema>

The version of the back-end system is determined at run time using an
Adapter API.

The following version rules apply when searching for a schema mapping:

If a mapping has no version: automatically accepted as default.

If mapping version > backend Version: mapping is rejected.

If a mapping version <= backend version: mapping is accepted, but the
DocManager keeps looking for the highest possible version.

In summary, if a schema and adapter have version information, the highest
possible mapping version that is no higher than the current adapter version
is used.
How Schemas are Used 121

Peregrine OAA
AssetCenter Feature Links
AssetCenter feature links can be used in schemas for read or write access in
the same way as any other field or link from AssetCenter.

As an example of how this can be done, consider the following example of the
fv_ShipToContact feature that implements a link to the employee table in the
purchase order table in the Web application, Get-Resources. (See
GRPurchaseOrder schema, Project.resources.Schemas.GRPurchaseOrder).

<attribute name="ShipToContactId" field="fv_ShipToContact" access="uiq"/>
<attribute name="RShipToContactId" field="fv_ShipToContact.lEmplDeptId"
access="r"/>
<attribute name="ShipToContactDesc" field="fv_ShipToContact" access="r"/>

The first line is used to set (update or insert) and search against a specific
contact ID. It is a numeric field.

The second line is used to read the purchase order's contact ID. It is also a
numeric field.

The third line returns the PO's contact description. This is a text field.

Compare this to how ShipToContact would be set up as a regular link in
AssetCenter:

<attribute name="ShipToContactId" field="lShipToCntcId"/>
<attribute name="ShipToContactDesc" field="ShipToContact" access="r"/>

There is only one attribute that gives read/write/search access to the contact
ID (numeric). It maps to the lShipToCntcId field in the amPOrder table.
This field is the foreign key representing the link in the amPOrder table. In
the implementation using a link feature, there is no access to a foreign key;
therefore two attributes must be used.

The other attribute ShipToContactDesc, does not differ in its
implementation, whether you are using a link or a link feature.
122 Document Schema Definitions

Tailoring Kit Guide
Schema Naming Conventions

Each schema you create should have a unique name to prevent data errors.
The schema name should meet the following criteria:

Unique from any other schema name in the Studio project.

Unique from any field name within the schema.

Schema Elements And Attributes
All schemas use a standard set of XML elements and attributes that the
Document Manager recognizes. The following sections describe the XML
elements and associated attributes that you can use to create valid schemas
for your Web application.

<schema>
The <schema> element is a required container for all schema definitions.
The only valid child element is the <documents> element. The <schema>
element does not have any attributes.

<documents>
The <documents> element encloses the two types of document definitions:
base document definitions and derived document definitions. The only valid
child element of the <documents> element is the <document> element. All
schemas are required to have at least two <documents> elements. One
<documents> element provides the base derivations where the XML tags are
defined, and the second and later <documents> elements define the back-
end database derivations.
Schema Naming Conventions 123

Peregrine OAA
The <documents> element can have two attributes: name and version.

name—defines what document derivation the child elements describe. All
schemas must have a <documents> element where the name attribute is
defined as base. This <documents> element will contain the definition of
the XML tags to be generated by the Archway document message. The
second and later <documents> elements will have the document
derivations for your database tables and fields. The name of the database
derivations <documents> element is set to the adapter name used to
connect to the back-end database. For example, the following schema
entries create AssetCenter document derivations using the name ac and
create ServiceCenter document derivations using the name sc.

<documents name=”base”>
 <!--XML tag definitions-->

 ...

</documents>

<documents name=”ac”>
 <!--AssetCenter derivations-->

 ...

</documents>

<documents name=”sc”
 <!--ServiceCenter derivations-->

 ...

</documents>

version—defines the version of the back-end database to which the
derivation mappings apply. You can use the version attribute to define
multiple versions of database derivations. In this scenario each database
version would have its own <documents> element with the specific
database derivations that apply to that version of the database. If you
include a version attribute in a schema, the Archway servlet will query the
database for its version number and then use the matching database
derivations for that version. For example, the following schema entries
provide document derivations for different versions of AssetCenter.

<documents name=”ac” version=”3.02”>
 <!--AssetCenter 3.02 derivations-->

 ...

</documents>
124 Document Schema Definitions

Tailoring Kit Guide
<documents name=”ac” version=”3.5”
 <!--AssetCenter 3.5 derivations-->

 ...

</documents>

<document>
The <document> element defines the top level tag in the XML document
created by an Archway message. The only valid child elements of the
<document> element are <attribute>, <collection>, and <document>.

A <document> element can be nested inside other <document> elements in
one of two ways:

You can define the nested <document> element in-place.

You can define the nested <document> element by reference to another
schema file or later in the schema.

<document> attributes
The <document> element can have up to five attributes: name, table, field,
joinfield, joinvalue, and joinvalue.

name
The name attribute is a mandatory attribute that uniquely identifies the XML
document generated by Archway. The name you enter for this attribute must
match the schema name and cannot contain spaces. For example, if you have
a schema called departmentlist.xml, then the attribute name must be
departmentlist. You must use the same name attribute for the <document>
element of both the base document definitions and the derived document
definitions.

table
The table attribute is a mandatory attribute that identifies the source table for
the derived document definitions. Each derived document definition can
only have one table attribute. At a minimum, at least one attribute, the
primary key (defined as the Id attribute) must be located in this table. To call
data from other tables you can either nest document elements or use table
link references.
Schema Naming Conventions 125

Peregrine OAA
field
The field attribute is a mandatory attribute that identifies the source field for
the derived document definitions. This attribute can be used for both
document queries and document updates or insertions. Each field attribute
maps to one particular field or link in the database table. To call a field from
a linked table, you will need to create a nested document entry to define the
linked table and then include a separate <attribute> element to call the field.

joinfield
The joinfield attribute is an attribute used to query information from linked
database tables. The joinfield attribute is used in conjunction with the table,
field, and joinvalue attributes to query documents from linked database
tables (a linked table contains fields that are lookup values to other database
tables). The joinfield defines what field will be the selection criteria in a SQL
WHERE clause. The SQL query equivalent of the joinfield is:

SELECT <Field> FROM <Table containing lookup information> WHERE
<joinfield>=<joinvalue>

If no joinfield is defined, then Archway will use the Id field name defined in
the parent table as the joinfield. The parent table is defined by the table
attribute in the first instance of the document element.

joinvalue
The joinvalue attribute is an attribute used to query information from linked
database tables. The joinvalue attribute is used in conjunction with the table,
field, and joinfield attributes to query documents from linked database tables
(a linked table contains fields that are lookup values to other database tables).
The joinvalue defines what value a field must have in a SQL WHERE clause.
The SQL query equivalent of the joinvalue is:

SELECT <Field> FROM <Table containing lookup information> WHERE
<joinfield>=<joinvalue>

If no joinvalue is defined, then Archway will use the name attribute as the
joinvalue.

Note: The joinvalue can either be a field from the back-end database or can
be an <attribute> defined elsewhere in the schema.
126 Document Schema Definitions

Tailoring Kit Guide
<attribute>
The <attribute> element defines the XML tags that are created in an Archway
message, and also defines which back-end database fields provide the content
of the XML tags. The attributes listed under the base document definitions
define the XML tags to be generated in an Archway message. The attributes
listed under the derived document definitions define the back-end database
fields where document queries, updates, or insertions are to be made. The
only valid child elements of the <attribute> element are <collection> and
<document>.

The <attribute> element uses only child elements to provide link
information for fields in lookup tables.

name
The name attribute is a mandatory attribute that defines the XML tag to be
generated in an Archway message. Whatever name you enter for this
attribute will be used as the tag name in the Archway message. For example,
if you define an <attribute> element with the name ="Price", then when
Archway creates a message using this schema you should see a <Price> tag
created in the message output. The value you enter for this attribute is case
sensitive and can only contain alphanumeric characters.

