

3

Mercury Diagnostics 3.5 for
J2EE & .NET

Supporting LoadRunner 8.0
Installation and User’s Guide

Mercury Diagnostics 3.5 for J2EE/.NET Supporting LoadRunner 8.0 Installation and User’s Guide

This manual, and the accompanying software and other documentation, is protected by U.S. and
international copyright laws, and may be used only in accordance with the accompanying license
agreement. Features of the software, and of other products and services of Mercury Interactive
Corporation, may be covered by one or more of the following patents: United States: 5,511,185;
5,657,438; 5,701,139; 5,870,559; 5,958,008; 5,974,572; 6,137,782; 6,138,157; 6,144,962; 6,205,122;
6,237,006; 6,341,310; 6,360,332, 6,449,739; 6,470,383; 6,477,483; 6,549,944; 6,560,564; 6,564,342;
6,587,969; 6,631,408; 6,631,411; 6,633,912; 6,694,288; 6,738,813; 6,738,933; 6,754,701; 6,792,460
and 6,810,494. Australia: 763468 and 762554. Other patents pending. All rights reserved.

Mercury, Mercury Interactive, the Mercury logo, the Mercury Interactive logo, LoadRunner,
WinRunner, SiteScope and TestDirector are trademarks of Mercury Interactive Corporation and may
be registered in certain jurisdictions. The absence of a trademark from this list does not constitute a
waiver of Mercury's intellectual property rights concerning that trademark.

All other company, brand and product names may be trademarks or registered trademarks of their
respective holders. Mercury disclaims any responsibility for specifying which marks are owned by
which companies or which organizations.

Mercury Interactive Corporation
379 North Whisman Road
Mountain View, CA 94043
Tel: (650) 603-5200
Toll Free: (800) TEST-911
Customer Support: (877) TEST-HLP
Fax: (650) 603-5300

© 2004 - 2005 Mercury Interactive Corporation, All rights reserved

If you have any comments or suggestions regarding this document, please send them via e-mail to
documentation@mercury.com.

LRJ2EESUP8.0/01

iii

Table of Contents

PART I: INTRODUCTION

Chapter 1: Mercury Diagnostics for J2EE & .NET Product Overview ...3
Introducing Mercury Diagnostics for J2EE & .NET...............................3
Components of Diagnostics for J2EE & .NET4
Diagnostics Data Flow ...6
Diagnostics Performance Metrics Processing ..7
Diagnostics Performance Metric Reporting ..8

PART II: INSTALLATION AND CONFIGURATION OF DIAGNOSTICS
FOR J2EE & .NET COMPONENTS

Chapter 2: Preparing to Install Mercury Diagnostics for
J2EE & .NET...13

Recommended Deployment Configuration14
Host System Requirements for the Diagnostics Components15
Other Considerations Before Installing the Diagnostics

Components ...17
Recommended Order of Installation...18
Planning the Installation ..20

Chapter 3: Installing the Mercury Diagnostics Commander..............27
Installing the Commander on a Windows Machine28
Installing the Commander on a UNIX Machine34
Verifying the Commander Installation...38
Starting and Stopping the Commander..39
Determining the Version of the Commander that is Installed40
Uninstalling the Commander ...40

Table of Contents

iv

Chapter 4: Installing LoadRunner 8.0 and the
LoadRunner Diagnostics Add-in...41

Understanding the LoadRunner Diagnostics Add-in..........................41
Installing Mercury LoadRunner 8.0 ..42
Installing the Mercury LoadRunner Diagnostics Add-in

for J2EE/.NET..42
Configuring LoadRunner for Diagnostics for J2EE & .NET49

Chapter 5: Installing the Mercury Diagnostics Mediator...................51
Installing the Mediator on a Windows Machine................................51
Installing the Mediator on a UNIX Machine......................................60
Verifying the Mediator Installation ..67
Troubleshooting Mediator Issues ..68
Configuring the Mediator ...68
Starting and Stopping Mediators ..68
Determining the Version of the Installed Mediator69
Uninstalling the Mediator...69
Upgrading to a Newer Version of the Mediator..................................70

Chapter 6: Installing the Mercury Diagnostics Probe for J2EE...........73
Installing the J2EE Probe on a Windows Machine74
Installing the J2EE Probe on a UNIX Machine91
Installing the J2EE Probe on a z/OS Mainframe104
Installing the J2EE Probe Using the Generic UNIX Installer108
Verifying the J2EE Probe Installation..109
Using the J2EE Probe with Deep Diagnostics111
Overriding the Default Probe Host Machine Name..........................111
Determining the Version of the J2EE Probe that is Installed111
Upgrading to a Newer Version of the J2EE Probe112
Uninstalling the J2EE Probe ..115

Chapter 7: Installing the Mercury Diagnostics Probe for .NET........117
About the Mercury Diagnostics Probe for .NET................................117
Installing the .NET Probe ..118
Verifying the .NET Probe Installation...131
Configuring the .NET Probe..132

Table of Contents

v

v

Chapter 8: Configuring the J2EE Probe and Application Server133
About Configuring the J2EE Probe and Application Server..............134
Running the JRE Instrumenter..135
About Configuring the Application Server139
Using the Configuration Utility..140
Configuring WebSphere Application Servers....................................150
Configuring WebLogic Application Servers......................................164
Configuring the Oracle9i Application Server172
Configuring the JBoss Application Server...176
Configuring the SAP NetWeaver Application Server179
Configuring a Generic Application Server ..181
Configuring the Probes for Multiple Application Server

Instances ...183

Chapter 9: Setting Up Diagnostics for J2EE & .NET
on LoadRunner 8.0 ...193

About Setting Up Diagnostics for J2EE & .NET.................................193
Setting Up Diagnostics for J2EE & .NET on LoadRunner 8.0194
Configuring LoadRunner Scenarios to use Diagnostics for

J2EE & .NET ..196

PART III : USING MERCURY DIAGNOSTICS FOR J2EE & .NET

Chapter 10: Introducing Diagnostics for J2EE & .NET Screens205
Viewing Diagnostics Data from the LoadRunner Controller205
Introducing the Diagnostics Screens...207
Drilling Down Into the Diagnostics Metrics.....................................208
Using the Diagnostics Navigation and Display Controls210

Chapter 11: Using the Diagnostics for J2EE & .NET Screens219
Analyzing Performance Using the Diagnostics Overview Screen220
Analyzing Performance with the Transactions Screen224
Analyzing Performance with the Server Request Screens229
Analyzing Performance with the Layer Screens................................236
Analyzing Performance with the Virtual Machines Screen241
Analyzing Performance with the Aggregate Profile Screen...............247

Chapter 12: Analysis J2EE & .NET Diagnostics Graphs251
About J2EE & .NET Diagnostics Graphs..252
Viewing the J2EE & .NET Summary Report253
Viewing J2EE & .NET Diagnostics Data ..255
J2EE/.NET Transaction Breakdown Graphs.......................................267
J2EE & .NET Server Request Graphs ..277

Table of Contents

vi

Chapter 13: Web Service Support ..289
About Web Service Support...289
Writing VuGen Scripts for Web Service Support290

Chapter 14: Troubleshooting Mercury Diagnostics for
J2EE & .NET...291

Component Installation Interrupted on a Solaris Machine292
Version Mismatch Between Diagnostics Commander and

LoadRunner Add-In..293
Apache Tomcat Error When Displaying J2EE Information293
J2EE Probe Fails to Operate Properly...294
Connecting with Named Pipes Regardless of cliconfg.exe Settings .294

PART IV: APPENDIXES

Appendix A: Using the System Health Monitor299
Introducing the System Health Monitor ..300
Accessing the System Health Monitor ..300
Using the System Health Monitor ..302
Drilling Down Into The System Health Monitor Map305
Customizing the System Health Monitor Display310
Creating and Using System Health Monitor Snapshots312
Troubleshooting Using the System Health Monitor.........................314

Appendix B: Advanced Diagnostics Commander Configuration315
Adjusting the Heap Size for the Commander’s VM..........................315
Configuring the Commander for Multi-Homed Environments.......317

Appendix C: Advanced Diagnostics Mediator Configuration321
Configuring the Mediator for Large Installations.............................321
Tuning the Mediator Garbage Collection...326
Tuning the Mediator for a Smaller Installation327
Overriding the Default Mediator Host Machine Name328
Configuring the Mediator for Multi-Homed Environments329
Reducing Mediator Memory Usage ...332
LoadRunner Diagnostics Mediator Assignments332
Using the Mediator Configuration Web Pages334
Configuring the Mediator for the LoadRunner Offline file..............338

Table of Contents

vii

vii

Appendix D: Advanced J2EE Probe and Application
Server Configuration...341
Configuring the J2EE Probe for Use With Mercury Products341
Setting the J2EE Probe Product Mode Properties343
Configuring the J2EE Probe and Application Server for

Deep Diagnostics ..346
Configuring the Application Server for Allocation Capture.............348
Unconfiguring the Probe for a Product...348
Specifying Layers to Instrument ...349
Controlling Automatic Method Trimming.......................................352
Controlling J2EE Probe Throttling..354
Configuring a Probe With a Proxy Server ...355
Specifying Probe Properties as Java System Properties......................356

Appendix E: Advanced .NET Probe Configuration357
Automatically Discovering ASP.NET Applications............................357
Customizing the Instrumentation for ASP.NET Applications358
Restarting IIS..360
Elements Used in the Probe_config.xml File361
Disabling Logging..368
Overriding the Default Probe Host Machine Name..........................368

Appendix F: Configuring Diagnostics Components to
Work with a Firewall..369
Overview of Configuring Diagnostics for a Firewall.........................370
Collating Mediator Offline Files over a Firewall371
Installing and Configuring the Mercury MI Listener372
Configuring the Mediator to Work with a Firewall372
Configuring a Diagnostics LoadRunner Scenario

for a Firewall ...379

Appendix G: Configuring Diagnostics Components for HTTPS.......381
Configuring the Commander to Receive HTTPS382
Configuring a Mediator to Communicate via HTTPS with

the Commander ...386
Configuring a J2EE Probe to Communicate via HTTPS with

the Commander ...389
Configuring the Mediator to Receive HTTPS391
Configuring the Commander to Communicate via HTTPS

with the Mediator...394

Table of Contents

viii

Appendix H: Configuring Diagnostics Components for
HTTP/HTTPS Proxy..395
Configuring the Mediator to Communicate Through an

HTTP/HTTPS Proxy ..396
Configuring the J2EE Probe to Communicate Through

an HTTP/HTTPS Proxy ...396
Configuring a .NET Probe to Communicate Through

an HTTP/HTTPS Proxy ...397
Proxy from Commander To Mediator/Probes in LoadRunner

Environment ..398
Proxy Server Configuration for HTTPS ...399

Index..401

Part I

Introduction

2

1
Mercury Diagnostics for J2EE & .NET
Product Overview

This chapter introduces you to Mercury Diagnostics for J2EE & .NET by
giving you a high level overview of its features, components, architecture,
and outputs.

This chapter includes the following topics:

➤ Introducing Mercury Diagnostics for J2EE & .NET

➤ Components of Diagnostics for J2EE & .NET

➤ Diagnostics Data Flow

➤ Diagnostics Performance Metrics Processing

➤ Diagnostics Performance Metric Reporting

Introducing Mercury Diagnostics for J2EE & .NET

Diagnostics for J2EE & .NET is an application performance optimization
solution that is designed to help you improve the performance of your
applications on the J2EE and .NET platforms throughout the application
lifecycle. Diagnostics for J2EE & .NET has been integrated with Mercury’s
Application Diagnostics and Application Monitoring solutions to provide
you with the insight and information that you need build, develop, test,
and monitor applications that perform efficiently and effectively.
3

Part I • Introduction
Diagnostics for J2EE provides you with the capability to monitor the
performance your applications that run on most of the J2EE compliant
application servers. You install a Mercury Diagnostics Probe for J2EE on the
application server instances where the application that you want to monitor
runs. The J2EE Probes collects performance metrics on the servlets, JSPs,
EJBs, JNDI, JDBC, JMS, and Struts method calls that are performed by your
application, as well as on the custom classes that you specify.

Diagnostics for .NET provides you with the capability to monitor the
performance of your applications that run on the Microsoft .NET
Framework. The Mercury Diagnostics Probe for .NET uses runtime
instrumentation to capture method latency information from specified
applications. By default, the .NET Probe captures methods from the ASP and
ADO tiers and MSMQ. Custom business logic methods can be captured by
creating a custom instrumentation specification file for your application.

The J2EE and .NET Probes send the metrics to the Diagnostics Mediator
where the information for events are filtered and aggregated. The Mediator
sends the aggregated performance information to LoadRunner and the
Commander where it is displayed using graphs and reports that present the
information that enables you to analyze the performance of your
application.

Components of Diagnostics for J2EE & .NET

You must install and configure the components of Diagnostics for J2EE &
.NET so that you can gather, process, and review the performance metrics
for your application. This section introduces you to the Diagnostics
Components. For information on installing the Diagnostics Components,
see Part II, “Installation and Configuration of Diagnostics for J2EE & .NET
Components.”

Diagnostics for J2EE & .NET consists of the following components:

➤ Diagnostics Probes for J2EE and .NET

➤ Diagnostics Mediator

➤ Diagnostics Commander
4

Chapter 1 • Mercury Diagnostics for J2EE & .NET Product Overview
Diagnostics Probes for J2EE and .NET

The Mercury Diagnostics Probes are installed on the machine that hosts
your application. The Probes are responsible for capturing events from your
application and sending the performance metrics to a Mediator. The Probe
captures events such as method invocations, collection sites, the beginning
and end of business transactions and server transactions.

The Mercury Diagnostics Probe for J2EE is a lifecycle probe that works with
many of Mercury’s Diagnostics products such as LoadRunner, Business
Availability Center, Performance Center, and Deep Diagnostics.

For a diagram showing the data flow, see “Diagnostics Data Flow” on page 6.

You must configure the Probe and the application environment to enable
the Probe to monitor your application. For information on how to configure
the .NET Probe and the application environment, see “Installing the
Mercury Diagnostics Probe for .NET” on page 117, and “Configuring the
J2EE Probe and Application Server” on page 133. For information on how to
configure the J2EE Probe and the application environment, see
“Configuring the J2EE Probe and Application Server” on page 133.

Diagnostics Mediator

The Diagnostics Mediator is a process that receives raw data from the Probes,
pre-processes and aggregates the raw data, and passes the aggregated data to
the Diagnostics Commander.

The Mediator does the preprocessing and aggregation of the raw data from
the Probes so that the Probes will not have to do this work. Since the
Mediator does the this piece of the processing for the Probes, they have a
negligible effect on the performance of the applications that they monitor.

Diagnostics Commander

The Diagnostics Commander is responsible for the command and control
functions between the various Diagnostics components and the Mercury
products that Mercury Diagnostics is working with. The Commander keeps
track of the location and status of the other Diagnostics components, and is
the communication hub between the other components.
5

5

Part I • Introduction
Diagnostics Data Flow

The following diagram illustrates how data flows between the components
of Diagnostics for J2EE & .NET when used in an Application Diagnostics
mode with Mercury LoadRunner.
6

Chapter 1 • Mercury Diagnostics for J2EE & .NET Product Overview
Description of Data Flow

 1 The LoadRunner Load Generators run Vuser transactions on one or more of
the application servers.

 2 The LoadRunner Controller (not shown) sends the Commander a list of the
Probes that you have selected to take part in the load test.

 3 The Probe, installed on an application server, captures the events from the
application and transmits the event information to the Mediator.

 4 The load generator sends an End of Logical Transaction via the Commander
to the Mediator.

 5 The Mediator transmits the aggregated event data to the Commander. In
addition, the Mediators store the data locally for offline analysis.

 6 The data is transmitted to the Commander, which stores it locally.

 7 The Commander prepares the metrics to be presented to the user in graphs
and charts that indicate the performance of the monitored applications.

Diagnostics Performance Metrics Processing

Diagnostics for J2EE & .NET gathers and aggregates the performance metrics
from your application based upon the following rules:

➤ Performance information from multiple probes on multiple servers can be
gathered, aggregated, and reported.

➤ The J2EE Probe monitors each thread of servlets, JSP pages and other layers
on the application server that have been directly invoked in the context of a
Vuser transaction using the VuGen Web protocol.

➤ If a directly-invoked thread spawns additional threads, the additional
threads can also be monitored if the Monitored Server Requests option is
selected during configuration (selected by default).

➤ The transaction time that is displayed by Diagnostics for J2EE & .NET for
transactions only includes the time that the transaction spends in the
J2EE/.NET server, and therefore, does not include the transaction's think
time.
7

7

Part I • Introduction
➤ The Probe considers each thread execution separately (that is, each click of a
user’s mouse). Each one of these threads is called a server request.

➤ The Probe breaks down the transactions into separate server requests. The
performance metrics are calculated for the complete transaction as well as
for each server request.

Diagnostics Performance Metric Reporting

While LoadRunner is executing Vuser transactions against your application,
Diagnostics for J2EE & .NET is gathering, analyzing and displaying the
performance metrics. Diagnostics displays the performance metrics in real-
time as the load test is executing.

The performance metrics that Diagnostics displays include latency and
throughput for transactions, server requests, layers, and virtual machines.
Diagnostics also keeps track of exceptions, and timeouts. Diagnostics
displays the performance metrics in graphs and charts that allow the user to
drill down into the results to discover the method calls that contributed to
the poorly performing processes.
8

Chapter 1 • Mercury Diagnostics for J2EE & .NET Product Overview
Note: The LoadRunner Web Breakdown and Database Breakdown graphs
can provide you with additional performance metrics to enhance your
understanding of your applications performance characteristics. For more
information on these graphs, refer to the LoadRunner Analysis User’s Guide.

Diagnostics for J2EE & .NET uses the following screens to display your
application’s performance metrics:

➤ Transaction Analysis - See “Analyzing Performance with the Transactions
Screen” on page 224.

➤ Layer Breakdown - See “Analyzing Performance with the Server Request
Screens” on page 229.

➤ Server Request Breakdown - See “Analyzing Performance with the Server
Request Screens” on page 229

➤ Call Profile - See “Analyzing Performance with the Aggregate Profile Screen”
on page 247.

➤ Virtual Machine - See “Analyzing Performance with the Virtual Machines
Screen” on page 241.

➤ Summary - See “Analyzing Performance Using the Diagnostics Overview
Screen” on page 220.
9

9

Part I • Introduction
10

Part II

Installation and Configuration of
Diagnostics for J2EE & .NET Components

12

13

2
Preparing to Install Mercury Diagnostics
for J2EE & .NET

This chapter provides you with the information that helps you to plan and
prepare for the installation and configuration of the Diagnostics for J2EE &
.NET components.

The chapter includes the following sections:

➤ Recommended Deployment Configuration

➤ Host System Requirements for the Diagnostics Components

➤ Other Considerations Before Installing the Diagnostics Components

➤ Recommended Order of Installation

➤ Planning the Installation

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

14

Recommended Deployment Configuration

This section provides you with a recommended deployment configuration
for LoadRunner 8.0 and Diagnostics for J2EE & .NET. More detailed
instructions about the installation and configuration of the Diagnostics
components are provided in the chapters of this document that follow.

The following diagram shows a typical deployment configuration for 10 to
15 VMs, with a moderate load using a total of three host machines. For
deployments with larger loads or more VMs you may want to consider
hosting the Mediator on its own machine. The deployment that will work
best for you is dependent upon the number of VMs that you are monitoring
and the size of the load that you are running. This diagram has been
provided as a reference for you as you review the order of installation.

Chapter 2 • Preparing to Install Mercury Diagnostics for J2EE & .NET

15

15

Host System Requirements for the Diagnostics Components

When you select the machines that will host the Diagnostics components,
make sure that the host machine’s system configuration will support the
processing load and the number of applications that you will be monitoring.

The following section describes the recommended system configurations for
hosting the Mercury Diagnostics for J2EE & .NET components. Please refer
to the deployment diagram in the previous section to understand the host
machines that are described in this section.

LoadRunner 8.0

See the LoadRunner 8.0 installation guides for information about the system
configuration for this machine.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

16

Commander Host Machine

The system requirements presented for the Commander are for a large
implementation.

Mediator Host Machine

The system requirements described in this section are applicable for
deployments where the Mediator is the only diagnostics component that
has been installed on the Mediator host machine. The Mediator should be
installed on it own host machine when there are a large number of VMs
being monitored.

Application Host Machine

The Application host machine is the machine where you have installed the
your application and the Diagnostics Probe(s). The only requirement for the
J2EE Probe is that there be 60 MB of memory in addition to the memory
required by the system under test. For the .NET Probe there should be 10 MB
of memory in addition to the memory required by the system under test.

Computer/Processor: Windows: Dual Processor Pentium 2.4GHz

Solaris: 800MHz

Operating System: Windows 2000/2003 Server SP4

Solaris

Memory: 2 GB RAM

Free Hard Disk Space: 10 GB of disk space after installation

Computer/Processor: Windows: Dual Processor Pentium 2.4GHz

Solaris: 800MHz

Operating System: Windows 2000/2003 Server SP4

Solaris

Memory: 1 GB RAM

Free Hard Disk Space: 10 GB of disk space after installation

Chapter 2 • Preparing to Install Mercury Diagnostics for J2EE & .NET

17

17

Other Considerations Before Installing the Diagnostics
Components

Note: Before you install any of the Diagnostics components on a Windows
machine, make sure that the Start > Settings > Control Panel >
Administrative Tools > Services window is not open.

LoadRunner 8.0 Host Machine

➤ If LoadRunner 8.0 is already installed, ensure that the Controller/Console
and main Mercury LoadRunner window are closed before you install the
LoadRunner Diagnostics Add-in.

➤ The settings for the time and the time zones for the host machines for the
Diagnostics components must be consistent. You will encounter time-
difference problems if the time is not properly set.

Mercury Diagnostics Commander

➤ Do not install a Probe on the same machine as the Commander. (Note: This
recommendation applies only to a system that is experiencing a high load
from LoadRunner.)

➤ The machine that hosts the Commander must be located in the same LAN
segment as the hosts for the LoadRunner Controller/Tuning Console.

Mercury Diagnostics Mediator

➤ The Mercury Diagnostics Mediator, and each of the Probes that are expected
to be able to communicate with it, must have the same Logical LAN ID
property. For more information on setting the Logical LAN ID for the
Mediator, see “Installing the Mercury Diagnostics Mediator” on page 51, .

➤ The Mediator can be installed on the machine that is the host to the
Commander for an average size deployment. If you are monitoring a larger
number of VMs you should consider moving the Mediator to a machine
that is not the host to any other diagnostics components

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

18

Mercury Diagnostics Probe for J2EE

➤ The J2EE Probe, and the Mediator that it is to communicate with, must have
the same Logical LAN ID property. For more information on setting the
Logical LAN ID for probes, see the appropriate section of the Probes
Installation, on page 81.

➤ The J2EE Probe is installed on the same machine as the Java application
under test.

Mercury Diagnostics Probe for .NET

➤ The .NET Probe, and the Mediator with which it is to communicate, must
have the same Logical LAN ID property. For more information on setting the
Logical LAN ID for probes, see the appropriate section of the Probe
Installation, on page 81.

➤ The .NET Probe is installed on the same machine as the .NET application
under test.

Recommended Order of Installation

Careful planning and preparation for installing the components of
Diagnostics for J2EE & .NET can enable you to complete the installation and
configuration steps quickly and help you to avoid complications and errors.

Before beginning the preparations for the installation, review the following
information to get an overview of the entire installation and configuration
process.

Note: The order of the installation presented here is the recommended order
of installation for the products and components. Deviation from this
recommended order of installation could increase the complexity of the
installation process and produce unpredictable results.

Chapter 2 • Preparing to Install Mercury Diagnostics for J2EE & .NET

19

19

 1 Check the system requirements and installation considerations.

See “Host System Requirements for the Diagnostics Components” on
page 15.

 2 Install the Mercury Diagnostics for J2EE & .NET components.

➤ Install the Commander - see Chapter 3, “Installing the Mercury
Diagnostics Commander.”

➤ Install the LoadRunner Add-in - see Chapter 4, “Installing LoadRunner
8.0 and the LoadRunner Diagnostics Add-in.”

➤ Install the Mediator - see Chapter 5, “Installing the Mercury Diagnostics
Mediator.”

➤ Install the Probe -

For a J2EE environment, see Chapter 6, “Installing the Mercury
Diagnostics Probe for J2EE.”

For a .NET environment, see Chapter 7, “Installing the Mercury
Diagnostics Probe for .NET.”

 3 Configure the application server to work with the probes.

See Chapter 8, “Configuring the J2EE Probe and Application Server.”

 4 Specify the layers that you want to view.

See “Specifying Layers to Instrument” on page 349.

 5 Configure LoadRunner to use Mercury Diagnostics for J2EE & .NET.

See Chapter 9, “Setting Up Diagnostics for J2EE & .NET on LoadRunner 8.0.”

Once you have set up Diagnostics for J2EE & .NET and created and initiated
your load test in LoadRunner, you can view the performance of your
J2EE/.NET applications as the load test executes. For details, see Part III,
“Using Mercury Diagnostics for J2EE & .NET.”

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

20

Planning the Installation

Before you start installing the Diagnostics components, you should carefully
plan the configuration the Diagnostics components and the machines that
will host them. You should also consider the location of the component
host machines within your network topography.

The following tables have been provided to help you plan the installation of
the Diagnostics components.

LoadRunner Diagnostics Add-in for J2EE & .NET

Install the Diagnostics Add-in on the LoadRunner host machine to enable
the Diagnostics for J2EE & .NET features.

After you have installed the LoadRunner Add-in, you configure LoadRunner
so that it can work the Diagnostics components. To configure LoadRunner
you must be able to provide the following information. See “Setting Up
Diagnostics for J2EE & .NET on LoadRunner 8.0” on page 193 for detailed
instructions.

Information Required Where to find it Value

Commander Host name or
IP address

System Health Monitor

Commander Port number System Health Monitor

Default value is 2006

Chapter 2 • Preparing to Install Mercury Diagnostics for J2EE & .NET

21

21

Mediator

Information Required Where to find it Value

Commander Host name or
IP address

System Health Monitor

Commander Host Port
number

System Health Monitor

Default value is 2006

Name of Mercury
product(s) that will use
the Mediator.

Choose according to
product license.

• Performance Center
8.0/LoadRunner 8.0

• Mercury Business
Availability Center
5.0

Logical LAN ID This is user defined at
the time that the
Mediator or Probes are
installed

The Mediator must have
the same LAN ID as the
Probes that are expected
to be able to
communicate with it.

Will the Mediator be used
in a Mercury Managed
Services environment?

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

22

J2EE Probe

Information Required Where to find it Value

Name of Mercury
product(s) that will use
the Probe.

Choose according to
product license.

• Performance Center
8.0/LoadRunner 8.0

• Mercury Business
Availability Center
5.0

• Deep Diagnostics

Probe name A unique string;
Created by user.
Important: The name of
the probe should
indicate the probe type.
For example:
J2EEProbe1

Logical LAN ID This is user defined at
the time that the
Mediator or Probes are
installed

The Probe must have
the same LAN ID as the
Mediators that are
expected to be able to
communicate with it.

Commander Host name or
IP address

System Health Monitor

Commander Host Port
number

System Health Monitor

Default value is 2006

Mediator Host name or IP
address

System Health Monitor

Mediator Host Port
number

System Health Monitor

Default value is 2612

Chapter 2 • Preparing to Install Mercury Diagnostics for J2EE & .NET

23

23

Application Server that
the J2EE Probe will be
monitoring

The host system
administrator. Choose
one of the following:

• weblogic6x

• weblogic7x

• weblogic8x

• websphere4x

• websphere5x

• oracle9ias

• oracle10g

• jboss3x

• SAP Web AS 6.40

Application Server
configuration properties

The host system
administrator.

The details will vary
according to the
application sever that
you are using.

Deep Diagnostics install
directory

(Only if you will be using
Deep Diagnostics.)

The location where the
Deep Diagnostics Server
was installed.

Deep Diagnostics
Application Definition
Name

(Only if you will be using
Deep Diagnostics.)

See the Deep
Diagnostics User
Documentation for the
location of this
information.

Information Required Where to find it Value

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

24

Location of the JRE
executable

The host system
administrator.

This will depend upon
the type of application
server you are
configuring.
See “Running the JRE
Instrumenter” on
page 135.

Information Required Where to find it Value

Chapter 2 • Preparing to Install Mercury Diagnostics for J2EE & .NET

25

25

.NET Probe

Information Required Where to find it Value

Probe ID Created dynamically by
the Probe at runtime.

Default value:

<AppDomainName>.NET

LAN ID This is user defined at the
time that the Mediator or
Probes are installed

The Probe must have the
same LAN ID as the
Mediators that are
expected to be able to
communicate with it.

Web Port Min System Administrator.

The lowest port number
in a range of ports that
the commander can use
to communicate with its
probes.

Default value: 35000

Web Port Max System Administrator

The highest port number
in a range of ports that
the commander can use
to communicate with its
probes.

Default value: 35100

Diagnostics Commander
URL

URL that the probe will
use to register with the
Commander

Commander Host name or
IP address

System Health Monitor

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

26

Commander Host Port
number

System Health Monitor

Default value is 2006

Mediator Host name or IP
address

System Health Monitor

Mediator Host Port
number

System Health Monitor

Default value is 2612

Information Required Where to find it Value

27

3
Installing the Mercury Diagnostics
Commander

This chapter describes how to install the Mercury Diagnostics Commander
on Windows and UNIX machines.

The Commander is the first Diagnostics component installed because it
contains the processes that facilitate communication between LoadRunner
8.0 and the other Diagnostics components. The Commander also contains
the System Health Monitor that allows you to verify the status and
configuration of the Diagnostics components as you proceed with the
installation process.

This chapter contains the following sections:

➤ Installing the Commander on a Windows Machine

➤ Installing the Commander on a UNIX Machine

➤ Verifying the Commander Installation

➤ Starting and Stopping the Commander

➤ Determining the Version of the Commander that is Installed

➤ Uninstalling the Commander

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

28

Installing the Commander on a Windows Machine

To install the Commander on a Windows machine:

 1 Insert the Mercury Diagnostics for J2EE & .NET CD-ROM into a CD-ROM
drive.

 2 The installer should start automatically.

If the installer does not start, run the installer from the Windows Start
menu. Click Start > Run and then type the location of your CD-ROM drive
followed by the name of the installer program, setup.exe.

For example, if your CD-ROM drive letter is M, type:

m:\setup.exe

Chapter 3 • Installing the Mercury Diagnostics Commander

29

29

 3 The installer displays the Mercury Diagnostics for J2EE & .NET main
installation menu.

Navigate to the installer for the Commander by clicking the Mercury
Diagnostics Components link from the menu.

Select the installer for the Commander to initiate the installation process.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

30

 4 The installer displays the software license agreement.

Read the agreement. To accept, select “I accept the terms of the license
agreement”.

Click Next to proceed with the installation.

Chapter 3 • Installing the Mercury Diagnostics Commander

31

31

 5 The installer displays the dialog that allows you to specify the path to the
directory where the Commander is to be installed

Ensure that the location where you want the Commander to be installed has
been specified in the Directory Name text box either by typing in the path
to the desired installation directory or by clicking Browse to navigate to the
desired location.

Click Next when you are ready to proceed with the installation.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

32

 6 The installer displays the Pre-Installation Summary Information dialog so
that you can review the installation options that you have selected and
make any changes before the component is actually installed.

Click Next to install the Commander.

When the installation is complete, the Commander is started and an icon is
placed on the task bar.

Chapter 3 • Installing the Mercury Diagnostics Commander

33

33

 7 The installer displays the Post Installation Status dialog to let you know how
the installation processing went.

Click Finish to close the installer.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

34

Installing the Commander on a UNIX Machine

Diagnostics Commander installers have been provided for several UNIX
machines. The following instructions provide you with the information that
helps you to install the Diagnostics Commander in most UNIX
environments using either a graphics based installation or a console mode
installation.

The installer screens that you will see in a graphics based installation are the
same as those documented for the Windows installer in “Installing the
Commander on a Windows Machine” on page 28.

Note: The UNIX installers are on the CD labeled Mercury Diagnostics for J2EE
and .NET, v3.5 - Supporting Mercury LoadRunner 8.0 - Unix Installation CD-
ROM, that you received with your Mercury Diagnostics for J2EE & .NET
package. Choose the appropriate installer for your environment and copy it
to the UNIX machine that will host the Commander.

To install the Commander on a UNIX machine:

Note: The following instructions and screen shots were made for a
Commander installation on a Solaris machine. These same instructions
should apply for the other certified UNIX platforms.

 1 Insert the Mercury Diagnostics for J2EE & .NET CD and locate the
Commander/<UNIX version> directory (for example, Commander/Solaris).

 2 Copy the installer that is appropriate for your environment to the machine
where the Commander is to be installed.

 3 Change the mode of the installer file to make it executable.

Chapter 3 • Installing the Mercury Diagnostics Commander

35

35

 4 Execute the installer.

• To run the installer in console mode enter the following at the UNIX
command prompt:

The installer will start and display the license agreement as shown in the
following step.

• To run the installer in the graphical mode enter the following at the
UNIX command prompt:

The installer will display the same screens that are displayed for the
Windows installer as shown in “Installing the Commander on a
Windows Machine” on page 28.

./install.sh -console

./install.sh

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

36

 5 The installer begins by displaying the software license agreement.

Read the agreement.

As you read, you may press Enter to move to the next page of text or type q
to jump to the end of the license agreement.

Enter 1 to accept the terms of the license agreement and then enter 0 to
accept your selection.

Enter 1 to continue.

 6 The installer prompts you to specify the path to the directory where the
Commander is to be installed.

Specify the directory where you want the Commander to be installed or
press Enter to accept the default directory.

Enter 1 to continue.

Chapter 3 • Installing the Mercury Diagnostics Commander

37

37

 7 The installer displays the Pre-Installation Summary Information so that you
can review the installation options that you have selected and make any
changes before the component is actually installed.

Enter 1 to start the installation of the Commander. If you would like to
make changes to the options that you selected enter 2 to return the previous
prompts.

 8 The installer begins installing the Commander and displays a progress bar
and status messages so that you can monitor the processing.

 9 After installation is complete, type 3 to exit the installer.

You must start the Commander after the installer has finished. See “Starting
and Stopping the Commander” on page 39 for the instructions.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

38

Verifying the Commander Installation

To verify that the Commander has been installed correctly and that it has
started properly, use the System Health Monitor. For instructions, see
Appendix A, “Using the System Health Monitor.”

If you have been following the recommended installation sequence, after
you have installed the Commander you will be able to use the System
Health Monitor to verify that the Commander was installed and started.

The Commander should be the only component displayed on the System
Health Monitor as shown in the following screen image:

The System Health Monitor is part of the Commander component. If you
are unable to access the System Health Monitor after the Commander has
been installed, then either you are entering an incorrect URL or the
Commander did not start. See “Starting and Stopping the Commander” on
page 39 for instructions on starting the Commander.

Chapter 3 • Installing the Mercury Diagnostics Commander

39

39

You can leave the System Health Monitor displayed in your browser to
verify the progress of the component installations and to identify and
troubleshoot any problems that you encounter as you proceed through the
rest of the component installations.

Starting and Stopping the Commander

Instructions for a Windows Machine

To start the Commander on a Windows machine:

Select

Start > Programs > Mercury Diagnostics Commander >
Start Mercury Diagnostics Commander

To stop the Commander on a Windows machine:

Select

Start > Programs > Mercury Diagnostics Commander >
Stop Mercury Diagnostics Commander

Instructions for a Solaris Machine

To start the Commander on a Solaris machine:

Use daemon_setup with the -install option as in the following example:

To stop the Commander on a Solaris machine:

Use daemon_setup with the -remove option as in the following example:

$>./daemon_setup -install

$>./daemon_setup -remove

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

40

Determining the Version of the Commander that is
Installed

When you are requesting support, it is useful to know the version of the
Diagnostics component that you have a question about.

To determine the version of the Commander:

Locate the version file <commander_install_dir>\version.txt. The file
contains the 4 digit version number, as well as the build number.

Note: The version of the Diagnostics Commander and the version of the
LoadRunner Diagnostics Add-In must be exactly the same. See“Version
Mismatch Between Diagnostics Commander and LoadRunner Add-In” on
page 293 for more information.

Uninstalling the Commander

To uninstall the Diagnostics Commander from a Windows machine

➤ On a Windows machine execute uninstall.exe which is located in the
<commander_install_dir>_uninst directory.

➤ You can also uninstall the Commander from the Start menu by selecting
Start > Programs > Mercury Diagnostics Commander > Uninstall Mercury
Diagnostics Commander.

To uninstall the Diagnostics Commander from a Solaris machine:

 1 Locate the uninstall executable in the <commander_install_dir>_uninst
directory.

 2 Execute uninstall with the -console option as in the following example:

$>./uninstall -console

41

4
Installing LoadRunner 8.0 and the
LoadRunner Diagnostics Add-in

Once you have installed the Diagnostics Commander, you must install the
Mercury LoadRunner Diagnostics Add-in for J2EE & .NET to enable the
Diagnostics for J2EE & .NET functionality within LoadRunner.

Note: You must Install LoadRunner 8.0 before you install the Diagnostics
Add-in.

This chapter contains the following sections:

➤ Understanding the LoadRunner Diagnostics Add-in

➤ Installing Mercury LoadRunner 8.0

➤ Installing the Mercury LoadRunner Diagnostics Add-in for J2EE & .NET

➤ Configuring LoadRunner for Diagnostics for J2EE & .NET

Understanding the LoadRunner Diagnostics Add-in

The LoadRunner Diagnostics Add-in enables you to access Diagnostics
functionality from within LoadRunner. Once the LoadRunner Diagnostics
Add-in has been installed, you can configure LoadRunner to connect to the
Diagnostics components, use the System Health Monitor to check on the
status of the Diagnostics components, and use the Diagnostics components
to gather performance metrics during your load tests.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

42

Note: The version of the Diagnostics Commander and the version of the
LoadRunner Diagnostics Add-In must be exactly the same. See “Version
Mismatch Between Diagnostics Commander and LoadRunner Add-In” on
page 293 for more information.