All schemas must contain at least one <attribute> element where the name
attribute is set to Id. The <attribute name="Id"> element is required to
uniquely identify each record in an Archway-generated XML document.

type
The type attribute is an optional attribute that defines the type of data that
will be stored in the XML tag. This attribute is used with Personalization to
determine what type of form component will be rendered for a given
element. Archway will not perform any data type validation for the contents
of the XML tags. The type attribute can only be defined in the base document
definitions section of the schema.
Schema Naming Conventions 127

Peregrine OAA
Type values
The following values are supported for this attribute:

attachment—data contained in the XML tag will be a file name and path
to an attachment. Elements of this type will be rendered as an attachment
control in personalized forms.

boolean—data contained in the XML tag will be a true or false string.
Elements of this type will be rendered as a check box in personalized
forms.

date—data contained in the XML tag will be date. Archway will not
localize the date format. Elements of this type will be rendered as a date
edit control that includes a popup calendar in personalized forms.

datetime—data contained in the XML tag will be a combined date and
time listing. Archway will not localize the date or time format. Elements of
this type will be rendered as a time edit control in personalized forms.

id—data contained in the XML tag will be a number that uniquely
describes a back-end database record.

image—data contained in the XML tag will be an image. Elements of this
type will be rendered as an imagefield in personalized forms.

link—data contained in the XML tag will be a link to a subdocument
elsewhere in the schema. Elements of this type will be rendered as a lookup
field in personalized forms.

memo—data contained in the XML tag will be a text string. Elements of
this type will be rendered as a multi-line edit box in personalized forms.

money—data contained in the XML tag will be a currency amount.
Elements of this type will be rendered as a money field that includes a
currency selection tool in personalized forms.

number—data contained in the XML tag will be an integer. Elements of
this type will be rendered as an editfield with spinner buttons in
personalized forms.

preload—data contained in the XML tag is an executable script.

string—data contained in the XML tag is text. Elements of this type will be
rendered as an editfield in personalized forms.
128 Document Schema Definitions

Tailoring Kit Guide
time—data contained in the XML tag is a time listing. Archway will not
localize the time format. Elements of this type will be rendered as a time
edit control in personalized forms.

url—data contained in the XML tag is a Web site address. Elements of this
type will be rendered as an HREF link icon in personalized forms.

shortdesc
The shortdesc attribute is an optional attribute used with Personalization.
This attribute defines what label should be used to describe the attribute in a
personalized form. The contents of this attribute can be any text string.

search
The search attribute is an optional attribute used with Personalization to
define the default content of a personalization form. When this attribute is
set to true, the element will be displayed in the personalization search form.

list
The list attribute is an optional attribute used with Personalization to define
the default content of a personalization form. When this attribute is set to
true, the element will be displayed in the personalization list form.

detail
The detail attribute is an optional attribute used with Personalization to
define the default content of a personalization form. When this attribute is
set to true, the element will be displayed in the personalization detail form.

create
The create attribute is an optional attribute used with Personalization to
define the default content of a personalization form. When this attribute is
set to true, the element will be displayed in the personalization create form.
Schema Naming Conventions 129

Peregrine OAA
field
The field attribute is a mandatory attribute that defines the target field in the
back-end database to be used by Archway document queries. The field
attribute must match the field name in the back-end database. The field
attribute can only be defined in the derived document definitions section of
the schema.

link
The link attribute is a required attribute when you are attempting to update
or insert information into linked database tables. The link attribute is used in
conjunction with the linktable, linkfield, linktype, and linkkey attributes. The
link attribute defines the database field in the parent table containing a
lookup or link value to a linked table. This attribute is also the target database
field where Archway will update or insert information. The link attribute can
only be defined in the derived document definitions section of the schema.

linktable
The linktable attribute is a required attribute when you are attempting to
update or insert information into linked database tables. The linktable
attribute is used in conjunction with the link, linkfield, linktype, and linkkey
attributes. The linktable attribute defines the database linked table where
Archway will find the source information for updates or insertions. The
linktable attribute can only be defined in the derived document definitions
section of the schema.

linkfield
The linkfield attribute is a required attribute when you are attempting to
update or insert information into linked database tables. The linkfield
attribute is used in conjunction with the link, linktable, linktype, and linkkey
attributes. The linkfield attribute defines the database source field where
Archway will find update or insert information. The linkfield attribute can
only be defined in the derived document definitions section of the schema.
130 Document Schema Definitions

Tailoring Kit Guide
linktype
The linktype attribute is an optional attribute when you are attempting to
update or insert information into linked database tables. The linktype
attribute is used in conjunction with the link, linktable, linkfield, and linkkey
attributes. The linktype attribute defines how Archway will perform a
document insert or update.

The linktype can be set to one of two values.

Soft—Archway will query the database using the locations defined in
linktable and linkfield, and set the link attribute to the query result.

Hard—Archway will create a new record in the database in the location
defined by the linktable and linkfield attributes. The linkkey value will be
retrieved for the new record and saved in the link attribute.

If the linktype is not defined, the linktype will default to the soft value. The
linktype attribute can only be defined in the derived document definitions
section of the schema.

linkkey
The linkkey attribute is an optional attribute when you are attempting to
update or insert information into linked database tables. The linkkey
attribute is used in conjunction with the link, linktable, linkfield, and
linktype attributes. The linkkey attribute defines what field will be the
selection criteria in a SQL WHERE clause. The SQL query equivalent of the
linkkey is:

SELECT <linkfield> FROM <linktable> WHERE <linkkey>=<the value specified in the
update or insert message>

The results of the query are stored in the field defined by the link attribute.

If no linkkey is defined, then Archway will use the link attribute as the
linkkey. The linkkey attribute can only be defined in the derived document
definitions section of the schema.
Schema Naming Conventions 131

Peregrine OAA
How to Create Schemas

The Studio interface requires that schemas be grouped under a group of
schemas node. You can only add a group of schemas to a Group of Modules.

Creating Groups of Schemas
To create a group of schemas:

1 Right-click the module to which you want to add a group of schemas.

2 Point to New, and then click Group of Schemas. A new node will appear with
the name Schemas.

Creating Schemas
To create a schema:

1 Right-click the group of schemas node to which you want to add a schema.

2 Point to New, and then click Raw Schema. A new node appears with the
name Schema. Studio displays the content of your schema in a text editor
window. Use the text editor window to review and edit the XML source code
of the schema.

Schema Template
Your schema must follow this template.

<?xml version=”1.0”?>
<schema>

<!--
==
 Base Definitions: XML tags and data types defined
==
-->

<documents name=”base”>

<document name="schema name">
 <attribute name="XML tag name" type="data type"/>
 ...
 </document>
132 Document Schema Definitions

Tailoring Kit Guide
</documents>

<!--
==
 Database Definitions: Mappings from XML tags to database tables
 and fields.
==
-->

<documents name="adapter name">
 <document name="schema name" table="table name">
 <attribute name="XML tag name" field="field name"/>
 ...
 </document>
</documents>

</schema>

Schema Template Entry Descriptions
This table describes the schema entries from the schema template.

Schema Entry Description

<?xml version=”1.0”?> Since all schemas are written as XML files, they must begin with the XML
definition tag.

<schema> This is the container element for all schema entries. All schema
definitions must be enclosed between this tag and the final closing
schema tag.

<documents name=”base”> This is the container element for the Base Document Definitions. The
child document and attribute elements of this element will define what
XML tags are generated by an Archway message. The name attribute for
this element must always be base.

<document name="schema
name">

The first instance of this element defines the schema name. The name
attribute must match the schema file name. For example, if you create a
schema called locationdetail.xml, you must enter locationdetail as the
name attribute.

<attribute name="XML tag
name" ...