Installing Mercury LoadRunner 8.0

If you have not yet installed LoadRunner, you must install it before you can
install the Mercury LoadRunner Diagnostics Add-in for J2EE & .NET. For
instructions on installing LoadRunner, refer to the Mercury LoadRunner
Installation Guide.

Installing the Mercury LoadRunner Diagnostics Add-in
for J2EE & .NET

The Diagnostics Add-in must be installed on the host machine for the
LoadRunner Controller.

Note: If LoadRunner Analysis is not installed on the same machine as the
LoadRunner Controller or Tuning Module, you must also install the
Diagnostics Add-in on the host machine for LoadRunner Analysis.

To install the LoadRunner Diagnostics Add-in:

 1 Insert the Mercury Diagnostics for J2EE & .NET CD-ROM into a CD-ROM
drive.

Chapter 4 • Installing LoadRunner 8.0 and the LoadRunner Diagnostics Add-in

43

43

 2 If the installer does not automatically start, select Start > Run and then enter
the mapping of your CD-ROM drive, followed by setup.exe.

For example, if your CD-ROM drive is mapped to the “m” drive, enter:

 3 The Mercury Diagnostics for J2EE & .NET Setup program begins, and
displays the main installation screen.

Click Mercury LoadRunner Diagnostics Add-in for J2EE & .NET

m:\setup.exe

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

44

 4 The installer displays the Mercury Diagnostics for J2EE & .NET for
LoadRunner 8.0 Setup window to ask you where you would like the installer
to extract the files that it will use.

Ensure that the location where you want the installer files to be saved has
been specified in the Save files in folder text box either by typing in the
path to the desired installation directory or by clicking Change to navigate
to the desired location.

Click Next when you are ready to proceed with the installation.

Chapter 4 • Installing LoadRunner 8.0 and the LoadRunner Diagnostics Add-in

45

45

 5 The installer displays a window with a progress bar so that you can monitor
the progress of the file extraction process.

Click Next when you are ready to proceed with the installation.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

46

 6 The installer for the Diagnostics Add-in begins to execute by displaying the
software license agreement.

Read the agreement. To accept, click Install.

Chapter 4 • Installing LoadRunner 8.0 and the LoadRunner Diagnostics Add-in

47

47

 7 When the installer has completed the installation process it displays a
confirmation message.

Click Finish to exit the installer.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

48

 8 The installer displays the Readme for the Diagnostics Add-in your browser.

Note: If you are installing the LoadRunner Diagnostics Add-in on a
Windows XP machine with service pack 1 and Windows XP Hotfix Q328310
applied, you will receive an Application Error message for iKernal.exe. This
message is issued because the Windows XP Hotfix Q328310 contains a
Win32 API that does not execute as expected by the InstallShield engine. To
resolve this problem, see the recommended solutions at the Java Technology
Help web site, http://java.com/en/download/help/ikernel.jsp.

Chapter 4 • Installing LoadRunner 8.0 and the LoadRunner Diagnostics Add-in

49

49

Configuring LoadRunner for Diagnostics for J2EE & .NET

Before you can use the Diagnostics features from within LoadRunner you
must make some configuration settings that will allow LoadRunner to
communicate with the Diagnostics components. See “Setting Up
Diagnostics for J2EE & .NET on LoadRunner 8.0” on page 193 for the
instructions for configuring LoadRunner.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

50

51

5
Installing the Mercury Diagnostics
Mediator

This chapter describes how to install the Mercury Diagnostics Mediator on
Windows and UNIX machines that will host the Mediator.

The chapter contains the following sections:

➤ Installing the Mediator on a Windows Machine

➤ Installing the Mediator on a UNIX Machine

➤ Verifying the Mediator Installation

➤ Troubleshooting Mediator Issues

➤ Configuring the Mediator

➤ Starting and Stopping Mediators

➤ Determining the Version of the Installed Mediator

➤ Uninstalling the Mediator

➤ Upgrading to a Newer Version of the Mediator

Installing the Mediator on a Windows Machine

To install the Mercury Diagnostics Mediator on a Windows machine:

 1 Insert the Mercury Diagnostics for J2EE & .NET CD-ROM into a CD-ROM
drive.

 2 The installer should start automatically.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

52

If the installer does not start, run the installer from the Windows Start
menu. Click Start > Run and then type the location of your CD-ROM drive
followed by the name of the installer program, setup.exe.

For example, if your CD-ROM drive letter is M, type:

 3 The installer displays the Mercury Diagnostics for J2EE & .NET main
installation menu.

Navigate to the installer for the Mediator by clicking the Mercury
Diagnostics Components link from the menu.

Select the installer for the Mediator to initiate the installation process.

m:\setup.exe

Chapter 5 • Installing the Mercury Diagnostics Mediator

53

53

 4 The installer displays the software license agreement.

Read the agreement and select “I accept the terms of the license agreement”
to accept the agreement.

Click Next to proceed with the installation.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

54

 5 The installer displays the dialog where you specify the path to the directory
where you want the Mediator to be installed.

Ensure that the location where you want the Mediator to be installed has
been specified in the Directory Name text box either by typing in the path
to the desired installation directory or by clicking Browse to navigate to the
desired location.

Click Next when you are ready to proceed with the installation.

Chapter 5 • Installing the Mercury Diagnostics Mediator

55

55

 6 The next window asks you for information about the Commander that
enables the communication between the Mediator and the Commander.

➤ Enter the host name or IP address of the machine on which the
Commander is installed.

Note: You should specify the fully qualified host name; not just the simple
host name. In a mixed OS environment where UNIX is one of the systems
this is essential for proper network routing.

For information about ensuring that the correct Mediator host name is used
when there is a firewall or NAT in place or where your host machine is
multi-homed see “Uninstalling the Mediator” on page 69.

➤ Enter the Commander’s port number.

The default port number is 2006. If you specified a different port number
when installing the Commander, specify the same port number here.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

56

➤ Indicate whether you want to perform a connectivity check to make sure
that the Commander’s host name can be resolved. The connectivity
check will let you know right away if you have made an error in the
information that you provided about the Commander, or if there is a
communication problem between the Commander’s host machine and
the Mediator’s host machine.

Click Next when you are ready to proceed with the installation.

Note: If the Commander’s host name cannot be resolved the installer will
display an error message. If the host name is resolved, the Logical LAN
Identification window opens.

 7 The installer displays the dialog that allows you to select the applications
that the Mediator is being installed to work with.

Select Performance Center 8.0/LoadRunner 8.0.

Chapter 5 • Installing the Mercury Diagnostics Mediator

57

57

Note: This installation guide is written assuming that you are installing the
Mediator for use with LoadRunner 8.0. If you are installing the Mediator for
use with the Mercury Business Availability Center 5.0, please see the
installation guide for that product for further instructions on installing the
Mediator.

Click Next to proceed with the installation.

 8 The installer displays the Logical LAN ID dialog.

The network traffic between the Probe and the Mediator is high-volume. For
this reason, the Mediator and the Probes that communicate with it must be
located on the same LAN. The Logical LAN ID is not a physical LAN ID. The
value that you enter for the Mediator and each of the probes that you expect
to be able to work with the Mediator must be exactly the same.

Enter the ID of the LAN on which the Probe and Mediator are running in to
the Logical LAN ID text box or accept the default.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

58

Note: The Logical LAN ID is case-sensitive.

Click Next when you are ready to proceed with the installation.

 9 The installer then displays a dialog with the Pre Installation Summary
Information for your review.

Review the information to make sure that you are satisfied. Click Back to
make any changes, or click Next to proceed with the installation.

Chapter 5 • Installing the Mercury Diagnostics Mediator

59

59

 10 The installer displays an installation status message to let you know that the
installation was successfully completed.

Click Finish to end the installation.

When the installation is complete, the Mediator starts automatically and an
icon appears on the task bar.

 11 Verify that the Mediator is working properly using the System Health
Monitor. See “Verifying the Mediator Installation” on page 67.

 12 Start the Mediator. For details, see “Starting and Stopping Mediators” on
page 68.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

60

Installing the Mediator on a UNIX Machine

Diagnostics Mediator installers have been provided for several UNIX
machines. The following instructions provide you with the information that
helps you to install the Mediator in most UNIX environments using either a
graphics based installation or a console mode installation.

The installer screens that you will see in a graphics based installation are the
same as those documented for the Windows installer in “Installing the
Mediator on a Windows Machine” on page 51.

Note: The UNIX installers are on the CD labeled Mercury Diagnostics for J2EE
& .NET 3.5 - Supporting Mercury LoadRunner 8.0 - UNIX Installation CD-ROM,
that you received with your Mercury Diagnostics for J2EE & .NET package.
The Probe directory includes folders for AIX, Generic, HPUX, LINUX, and
Solaris. Chose the appropriate installer for your environment and copy it to
the UNIX machine that will host the Mediator.

To install a Mediator on a UNIX machine in console mode:

Note: The following instructions and screen shots were made for a Mediator
installation on a Solaris machine. These same instructions should apply for
the other certified UNIX platforms.

 1 Insert the Mercury Diagnostics for J2EE & .NET CD and locate the
Mediator/<UNIX version> directory (for example, Mediator/Solaris).

 2 Copy the installer that is appropriate for your environment to the machine
where the Mediator is to be installed.

 3 Change the mode of the installer file to make it executable.

 4 Execute the installer.

Chapter 5 • Installing the Mercury Diagnostics Mediator

61

61

• To run the installer in console mode enter the following at the UNIX
command prompt:

The installer will start and display the license agreement as shown in the
following step.

• To run the installer in the graphical mode enter the following at the
UNIX command prompt:

The installer will display the same screens that are displayed for the
Windows installer as shown in “Installing the Mediator on a Windows
Machine” on page 51.

 5 The installer beings by displaying the software license agreement.

./install.sh -console

./install.sh

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

62

Read the agreement.

As you read you may press Enter to move to the next page of text or type q
to jump to the end of the license agreement.

Enter 1 to accept the terms of the license agreement and then enter 0 to
accept your selection.

Enter 1 to continue.

 6 The installer prompts you to specify the path to the directory where the
Mediator is to be installed.

Specify the directory where you want the Mediator to be installed or press
Enter to accept the default directory.

Enter 1 to continue.

Chapter 5 • Installing the Mercury Diagnostics Mediator

63

63

 7 The installer asks you for information about the Commander that enables
the communication between the Mediator and the Commander.

➤ Enter the host name or IP address of the machine on which the
Commander is installed.

Note: You should specify the fully qualified host name; not just the simple
host name. In a mixed OS environment where UNIX is one of the systems
this is essential for proper network routing.

For information about ensuring that the correct Mediator host name is used
when there is a firewall or NAT in place or where your host machine is
multi-homed see “Uninstalling the Mediator” on page 69.

➤ Enter the Commander’s port number.

The default port number is 2006. If you specified a different port number
when installing the Commander, specify the same port number here.

➤ Enter 1 to indicate that you want to perform a connectivity check to
make sure that the Commander’s host name can be resolved. The
connectivity check will let you know right away if you have made an
error in the information that you provided about the Commander, or if
there is a communication problem between the Commander’s host
machine and the Mediator’s host machine.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

64

➤ Enter 0 to accept the selection that you made and then enter 1 to
continue.

 8 The installer then prompts you to indicate the application with which the
Mediator is being installed to work

Enter the 1 to select LoadRunner 8.0 and then enter 0 to confirm your
choice.

Note: This installation guide is written assuming that you are installing the
Mediator for LoadRunner 8.0. If you are installing this Mediator for use with
the Mercury Business Availability Center 5.0, please see the installation
guide for that product for further instructions on installing the Mediator.

Enter 1 to continue.

Chapter 5 • Installing the Mercury Diagnostics Mediator

65

65

 9 The installer then prompts you for the Logical LAN ID.

The network traffic between the Mediator and the Probes is high volume.
For this reason the Mediator and the Probes that communicate with it must
be located on the same LAN. The Logical LAN ID is not a physical LAN ID.
The value that you enter for the Mediator and each of the Probes that you
expect to be able to work with the Mediator must be exactly the same.

Note: The Logical LAN ID is case-sensitive.

Enter the Logical LAN ID or accept the default enter 1 to continue.

 10 The installer displays the Pre-Installation Summary Information so that you
can review the installation options that you have selected and make any
changes before the component is actually installed.

Enter 1 to start the installation of the Mediator. If you would like to make
changes to the options that you selected enter 2 to return the previous
prompts.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

66

 11 The installer begins installing the Commander and displays a progress bar
and status messages so that you can monitor the processing.

 12 After installation is complete, type 3 to exit the procedure.

 13 Verify that the Mediator is working properly using the System Health
Monitor. See “Verifying the Mediator Installation” on page 67.

 14 Start the Mediator. For details, see “Starting and Stopping Mediators” on
page 68.

Chapter 5 • Installing the Mercury Diagnostics Mediator

67

67

Verifying the Mediator Installation

To verify that the Mediator has been installed correctly and that it has been
able to establish connectivity with the other Diagnostics components, use
the System Health Monitor. For instructions, see Appendix A, “Using the
System Health Monitor.”

If you have been following the recommended installation sequence, after
you have installed the Mediator you will be able to verify the following:

➤ The Mediator was successfully installed and it has successfully established
connectivity to the Commander.

The new Mediator should be shown as a child of the Commander on the
System Health Monitor.as shown in the following screen image.:

You should leave the System Health Monitor displayed in your browser. You
will be using it to verify the progress of the component installation and to
identify and troubleshoot any problems that you encounter as you proceed
through the rest of the component installations.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

68

Troubleshooting Mediator Issues

To troubleshoot Mediator problems use the System Health Monitor as
explained in the preceding section, Verifying the Mediator Installation. For
additional information see Appendix A, “Using the System Health Monitor.”

Configuring the Mediator

The Mediator is installed with a default configuration that should enable it
to work properly in most situations. You may encounter situations where
changing the configuration of the Mediator could enable better Mediator
performance or allow it to work in unusual situations.

For information on configuring the Mediator, see Appendix C, “Advanced
Diagnostics Mediator Configuration.”

Starting and Stopping Mediators

Instructions for a Windows Machine

To start a Mediator on a Windows machine:

Select

Start > Programs > Mercury Diagnostics Mediator >
Start Mercury Diagnostics Mediator

To stop a Mediator on a Windows machine:

Select

Start > Programs > Mercury Diagnostics Mediator >
Stop Mercury Diagnostics Mediator

Chapter 5 • Installing the Mercury Diagnostics Mediator

69

69

Instructions for Solaris

To start a Mediator on a Solaris machine:

 1 Locate the daemon_setup executable in the <Mediator_Install_Dir>.bin
directory.

 2 Use daemon_setup with the -install option as in the following example:

To stop a Mediator on a Solaris machine:

 1 Locate the daemon_setup executable in the <Mediator_Install_Dir>.bin
directory.

 2 Use daemon_setup with the -remove option as in the following example:

Determining the Version of the Installed Mediator

When you are requesting support it is a good idea to know the version of the
Diagnostics component that you have a question about.

To determine the Mediator version:

Locate the version file <mediator_install_dir>\version.txt. The file contains
the 4 digit version number, as well as the build number.

Uninstalling the Mediator

To uninstall the Diagnostics Mediator from a Windows machine

➤ On a Windows machine execute uninstall.exe which is located in the
<mediator_install_dir>_uninst directory.

➤ You can also uninstall the Mediator from the Start menu by selecting

Start > Programs > Mercury Diagnostics Mediator >
Uninstall Mercury Diagnostics Mediator

$>./daemon_setup -install

$>./daemon_setup -remove

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

70

To uninstall the Diagnostics Mediator from a Solaris machine:

 1 Locate the uninstall* executable in the <mediator_install_dir>_uninst
directory.

 2 Execute uninstall* with the -console option as in the following example:

Upgrading to a Newer Version of the Mediator

The following instructions will guide you in upgrading a Mediator
installation to a newer version of the Mercury Diagnostics Mediator. Be sure
to read the entire set of instructions and the sections immediately following
before you begin the installation process. This will ensure that you
understand the process and your options for upgrading the Mediators in
your configuration.

Note: The Mediator installer does not upgrade existing installations of the
Mediator. The instructions that follow are manual steps that you must take
to make sure that the upgrade works as expected.

Note: The current version of the Mediator has been designed to work with
the current versions of the Diagnostics components that are part of the
LoadRunner 8.0 installation and will not work with earlier versions of these
products. The previous versions of the Mediator will not work with the
current versions of the above mentioned Mercury products.

To upgrade the Mediator to a newer version:

 1 Shutdown the Probes that are associated with the existing Mediator.

 2 Shutdown all the previous version of the Mediator, making sure to do so as
the same user id that started them.

$>./uninstall -console

Chapter 5 • Installing the Mercury Diagnostics Mediator

71

71

 3 Uninstall the previous version of the Mediator, making sure to do so as the
same user id that installed them. See “Uninstalling the Mediator” on
page 69.

Be sure to reboot your machine if the uninstaller instructs you to do so.

 4 Uninstall the previous versions of the Probe from those machines that you
want to install the new Probe so that the applications performance data will
be processed by the new Mediator. See “Upgrading to a Newer Version of the
J2EE Probe” on page 112.

 5 Install the new version of the Mediators and Probes as instructed in this
guide in Chapter 2, “Preparing to Install Mercury Diagnostics for J2EE &
.NET”.

Phased Upgrade

If you do not want to shut down all of the Probes at once you can use the
same instructions provided above leaving the Probes that you do not want
to shut down running. The Probes that are still running will report errors
when the Mediator is shut down; but the application server should continue
running normally.

Running Two Versions of the Mediator Side-by-side

You can run 3.0 & 3.5 versions of the Mediator side-by-side on the same
host machine while you work through your upgrade plan. To do this you
must install the 3.5 version of the Mediator in a different installation
directory than the earlier version and you must make sure that the new
Mediator is not configured to use the same port as the old mediator.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

72

73

6
Installing the Mercury Diagnostics Probe
for J2EE

This chapter describes how to install a Mercury Diagnostics Probe for J2EE
(J2EE Probe) on Windows machines, UNIX machines, and z/OS mainframe
machines. Directions are also provided for installing the J2EE Probe using a
generic installer that enable you to install the probe on other platforms.

This chapter contains the following sections:

➤ Installing the J2EE Probe on a Windows Machine

➤ Installing the J2EE Probe on a UNIX Machine

➤ Installing the J2EE Probe on a z/OS Mainframe

➤ Installing the J2EE Probe Using the Generic UNIX Installer

➤ Verifying the J2EE Probe Installation

➤ Overriding the Default Probe Host Machine Name

➤ Using the J2EE Probe with Deep Diagnostics

➤ Determining the Version of the J2EE Probe that is Installed

➤ Upgrading to a Newer Version of the J2EE Probe

➤ Uninstalling the J2EE Probe

Note: After you have installed the J2EE Probe you must configure the Probe
and the application server before you can use the Probe to monitor your
application. See the instructions for configuring the J2EE Probe in
Chapter 8, “Configuring the J2EE Probe and Application Server.”

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

74

Installing the J2EE Probe on a Windows Machine

Note: The installer for Windows can be found on the CD labeled Mercury
Diagnostics for J2EE & .NET 3.5 - Supporting Mercury LoadRunner 8.0 - Windows
Installation, that you received with your Mercury Diagnostics for J2EE &
.NET package.

To install a J2EE Probe on a Windows machine:

 1 Insert the Mercury Diagnostics for J2EE & .NET CD-ROM into a CD-ROM
drive.

 2 The installer should start automatically.

If the installer does not start, run the installer from the Windows Start
menu. Click Start > Run and then type the location of your CD-ROM drive
followed by the name of the installer program, setup.exe.

For example, if your CD-ROM drive letter is M, type:

m:\setup.exe

Chapter 6 • Installing the Mercury Diagnostics Probe for J2EE

75

75

 3 The installer displays the Mercury Diagnostics for J2EE & .NET main
installation menu.

Initiate the installer for the J2EE Probe by clicking the Mercury Diagnostics
Probe for J2EE link from the menu.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

76

 4 The installer displays the software license agreement.

Read the agreement. To accept, select “I accept the terms of the license
agreement”.

Click Next to proceed with the installation.

Chapter 6 • Installing the Mercury Diagnostics Probe for J2EE

77

77

 5 The installer displays the dialog that allows you to select the Mercury
Products with which the J2EE Probe will work.

Select Performance Center 8.0/LoadRunner 8.0, and indicate whether you
intend to use the Probe to collect data for Deep Diagnostics.

Note: This installation guide is written assuming that you are installing the
J2EE Probe for use with LoadRunner 8.0. If you are installing the J2EE Probe
for use with the Mercury Business Availability Center 5.0, please see the
installation guide for that product for further instructions on installing the
Probe.

Click Next to proceed with the installation.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

78

 6 The installer displays the dialog where you specify the path to the directory
where you want the Probe to be installed.

Ensure that the location where you want the J2EE Probe to be installed has
been specified in the Directory Name text box either by typing in the path
to the desired installation directory or by clicking Browse to navigate to the
desired location.

Click Next when you are ready to proceed with the installation.

Chapter 6 • Installing the Mercury Diagnostics Probe for J2EE

79

79

 7 The installer displays the dialog where you specify the Unique Probe Name.

Enter the name that will be used to identify the Probe within Diagnostics for
J2EE & .NET. Use only the following characters: letters, digits, dash,
underscore.

You should assign a Probe Name that will enable you to recognize the
application that the Probe is monitoring and the type of probe that it is:
J2EE or .NET.

For example, the probe name for the first J2EE Probe installed that will be
monitoring an application named PetWorld could be:

 PetWorldJ2EEProbe1

Click Next when you are ready to proceed with the installation.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

80

 8 The installer displays the Mercury Diagnostics Commander Details dialog.

➤ Enter the host name or IP address of the machine on which the
Commander is installed.

➤ Enter the Commander’s port number.

The default port number is 2006. If you specified a different port number
when installing the Commander, specify the same port number here.

➤ Indicate whether you want to perform a connectivity check to make sure
that the Commander’s host name can be resolved. The connectivity
check will let you know right away if you have made an error in the
information that you provided about the Commander, or if there is a
communication problem between the Commander’s host machine and
the Probe’s host machine.

Click Next when you are ready to proceed with the installation.

Chapter 6 • Installing the Mercury Diagnostics Probe for J2EE

81

81

Note: If the Commander’s host name cannot be resolved the installer will
display an error message. If the host name is resolved, the Logical LAN
Identification window opens.

 9 The installer displays the Logical LAN ID dialog.

The network traffic between the Probe and the Mediator is high-volume. For
this reason, the Mediator and the Probes that communicate with it must be
located on the same LAN. The Logical LAN ID is not a physical LAN ID. The
value that you enter for the Mediator and each of the probes that you expect
to be able to work with the Mediator must be exactly the same.

Enter the ID of the LAN on which the Probe and Mediator are running in to
the Logical LAN ID text box or accept the default.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

82

Note: The Logical LAN ID is case-sensitive.

Click Next when you are ready to proceed with the installation.

 10 The installer displays a dialog to find out if you want to configure an
application server during the installation of the Probe.

Note: You can let the installer configure the application server now or you
can do it after the Probe has been installed using the process described in
Chapter 8, “Configuring the J2EE Probe and Application Server.”

Chapter 6 • Installing the Mercury Diagnostics Probe for J2EE

83

83

Note: If you are installing this Probe to work with SAP NetWeaver, select No
on this dialog. You will configure SAP NetWeaver manually. See
“Configuring the SAP NetWeaver Application Server” on page 179.

To request that the installer configure the application server for the Probe,
choose Yes. The installer will continue as shown in step 11.

To skip the configuration of the application server for this probe choose No.
If you chose to skip the application server configuration, the installer will
continue as shown in step 13 on page 85.

Click Next to proceed with the installation.

 11 If you chose to configure the application server in step 10, the installer
displays the Application Server Configuration window with a list of the
available application servers.

Choose the application server that you want to configure, and click Next.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

84

 12 The installer displays a dialog that requests the application server
configuration information for the application server that you selected on
the previous dialog. The fields in this dialog will vary according to the
application server that you selected.

Enter the requested information and click Next.

Chapter 6 • Installing the Mercury Diagnostics Probe for J2EE

85

85

 13 If you indicated that you will be using this Probe with Deep Diagnostics (see
step 5 on page 77), the installer asks you to enter the Deep Diagnostics
installation directory.

Enter the location where Deep Diagnostics was installed into the Deep
Diagnostics Install Directory text box or click Browse to navigate to the
location.

Click Next when you are ready to proceed with the installation.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

86

 14 This installer displays the dialog to request the Deep Diagnostics
Application Definition Name.

Enter the Deep Diagnostics Application Definition name, and click Next.

Chapter 6 • Installing the Mercury Diagnostics Probe for J2EE

87

87

 15 The installer then displays a dialog with the Pre Installation Summary
Information for your review.

Review the information to make sure that you are satisfied. Click Back to
make any changes, or click Next to proceed with the installation.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

88

 16 The installer begins the process of installing the J2EE Probe. The installer
displays a progress bar to let you know that the installation is proceeding.

Chapter 6 • Installing the Mercury Diagnostics Probe for J2EE

89

89

 17 Following the progress bar dialog, the installer displays the JDK/JRE dialog.

Enter the path to the JVM executable (java.exe) used by the application
server that you are monitoring.

For example, if you have installed WebLogic 6.1 in your D:\bea directory,
the java.exe file can be found in D:\bea\jdk131\jre\bin:

You can skip this step by selecting Skip JRE Instrumentation, and perform it
later.

Note: If you are installing this Probe to work with SAP NetWeaver, select
Skip JRE Instrumentation. You will configure SAP NetWeaver manually. See
“Configuring the SAP NetWeaver Application Server” on page 179

Click Next.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

90

Note: If you choose to skip this step now, you must run the JRE
Instrumenter manually before you can use the Probe. For instructions, see
“Verifying the J2EE Probe Installation” on page 109.

 18 The installer displays an installation status message to let you know that the
installation was successfully completed.

Click Finish to end the installation.

 19 Configure your application server so it can use the J2EE Probe. For more
information, see Chapter 8, “Configuring the J2EE Probe and Application
Server.”

 20 Configure the J2EE Probe to collect data for Deep Diagnostics. For more
information, see “Configuring the J2EE Probe and Application Server for
Deep Diagnostics” on page 346.

Chapter 6 • Installing the Mercury Diagnostics Probe for J2EE

91

91

Installing the J2EE Probe on a UNIX Machine

J2EE Probe installers have been provided for several UNIX platforms. The
following instructions provide you with the information that helps you to
install the J2EE Probe in most UNIX environments using either a graphics
based installation or a console mode installation.

The installer screens that you will see in a graphics based installation are the
same as those documented for the Windows installer in “Installing the J2EE
Probe on a Windows Machine” on page 74.

In some instances, you may not be able to use the regular Unix installers. In
these cases, you should use the Generic installer as described in “Installing
the J2EE Probe Using the Generic UNIX Installer” on page 108.

Note: The UNIX installers are on the CD labeled Mercury Diagnostics for J2EE
& .NET 3.5 - Supporting Mercury LoadRunner 8.0 - UNIX Installation CD-ROM,
that you received with your Mercury Diagnostics for J2EE & .NET package.
The Probe directory includes folders for AIX, Generic, HPUX, LINUX, and
Solaris. choose the appropriate installer for your environment and copy it to
the UNIX machine that will host the Probe.

To install the J2EE Probe on a UNIX machine:

Note: The following instructions and screen shots were made for a Probe
installation on a Solaris machine. These same instructions should apply for
the other certified UNIX platforms.

 1 Insert the Mercury Diagnostics for J2EE & .NET CD and locate the
Probe/<UNIX version> directory (for example, Probe/Solaris).

 2 Copy the installer that is appropriate for your environment to the machine
where the Probe is to be installed.

 3 Change the mode of the installer file to make it executable.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

92

 4 Execute the installer.

• To run the installer in console mode enter the following at the UNIX
command prompt:

The installer will start and display the license agreement as shown in the
following step.

• To run the installer in the graphical mode enter the following at the
UNIX command prompt:

The installer will display the same screens that are displayed for the
Windows installer as shown in “Installing the J2EE Probe on a Windows
Machine” on page 74.

 5 The installer begins by displaying the software license agreement.

Read the agreement.

./install.sh -console

./install.sh

Chapter 6 • Installing the Mercury Diagnostics Probe for J2EE

93

93

As you read, you may press Enter to move to the next page of text or type q
to jump to the end of the license agreement.

Enter 1 to accept the terms of the license agreement and then enter 0 to
accept your selection.

Enter 1 to continue.

 6 The installer prompts you to indicate the application with which the J2EE
Probe is going to work.

Select Performance Center 8.0/LoadRunner 8.0 by entering 1. When you
are satisfied with your selection enter 0 to proceed with the installation.

Note: This installation guide is written assuming that you are installing the
J2EE Probe for use with LoadRunner 8.0. If you are installing the J2EE Probe
for use with the Mercury Business Availability Center 5.0, please see the
installation guide for that product for further instructions on installing the
Probe.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

94

 7 The installer asks if you want to use the J2EE Probe with Deep Diagnostics.

Enter 1 to select the option to use the Probe with Deep Diagnostics and then
enter 0 to confirm your choice.

Enter 1 to continue.

 8 The installer prompts you to specify the path to the directory where the
J2EE Probe is to be installed.

Specify the directory where you want the J2EE Probe to be installed or press
Enter to accept the default directory.

Enter 1 to continue.

Chapter 6 • Installing the Mercury Diagnostics Probe for J2EE

95

95

 9 The installer asks for a unique probe name.

Enter the name that will be used to identify the Probe within Diagnostics for
J2EE & .NET.

You should assign a Probe Name that will enable you to recognize the
application that the Probe is monitoring and the type of probe that it is:
J2EE or .NET.

For example, the probe name for the first J2EE Probe installed that will be
monitoring an application named PetWorld could be:

 PetWorldJ2EEProbe1

Enter 1 to continue.

 10 The installer asks for information about the machine that hosts the
Commander.

➤ Enter the host name or IP address of the machine on which the
Commander is installed.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

96

Note: You should specify the fully qualified host name; not just the simple
host name. In a mixed OS environment where UNIX is one of the systems
this is essential for proper network routing.

For information about ensuring that the correct Probe host name is used
when there is a firewall or NAT in place or where your host machine is
multi-homed see “Overriding the Default Probe Host Machine Name” on
page 111.

➤ Enter the Commander’s port number.

The default port number is 2006. If you specified a different port number
when installing the Commander, specify the same port number here.

➤ Enter 1 to select the option to perform a connectivity check to make sure
that the Commander’s host name can be resolved. The connectivity
check will let you know right away if you have made an error in the
information that you provided about the Commander, or if there is a
communication problem between the Commander’s host machine and
the Probe’s host machine. This selection will toggle off if you enter 1
again.

➤ Enter 0 when you are satisfied with your choice.

Enter 1 to continue.

Chapter 6 • Installing the Mercury Diagnostics Probe for J2EE

97

97

 11 The installer asks for the Logical LAN ID.

The network traffic between the Probe and the Mediator is high-volume. For
this reason, the Mediator and the Probes that communicate with it must be
located on the same LAN. The Logical LAN ID is not a physical LAN ID. The
value that you enter for the Mediator and each of the probes that you expect
to be able to work with the Mediator must be exactly the same.

Enter the ID of the LAN on which the Probe and Mediator are running or
accept the default.

Note: The Logical LAN ID is case-sensitive.

Enter 1 to continue.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

98

 12 Indicate if you would like the installer to configure your application server.

Note: You can let the installer configure the application server now or you
can do it after the Probe has been installed using the process described in
Chapter 8, “Configuring the J2EE Probe and Application Server.”

To request that the installer configure the application server for the Probe,
choose Yes by entering 1. The installer will continue as shown in step 11.

To skip the configuration of the application server for this probe choose No
by entering 2. If you chose to skip the application server configuration, the
installer will continue as shown in step 13 on page 85.

Enter 0 when you are satisfied with your choice.

Enter 1 to continue.

Chapter 6 • Installing the Mercury Diagnostics Probe for J2EE

99

99

 13 If you chose to configure the application server in step 12, the installer asks
you to select the application server to configure.

To make your selection, enter the number that corresponds to the
application sever to be configured. When you are satisfied with your choice,
enter 0 to accept.

 14 Enter 1 to continue.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

100

 15 The installer prompts you for information needed to configure the
application server that you selected on the previous dialog. The fields in this
dialog will vary according to the application server that you selected.

Enter the information requested and enter 1 to continue.

 16 If you indicated that you will be using this Probe with Deep Diagnostics in
step 5 on page 94, the installer asks you to enter the Deep Diagnostics
installation directory.

Enter the path to the installation directory for the Deep Diagnostics Server
and then enter 1 to continue.

 17 If you specified that the Probe will work with Deep Diagnostics, the installer
asks for the Deep Diagnostics Application Definition name.

Enter the Application Definition Name that was created in Deep Diagnostics
and then enter 1 to continue.

Chapter 6 • Installing the Mercury Diagnostics Probe for J2EE

101

101

 18 The installer displays a Pre-Installation Summary.

Review the information to make sure that you are satisfied. Enter 1 to start
the Probe Installation.

 19 The installer starts the process of installing the J2EE Probe and a displays a
progress bar and status messages so that you can monitor the processing.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

102

 20 After the progress bar, the installer asks for the path to the JVM executable
(java.exe) used by the application server that you are monitoring.

Enter the path to the JVM executable (java.exe) used by the application
server that you are monitoring.

Enter 1 to skip the JDK/JRE Instrumenter. Entering 1 again toggles the
selection. Enter 0 to apply your choice.

Note: If you choose to skip this step now, you must run the JRE
Instrumenter manually before you can use the Probe. For instructions, see
“Verifying the J2EE Probe Installation” on page 109.

Enter 1 to continue.

Chapter 6 • Installing the Mercury Diagnostics Probe for J2EE

103

103

 21 The installer installs the J2EE Probe.

 22 After installation is complete, enter 3 to exit the procedure.

 23 Verify the Probe installation as described in “Verifying the J2EE Probe
Installation” on page 109.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

104

Installing the J2EE Probe on a z/OS Mainframe

Instructions for installing the J2EE Probe from the tar file that is included on
the product CD and from a pax archive that was created on a z/OS machine
have been provide in this section.

Note: The J2EE Probe only captures the Deep Diagnostics Java metrics on a
z/OS mainframe. The Probe does not capture the system level metrics for
CPU, memory and network latencies. LoadRunner metrics are not captured
for z/OS.

Editing Property Files on a z/OS Mainframe

The following tips have been provided to help you to update the property
files in a z/OS environment and make sure that the updates are stored in the
character set that can be used by the Probe.

The diagnostics property files are stored in ASCII format. In order to edit
these files in the z/OS environment you must convert them from ASCII to
EBCDIC. When you have completed your edits, the file must be converted
back to ASCII.

Note: If you have access to an ASCII error such as viascii you do not have to
worry about converting to EBCIDIC.

Use the following command to convert a file from ASCII to EBCDIC:

Use the following command to convert a file from EBCDIC to ASCII:

iconv -f ISO8859-1 -t IBM-1047 'ASCII_FILE' > 'EBCDIC_OUTPUT_FILE _NAME

iconv -f IBM-1047 -t ISO8859-1 'EBCDIC_FILE' > 'ASCII_OUTPUT_FILE _NAME

Chapter 6 • Installing the Mercury Diagnostics Probe for J2EE

105

105

Installing the J2EE Probe on z/OS from the product CD

To install the J2EE Probe on a z/OS mainframe:

 1 Upload J2EEProbe-<version_nbr>.tar to the z/OS machine.

 2 Run pax -rf J2EEProbe-<version_nbr>.tar from the POSIX shell. This creates a
directory called J2EEProbe.

 3 Open the property file <probe_install_dir>/etc/probe.properties using viascii
or another ASCII editor. Set the id property to a unique name that has not
been assigned to any other probe as follows:

id=<unique_probe_name>

 4 Ensure that the permissions bits are set correctly on the
<probe_install_dir>/log directory so that the user that starts the application
server has write (o+w) permissions (chmod 644 <logs>).

 5 Run the JRE Instrumenter as documented in “Running the JRE
Instrumenter” on page 135.

 6 Configure the application server to load the probe files. For instructions on
configuring the application server to load the probe files and other
parameters, see Chapter 8, “Configuring the J2EE Probe and Application
Server.”

Note: You can view the system log by accessing the primary operator’s
console in SDSF.

 7 Verify the Probe installation as described in “Verifying the J2EE Probe
Installation” on page 109.

Installing the J2EE Probe on z/OS from a pax archive

This section describes how to deploy the J2EE Probe from a pax archive that
was created on a z/OS machine. You may want to use this method to install
the Probe on multiple z/OS machines after you have successfully installed
and configured the first Probe on a z/OS machine.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

106

To install the J2EE Probe on a z/OS mainframe using a pax archive:

 1 Copy the compressed pax archive to the machine where the J2EE Probe is to
be installed.

 2 Uncompress the pax archive using the following command:

'This creates an uncompressed pax file in the current working directory

 3 Extract the archive into the directory where you want the Probe installed
using the following command:

Note: This command extracts the archive into the current directory. Make
sure that you run the command from the directory where you want the
Probe installed.

 4 Update the Deep Diagnostics shell scripts to ensure that the correct path has
been specified in the environment variables.

Update the following environment variables in both the agents.sh and the
configure.sh scripts that are located in <dd_install_dir>/bin. If these
environment variables do not exist in the scripts you should create them.