This element defines what XML tag will be generated by the Archway
message. The name of the XML tag will be the name you enter in quotes
for the name attribute.
How to Create Schemas 133

Peregrine OAA
Using Nested <Document> Elements to Call Linked Tables
Consider a sample Employee Lookup Web application that uses a schema
called employeedetail to query the sample database for employee contact
information. The sample database stores the needed employee contact
information in two linked tables:

The Employee table stores information about the employee and has a
lookup field to the Department table.

The Department table stores information about the company’s
departments.

Examples

The following examples illustrate how to query the fields stored in the tables
described above. While each example uses a different document nesting
method, all three will accomplish the same tasks:

Select a particular database record from the Employee table based on the
script output of the previous form. Search the Employee table and select
the record whose ID field matches the script input.

Select the Department_ID field for the record in item 1 (the
Department_ID field is a lookup field to the Department table).

<attribute ... type="data type"/
>

This element defines what type of information will be stored in the XML
tag. Valid information types include: Id, string, number, date, and url.

<documents name="adapter
name">

This is the container element for the Derived Document Definitions. The
child document and attribute elements of this element will define what
back-end database tables and fields are queried or updated by an Archway
message. The name attribute for this element defines what adapter will be
used for the Archway message. The adapter name must match an adapter
defined on the Settings page of the Admin module.

<document ... table="table
name">

This element defines the database table to be used by the Archway
message. The table attribute for this element defines the back-end
database table to be queried or updated.

<attribute ... field="field
name"/>

This element defines the database field to be used by the Archway
message. The field attribute of this element defines the back-end database
field to be queried or updated.

Schema Entry Description
134 Document Schema Definitions

Tailoring Kit Guide
Search the Department table and select the record whose DepartmentID
field matches the value in item 2.

Select the DepartmentName field for the record selected in item 3. Return
the value of DepartmentName field as the contents of the
DepartmentName XML tag.

Nesting the <Document> Element In-place
When you define all table and field attributes of a nested <document>
element within the parent <document> element, you are nesting the element
inplace. This method stores all schemas in one schema file and presents the
schema mappings in a linear flow.

Note: If you use this method of nesting you will not be able to use this
schema with any Personalization features. To use Personalization, you
must use one of the two nesting-by-reference methods described later in
this chapter.

<!--Begin Base Document Definitions-->
<documents name="base">

 <!--Begin employeedetail document-->
 <document name="employeedetail">
 <attribute name="Id" type="id"/>

 <!--Begin nested Department document-->
 <document name="Department>
 <attribute name="DepartmentName" type="string"/>
 </document>
 <!--End nested Department document-->

 <!--End employeedetail document-->
 </document>

<!--End Base Document Definitions-->
</documents>

<!--Begin Derived Document Definitions-->
<documents name="xx">

 <!--Begin employeedetail document-->
How to Create Schemas 135

Peregrine OAA
 <document name="employeedetail" table="Employee">
 <attribute name="Id" field="ID"/>

 <!--Begin nested Department document-->
 <document name="Department" field="Department_ID"
 table="Department" joinfield="ID" joinvalue="DepartmentID">
 <attribute name="DepartmentName" field="DepartmentName"/>
 </document>
 <!--End nested Department document-->

 <!--End employeedetail document-->
 </document>

<!--End Derived Document Definitions-->
</documents>

XML Output

The Archway Document Manager produces XML output with the following
structure. The content of the XML elements varies depending on the actual
user record selected.

<employeedetail>
 <Id>17156</Id>
 <Department>
 <DepartmentName>Administration</DepartmentName>
 </Department>
</employeedetail>

Nesting the <Document> Element by Reference to <Collection>
You can reference any <document> element in your schema in a separate
section by using the <collection> element. This method still stores all
schemas in one schema file, but the schema mapping for each document have
their own dedicated section.

<!--Begin Base Document Definitions-->
<documents name="base">

 <!--Begin employeedetail document-->
 <document name="employeedetail">
136 Document Schema Definitions

Tailoring Kit Guide
 <attribute name="Id" type="id"/>

 <!--Begin reference to Department document-->
 <collection name="Departments">
 <document name="Department"/>
 </collection>
 <!--End reference to Department document-->

 <!--End employeedetail document-->
 </document>

 <!--Begin nested Department document-->
 <document name="Department">
 <attribute name="DepartmentName" type="string"/>
 </document>
 <!--End nested Department document-->

<!--End Base Document Definitions-->
</documents>

<!--Begin Derived Document Definitions-->
<documents name="xx">

 <!--Begin employeedetail document-->
 <document name="employeedetail" table="Employee">
 <attribute name="Id" field="ID"/>
 <!--Begin reference to Department document-->
 <collection name="Departments">
 <document name="Department"/>
 </collection>
 <!--End reference to Department document-->

 <!--End employeedetail document-->
 </document>

 <!--Begin nested Department document-->
 <document name="Department" field="Department_ID"
 table="Department" joinfield="ID" joinvalue="DepartmentID">
 <attribute name="DepartmentName" field="DepartmentName"/>
 <!--End nested Department document-->
How to Create Schemas 137

Peregrine OAA
 </document>

<!--End Derived Document Defintions-->
</documents>

XML Output

The Archway Document Manager will produce XML output with the
following structure. The content of the XML elements will vary depending on
the actual user record selected.

<employeedetail>
 <Id>17156</Id>
 <Departments>
 <Department>
 <DepartmentName>Administration</DepartmentName>
 </Department>
 </Departments>
</employeedetail>
138 Document Schema Definitions

Tailoring Kit Guide
Nesting the <Document> Element by Reference Docname
The final nesting method uses the docname attribute to reference other
<document> elements that are defined in separate schema files. Each nested
<document> element will reference its own schema file.

<!--Begin Base Document Definitions-->
<documents name="base">

 <!--Begin employeedetail document-->
 <document name="employeedetail">
 <attribute name="Id" type="id"/>

 <!--Begin reference to Department document-->
 <document name="Departments" docname="departments"/>
 <!--End reference to Department document-->

 <!--End employeedetail document-->
 </document>

<!--End Base Document Definitions-->
</documents>

<!--Begin Derived Document Definitions-->
<documents name="xx">

 <!--Begin employeedetail document-->
 <document name="employeedetail" table="Employee">
 <attribute name="Id" field="ID"/>
 <!--Begin reference to departments schema-->
 <document name="Department" docname="departments"
 field="Department_ID" table="Department"
 joinfield="ID" joinvalue="DepartmentID"/>
 <!--End reference to departments schema-->

 <!--End employeedetail document-->
 </document>

<!--End Derived Document Definitions-->
</documents>
How to Create Schemas 139

Peregrine OAA
XML Output

The Archway Document Manager will produce XML output with the
following structure. The content of the XML elements will vary depending on
the actual user record selected and the structure of the schemas referenced.

<employeedetail>
 <Id>17156</Id>
 <departments>
 <Department>
 <DepartmentName>Administration</DepartmentName>
 </Department>
 </departments>
</employeedetail>
140 Document Schema Definitions

Tailoring Kit Guide
Frequently Asked Questions

This section contains answers to frequently asked questions about schemas.

How do I create document queries to linked tables?
To access data from linked tables, you must create a schema with nested
<document> element entries.

You will need to create one <document> element for each table. Generally
this will require creating one <document> element for the parent table and
one <document> element for the target lookup table.

The following schema entries provide a template to use nested <document>
entries to query linked tables. This template uses the in-place document
nesting method.

<!--Base Document Definitions-->
<documents name="base">
 <document name="schema name">
 <attribute name="Id" type="id"/>

 <document name="nested document>
 <attribute name="target XML tag" type="string"/>
 </document>
 </document>

<!--Derived Document Definitions-->
<documents name="adapter name">
 <document name="schema name" table="parent table">
 <attribute name="Id" field="primary key"/>

 <document name="nested document" field="lookup field"
 table="lookup table" joinfield="Id field from parent table"
 joinvalue="Id field from lookup table">
 <attribute name="target XML tag" field="target field"/>
 </document>
 </document>
</documents>
Frequently Asked Questions 141

Peregrine OAA
Refer to the following table for an explanation of the schema entries used in
the Derived Document Definitions.

Element and attribute Description

<document
name="schema name" ...

Since this is the first <document> element, the name attribute
must match the schema name.

<document ...
table="parent table">

The first <document> element describes the parent table. The
parent table is the table that contains a lookup field whose value
is determined by an entry in a lookup or link table.

<attribute
name="Id" ...

The parent table must contain an <attribute> element named Id
that provides the primary key field of the table.

<attribute ...
field="primary key"/>

The parent table must contain an <attribute> element named Id
that provides the primary key field of the table.

<document
name="nested document" ...

Since this is the second <document> element, the name
attribute can be any valid text string. Archway will use the name
entered here as the name of the nested document XML tag.

<document ...
field="lookup field" ...

This attribute defines what field in the parent table contains the
lookup or link to the target table.

<document ...
table="lookup table" ...

This attribute defines the target lookup table. The lookup table
is the table that contains the actual database record you want to
query.

<document ...
joinfield="Id field from parent table" ...

This attribute defines the identifying field used in the parent
table. This attribute tells Archway what record in the parent
table has the lookup field to be queried.

<document ...
joinvalue="Id field from lookup table">

This attribute defines the identifying field used in the lookup or
link table. This attribute tells Archway what record in the
lookup table contains the information to be queried.

<attribute
name="target XML tag" ...

This attribute defines what XML tag will be generated by
Archway as part of the document query.

<attribute ...
field="target field"/>

This attribute defines the target field of the database record to be
queried.
142 Document Schema Definitions

Tailoring Kit Guide
Why do all query response messages contain ID elements?
If you set the display form information option, you can see the XML output
generated by your ECMAScripts. All document messages from the
Document Manager will contain an <Id> element even if no such element
was defined in the query used by the script. This is expected behavior from
the Document Manager.

Archway creates a unique ID for each XML record to support back-end
databases that use and create unique records. The ID element is used to
prevent Archway from overwriting an existing database record and to speed
up record searches.

All schemas need to have an <attribute> named Id that maps to the primary
key of the database table. This schema entry allows Archway to uniquely
identify each record. If Archway does not find an Id mapping in the schema,
it will create one and search the back-end database for an Id field.

Can schemas include SQL statements?
Schemas cannot contain raw SQL statements, but you can create schema
entries that the Archway servlet will convert into SQL queries, updates, or
insertions using the schema grammar described in "Using Nested
<Document> Elements to Call Linked Tables" on page 134.

If you want to use raw SQL statements in your Web application, you can
include them as part of ECMAScript messages. One method to include SQL
queries in your schema document queries is to use either the preprocess or
postprocess schema attributes to invoke an ECMAScript.

How are schema definitions converted into SQL statements?
The Document Manager converts ECMAScript messages into SQL
statements at run time. Archway reads the XML document created when the
form is loaded and uses the standard input tags plus any additional
information passed when the form is submitted to generate a SQL statement.
The Archway servlet will format the output of the SQL statement as an XML
document. This XML document is then returned to the Web application
ECMAScript for any additional processing and formatting.
Frequently Asked Questions 143

Peregrine OAA
For example, consider the search form of the example Employee Lookup
Web application used in this guide. The input message generated is
illustrated here.

Archway uses the values listed in the <_return> element to perform a
Document Manager query. In this case it will search for the following:

Fields

FirstName

LastName

DepartmentID

CityID

Schemas

departmentlist

citylist

The Document Manager uses this XML document information to construct
two SQL queries, one for each schema. The Log tab of the Form Info window
would show the following two entries:

Executing Document Search:departmentlist
JDBCAdapter: Executing JDBC query: SELECT ID,DepartmentName FROM Department
(0,-1)
144 Document Schema Definitions

Tailoring Kit Guide
Executing Document Search:citylist
JDBCAdapter: Executing JDBC query: SELECT CityID,City FROM City (0,-1)

The fields in the SELECT section of the SQL statement are determined by the
<attribute> entries in the derived schema. The table listed in the FROM
section of the SQL statement is determined by the <document table> entry
in the schema.

Archway formats the results of these two queries into the single XML
document listed below. This document will be listed in the archway.log if you
have chosen to display form information in your Web application.

<_doc>
<recordset _count="-1" _countFound="19" _more="0" _start="0">

<departmentlist>

<Id>1</Id>

<DepartmentName/>

</departmentlist>

<departmentlist>

<Id>2</Id>

<DepartmentName>Administration</DepartmentName>

</departmentlist>

<departmentlist>

<Id>3</Id>

<DepartmentName>Administrative Services</DepartmentName>

</departmentlist>

<departmentlist>

<Id>4</Id>

<DepartmentName>Burbank Agency</DepartmentName>

</departmentlist>

<departmentlist>

<Id>5</Id>

<DepartmentName>Burbank Unit</DepartmentName>

</departmentlist>

<departmentlist>

<Id>6</Id>

<DepartmentName>Deliveries</DepartmentName>

</departmentlist>

<departmentlist>
Frequently Asked Questions 145

Peregrine OAA
<Id>7</Id>

<DepartmentName>Finance</DepartmentName>

</departmentlist>

<departmentlist>

<Id>8</Id>

<DepartmentName>Helpdesk</DepartmentName>

</departmentlist>

<departmentlist>

<Id>9</Id>

<DepartmentName>I.S. Department</DepartmentName>

</departmentlist>

<departmentlist>

<Id>10</Id>

<DepartmentName>Los Angeles Agency</DepartmentName>

</departmentlist>

<departmentlist>

<Id>11</Id>

<DepartmentName>Los Angeles Unit</DepartmentName>

</departmentlist>

<departmentlist>

<Id>12</Id>

<DepartmentName>Marketing Management</DepartmentName>

</departmentlist>

<departmentlist>

<Id>13</Id>

<DepartmentName>Operations</DepartmentName>

</departmentlist>

<departmentlist>

<Id>14</Id>

<DepartmentName>Production</DepartmentName>

</departmentlist>

<departmentlist>

<Id>15</Id>

<DepartmentName>Research</DepartmentName>

</departmentlist>

<departmentlist>

<Id>16</Id>
146 Document Schema Definitions

Tailoring Kit Guide
<DepartmentName>Sales</DepartmentName>

</departmentlist>

<departmentlist>

<Id>17</Id>

<DepartmentName>Storage-Packaging</DepartmentName>

</departmentlist>

<departmentlist>

<Id>18</Id>

<DepartmentName>Taltek</DepartmentName>

</departmentlist>

<departmentlist>

<Id>19</Id>

<DepartmentName>Technical Support</DepartmentName>

</departmentlist>

</recordset>
<recordset _count="-1" _countFound="3" _more="0" _start="0">

<citylist>

<Id>1</Id>

<Name>Burbank</Name>

</citylist>

<citylist>

<Id>2</Id>

<Name>London</Name>

</citylist>

<citylist>

<Id>3</Id>

<Name>Santa Clara</Name>

</citylist>

</recordset>
<_form>e_employeelookup_search_search.jsp</_form>
</_doc>
Frequently Asked Questions 147

Peregrine OAA
148 Document Schema Definitions

APPENDIX

A
 Peregrine Studio Components
This appendix contains a list and description of all of the components
you can add to a Project in Studio. The information is grouped
according to the menu structure with which these components are
presented in Studio, following each component down to display all of
the subcomponents available.