➤ JAVA_HOME = the absolute path to home directory of java that
application is using

➤ OPTIBENCH_HOME = <dd_install_dir>

 5 Update the property pfmt.godel.dir to set it to the name of the directory
where Deep Diagnostics has been installed. This property is located in the
property file <dd_install_dir>/etc/pfmt.godel.properties. To update this
property use the following instructions:

➤ Convert the property file, pfmt.godel.properties, from ASCII to EBCDIC
format.

uncompress 'COMPRESSED_PAX_ARCHIVE

pax -r * < 'FULL_PATH_TO_PAX_FILE

Chapter 6 • Installing the Mercury Diagnostics Probe for J2EE

107

107

➤ Edit the converted file to modify the value of property pfmt.godel.dir to
set it to the name of the Deep Diagnostics installation directory. Save and
close the file when you have completed your changes.

➤ Convert the modified file from EBCDIC back to ASCII.

 6 If you are installing the Probe on a multi-homed machine you must run the
Deep Diagnostics Configure Utility to set the IORPROXY to the IP address of
the Probe host machine.

➤ Execute the configuration utility from <dd_install_dir>/bin\configure.sh
using the command:

The Configuration Utility menu is displayed.

➤ Select menu option 3 which is Configure Network Properties. The menu
for Configure Network Properties is displayed.

➤ Select menu option 1 which is CORBA. The menu for CORBA is
displayed.

➤ Select menu option 3 which is CORBA IOR Proxy Address.

➤ Enter the IP address of the network interface that you wish to use with
Deep Diagnostics on this machine and hit enter. The CORBA menu is
displayed.

➤ Select menu option 6 to return to the Configure Network Properties
menu.

➤ Select menu option 2 to return to the Configuration Utility menu.

➤ Select menu option 5 to Quit the Configuration Utility.

Note: If the production environment has firewalls you must open certain
ports on the firewall in order to enable the diagnostics communications. See
the Installation Guide for Mercury Deep Diagnostics for J2EE for
information about configuring the ports for firewalls.

.\configure.sh

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

108

Installing the J2EE Probe Using the Generic UNIX Installer

The installers for the J2EE Probe have been built to support installing the
Probe on all of the platforms for which the component has been certified.
However, the Probe will work with other platforms that have not yet been
certified. A generic UNIX installer has been provided to allow you to install
the probe on these other platforms.

To get the Probe to work on the platforms that are not supported in the
regular installer you must run the generic installer and then manually
configure the Probe so that it will be able to communicate with the other
Diagnostics components and be able to monitor the processing of your
application.

To install and configure the J2EE Probe on a platform that is not certified:

 1 Locate the generic installer on the Mercury Diagnostics for J2EE & .NET CD
at:

CD2/Probe/GenericProbeTar/J2EEProbe-3.3.11.0.tar

 2 Unzip/untar J2EEProbe-3.3.11.0.tar to the probe installation directory
that you want to use.

 3 Manually configure the Probe for the product mode that is appropriate by
following the Probe configuration instructions documented in “Configuring
the J2EE Probe for Use With Mercury Products” on page 341.

 4 Run the JRE Instrumenter for the application server that the Probe will be
monitoring by following the instructions documented in “Running the JRE
Instrumenter” on page 135.

 5 If the Probe will be used with Deep Diagnostics, update the
pfmt.godel.probedir property in $DD/etc/pfmt.godel.expert.properties.

 6 To configure the Probe so that it can register with the Commander, set the
host name and the port using the registrar.url property which can be found
in the property file:

<probe_install_dir>\etc\dispatcher.properties

Chapter 6 • Installing the Mercury Diagnostics Probe for J2EE

109

109

Note: Make sure that you update the registrar.url property in the property
file that is appropriate for your network configuration. The property
registrar.url exists in two different property file in <probe_install_dir>\etc.
The property in dispatcher.properties is used to provide the url for the
registrar when there is not a proxy. The property in webserver.properties is
used to provide the url for the registrar when there is a proxy server between
the probe and the registrar.

 7 Verify the Probe installation as described in “Verifying the J2EE Probe
Installation” on page 109.

Verifying the J2EE Probe Installation

Use the System Health Monitor to verify the installation of the J2EE Probe.
For instructions on how to user the System Health Monitor, see Appendix A,
“Using the System Health Monitor.”

Note: The Probe does not register with the Commander until it is started.
The Probe is started when the instrumented application server is started.
Therefore, you will not be able to verify the installation of the Probe using
the System Health Monitor until you have configured the Probe and
Application Server as described in “Configuring the J2EE Probe and
Application Server” on page 133.

If you have been following the recommended installation sequence, after
you have installed the J2EE Probe you will be able to verify the following:

➤ The Mediator was successfully installed and has established connectivity
with the Commander

➤ The J2EE Probe was successfully installed and has established connectivity
with the Commander.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

110

The new J2EE Probe is shown as a child of the Commander on the System
Health Monitor.

Note: The J2EE Probe will appear colored grey in the System Health Monitor
when the application that it is monitoring has been stopped. Once the
application has been started the Probe will be colored green.

Chapter 6 • Installing the Mercury Diagnostics Probe for J2EE

111

111

Using the J2EE Probe with Deep Diagnostics

Mercury Deep Diagnostics for J2EE does not include a probe in its
installation; instead, it uses the J2EE Probe installed with LoadRunner 8.0.
Instructions for configuring the Probe for use with Deep Diagnostics have
been documented in “Configuring the J2EE Probe and Application Server for
Deep Diagnostics” on page 346, along with the instructions for configuring
the Probe for use with other Mercury products.

Overriding the Default Probe Host Machine Name

In situations where a firewall or NAT is in place or where your Probe host
machine has been configured as a multi-homed device, it may not be
possible for the Commander to communicate with the Probe using the host
name that was assigned when the Probe was installed. The
registered_hostname property allows you to override the default host
machine name that the Probe uses to register itself with the Commander.

To override the default host machine name for a Probe, set the
registered_hostname property located in
<probe_install_dir>/etc/dispatcher.properties to an alternate machine name or
IP Address that will let the Commander communicate with the Probe.

Determining the Version of the J2EE Probe that is Installed

When you are requesting support it is useful to know the version of the
Diagnostics component that you have a question about.

To determine the J2EE Probe version:

Locate the version file <probe_install_dir>\dat\version.txt. The file contains
the 4 digit version number, as well as the build number.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

112

Upgrading to a Newer Version of the J2EE Probe

The following instructions will guide you in upgrading from an older
version of the Mercury Diagnostics Probe for J2EE.

Note: The installer does not upgrade the Probe. The following instructions
are manual steps that you must take to make sure that the upgrade works as
expected.

Note: The current version of the J2EE Probe has been designed to work with
the current versions of the Diagnostics components that are part of the
LoadRunner 8.0 and BAC 5.x installations and will not work with earlier
versions of these products. Likewise, the previous versions of the Probe will
not work with the current versions of these Mercury products.

To upgrade the J2EE Probe to a Newer Version of the Probe:

 1 Shutdown the application servers that are being monitored by the Probes
that you want to upgrade.

 2 Create a backup copy of the startup script for the application server.

 3 If you want to reuse the configuration of your current Probe with the new
Probe, create a backup copy of the folder <probe_install_dir>/etc called
old_etc_backup.

Note: This optional step could help you save time by reusing the current
settings for Probe configurations such as instrumentation changes, buffering
changes, port numbers, mediator & commander locations, probe.id and
product mode.

 4 Uninstall the Probe. See “Uninstalling the J2EE Probe” on page 115 for
instructions on uninstalling the Probe.

Chapter 6 • Installing the Mercury Diagnostics Probe for J2EE

113

113

 5 Install the new version of the J2EE Probe as instructed in this guide in
Chapter 2, “Preparing to Install Mercury Diagnostics for J2EE & .NET.”

Note: When you install the J2EE Probe do not select the option to have the
installer configure your application server, and do not select the option to
allow the installer to Instrument the JRE. When the Probe installation is
complete continue with the next steps.

 6 If you made a backup copy of the old <probe_install_dir>/etc folder so that
you could reuse the old Probe’s configuration in step 3 above, you should
follow the back-up information to configure the new probe.

➤ Create a backup of the newly installed folder <probe_install_dir>/etc
called new_etc_backup so that you have a copy of the files as they were
created by the installer.

➤ Rename the <probe_install_dir>/etc/auto_detect.points file that was just
installed to new_auto_detect.points.

➤ Copy the backup copy of auto_detect.points into <probe_install_dir>/etc

➤ The old auto_detect.points file will work with the new Probe. If you want
to take advantage of the enhancements in the new version of the Probe,
copy the following sections from new_auto_detect.points file.

• All sections that begin “BEA-” including the preceding comments.

• All sections that begin “SAP_” including the preceding comments.

• The “Synchronization” section including the preceding comments.

• The “RMI” section including the preceding comments.

• args_by_class

• Any enhancements/optimizations that you made.

➤ Copy the rest of the files, excluding modules.properties and
webserver.properties, from old_etc_backup. Replace the files in the
current <probe_install_dir>/etc/.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

114

Note: Do not replace modules.properties and webserver.properties. You
must use the new version of these files.

➤ In capture.properties add the following property:

ac.register.sink=true

➤ In dispatcher.properties add the following properties:

dispatcher.properties.file.name=dispatcher.properties
registrar.mediator_ping.time=90s
ac.autostart=true

➤ In inst.properties revise the value of the following property:

classes.to.exclude=!iaik\.security\..*,!c8e\..*,!org\.jboss\.net\.protocol\.file\.
Handler,!org\.jboss\.net\.protocol\.file\.FileURLConnection,!.*ByCGLIB.*

➤ In inst.properties add the following property:

rmi=com.mercury.opal.capture.inst.RMIServerInstrumenter,com.mercury.o
pal.capture.inst.RMIProxyInstrumenter

 7 Configure the J2EE Probe and application server following the instructions
in Chapter 8, “Configuring the J2EE Probe and Application Server.”

Note: If a firewall separates your probe and mediator from the other
Diagnostics components, make sure that you have configured the firewall to
allow communications across the firewall using the port numbers in the
range that you specify. See “Configuring Diagnostics Components to Work
with a Firewall” on page 369 for more information.

To avoid having to reconfigure your firewall, you may want to override the
default port numbers for the new Probe so that they will match the port
numbers that the older Probe used.

Chapter 6 • Installing the Mercury Diagnostics Probe for J2EE

115

115

Uninstalling the J2EE Probe

To uninstall the J2EE Probe:

➤ On a Windows machine execute uninstall.exe which is located in the
<probe_install_dir>\Probe_uninst directory.

➤ On a Unix machine execute uninstall* which is located in the
<probe_install_dir>\Probe_uninst directory.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

116

117

7
Installing the Mercury Diagnostics Probe
for .NET

This chapter describes how to install a Mercury Diagnostics Probe for .NET.

The following topics are included in this chapter:

➤ About the Mercury Diagnostics Probe for .NET

➤ Installing the .NET Probe

➤ Verifying the .NET Probe Installation

➤ Configuring the .NET Probe

About the Mercury Diagnostics Probe for .NET

The Mercury Diagnostics Probe for .NET (.NET Probe) is responsible for
capturing events from a .NET application and sending the event metrics to
the Mediator.

The .NET Probe is installed on the System Under Test (SUT). The .NET Probe
uses runtime instrumentation to capture method latency information from
specified applications. By default, the .NET Probe captures methods from
the ASP and ADO tiers and MSMQ. Custom business logic methods can be
captured by creating a custom instrumentation specification file, known as a
points file, for your application. The .NET Probe provides a low-overhead
capture solution that works with Mercury’s Application Diagnostics (AD)
and Application Monitoring (AM) products.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

118

.NET Probe initialization occurs only when an instrumented method is
encountered for the first time. Initialization refers to the registration of the
Probe with the Commander . An instrumented method is any method
defined in any of the points files, for which the Probe was configured. For
ASP.NET applications, the Probe is started the first time that a page in the
application is requested after the web publishing service has been started.

For more information about configuring the .NET Probe see “Advanced
.NET Probe Configuration” on page 357.

Installing the .NET Probe

 1 Insert the LoadRunner Diagnostics CD into the CD drive of the machine
that will host the Mercury Diagnostics Probe for .NET.

 2 To execute the .NET Probe installer, click Start > Run and then type the
location of your CD-ROM drive followed by the path to the setup program,
DotNetProbe\Setup\setup.msi.

For example, if your CD-ROM drive letter is M, type:

Alternatively, you may double click on the setup.msi filename to execute
the installer.

m:\DotNetProbe\Setup\setup.msi

Chapter 7 • Installing the Mercury Diagnostics Probe for .NET

119

119

 3 The installer displays the Mercury Diagnostics for J2EE & .NET main
installation menu.

Initiate the installer for the J2EE Probe by clicking the Mercury Diagnostics
Probe for .NET link from the menu.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

120

 4 If the .NET Framework has not been installed on the host machine, the
installer displays the following dialog box.

Click Yes to obtain the .NET Framework from the Web. Clicking No ends the
installation.

 5 If you click Yes, the installer opens Microsoft’s download page, where you
may select the .NET Framework download.

After the .NET Framework installation restarts your computer, run the .NET
Probe installation again.

Chapter 7 • Installing the Mercury Diagnostics Probe for .NET

121

121

 6 The installer displays the Welcome dialog to begin the installation of the
.NET Probe.

Click Next to proceed with the installation of the .NET Probe.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

122

 7 The installer displays the License Agreement dialog.

Read the agreement. To accept, select I Agree.

Click Next to proceed with the installation.

Chapter 7 • Installing the Mercury Diagnostics Probe for .NET

123

123

 8 The installer displays the Mercury .NET Probe Configuration dialog box.

Enter the .NET Probe configuration information. Each of the fields on the
dialog is explained in the following text:

➤ Probe ID: The name that is used to identify the Probe within Diagnostics
for J2EE & .NET. The .NET Probe will auto-generate a Probe ID based
upon the application’s appdomain name if you leave this field blank.

Note: It is recommended that you leave the Probe ID field blank and
allow the Probe to auto-generate the Probe ID. Please read the following
information carefully if you decide to enter your own Probe ID

Considerations When Entering Your Own Probe ID:

➤ Only the following characters are valid in the Probe ID: letters, digits,
dash, underscore and period.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

124

➤ Create a Probe ID that will enable you to recognize the application that
the Probe is monitoring and whether the Probe is a J2EE or .NET probe.

For example, the Probe ID for the first .NET Probe installed that will be
monitoring an application named PetWorld could be:

 PetWorld_Dotnet_Probe1

➤ When you specify a Probe ID all of the Probes on the host machine will
be forced to use the same Probe ID. If you want to override the default
names, use the following substitution macros to enhance the ID at
runtime.

$(MACHINENAME): Machine’s host name

$(APPDOMAIN): Application’s appdomain name

$(PID): Application’s process ID

The default Probe ID auto-generated by the Probe when the Probe ID
field is left blank is equivalent to specifying “$(APPDOMAIN).NET”. To
obtain behavior compatible with version 3.3.x of the Probe, specify
“$(MACHINENAME).$(APPDOMAIN).NET”.

➤ LAN ID: The network traffic between the Probe and the Mediator is high-
volume. For this reason, the Mediator and the Probes that communicate
with it must be located on the same LAN. The Logical LAN ID is not a
physical LAN ID. The value that you enter for the Mediator and each of
the probes that you expect to be able to work with the Mediator must be
exactly the same.

Enter the ID of the LAN on which the Probe and Mediator are running in
to the Logical LAN ID text box or accept the default.

Note: The Logical LAN ID is case-sensitive.

Web Port Range:

The upper and lower limits of the Web Port Range are defined by the
Web Port Min and Web Port Max fields. The Web Port Range contains
the ports that the probe can use to listen for incoming requests from the
Commander and Mediator.

Chapter 7 • Installing the Mercury Diagnostics Probe for .NET

125

125

When a Probe is started, it attempts to find an unused port from within
this range; starting from the lowest port number in the range and
working its way up to the highest. Ports within the range may already be
in use if another Probe or another application have previously claimed
them.

The following are some considerations for when you set the Web Port
Range:

• The port range needs to be large enough to, at a minimum,
accommodate the maximum number of Probes that will be
concurrently running on the machine.

• If the Probes are working with ASP.NET applications, it is
recommeneded that you double the number of probes to account for
ASP.NET’s appdomain recycling

• Each port within the range does not have to be available as long as
their are enough available ports within the range to satisfy the
previous bullets requirements.

• If you have a firewall between the Probe and a component that will be
communicating with the Probe, you must open the firewall for the
ports within the range. For this reason you may want to adjust the
range to be just big enough.

➤ Web Port Min: The lowest port number in a range of ports that the
commander can use to communicate with its Probes.

➤ Web Port Max: The highest port number in a range of ports that the
commander can use to communicate with its Probes.

Note: The default range is 100 ports, 35000 - 35100.

Click Next when you are ready to proceed with the installation.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

126

 9 The installer displays the .NET Probe Component Communication
Configuration dialog.

Enter the communication parameters that enable the .NET Probe to
communicate with the Commander and the Mediator.

➤ Commander Host Name or IP Address:

➤ Commander Port: Enter the port number where the Commander is listening
for communications from the Probe. The default port number is 2006. If you
assigned a different port when the Commander was installed, make sure to
enter the same port number here.

Chapter 7 • Installing the Mercury Diagnostics Probe for .NET

127

127

Note: When you enter the host name and port for a Mediator, the installer
configures the .NET Probe so that it will work in the Application Monitoring
mode with BAC 5.x. When no Mediator information is specified, the
installer configures the .NET Probe so that it will work in the Application
Diagnostics mode with Performance Center 8.0 / LoadRunner 8.0.

Only enter the Mediator host name and port if you want the Probe to be
configured for Application Monitoring mode for BAC 5.x.

➤ For BAC 5.x only: Mediator Host Name or IP Address:

➤ Mediator Port: Enter the port number where the Mediator is listening for
communications from the Probe. The default port number is 2612. If you
assigned a different port when the Mediator was installed, make sure to
enter the same port number here.

Click Next to continue with the installation.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

128

 10 The installer displays the Select Installation Folder dialog.

➤ Ensure that the location where you want the .NET Probe to be installed has
been specified in the Folder text box either by typing in the path to the
desired installation directory or by clicking Browse to navigate to the
desired location.

➤ The Disk Cost... button allows you to check the amount of available disk
space on the drives on the host machine. Use this functionality to make sure
that there is enough room for the Probe installation.

➤ Specify which users of the host machine will be able to access the .NET
Probe.

◆ Choosing Everyone causes the shortcuts for the Probe to appear on the
Start Menu that everyone sees.

◆ Choosing Just Me causes the shortcuts to be installed on the Start Menu
for the particular user who is logged on when the Probe is installed.

Click Next when you are ready to proceed with the installation.

Chapter 7 • Installing the Mercury Diagnostics Probe for .NET

129

129

 11 The installer displays the Confirm Installation dialog.

The installer has gathered all of the information that it needs to install the
.NET Probe.

Click Next to start the .NET Probe installation.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

130

 12 When the .NET Probe installation has completed, the installer displays a
dialog that provides instructions for configuring the Probe so that it can be
used to monitor your application. The installer has also stored this same
information in the readme.rtf file in the <probe_install_dir>.

The steps for configuring the .NET Probe are discussed in greater detail
in“Advanced .NET Probe Configuration” on page 357

Click Next when you are ready to proceed.

Chapter 7 • Installing the Mercury Diagnostics Probe for .NET

131

131

 13 The installer displays the final dialog in the process to confirm that the
installation has been successful.

Click Close to exit the installer.

 14 After you exit the installer, you must restart either IIS or the Web publishing
service before you can use Mercury Diagnostics Probe for .NET with ASP.NET
applications.

 15 Verify that the .NET Probe was installed correctly as described below in
“Verifying the .NET Probe Installation”.

Verifying the .NET Probe Installation

Use the System Health Monitor to verify the installation of the .NET Probe.
For instructions on how to use the System Health Monitor, see Appendix A,
“Using the System Health Monitor.”

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

132

If you have been following the recommended installation sequence, after
you have installed the .NET Probe and restarted the instrumented
application, you will be able to verify the following:

➤ The Mediator was successfully installed and is communicating with the
Commander.

➤ The .NET Probe was successfully installed is communicating with the
Commander.

Note: The .NET Probe will not be displayed in System Health when first
installed because the Probe does not register with the Commander until it is
started. The Probe is started and is registered with the Commander when the
instrumented application is run. For ASP.NET applications, this happens the
first time that a page is requested for the instrumented application.

The default logging level for the .NET Probe has been set to "info" so that if
the Probe is not displayed in System Health when you believe that it should
be, you can check the log file to help troubleshoot the problem.

Configuring the .NET Probe

The installer will configure your application and the .NET Probe so that they
will work together to capture the basic workload of your ASP.NET
applications. It is possible that one or more of your ASP.NET applications
have been deployed in a manner that prevented the installer from detecting
them or you may want to enhance the standard instrumentation to capture
the performance metrics for custom classes.

For details on configuring the .NET Probe see Appendix E, “Advanced .NET
Probe Configuration.”

133

8
Configuring the J2EE Probe and
Application Server

This chapter explains the process for configuring the application server on
which your applications run and the J2EE Probe that is to monitor your
application.

This chapter includes the following sections:

➤ About Configuring the J2EE Probe and Application Server

➤ Running the JRE Instrumenter

➤ About Configuring the Application Server

➤ Using the Configuration Utility

➤ Configuring WebSphere Application Servers

➤ Configuring WebLogic Application Servers

➤ Configuring the Oracle9i Application Server

➤ Configuring the JBoss Application Server

➤ Configuring the SAP NetWeaver Application Server

➤ Configuring a Generic Application Server

➤ Configuring the Probes for Multiple Application Server Instances

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

134

About Configuring the J2EE Probe and Application Server

In order to prepare your application server and configure the J2EE Probe so
that your application can be monitored by the Probe, you must perform the
following steps:

 1 When you install a Probe you must run the JRE Instrumenter to prepare
your application for the instrumentation that allows the Probe to monitor
the processing. The JRE Instrumenter will run automatically during the
Probe installation unless you elect not to run it at that time. If you elect not
to run the JRE Instrumenter during the installation of the Probe, you can
run it manually as described in “Running the JRE Instrumenter” on
page 135.

When the JDK (java.exe executable) used by your application server
changes, you must manually run the JRE Instrumenter again in order for the
Probe to be able to monitor the processing.

Note: If a Probe is being used to monitor multiple JVMs, the JRE
Instrumenter must be run once for each JVM so that the Probe can be
prepared to instrument the applications that are running on each JVM. See
“Configuring the Probes for Multiple Application Server Instances” on
page 183 for details.

 2 You must override the boot class path in the script that starts the application
server to connect the Probe to the processes in your application that it will
be monitoring.

The first step is documented in this section of the document. The second is
documented starting in “About Configuring the Application Server,” on
page 139.

Chapter 8 • Configuring the J2EE Probe and Application Server

135

135

Running the JRE Instrumenter

To run the JRE Instrumenter:

 1 Open <probe_install_dir>\bin. This is the directory where the JRE
Instrumenter executable is located. Replace <probe_install_dir> with the
path to the directory where the Probe was installed.

 2 Execute the jreinstrumenter.cmd command if the Probe is installed on a
Windows machine, or jreinstrumenter.sh if the Probe is installed on a UNIX
machine.

To execute the JRE Instrumenter from the command prompt in Windows
use the following command:

When the instrumenter starts, the Mercury JRE Instrumentation Tool
dialogue box opens.

The JVMs that are listed in the Available JVMs list box have a green square
before the name of the JVM to indicate that they have already been
instrumented.

java -jar jreinstrumenter.jar

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

136

To add a JVM to the Available JVM List:

 1 Click Add JVM(s).

The following dialogue box opens:

 2 Navigate to the location where you would like to begin searching for JVMs
to be added to the list using the standard Windows Explorer type navigation
tools.

 3 Select the file where you would like to begin the search so that its name
appears in the File Name text box.

Chapter 8 • Configuring the J2EE Probe and Application Server

137

137

 4 Click Search from here to instruct the instrumenter to begin searching for
JVMs.

The dialog box closes and the Mercury JRE Instrumentation Tool dialogue
box opens again, with the command buttons disabled while the tool
searches for JVMs.

As the tool locates JVMs, it lists them in the Available JVMs list box.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

138

To instrument a JVM:

Select a JVM from the Available JVMs list and click Instrument.

The instrumenter prepares the JVM to work with the Probe and displays the
JVM parameter that you need for the application server startup script in
order to activate the J2EE Probe in the box above the command buttons.
The green icon is displayed in front of the JVM in the Available JVMs list to
indicate that the JVM has been instrumented.

Note: When you select an instrumented JVM from the Available JVMs list,
the JVM parameter that needs to be added to the application server startup
script for that JVM is displayed in the box above the command buttons.

Chapter 8 • Configuring the J2EE Probe and Application Server

139

139

About Configuring the Application Server

Once you have executed the JRE instrumenter for the J2EE Probe you must
configure the application server so that your application can be monitored
by the J2EE Probe. The bootclass in the script that starts the application
server must be overridden in order to connect the probe to your application.

There are two ways for you to configure the application servers: using the
automated tool called the Mercury Configuration Utility, or by manually
updating the application server startup scripts.

The Mercury Configuration Utility is a tool that helps you to configure the
certified application servers and the way that J2EE Probe instruments them.
For more information see “Using the Configuration Utility,” on page 140.

Instructions have been provided for updating the certified application
servers using manual processes. The first set of instructions can be found in
“Configuring WebSphere Application Servers,” on page 150, and
instructions for the other certified application servers follow. It is possible
that your site administrator has site-specific methods for making these
configuration modifications. If this is the case, the generic procedure
described in “Configuring a Generic Application Server” on page 181 should
provide the information that the site administrator needs to implement the
required configuration changes.

Note: Please see the section appropriate for your particular application
servers. If there is no section for your specific application server, follow the
procedure in “Configuring a Generic Application Server” on page 181.

The process for configuring the J2EE Probe and your application servers
when there are multiple JVMs on a single machine is described in
“Configuring the Probes for Multiple Application Server Instances” on
page 183.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

140

Note: In this chapter “<probe_install_dir>” is used to indicate the directory
where the J2EE Probe was installed.

Using the Configuration Utility

Overview

The Mercury Configuration Utility is a tool that helps you to configure the
certified application servers and the way that they are instrumented for the
J2EE Probe. You use the Define and Configure Application Servers menu
item to set the system properties associated with the application and update
the application server startup script to include the path to the Probe’s boot
classes. The Reconfigure Unified Probe menu option lets you reset the Probe
properties that were set when you installed the Probe.

This section covers the following topics:

➤ Starting the Mercury Configuration Utility

➤ Defining and Configuring Application Server Instances

➤ Configuring Application Server Instance Startup Scripts

➤ Removing the Probe Configuration from the Application Server Instance
Startup Script

➤ Deleting an Application Server Definition

➤ Reconfiguring a Probe

Chapter 8 • Configuring the J2EE Probe and Application Server

141

141

Starting the Mercury Configuration Utility

To start the Mercury Configuration Utility:

 1 On the computer on which the Probe is installed, open
<Probe_Install_Dir>\util\bin, where <Probe_Install_Dir> is the directory
where the Probe is installed.

 2 Execute the appropriate command to run the configuration utility.

➤ UNIX

➤ Windows:

The Mercury Configuration Utility window opens.

config.sh

config.cmd

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

142

Defining and Configuring Application Server Instances

To define and configure the application server instance:

 1 Select the first option in the Mercury Configuration Utility menu by typing
1 and then press Enter. The following screen is displayed.

Choose 1 (Provide information about your Application Server), and press
Enter.

 2 The following screen is displayed, providing the application server
information. Press Enter.

Chapter 8 • Configuring the J2EE Probe and Application Server

143

143

 3 Next, you are prompted to enter an ID for your application server data. This
ID will uniquely identify the application configuration information that
you are about to enter.

Enter an ID (for example, Weblogic_Petstore), press Enter, and then press
Enter again.

 4 In the next screen you specify whether the probe for this application server
is to be used with Deep Diagnostics.

Enter y if the probe will be used with Deep Diagnostics. Enter n if it will not
be used with Deep Diagnostics. If you leave this value blank, the default is n.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

144

 5 In the next screen, you select the type of application server you are
configuring.

Enter the application server’s number and press Enter.

Note: The next screen displayed by the Configuration Utility will depend
upon the application server you selected. This document provides
instructions for WebLogic 6.1. Other application servers have similar
procedures.

 6 If you chose WebLogic 6.1, the next screen prompts you to enter the full
path to the WebLogic Home Directory. Enter the path, including the drive
number, as in the following example:

c:\bea\wlserver6.1

Press Enter.

 7 The next screen prompts you to enter the full path to the WebLogic Server
Instance startup script, including the drive name (in Windows) and the
name of the script executable. Enter the path as in the following example:

C:\bea\wlserver6.1\config\petstore\startPetStore.cmd

Press Enter twice.

Chapter 8 • Configuring the J2EE Probe and Application Server

145

145

 8 Press Enter to proceed with defining the Application Server Instance. The
following screen is displayed.

Press Enter as prompted to monitor the progress and review the summary of
the results.

Configuring Application Server Instance Startup Scripts

You configure an application server instance startup script from the Define
and Configure Application Servers screen, displayed below.

To configure an application server instance startup script:

 1 In the Define and Configure Application Servers screen, type 2 and press
Enter. The Configure Application Server Instance wizard is invoked. Press
Enter.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

146

 2 The following screen lists the defined application server instances. Enter the
number of the relevant application server instance and press Enter twice.

 3 The following screen asks you to specify a directory where the configuration
utility can store the application server startup script after it has been
modified to use the probe’s boot classes.

Enter the path to the temporary directory after the prompt.

Press Enter to proceed with the configuration.

 4 Press Enter at each of the prompts to initiate the processing to configure the
application server startup scripts.

 5 Rename the original copy of the startup script so that you can keep it as a
backup.

 6 Copy the modified startup script from the temporary directory to the folder
where the application server startup script is stored.

Chapter 8 • Configuring the J2EE Probe and Application Server

147

147

Removing the Probe Configuration from the Application Server
Instance Startup Script

To restore an application server instance startup script’s settings:

 1 In the Define and Configure Application Servers screen, type 3 and press
Enter twice. The screen lists the application server instances.

 2 Type the number of the instance whose properties you want to restore, and
press Enter twice. The following screen asks you to specify a directory where
the configuration utility can store the application server startup script after
it has been modified to use the probe’s boot classes.

 3 Enter the path to the temporary directory after the prompt.

Press Enter to proceed with the configuration.

 4 Press Enter at each of the prompts to initiate the processing to configure the
application server startup scripts.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

148

Deleting an Application Server Definition

To delete information about an application server:

 1 In the Define and Configure Application Servers screen, type 4 and press
Enter. The Delete Application Server Instance Definition wizard is invoked.

 2 Press Enter to display the list of defined application server instances.

 3 Enter the number of the relevant application server instance and press Enter
twice.

 4 The process for deleting the application server instance definition begins.

Press Enter at each of the prompts to initiate the processing. If the deletion
succeeds, the following screen is displayed:

Chapter 8 • Configuring the J2EE Probe and Application Server

149

149

Reconfiguring a Probe

The Configuration Utility allows you to reconfigure the J2EE Probe so that
you do not have to update the Probe properties manually or reinstall the
Probe from the installation CD.

To reconfigure the probe:

 1 In the Mercury Configuration Utility menu, choose 2 (Reconfigure Unified
Probe), and press Enter. The Reconfigure Mercury Lifecycle Probe screen is
invoked.

The following properties are displayed:

➤ Product Mode: This should be AD when you are using the Probe to with
LoadRunner 8.0 unless you will be using the Probe with Deep
Diagnostics. In this case you would update the Product Mode to
“AD,DeepDiagnostics”.

➤ Probe ID: The probe ID must be unique for each probe that is involved in
a run. You should make sure that the probe ID provides some indication
of whether the probe is a .NET Probe or a J2EE Probe. (For example, if the
probe is a J2EE Probe, you might name it PetStoreJ2EE01.) This makes it
easier to interpret the monitoring results.

➤ Commander Host Name: To change the Commander, choose 4 and press
Enter. The installer prompts you to enter the host name of the
Commander machine.

➤ Commander Port: This property specifies the port the probe will use to
communicate with the Commander. To change the Commander port,
choose 5 and press Enter. The installer prompts you to enter the port
number on the Commander machine. Enter the port number and press
Enter.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

150

 2 To exit the probe configuration menu, choose 6 and press Enter. The
Mercury Configuration Utility menu is displayed.

 3 To exit the Mercury Configuration Utility, choose 3 in the Mercury
Configuration Utility menu.

Configuring WebSphere Application Servers

WebSphere servers are controlled using the WebSphere Advanced
Administrative Console. The Console has control over the JVM command
line and allows you to add classpath elements, define runtime variables (-D
variables), and configure the bootclasspath for WebSphere 3.5, 4.x and 5.x
versions. It allows you to add the Xbootclasspath property. You may also
add any additional arguments to the JVM command line that may be
needed.

Note that the appearance of the Console may differ for different versions of
WebSphere. The following instructions show different screens for each of
the certified WebSphere Application Server versions. Note that the changes
are implemented in slightly different ways in each version. The examples
shown in this section may not correspond exactly to your WebSphere
version, but the principle is the same, that is, the parameters must be
inserted in the appropriate fields.

Note: In order to apply your changes, you must click Apply in each tab in
the Administrative Console before moving to another tab.

Supported versions Operating systems

3.5, 4.x, 5.x AIX 4.3
Windows 2000/2003
Solaris 8

Chapter 8 • Configuring the J2EE Probe and Application Server

151

151

WebSphere 4.0

To configure a WebSphere 4.0 application server:

 1 Use your Web browser to access the Web page for the WebSphere
Administrative Console for the application server instance for which the
probe was installed:

 2 Select the application server from the tree view under the Nodes parent. The
General tab for the selected application server is displayed to the right of the
tree view.

<WebSphere_Install_Dir>\AppServer\bin\adminclient.sh(bat)

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

152

 3 Click the JVM Settings tab. The JVM Settings information is displayed as
shown in the following example:

Note: If your JVM uses a JIT option, such as -hotspot or -classic, make sure
(in the Java Command Line arguments on the Console) that the
-Xbootclasspath option is entered following the JIT option.

 4 Click Advanced JVM Settings to open the Advanced JVM Settings dialog
box.

Chapter 8 • Configuring the J2EE Probe and Application Server

153

153

 5 Enter the boot classpath property in the Boot classpath (prepend) field as
follows, where <probe_install_dir> is the path to the directory where the
probe was installed:

<probe_install_dir>\classes\boot

 6 Click OK to close the Advanced JVM Settings dialog box. The JVM Settings
tab is redisplayed.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

154

 7 In Generated Command Line Arguments area, verify that the
Xbootclasspath property was created properly.

The settings should be as in the following example:

 8 Click Apply save your changes so that they will be in effect when you restart
the application server.

 9 Restart the WebSphere application server from the Console menu. You do
not need to restart the host machine for you application server.

Chapter 8 • Configuring the J2EE Probe and Application Server

155

155

 10 To verify that the probe was configured correctly, check for entries in the
<probe_install_dir>\log\<probe_id>.log file. If there are no entries in the
file, this indicates that you did not run the JRE Instrumenter or did not enter
the Xbootclasspath correctly. For details on running the JRE Instrumenter,
see “Running the JRE Instrumenter” on page 135.

You can also refer to the Websphere stdout.log and stderr.log files for
troubleshooting any problems arising from this configuration.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

156

WebSphere 5.0

To configure a WebSphere 5.0 application server:

 1 Use your Web browser to access the Web page for the WebSphere
Administrative Console for the application server instance for which the
probe was installed:

Replace <App_Server_Host> with the machine name for the application
server host.

The Websphere Application Server Administrative Console is displayed.

http://<App_Server_Host>:9090/admin

Chapter 8 • Configuring the J2EE Probe and Application Server

157

157

 2 In the left panel, select Servers and then select Application Servers.

 3 From the list of application servers in the right panel, select the name of the
server that you want to configure to be monitored by the J2EE Probe. (In the
screen image above, the server name is server1.)

The Configuration tab for the selected application server is displayed.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

158

 4 Scroll down in the Configuration tab until the Process Definition property is
visible in the General Properties column.

Click Process Definition.

Chapter 8 • Configuring the J2EE Probe and Application Server

159

159

 5 Scroll down in the right panel until the Java Virtual Machine additional
property is visible.

Click Java Virtual Machine.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

160

 6 The Configuration tab for the Java Virtual Machine is displayed.

In the Boot Classpath list box, enter the path to the boot directory for the
J2EE Probe as follows, where <probe_install_dir> is the path to the location
where the Probe was installed:

<probe_install_dir>\classes\boot

Chapter 8 • Configuring the J2EE Probe and Application Server

161

161

 7 Scroll to the bottom of the Configuration tab until the command buttons
are visible, as shown in the following screen.

Click Apply to save your changes to your local configuration.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

162

 8 When your changes have been applied, the following window is displayed.

Click the Save menu option to save the changes to the master
configuration.

Chapter 8 • Configuring the J2EE Probe and Application Server

163

163

 9 The following window is displayed. Click Save in the Save to Master
Configuration frame.

 10 Restart the WebSphere application server. You do not need to restart the
host machine for your application server.

 11 To verify that the Probe was configured correctly, check for entries in the
<probe_install_dir>\log\<probe_id>.log file. If there are no entries in the
file, this indicates that you did not run the JRE Instrumenter or did not enter
the Xbootclasspath correctly. For details on running the JRE Instrumenter,
see “Running the JRE Instrumenter” on page 135.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

164

Configuring WebLogic Application Servers

WebLogic application servers are configured by adding the Xbootclasspath
property to the script that is used to start the application server. WebLogic is
started by running shell scripts in a UNIX environment, or command scripts
in a Windows environment. Because the startup scripts that WebLogic
provides are frequently customized by a site administrator, it is not possible
to provide detailed configuration instructions that apply to all situations.
Instead, the following sections provide instructions for each of the certified
versions of the WebLogic application server for a generic implementation.
Your site administrator should be able to use these instructions to show you
how to make these changes in your customized environment.