The menus displayed when the package for your Web application is
opened in Studio may vary slightly from the menu options
documented here. Menu options change depending on the
components you have created. For example, you must have the folder
called shared templates in your package to enable DocExplorer
Reference as a menu option.
Peregrine Studio Components 149

Peregrine OAA
To add components to your Project, right-click on the node to which you
want to add a component, and a menu of options is displayed.

Project > New >
Directory Object—not supported.

Group of Modules > New >

When you create a Group of Modules component, it includes a folder called
Explorers that contains default content for DocExplorer personalization
screens. It also includes a Group of Roles, which is a list of roles that are used
to control access rights. From the Group of Modules, you can create the
following:

Module—Web applications are organized into modules. Modules are
often determined by the role that a user will take in performing tasks. For
example, one module could be designed for employees who will be
opening requests for service. Another module could be for managers
approving requests. Modules are typically assigned specific access role
restrictions so that only those users who need to perform the module’s
task have permission to do so.
150 Peregrine Studio Components

Tailoring Kit Guide
The Peregrine Portal > Activity—Each module should contain one or
more activities that define the steps users can take to complete the
module’s task. For example, a Request module could have activities for
browsing catalogs, reviewing a shopping cart, and filling out a request
form. Each activity is typically displayed in the Web application on a
sidebar menu at the left of a form. Activities are typically assigned
specific access role restrictions so that only those users who need to
perform the activity’s task have permission to do so.

Form—Defines a Web application screen displayed as a page in a
browser. The typical form includes a title, instructions, form fields,
and one or more actions. Each form contains an onload script that
executes on the server side before the page is sent to the browser.
The script obtains form data that may be displayed within the form.
In turn, each form action leads to the display of the next form in the
Web application. Data entered in a form is submitted to the onload
script of the next form to be displayed.

Field >

Check Box—Allows the user to toggle a value on or off.

Selectbox—Allows the user to select a value from a list
displayed in a Combo Box field.
 151

Peregrine OAA
Date—Allows the user to view or enter a date. An optional
calendar widget (Date Picker) can be enabled or disabled (the
default is enabled). To define a start year for the drop-down
list or for the calendar widget, add a + or - sign in front of a
number. This number specifies the number of years before or
after the current year you want the start and end years to be.

Time—Allows the user to view or set a time value.

Timespan—Allows the user to view or edit a timespan value.

Date/Time—Allows the user to view or set a date and time
value. There is an optional calendar widget (Date Picker) that
can be enabled or disabled in Studio (the default is enabled).
See Date component.

Password—Allows the user to enter a password.

Radio Button—Allows the user to select one of several
choices presented by radio buttons.

To designate a Date/
Time calendar year start
and end, add a + or - in
front of a number to
specify the number of
years before or after the
current year you want
the start and end years
to be.

Enable or disable the
calendar widget.
152 Peregrine Studio Components

Tailoring Kit Guide
Spinner—Allows the user to enter a numerical value. The
control allows the number to be typed in directly. It also
allows the user to select a number by clicking on the spinner
buttons that increase and decrease the value.

Text Edit—Allows the user to display or edit a value in a plain
text field.

Text Area—Allows the user to enter text into a multiline edit
field.

Link—Displays a hyperlink that the user can click on to
navigate to another Web location or site.

Link Button—Displays an image button created out of
background images and text.

Image—Displays an image.

Composite—Allows the creation of a field that consists of
two or more fields placed next to each other.

Money—Allows the user to view or edit a monetary value.

Unit of Measure—Allows the user to view or edit a value that
is a unit of measure.

Enumerated Select—Allows the user to select a value from a
list displayed in a Combo Box field.

Lookup—Allows the user to enter a value by performing a
lookup operation. The lookup is done in a separate pop-up
window.

Attachments—Allows the user to view and add attachments
to a document.

Language—Allows the user to select their preferred language
from a list of supported languages.

Translated Value Field—Displays text returned by a
translation script function.

Hidden Data Field—Stores data obtained by the form’s
onload script without displaying it to the user. The data is
included when the form is submitted and the user navigates
to another form.

Component >

Treelink—Displays a treelink component.
 153

Peregrine OAA
Directory—Displays a directory component based on data
received from a document query to an adapter.

List Builder—Allows users to configure a list by selectively
adding items to a listbox from a list of choices.

Workflow—Displays a workflow diagram.

OAA Workflow—Displays a workflow diagram.

Stack—Displays a stack component.

SVG—Displays an SVG component.

Web Application Menu—Displays a menu of all registered
modules or packages in the current Web application.

HTML >

Blank Line—Adds a blank vertical line to the form.

Free-form HTML—Allows you to insert arbitrary HTML
tags into a form. Can also be used to insert client-side
JavaScript into a Web page, although large amounts of
JavaScript should be moved to a presentation file that can be
imported by the page.

Import >

Static Import—Imports the text content of a file for
inclusion in a Web page. For example, you can import files
that define static HTML, JSP code or browser-side JavaScript
functions.

External HTML Plugin—Includes dynamic content into the
form. At run time, the URL referenced by the plugin is
accessed by the server, returning contents which are then
inserted into the form.

Field Container >

Field Section—Aligns fields into a column. Displays all field
labels in an aligned column to the left of the fields. Fields can
be divided into groups by inserting Headers and Instructions
as needed. To display more than one column of fields, create
a Form Columns container and place a Field Section
container in each column.

Multicolumn Field Table—Organizes input fields into a
multi-column table. It is recommended that you use
FieldColumns and FieldSections instead.
154 Peregrine Studio Components

Tailoring Kit Guide
Entry Table with Field Instructions—Organizes input fields
into a multicolumn table with fields on the left and
instructions for each field on the right.

Component Template—Allows you to define a group of
form elements that can be reused in more than one form.
Changes to the template are propagated to all places where
the template is used.

Tabs—Adds tabs to a form, each pointing to different
content defined by a separate form.

Dynamic Menu—Displays a multicolumn menu based on
data received from a document query to an adapter.

Form Columns—Divides the form into columns, allowing
content to be grouped and organized.

Table >

Simple Table—Displays a list of documents resulting from a
query.

Document Table—Displays a list of documents resulting
from a query.

Tree—Displays a list of documents resulting from a query as
a tree.

Portal Component >

Component Editor—Generates fields elements used to
configure a specific portal component. Not intended for
general Web application use.

Portal Header—Generates the portal page header. Not
intended for general Web application use.

Corkboard Header—Generates header information needed
by any page that includes a corkboard. Not intended for
general Web application use.

Corkboard Configurator—Generates a list of choices
containing all known portal components. The list can be used
to configure the components to display in a specific
corkboard container.

Corkboard—Displays the portal components chosen and
configured by each user.

Custom Configurator—Allows users to define their own
custom component configurators.
 155

Peregrine OAA
Document Explorer >

Search—Displays a personalized list of fields used to perform
document searches.

List—Displays a personalized table with the list of documents
found as a result of a search.

Detail—Displays a personalized view of a document detail.

Action >

Action—Displays a button for an action. The button can be
a link to another page or a submit action.

Default Action—Defines a form’s submit action when no
actual buttons are displayed.

Back—Navigates to the previous page of the Web
application.

Home—Navigates to the home page of the Web application.

Print—Prints the current Web application form.

Close—Use to close pop-up windows.

Redirection—Redirects a page to a link depending on the result
of the onload script matched against the condition

Transition—Contains an onload script and redirect arguments. After
the script runs, execution is redirected according to the condition
returned by the script. The options available from the Transition
menu are the same as the Form menu, except there is no Action
option.

Group of Strings—List of multilingual strings.

Multilingual String—The name of the StringResource is the ID of
the string.

Group of Scripts—Server-side ECMAScripts.

Script—Server-side ECMAScript (JavaScript) file containing functions
used by Web application forms.

Header—Initial comments and imports required in this script file.