Note: Make sure you understand the structure of the startup scripts, how the
property values are set, and how to use environment variables before you
make any configuration changes for the Probe. Always create a backup copy
of any file that you are going to update prior to making the changes.

WebLogic 6.1

To configure a WebLogic 6.1 application server:

 1 Locate the startup script used to start WebLogic for your domain. This file is
typically located in a path similar to this example:

Replace <Your_Dom_Name> by the name of the script that starts your
application.

Supported versions Operating systems

6.1, 7.0, 8.1 Windows 2000 SP6
Solaris 8

D:\bea\wlserver6.1\config\<Your_Dom_Name>\start<Your_Dom_Name>.cmd

Chapter 8 • Configuring the J2EE Probe and Application Server

165

165

 2 For example, if your domain name is petstore, the path looks like this::

 3 Create a back-up copy of the startup script prior to making any changes to
the script.

 4 Use your editor to open the startup script.

 5 Add the Xbootclasspath parameter to the Java command line that starts the
application server. The parameter must be placed at the beginning of the
Java parameters following any JIT options such as -hotspot or -classic.

Following is an example of the Xbootclasspath parameter where
<probe_install_dir> is to be replaced with the path to the directory where
the Probe was installed:

Following is an example of a WebLogic startup script before adding the
Xbootclasspath parameter:

Note: The startup script examples are shown with line breaks. The actual
scripts do not have line breaks and the text of the commands will wrap on
your screen as necessary.

D:\bea\wlserver6.1\config\petstore\startPetStore.cmd

-Xbootclasspath/p:<probe_install_dir>/classes/boot

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m -classpath "%CLASSPATH%"
-Dweblogic.Domain=petstore -Dweblogic.Name=petstoreServer
-Dbea.home="C:\\bea" -Dweblogic.management.password=%WLS_PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Dcloudscape.system.home=./samples/eval/cloudscape/data
-Djava.security.policy=="C:\bea\wlserver6.1/lib/weblogic.policy" weblogic.Server

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

166

Following is an example of a WebLogic startup script after adding the
Xbootclasspath parameter:

 6 Save the changes to the startup script.

 7 Restart the WebLogic application server (not the computer; just the
application server).

 8 To verify that the Probe was configured correctly, check for entries in the
<probe_install_dir>/log/<probe_id>.log file. If there are no entries in the
file, this indicates that you did not run the JRE Instrumenter or did not enter
the Xbootclasspath correctly. For details on running the JRE Instrumenter,
see “Running the JRE Instrumenter” on page 135.

WebLogic 7.0

Note: For WebLogic 7.0 sp06 you must also configure JRockit as described in
“To configure a WebLogic 8.1 application server for the JRockit JVM:” on
page 170.

To configure a WebLogic 7.0 application server:

 1 Locate the startup script used to start WebLogic for your domain. This file is
typically located in a path similar to this example:

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m -Xbootclasspath/p:"C:\Program
Files\Mercury Interactive\common\JavaProbe\classes\boot" -classpath "%CLASS-
PATH%"
-Dweblogic.Domain=petstore -Dweblogic.Name=petstoreServer
-Dbea.home="C:\\bea" -Dweblogic.management.password=%WLS_PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Dcloudscape.system.home=./samples/eval/cloudscape/data
-Djava.security.policy=="C:\bea\wlserver6.1/lib/weblogic.policy" weblogic.Server

D:\bea\weblogic700\server\con-
fig\<Your_Dom_Name>\start<Your_Dom_Name>.cmd

Chapter 8 • Configuring the J2EE Probe and Application Server

167

167

Replace <Your_Dom_Name> by the name of the script that starts your
application.

For example, if your domain name is petstore, the path looks like this:

 2 Create a back-up copy of the startup script prior to making any changes to
the script.

 3 Use your editor to open the startup script.

 4 To change the script, add the following immediately before the call to
startWLS.cmd (at the end of the file):

Note: The startup script examples are shown with line breaks. The actual
scripts do not have line breaks and the text of the commands will wrap on
your screen as necessary.

Windows:

UNIX:

 5 Save the changes to the startup script.

 6 Restart the WebLogic application server. You do not need to restart the host
machine for your application server.

D:\bea\ weblogic700\server\config\petstore\startPetStore.cmd

set JAVA_OPTIONS=-Xbootclasspath/p:"C:\Program Files\Mercury Interactive\
common\JavaProbe\classes\boot" %JAVA_OPTIONS%
@rem Call WebLogic Server
call "C:\bea7\weblogic700\server\bin\startWLS.cmd"

export JAVA_OPTIONS=-Xbootclasspath/p:"/opt/Diagnostics/common/
JavaProbe/classes/boot $JAVA_OPTIONS
Call WebLogic Server
call /bea/weblogic700/server/bin/startWLS.sh"

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

168

 7 To verify that the Probe was configured correctly, check for entries in the
<probe_install_dir>/log/<probe_id>.log file. If there are no entries in the
file, this indicates that you did not run the JRE Instrumenter or did not enter
the Xbootclasspath correctly. For details on running the JRE Instrumenter,
see “Running the JRE Instrumenter” on page 135.

WebLogic 8.1

To configure a WebLogic 8.1 application server for the Sun JVM:

 1 Locate the startup script used to start WebLogic for your domain. This file is
typically located in a path similar to this example:

Replace <Your_Dom_Name> is replaced by the name of the script that starts
your application.

 2 For example, if your domain name is petstore, the path looks like this:

 3 Create a back-up copy of the startup script prior to making any changes to
the script.

 4 Use your editor to open the startup script.

 5 Add the Xbootclasspath parameter to the Java command line that starts the
application server. The parameter must be placed at the beginning of the
Java parameters following any JIT options such as -hotspot or -classic.

Following is an example of the Xbootclasspath parameter where
<probe_install_dir> is to be replaced with the path to the directory where
the probe was installed:

D:\bea\weblogic81\config\<Your_Dom_Name>\start<Your_Dom_Name>.cmd

D:\bea\weblogic81\config\petstore\startPetStore.cmd

-Xbootclasspath/p:<probe_install_dir>\classes\boot

Chapter 8 • Configuring the J2EE Probe and Application Server

169

169

Following is an example of a WebLogic startup script before adding the
Xbootclasspath parameter:

Note: The startup script examples are shown with line breaks. The actual
scripts do not have line breaks and the text of the commands will wrap on
your screen as necessary.

Following is an example of a WebLogic startup script after adding the
Xbootclasspath parameter:

 6 Save the changes to the startup script.

 7 Restart the WebLogic application server. You do not need to restart the
application server host machine.

 8 To verify that the Probe was configured correctly, check for entries in the
<probe_install_dir>\log\<probe_id>.log file. If there are no entries in the
file, this indicates that you did not run the JRE Instrumenter, or did not
enter the Xbootclasspath correctly. For details on running the JRE
Instrumenter, see “Running the JRE Instrumenter” on page 135.

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m -classpath "%CLASSPATH%"
-Dweblogic.Domain=petstore -Dweblogic.Name=petstoreServer -Dbea.home="C:\\bea"
-Dweblogic.management.password=%WLS_PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Dcloudscape.system.home=./samples/eval/cloudscape/data
-Djava.security.policy=="C:\bea\weblogic81/lib/weblogic.policy"
weblogic.Server

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m -Xbootclasspath/p:"C:\Program
Files\Mercury Interactive\common\JavaProbe\classes\boot" -classpath "%CLASS-
PATH%"
-Dweblogic.Domain=petstore -Dweblogic.Name=petstoreServer -
Dbea.home="C:\\bea"
-Dweblogic.management.password=%WLS_PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Dcloudscape.system.home=./samples/eval/cloudscape/data
-Djava.security.policy=="C:\bea\weblogic81/lib/weblogic.policy" weblogic.Server

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

170

To configure a WebLogic 8.1 application server for the JRockit JVM:

 1 Locate the command file that the user uses to invoke the WebLogic
application server (for example, startWLS.cmd). This file is typically located
in a path similar to the following example:

 2 Create a back-up copy of the command file prior to making any changes to
the script. You may want to give the new copy a name such as
startWLSWithJRockit.cmd and use this as the new version of the command
file that will be manipulated in the following steps.

 3 Use your editor to open the startup script.

 4 Set the JAVA executable invoked by WebLogic to JRockit.

➤ Locate the line in the command file where the value of the
JAVA_VENDOR parameter is set.

➤ Change the value of the JAVA_VENDOR variable to point to the JRockit
folder as follows:

For example:

 5 Modify the Java command line that starts the application server.

➤ Locate the line in the command file which begins as follows:

➤ Indicate the JRockit management URL by specifying the
Xmanagement:class parameter immediately following the
%JAVA_OPTIONS% variable.

C:\bea\weblogic81\server\bin\ startWLS.cmd

set JAVA_VENDOR=<BEA_HOME_DIR>\jrockit

set JAVA_VENDOR=BEA

%JAVA_HOME%\bin\java %JAVA_VM% %JAVA_OPTIONS%

Chapter 8 • Configuring the J2EE Probe and Application Server

171

171

The following is an example of the Xmanagement:class parameter:

➤ Allow the Probe to hook into the application server process by adding the
Xbootclasspath parameter immediately following the
%JAVA_OPTIONS% variable.

Following is an example of the Xbootclasspath parameter where
<probe_install_dir> is to be replaced with the path to the directory where
the probe was installed:

The following is an example of a WebLogic startup script before adding the
Xmanagement:class and Xbootclasspath parameters:

Note: The startup script examples are shown with line breaks. The actual
scripts do not have line breaks and the text of the commands will wrap on
your screen as necessary.

-Xmanagement:class=com.mercury.opal.capture.proxy.JRockitManagement

-Xbootclasspath/p:<probe_install_dir>\classes\boot

"%JAVA_HOME%\bin\java" %JAVA_VM% %MEM_ARGS% %JAVA_OPTIONS%
-Dweblogic.Name=%SERVER_NAME% -Dweblogic.management.user-
name=%WLS_USER%
-Dweblogic.management.password=%WLS_PW% -Dweblogic.manage-
ment.server=%ADMIN_URL%
-Dweblogic.ProductionModeEnabled=%PRODUCTION_MODE%
-Djava.security.policy="%WL_HOME%\server\lib\weblogic.policy" weblogic.Server

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

172

The following is an example of a WebLogic startup script after adding the
Xbootclasspath parameter:

 6 Save the changes to the command file.

 7 Restart the WebLogic application server (not the computer; just the
application server).

 8 To verify that the Probe was configured correctly, check for entries in the
<probe_install_dir>\log\<probe_id>.log file. If there are no entries in the
file, this indicates that you did not run the JRE Instrumenter or did not enter
the Xbootclasspath correctly. For details on running the JRE Instrumenter,
see “Running the JRE Instrumenter” on page 135.

Configuring the Oracle9i Application Server

Oracle9i application servers are configured by adding the Xbootclasspath
property to the xml file used to start the application server. Because the files
that Oracle9i provides are frequently customized by the site administrator, it
is not possible to provide detailed configuration instructions that will apply
exactly for each situation. Instead, the following sections provide
instructions configuring an Oracle9i application server for a generic
implementation.

"%JAVA_HOME%\bin\java" %JAVA_VM% %MEM_ARGS% %JAVA_OPTIONS%
-Xmanagement:class=com.mercury.opal.capture.proxy.JRockitManagement
-Xbootclasspath/p:"C:\Program Files\Mercury Interactive\common\Jav-
aProbe\classes\boot"
-Dweblogic.Name=%SERVER_NAME% -Dweblogic.management.user-
name=%WLS_USER%
-Dweblogic.management.password=%WLS_PW% -Dweblogic.manage-
ment.server=%ADMIN_URL%
-Dweblogic.ProductionModeEnabled=%PRODUCTION_MODE%
-Djava.security.policy="%WL_HOME%\server\lib\weblogic.policy" weblogic.Server

Supported version Operating systems

9.0.3 Solaris 8

Chapter 8 • Configuring the J2EE Probe and Application Server

173

173

Your site administrator should be able to use these instructions to guide you
through making these changes in your customized environment.

Note: Make sure that you understand the structure of the startup scripts,
how the property values are set, and the use of environment variables before
you make any configuration changes for the Probe. Always create a backup
copy of any file that you are going to update, prior to making the changes.

To configure an Oracle9i application server:

 1 Locate the XML file that is used to control the configuration of the
application server when the server is started. This file is typically located at
<Oracle 9iAS_Install_Dir>/opmn/conf/opmn.xml.

 2 Create a back-up copy of the opmn.xml file prior to making any changes.

 3 Open the opmn.xml file to be edited using your editor.

 4 Add the Xbootclasspath property. The property must added to the
"java-option value".

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

174

The following is an example of the Xbootclasspath parameter where
<probe_install_dir> is to be replaced with the path to the directory where
the probe was installed:

Following is an example of an Oracle 9iAS startup script before adding the
Xbootclasspath parameter:

-Xbootclasspath/p:<probe_install_dir>\classes\boot

Chapter 8 • Configuring the J2EE Probe and Application Server

175

175

Following is an example of an Oracle 9iAS startup script after adding the
Xbootclasspath parameter:

 5 Save the changes to the XML file.

 6 Restart the Oracle application server. You do not need to restart the host
machine for the application server.

 7 To verify that the Probe was configured correctly, check for entries in the
<probe_install_dir>\log\<probe_id>.log file. If there are no entries in the
file, this indicates that you did not run the JRE Instrumenter or did not enter
the Xbootclasspath correctly. For details on running the JRE Instrumenter,
see “Running the JRE Instrumenter” on page 135.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

176

Configuring the JBoss Application Server

This section explains how to configure the JBoss 3.2.1 application server.

You configure JBoss application servers by adding the Xbootclasspath
property to the script that is used to start the application server. JBoss is
started by running shell scripts in a UNIX environment, or command scripts
in a Windows environment. Because the startup scripts that JBoss provides
are frequently customized by the site administrator, it is not possible to
provide detailed configuration instructions that will apply exactly for each
situation. Instead, the following sections provide instructions for each of the
certified versions of the JBoss application server for a generic
implementation. Your site administrator should be able to use these
instructions to guide you to make these changes in your customized
environment.

Note: Make sure that you understand the structure of the startup scripts,
how the property values are set, and the use of environment variables before
you make any configuration changes for the Probe. Always create a backup
copy of any file that you are going to update prior to making the changes.

Supported versions Operating systems

3.0.4 Windows 2000 Server

3.2.1 Linux Debian

Chapter 8 • Configuring the J2EE Probe and Application Server

177

177

To configure a JBoss application server:

 1 Locate the startup script that is used to start JBoss for your application. This
file is typically located in path similar to the following example:

Note: For UNIX the file extension is “.sh”.

 2 Create a back-up copy of the startup script prior to making any changes to
the script.

 3 Open the startup script to be edited using your editor.

 4 Add the Xbootclasspath parameter to the Java command line that starts the
application server. The parameter must be placed at the beginning of the
Java parameters following any JIT options such as -hotspot or -classic.

The following is an example of the Xbootclasspath parameter where
<probe_install_dir> is to be replaced with the path to the directory where
the probe was installed:

The following is an example of a JBoss startup script before adding the
Xbootclasspath parameter:

D:\JBoss\bin\run.bat

-Xbootclasspath/p:<probe_install_dir>\classes\boot

"%JAVA%" %JAVA_OPTS% -classpath "%CLASSPATH%" org.jboss.Main %ARGS%

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

178

The following is an example of a JBoss startup script after adding the
Xbootclasspath parameter:

Note: The startup script examples are shown with line breaks. The actual
scripts do not have line breaks and the text of the commands will wrap on
your screen as necessary.

 5 Save the changes to the startup script.

 6 Restart the JBoss application server with the Probe by running the modified
script. You do not need to restart the application server host machine.

 7 To verify that the Probe was configured correctly, check for entries in the
<probe_install_dir>/log/<probe_id>.log file. If there are no entries in the
file, this indicates that you did not run the JRE Instrumenter or did not enter
the Xbootclasspath correctly. For details on running the JRE Instrumenter,
see “Running the JRE Instrumenter” on page 135.

"%JAVA%" -Xbootclasspath/p:"C:\Program Files\Mercury Interactive\common\
JavaProbe\classes\boot"" %JAVA_OPTS% -classpath "%CLASSPATH%"
org.jboss.Main %ARGS

Chapter 8 • Configuring the J2EE Probe and Application Server

179

179

Configuring the SAP NetWeaver Application Server

The following instructions describe how to configure the SAP NetWeaver
application server so that your applications can be monitored by the J2EE
Probe.

Configuring the NetWeaver application server means instrumenting the
JVM and adding the Xbootclasspath property to the script that is used to
start the application server. The following sections provide instructions for a
generic NetWeaver implementation. Your site administrator should be able
to use these instructions to guide you in making the changes that are
appropriate to your specific environment.

Note: Make sure that you understand the structure of the startup scripts,
how the property values are set, and the use of environment variables before
you make any changes to the configuration of your application server for
the J2EE Probe. You should always create a backup of files before making any
changes.

To configure a SAP NetWeaver application server:

 1 Run JRE Instrumenter as described in “Running the JRE Instrumenter” on
page 135.

 2 Add the JVM that runs the NetWeaver application server as described on
page 136.

 3 Instrument the JVM as described on page 138. The JRE Instrumenter
provides the Xbootclass parameter. This parameter must be added to the
NetWeaver Configtool’s JMV parameters window as described in the next
step.

Supported versions Operating systems

3.0.4 Windows 2000 Server

3.2.1 Linux Debian

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

180

 4 Run the NetWeaver application server configuration tool. The configuration
tool is called configtool.bat and it is located in the
usr\sap\j2e\jc00\j2ee\configtool directory.

 5 Add the -Xbootclass parameter into the Java parameters text window. This
window is in the General tab when you select your server instance. For
example, cluster-data | instance_ID70323 | server_ID7032350.

 6 Save your changes and exit the configuration tool.

 7 Restart the NetWeaver application server.

 8 To verify that the Probe was configured correctly, check for entries in the
<probe_install_dir>/log/<probe_id>.log file. If there are no entries in the
file, this indicates that you did not run the JRE Instrumenter or did not enter
the Xbootclasspath correctly. For details on running the JRE Instrumenter,
see “Running the JRE Instrumenter” on page 135.

Note: If you detect capturing problems, assign the following values to these
properties in the etc/capture.properties file:

minimum.buffer.size = 250000

initial.private.buffer.count = 50

maximum.private.buffer.count = 200

gentle.reserve.buffer.count = 50

hard.reserve.buffer.count = 50

Chapter 8 • Configuring the J2EE Probe and Application Server

181

181

Configuring a Generic Application Server

Note: You should only use the instructions for the generic application server
when you do not find configuration instructions for your specific
application server in this document.

Note: Note that your site administrator may configure the application server
using an alternative, site-specific method. If this is the case, the generic
procedure may be sufficient for the administrator to understand what
changes must be made.

Important: Before making any changes, back up all startup scripts.

To update the application server configuration:

 1 Locate the application server startup script or the file where the JVM
parameters are set.

 2 Create a back-up copy of the application server startup script before you
make any changes to the script.

 3 Use an editor or the application server console to open the startup script.

 4 Add the Xbootclasspath parameter to the Java command line that starts the
application server, using the following syntax, where <probe_install_dir> is
the path to the directory where the Probe was installed:

This connects the Probe to the application. The parameter must be placed at
the beginning of the Java parameters, following any JIT options such as
-hotspot or -classic.

-Xbootclasspath/p:<probe_install_dir>\classes/boot

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

182

Following is an example of a WebLogic Java command line in a startup
script before adding the Xbootclasspath parameter:

Note: The startup script examples are shown with line breaks. The actual
scripts do not have line breaks and the text of the commands will wrap on
your screen as necessary.

The following is an example of a WebLogic Java command line in a startup
script after adding the Xbootclasspath parameter:

 5 Save the changes to the startup script.

 6 Restart the application server under test. You do not need to restart the
application server host machine.

 7 To verify that the Probe was configured correctly, check for entries in the
<probe_install_dir>/log/<probe_id>.log file. If there are no entries in the
file, this indicates that you did not run the JRE Instrumenter or did not enter
the Xbootclasspath correctly. For details on running the JRE Instrumenter,
see “Running the JRE Instrumenter” on page 135.

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m -classpath "%CLASSPATH%"
-Dweblogic.Domain=petstore -Dweblogic.Name=petstoreServer -
Dbea.home="C:\\bea"
-Dweblogic.management.password=%WLS_PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Dcloudscape.system.home=./samples/eval/cloudscape/data
-Djava.security.policy=="C:\bea\wlserver6.1/lib/weblogic.policy" weblogic.Server

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m -Xbootclasspath/p:"C:\Pro-
gram Files\Mercury Interactive\common\JavaProbe\classes\boot" -classpath
"%CLASSPATH%"
-Dweblogic.Domain=petstore -Dweblogic.Name=petstoreServer
-Dbea.home="C:\\bea" -Dweblogic.management.password=%WLS_PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Dcloudscape.system.home=./samples/eval/cloudscape/data
-Djava.security.policy=="C:\bea\wlserver6.1/lib/weblogic.policy" weblogic.Server

Chapter 8 • Configuring the J2EE Probe and Application Server

183

183

Note: Alternatively, you can configure the JVM process definitions of the
application server by going into the Administrative Console. However, this
does not apply to WebLogic servers.

Configuring the Probes for Multiple Application Server
Instances

When your application server is using multiple JVMs or when you want to
capture data for multiple JVMs, you must perform additional Probe
configuration steps. There are a couple of options; you may install one
Probe for each JVM on a host machine or you may install one Probe that
will be shared by all of the JVMs.

Configuring Multiple JVMs to Use a Single Probe Installation

To allow multiple JVMs to share a single Probe installation, you must
configure a separate instance of the Probe for each JVM. This configuration
enables the following:

➤ Establishing communication between the JVM and the Probe

➤ Identification of the Probe by the JVM

➤ Instrumenting the JVM to instruct the Probe about the performance metrics
it is to monitor

To configure a J2EE Probe to work with multiple JVMs:

 1 When a Probe is being used to monitor multiple JVMs, the JRE Instrumenter
must be run once for each JVM to enable the Probe to monitor the events of
the applications that are running on the JVM.

If you have not already run the JRE Instrumenter for each of the JVMs that
the Probe will be working with, do so now. See “Running the JRE
Instrumenter” on page 135 for the instructions.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

184

Note: You must run the JRE Instrumenter manually even if you let the
installer instrument the JRE when the Probe was installed. The JRE
Instrumenter prepares the applications for the multi-JVM support.

 2 Specify the range of ports from which the Probe can automatically select.
The J2EE Probe communicates using the mini web server. A separate port is
assigned for Probe communications for each JVM that a Probe is
monitoring. By default, the port number range is set to 35000 - 35100. You
must increase the port number range when the Probe is working with more
than 50 JVMs. The range must be large enough so that there is are two
available ports for each of the Probes.

Note: If a firewall separates your Probe and Mediator from the other
Diagnostics components, you must configure the firewall to allow
communications using the ports in the range that you specify. See
“Configuring Diagnostics Components to Work with a Firewall” on
page 369 for more information.

If you have configured the firewall to allow Probe communications on a
range of ports that is different than the default, make sure to update the port
range values discussed in the following bullets accordingly.

➤ Locate the dispatcher.properties file in the folder
<probe_install_dir>/javaprobe/etc.

➤ Set the following properties to adjust the range of ports that are available
for Probe communications.

The minimum port in the port number range is set using the following
property:

webserver.port=35000

Chapter 8 • Configuring the J2EE Probe and Application Server

185

185

The maximum port in the port number range is set using the following
property:

webserver.maxPort=35100

 3 Assign a custom Probe Identifier to the Probe for each JVM, using the Java
command line.

-Dprobe.id=<Unique_Probe_Name>

The Probe names defined on the Java command line override the probe
names that are defined in the probe.properties file using the Probe’s “id”
property.

The following is an example of a WebLogic startup script before adding the
probe.id parameter:

The following is an example of a WebLogic startup script after adding the
probe.id parameter (note that the startup script must be entered on one
line, without any breaks):

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m -classpath "%CLASSPATH%"
-Dweblogic.Domain=petstore -Dweblogic.Name=petstoreServer -Dbea.home="C:\\bea"
-Dweblogic.management.password=%WLS_PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Dcloudscape.system.home=./samples/eval/cloudscape/data
-Djava.security.policy=="C:\bea\wlserver6.1/lib/weblogic.policy" weblogic.Server

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m"-Xbootclasspath/p:C:\Program
Files\Mercury Interactive\Diagnostics for J2EE\Probe\classes\Sun\1.4.1_03;C:\Pro-
gram Files\
Mercury Interactive\Diagnostics for J2EE\Probe\classes\boot" -classpath "%CLASS-
PATH%"
-Dprobe.id=<Unique_Probe_Name> -Dweblogic.Domain=petstore
-Dweblogic.Name=petstoreServer
-Dbea.home="C:\\bea" -Dweblogic.management.password=%WLS_PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Dcloudscape.system.home=./samples/eval/cloudscape/data
-Djava.security.policy=="C:\bea\wlserver6.1/lib/weblogic.policy" weblogic.Server

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

186

 4 Specify the points file that LoadRunner will use where you have several
JVMs on the same machine using a single probe instance, and one or more
of the JVMs needs some custom hooks to support custom instrumentation.

Configuring Separate Probe Installations For Each JVM

When there are multiple JVMs on a single host, you may install a separate
Probe for each JVM instance. To use a separate Probe for each JVM, you must
install the Probe multiple times, and define an instance of each Probe by
setting the Probe’s “id” property in the probe.properties file in each Probe
installation directory.

To define an instance of each installed Probe:

 1 If you have not already manually run the JRE Instrumenter for the JVMs
that the Probe will be working with do so now. To run the JRE Instrumenter,
see “Running the JRE Instrumenter” on page 135.

 2 Locate the probe.properties file in the <probe_install_dir>/javaprobe/etc
directory.

For example:

 3 Set the ”id” property to a name that will be unique on the server and on the
Diagnostics Server as follows:

id=<uniqueProbeName>

When the Probe instance is started, a log file will be created in the
<probe_install_dir>/javaprobe/log directory where the log messages for the
Probe will be stored.

-Dprobe.points.file.name="<Custom_AutoDetect_Points_File>"

C:\Program Files\Mercury Interactive\common\JavaProbe\etc\probe.properties

Chapter 8 • Configuring the J2EE Probe and Application Server

187

187

Note: This configuration enables you to perform the diagnostics; but you
will have to spend some time configuring each Probe installation. Using a
single Probe for multiple JVMs can provide you with the same diagnostics
detail, while allowing you to spend less time configuring the components.

Configuring Multiple JVMs to Use a Single Probe for Deep
Diagnostics

When a Probe is being used by multiple JVMs, each instance of the
application server must identify with an application definition in Deep
Diagnostics. This is accomplished by defining the application definition
using the Deep Diagnostics Console. The application definition associates
the port number that the Probe will use to communicate with Deep
Diagnostics and the host name of the computer on which the Probe is
installed.

Note: This setup is the same if the application server instances are sharing a
common JRE (for example, when multiple WebLogic JVM instances are
using a shared file system).

To configure Deep Diagnostics and the JVM:

 1 Create a new application definition, or access an existing application
definition from the Deep Diagnostics console.

➤ Access the Application Definition window by selecting an application
definition from the tree view on the Globals tab.

➤ Enter the name for the Application Definition in the Name field.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

188

 2 Explicitly specify the port that the Probe is to use for communicating with
the Deep Diagnostics server.

To specify the port, enter the number of the port that the Probe will use to
communicate with Deep Diagnostics in the Port field of the Configuration
section of the Application Definition window as shown below. Deep
Diagnostics updates the port property in the points file.

 3 Instrument each JVM that is being monitored by the Probe.

➤ For each JVM version that is being monitored by the Probe:

• Run the JRE Instrumenter. For details on running the JRE
Instrumenter, see “Running the JRE Instrumenter” on page 135.

• Copy the <probe_install_dir> classes/boot directory and rename the
directory to a name that indicates the JVM version that you ran the
JRE Instrumenter for.

• For example, if you just ran the JRE Instrumenter for the WebLogic
JVM you may want to rename the boot directory to:

<probe_install_dir>\classes\bootwls

Chapter 8 • Configuring the J2EE Probe and Application Server

189

189

➤ Add the Xbootclasspath parameter to the Java command line that starts
the application server. Make sure that the Xbootclasspath parameter
points to the <probe_install_dir> classes/boot version that you created
for the application server type that is appropriate for the startup script
that you are modifying.

The parameter must be placed at the beginning of the Java parameters
following any JIT options such as -hotspot or -classic.

The following is an example of the Xbootclasspath parameter where
<probe_install_dir> is to be replaced with the path to the directory where
the Probe was installed. Note that the boot directory is the copy of the
directory that was created for the JVM.

Note: The startup script examples are shown with line breaks. The actual
scripts do not have line breaks and the text of the commands will wrap
on your screen as necessary.

The following is an example of a WebLogic startup script before adding
the Xbootclasspath parameter:

-Xbootclasspath/p:”C:\Program Files\Mercury Interactive\Diagnostics for
J2EE\Probe\classes\Sun\1.4.1_03;C:\Program Files\Mercury Interactive\Diagnostics
for J2EE\Probe\classes\boot"

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m -classpath "%CLASSPATH%"
-Dweblogic.Domain=petstore -Dweblogic.Name=petstoreServer -
Dbea.home="C:\\bea"
-Dweblogic.management.password=%WLS_PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Dcloudscape.system.home=./samples/eval/cloudscape/data
-Djava.security.policy=="C:\bea\wlserver6.1/lib/weblogic.policy" weblogic.Server

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

190

The following is an example of a WebLogic startup script after adding the
Xbootclasspath parameter (note that the startup script must be entered
on one line, without any breaks):

 4 Point each of the application server instances to the Probe directory, and
assign a unique Probe Identifier that will be used by the application server to
reference the Probe. To define the unique Probe Identifier for each
application server, add the following system property to the startup script
for each instance, and to the JavaProbe/etc/probe.properties file:

-Dprobe.id="<Unique_DD_Probe_Name>"

Following is an example of a WebLogic startup script before adding the
probe.id parameter:

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m -Xbootclasspath/p:”C:\Program
Files\Mercury Interactive\Diagnostics for J2EE\Probe\classes\Sun\1.4.1_03;C:\Pro-
gram Files\
Mercury Interactive\Diagnostics for J2EE\Probe\classes\boot" -classpath "%CLASS-
PATH%"
-Dweblogic.Domain=petstore -Dweblogic.Name=petstoreServer -
Dbea.home="C:\\bea"
-Dweblogic.management.password=%WLS_PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Dcloudscape.system.home=./samples/eval/cloudscape/data
-Djava.security.policy=="C:\bea\wlserver6.1/lib/weblogic.policy" weblogic.Server"

Chapter 8 • Configuring the J2EE Probe and Application Server

191

191

Note: The startup script examples are shown with line breaks. The actual
scripts do not have line breaks and the text of the commands will wrap on
your screen as necessary.

Following is an example of a WebLogic startup script after adding the
probe.id parameter:

The system creates a separate log file for each probe name, so the log
messages generated by the Probe for a particular application server appear in
its own log file.

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m -Xbootclasspath/p:"C:\Program
Files\
Mercury Interactive\Diagnostics for J2EE\Probe\classes\Sun\1.4.1_03;C:\Program
Files\Mercury Interactive\Diagnostics for J2EE\Probe\classes\boot"
-classpath "%CLASSPATH%" -Dweblogic.Domain=petstore -Dweblogic.Name=pet-
storeServer
-Dbea.home="C:\\bea" -Dweblogic.management.password=%WLS_PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Dcloudscape.system.home=./samples/eval/cloudscape/data
-Djava.security.policy=="C:\bea\wlserver6.1/lib/weblogic.policy" weblogic.Server

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m "-Xbootclasspath/p:C:\Program
Files\Mercury Interactive\Diagnostics for J2EE\Probe\classes\Sun\1.4.1_03;C:\Pro-
gram Files\
Mercury Interactive\Diagnostics for J2EE\Probe\classes\boot"-classpath "%CLASS-
PATH%"
-Dprobe.id=<Unique_DD_Probe_Name> -Dweblogic.Domain=petstore
-Dweblogic.Name=petstoreServer -Dbea.home="C:\\bea"
-Dweblogic.management.password=%WLS_PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Dcloudscape.system.home=./samples/eval/cloudscape/data
-Djava.security.policy=="C:\bea\wlserver6.1/lib/weblogic.policy" weblogic.Server

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

192

193

9
Setting Up Diagnostics for J2EE & .NET
on LoadRunner 8.0

This chapter describes how to configure LoadRunner 8.0 so that Mercury
Diagnostics for J2EE & .NET can be enabled for use in a load test.

This chapter includes the following sections:

➤ About Setting Up Diagnostics for J2EE & .NET

➤ Setting Up Diagnostics for J2EE & .NET on LoadRunner 8.0

➤ Configuring LoadRunner Scenarios to use Diagnostics for J2EE & .NET

About Setting Up Diagnostics for J2EE & .NET

LoadRunner and Diagnostics for J2EE & .NET are integrated products that
have been designed to work together to provide you with the information
that helps you to understand and improve the performance characteristics
of your applications. However, you must provide LoadRunner with some
information about your Diagnostics configuration to enable the product
integration.

Before you can use Diagnostics for J2EE & .NET with LoadRunner 8.0, you
must provide LoadRunner with the information that it needs so that it can
communicate with the Diagnostics components.

Before you can gather Diagnostics metrics in a particular load test, you must
select the LAN and probes that will be involved in the test and provide
instructions for the scope and breadth of the monitoring that you would
like Diagnostics to perform.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

194

Setting Up Diagnostics for J2EE & .NET on LoadRunner 8.0

The first time you use LoadRunner 8.0 to capture J2EE or .NET diagnostics
data, you must tell LoadRunner the machine on which the Diagnostics
Commander is running, and the port the Commander is using for
communication with LoadRunner.

You must update this information if you want to integrate with a different
Diagnostics Commander, or if you change the port the Commander is
using.

To update the LoadRunner configuration settings for Diagnostics for J2EE &
.NET

 1 Select Configuration > Diagnostics for J2EE & .NET Setup from the menu at
the top of Mercury LoadRunner main screen as shown in the following
screen image.

The Diagnostics for J2EE & .NET Setup screen is displayed as shown in the
following screen image.

Chapter 9 • Setting Up Diagnostics for J2EE & .NET on LoadRunner 8.0

195

195

 2 Enter the Server Name and Port for the Diagnostics Commander in the text
boxes provided.

You may click Test to make sure that you entered the correct information for
the Diagnostics Commander and that there is connectivity between the
Diagnostics Commander and LoadRunner.

 3 When you are satisfied with the information that you provided, click OK to
finish the configuration process.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

196

Configuring LoadRunner Scenarios to use Diagnostics for
J2EE & .NET

When you want to capture Diagnostics metrics in a load test, you need to
configure the Diagnostics parameters for the scenario to enable Diagnostics
and to let LoadRunner know which LAN and which Probes will be included
in the load test scenario.

Note: You must configure the Diagnostics settings each time you run a load
test unless you have saved a scenario with the Diagnostics settings already
configured.

To configure the Diagnostic parameters for a load test scenario:

 1 Make sure that the application server has been started before configuring
your scenario for Diagnostics from the LoadRunner Controller.

Chapter 9 • Setting Up Diagnostics for J2EE & .NET on LoadRunner 8.0

197

197

 2 Select Diagnostics > Configuration... from the menu in the LoadRunner
Controller menu bar as shown in the following screen image.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

198

The Diagnostics Distribution dialog box opens as shown below.

 3 Enable Diagnostics by selecting the Enable the following diagnostics check
box.

 4 Set the percentage of Vusers to participate in the monitoring. The maximum
percentage of J2EE Vusers on which breakdown can be performed is 100%.

Note: If you have enabled other types of diagnostics, the percentage of Vuser
participation cannot exceed the maximum of any of the selected diagnostics
types.

Chapter 9 • Setting Up Diagnostics for J2EE & .NET on LoadRunner 8.0

199

199

 5 In the Online and Offline Diagnostics box, click Configure. The J2EE/.NET
Diagnostics Configuration dialog box opens as shown below.

Note: This dialog box is read-only while a scenario or session step is
running.

 6 Enable J2EE/.NET Diagnostics by checking the Enable J2EE Diagnostics box.

 7 Choose the LAN that will be involved in the load test scenario from the
Select LAN drop-down list. The selected LAN must contain the probes which
were installed on the application servers you want to monitor

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

200

Warning: The next time you open the J2EE/.NET Diagnostics Configuration
dialog box, the LAN that you see may be a different one. This is because the
dialog box usually shows the default LAN. Make sure you choose the LAN
you chose before. Otherwise, clicking OK will disable the Probes that you
selected.

When you choose a LAN, the list of Probes in the Select Probes from the
LAN list box is updated with the Probes that are in the selected LAN.

Note: All of the Probes in a load test must be from the same LAN.

 8 Choose the Probes that are to be monitored during the load test from Select
probes from the LAN list box. Select the check the box adjacent to each
probe that you want to monitor. A check mark appears, indicating that the
probe is enabled.

To disable a probe for the duration of a scenario or session, toggle the check
box by selecting it again.

Note: You must enable at least one probe.

 9 If the mediators are located behind a firewall, check There is a firewall
between the mediator and the Controller, and enter the name of the MI
listener server in the MI listener server field. For more information see
Appendix F, “Configuring Diagnostics Components to Work with a
Firewall.”

 10 To capture a percentage of server requests which occur outside the context
of any Virtual User transaction select the Monitor server requests check
box.

The server requests will be captured at the same percentage as was selected
for the percentage of Vusers on Diagnostics Configuration dialog.