Function—Script function defining application logic executed on
the server. All functions that have public access should accept a
Message object as the single input parameter and return a Message
object as a response. For example:
156 Peregrine Studio Components

Tailoring Kit Guide
function xyz(msg) {var msgResponse=new Message();...return
msgResponse;}

A script requires this public access interface if it is used as an onload
script for a form or if it is called directly via an Archway HTTP
message.

Group of Scripts—Server-side ECMAScripts.

Group of Triggers—A collection of triggers. Used by applications using
BizDoc.

Trigger—Individual trigger for a document.

Message action—Message action executed by the trigger.

Workflow action—Workflow action executed by the trigger.

Script action—Script action executed by the trigger.

Bizdoc Java action—Java action executed by the trigger inside
Bizdoc.

Group of Triggers—Collection of triggers.

Trigger—Individual trigger for a document.

Group of Triggers—Collection of triggers.

Group of Schemas—Database schemas describing documents accessible
by a Web application. Schemas define the field table mapping between the
application and the back-end database.

Raw Schema—Description of a document’s mapping on a real
database.

Schema—not supported.

Group of Images—Folder containing the image files to be used in your
Web application.

Image—The image is loaded into the ImageData property as binary
data. The file name property is used only the first time to load the
image.

Group of Images—Folder containing image files.

Image—The image is loaded into the ImageData property as binary
data. The file name property is used only the first time to load the
image.

Group of Images—Folder containing image files.

Group of Presentation Files—Folder containing files copied directly to
the presentation folder for use within the Web application Web server.
 157

Peregrine OAA
Text Presentation File—Any generic file in the Presentation folder that
is needed by the Web server, for example, client-side JavaScript, static
JSP files.

Binary Presentation File—Binary file outputted in the presentation
folder. Accessed by the Web server and used by the browser.

Group of Presentation Files—Folder containing files copied directly to
the presentation folder for use within the Web application Web server.

Text Presentation File—Any generic file in the Presentation folder
that is needed by the Web server, for example, client-side
JavaScript, static JSP files.

Binary Presentation File—Binary file outputted in the presentation
folder. Accessed by the Web server and used by the browser.

Group of Presentation Files—Folder containing files copied
directly to the presentation folder for use within the Web
application Web server.

Group of default DocExplorer screens—Folder containing default
content for DocExplorer Personalization screens.

Reference of a file—File object.

Directory Object—not supported.

Group of Portal Components—Components that appear in the portal
components menu and can be added to the home page by the user.

Portal Component

(contents)—The content of the portal component that is displayed.

(configure)—Allows configuration of a portal component.

Group of Files—A temporary container of miscellaneous files used by a
Web application. For example, string files and scriptpoller.ini files are
stored here.

String file—Temporary representation of a string file.

Ini file—Temporary representation of a scriptpoller.ini file.

Group of Strings—List of multilingual strings.

Multilingual String—The name of the StringResource is the ID of the
string.

Group of Roles—not supported.
158 Peregrine Studio Components

Tailoring Kit Guide
Group of Style Sheets > New >

Style Sheet—Not supported.

Group of Roles—not supported.

Group of Files > New >

String file—Temporary representation of a string file.

Ini file—Temporary representation of a scriptpoller.ini file.

Group of Strings > New >

Multilingual string—The name of the StringResource is the ID of the
string.

Entities (collection of business objects) > New >

Entity—Used by applications using BizDoc.

Interfaces > New >

Interface—Not supported.

System enumerations > New >

System enumeration—Describes a system enumeration, used to define
data attributes where the value stored is not the value displayed to the user.
This allows multilingual databases.

Value—Defines one value for a system enumeration.

Templates > New
Schema >Not supported.

Field Container

Component Template

Directory Object—not supported.

Group of Methods—Includes a list of methods. You can create new
methods under this element.

Method—Java Method. The name is not significant. You can add a
comment to the method.

Method—Java Method. The name is not significant. You can add a
comment to the method.

Message action—Message Action executed by the trigger.
 159

Peregrine OAA
Workflow action—Workflow action executed by the trigger.

Bizdoc Java action—Java action executed by the trigger inside Bizdoc.

Script action—Script action executed by the trigger.

Trigger—Used by applications using BizDoc.

Group of Images—Allows you to create a group of images.

Attribute—Ejb attribute. Used by BizDoc.

Reference—Ejb reference. Used by BizDoc.

Contain—Contain an object as an embedded member.

Computed—Computed property.

Structure—Ejb structure. Used by BizDoc.

Collection—Ejb collection. Used by BizDoc.

Methods—Ejb method. Used by BizDoc.

Entity—Ejb entity. Used by BizDoc.
160 Peregrine Studio Components

CHAPTER

B
 Troubleshooting and FAQs
This chapter contains troubleshooting information for Peregrine Studio and
Web application tailoring.

Web Application Environment

This section describes warnings or errors that can be generated while running
a Peregrine Web application in your system environment.

Out of memory error
Problem

Your application server has run out of memory resources.

Solution

Peregrine Web applications run best on a system with a minimum of 512 MB
of RAM. If you cannot add more physical memory to your machine, you can
increase the virtual memory space used on your Windows system. Adding
virtual memory will require more hard disk space and may degrade system
performance as cached information is saved to and retrieved from the hard
disk. Refer to your Windows help for information on setting or changing
virtual memory.
Troubleshooting and FAQs 161

Peregrine OAA
Peregrine Studio

This section describes common problems with write protections, conflicts,
and build errors generated with Studio.

Cannot edit — components are displayed with grey background
Problem

Studio displays some or all of your project components with a grey
background, and you cannot make or save changes to the project
components.

Solution

Studio uses the grey background to indicate that an item is write protected.
The most common reasons that Web application components are write
protected are:

A write-protected package is selected in the package selector.

The project (.adw) file is set to read-only.
162 Troubleshooting and FAQs

Tailoring Kit Guide
Packages delivered by Peregrine are write-protected. You must save all of
your changes and additions to a user-created package, extensions. If the
package selection box displays one of the Studio default packages, then your
project will be write protected until you create and activate a new package
extension in which to save your changes.

Red exclamation point (conflict icon) displayed next to nodes
Problem

Studio displays a conflict icon next to one or more of your Web application
components, and you cannot build the project. The conflict could be the
result of multiple packages attempting to change or modify the same
component, or the conflict could be the result of improperly defined package
dependencies.

Solution

To resolve the conflict you should first view more information about the
nodes displaying the conflict icon.

To view information about a conflict:

1 Select a node with an exclamation point icon displayed next to the name
from the Project Explorer view.

2 Click View > Advanced Information. Studio displays a new information
window at the bottom of the interface. This window displays information on
the conflict.
Peregrine Studio 163

Peregrine OAA
The information on selection will tell you whether you have a resource or a
dependency conflict.

Resource conflicts

Resource conflicts occur when two or more project components describe the
same thing. To resolve a resource conflict, delete or reconfigure one of the
project components that is creating the conflict. If the conflicting
components are part of separate package extensions, you can choose to
deactivate one of the package extensions to resolve the conflict.

Dependency conflicts

Dependency conflicts occur when a package extension attempts to modify a
package that is not listed as a dependent package. To resolve the conflict you
can choose one of two solutions:

Add the package you want to modify as a package dependency of the
conflicting package extension.

Move the changes in the conflicting package extension to another package
extension that already has the proper package dependencies.

Conflict icon

Information about the conflict
164 Troubleshooting and FAQs

Tailoring Kit Guide
Import Errors

Web applications built on Peregrine OAA Platform 2.2 use a different XML
data structure than previous releases of Get.It!. As a result of the new XML
data structure, you can use the import nodes feature only for nodes that you
created in and exported using Studio. Get.It! 1.3 and 2.1 customizations can
be imported as new Studio projects using the import wizard.

Unable to import customized files
Problem

Cannot find a means to import customized Get.It! 1.3 XSL files.