Chapter 9 • Setting Up Diagnostics for J2EE & .NET on LoadRunner 8.0

201

201

Note: Enabling this functionality imposes an additional overhead on the
Probe.

The benefit of enabling this functionality is that calls into a “back-end” VM
can be captured even in the case where:

➤ The Probe is not capturing RMI calls

➤ RMI calls cannot be captured (perhaps because an unsupported
application container is being used)

➤ The application uses some other mechanism for communications
between multiple VMs.

 11 Investigate any issues that you have with the connections between the
Diagnostics components by clicking the Troubleshoot Diagnostics for J2EE
& .NET connectivity hyper link. This will open the System Health Monitor
in a new browser window as shown below.

For details of how to use the System Health Monitor, see Appendix A,
“Using the System Health Monitor.”

 12 When you have finished making your selections, click OK to accept your
changes and close the J2EE/.NET Diagnostics Configuration dialog. Click OK
on the Diagnostics Distribution dialog to complete the configuration.

Part II • Installation and Configuration of Diagnostics for J2EE & .NET Components

202

Part III

Using Mercury Diagnostics for J2EE & .NET

204

205

10
Introducing Diagnostics for J2EE & .NET
Screens

This chapter introduces the screens, graphs, tables and charts that are used
to present the Diagnostics for J2EE & .NET performance metrics. This
chapter provides a high level overview of the screens and instructions for
using the screens. The next chapter provides a detailed description of each
screen as well as the graphs and tables that appear on the screens. See “Using
the Diagnostics for J2EE & .NET Screens” on page 219 for more information.

The following topics are included in this chapter:

➤ Viewing Diagnostics Data from the LoadRunner Controller

➤ Introducing the Diagnostics Screens

➤ Drilling Down Into the Diagnostics Metrics

➤ Using the Diagnostics Navigation and Display Controls

Viewing Diagnostics Data from the LoadRunner Controller

Once you have configured LoadRunner and Diagnostics for J2EE & .NET as
described in“Setting Up Diagnostics for J2EE & .NET on LoadRunner 8.0” on
page 193 and you have initiated a load test from the LoadRunner Controller,
you may view the Diagnostics metrics as the load test executes.

To view the Diagnostics metrics, click the Diagnostics for J2EE & .NET tab.
The Diagnostics Overview screen is displayed as shown below. From this
screen, you can navigate and drill down into all of the performance metrics
provided by Diagnostics.

Part III • Using Mercury Diagnostics for J2EE & .NET

206

A high level description of this screen and the other Diagnostics screens are
provided in the remainder of this chapter. For a more detailed description of
the screens see“Using the Diagnostics for J2EE & .NET Screens” on page 219.

Chapter 10 • Introducing Diagnostics for J2EE & .NET Screens

207

207

Introducing the Diagnostics Screens

You can access the performance metrics for a load test that you are
executing using the Mercury LoadRunner Controller from the Diagnostics
for J2EE/.NET tab.

The Diagnostics performance metrics are presented on a series of screens in
both graphical and tabular formats so that you can analyze a particular
aspect of your application’s performance and drill down into the details of
the system behavior that is contributing to the observed performance.

Note: Response time on the Diagnostics screens refers to the server response
time as measured on the server side. Response time on the LoadRunner
screens refers to the server response time as measured on the client side. For
this reason, comparison of response times between a Diagnostics screen and
a LoadRunner screen may not match.

Note: The transaction time that is displayed on the Diagnostics screens
includes only the time that the transaction spends in the J2EE/.NET server.
This means that it does not include the user’s think time in the midst of the
transaction.

The Diagnostics screens are:

➤ Diagnostics Overview

The top five most notable instances for Transactions, Server Requests,
Layers, and Virtual Machines data are displayed on a single screen to
provide a broad overview of the performance characteristics of your
application. The most notable instance would be the 5 slowest response
times when you are viewing the response times graphs. The 5 highest
counts would be the most notable when viewing the count graphs.

For more information on this screen see “Analyzing Performance Using
the Diagnostics Overview Screen” on page 220.

Part III • Using Mercury Diagnostics for J2EE & .NET

208

➤ Transactions

The response times or the requests per second for the captured
transactions across all Virtual Machines are displayed in graphical and
tabular formats. For more information on this screen see “Analyzing
Performance with the Transactions Screen” on page 224.

➤ Server Requests

The response times or the requests per second for the captured server
request calls are displayed in graphical and tabular formats. For more
information on this screen see “Analyzing Performance with the Server
Request Screens” on page 229.

➤ Layers

The average response time for the captured layers are displayed in
graphical and tabular formats. For more information on this screen see
“Analyzing Performance with the Layer Screens” on page 236.

➤ Virtual Machines

The average response time or the requests per second for all server
requests on the selected virtual machines are displayed in graphical and
tabular formats. For more information on this screen see “Analyzing
Performance with the Virtual Machines Screen” on page 241.

➤ Aggregate Profile

The method call profile behind the processing metric that you are
viewing on one of the other screens is presented in a graphical and in a
call tree format. For more information on this screen see “Analyzing
Performance with the Aggregate Profile Screen” on page 247.

Drilling Down Into the Diagnostics Metrics

When you analyze the performance of your application, you begin by using
the Diagnostics graphs found on the Diagnostics Overview screen displayed
on the Diagnostics for J2EE/.NET tab in the LoadRunner Controller. Mercury
Diagnostics allows you to drill down into the information presented on the
screens to uncover the root cause of the application performance that is
being portrayed in the higher level graphs.

Chapter 10 • Introducing Diagnostics for J2EE & .NET Screens

209

209

The following diagram illustrates the paths that you can use as you drill
down into the metrics. As you drill down, the data displayed on the lower
level screens is filtered based upon each of the proceeding drill down levels.

The default path that will be taken when you double click on an item in the
table is shown with a bold line.

Part III • Using Mercury Diagnostics for J2EE & .NET

210

Using the Diagnostics Navigation and Display Controls

This section provides an overview of the common navigation and display
controls that appear on the Diagnostics screens. More details about these
controls have been provided in the description of each screen when the
functionality varies significantly from what is described in this section.

Dashed Lines Verses Solid Lines In Graph

When there is a solid line between two data point on the graph, the two
data points were consecutive queries. This means that that line illustrates
the actual trend of the data between those two points.

Chapter 10 • Introducing Diagnostics for J2EE & .NET Screens

211

211

When there is a dashed line between two data points on the graph, the two
data points were not consecutive queries. This means that there was a query
in between the two data points that returned no measurable data and
therefore the actual line between the two graphed points illustrates an
approximation of the actual trend.

Adjusting the Reported Time Range

You may control the breadth of time for which performance data is
displayed in many of the graphs, tables and charts by selecting the desired
length of time from the Time Range drop down list. The choices in the drop
down list are:

➤ Previous 5 Minutes

➤ Previous 30 Minutes

➤ Previous 4 Hours

➤ Whole Scenario. (This is the default selection.)

Adjusting the Graphed Metric

You may control which performance metrics will be graphed on many of the
Diagnostics screens by using the Graph drop down list. Once you make a
selection from this drop down list, the selection will be applied to all
subsequent screens until another selection is made. The choices that are
available in the drop down list are:

➤ Response Time - the graphed metrics will depict the response time
between the time when a call was made and when the processing for the
call was ended.

➤ Count - the graphed metrics will depict the average number of calls per
second.

Screen Context - Bread Crumb Trail

The “bread crumb” trail at the top of many of the diagnostics screens
provides a convenient reminder of the context for the information that is
presented on the screen. It also provides a handy method of navigation
when you want to retrace your steps in your performance analysis.

Part III • Using Mercury Diagnostics for J2EE & .NET

212

Clicking on a level in the bread crumb trail will take you back to the screen
that displays the metrics for the selected higher level. The selections that
you made from the drop-down lists in the lower level screens to change the
time period or type of graph and changes that you make to the table
including the sort order and the rows that are to appear in the graph will be
will be retained.

Note: When you return to the Diagnostics Overview screen the drop-down
list selections are retained but the changes that you made to the sort order
for the table or the rows to display in the graph will be lost.

The last level displayed in the bread crumb is not a link because it represents
the current diagnostics screen that has been displayed. The bread crumb has
been highlighted with a callout in the previous screen image.

Exporting Metrics to HTML Report

You may capture the processing metrics displayed in the graph and
table on a diagnostics screen by clicking the icon on the top right-hand

side of the screen. The information displayed on the screen are exported to
an HTML report file. The HTML reports can be viewed in your browser and
can be used to share metrics for interesting or perplexing system
performance with others.

Note: There is not HTML Report Export from the Diagnostics Overview
Screen.

To Export to an HTML Report:

 1 Click the export icon. The Save HTML screen is displayed

 2 Enter the file name that you want the exported file to be saved as into the
File name field.

 3 Enter any comments that you would like to have appear on the report into
the Comments text box.

Chapter 10 • Introducing Diagnostics for J2EE & .NET Screens

213

213

 4 If you would like to view the HTML file, select the View HTML check box.
This will cause the HTML file that is being saved to be displayed in your
browser after it has been saved.

Definitions for the Columns in the Diagnostics Table

The table at the bottom of the Diagnostics screens contains a list of the
items for which processing metrics are being reported. On the Server
Requests screen the table lists server requests and on the Transactions screen
the table lists transactions.

The table lists the items that apply to the context displayed in the bread
crumbs. The metrics reported in the table are filtered based upon the time
period specified in the Time Range drop-down.

The table is made up of the following columns. Some of the screens do not
display all of these columns.

➤ Color - When the Chart check box for the item has been selected so that
a trend line for the item will be included in the graph this column
contains a colored block. The color of the block is the same color as the
trend line for the item.

Part III • Using Mercury Diagnostics for J2EE & .NET

214

➤ Chart? - A check box that you may toggle to indicate whether the item
should be included in the graph. When the box is checked, a trend line
for the item will appear in the graph.

➤ Item - The name of the item that is being reported in the table. On the
Virtual Machines screen this column has a heading of “Virtual Machine”
and contains the name of the virtual machines for which metrics are
reported.

➤ Contribution - The amount of time and percentage of the parent’s total
time that the selected row contributed to the item. The time is reported
in milliseconds.

➤ Avg Time - The average response time for the item across all instances.
The time is reported in milliseconds.

➤ Req /Sec - The number of server requests that occurred each second for
the selected time period.

➤ Txn /Sec - The number of transactions that occurred each second for the
selected time period.

Sorting the Table

When viewing the Response Time graph, the table is sorted in descending
order by the Contribution column. When viewing the Count graph, the
table is sorted in descending order by the Txn/Sec or Req/Sec column.

You may change the order in which information is displayed in the tables
on the Diagnostics screens by clicking the column headers in the table.
Diagnostics will sort the rows in the table in ascending order according to
the values in the table column that you selected. Clicking the same column
header again will toggle the sort order to descending order.

Note: The table on the Aggregate Profile screen cannot be sorted.

Chapter 10 • Introducing Diagnostics for J2EE & .NET Screens

215

215

Adding and Removing Items From the Graph

On many of the screens you may control which items from the table appear
in the graph by toggling the selection in the Chart column of the table.

➤ To add an item to the graph select the check box in the Chart column for
the row in the table. When you click anywhere on a row in the table that
is not already included in the graph, it will be added to the graph as well.

➤ To remove an item from the graph deselect the check box in the Chart
column for the row in the table.

Highlighting the Trend Line or Area For a Detail Line in the Table

You can cause the trend line or area for a detail line in the table to stand out
in a bold font by selecting the row in the table. The graph line for the
previously selected row will be changed to a normal font and the trend line
for the row that you selected will stand out with a bolder font.

Selecting the Trend Line in the Table for a Graph Line

You can determine which detail line in the table is associated with a given
graphed trend line by clicking on a data point on the trend line. When the
data point is clicked, the focus in the table will be shifted to the row
associated with the graphed line.

Viewing Additional Details in the Details Panel

You may view additional information for the items listed in the table by
clicking on the item to select the row in the table. The details for the item in
the selected row will be displayed in the Details Panel.

Note: The fields that are displayed in the Details Panel will vary depending
on the metrics that are being displayed on the screen and time range that
you selected in the Time Range drop down.

Part III • Using Mercury Diagnostics for J2EE & .NET

216

Note: The time measurements may not correspond to the actual time for an
event when the beginning or end of an event has not been captured.

Definitions for the Rows in the Details Panel

The Details Panel lists the following information for the selected row of the
Diagnostics Table.

➤ Name - The name of the item that was selected from the Diagnostics
table and whose information is displayed in the Details Panel.

➤ Min Time - The elapsed time for the instance of the item selected from
the diagnostics table that has the shortest duration of all of the
aggregated instances. Time is measured from the start of the first
captured point until the end of the last captured point.

➤ Average Time - The average (mean) elapsed time taken by an item.
Average time is calculated by dividing the item’s total time by the item’s
count.

➤ Max Time - The elapsed time for the instance of the item selected from
the diagnostics table that has the longest duration of all of the aggregated
instances. Time is measured from the start of the first captured point
until the end of the last captured point.

➤ Standard Deviation - A measure of the dispersion of the total time taken
by all of the instances of the selected item.

➤ Count - The total number of times an item was invoked.

➤ Total Exceptions - The number of exceptions that were captured for all of
the aggregated instances of the selected item.

➤ Total Timeouts - The number of times that an instance of the selected
item failed in an unknown manner.

➤ Host Name - The machine name that is the host for the virtual machine
where the item is being executed.

➤ Platform - The platform where the application is running.

Chapter 10 • Introducing Diagnostics for J2EE & .NET Screens

217

217

➤ Contribution to Parent (Time) - The amount of time that this item
contributed to the parents total time.

➤ Contribution to Parent (%) - The percentage of the time that this item
contributed to the parents total time.

➤ Contribution to Application - The percentage of time that this item
contributed to the applications total time.

➤ Server Requests per Sec - The number of events per second for the
selected time frame.

➤ Transactions per Sec - The number of transactions per second for the
selected time frame.

Drilling Down into Rows in the Table

Many of the Diagnostics screens allow you to drill down into the metrics
presented in the tables to see the metrics for the underlying processing.
There are two ways provided for you to drill down on the diagnostics
screens.

Note: Not all screens have drill down navigation options.

➤ Right-click on a row in the table to display a pop-up menu with the
available navigation options.

➤ Double click on a row in the table to drill down directly into the default
lower level graph. This is a shortcut that allows you to drill down without
stopping at the pop-up menu displayed when you right-click.

Zooming in On Sections of the Screen

Splitter controls have been provided on most of the screens to allow you to
minimize and maximize areas of the screen. See the arrows that have been
highlighted with the square in the above example for an example of splitter
controls. This makes it possible for you to highlight areas of the screen that
are of interest to you by maximizing that part of the screen and minimizing
other parts of the screen that are of less interest.

Part III • Using Mercury Diagnostics for J2EE & .NET

218

219

11
Using the Diagnostics for J2EE & .NET
Screens

This chapter provides a detailed description of the screens, graphs, tables
and charts that are used to present the diagnostic performance metrics for
the application that is being analyzed. The presentation of each monitored
metric is described along with the ways that you can drill down from the
higher level information to reveal the specific part of your application that
is contributing to the observed application performance. For a high level
introduction to the Diagnostic screens see “Introducing Diagnostics for J2EE
& .NET Screens” on page 205.

This chapter contains the following topics:

➤ Analyzing Performance Using the Diagnostics Overview Screen

➤ Analyzing Performance with the Transactions Screen

➤ Analyzing Performance with the Server Request Screens

➤ Analyzing Performance with the Layer Screens

➤ Analyzing Performance with the Virtual Machines Screen

➤ Analyzing Performance with the Aggregate Profile Screen

Part III • Using Mercury Diagnostics for J2EE & .NET

220

Analyzing Performance Using the Diagnostics Overview
Screen

Purpose of Diagnostics Overview Screen

The top five most notable instances for Transactions, Server Requests,
Layers, and Virtual Machines data are displayed on a single screen to
provide a broad overview of the performance characteristics of your
application. The most notable instance are the 5 slowest response times
when you are viewing the response times graphs. The 5 highest counts
would be the most notable when viewing the count graphs. From the
Diagnostics Overview screen, you can drill down into the details of the
performance portrayed in the graphs along with the other less noteworthy
instances of the performance metrics.

Accessing the Diagnostics Overview Screen

To get to the Diagnostics Overview Screen from the LoadRunner Controller:

 1 Click the Diagnostics for J2EE/.NET tab at the bottom of the LoadRunner
Controller screen.

 2 The Diagnostics for J2EE & .NET tab is displayed with the Diagnostics
Overview screen.

To get to the Diagnostics Overview Screen from the any of the other
Diagnostics screens:

 1 Click the Diagnostics Overview bread crumb at the top of the screen.

 2 The Diagnostics Overview screen is displayed with the four graphs
containing the information for the worst performing transactions, server
requests, layers, and virtual machines.

Chapter 11 • Using the Diagnostics for J2EE & .NET Screens

221

221

Description of Diagnostics Overview Screen

The Diagnostics Overview screen contains the Transactions graph, the
Server Requests graph, the Layers graph and the Virtual Machines graph as
shown in the following example.

Transactions graph

This graph shows the transaction metrics for the five transactions with the
longest response times. This is the same graph that is presented on the
Transactions screen when it is first displayed. See “Transactions: Response
Time Graph” on page 226 for more information.

Part III • Using Mercury Diagnostics for J2EE & .NET

222

Drilling Down into the Transaction Metrics

You may drill down into the transaction information displayed on the
Diagnostics Overview screen. To see more information on the transactions
displayed in the Transactions graph, double click the graph. The
Transactions screen is displayed where you can view detailed metrics for the
transactions displayed on the Diagnostics Overview screen as well as the rest
of the transactions that were not displayed on the Overview screen. See
“Analyzing Performance with the Transactions Screen” on page 224 for
more information.

Server Requests Graph

This graph shows the server request metrics for the five server requests with
the longest response times. This is the same graph that is displayed on the
Server Requests screen. See “Server Requests: Response Time Graph” on
page 233 for more information.

Drilling Down into the Server Request Metrics

You may drill down into the server request information displayed on the
Diagnostics Overview screen. To see more information on the server
requests displayed in the Server Requests graph, double click the graph. The
Server Requests screen will be displayed where you can view detailed metrics
for the server requests displayed on the Diagnostics Overview screen as well
as the rest of the Server Requests that were not displayed on the Overview
screen. See “Analyzing Performance with the Server Request Screens” on
page 229 for more information on these choices.

Layers Graph

This graph shows the performance metrics for the captured layers with the
worst response times. This is the same graph that is displayed on the Layers
screen. See “Layers Graph” on page 222 for more information.

Chapter 11 • Using the Diagnostics for J2EE & .NET Screens

223

223

Drilling Down into the Layer Response Time Metrics

You may drill down into the Layer performance metrics displayed on the
Diagnostics Overview screen. To see more information on the performance
metrics displayed in the Layers graph, double click the graph. The Layers
screen is displayed where you can view detailed metrics for the Layer
performance metrics displayed on the Diagnostics Overview screen as well
as the rest of the VM that were not displayed on the Overview screen. See
“Analyzing Performance with the Server Request Screens” on page 229 for
more information on these choices.

Virtual Machines graph

This graph shows the processing metrics for the five virtual machines with
the worst response times. This is the same graph that is displayed on the
Virtual Machines screen. See “Virtual Machines graph” on page 223 for
more information.

Drilling Down into the Virtual Machine Response Time Metrics

You may drill down into the VM information displayed on the Diagnostics
Overview screen. To see more information on the performance metrics
displayed in the Virtual Machines graph, double click the graph. The Virtual
Machines screen will be displayed where you can view detailed metrics for
the VM displayed on the Diagnostics Overview screen as well as the rest of
the VM that were not displayed on the Overview screen. See “Analyzing
Performance with the Virtual Machines Screen” on page 241 for more
information on these choices.

Refining the View In the Diagnostics Overview Screen

Use the following controls to adjust the amount of data and the type of data
that is displayed on the Diagnostics Overview screen.

➤ Choose whether to graph the response times or the call counts for the
transactions as described in “Adjusting the Graphed Metric” on page 211.
This will impact the metrics that are displayed in the Transactions, Server
Requests, and Virtual Machines graphs displayed on this screen as well as
the graphs that are displayed on any screen that is displayed as a result of
drilling down into these graphs.

Part III • Using Mercury Diagnostics for J2EE & .NET

224

The Layers graph will show the Relative Load no matter what is selected
from the Graph drop-down list. There is no version of this graph that shows
requests per second counts.

➤ Adjust the Time Range for which transaction metrics are displayed as
described in “Viewing Additional Details in the Details Panel” on page 215.
This will impact the metrics that are displayed in the graphs on this screen
as well as any screens that are displayed as a result of drilling down into the
content of the screen.

Analyzing Performance with the Transactions Screen

Purpose of the Transactions Screen

This screen displays performance metrics for the captured transactions
across all Virtual Machines. The graph on the screen can display either
transaction response times or the execution counts for each transaction. The
tables on the screen display the metrics for each transaction that was
captured for the context that is being displayed along with addition
information that help you to understand and improve the performance of
your applications.

Accessing the Transactions Screen

To get to the Transactions Screen from the Diagnostics Overview Screen:

 1 Double click the Transactions graph.

 2 The Transaction Trends screen is displayed. The graph should contain the
same transactions that were displayed on the Diagnostics Overview screen,
but may differ slightly if new data was received while drilling down."

To get to the Transaction screen from the other Diagnostics screens:

When you have navigated to another screen by drilling down from the
Transaction screen, you can return to the Transaction screen by clicking on
the Transaction bread crumb at the top of the screen.

Chapter 11 • Using the Diagnostics for J2EE & .NET Screens

225

225

Description of Transactions Screen

Reference the following screen image when reading the information in this
section.

Screen Context - Bread Crumb Trail

You may return to the Diagnostics Overview screen by clicking on the
Diagnostics Overview bread crumb.

Note: When you return to the Diagnostics Overview screen the drop-down
list selections are retained but the changes that you made to the sort order
for the table or the rows to display in the graph will be lost.

For more information on using the bread crumbs to navigate and to
determine the context for the information displayed on the screen see
“Screen Context - Bread Crumb Trail” on page 211.

Part III • Using Mercury Diagnostics for J2EE & .NET

226

Transactions: Response Time Graph

When Response Time has been selected from the Graph drop-down, the
graph on the Transactions screen shows the transaction response times for
the transactions with the highest overall response time for the run.

The x-axis of the graph shows the elapsed time for the run in hours,
minutes, and seconds (hh:mm:ss).

The y-axis of the graph shows the total Response Time in milliseconds.

Transactions: Count Graph

When the Count selection is made from the Graph drop-down, the graph on
the Transactions screen shows the number of transaction calls that are made
to a transaction each second.

The x-axis of the graph shows the elapsed time for the run in hours,
minutes, and seconds (hh:mm:ss).

The y-axis of the graph shows the count of the transactions per second.

Transactions Table

The Transactions table lists the transactions for the run. The metrics
reported in the table are filtered based upon the time period specified in the
Time Range drop-down. See “Definitions for the Columns in the
Diagnostics Table” on page 213 for a description of the columns in this
table.

Details Panel

The Details Panel lists more information for a selected row of the
Transactions table. See “Definitions for the Rows in the Details Panel” on
page 216 for a description of the metrics in this panel.

Refining the View In the Transactions Screen

You may use the standard Diagnostics screen controls to adjust the amount
of data and the type of data that is displayed on the Transactions Screen. For
more information about the ways that you can control the how information
is presented on this screen see “Using the Diagnostics Navigation and
Display Controls” on page 210.

Chapter 11 • Using the Diagnostics for J2EE & .NET Screens

227

227

Drilling Down Into the Transaction Performance Metrics

From the Transactions screen you may drill down into the Layers, and
Service Requests that are behind the transactions.

You may drill down into the transactions using one of the following
methods:

➤ Double click on a transaction listed in the Transaction Table at the bottom
of the screen. The server requests metrics for the selected transaction are
displayed on the Server Requests screen. See “Description of Server Request
Breakdown Screen” on page 231 for more information on this screen.

➤ Right-click on a transaction listed in the Transaction Table at the bottom of
the screen. A pop-up navigation menu for the selected transaction is
displayed with the following options:

View Server Requests

To view a breakdown of a selected transaction based upon the processing
time for each server request, select the View Server Requests menu item
from the pop-up menu. The server requests metrics for the selected
transaction are displayed in a stacked area chart on the Server Request
screen. See “Description of Server Request Breakdown Screen” on page 231
for more information on this screen.

View Layer Breakdown

To view a breakdown of a selected transaction based upon the processing
time for each layer where the processing is taking place, select the View
Layer Breakdown menu item from the pop-up menu. The layer metrics for
the selected transaction are displayed in a stacked area chart on the Layer
Breakdown screen. See “Description of Layer Breakdown screen” on
page 238 for more information on this screen.

Part III • Using Mercury Diagnostics for J2EE & .NET

228

Note: When you drill down into the performance metrics for a transaction
that uses RMI, the breakdowns of the transaction processing that are
displayed in the stacked area graphs will not sum to the total processing
time for the transaction because the RMI server requests are double counted.
They are counted in the "Remote to:" server requests and are also included in
the callee server requests as well.

On the Server Request Breakdown screen for the transaction, if you deselect
the Chart checkbox for the "Remote to" server requests, the stacked area
chart of the server request processing will correctly sum up to equal the
transaction processing time.

Chapter 11 • Using the Diagnostics for J2EE & .NET Screens

229

229

Analyzing Performance with the Server Request Screens

Purpose of Server Request Screens

The Server Request Screens display the server request performance metrics.
The Server Requests Trends screen displays the metrics for Server Requests
across all virtual machines and transactions. The Server Requests Breakdown
screen displays the metrics for a selected transaction or virtual machine.

Accessing the Server Request Screens

To get to the Server Requests screen from the Diagnostics Overview screen:

 1 Double click the Server Requests graph.

 2 The Server Requests screen is displayed. The graph should contain the same
Server Requests that were displayed on the Diagnostics Overview Screen but,
may differ slightly if new data was received while drilling down.

To get to the Server Request Breakdown screen:

You can access the Server Requests screen by drilling down into the metrics
reported on the Transactions screen and the Virtual Machines screen.

➤ Instructions for drilling down to the Server Requests screen for a
particular transaction on the Transactions screen can be found at
“Drilling Down Into the Transaction Performance Metrics” on page 227.

➤ Instructions for drilling down to the Server Requests screen for a
particular Virtual Machine on the Virtual Machines screen can be found
at “Drilling Down Into the Virtual Machine Metrics” on page 245.

Part III • Using Mercury Diagnostics for J2EE & .NET

230

Description of Server Requests Screen

The Server Requests screen displays the performance metrics for the
aggregation of all of the instances of a server request during the scenario.
The metrics are graphed using a trended line graph as shown in the
following example screen image.

Chapter 11 • Using the Diagnostics for J2EE & .NET Screens

231

231

Description of Server Request Breakdown Screen

The Server Request Breakdown screen displays the performance metrics for a
single instance of a transaction or virtual machine. The graph displays the
response times for the server requests that were part of the processing for a
transaction or virtual machine using a stacked area graph as shown in the
following example. The server requests will be displayed with the server
request with the highest contribution appearing at the bottom. Layers with
smaller contributions will be positioned in decending contribution order on
top of each other.

Part III • Using Mercury Diagnostics for J2EE & .NET

232

Server Breakdown Screen Types

➤ Total Server Request Time for Virtual Machine

This screen is accessed by drilling down on a Virtual Machine entry from
the Virtual Machine screen. See “Drilling Down Into the Virtual Machine
Metrics” on page 245.

➤ Total Server Request Time Per Transaction (Plus RMI calls)

This screen is accessed by drilling down on a Transaction from the
Transactions screen. See “Drilling Down Into the Transaction
Performance Metrics” on page 227.

Note: When you drill down into the performance metrics for a transaction
that uses RMI, the breakdowns of the transaction processing that are
displayed in the stacked area graphs will not sum to the total processing
time for the transaction because the RMI server requests are double counted.
They are counted in the "Remote to:" server requests and are also included in
the callee server requests as well. On the Server Request Breakdown screen
for the transaction, if you deselect the Chart checkbox for the "Remote to"
server requests, the stacked area chart of the server request processing will
correctly sum up to equal the transaction processing time.

Screen Context

On the Server Requests screen, the only bread crumb displayed is the
Diagnostics Overview bread crumb.

Note: When you return to the Diagnostics Overview screen the drop-down
list selections are retained but the changes that you made to the sort order
for the table or the rows to display in the graph will be lost.

Chapter 11 • Using the Diagnostics for J2EE & .NET Screens

233

233

On the Server Request Breakdown screen for a transaction you will see a
bread crumb for the transaction or virtual machine in addition to the
Diagnostics Overview. For more information on using the bread crumbs to
navigate and to determine the context for the information displayed on the
screen see “Screen Context - Bread Crumb Trail” on page 211.

Server Requests: Response Time Graph

When Response Time has been selected from the Graph drop-down, the
graph on the Server Request screens shows the server request response times
for the transactions with the highest overall response time for the run.

The x-axis of the graph shows the elapsed time for the run in hours,
minutes, and seconds (hh:mm:ss).

The y-axis of the graph shows the response time in milliseconds.

Server Requests: Count Graph

When the Count selection is made from the Graph drop-down, the graph on
the Server Request screens shows the number of calls that are made to a
service request per second.

The x-axis of the graph shows the actual chronological time for the run in
hours, minutes, and seconds (hh:mm:ss).

The y-axis of the graph shows the count of server requests per second.

Server Requests Table

The Server Requests table lists all of the server requests for the context
displayed in the bread crumbs. The metrics reported in the table are filtered
based upon the time period specified in the Time Range drop-down. See
“Definitions for the Columns in the Diagnostics Table” on page 213 for a
description of the columns in this table.

Details Panel

The Details Panel lists more information for the selected row of the Server
Requests table. See “Definitions for the Rows in the Details Panel” on
page 216 for a description of the rows in this table.

Part III • Using Mercury Diagnostics for J2EE & .NET

234

Refining the View In the Server Requests Screen

You may use the standard Diagnostics screen controls to adjust the amount
of data and the type of data that is displayed on the Server Requests Screen.
For more information about the ways that you can control the how
information is presented on this screen see “Using the Diagnostics
Navigation and Display Controls” on page 210

Drilling Down Into the Server Request Performance Metrics

From the Server Request screens you may drill down into the Layers, and
Service Requests that are behind the transactions.

You may drill down into the server requests using one of the following
methods:

➤ Double click on a server request listed in the Server Request Table at the
bottom of the screen. The virtual machine metrics for the selected server
request are displayed on the Virtual Machines screen. See “Description of
Virtual Machines Screen” on page 242 for more information on this screen.

➤ Right-click on a server request listed in the Server Request Table at the
bottom of the screen. A pop-up navigation menu for the selected server
request is displayed with the following options:

View Virtual Machines

To view the processing metrics for the virtual machine on which the server
request was processed, select the View Virtual Machines menu item from the
pop-up menu. The virtual machine metrics for the selected server request
are displayed on the Virtual Machines screen. See “Description of Virtual
Machines Screen” on page 242 for more information on this screen.

View Aggregated Profile for...

To view the aggregated call profile for a server request select the View
Aggregate Profile for... menu option. The Aggregate Profile screen is
displayed with the aggregated profile for the selected server request. See
“Description of Aggregate Profile Screen” on page 248 for more information
on this screen.

Chapter 11 • Using the Diagnostics for J2EE & .NET Screens

235

235

Note: This is a shortcut that allows you to navigate directly to the
aggregated profile for a server request on a particular virtual machine
without having to go to the Virtual Machines screen first. The bread crumb
will include a entry for the level that was skipped.

View Layers for...

To view the layer breakdown for server request processing on a virtual
machine select the View Layers for... menu item from the pop-up menu. The
Layer Breakdown screen is displayed with the processing metrics for the
selected server request. See “Description of Layers screen” on page 237 for
more information on this screen.

Note: This is a shortcut that allows you to navigate directly to the Layer
Breakdown screen for a server request on a particular virtual machine
without having to go to the Virtual Machines screen first. The bread crumb
will include a entry for the level that was skipped.

Part III • Using Mercury Diagnostics for J2EE & .NET

236

Analyzing Performance with the Layer Screens

Purpose of Layers Screens

The Layer Screens display the performance metrics for the layers where
processing has taken place in your application. The Layers - Relative Load
screen displays the metrics for Layers across all virtual machines and
transactions. The Layers Breakdown screen displays the metrics for a
selected transaction or virtual machine.

The default layers for which metrics are gathered and reported on the Layers
screen include: servlets, JSPs, session and entity beans, JNDI, JDBC, JMS, and
Struts for the J2EE Probes and WEB.ASP, DB.ADO, and MSG.MSMQ for the
.NET Probe with ASP.NET applications.

Occasionally, due to design decisions, a class that does not directly
implement a J2EE component may contain J2EE functionality. Or you may
wish to monitor a class that is of special interest to you. For these purposes,
you can define a custom layer. To enable Diagnostics for J2EE & .NET to
display custom classes or packages, you must configure the J2EE Probe so
that it will monitor the classes and packages. For details, see Chapter 6,
“Installing the Mercury Diagnostics Probe for J2EE.”

Accessing the Layers Screens

To get to the Layers - Relative Load screen from the Diagnostics Overview
screen:

 1 Double click the Layers - Relative Load graph.

 2 The Layers screen is displayed. The graph should contain the same Layers
that were displayed on the Diagnostics Overview Screen but, may differ
slightly if new data was received while drilling down.

To get to the Layers Breakdown screen:

You can access the Server Requests screen by drilling down into the metrics
reported on the Transactions screen and the Virtual Machines screen.

Chapter 11 • Using the Diagnostics for J2EE & .NET Screens

237

237

➤ Instructions for drilling down to the Layers screen for a particular
transaction on the Transactions screen can be found at “Drilling Down
Into the Transaction Performance Metrics” on page 227.

➤ Instructions for drilling down to the Layers screen for a particular Virtual
Machine on the Virtual Machines screen can be found at “Drilling Down
Into the Virtual Machine Metrics” on page 245.

Description of Layers screen

The Layers screen displays the performance metrics for the aggregation of all
of the processing in the layers during the scenario. The metrics are graphed
using a using a stacked area graph as shown in the following example. The
layers will be displayed with the layer with the highest contribution
appearing at the bottom. Layers with smaller contributions will be
positioned in descending contribution order on top of each other

Part III • Using Mercury Diagnostics for J2EE & .NET

238

Description of Layer Breakdown screen

The Layer Breakdown screen displays the performance metrics for the
aggregation of all of the processing in the layers for the context shown in
the bread crumbs. The metrics are graphed using a using a stacked area
graph as shown in the following example.

Types of Layer Breakdown screens

➤ Total Layers Time Per Transaction (Plus RMI Calls)

This screen is accessed by drilling down on a Transaction entry from the
Transactions screen. See “Drilling Down Into the Transaction
Performance Metrics” on page 227.

Chapter 11 • Using the Diagnostics for J2EE & .NET Screens

239

239

➤ Total Layers Time Per Transaction for Server Request for Virtual Machine

This screen is accessed by drilling down from a Transaction on the
Transactions screen, through a Server Request on the Server Request
Breakdown Screen, through a Virtual Machine on the Virtual Machine
Breakdown screen.

➤ Total Layers Time Per Server Request for Virtual Machine

This screen is accessed by drilling down from a Server Request on the
Server Requests screen, through a Virtual Machine on the Virtual
Machine Breakdown screen.

➤ Total Layer Time for Virtual Machine

This screen is accessed by drilling down from a Virtual Machine on the
Virtual Machine screen.

➤ Total Layers Time Per Virtual Machine for Server Request

This screen is accessed by drilling down from a Virtual Machine on the
Virtual Machine Breakdown screen, through a Server Request on the
Server Request Breakdown screen.

Screen Context - Bread Crumb Trail

When you are looking at the aggregated results across all virtual machines
and server requests, the Diagnostics Overview bread crumb is the only bread
crumb displayed on this screen.

Note: When you return to the Diagnostics Overview screen the drop-down
list selections are retained but the changes that you made to the sort order
for the table or the rows to display in the graph will be lost.

When you are viewing the Layer Breakdown for a server request or virtual
machine you will see a bread crumb for the appropriate item in addition to
the Diagnostics Overview. For more information on using the bread crumbs
to navigate and to determine the context for the information displayed on
the screen see “Screen Context - Bread Crumb Trail” on page 211.

Part III • Using Mercury Diagnostics for J2EE & .NET

240

Layers: Response Time Graph

When Response Time has been selected from the Graph drop-down, the
graph on the Layer screens shows the layer response times for the layers
with the highest overall response time for the run.

The x-axis of the graph shows the actual chronological time for the run in
hours, minutes, and seconds (hh:mm:ss).

The y-axis of the graph shows the total Response Time in milliseconds.

Layers: Count Graph

The Graph drop-down does not appear on this screen and there is no count
graph for the Layers screens.

Layers Table

The Layers table lists all of the layers that pertain to the context shown in
the bread crumbs listed at the top of the screen. The metrics reported in the
table are filtered based upon the time period specified in the Time Range
drop-down. See “Definitions for the Columns in the Diagnostics Table” on
page 213 for a description of the columns in this table.

Details Panel

The Details Panel lists more information for the selected row of the Layers
table. See “Definitions for the Rows in the Details Panel” on page 216 for a
description of the rows in this panel.

Refining the View In the Layers Screen

You may use the standard Diagnostics screen controls to adjust the amount
of data and the type of data that is displayed on the Layers Screen. For more
information about the ways that you can control the how information is
presented on this screen see “Using the Diagnostics Navigation and Display
Controls” on page 210

Drilling Down Into the Layer Metrics

There is no drill down provided from the Layer screens.