Solution

Studio does not support customized XSL files. Contact your Peregrine sales
representative for additional information.

Bad magic number
Problem

This error occurs only if you are using JRun as your application server. A 500
Internal Server Error (Bad Magic Number) error page is displayed instead of
the login screen.

Solution

Clear both the JRun Default Server and the JSP cache, and then stop and
restart the JRun Default Server.

To clear the JRun JSP cache:

1 Open Windows Explorer.

2 Browse to the following location:
Import Errors 165

Peregrine OAA
<drive letter>:\JRun\servers\default\oaa\Web-inf\jsp

3 Delete all files in this folder.

Scripting Errors

Information about scripting errors is displayed as text at the top of the main
frame and in the archway.log file.

Cannot find script file
Problem

The following error message is displayed when you select a form:

Unable to find script file for <name>

This message will also appear in the archway.log file.

Solution

This error message is usually the result of a script file trying to call an
undefined adapter. This is a common problem if you import a Web
application into a project that contains a new adapter. Review your script file
and determine what adapters it calls. If the <name> value is the name of a
new adapter defined in the script file, then define the new adapter in the
Admin Settings module, stop and restart your application server, and then
restart the Archway server (using the Admin Control Panel) to correct the
problem.

This error message can also appear if a form is calling an invalid script file
name. Verify in Studio that the form is calling a valid script file name. If you
copied a script from another form or Web application you may have
renamed the script incorrectly.

If you have verified that the script file exists and uses the proper adapter, then
stop and restart your application server. This will refresh the adapter settings.
166 Troubleshooting and FAQs

Tailoring Kit Guide
Script produces an ECMAScript error
Problem

An ECMAScript Error is displayed with the script name, source code, and
line number of the error when a form is displayed.

Solution

Open Studio, review the error-producing script for typos, and verify that it
uses the correct function and schema names. For example, in the form above,
the function msg is incorrectly listed as nsg. Correct any errors and rebuild
the project.

Note: ECMAScript is case sensitive and will return an error message if the
case does not match the object called.

Tip: If you have enabled the HTTP listener in Studio, you can click on the
underlined script name listed at the top of the error message to go directly
to the script and line number of the error. Studio must be open for the
hyperlink to work.

ECMAScript error: undefined value or property
Problem

The following error is displayed when you select a form:

ECMAScript Error: Error Message: Runtime error Function called on undefined value
or property

This error will also be displayed in the archway.log file.

Solution

Verify that the form calls the proper script name in the server onload script
attribute. Also check that the script name contains no typos and that it is
listed with the proper case. If the script name listed in the form is correct,
there is a possibility that there is a script name conflict. Each script in your
project needs a unique name. Try renaming your script to a new name,
updating the server onload script attribute, and rebuilding your project. If
renaming the script fixes the problem then you had a script name conflict.
Scripting Errors 167

Peregrine OAA
Web Application Errors

The following sections describe some of the common errors associated with
custom-made Web applications. Refer to the sections below for solutions to
common Web application design problems.

Wrong start form is displayed for activity
Problem

You want your Web application to display a particular form when you select
an activity, but the wrong form is displayed. You may have also re-ordered
the form listing in the Project Explorer tree, but the proper form still is not
displayed.

Solution

You need to define the Start Page attribute of the activity. This attribute
determines what form is first displayed when the activity is selected. By
default, the Start Page is blank.

To set the Start Page of an activity:

1 Open Studio and select the activity you want to change.

Tip: To select the activity properties, select the activity node, double-click
any form in the flowchart view displayed, and then click the Control tab.
The activities properties will be displayed to the right of the control
flowchart.

2 In the properties of the activity, use the selectbox of the Start Page attribute
to choose a starting form.

3 Save and rebuild your project file.

Script output not appearing in form component
Problem

Data is not displayed in your Web application form component. This
problem could be the result of a faulty script that is not generating an XML
document or the result of form components that are not properly mapped to
the fields of the generated XML document.
168 Troubleshooting and FAQs

Tailoring Kit Guide
Solution

Verify whether your script is generating an XML document by enabling the
Show form information option and then looking at the contents of the Script
Output tab. If the script is working properly, you should see your Web
application data encoded as in the XML document displayed on the Script
Output page. If you do not see an XML document, then your script has an
error.

If you can see data displayed in the Script Output tab, then the problem is
how you have mapped the form components to the XML fields. View the
form component properties from Studio, and verify that the Document Field
attribute of the form component maps to an XML tag displayed in the Script
Output tab.

Too few parameters error
Problem

The following error message is displayed when you select a form:

ERROR:jdbcCalls: ***SQL Exception caught***

The script output displays the following error:

-3010: [Microsoft][ODBC Microsoft Access Driver] Too few parameters. Expected 1.

These messages will also appear in the archway.log file.

Solution

There is an incorrect field mapping or typo in the schema used in this form.
Review the schema(s) used by this form and verify that there are no typos.
Also verify that all the attributes defined in the schema map to valid fields in
the back-end database. The value in the field attribute must match the field
name of the back-end database. This is particularly important for the ID
attribute, which must map to a unique numerical value that identifies each
record.
Web Application Errors 169

Peregrine OAA
Web application always goes to redirection form
Problem

You have defined a redirection to another form in your Web application and
the application always takes users to the redirection form regardless of the
search conditions and results.

Solution

Validate that the Condition attribute of the redirection is not blank. The
Condition value should match the value defined by the setCondition
function of your form’s ECMAScript. If the Condition attribute is left blank,
the default action is to redirect to the target form regardless of the returned
results.

JDBCCalls error at login
Problem

The following error is displayed when you login:

ERROR: jdbcCalls ***SQL Exception caught***

This error will also be displayed in the archway.log file.

Solution

The JDBC adapter you have created is trying to authenticate users. Turn off
authentication for this adapter and then the error message will disappear.

Syntax error in FROM clause
Problem

The following error message is displayed when you select a form:

ERROR:jdbcCalls: ***SQL Exception caught***

The script output displays the following error:

-3506 [Microsoft][ODBC Microsoft Access Driver] Syntax error in FROM clause.

This error will also be displayed in the archway.log file.
170 Troubleshooting and FAQs

Tailoring Kit Guide
Solution

The schema name you defined for the form is wrong. The schema name
could be listed incorrectly in two places:

The form’s onload script may refer to the wrong schema name.

The <document name=value> does not match the schema file name.
Web Application Errors 171

Peregrine OAA
172 Troubleshooting and FAQs

Index
A
actions. See form components
activity component 34
Archway

schemas and 118
scripts 93
XML output 143

AssetCenter 80
AssetCenter adapter

setting feature links 122
authorization file 19

B
Bad Magic Number error 165
BizDoc 80
bookmarks, adding in Studio 26
build options, setting 41
build process, files created during 39

C
Cascading Style Sheets 32
character encoding

setting in Studio 40
component template 69–70
components

build process 39
defined 32
group of files component 35
group of modules component 34
group of schemas component 35
group of scripts component 35

hierarchy of 33
module component 34
relationships among 34–35

components in Studio 149
conflicts

defined 45
resolving 45–46, 164

creating
nested document lookups 87
package extensions 44

D
Date component, defining start year 152
Date Picker 152
dependencies, setting package 43
dependency conflicts. See Conflicts
Deployment directory 40
development environment, requirements for 20
DocExplorers

adding as a Reference 83
personalizing with 82

document schema definitions. See schemas

E
ECMA scripts

defined 32
ECMAScript 92
ECMAScripts

examples of 105–114
errors

Bad Magic Number 165
Index 173

Peregrine OAA
Cannot Find Script File 166
import 165

F
feature links in AssetCenter, setting 122
field labels, changing 60
Field Lookup. See Lookup fields
fields. See form components
fieldsection component 70
form component 34
form components

action 35, 77–78
changing schemas 62
component template 69
described 35
document field names 64
field form components 59
fields 35
fieldsection 70–71
hidden data field 74
hiding 60
labels 59
lookups 35
making read-only 61
names in 64–66
redirection 74–75
selectbox 72–73
simple table 75–76
table link 76
tables 35
tailoring 54–78
text columns 77
text edit 71–72

forms
changing instructions 56
changing onload scripts 57
changing titles 55
Personalization and 89
server-side 94–95

FTP
configuring Studio 47
deploying Web applications to UNIX 46

G
group of scripts component 35

H
HTTP Listener 28

I
installing 14
instructions, changing in forms 56
interface components. See Form components 35
international builds 48
ISO character encoding. See character encoding

J
Java Virtual Machines 104
JavaDocs 115
JavaScript 92
JVMs 104

L
lookup fields 85

creating 85
nested document lookups 87

lookups. See form components

M
messages, scripts 100

N
nodes 27, 163

O
onload scripts

changing in forms 57
defined 57

opening source files in Studio 19

P
package extensions 44–??
packages

activating 42
deactivating 42
defined 41
dependencies 43

Personalization
hierarchies 82
interface, described 88
lookup fields 85
174 Index

Tailoring Kit Guide
modifying forms 89
requirements 80
settings 80
user rights 80

presentation files 32
Project Explorer 27
projects

See also Web applications
components of 32
conflicts within 46
files within 38

R
reference, adding a DocExplorer 83
resource conflicts. See conflicts

S
schemas

Archway and 118
attributes 123–140
changing in form components 62
defined 117
document fields 63
document queries 141
elements 123–140
frequently asked questions 141–??
schema entries 133
SQL statements 143
testing from URL 96–97
using with DocExplorers 83

scriptpollers.ini, adding an entry 103
scripts

adding to script pollers 112
client-side 92
ECMAScript 92
enabling script pollers 102
JavaScript 92
JVMs and script pollers 104
onload scripts 94–95
roles of 93
script pollers 102–104
server scripts 91, 93
server-side 92
stopping script polling 104
testing onload scripts 95–96

XML messages 100
ServiceCenter 80
source code, viewing 30
source files, opening in Studio 19
string files

exporting 49
importing 51
translating 50

Studio
authorization file 19

Studio components 149

T
tables. See form components
tailoring

form components 54–78
templates component 34
Temporary directory 40
testing environment, requirements for 20
titles, changing in forms 55
translation strings. See string files
troubleshooting

conflicts 163
import errors 165
Read-only components Studio 162
script errors 167
virtual memory error 161
Web application errors 168–170

U
UNIX

deploying Web applications to 46
URL

querying from 95
user rights, Personalization 80

V
variables

format 97
referring to XML attributes 100
using in form components 97

visible flag
hiding form components 60
Index 175

Peregrine OAA
W
Web applications

components. See Components
described 10
hierarchy and 36
scripts and 91
tailoring forms 54–68
vewing source code 30
viewing changes 30

X
XML

Archway 143
components. See components
form component field names 65
messages in scripts 100
using in variable names 97
viewing source code 30
176 Index

August 16, 2002

	Introducing the Peregrine OAA Tailoring Kit
	About this Guide
	Conventions Used in this Guide

	Installing the OAA Tailoring Kit
	Installing the OAA Tailoring Kit
	Opening your Web Application Project
	Configuring your System for Tailoring
	Setting up a Development Environment
	Setting Up a Testing Environment

	Using Peregrine Studio
	The Studio Interface
	Project Explorer
	Drag and Drop

	Enabling the HTTP Listener and Form Information
	Viewable XML Source Code
	Changes Indicated with Color Text

	Studio Projects and Packages
	Peregrine Studio Projects
	Project Components
	Project Component Descriptions
	Example of Component Hierarchy
	Project Files

	Building a Project
	XML to JSPs
	Project Build Variables
	Setting Build Options

	Studio Project Packages
	Activating and Deactivating Packages
	Package Dependencies
	Setting Package Dependencies
	Saving Changes with Package Extensions

	Warnings for Conflicts
	Deploying to UNIX Platforms
	Requirements
	Configuring for FTP Deployment
	Deploying via FTP

	International Builds
	Configuring for an International Build
	Exporting Strings for Translation
	Importing Strings for Translation

	Adding to an Existing Frameset

	Forms and Form Components
	Tailoring Forms
	Changing Form Titles
	Changing Form Instructions
	Changing a Form’s Onload Script
	Changing Form Component Labels
	Hiding Form Components
	Changing a Form Component to Read-only
	Changing the Schema that a Form Component Uses
	Changing the Document Field that a Form Component Uses
	Specifying a Document Field Name
	Displaying Forms within a Frameset

	Types of Form Components
	Component Template Containers
	Fieldsection Containers
	Text Edit Fields
	Selectbox Fields
	Hidden Data Fields
	Redirections
	Table Form Components
	Table Links
	Text Columns
	Actions

	Adding Personalization Functionality
	Supporting Personalization
	Activating Personalization

	Personalization Hierarchies
	Personalizing with DocExplorers
	DocExplorer Forms and Functions
	Adding a DocExplorer Reference
	Personalizing DocExplorer
	Adding Personalization to Lookup Fields
	Creating a Nested Document Lookup

	Using the Personalization Interface
	Adding Fields to a Form
	Configuring Field Attributes
	Removing Fields from a Form

	Scripting
	Types of Scripts
	Where Scripts are Stored
	How Scripts are Used
	Where Scripts are Used
	Testing Scripts with URL Queries
	URL Script Queries Template
	URL Schema Queries Template
	Using Variables to Provide Script Data
	Common Message Operations
	About Script Pollers
	Enabling Script Polling
	Stopping Script Polling
	Script Pollers in a Multiple JVM Environment

	Sample Scripts
	General Script Samples
	Selecting a Field from a Schema
	Calling Other Scripts and Combining the Results
	Form Script Sample
	Creating an XML Document from a Schema
	Script Poller Sample
	Maintaining a Connection to AssetCenter

	References
	Sources for Client-side JavaScript
	JavaDocs for the Main Archway Package

	Document Schema Definitions
	How Schemas are Used
	Schemas with ECMAScript
	ECMAScript Syntax
	Identifying the Back-end System Version
	AssetCenter Feature Links

	Schema Naming Conventions
	Schema Elements And Attributes
	<schema>
	<documents>
	<document>
	<document> attributes
	name
	table
	field
	joinfield
	joinvalue
	<attribute>
	name
	type
	Type values
	shortdesc
	search
	list
	detail
	create
	field
	link
	linktable
	linkfield
	linktype
	linkkey

	How to Create Schemas
	Creating Groups of Schemas
	Creating Schemas
	Schema Template
	Schema Template Entry Descriptions
	Using Nested <Document> Elements to Call Linked Tables
	Nesting the <Document> Element In-place
	Nesting the <Document> Element by Reference to <Collection>
	Nesting the <Document> Element by Reference Docname

	Frequently Asked Questions
	How do I create document queries to linked tables?
	Why do all query response messages contain ID elements?
	Can schemas include SQL statements?
	How are schema definitions converted into SQL statements?

	Peregrine Studio Components
	Troubleshooting and FAQs
	Web Application Environment
	Out of memory error

	Peregrine Studio
	Cannot edit — components are displayed with grey background
	Red exclamation point (conflict icon) displayed next to nodes

	Import Errors
	Unable to import customized files
	Bad magic number

	Scripting Errors
	Cannot find script file
	Script produces an ECMAScript error
	ECMAScript error: undefined value or property

	Web Application Errors
	Wrong start form is displayed for activity
	Script output not appearing in form component
	Too few parameters error
	Web application always goes to redirection form
	JDBCCalls error at login
	Syntax error in FROM clause

	Index