Chapter 11 • Using the Diagnostics for J2EE & .NET Screens

241

241

Analyzing Performance with the Virtual Machines Screen

In Diagnostics a virtual machine corresponds to a probe implementation.
The Virtual Machines screen displays the average response times for the
virtual machines that have been captured. The Virtual Machines screen
displays the metrics for the processing for a particular server request on a
particular Virtual Machine.

Note: When RMI instrumentation is used, a "CrossVM" layer will appear in
the data denoting the time spent in remote method calls. (Even though the
user didn't specify that layer in the auto_detect.points file)

Accessing the Virtual Machines Screen

To get to the Virtual Machines Screen from the Diagnostics Overview
Screen:

 1 Double click the Virtual Machines graph.

 2 The Virtual Machines screen is displayed. The graph should contain the
same Virtual Machines that were displayed on the Diagnostics Overview
screen but, may differ slightly if new data was received while drilling down.

To get to the Virtual Machines screen from the other Diagnostics screens:

When you have navigated to another screen by drilling down from the
Virtual Machine screen, you can return to the Virtual Machine screen by
clicking on the Virtual Machines bread crumb at the top of the screen.

To get to the Layers screen from the Diagnostics screens:

You can access the Virtual Machines screen by drilling down into the
metrics reported on the Transactions screen and the Server Request screen.

➤ Instructions for drilling down to the Virtual Machines screen for a
particular transaction on the Transactions screen can be found at
“Drilling Down Into the Transaction Performance Metrics” on page 227.

Part III • Using Mercury Diagnostics for J2EE & .NET

242

➤ Instructions for drilling down to the Virtual Machines screen for a
particular server request can be found at “Drilling Down Into the Server
Request Performance Metrics” on page 234.

Description of Virtual Machines Screen

The Virtual Machines screen displays the performance metrics for the
aggregation of all of the processing for the virtual machine during the
scenario. The metrics are graphed using a trended line graph as shown in
the following example screen image

Chapter 11 • Using the Diagnostics for J2EE & .NET Screens

243

243

Description of Virtual Machine Breakdown Screen

The Virtual Machines breakdown screen displays the performance metrics
for the aggregation of all of the processing for the virtual machine during
the scenario. The metrics are graphed using a stacked area chart shown in
the following example. The virtual machines will be displayed with the VM
with the highest contribution appearing at the bottom. VM with smaller
contributions will be positioned in descending contribution order on top of
each other

Types of Virtual Machine Breakdown screens

➤ Total Virtual Machine Time Per Transaction for Server Request

This screen is accessed by drilling down from a Transaction entry from
the Transactions screen, through the Server Request Breakdown screen.

➤ Total Virtual Machine Time for Server Request

This screen is accessed by drilling down from a Transaction entry from
the Transactions screen, through the Server Request Breakdown screen.

Part III • Using Mercury Diagnostics for J2EE & .NET

244

Screen Context - Bread Crumb Trail

When you are looking at the aggregated results across all virtual machines
and server requests, the Diagnostics Overview bread crumb is the only bread
crumb displayed on this screen.

Note: When you return to the Diagnostics Overview screen the drop-down
list selections are retained but the changes that you made to the sort order
for the table or the rows to display in the graph will be lost.

When you are viewing the Virtual Machine Breakdown for a transaction or
server request you will see a bread crumb for the appropriate item in
addition to the Diagnostics Overview. For more information on using the
bread crumbs to navigate and to determine the context for the information
displayed on the screen see “Screen Context - Bread Crumb Trail” on
page 211.

Virtual Machines: Response Time Graph

When Response Time has been selected from the Graph drop-down, the
graph on the Virtual Machines screen shows the VM response times for the
VMs with the highest overall response time for the run.

The x-axis of the graph shows the actual chronological time for the run in
hours, minutes, and seconds (hh:mm:ss).

The y-axis of the graph shows the total response time in milliseconds.

Virtual Machines: Count Graph

When the Count selection is made from the Graph drop-down, the graph on
the Virtual Machines screen shows the number of server request calls that
are made to the VM in each second.

The x-axis of the graph shows the actual chronological time for the run in
hours, minutes, and seconds (hh:mm:ss).

The y-axis of the graph shows count of calls to the VM per second

Chapter 11 • Using the Diagnostics for J2EE & .NET Screens

245

245

Virtual Machine Table

The Virtual Machines table lists all of the VMs that pertain to the context
shown in the bread crumbs listed at the top of the screen. The metrics
reported in the table are filtered based upon the time period specified in the
Time Range drop-down. See “Definitions for the Columns in the
Diagnostics Table” on page 213 for a description of the columns in this
table.

Details Panel

The Details Panel lists more information for the selected row of the Virtual
Machines table. See “Definitions for the Rows in the Details Panel” on
page 216 for a description of the rows in this panel.

Refining the View In the Virtual Machines Screen

You may use the standard Diagnostics screen controls to adjust the amount
of data and the type of data that is displayed on the Virtual Machines
Screen. For more information about the ways that you can control the how
information is presented on this screen see “Using the Diagnostics
Navigation and Display Controls” on page 210

Drilling Down Into the Virtual Machine Metrics

From the Virtual Machines screen you may drill down into the Server
Requests, Layers, and the Aggregated Profile that are behind the VM
processing.

You may drill down into the server requests using one of the following
methods:

➤ Double click on a virtual machine listed in the Virtual Machine table at the
bottom of the screen. The server request metrics for the selected virtual
machine are displayed on the Server Request Breakdown screen. See
“Description of Server Request Breakdown Screen” on page 231 for more
information on this screen.

➤ Right-click on a virtual machine listed in the Virtual Machine table at the
bottom of the screen. A pop-up navigation menu for the selected server
request is displayed with the following options:

Part III • Using Mercury Diagnostics for J2EE & .NET

246

View Server Requests

To view the processing metrics for the server requests that were processed on
the virtual machine, select the View Server Requests menu item from the
pop-up menu. The server requests for the metrics for the selected virtual
machine are displayed on the Server Request Breakdown screen. See
“Description of Server Request Breakdown Screen” on page 231 for more
information on this screen.

View Layers

To view a breakdown of the processing for the virtual machine based upon
the layers where the processing is taking place, select the View Layers menu
item from the pop-up menu. The Layer Breakdown screen is displayed. See
“Description of Layer Breakdown screen” on page 238 for more information
on this screen.

Chapter 11 • Using the Diagnostics for J2EE & .NET Screens

247

247

Analyzing Performance with the Aggregate Profile Screen

Purpose of Aggregate Profile Screen

The Aggregate Profile Screen provides a way for you to drill down into server
requests and virtual machines metrics to examine the performance of the
method calls.

An aggregate profile presents graphical views of the sum of all call instances
for a type of service request selected from the Server Requests screen or
virtual machine selected from the Virtual Machines screen. The time
depicted for a call in the aggregate profile is the average time spent in the
call for all of the aggregated calls.

Note: An aggregate profile shows the complete set of calls for all of the
invocations of the items being profiled. This means that some of the calls
that appear in an aggregate profile may not have applied to every instance.

Accessing the Aggregate Profile Screen

To get to the Aggregate Profile Screen from the Virtual Machines screen:

You can get to the Aggregate Profile Screen for an item from the Virtual
Machines screen. See “Drilling Down Into the Diagnostics Metrics” on
page 208 for navigation paths to the Aggregate Profile Screen.

To view the Aggregated Profile for a selected virtual machine:

 1 Right-click on an item in the Virtual Machines table and select the View
Aggregate Profile menu option.

 2 The Aggregate Profile Screen is displayed with the call profile for the item
indicated on the Virtual Machines screen.

Part III • Using Mercury Diagnostics for J2EE & .NET

248

Description of Aggregate Profile Screen

The Aggregate Profile screen is divided into three parts. The top part of the
screen contains the Call Profile Graph and the bottom part of the screen
contains the Call Tree Table and the Details Pane.

Description of Call Profile Graph

The horizontal axis of the call profile graph represents elapsed time where
time progresses from left to right. The calls are distributed across the
horizontal axis based upon the time when they take place and sequence of
the calls relative to each other. The legend across the top of the Profile
Graph denotes the amount of time in seconds.

The vertical axis on the call profile represents the call stack or nesting level.
The calls made at the higher levels of the call stack are shown at the top of
the profile and those made at deeper levels of the call stack shown at the
lower levels of the profile.

Chapter 11 • Using the Diagnostics for J2EE & .NET Screens

249

249

Each box in the profile graph represents a call where the left edge of the box
is the start of the call and the right edge is the return from the call. The
length of the box indicates the duration of the call execution. The call boxes
that appear directly beneath a parent call box are the child calls that are
invoked by the parent call.

The gaps between the call boxes on a layer of the profile indicate one of the
following processing conditions:

➤ The processing during the gap is taking place in local code to a particular
call and not in child calls in a lower layer.

➤ The call is waiting to acquire a lock or mutex.

➤ The processing during the gap is taking place in a child call that was not
instrumented or included in a capture plan for the run.

You can view the details for a particular call by mousing over the box that
represents the call. The call details that are included in the mouse-over pop-
up box are:

➤ The number of calls made

➤ The average time spent in each call

➤ The total amount of time spent in the call

➤ The threads on which the calls occurred

The calls that are part of a path through the profile that has the highest
response time are colored red. Call path components that are not part of a
critical high-latency path are colored yellow.

Analyzing Performance with a Call Profile Graph

The Call Profile Graph allows you to do the following analysis:

➤ Determine whether an observed latency has one cause at a certain point in
the code or many causes distributed throughout the code

➤ In a multi-tier correlated diagram, determine which tier contributes the
highest percentage of the total latency.

➤ Explore and inspect the dynamic behavior of a complex system.

Part III • Using Mercury Diagnostics for J2EE & .NET

250

Description of the Call Tree Table

The Call Tree Table appears directly below the Call Profile Graph. This table
presents the same data represented in the Call Profile Graph in a tabular
format.

The first row in the table contains the “root” of the call stack which is the
server request that you drilled down on when you requested the call profile.
The children rows in the tree are the method calls that were made as a result
of the server call.

The table contains the following columns:

Note: For an aggregate profile the counts and times in the following table
represent the total for all of the calls that were included in the aggregation.

➤ Call - The server request call or method call whose performance metrics
are reported in the row.

➤ Avg Time - The average latency for the call. The time is reported in
milliseconds.

➤ Count - A count of the number of times that the call was executed.

Details Panel

The Details Panel lists more information for the selected row of the Call Tree
table. See “Definitions for the Rows in the Details Panel” on page 216 for
more information about this metrics in this panel.

Drilling Down Into the Graph or Call Tree

To find out more about a call on the profile graph, you can mouse-over a
call in the graph to get a pop-up with the details.

To find out more about the calls in the call tree, you can expand and
collapse the levels of the tree so that the lower level information on a call is
displayed.

251

12
Analysis J2EE & .NET Diagnostics Graphs

After a scenario or session step run, you can use Analysis to display the
J2EE/.NET diagnostics graphs to analyze server performance.

For details of how to use Analysis, refer to the Mercury LoadRunner Analysis
User’s Guide.

This chapter describes the following topics:

➤ About J2EE & .NET Diagnostics Graphs

➤ Viewing the J2EE & .NET Summary Report

➤ Viewing J2EE & .NET Diagnostics Data

➤ J2EE/.NET Transaction Breakdown Graphs

➤ J2EE & .NET Server Request Graphs

252

About J2EE & .NET Diagnostics Graphs

The J2EE & .NET diagnostics graphs enable you to trace, time, and
troubleshoot individual transactions and server requests through J2EE &
.NET Web, application, and database servers. You can also quickly pinpoint
problem servlets and JDBC calls to maximize business process performance,
scalability, and efficiency.

In addition, you can view a class that is of special interest to you by defining
a custom layer. To enable the Diagnostics for J2EE & .NET to display custom
classes or packages, you must set up the J2EE & .NET probe to monitor the
classes and packages. For more information, refer to the Mercury Diagnostics
for J2EE & .NET for LoadRunner 8.0 Installation and User’s Guide.

The J2EE & .NET diagnostics graphs are comprised of two groups:

➤ J2EE & .NET Transaction Breakdown Graphs: These graphs show you the
performance of requests and methods generated by virtual user transactions.
They show you the transaction that generated each request.

➤ J2EE & .NET Server Request Breakdown Graphs: These graphs show you
the performance of all the requests and methods in the application you are
monitoring, without connection to any transactions. These include requests
generated by virtual user transactions and by real users.

To obtain data for these graphs, you need to activate the Mercury
Diagnostics Server before running the scenario or session step. When you set
up the Mercury Diagnostics Server online monitors, you specify the
sampling percentage of transaction data to include in the breakdown
graphs. For more information on activating and configuring the Mercury
Diagnostics Server monitors, refer to the Mercury Diagnostics for J2EE & .NET
for LoadRunner 8.0 Installation and User’s Guide.

Chapter 12 • Analysis J2EE & .NET Diagnostics Graphs

253

253

Viewing the J2EE & .NET Summary Report

The J2EE & .NET Summary report in Analysis provides general information
about scenario execution and a usage chart for the J2EE & .NET transaction
breakdown and server request layers. This report is available from the tree
view or as a tab in the Analysis window.

Note: If you do not see diagnostics data on the Summary Report, check if
you are using a user-defined template. To view relevant data, choose a
different template from the list of templates, or create and apply a new
template. For more information about using templates, see “Using
Templates” on page 29.

254

The J2EE /.NET Diagnostic Usage section breaks the individual transactions
and server requests into Web server activity (Servlets and JSPs data),
application server activity (JNDIs), and back-end activity of database
requests (JDBC methods and SQL queries), and provides the total usage time
for each transaction and request.

To view server side transaction and server request breakdown data from
the Summary Report:

In the J2EE/.NET Diagnostics Usage section of the Summary Report, click
the transaction, server request or J2EE/.NET layer on which you want to
perform breakdown. The J2EE/.NET - Transaction Time Spent in Element
graph, or J2EE/.NET - Server Request Time Spent in Element graph, opens.

Clicking a transaction or server request displays the breakdown to layers
over time of the selected transaction or server request.

Clicking a layer displays the specific layer breakdown in the transaction or
server request.

For more information on J2EE/.NET diagnostics graphs, see “Viewing J2EE &
.NET Diagnostics Data” on page 255.

Chapter 12 • Analysis J2EE & .NET Diagnostics Graphs

255

255

Viewing J2EE & .NET Diagnostics Data

The J2EE/.NET diagnostics graphs provide an overview of the entire chain of
activity on the server side of the system. At the same time, you can break
down J2EE/.NET layers into classes and methods to enable you to pinpoint
the exact location where time is consumed. In addition, you can view
custom classes or packages that you set the J2EE/.NET probe to monitor. You
can also view the transaction chain of calls and call stack statistics to track
the percentage of time spent on each part of the transaction.

You can correlate the end user response time with the Web server activity
(Servlets and JSPs data), application server activity (JNDIs), and back-end
activity of database requests (JDBC methods and SQL queries).

Example Transaction Breakdown

The following graphs illustrate the breakdown of a transaction to its layers,
classes, and methods.

256

Transaction Level

The following figure displays the top level Average Transaction Response
Time graph. The graph displays several transactions: Birds, Bulldog,
Checkout, Start, etc.

Chapter 12 • Analysis J2EE & .NET Diagnostics Graphs

257

257

Layer Level

In the following figure, the Start transaction has been broken down to its
layers (DB, EJB, JNDI, and Web). In J2EE/.NET transactions, the Web layer is
generally the largest.

258

Class Level

In the following figure, the Web layer of the Start transaction has been
broken down to its classes.

Chapter 12 • Analysis J2EE & .NET Diagnostics Graphs

259

259

Method/Query Level

In the following figure, the weblogic.servlet.FileServlet component of the
Web layer of the Start transaction has been broken down to its methods.

Note: Some JDBC methods can invoke SQLs which can be broken down
further. In this case there is another level of breakdown, that is SQL
Statements. For the methods that can not be further broken down into SQL
statements when reaching this level of breakdown, you see NoSql.

260

Using the J2EE & .NET Breakdown Options

You can activate the J2EE & .NET Breakdown options in any one of the
following ways:

➤ from the View menu

➤ by right-clicking on a transaction or server request and choosing the option
from the short-cut menu

➤ by clicking the button in the toolbar above or to the left side of the graph

Note: The transaction or server request breakdown menu options and
buttons are not displayed until an element (transaction, server request,
layer, area, sub-area) is selected.

To view server side transaction breakdown data:

 1 From the Average Response Time graph, right-click a transaction line and
choose J2EE/.NET Breakdown > Show Server Requests, or choose
View > J2EE/.NET Breakdown > Show Server Requests. Alternatively, click
the Show Server Requests button in the toolbar or on the left side of the
graph.

Chapter 12 • Analysis J2EE & .NET Diagnostics Graphs

261

261

A new graph opens showing the breakdown of the selected transaction. The
name of the transaction is displayed in the Breaking Measurement box.

To view transaction properties for the breakdown measurement, click the
Breaking Measurement button. To disable this feature, choose View >
Display Options, and clear the Show Breaking Measurement check box.

262

 2 At this point, you can select a displayed element and use the J2EE/.NET
Breakdown menu or buttons to do the following:

➤ Break the data down to a lower level by doing one of the following:

• Select View > J2EE/.NET Breakdown > Break down the transaction to
transaction requests, or click the Measurement Breakdown button in
the toolbar or on the left side of the graph.

Note: The option in the J2EE/.NET Breakdown menu, and the tool tip
of the Measurement Breakdown button, vary according to the
element that you want to break down. For example, when you select a
transaction request, the menu option and tool tip are Break down
transaction request to layers.

• Select View > J2EE/.NET Breakdown > Show VM, or click the Show VM
button in the toolbar or on the left side of the graph. This breaks the
data down to the application host name (VM).

➤ Return to a previous level by doing one of the following:

• Select View > J2EE/.NET Breakdown > Undo Break down the
transaction to transaction requests, or click the
Undo Measurement Breakdown button in the toolbar or on the left
side of the graph.

Note: The option in the J2EE/.NET Breakdown menu, and the tool tip
of the Measurement Breakdown button, vary according to the
element whose breakdown you want to undo. For example, when you
select a layer, the menu option and tool tip are Undo break down
transaction request to layers.

• Select View > J2EE/.NET Breakdown > Hide VM, or click the Hide VM
button in the toolbar or on the left side of the graph.

Chapter 12 • Analysis J2EE & .NET Diagnostics Graphs

263

263

➤ Display the chain of call or call stack statistics in the Measurements Tree
window: Drag the red time line on to the graph to the time specifying
the end of the period for which you want to view data, and choose
View > J2EE/.NET Breakdown > Show Chain of Calls, or click the
Show Chain of Calls button in the toolbar or on the left side of the graph.

Note: A measurement that is broken down in the Average Method
Response Time in Transactions graph will be different from the same
measurement broken down in the J2EE/.NET Transaction Breakdown
graph. This is because the Average Method Response Time in
Transactions graph displays the average transaction time, whereas the
J2EE/.NET Transaction Breakdown graph displays the average time per
transaction event (sum of method execution time).

Viewing Chain of Calls and Call Stack Statistics

You can view the chain of calls for transactions and methods. The chain of
calls answers the question “Whom did I call?”

You can also view the call stack statistics for methods. Call stack statistics
answer the question “Who called me?”

Chain of call and call stack statistics data are shown in the Measurements
Tree window. The title of the window changes depending on which kind of
data you are viewing.

➤ To set the point to which the Measurements Tree window relates, you must
drag the red time line to the desired spot.

➤ To view transaction call chains, right-click a component and choose
J2EE/.NET Breakdown > Show Chain of Calls. The Chain of Calls window
opens displaying the chain of calls from the parent transaction downwards.

➤ To view method statistics, in the Chain of Calls window right-click a
method and choose Show Method Chain of Calls or Show Method Call
Stack Statistics.

264

Understanding the Chain of Calls Windows

You use the Chain of Calls window to view the components that the
selected transaction or method called. In the following figure, all the calls in
the critical path of the Start server-side transaction are displayed.

Note: The transaction chain of calls is the critical path. Each red node
signifies the most time consuming child of its parent.

Chapter 12 • Analysis J2EE & .NET Diagnostics Graphs

265

265

You use the Call Stack Statistics window to view which components called
the selected component. In the following figure, the FileServlet.service was
called by Start (Server), which was called by Start (Client), and so on, down
to the transaction at the bottom of the chain.

The Chain of Calls Window Toolbar

Switch to Method Chain of Calls: When the call stack statistics data is
displayed, displays the method chain of calls data (only if the root is a
method).

Switch to Method Call Stack Statistics: When the method chain of calls data
is displayed, displays the method call stack statistics data (only if the root is
a method).

Show Method Chain of Calls: Displays the Chain of Calls window.

Show Method Call Stack Statistics: Displays the Call Stack Statistics window.

266

Properties: Hides or displays the properties area (lower pane).

Columns: Enables you to select the columns shown in the Calls window. To
display additional fields, drag them to the desired location in the Calls
window. To remove fields, drag them from the Calls window back to the
Columns chooser.

➤ Measurement: Name of the method, displayed as
componentname.methodname. In the case of a database call, query
information is also displayed. The percent shown indicates the
percentage of calls to this component from its parent.

➤ % of Transaction (or Root Method): Percentage of the total time of the
transaction (or method) from the total time of the root tree item.

➤ No of Calls: Displays the amount of times that this transaction or method
was executed.

➤ Avg Response Time: Response time is the time from the beginning of
execution until the end. Average response time is the total response time
divided by the number of hits.

➤ STD Response Time: The response time standard deviation.

➤ Min Response Time: The minimum response time.

➤ Max Response Time: The maximum response time.

➤ % of Called: Displays the execution time, as a portion of the time of the
calling component.

➤ Total time: Displays the total method execution time, including the child
execution time.

Expand Tree: Expands the entire tree.

Contract Tree: Contracts the entire tree.

Expand Worst Path: Expands only the parts of the path on the critical path.

Save to XML File: Saves the tree data to an XML file.

Method Properties Area: Displays the full properties of the selected method.

SQL Query: Displays the SQL query for the selected method. (For Database
only.)

Chapter 12 • Analysis J2EE & .NET Diagnostics Graphs

267

267

J2EE/.NET Transaction Breakdown Graphs

The following J2EE/.NET transaction breakdown graphs are available:

➤ J2EE/.NET - Transaction Response Time Server Side Graph

➤ J2EE/.NET - Average Method Response Time in Transactions Graph

➤ J2EE/.NET - Transactions per Second Graph

➤ J2EE/.NET - Method Calls per Second in Transactions Graph

➤ J2EE/.NET - Average Number of Exceptions in Transactions Graph

➤ J2EE/.NET - Average Number of Timeouts in Transactions Graph

Note: To obtain data for these graphs, you must enable the Mercury
Diagnostics Server (from the Controller or Console) before running the
scenario or session step. For more information, refer to the Mercury
Diagnostics for J2EE & .NET for LoadRunner 8.0 Installation and User’s Guide.

Setting Graph Filter Properties

You can filter the J2EE/.NET transaction breakdown graphs so that the
displayed data is more suitable to your needs. You can filter using the
following methods:

➤ Before opening a graph, enter filter criteria in the Graph Properties box
of the Open Graph dialog box. For more information, refer to the section
“Opening Analysis Graphs” in the Mercury LoadRunner Analysis User’s
Guidesee “Opening Analysis Graphs” on page 40.

➤ From an open graph, enter filter criteria in the Filter condition fields in a
filter dialog box. For more information, refer to the section “Filtering and
Sorting Data” in the Mercury LoadRunner Analysis User’s Guidesee
“Filtering and Sorting Graph Data” on page 49.

268

You can filter the J2EE/.NET graphs by the following fields:

Scenario Elapsed Time: Shows data for transactions that ended during the
specified time.

Transaction Name - J2EE/.NET: Shows data for a specified transaction.

Layer Name: Shows data for specified layers.

Class Name: Shows data for specified classes.

SQL Logical Name: Shows data for specified SQL logical names. Due to the
length of some SQL names, after you choose an SQL statement it is assigned
a "logical name." This logical name is used in the filter dialog, legend,
grouping, and other places in place of the full SQL statement. You can view
the full SQL statement in the Measurement Description dialog box
(View > Show Measurement Description).

Some JDBC methods have the ability to invoke SQL’s (each method can
invoke several different SQL’s) so there is another level of breakdown which
is the SQL. Statements.

Note: For the methods that do not have SQL statement when reaching this
level of breakdown you see NoSql.

Chapter 12 • Analysis J2EE & .NET Diagnostics Graphs

269

269

J2EE/.NET - Transaction Response Time Server Side Graph

The J2EE/.NET - Transaction Response Time Server Side graph displays the
transaction server response time of transactions that include steps that cause
activity on the J2EE/.NET backend. The reported times, measured from the
point when the transaction reached the Web server to the point it left the
Web server, include only the time that was spent in the J2EE/.NET backend.

The x-axis represents elapsed time. The y-axis represents the average
response time (in seconds) of each transaction.

To break the displayed elements down further, see “Viewing J2EE & .NET
Diagnostics Data” on page 255.

270

J2EE/.NET - Average Method Response Time in Transactions
Graph

The J2EE/.NET - Average Method Response Time in Transactions graph
displays the average response time for the server side methods, computed as
Total Method Response Time/Number of Method calls. For example, if a
method was executed twice by an instance of transaction A and once by
another instance of the same transaction, and it took three seconds for each
execution, the average response time is 9/3, or 3 seconds. The method time
does not include calls made from the method to other methods.

The x-axis represents elapsed time. The y-axis represents the average
response time (in seconds) per method.

To break the displayed elements down further, see “Using the J2EE & .NET
Breakdown Options” on page 260.

Chapter 12 • Analysis J2EE & .NET Diagnostics Graphs

271

271

J2EE/.NET - Transaction Time Spent in Element Graph

The J2EE - Transaction Time Spent in Element graph displays the server
response time for the selected element (layer, class, or method) within each
transaction.

The display of graph data is determined by the Graph Properties selected
when the graph was opened, as described in the following table:

For more information on filtering by graph properties, see “Setting Graph
Filter Properties” on page 267.

The time is computed as Total Response Time/Total Number of Transactions.
For example, if a method was executed twice by an instance of transaction A
and once by another instance of the same transaction, and it took three
seconds for each execution, the average response time is 9/2, or 4.5 seconds.
The transaction time does not include the nested calls from within each
transaction.

If You Filter by These
Properties

The Graph Data is Displayed Like This

None Time spent in each transaction.

Transaction Filtered by transaction. Grouped by layer.

Transaction and layer Filtered by transaction and layer. Grouped by class.

Transaction, layer, and
class

Filtered by transaction, layer, and class. Grouped by
method.

272

The x-axis represents elapsed time. The y-axis represents the average
response time (in seconds) per element within the transaction.

To obtain data for this graph, you must enable the J2EE/.NET Transaction
Breakdown module (from the Controller or Console) before running the
scenariosession step. For more information, refer to the LoadRunner
Controller User’s Guide.

You can break down the displayed elements. For more information, see
“Viewing J2EE & .NET Diagnostics Data” on page 255.

Chapter 12 • Analysis J2EE & .NET Diagnostics Graphs

273

273

J2EE/.NET - Transactions per Second Graph

The J2EE/.NET - Transactions per Second graph displays the number of
completed sampled transactions during each second of a scenario run.

The number of transactions included in the sample is determined by the
sampling percentage set in the Diagnostics Distribution dialog box in the
Controller (Diagnostics > Configuration). For more information, refer to the
Mercury Diagnostics for J2EE & .NET for LoadRunner 8.0 Installation and User’s
Guide.

The x-axis represents elapsed time. The y-axis represents the number of
completed sampled transactions per second.

To break the displayed elements down further, see “Using the J2EE & .NET
Breakdown Options” on page 260.

274

J2EE/.NET - Method Calls per Second in Transactions Graph

The J2EE/.NET – Method Calls per Second in Transactions graph displays the
number of completed sampled methods during each second of a scenario
run.

The number of methods included in the sample is determined by the
sampling percentage set in the Diagnostics Distribution dialog box in the
Controller (Diagnostics > Configuration). For more information, refer to the
Mercury Diagnostics for J2EE & .NET for LoadRunner 8.0 Installation and User’s
Guide.

The x-axis represents elapsed time. The y-axis represents the number of
completed sampled methods per second.

To break the displayed elements down further, see “Using the J2EE & .NET
Breakdown Options” on page 260.

Chapter 12 • Analysis J2EE & .NET Diagnostics Graphs

275

275

J2EE/.NET - Average Number of Exceptions in Transactions
Graph

The J2EE/.NET – Average Number of Exceptions in Transactions graph
displays the average number of code exceptions per method, transaction, or
request that were monitored during the selected time range.

The x-axis represents elapsed time. The y-axis represents the number of
events.

To break the displayed elements down further, see “Using the J2EE & .NET
Breakdown Options” on page 260.

276

J2EE/.NET - Average Number of Timeouts in Transactions Graph

The J2EE/.NET – Average Number of Timeouts in Transactions graph
displays the average number of timeouts per method, transaction, or request
that were monitored during the selected time range.

The x-axis represents elapsed time. The y-axis represents the number of
events.

To break the displayed elements down further, see “Using the J2EE & .NET
Breakdown Options” on page 260.

Chapter 12 • Analysis J2EE & .NET Diagnostics Graphs

277

277

J2EE & .NET Server Request Graphs

The following J2EE/.NET server request breakdown graphs are available:

➤ J2EE/.NET - Server Request Response Time Graph

➤ J2EE/.NET - Average Server Method Response Time Graph

➤ J2EE/.NET - Server Requests per Second Graph

➤ J2EE/.NET - Server Methods Calls per Second Graph

➤ J2EE/.NET - Average Number of Exceptions on Server Graph

➤ J2EE/.NET - Average Number of Timeouts on Server Graph

Note: To obtain data for these graphs, you must enable the Mercury
Diagnostics Server (from the Controller or Console) before running the
scenario or session step. For more information, refer to the Mercury
Diagnostics for J2EE & .NET for LoadRunner 8.0 Installation and User’s Guide.

Setting Graph Filter Properties

You can filter the J2EE/.NET server request breakdown graphs so that the
displayed data is more suitable to your needs. You can filter using the
following methods:

➤ Before opening a graph, enter filter criteria in the Graph Properties box
of the Open Graph dialog box. For more information, refer to the section
“Opening Analysis Graphs” in the Mercury LoadRunner Analysis User’s
Guidesee “Opening Analysis Graphs” on page 40.

➤ From an open graph, enter filter criteria in the Filter condition fields in a
filter dialog box. For more information, refer to the section “Filtering and
Sorting Data” in the Mercury LoadRunner Analysis User’s Guidesee
“Filtering and Sorting Graph Data” on page 49.

278

You can filter the J2EE/.NET J2EE/.NET server request breakdown graphs by
the following fields:

Scenario Elapsed Time: Shows data for requests that ended during the
specified time.

Server Request: Shows data for a specified request.

Layer Name: Shows data for specified layers.

Class Name: Shows data for specified classes.

SQL Logical Name: Shows data for specified SQL logical names. Due to the
length of some SQL names, after you choose an SQL statement it is assigned
a “logical name.” This logical name is used in the filter dialog, legend,
grouping, and other places in place of the full SQL statement. You can view
the full SQL statement in the Measurement Description dialog box
(View > Show Measurement Description).

Chapter 12 • Analysis J2EE & .NET Diagnostics Graphs

279

279

J2EE/.NET - Server Request Response Time Graph

The J2EE/.NET - Server Request Response Time graph displays the server
response time of requests that include steps that cause activity on the
J2EE/.NET backend. The reported times, measured from the point when the
request reached the Web server to the point it left the Web server, include
only the time that was spent in the J2EE/.NET backend.

The x-axis represents elapsed time. The y-axis represents the average time
(in seconds) taken to perform each request.

To break the displayed elements down further, see “Viewing J2EE & .NET
Diagnostics Data” on page 255.

280

J2EE/.NET - Average Server Method Response Time Graph

The J2EE/.NET - Average Server Method Response Time graph displays the
average response time for the server side methods, computed as Total
Method Response Time/Number of Method calls. For example, if a method
was executed twice by an instance of transaction A and once by another
instance of the same transaction, and it took three seconds for each
execution, the average response time is 9/3, or 3 seconds. The method time
does not include calls made from the method to other methods.

The x-axis represents elapsed time. The y-axis represents the average
response time (in seconds) per method.

To break the displayed elements down further, see “Using the J2EE & .NET
Breakdown Options” on page 260.

Chapter 12 • Analysis J2EE & .NET Diagnostics Graphs

281

281

J2EE/.NET - Server Request Time Spent in Element Graph

The J2EE/.NET - Server Request Time Spent in Element graph displays the
server response time for the selected element (layer, class, or method) within
each server request.

The display of graph data is determined by the Graph Properties selected
when the graph was opened, as described in the following table:

For more information on filtering by graph properties, see “Setting Graph
Filter Properties” on page 267.

The time is computed as Total Response Time/Total Number of Server
Requests. For example, if a method was executed twice by an instance of
server request A and once by another instance of the same server request,
and it took three seconds for each execution, the average response time is
9/2, or 4.5 seconds. The server request time does not include the nested calls
from within each server request.

If You Filter by These
Properties

The Graph Data is Displayed Like This

None Time spent in each server request.

 Server request. Filtered by server request. Grouped by layer.

 Server request and layer Filtered by server request and layer. Grouped by
class.

Server request, layer, and
class

Filtered by server request, layer, and class. Grouped
by method.

282

The x-axis represents elapsed time. The y-axis represents the average
response time (in seconds) per element within the server request.

To obtain data for this graph, you must enable the J2EE Transaction
Breakdown module (from the Controller or Console) before running the
scenario or session step. For more information, refer to the Mercury
Diagnostics for J2EE & .NET for LoadRunner 8.0 Installation and User’s Guide.

You can break down the displayed elements. For more information, see
“Viewing J2EE & .NET Diagnostics Data” on page 255.

Chapter 12 • Analysis J2EE & .NET Diagnostics Graphs

283

283

J2EE/.NET - Server Requests per Second Graph

The J2EE/.NET - Server Requests per Second graph displays the number of
completed sampled requests during each second of a scenario run.

The number of requests included in the sample is determined by the
sampling percentage set in the Diagnostics Distribution dialog box in the
Controller (Diagnostics > Configuration). For more information, refer to the
Mercury Diagnostics for J2EE & .NET for LoadRunner 8.0 Installation and User’s
Guide.

The x-axis represents elapsed time. The y-axis represents the number of
completed sampled requests per second.

284

To break the displayed elements down further, see “Using the J2EE & .NET
Breakdown Options” on page 260.

J2EE/.NET - Server Methods Calls per Second Graph

The J2EE/.NET – Server Methods Calls per Second graph displays the
number of completed sampled methods during each second of a scenario
run. The number of methods included in the sample is determined by the
sampling percentage set in the Diagnostics Distribution dialog box in the
Controller (Diagnostics > Configuration). For more information, refer to the
Mercury Diagnostics for J2EE & .NET for LoadRunner 8.0 Installation and User’s
Guide.

Chapter 12 • Analysis J2EE & .NET Diagnostics Graphs

285

285

The x-axis represents elapsed time. The y-axis represents the number of
completed sampled methods per second.

To break the displayed elements down further, see “Using the J2EE & .NET
Breakdown Options” on page 260.

J2EE/.NET - Average Number of Exceptions on Server Graph

The J2EE/.NET – Average Number of Exceptions on Server graph displays the
average number of code exceptions per method that were monitored during
the selected time range.

286

The x-axis represents elapsed time. The y-axis represents the number of
events.

To break the displayed elements down further, see “Using the J2EE & .NET
Breakdown Options” on page 260.

J2EE/.NET - Average Number of Timeouts on Server Graph

The J2EE/.NET – Average Number of Timeouts on Server graph displays the
average number of timeouts per method that were monitored during the
selected time range.

Chapter 12 • Analysis J2EE & .NET Diagnostics Graphs

287

287

The x-axis represents elapsed time. The y-axis represents the number of
events.

To break the displayed elements down further, see “Using the J2EE & .NET
Breakdown Options” on page 260.

288

289

13
Web Service Support

This chapter describes the Web Service support in Mercury Diagnostics for
J2EE & .NET.

This chapter includes the following sections:

➤ About Web Service Support

➤ Writing VuGen Scripts for Web Service Support

About Web Service Support

The term Web Services describes self-contained applications that can run
universally across the Internet. Using Extensible Markup Language (XML)
and Simple Object Access Protocol (SOAP), the Web Services serve as
building blocks for the rapid development and deployment of new
applications.

Since all communication is in XML, Web Services are not limited to a
specific operating system or programming language. Web Services,
therefore, allow applications from various sources to communicate with
each other without extra coding and without intimate knowledge of each
other’s IT systems behind the firewall.

Mercury Diagnostics for J2EE & .NET Web Service support allows you to
view J2EE and .NET breakdowns of virtual transactions recorded in VuGen
scripts using the Web Service protocol. By looking at all the virtual
transaction views in Diagnostics for J2EE & .NET, you can tell which Web
service is the slowest, and you can analyze its performance problems.

Part III • Using Mercury Diagnostics for J2EE & .NET

290

Using a Web Services VuGen script with Diagnostics requires installing the
Web Services patch on the Load Generator machine. The patch is located in
the Diagnostics CD Patches directory.

Note: Differentiation between Web services can be performed only by
defining relevant virtual transactions.

Writing VuGen Scripts for Web Service Support

To enable breakdown of Web Service transactions, in VuGen create a script
with a separate transaction for each Web Service that you want to monitor.

291

14
Troubleshooting Mercury Diagnostics for
J2EE & .NET

This chapter describes how to solve problems that may occur when using
Diagnostics for J2EE & .NET. It includes:

➤ Component Installation Interrupted on a Solaris Machine

➤ Apache Tomcat Error When Displaying J2EE Information

➤ J2EE Probe Fails to Operate Properly

➤ Connecting with Named Pipes Regardless of cliconfg.exe Settings

➤ Version Mismatch Between Diagnostics Commander and LoadRunner Add-
In

Part III • Using Mercury Diagnostics for J2EE & .NET

292

Component Installation Interrupted on a Solaris Machine

If a component installer on a Solaris machine is interrupted before it has
finished the installation, there is no option for automatically uninstalling or
reinstalling the component. You must manually clean up the partial
installation of the component before you can start the installation again.

To manually clean up after an interrupted installation:

 1 Clean the installation directory.

 2 Delete ~/vpd.properties and ~/vpd.patches.

 3 Delete the Solaris directories: /var/sadm/pkg/IS* and
/var/sadm/pkg/MERQ.

Chapter 14 • Troubleshooting Mercury Diagnostics for J2EE & .NET

293

293

Version Mismatch Between Diagnostics Commander and
LoadRunner Add-In

The version number of the Diagnostics Commander and the LoadRunner
Add-In must be the same. If they are not the same, you will see the
following error message when you view the Diagnostics Screens in the
LoadRunner Controller:

The versions may not match when when the Diagnostics Commander and
LR are running on different host machines and you have upgraded the
Commander but have not upgraded the LoadRunner installation with the
new Diagnostics Add-In.

If you see this message, you must install the correct version of the
LoadRunner Add-in. See “Installing LoadRunner 8.0 and the LoadRunner
Diagnostics Add-in” on page 41.

Apache Tomcat Error When Displaying J2EE Information

The first time you view Diagnostics for J2EE & .NET breakdown information
after installing Mercury Diagnostics for J2EE & .NET, an error message
beginning with the following line may be displayed, depending on the
nature of your application and the machine’s strength:

Apache Tomcat/4.0.4 - HTTP Status 500 - Internal Server Error

The error message is not displayed subsequently.

This version of the Mercury J2EE/.NET Diagnostics user interface,
<version_nbr>, may not be compatible with the Diagnostics Com-
mander version <version_nbr>. Please use the version of the user inter-
face which came with the Diagnostics Commander.

Part III • Using Mercury Diagnostics for J2EE & .NET

294

J2EE Probe Fails to Operate Properly

If the J2EE Probe does not operate properly, check whether the
ClassLoader.class file located in the folder
<probe_instal_dir>\classes\boot\java\lang\ was created during the
installation process.

If the file was not created, run the JRE Instrumenter to create it. See
“Running the JRE Instrumenter” on page 135.

Connecting with Named Pipes Regardless of cliconfg.exe
Settings

This problem usually occurs on computers on which MSDE was installed.

Symptoms:

You want the Diagnostics Server to connect to SQL Server using TCP/IP to
meet Diagnostics Server certification. You set the client settings to connect
with TCP/IP only (using the cliconfg.exe client network utility), and
configure the server to listen on TCP/IP only (using the server network
utility).

When trying to connect to SQL Server, an error message saying that a
connection can’t be made using named pipes is generated.

Reason:

An MSDE installation wrongly specifies the database library in the registry as
DBNMPNTW. This causes the client attempting to connect to SQL Server to
ignore the chosen network library in the client configuration utility, and to
connect explicitly with the specified netlib (DBNMPNTW is named pipes).

Solution:

On the Diagnostics Server computer, search for the following places in the
registry, and for each one that you find, change the value of DSQUERY from
DBNMPNTW to DBNETLIB. This setting instructs the client to connect using
the chosen network library in the client configuration utility.

Chapter 14 • Troubleshooting Mercury Diagnostics for J2EE & .NET

295

295

If the problem still occurs, change the following key values as well (note
that not all the keys may exist on the Diagnostics Server computer):

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\Client\Connec
tTo\DSQUERY

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServ80\Client\Conne
ctTo\DSQUERY

Part III • Using Mercury Diagnostics for J2EE & .NET

296

Part IV

Appendixes

298

299

A
Using the System Health Monitor

This appendix describes how to use the System Health Monitor to review
the configuration of the Diagnostics for J2EE & .NET components and verify
that they are working properly.

This appendix contains the following sections:

➤ Introducing the System Health Monitor

➤ Accessing the System Health Monitor

➤ Using the System Health Monitor

➤ Drilling Down Into The System Health Monitor Map

➤ Customizing the System Health Monitor Display

➤ Creating and Using System Health Monitor Snapshots

➤ Interpreting Odd Situations Displayed on the System Health Monitor

Part IV • Appendixes

300

Introducing the System Health Monitor

The System Health Monitor provides you with a map of all of the
components of your Mercury Diagnostics for J2EE & .NET deployment and
gives you real-time status and health information for each component. At a
glance, you can determine which components are experiencing problems,
the load on each component, and the amount of data flowing between
components.

By drilling down into the System Health Monitor map, you can reveal the
details about the configuration, performance metrics, and processing logs
for the components. You can also find trouble shooting tips for handling
many of the issues that are revealed in the System Health Monitor map. In
many cases, the System Health Monitor will be your first and your only stop
when you need to know information about the components in your
Diagnostics Deployment and the machines that host them.

You can capture a snapshot of the System Health Monitor information in an
XML file so that you can share it with others who may be able to help you
diagnose the issues that you see on the map.

Accessing the System Health Monitor

You can access the System Health Monitor directly from your Web browser
or from the screens in LoadRunner Controller.

To Access the System Health Monitor from your Web browser:

Enter the following URL into your browser:

http://<commander host>:<commander port>/registrar/health

The System Health Monitor opens in your browser.

301

301

To Access the System Health Monitor from LoadRunner Controller:

 1 Choose Diagnostics > Configuration from the menu bar in the Controller.
The Diagnostics Distribution dialog box opens.

 2 In the Online and Offline Diagnostics section of the Diagnostics
Distribution dialog, click Configure. The J2EE/.NET Diagnostics
Configuration dialog box opens.

 3 Click the Troubleshoot Diagnostics for J2EE/.NET connectivity link. The
System Health Monitor is displayed in a new browser window.

Troubleshooting Problems Accessing the System Health
Monitor

If you are unable to access the System Health Monitor verify that:

➤ You specified the correct machine name for the Commander host.

➤ You specified the correct port number for Commander communications.
The default port is 2006.

➤ The Commander was successfully started and is running on the host
machine.

Part IV • Appendixes

302

Using the System Health Monitor

Interpreting the System Health Monitor Component Map

When the System Health Monitor opens you see a map of your deployment
of the Diagnostics for J2EE & .NET system components.

The System Health Monitor component map is made up of the following:

➤ Icons that represent each of the diagnostics components that you have
correctly configured as part of your Diagnostics environment.

➤ The color of the component icon that indicates the health of the
component.

➤ A “wafer” behind the component icon that indicates the amount of load
that the component is processing.

303

303

➤ Links between the component icons that indicate the state of the
communication links between components. The color of the link indicates
the amount of traffic between the components.

The Graph Legend to the right of the component map helps you to interpret
the information displayed in the component map:

Idle Probes query the Commander for available Mediators on their LAN
every 90 seconds by default, and then try a handshake with each of the
Mediators. If one or more of the handshakes is not successful, the probe
turns red.

Similarly, the Commander turns red if it cannot reach any idle probe. The
default time period is 90 seconds.

Part IV • Appendixes

304

Controlling the Refresh of the System Health Monitor

By default, the System Health Monitor is configured to automatically refresh
the information displayed. You may change the frequency of the auto-
refresh or completely disable the auto-refresh feature. You may also request
a manual refresh at any time.

The controls on the System Health Monitor that are used to control the
refresh of the information displayed are shown below.

To disable the automatic refresh feature:

Toggle the Auto-Refresh Enabled check box so that it is not selected.

To enable the automatic refresh feature:

Toggle the Auto-Refresh Enabled check box so that it is selected.

To adjust the auto-refresh rate:

Slide the Rate slide control to the right to decrease the auto-refresh
frequency and to the left to increase the frequency.

To refresh the display manually:

Click the Refresh button located to the right of the slide bar.

305

305

Drilling Down Into The System Health Monitor Map

The System Health Monitor deployment map gives you high level
information about your Diagnostics deployment and how well the
components are performing. It also provides several ways for you to drill
down into the components on the map to discover the details of the
configuration of the components and the performance of the components
as they process the loads.

➤ Mouse-over tool tips for each component provide you with basic status and
configuration information for the component.

➤ The Component Monitor Detail table list the processing metrics,
component configuration, and log messages for the selected component.
The Component Monitor Detail table can be accessed by double clicking on
a component icon or by navigating through the right-click menu for the
component.

➤ Troubleshooting Tips for each component are available through the right-
click menu for the component.

Viewing Component Status and Host Configuration Tool Tips

The status and the basic host configuration for a component can be revealed
by activating the tool tip for the component. To activate the tool tip for a
component, hold the mouse over the component icon until a tool tip is
displayed.

The following images are examples of the tool tips that are displayed for
each of the types of components.

Commander Properties

Part IV • Appendixes

306

Mediator Properties

The information in the tool tip for a mediator component includes a list of
the Probes that have been configured to work with the component.

Probe Properties

The information in the tool tip for a probe component includes the
Mediator that the Probe is working with, the mode that the probe has been
configured to work in.

307

307

Introducing the Component Monitor Detail Table

If you need more information about a component than what is provided in
the mouse-over tool tip, you may drill down further using the Component
Monitor Detail table. The Component Monitor Detail is divided into three
sections: Metrics, Configuration, and Log as described below.

Component Monitor - Metrics

The following is an example of the Metrics portion of the Component
Monitor detail table for a Mediator component.

Part IV • Appendixes

308

Component Monitor - Configuration

The following is an example of the Metrics portion of the Component
Monitor detail table for a Mediator component.

Component Monitor - Log

The following is an example of the Log portion of the Component Monitor
detail table for a Mediator component.

309

309

Accessing the Component Monitor Detail Table

There are two ways to access the Component Monitor Detail for a
component: through the right-click menu for the component and by double
clicking the component.

To view access the component monitor details from a component’s right-
click menu:

 1 Right-click on a component icon to cause the popup menu for the
component to be displayed as shown in the following example:

 2 Select menu item for the area of the Component Monitor detail that you
would like to see first. When the Component Monitor detail is displayed,
only the section of the table that corresponds to your menu selection will be
displayed.

To access the component monitor details:

Double click icon for the component to cause the Component Monitor
Detail table is displayed in a separate browser page. All three sections of
Component Monitor Detail are displayed.

Viewing Troubleshooting Tips

To view tips for troubleshooting problems with Diagnostics components:

In the right-click menu, choose View Troubleshooting Tips. Troubleshooting
information for the selected component is displayed.

Scan through the information displayed for the symptoms that you are
investigating to see if there is a recommended solution documented in the
troubleshooting tips.

Part IV • Appendixes

310

Viewing Log Information for the Whole System

You can view the log messages for all of the components in the System
Health Monitor on one screen.

To view log information for all the components:

 1 Right-click the System Health screen (anywhere except a component). The
following menu is displayed:

 2 Choose View Log History. The log for all component activity is displayed.

Customizing the System Health Monitor Display

You can customize the way that information is displayed on the System
Health Monitor. The two configuration options are made available on the
right-click menu for the background of the System Health Monitor.

➤ Toggle the Graph Legend so that it is either displayed or not. The menu
option toggles between Hide Graph Legend and Show Graph Legend.

➤ Toggle the load indicator from the wafer that appears behind the
component icon to a bar scale that appears below the component icon. The
menu option toggles between Show Load Using Scale and Show Load Using
Circles.

311

311

To display the component’s load on a bar scale instead of a wafer:

 1 Right-click the System Health screen at any spot except where a component
icon is displayed. The following menu is displayed:

Choose Show Load Using Scale. The wafers are replaced by load bars
underneath the components. The length of the bar indicates the amount of
load on the component.

The length of the bar indicates the amount of load on the component.

Part IV • Appendixes

312

Creating and Using System Health Monitor Snapshots

Exporting a Snapshot of the System Health Monitor

You may export the information displayed on System Health Monitor to an
XML formatted file so that you can share the information with others. This
is especially useful when you need help diagnosing a problem. The
information in the System Health XML file can be viewed in the XML
format or can be imported into any working copy of the System Health
Monitor.

Note: Remember that people who have access to the Commander host can
view the System Health Monitor directly using their web browser if you give
them the URL.

To export a System Health Monitor snapshot as an XML file:

 1 If the System Health Monitor is not already displayed in a browser window,
enter the following URL in your Web browser:

http://<commander host>:<commander port>/registrar/xml

where <commander host> is the host of the Commander from which the
System Health snapshot is to be saved and <commander port> is the port
that the Commander is using to communicate. The default port is 2006.

 2 Using the Save menu option in your Web browser, save the Web page to a
file. Be sure to use a name that will help you remember why you saved the
snapshot. For example. to remember that you took a snapshot a System
Health Monitor with a poor performing mediator you may want to name
the file sys_health_mediator_yyyymmdd.xml.

313

313

Importing a Snapshot of a System Health Monitor

If someone gives you an XML snapshot of a System Health Monitor you can
view it from an existing System Health Monitor.

To import a System Health Monitor snapshot:

 1 Copy the System Health snapshot file to a directory on the Commander
host machine.

 2 Enter the following URL in your Web browser:

http://<commander host>:<commander port>/registrar/health?xml=<XML_file>

where <XML_file> is the path to the XML file on the Commander host
machine.

For example, if you copied sys_health_mediator_yyyymmdd.xml to the C:
drive on the Commander host and Commander host machine name is jake,
the URL might look like this:

http://jake:2006/registrar/health?xml=c:\sys_health_mediator_yyyymmdd.xml

The <commander port> by default should be 2006.

When the System Health Monitor is displayed in your Web browser, the
information will be from the imported XML file.

Part IV • Appendixes

314

Troubleshooting Using the System Health Monitor

Troubleshooting tips can be accessed directly from the System Health
Monitor as described in “Viewing Troubleshooting Tips” on page 309. The
information in these tips will help you to interpret and respond to the
information that is displayed on the System Health Monitor graph.

The following situations are some odd behaviors that are not explained in
the troubleshooting tips that you should be aware of.

Interpreting Odd Situations Displayed on the System Health
Monitor

Mediator

➤ Do not assign the same port number for the Mediator host machine to listen
for the Probe and to listen for the web server. When this is done, the
Mediator will fail to start the web server. Despite this failure, the Mediator
will be displayed on the System Health Monitor as healthy.

315

B
Advanced Diagnostics Commander
Configuration

The following configuration instructions are intended for experienced users
with in-depth knowledge of this product. Please use caution when
modifying any properties for the Diagnostics components.

Adjusting the Heap Size for the Commander’s VM

The size of the heap can impact the performance of the Commander. You
should adjust the size of the heap based upon the number of probes that
will be sending data through the Commander. The default heap size is
384MB which is adequate for up to 20 probes. The following table lists the
recommended heap settings for various numbers of probes:

The heap size is set in the <comander_install_dir>\dat\nanny
mediator.nanny file using the VM arguments:

-Xms384m -Xmx384m

To adjust the Commander heap size:

 1 Open the commander.nanny file that is to be edited. This file is located at:

<commander_install_dir>\launch_service\dat\nanny\commander.nanny

Number of Probes Recommended Heap Size (MB)

0 to 20 Probes 384 (default setting)

21 to 50 Probes 768

51 to 100 Probes 1400

Part IV • Appendixes

316

 2 Replace the heap size specified in the -Xmx???m -Xms???ms option on the
start_<os> property that is appropriate for your system OS with the
recommend Heap Size.

start_nt="ProductDir\jre\bin\javaw.exe" -Xmx???m –Xms???m ...

Note: Both the -Xmx???m and the -Xms???m options must have the same
value for “???”.

For example if you were updating the heap size from the default settings to
the recommend heap size for 21 - 50 probes; before you modify this line in
the commander.nanny file it will look like this:

After you modify this line in the commander.nanny file it will look like
this::

start_nt="ProductDir\jre\bin\javaw.exe" -Xms384m -Xmx384m "-
Dserver.dir=ProductDir" -Dsun.net.client.defaultReadTimeout=30000 -
Dsun.net.client.defaultConnectTimeout=30000 -Dcom.sun.management.jmxre-
mote -Xbootclasspath/a:"ProductDir\lib\loading.jar;ProductDir\etc" com.mer-
cury.opal.common.loader.ModuleLoader

start_nt="ProductDir\jre\bin\javaw.exe" –Xms768m –Xmx768m "-
Dserver.dir=ProductDir" -Dsun.net.client.defaultReadTimeout=30000 -
Dsun.net.client.defaultConnectTimeout=30000 -Dcom.sun.management.jmxre-
mote -Xbootclasspath/a:"ProductDir\lib\loading.jar;ProductDir\etc" com.mer-
cury.opal.common.loader.ModuleLoader

317

317

Configuring the Commander for Multi-Homed Environments

The machines that host the Commander can be configured with more than
one Network Interface Card (NIC), and the Commander process listens on
all interfaces on its host machine. Some customer environments do not
allow applications to listen on all network interfaces on a machine. If this is
the case in your environment, follow these instructions to configure the
Commander to listen on specific network interfaces.

Modifying jetty.xml

The jetty.xml file has a section which defines the interfaces on which the
Commander is permitted to listen. By default, the jetty.xml file included
with the Commander has no listeners defined and the Commander listens
on all of the interfaces.

To configure the Commander to listen on specific network interfaces on a
machine:

 1 Open the <commander_install_dir>/etc/jetty.xml file and locate the
following line:

<Configure class="org.mortbay.jetty.Server">

 2 Add the following block of code after this line changing the <Set
name="Host">……</Set> to contain the NIC’s IP Address.

<Call name="addListener">
 <Arg>
 <New class="org.mortbay.http.SocketListener">
 <Set name="Host">127.0.0.1</Set>
 <Set name="Port"><SystemProperty name="jetty.port"
default="2006"/></Set>
 <Set name="MinThreads">1</Set>
 <Set name="MaxThreads">5</Set>
 <Set name="MaxIdleTimeMs">30000</Set>
 <Set name="LowResourcePersistTimeMs">5000</Set>
 <Set name="ConfidentialPort">8443</Set>
 <Set name="IntegralPort">8443</Set>
 </New>
 </Arg>
 </Call>

Part IV • Appendixes

318

Repeat the previous step, adding a new copy of the block of code and setting
the IP Address for the NIC, for each interface on which the Commander is to
listen.

Make sure that the </Configure> tag follows the listener code for the last
NIC.

Note: Make sure that components that access the Commander can resolve
the host names of the Commander to the IP Address that you specify in the
jetty.xml file for the Host values. It is possible that some systems may resolve
the host name to a different IP address on the Commander host.

319

319

Sample jetty.xml File

The following example shows the jetty.xml file for the Commander where
the Commander will listen on loopback and one IP address on the system.

<!--=== -->
<!-- Configure the Jetty Server -->
<!-- === -->
<Configure class="org.mortbay.jetty.Server">
<!--=== -->
<!-- Configure the Request Listeners -->
 <!--== -->
 <Call name="addListener">
 <Arg>
 <New class="org.mortbay.http.SocketListener">
 <Set name="Host">127.0.0.1</Set>
 <Set name="Port"><SystemProperty name="jetty.port" default="2006"/></Set>
 <Set name="MinThreads">1</Set>
 <Set name="MaxThreads">5</Set>
 <Set name="MaxIdleTimeMs">30000</Set>
 <Set name="LowResourcePersistTimeMs">5000</Set>
 <Set name="ConfidentialPort">8443</Set>
 <Set name="IntegralPort">8443</Set>
 </New>
 </Arg>
 </Call>
<-Listen on specific IP Address on this machine for incoming Commander calls->
<Call name="addListener">
 <Arg>
 <New class="org.mortbay.http.SocketListener">
 <Set name="Host">10.241.3.109</Set>
 <Set name="Port"><SystemProperty name="jetty.port" default="2006"/></Set>
 <Set name="MinThreads">1</Set>
 <Set name="MaxThreads">5</Set>
 <Set name="MaxIdleTimeMs">30000</Set>
 <Set name="LowResourcePersistTimeMs">5000</Set>
 <Set name="ConfidentialPort">8443</Set>
 <Set name="IntegralPort">8443</Set>

Part IV • Appendixes

320

 </New>
 </Arg>
 </Call>
…….…….
</Configure>

321

C
Advanced Diagnostics Mediator
Configuration

The following configuration instructions are intended for experienced users
with in-depth knowledge of this product. Please use caution when
modifying any of the Diagnostics component’s properties.

This appendix contains the following sections:

➤ Configuring the Mediator for Large Installations

➤ Tuning the Mediator Garbage Collection

➤ Tuning the Mediator for a Smaller Installation

➤ Overriding the Default Mediator Host Machine Name

➤ Configuring the Mediator for Multi-Homed Environments

➤ Reducing Mediator Memory Usage

➤ LoadRunner Diagnostics Mediator Assignments

➤ Using the Mediator Configuration Web Pages

➤ Configuring the Mediator for the LoadRunner Offline file

Configuring the Mediator for Large Installations

If you will be using a Mediator with more than twenty probes, it is
recommended that you make modifications to the default configuration of
the Mediator. The following sections provide instructions for making these
Mediator configuration modifications.

Part IV • Appendixes

322

Adjusting the Probe Event Buffer Size

Each Mediator has a probe buffer that is used to reduce the effect that
temporary processing slowdowns on the Mediator have on the probe’s
processing. Without this buffer, the probes would react to the temporary
processing slowdowns on the Mediator by throttling more frequently. By
default, the Mediator’s probe buffer size is set to be 2MB per probe. The per-
probe buffer size for a Mediator is determined based upon the value of the
static Mediator property, probe.event.buffer.size which is located in the
<mediator_install_dir>\etc\mediator.properties file.

To determine the amount of memory that will be allocated for a Mediator’s
probe buffer, multiply the number of probes that are assigned to the
Mediator by the value of the buffer size property.

Total Probe Buffer Size for a Mediator = # of probes assigned to the mediator *
probe.event.buffer.size

To determine a reasonable probe buffer size:

 1 Determine the probe's data rate (bytes/sec) from the Mediator metrics.

 2 Multiply the probe data rate by the number of seconds of buffering that you
need.

 3 Set the probe.event.buffer.size property, located in
<mediator_install_dir>\etc\mediator.properties, to the probe buffer size
that you calculated.

Note: This buffer size does not guarantee that the probe will not be throttled
for this period of time since the VM may be blocked and unable to buffer
data when it becomes immediately available. However, the probe buffers
should be able to handle most of the minor delays.

Adjusting the Direct Buffer Allocation Limit

The Mediator attempts to allocate the probe buffers outside of the java heap,
using “direct” ByteBuffers. Ideally, there will be enough direct allocation
space available so that all of the probe buffers will be direct. However, each
VM has a limit to the amount of direct ByteBuffers that can be allocated.

323

323

If the Mediator is unable to allocate a direct buffer for the probe, it will fall
back on a heap-based “indirect” buffer.

The default limit for direct buffer allocations for the Sun 1.4.2 VM, which is
currently used by the Mediator, is 64MB. You should increase the direct
buffer allocations limit when the Total Probe Buffer Size will exceed 64MB.

To increase the direct buffer allocation limit:

 1 Open the mediator.nanny file to be edited. This file is located at:

<mediator_install_dir>\dat\nanny\mediator.nanny

 2 Add the following argument to the VM arguments on the start_nt line:

-XX:MaxDirectMemorySize=???M

Replace “???” with the number of megabytes that you want to allocate for
direct memory.

Before you modify this line in the mediator.nanny file it will look like this:

After you modify this line in the mediator.nanny file it will look like this:

start_nt=C:\Program Files\Mercury Interactive\Diagnostics\Media-
tor\jre\bin\javaw.exe^-server -Xmx128m -Xms128m -XX:+UseAdaptiveSizePol-
icy -XX:+UseParallelGC -Dsun.net.client.defaultReadTimeout=30000 -
Dsun.net.client.defaultConnectTimeout=30000 -Xbootclasspath/a:"C:\Program
Files\Mercury Interactive\Diagnostics\Mediator\lib\loading.jar;C:\Program
Files\Mercury Interactive\Diagnostics\Mediator\etc" com.mercury.diagnos-
tics.common.loader.ModuleLoader

start_nt=C:\Program Files\Mercury Interactive\Diagnostics\Media-
tor\jre\bin\javaw.exe^-server -Xmx128m -Xms128m -XX:+UseAdaptiveSizePol-
icy -XX:+UseParallelGC -XX:MaxDirectMemorySize=128M -
Dsun.net.client.defaultReadTimeout=30000 -Dsun.net.client.defaultConnect-
Timeout=30000 -Xbootclasspath/a:"C:\Program Files\Mercury Interactive\Diag-
nostics\Mediator\lib\loading.jar;C:\Program Files\Mercury
Interactive\Diagnostics\Mediator\etc" com.mercury.diagnostics.com-
mon.loader.ModuleLoader

Part IV • Appendixes

324

Note: 32-bit VMs have a 4GB address space limit, so setting the
MaxDirectMemorySize value too high may cause the heap to be too small.
In this case, you can either use a 64-bit VM, if one exists for your platform,
or decrease the probe buffer size.

Adjusting the Heap Size

The size of the heap can impact the performance of the Mediator. If the
heap is too small you may experience problems with the Mediator
“hanging” for periods of time. If the heap is too large it is possible that the
Mediator will experience long garbage collection delays.

The default value for the heap size is 256MB. The heap size is set in the
<mediator_install_dir>\launch_service\dat\nanny mediator.nanny file
using the VM arguments:

-Xmx256m -Xms256m -XX:+UseAdaptiveSizePolicy.

If you encounter problems with the mediator "hanging", you can increase
the heap size specified in the -Xmx256m -Xms256m options.

To adjust the Mediators heap size:

 1 Calculate the amount of heap that the Mediator will need based upon the
configuration of the machine that is the Mediator host.

The heap size must be large enough to provide the room that the Mediator
needs to do its processing plus the amount of space that the indirect probe
buffers need.

➤ The amount of heap that the Mediator needs is about 384M.

➤ The amount of space that the indirect probe buffers need can be
calculated using the values calculated in the previous section as follows:

Indirect Probe Buffer Space = Total Probe Buffer Space -
MaxDirectMemorySize

325

325

For example, if the Total Probe Buffer Space needed was 128M and the
MaxDirectMemory Size was at the default of 64MB then the Indirect Probe
Buffer Space would be 64MB.

➤ The optimal heap size can be calculated as:

Optimal Heap Size = Amount of Heap the Mediator Needs + Indirect Probe
Buffer Space

For example, continuing the previous example, Optimal Heap Size =
384M + 64M = 428M

 2 Open the mediator.nanny file that is to be edited. This file is located at:

<mediator_install_dir>\dat\nanny\mediator.nanny

 3 Replace the heap size specified in the -Xmx???m -Xms???ms option on the
start_nt line with the Optimal Heap Size that you calculated:

-Xmx???m –Xms???m -XX:+UseAdaptiveSizePolicy -XX:+UseParallelGC

Continuing the previous example; the current heap size, represented by
"???" is replaced with 428 Mb.

-Xmx428m –Xms428m -XX:+UseAdaptiveSizePolicy -XX:+UseParallelGC

Note: Both the -Xmx???m and the -Xms???m options must have the same
value for “???”.

Before you modify this line in the mediator.nanny file it will look like this:

start_nt=C:\Program Files\Mercury Interactive\Diagnostics\Media-
tor\jre\bin\javaw.exe^-server -Xmx256m -Xms256m -XX:+UseAdaptiveSizePol-
icy -XX:+UseParallelGC -Dsun.net.client.defaultReadTimeout=30000 -
Dsun.net.client.defaultConnectTimeout=30000 -Xbootclasspath/a:"C:\Program
Files\Mercury Interactive\Diagnostics\Mediator\lib\loading.jar;C:\Program
Files\Mercury Interactive\Diagnostics\Mediator\etc" com.mercury.diagnos-
tics.common.loader.ModuleLoader

Part IV • Appendixes

326

After you modify this line in the mediator.nanny file it will look like this:

Tuning the Mediator Garbage Collection

Under rare circumstances, the default Garbage Collector, ParallelGC, may
cause the Mediator to have long periods where it is non-responsive or does
not process Probe data. When this happens, it may trigger the Probe to
throttle the capture or to drop events. This problem most commonly occurs
when you are running LoadRunner with high Virtual User loads.

There are several symptoms that will help you to identify this problem. The
most common situation occurs when the Mediator host is a parallel-
processor machine (either SMP or SMT). The investigation sequence should
be as follows:

➤ Notice that the Probe is throttling or dropping events.

➤ Check the health for the Commander and the Mediator on the System
Health Monitor and find that they are healthy.

➤ Check the CPU utilization for the Mediator host and notice that one of the
processors is near 100% while the other processors are almost at 0%.

If you encounter problems with the Garbage Collector interfering with the
performance of the Mediator you can adjust the VM arguments in the
mediator.nanny file that is located in the directory at
<mediator_install_dir>\dat\nanny\mediator.nanny.

To Tune the Mediator Garbage Collection:

 1 Adjust the size of the Java Heap by replacing by replacing the heap size
specified in the -Xmx???m -Xms???m option as described in “Adjusting the
Heap Size” on page 324 to make sure that you have an adequate heap size.

start_nt=C:\Program Files\Mercury Interactive\Diagnostics\Media-
tor\jre\bin\javaw.exe^-server -Xmx428m -Xms428m -XX:+UseAdaptiveSizePol-
icy -XX:+UseParallelGC -Dsun.net.client.defaultReadTimeout=30000 -
Dsun.net.client.defaultConnectTimeout=30000 -Xbootclasspath/a:"C:\Program
Files\Mercury Interactive\Diagnostics\Mediator\lib\loading.jar;C:\Program
Files\Mercury Interactive\Diagnostics\Mediator\etc" com.mercury.diagnos-
tics.common.loader.ModuleLoader

327

327

 2 Replace the –XX:+UseParallelGC option added in the previous step with
–XX:+UseConcMarkSweepGC. This option will decrease the throughput
(events/sec) of the Mediator and will result in a constant throughput.

After you have replaced the Aggressive Heap option in the mediator.nanny
file as instructed in the previous step, the mediator.nanny file will look like
this:

After you replace the UseParallelGC option the mediator.nanny file it will
look like this:

Tuning the Mediator for a Smaller Installation

The default Mediator configuration that is established when the Mediator is
installed assumes that the Mediator will be the only Mercury Diagnostics
Component running on the host machine and so will allocate roughly all of
the available memory on the machine to the Java heap. The Java argument -
Xmx???m -Xms???m -XX:+UseAdaptiveSizePolicy are the options that
trigger this memory allocation for the heap.

start_nt=C:\Program Files\Mercury Interactive\Diagnostics\Media-
tor\jre\bin\javaw.exe^-server -Xmx428m -Xms428m -XX:+UseAdaptive-
SizePolicy -XX:+UseParallelGC -XX:MaxDirectMemorySize=128M -
Dsun.net.client.defaultReadTimeout=30000 -Dsun.net.client.defaultConnect-
Timeout=30000 -Xbootclasspath/a:"C:\Program Files\Mercury Interac-
tive\Diagnostics\Mediator\lib\loading.jar;C:\Program Files\Mercury
Interactive\Diagnostics\Mediator\etc" com.mercury.diagnostics.com-
mon.loader.ModuleLoader

start_nt=C:\Program Files\Mercury Interactive\Diagnostics\Media-
tor\jre\bin\javaw.exe^-server -Xmx428m -Xms428m -XX:+UseAdaptive-
SizePolicy -XX:+UseParallelGC –XX:+UseConcMarkSweepGC -
XX:MaxDirectMemorySize=128M -Dsun.net.client.defaultReadTime-
out=30000 -Dsun.net.client.defaultConnectTimeout=30000 -Xbootclass-
path/a:"C:\Program Files\Mercury
Interactive\Diagnostics\Mediator\lib\loading.jar;C:\Program Files\Mercury
Interactive\Diagnostics\Mediator\etc" com.mercury.diagnostics.com-
mon.loader.ModuleLoader

Part IV • Appendixes

328

It is possible to run the Mediator on a machine that is also host to other
components for implementations with very light loads such as a for a POC.
If you are running the Mediator on the same machine as any of the other
Mercury Diagnostics components, you should adjust the size of the Java
Heap by replacing the -Xmx???m -Xms???m -XX:+UseAdaptiveSizePolicy
option as described in “Adjusting the Heap Size” on page 324. The
difference is that in the earlier instructions, the goal was to allocate a large
enough heap for optimal performance with a large installation. In this
section, you want to allocate a small enough heap to allow the other
components enough memory to function.

➤ Adjust the size of the Java Heap by replacing the heap size specified in the
--Xmx???m -Xms???m -XX:+UseAdaptiveSizePolicy optionmaking sure to
make the –Xmx???m parameter small enough so that the other components
on the machine have enough memory to function.

➤ Since this configuration is for an implementation that will have a very light
load, we recommend that you also decrease the probe buffer size to 512k
(524288).

Overriding the Default Mediator Host Machine Name

In situations where a firewall or NAT is in place or where your Mediator host
machine has been configured as a multi-homed device, it may not be
possible for the Commander to communicate with the Mediator using the
host name that was assigned when the Mediator was installed. The
registered_hostname property allows you to override the default host
machine name that the Mediator uses to register itself with the Commander.

To override the default host machine name for a Mediator set the
registered_hostname property located in
<mediator_install_dir>/etc/mediator.properties to an alternate machine name
or IP Address that will let the Commander communicate with the Mediator.

This is the host name that is passed to the Probes that are involved in a
LoadRunner scenario that allows them to communicate with the Mediator.

329

329

Configuring the Mediator for Multi-Homed Environments

The machines that host the Mediator can be configured with more than one
Network Interface Card (NIC), and the Mediator process listens on all
interfaces on its host machine. Some customer environments do not allow
applications to listen on all network interfaces on a machine. If this is the
case in your environment, follow these instructions to configure the
Mediator to listen on specific network interfaces.

Setting the Event Hostname

You should set the event.hostname property if the Mediator host machine
has multiple network interfaces and you want to specify the hostname that
the Mediator will listen on.

This property can be found at:

<mediator_install_dir>/etc/mediator.properties

Uncomment the property, event.hostname and specify the hostname value.

By default, the event.hostname property is not set. This means that the
Mediator will listen on all hostnames.

Modifying jetty.xml

The jetty.xml file has a section which defines the interfaces on which the
Mediator is permitted to listen. By default, the jetty.xml file included with
the Mediator has no listeners defined and the Mediator listens on all of the
interfaces.

To configure the Mediator to listen on specific network interfaces on a
machine:

 1 Open the <mediator_install_dir>/etc/jetty.xml file and locate the following
line:

<Configure class="org.mortbay.jetty.Server">

Part IV • Appendixes

330

 2 Add the following block of code after this line changing the <Set
name="Host">……</Set> to contain the NIC’s IP Address.

 3 Repeat the previous step adding a new copy of the block of code and setting
the IP Address for the NIC for each interface on which the Mediator is to
listen.

Make sure that the </Configure> tag follows the listener code for the last
NIC.

Note: Make sure that components that access the Mediator can resolve the
host names of the Mediator to the IP Address that you specify in the
jetty.xml file for the Host values. It is possible that some systems may resolve
the host name to a different IP address on the Mediator host. See
“Overriding the Default Mediator Host Machine Name” on page 328 for
more information.

<Call name="addListener">
 <Arg>
 <New class="org.mortbay.http.SocketListener">
 <Set name="Host">127.0.0.1</Set>
 <Set name="Port"><SystemProperty name="jetty.port" default="2006"/></Set>
 <Set name="MinThreads">1</Set>
 <Set name="MaxThreads">5</Set>
 <Set name="MaxIdleTimeMs">30000</Set>
 <Set name="LowResourcePersistTimeMs">5000</Set>
 <Set name="ConfidentialPort">8443</Set>
 <Set name="IntegralPort">8443</Set>
 </New>
 </Arg>
 </Call>

331

331

Sample jetty.xml File

The following example shows the jetty.xml file for the Mediator where the
Mediator will listen on loopback and one IP address on the system.

<!-- Configure the Jetty Server -->
<!-- === -->
<Configure class="org.mortbay.jetty.Server">
<!--=== -->
<!-- Configure the Request Listeners -->
 <!--== -->
<Call name="addListener">
 <Arg>
 <New class="org.mortbay.http.SocketListener">
 <Set name="Host">127.0.0.1</Set>
 <Set name="Port"><SystemProperty name="jetty.port" default="2006"/></Set>
 <Set name="MinThreads">1</Set>
 <Set name="MaxThreads">5</Set>
 <Set name="MaxIdleTimeMs">30000</Set>
 <Set name="LowResourcePersistTimeMs">5000</Set>
 <Set name="ConfidentialPort">8443</Set>
 <Set name="IntegralPort">8443</Set>
 </New>
 </Arg>
 </Call>

<-Listen on specific IP Address on this machine for incoming Commander calls->
<Call name="addListener">
 <Arg>
 <New class="org.mortbay.http.SocketListener">
 <Set name="Host">10.241.3.109</Set>
 <Set name="Port"><SystemProperty name="jetty.port" default="2006"/></Set>
 <Set name="MinThreads">1</Set>
 <Set name="MaxThreads">5</Set>
 <Set name="MaxIdleTimeMs">30000</Set>
 <Set name="LowResourcePersistTimeMs">5000</Set>
 <Set name="ConfidentialPort">8443</Set>
 <Set name="IntegralPort">8443</Set>
 </New>
 </Arg>
 </Call>
</Configure>

Part IV • Appendixes

332

Reducing Mediator Memory Usage

The Transaction Timeout Period is a safety mechanism that is used to
prevent the mediator from using excessive amounts of memory because it is
holding on to old data for too long. The mediator holds on to all of the
information that it receives for a transaction until it receives the ELT for the
transaction, which tells the mediator the transaction is complete. The
timeout period for a transaction is reset each time that the mediator receives
data for the transaction. If the machine that the commander is running on
is overloaded (CPU is heavily loaded or there are too many transactions per
second for it to handle), or if there are network connectivity issues between
the Load Generators and the commander, the mediator may not receive the
ELT that lets it know when a transaction has ended. If the ELT is not
received by the time that the transaction timeout period expires, the
mediator will assume that the ELT is not coming and go ahead and process
the data for the transaction and free up the memory that the transaction
data was using.

The correlation.txn.timeout property sets the duration of the transaction
timeout period. If you are experiencing out of memory conditions in the
mediator you may want to reduce the transaction timeout period so that the
mediator will give up waiting for the end of a transaction sooner. Use
caution when adjusting the value of this property because multiple probes
may be sending data to the mediator, and a active transaction may be idle
in one mediator, so setting this two low could cause problems. It is
recommended that if you need to reduce the value of this property that you
set it to 30s more than the longest transaction in your load test.

LoadRunner Diagnostics Mediator Assignments

Default Mediator Assignment

When a LoadRunner run is started, the Commander selects the Mediators to
be used by the Probes during the run. Each Probe receives one Mediator
assignment. The Commander assigns a Mediator to a Probe based on the
Logical LAN ID and a least-used basis. For each Probe, the Commander
determines which Mediators are active and have the same Logical LAN ID.
The Commander then selects the Mediator that has been assigned to the
fewest probes.

333

333

This least-used Mediator is started and its information is passed to the Probe.
If the Mediator fails to start, the Commander checks the next least-used
Mediator. The Probe receives the assigned Mediator information and
connects to the Mediator for the run.

Advanced Mediator Assignment

There are two different methods for changing the default Mediator
assignments for Probes.

Direct Assignment

When you use the Direct Assignment method, you create a mapping file
that allows you to override the Mediator assignment for a Probe. This is
useful when you have a Probe that produces much more data than the other
probes in a run and you want to make sure that a Mediator that has been
installed on a more powerful machine processes the events from that Probe.

To change the Mediator Assignment for a Probe using the Direct Assignment
method create a file called mediator_assignment.properties in the
<commander_install_dir>\etc directory on the Commander host machine.

The format of the mediator_assignment.properties file is:

<id> = <mediator.id>

➤ Replace <id> with the ID of the probe.

➤ Replace <mediator.id> with the ID of the mediator.

The mediator_assignment.properties file is dynamically read at the start of
each LoadRunner run. This means that changes made to this file become
effective without having to restart the Commander.

Part IV • Appendixes

334

Multiple Assignment

The Multiple Assignment method should only be used in extreme cases
where a single Mediator is not able to handle the output from a Probe. The
capabilities of the Mediator make it extremely unlikely that this situation
will occur.

To change the default Mediator assignment for a probe using the Multiple
Assignment method:

Change the value of the multiple_mediator_per_probe property in the
<commander_install_dir>\etc\webserver.properties file to “true”. When this
property is set to “true” the Commander is instructed to assign all active
Mediators with the same Logical LAN ID to the Probe. The Probe will
connect to each of the Mediators and send data distributed evenly to those
Mediators.

Note: Changes to this property value will not take effect until you restart the
Commander.

Using the Mediator Configuration Web Pages

The Mediator Configuration Web pages provide a way for you to set the
property values that control how the Mediator communicates with the
other diagnostic components and how it processes the data that it receives
from the probes.

Note: To ensure that you are entering valid property values you should use
these Web pages to update the Mediator properties instead of editing the
property files directly.

335

335

To access the Mediator configuration Web pages:

Access the Mediator Configuration Web pages on the Mediator host
machine using the following URL:

http://<mediator_host_name>:8081/configuration/

The Mediator Configuration Main Menu is displayed as shown below.

Each menu option is a link to a page where you may update a group of
related properties:

• Customer Information

• Component Communications

• Transaction Trimming

• Memory Diagnostics

• Logger

Part IV • Appendixes

336

Viewing Advanced Mediator Configuration Options

At the bottom of most of the Mediator Configuration pages is a link that
will cause additional configuration options to be displayed on the page.
These options are Advance Options that you should only update with
guidance from your Mercury Customer Support representative.

Note: Do not manipulate the Advance Options without the guidance of
your Mercury Customer Support representative.

To display the Advanced Mediator Configuration Options:

 1 Click the Show Advanced Options link at the bottom of the page.

 2 The list of options on the page will be updated to include the Advanced
Configuration options and the link with toggle to Hide Advanced Options.

To hide the Advanced Mediator Configuration Options:

 1 Click the Hide Advanced Options link at the bottom of the page.

 2 The list of options on the page will be updated so that the Advanced
Configuration options are no longer available and the link will toggle to
Show Advanced Options.

Modifying Mediator Properties

To modify the Mediator properties:

 1 Select menu item for the properties that you wish to update.

 2 Review the properties that are displayed and revise any values that should
be updated.

 3 Click Submit to save your changes.

Note: To cancel any pending changes click Reset All at any time prior to
clicking Submit.

337

337

 4 A message appears at the top of the page to indicate that your changes were
saved.

For the Component Communications and the Transaction Trimming
properties, a message reminding you to restart the Mediator is also
displayed, along with a convenient Restart Mediator button. The property
changes will not take effect until you restart the Mediator.

Note: If you have other changes to make to the Mediator properties, you
should finish making all of your changes before restarting the Mediator.

Note: Do not restart the Mediator while a run is in progress.

For the Logging properties, it is not necessary to restart the Mediator;
however it may take up to a minute for your changes to be applied.

Part IV • Appendixes

338

Configuring the Mediator for the LoadRunner Offline file

For each Load Runner scenario that is run, the Mediator produces a file that
is needed for LoadRunner Offline analysis which contains the J2EE data
captured during the scenario. The size of this file can grow to be quite large.
You must ensure that you have enough disk space to hold the LoadRunner
Offline file on both the Mediator host machine where the file is stored
temporarily while the scenario is running and the Load Runner controller
host machine where the file is stored when the scenario has ended.

Estimating the Size of The LoadRunner Offline File

Estimating the size of the offline file is highly dependent upon the data that
is being captured and the rate at which the data is captured.

To estimate the size of the LoadRunner offline file:

 1 Run a load test for 5 minutes and monitor the size of the offline file created
by the Mediator when Load Runner scenario is started.

Locate the offline file on the Mediator host machine in
<mediator_install_dir>/data/<newest directory>. The offline file has an
extension of “.inuse”.

 2 After 5 minutes note the size of the offline file.

 3 Extrapolate the size of the offline file after one hour by multiplying the size
of the offline file from the previous step by 12.

 4 Determine the anticipated size of the offline file at the end of your load test
by multiplying the one hour file size calculated in the previous step by the
number of hours that you expect your actual load test to run.

 5 Determine if the Mediator host machine and the LoadRunner Controller
host machine have enough disk space to accommodate the anticipated
offline file size.

Reducing the Size of the LoadRunner Offline File

If you are concerned about the size of the offline file, you can reduce the file
size by increasing the Mediator’s offline aggregation periods. This will
reduce the level of granularity in the offline data and thus reduce the size of
the offline files.

339

339

The default settings for these properties are “5s” (5 seconds) which causes
the Mediator to aggregate all data into 5 second time slices. Increasing the
value of these properties will make the offline file smaller because fewer data
points are required to be stored when the aggregation period is longer. For
example, increasing the offline aggregation period properties to “45s”
should reduce the file size by roughly 50-75%.

Note: The impact on the size of the offline file size that will be achieved by
adjusting the offline aggregation period is highly dependent upon the
behavior of your application and the specifics of your load test

Use the following steps modify the Mediator offline aggregation period
properties bucket.lr.offline.duration and bucket.lr.offline.sr.duration in
<mediator_install_dir>/etc/mediator.properties.

To reduce the size of the offline files by increasing the Mediator offline
aggregation periods:

 1 Ensure that the Mediator is not participating in any active LoadRunner runs.
This is necessary because the Mediator must be restarted before the property
changes described in the following steps will take effect.

 2 Access the Mediator Configuration Page from your browser by navigating to
the following URL:

http://<mediator_hostname>:8081/configuration/Aggregation?level=60

 3 Increase the Offline VU Aggregation Period by increasing the setting for the
Load Runner / Performance Center Offline VU Aggregation Period property.
The value of this property must be a multiple of 5. For example set it to
“45s”.

 4 Increase the Offline Server Request Aggregation Period by increasing the
value of the Load Runner / Performance Center Offline Server Request
Aggregation Period property. The value of this property must be a multiple
of 5. For example set it to “45s”.

Part IV • Appendixes

340

 5 Update the Mediator with the revised property values by clicking Submit at
the bottom of the page.

A message will appear at the top of the page to indicate that the changes
were saved along with a reminder to restart the Mediator. As a further
reminder the Restart Mediator button is displayed.

For more information on updating property values from the Configuration
Page and a screen image showing the command buttons see “Modifying
Mediator Properties” on page 336.

 6 To cause the configuration changes to take effect restart the Mediator by
clicking Restart Mediator.

341

D
Advanced J2EE Probe and Application
Server Configuration

This appendix provides instructions for performing advanced configuration
activities for the Mercury Diagnostics Probe for J2EE.

It contains the following sections:

➤ Configuring the J2EE Probe for Use With Mercury Products

➤ Setting the J2EE Probe Product Mode Properties

➤ Configuring the J2EE Probe and Application Server for Deep Diagnostics

➤ Configuring the Application Server for Allocation Capture

➤ Unconfiguring the Probe for a Product

➤ Specifying Layers to Instrument

➤ Controlling Automatic Method Trimming

➤ Controlling J2EE Probe Throttling

➤ Configuring a Probe With a Proxy Server

➤ Specifying Probe Properties as Java System Properties

Configuring the J2EE Probe for Use With Mercury Products

Overview

The J2EE Probe is a lifecycle probe that can be can be used to monitor your
applications from development through implementation and production.
The same Probe can be used with multiple Mercury products to enable you
to understand and improve the performance of your applications.

Part IV • Appendixes

342

There are three different product mode values: Application Management
(AM), Application Diagnostics (AD), and Deep Diagnostics (DD).

You set the Product Mode when at the time that you installed the J2EE Probe
when you selected the application that the Probe was going to work with.
(See Chapter 6, “Installing the Mercury Diagnostics Probe for J2EE.”) To
enable the J2EE Probe to capture data with different Mercury products you
must configure the product mode of the Probe.

AM Mode– Application Management

When configured in AM mode, the J2EE Probe will work with Mercury
Business Availability Center 5.0 (BAC). A Probe can run in stand-alone AM
mode or it can be configured so that it will also be able to gather the
additional metrics for Mercury Deep Diagnostics.

AD Mode– Application Diagnostics

When configured in AD mode, the J2EE Probe will work with LoadRunner
8.0. A Probe can run in stand-alone AD mode or it can be configured so that
it will also be able to gather the additional metrics for Mercury Deep
Diagnostics.

DD Mode - Deep Diagnostics

Mercury Deep Diagnostics for J2EE does not include a probe in its
installation; instead, it uses the J2EE Probe installed with Mercury’s
LoadRunner 8.0 or BAC 5.0. The J2EE Probe must be configured to work
with Mercury Deep Diagnostics for J2EE. A Probe can run in stand-alone DD
mode or it can be configured to so that it will also be able to gather
additional metrics for the AM mode or the AD mode.

Note: AM and AD modes are mutually exclusive. The probe can only
capture data for one of these modes at any given time. Both AM and AD can
be configured to include the Deep Diagnostics mode.

343

343

Setting the J2EE Probe Product Mode Properties

Note: The following discussion provides the instructions for updating the
Probe properties by editing the property files. It is recommended that you
update the properties using the Mercury Configuration Utility. See
“Reconfiguring a Probe” on page 149 for information on setting the Product
Mode, Commander Host Name, and Commander Port Number using the
Configuration Utility.

The Product Mode for the J2EE is configured using the active.products
property which can be found in the property file:

<probe_install_dir>\etc\probe.properties

The following is an image of the probe.properties file showing the
active.products property. The comment above the property explains the
possible combinations of values that can be set. In this example, the
active.products property is set to “AD,DeepDiagnostics” which means that
the Probe is configured to work with LoadRunner 8.0 and Deep Diagnostics.

For each product mode there are additional properties and settings that
must be configured in addition to the active.products property. The
following sections provide instructions for doing the configuration for each
product mode.

Part IV • Appendixes

344

AM – Application Management Probe Settings

Note: Remember, that it is safer to make these changes using the
Configuration Utility. See the note on page 343 for more information.

 1 Configure the Probe to register with the Commander.

One of the functions of the Commander is to keep track of the Diagnostics
components so that it can facilitate communications between them and
keep you informed about the status and health of the components.

To configure the Probe to register with the Commander, set host name and
the port using the registrar.url property which can be found in the property
file:

<probe_install_dir>\etc\dispatcher.properties

The following is an excerpt from the dispatcher.properties file showing the
registrar.url property:

 2 Configure the Probe to connect to a Mediator.

The Probe must be able to transmit the processing metrics that it gathers to
the Mediator in order for the AD and AM Mercury products to be able to
receive, process, and display the reports. In AD, the Probe is assigned to a
Mediator by Diagnostics. In AM, you must tell the Probe which Mediator to
work with.

To configure the Probe to communicate with the Mediator, set host name
and the port using the mediator.host.name property and the
mediator.port.number property which can be found in the property file:

<probe_install_dir>\etc\dynamic.properties

The default Mediator port is 2612. If you set the Mediator port to a value
other than the default when you installed the Mediator, make sure to use
that same port number when you set the mediator.port.number property.

345

345

The following is an excerpt from the dispatcher.properties file showing the
these properties:

 3 Install the Diagnostics Server and Configure the Mediator to be able to
communicate with it.

The Diagnostics Server is a Diagnostics component that is required for AM
mode. See the Mercury Diagnostics for J2EE & .NET Business Availability
Center Edition Installation and User’s Guide for more information on
installing the Diagnostics Server.

AD – Application Delivery Probe Settings

Note: Remember that it is safer to make these changes using the
Configuration Utility. See the note on page 343 for more information.

 4 Configure the Probe to register with the Commander.

See the instructions above for AM – Application Management Probe Settings
to set the registrar.url property.

 5 Configure the probe’s Logical LAN ID.

The network traffic between the Mediator and the Probes is high volume.
For this reason, the Mediator and the Probes that communicate with it must
be located on the same LAN. The Logical LAN ID is not a physical LAN ID.
The value that you enter for the Mediator and each of the Probes that you
expect to be able to work with the Mediator must be exactly the same.

To configure the Logical LAN ID for the Probe, set the probe.lanid property
which can be found in the property file:

<probe_install_dir>\etc\dispatcher.properties

Part IV • Appendixes

346

The following is an excerpt from the dispatcher.properties file showing the
probe.landid property:

Configuring the J2EE Probe and Application Server for
Deep Diagnostics

Once you have installed and configured the probe to work in LoadRunner
8.0, you can configure it to work with Deep Diagnostics.

In the following instructions, <probe_install_dir> is the directory where the
probe is installed.

To configure the J2EE Probe and Application Server for Deep Diagnostics:

 1 Ensure that you have installed the Deep Diagnostics (DD) System Under Test
agents on the application server machine. If the DD agent is not there, run
the Deep Diagnostics setup, and install the DD SUT.

When you install DD you are asked to provide the location of the
<probe_install_dir>. This information is used to update properties that DD
uses to contact the probe and to associate the probe with the application.

 2 Verify that the Deep Diagnostics Server can see the installed DD agent by
looking at the global tab, under the host tree node in the Deep Diagnostics
Console.

 3 Ensure that you have configured the J2EE Probe and Application Server as
described in Chapter 8, “Configuring the J2EE Probe and Application
Server.”

 4 Locate the directory where the J2EE Probe was installed. In the following
instruction, the directory where the probe was installed is referenced as
<probe_install_dir>.

347

347

 5 Set the following properties in <probe_install_dir>/etc/capture.properties as
indicated:

➤ Set the timeserver.host property to the host name for the machine
where the Deep Diagnostics Server was installed.

➤ Set timer.synchronize.with.server.clock = false

➤ Set use.native.timestamps = true

 6 Set the following properties in <probe_install_dir>/etc/probe.properties:

➤ Add “DeepDiagnostics” to the value of “active.products”. See the
instructions provided in the property files for the correct syntax.

To set the Product Mode for both LoadRunner and Deep Diagnostics the
property would be as follows:

active.products=AD,DeepDiagnostics

➤ Set the “id” property in probe.properties to identify the J2EE Probe to
Deep Diagnostics. This value must exactly match the Application
Definition used to specify instrumentation in the Deep Diagnostics.

Note: If the J2EE Probe is used in Deep Diagnostics mode simultaneously
with AD or AM, and a different “id” for the probe is necessary for those
modes, you can specify the “deepdiagnostics.id” property in
probe.properties to indicate which Deep Diagnostics Application Definition
this probe is associated with.

Part IV • Appendixes

348

Configuring the Application Server for Allocation Capture

If you are going to use allocation capture, you must scope the capture to
reduce the number of events and you also may have to increase the size of
the permanent generation (perm gen) in the heap so that the capture will
work properly. Capturing everything from allocation tier can cause the VM
to crash if the perm gen is not sized properly.

The following example shows the setting the size of the permanent
generation to 64m.

-XX:MaxPermSize=64m

Unconfiguring the Probe for a Product

The Product Mode for the J2EE Probe is configured using the
active.products property which can be found in the property file:

<probe_install_dir>\etc\probe.properties

For more information about the active.products property see “Setting the
J2EE Probe Product Mode Properties” on page 343.

To configure the probe so that it will no longer support a product, update
the active.products property so that the product is no longer included in
the property value.

For example if a Probe has been configured for Deep Diagnostics and
LoadRunner. the active.products property would be as follows:

active.products=DeepDiagnostics,AD

To reconfigure the Probe so that Deep Diagnostics would no longer be
included, remove the product from the property value:

active.products=AD

349

349

Note: You can also update the Product Mode using the Mercury
Configuration Utility. For information about this utility, see “Using the
Configuration Utility” on page 140.

Specifying Layers to Instrument

A layer is defined as the generic term given by Diagnostics for J2EE & .NET
to signify J2EE/.NET resources that can be grouped together for meaningful
analysis, and for display in the Diagnostics for J2EE & .NET pages. Examples
of layers: entity beans, servlets, JDBC, and so forth; classes that inherit from
a common ancestor; components that adhere to a specific API; classes that
provide a common service; and custom classes with a common significance.

Existing default J2EE layers include: servlets and JSPs, session and entity
beans, JNDI, JDBC, JMS, and Struts. Existing .NET layers include: Web layer
WEB.ASP (Active Server Pages), Database layer DB.ADO (ActiveX Data
Objects) and Messaging layer MSG.MSMQ (Microsoft Message Queuing).

Occasionally, due to design decisions, a class that does not directly
implement a J2EE./.NET component contains J2EE/.NET functionality. Or
you may wish to monitor a class that is of special interest to you. For these
purposes, you can define a custom layer. To enable Diagnostics for J2EE &
.NET to display custom classes or packages, you must set up the Diagnostics
Probe to monitor the classes and packages.

To choose the layers that you want Diagnostics for J2EE & .NET to display,
you specify them in the Capture Points file.

Note: These instruction only apply when using the J2EE Probe in an AM or
AD product mode. These instructions do not apply to the Deep Diagnostics
product mode.

Part IV • Appendixes

350

Modifying the Capture Points file

The Capture Points file is the instrumentation configuration file. This file is
named auto_detect.points and is located in:

<probe_install_dir>\etc\auto_detect.points

In the Capture Points file, layers that are to be displayed by Diagnostics for
J2EE & .NET are specified with the key ‘layer =...’ for each instrumentation
definition. For example, to specify that the Web.JSP layer should be
displayed, you enter the following line:

layer = Web.JSP

351

351

Following is an excerpt from a Capture Points file:

J2EE Monitoring Static Hooks definition file
; Generated by Mercury Interactive - do not modify!
[HttpCorrelation]
keyword = httpcorrelation
[JDBC-SQL]
keyword = jdbcsql
[JSP-_jspService]
;---------- implements HttpJspPage Interface --------------
class = javax.servlet.jsp.HttpJspPage
ignore_cl = weblogic.servlet.jsp.JspBase
method = _jspService
signature = (Ljavax/servlet/http/HttpServletRequest;Ljavax/serv-
let/http/HttpServletResponse;)V
deep_mode = soft
layer = Web.JSP
[Servlet-all]
;------------- extends HttpServlet ---------------------
class = javax.servlet.http.HttpServlet
ignore_cl = weblogic.servlet.JSPServlet
ignore_tree = org.apache.jasper.runtime.HttpJspBase
method = !.*
signature = !.*
deep_mode = hard
layer = Web.Servlet

[Struts-Action]
; ---------------------------- Struts - Action ----------------------------
class = org.apache.struts.action.Action
method = !.*
signature = !.*
deep_mode = soft
layer = Web.Struts

Part IV • Appendixes

352

Controlling Automatic Method Trimming

The default configuration for the Probe includes settings that control the
trimming of methods. Trimming can be controlled based upon how long
the method takes to execute, which is known as latency, and by the stack
depth of the method call. The default configuration instructs the Probe to
trim both by latency and by depth.

You may want to reduce the level of trimming or turn off trimming
completely for certain diagnostics situations. You can control the trimming
using the “minimum.method.latency” and “maximum.stack.depth”
properties in <probe_install_dir>/etc/capture.properties.

Latency Trimming

Methods that complete with latency greater than or equal to the value of
the “minimum.method.latency” property will be captured and those that
complete with latency less than this limit will be trimmed to avoid
incurring the overhead for methods that are less likely to be of interest.

Because of threading and buffering behavior, partial information about a
method that was trimmed may be transmitted to the Mediator. When the
Mediator detects that it only received partial information for a method, it
issues a warning message. You should ignore this message unless your run
requires that the information for all methods be captured.

If the information for all methods must be captured, lower the value of the
"minimum.method.latency" property or set it to zero.

Note: The following should be considered when setting the
“minimum.method.latency” property:

➤ The lower the value of the “minimum.method.latency” property the
greater the chance that the performance of your application will be
adversely impacted.

353

353

➤ Depending upon your platform & whether native timestamps are being used
(use.native.timestamps = false), it may not be useful to specify this value in
increments of less than 10ms.

➤ For Topaz & LoadRunner capture, the throttle mechanism will automatically
increase this value if the mediator is unable to keep up with the number of
events being sent. For Deep Diagnostics, the throttle mechanism will
automatically increase this value if the probe is unable to write events out to
the workload log file fast enough. For more information on throttling see
the Controlling J2EE Probe Throttling section in this chapter.

Depth Trimming

Methods that are called at a stack depth that is less than or equal to the
value of the “maximum.stack.depth” property will be captured and those
that are called at a stack depth greater than this limit will be trimmed to
avoid incurring the overhead for methods that are less likely to be of
interest.

For example, if maximum.stack.depth is 3, and "/login.do" calls a() calls b()
calls c(), only /login.do, a, and b will be captured.

Note: The following should be considered when setting the
“maximum.stack.depth” property.

➤ Setting a low maximum.stack.depth can significantly reduce the overhead
of capture.

➤ In Topaz mode, it is not useful to have a maximum.stack.depth configured
higher than the mediator's depth trim (trimming.type=depth in
mediator.properties) which is not enabled by default.

Part IV • Appendixes

354

Controlling J2EE Probe Throttling

The default configuration for the J2EE Probe has been set to minimize the
performance impact of collecting diagnostics information. In addition, the
J2EE Probe is able to automatically scale back on the amount of information
that it captures when it detects that its processing has started to have a
negative impact on the performance of your application. The process for
scaling back the amount of information that the Probe captures is called
throttling.

The J2EE Probe throttles the amount of diagnostics information that it
collects by skipping over method calls that occur relatively quickly. The
probe determines exactly what “relatively quickly” means based upon the
amount of data that it is collecting. The skipped method calls can have a
duration that varies between the configured minimum latency trim value
which defaults to 51 milliseconds, and 6 seconds depending on the load.

The probe properties that are used to control the throttling are listed below.
These properties are found in <probe_install_dir>/etc/capture.properties.

➤ gentle.reserve.buffer.count

The gentle reserve buffers are temporarily allocated for workload spikes
while the load throttle measures are deploying. By default, the
gentle.reserver.buffer.count property is set to the same value as the
maximum.private.buffer.count property.

➤ hard.reserve.buffer.count

The hard reserve buffers are allocated for workload spikes when it is
determined that the gentle reserve buffering cannot keep up. By default
the hard.reserve.buffer count is set to the same value as the
maximum.private.buffer.count property.

➤ buffer.wait.time

The buffer.wait.time property is used to control the length of time that
the probe will wait for an event to be buffered. This property tells the
Probe what to do when all throttle attempts are exhausted and an event
cannot be buffered:

• -1 = indicates that the processing should wait for as long as it takes

• 0 = indicates that the event should be dropped immediately

355

355

• # = indicates that the processing should wait for # milliseconds before
dropping the event

When you are using the J2EE Probe to monitor a production system,
allowing the Probe to automatically throttle is usually the preferred
behavior. However, when diagnosing some performance issues, you may
want to sacrifice the performance of your application so that you can be
sure that every diagnostic event is captured.

To configure the J2EE Probe so that it will not throttle you must edit the
following properties in the <probe_install_dir>/etc/capture.properties file:

➤ Set gentle.reserve.buffer.count to 0

➤ Set hard.reserve.buffer.count to 0

➤ Set buffer.wait.time to -1

Note: When you are turning off throttling be sure to set all three of the
properties as instructed.

Configuring a Probe With a Proxy Server

There are two properties that are used tell the probe the url of the
Commander with which the Probe is to work. The property that you set
depends upon whether there is a proxy present or not.

➤ dispatcher.properties

The registrar.url property in <probe_install_dir>\etc\dispatcher.properties is
set when you install the Probe. This is the Commander url that is to be used
when there is a direct connection.

➤ webserver.properties

In the presence of a proxy you must set the registrar.url property in the
<probe_install_dir>\etc\webserver.properties file to indicate the url of the
Commander.

Part IV • Appendixes

356

Specifying Probe Properties as Java System Properties

All of the J2EE Probe properties, except for those defined in the
dynamic.properties property file, may be specified as a Java System
properties on the startup command-line for the application server. This is
very useful when there will be more than one JVM using a single J2EE Probe
installation.

To specify a Probe property as a Java System property, pre-pend the letter
“D” and the first part of the properties file name to the property name. This
is best explained via some examples:

➤ To set the “id” in probe.properties from the startup command you
concatenate the “D” and “probe” from the property file name and then tack
on the name of the property that you are specifying, “id”:

-Dprobe.id=SomeId

➤ To set the “active.products” in probe.properties from the startup command
you concatenate the “D” and “probe” from the property file name and then
tack on the name of the property that you are specifying,
“active.products”:

-Dprobe.active.products=AD,DeepDiagnostics

➤ To set the “registrar.url=http://host01.company.com:2006/registrar/” in
dispatcher.properties from the startup command you concatenate the “D”
and “dispatcher” from the property file name and then tack on the name of
the property that you are specifying, “registrar.url”:

-Ddispatcher.registrar.url=
http://host01.company.com:2006/registrar

357

E
Advanced .NET Probe Configuration

This appendix provides instructions for configuring the .NET Probe.

It contains the following sections:

➤ Automatically Discovering ASP.NET Applications

➤ Customizing the Instrumentation for ASP.NET Applications

➤ Restarting IIS

➤ Elements Used in the Probe_config.xml File

➤ Disabling Logging

➤ Overriding the Default Probe Host Machine Name

Automatically Discovering ASP.NET Applications

The .NET Probe installer attempts to detect the ASP.NET applications on the
machine where the Probe is installed and configures the Probe to capture
basic ASP/ADO/MSMQ workload for each of the ASP.NET applications
detected.

The .NET Probe installer discovers applications by inspecting the IIS
configuration and looking for virtual directory entries that might refer to
ASP.NET applications. In some instances, the ASP.NET applications may
have been installed in a manner that prevents them from being detected.
One reason that an ASP.NET application will be missed is when an ASP.NET
application has been installed as web directories instead of virtual
directories.

Part IV • Appendixes

358

After the .NET Probe has been installed, you can force the Probe to rescan
the IIS configuration if you have fixed ASP.NET application deployments or
installed additional ASP.NET applications. To force the Probe to rescan the
IIS configuration and update your probe_config.xml file use the command
Start > Mercury Diagnostics .NET Probe > Rescan ASP.NET Applications.

For each ASP.NET application that is automatically detected, the installer
creates an appdomain reference in the probe_config.xml file located in the
<probe_install_dir>/etc directory. Each of the appdomain references in the
probe_config.xml file contains reference to a points file. The referenced
points file is the application-specific points file that the installer created for
each detected application. The points file controls the workload that the
Probe will capture for each application. You can modify the points file to
capture application specific custom business logic.

Customizing the Instrumentation for ASP.NET Applications

When the .NET Probe is installed, the ASP.NET.points file is created with the
standard instrumentation that is to be applied to all ASP.NET processing on
the monitored server. You may create custom instrumentation files to
capture the business logic that has been implemented through application
specific classes.

To let the .NET Probe know that you want to apply the custom
instrumentation to an application you must update the probe_config.xml
file so that the customized points file can be associated with the application.

To associate a customized points file with an application:

 1 Create a points file with the instrumentation for the application specific
classes. To create a points file copy an existing points file in the
<probe_install_dir>/etc folder.

Note: If the application was auto detected, a points file will already exist for
the application.

359

359

 2 Customize the points file so that the Probe will capture custom business
logic for your applications.

The following example illustrates how to modify the points file so that the
Probe will capture IBuySpy custom code:

 3 Add an <appdomain name> tag for the application and its points file to the
probe_config.xml file which is located in the <probe_install_dir>/etc
directory.

[IBuySpy Callee]
class = !IBuySpy.*
method = !.*
signature =
scope =
ignoreScope =
layer = Custom.IBuySpy

<appdomain name="your app name">
<points file="your app.points"/>

</appdomain>

Part IV • Appendixes

360

The following example illustrates this step. A custom points file has been
created for the MSPetsShop application. The file has been named
MSPetShop.points. The <appdomain name> tag for the application and the
points file has been added to the probe_config.xml file.

Restarting IIS

After you have modified the instrumentation and configuration for the
Probe you must restart IIS. To restart IIS from the command line or from the
Start > Run dialog box, enter iisreset and hit return. This command will
restart the web publishing service but will not immediately start the Probe.

Your applications will be instrumented and the Probe will connect to the
Commander that you specified the next time that the application is run,
that is when a page is requested.

You can verify that the Probe is connected by opening a browser and
browsing to http://<CommanderHost>:<CommanderPort>/registrar. Click
on the 'View / Edit Registered Components' link and look for your
application listed in the Name column.

<?xml version="1.0" encoding="utf-8"?>
<probeconfig>

<id probeid="" lanid=""/>
<webserverportrange start="" end=""/>
<registrar url="http://localhost:2006/registrar"/>
<instrumentation>

<logging level="off" threadids="no"/>
</instrumentation>
<process name="ASP.NET">

<logging level="info"/>
<points file="ASP.NET.points"/>
<appdomain name="MSPetShop">

<points file="MSPetShop.points"/>
</appdomain>

</process>
</probeconfig>

361

361

Note: ASP.NET is designed to restart applications under various
circumstances including when it has detected that applications have been
redeployed or when applications are exceeding the configured resource
thresholds.

When ASP.NET restarts an application that is being monitored by a .NET
Probe, the probe is deactivated and a new probe is started. While this is
happening, there may be a period of overlap where there are multiple Probes
simultaneously registered with the Commander and connected to the
Mediator. LoadRunner may report errors during the application restart
sequence.

Elements Used in the Probe_config.xml File

The following table describes the elements that are used in the
probe_config.xml file:

<id> element

Attributes Valid Values Default Description

probeid Letters/
digits/
underscore/
dash/
period

$(AppDomain)
.NET

Names the Probe used by
LoadRunner and System
Health

lanid DefaultLAN Defines the logical LAN
for this probe (used by
Commander and SH)

Part IV • Appendixes

362

<modes> element

<registrar> element

<mediator> element

Attributes Valid Values Default Description

am true
false

false Probe in AM mode

ad true
false

true Probe in AD mode

Attributes Valid Values Default Description

URL Registrar URL.
http://
<host>:
<port>/
registrar

none URL to connect to
registrar

delay number 1000 Number of milliseconds
to wait before registering

keepalive number 15000 Number of milliseconds
between keepalives

proxy URL of proxy none Registrar connection
proxy.

registered_host
name

string none Name of host to register
as (external name for
firewall traversing)

Attributes Valid Values Default Description

host host name none Name of mediator

port number 2612 Mediator port

block true/false false Block until mediator
connection established

363

363

<webserver> element

<bufferpool> element

<lwmd> element

Attributes Valid Values Default Description

start number 35000 Starting port for
webserver

end number 35100 Ending port for
webserver

Attributes Valid Values Default Description

size number 65536 Size of each buffer

buffers number 512 Number of buffers in
pool

sleep number 1000 Number of milliseconds
between flush checks

expires number 1000 Number of milliseconds
before buffer expires

Attributes Valid Values Default Description

enabled true
false

false Enables lwmd capturing

sample string 1m Sample interval
(h-hour/m-minute/
s-second)

autobaseline string 1h Auto baseline interval

growth number 15 Number of collections to
growth track

size number 15 Number of collections to
size track

Part IV • Appendixes

364

<instrumentation><logging> elementl

<logging> elementl

<points> element

include string none include

exclude string none exclude

Attributes Valid Values Default Description

level1 off
info
severe
warning
debug

off Sets the logging level for
instrumentation

threadids true
false

false Include thread ids in log

Attributes Valid Values Default Description

level off
info
severe
warning
debug

off Sets the logging level for
capture

Attributes Valid Values Default Description

file string none Name of instrumentation
points file

Attributes Valid Values Default Description

365

365

<sample> element

<trim><depth> element

<trim><latency> element

Attributes Valid Values Default Description

method percent
count

percent Sets the sampling
method

rate number 0 Sets the sampling rate for
percent type

Attributes Valid Values Default Description

enabled true
false

false Enables depth trimming

depth number 10 Sets the depth for depth
trimming

Attributes Valid Values Default Description

enabled true
false

false Enables latency trimming

throttle true
false

false Enables latency trimming
throttling

min number 50 Minimum latency
threshold

max number 100 Maximum latency
threshold

increment number 10 Threshold increment

increment
threshold

number 90

decrement
threshold

number 40

Part IV • Appendixes

366

<appdomain> element

<appdomain<logging> element

<appdomain><points> element

<appdomain><webserver> element

<appdomain><modes> element

<appdomain><registrar> element

<appdomain><mediator> element

<appdomain><sample> element

<appdomain><trim> element

<process> element

Attributes Valid Values Default Description

name string none Name of the .NET
AppDomain setting
apply to

Attributes Valid Values Default Description

name string none Name of the process
settings apply

367

367

<process><appdomain> element

<process><logging> element

<process><points> element

<process><webserver> element

<process><modes> element

<process><registrar> element

<process><mediator> element

<process><sample> element

<process><trim> element

<probeconfig><instrumentation> element

<probeconfig><id> element

<probeconfig><process> element

<probeconfig><logging> element

<probeconfig><webserver> element

<probeconfig><modes> element

<probeconfig><registrar> element

<probeconfig><mediator> element

<probeconfig><sample> element

<probeconfig><trim> element

Part IV • Appendixes

368

Disabling Logging

You can disable probe application logging by changing the logging tag of
the ASP.NET process section of the probe_config.xml file as shown in the
following example:

You can disable probe instrumentation logging by changing the logging tag
of the instrumentation section as shown in the following example:

Overriding the Default Probe Host Machine Name

In situations where a firewall or NAT is in place or where your Probe host
machine has been configured as a multi-homed device, it may not be
possible for the Commander to communicate with the Probe. The
registered_hostname property allows you to override the default host
machine name that the Probe uses to register itself with the Commander.

To override the default host machine name for a Probe, set the
registered_hostname attribute located in the .NET Probe <registrar> tag of
the probe_config.xml file to an alternate machine name or IP Address that
will let the Commander communicate with the Probe (for example,
<registrar url=”http://foo:2006/registrar” registered_hostname=”bar”/>).

<process name="ASP.NET">
<logging level="off"/>

</process>

<instrumentation>
<logging level="off" threadids="no"/>

</instrumentation>

369

F
Configuring Diagnostics Components to
Work with a Firewall

This appendix describes the configuration steps that you must perform to
enable Mercury Diagnostics for J2EE & .NET to work correctly in an
environment where a firewall is present. This additional configuration is
required when the firewall separates the Probes and Mediator from the
Commander and the components of LoadRunner 8.0

Note: The following configuration instructions should only be used by
experienced users with in-depth knowledge of Diagnostics for J2EE & .NET.
Please use caution when modifying any configuration settings for the
Diagnostics components.

The appendix includes the following sections:

➤ Overview of Configuring Diagnostics for a Firewall

➤ Collating Mediator Offline Files over a Firewall

➤ Installing and Configuring the Mercury MI Listener

➤ Configuring the Mediator to Work with a Firewall

➤ Configuring a Diagnostics LoadRunner Scenario for a Firewall

Part IV • Appendixes

370

Overview of Configuring Diagnostics for a Firewall

The diagram below shows a typical Diagnostics topology where a firewall
separates the Mediator and the Probe from the other Diagnostics and
LoadRunner components.

You must configure your firewall to allow the Diagnostics components to
communicate with each other.

To configure your firewall to enable the communications between the
Diagnostics components open the ports that will:

➤ Allow HTTP requests from the Mediator to the Commander on port 2006.

➤ Allow HTTP requests from the Probe and the Mediator to the Commander
on port 2006.

➤ Allow TCP requests from the Probe to the Mediator on port 2612.

➤ Allow HTTP requests from the Commander to the Mediator on port 8081.

➤ Allow HTTP requests from the Commander to the Probes on port 35000-
35100. The actual ports on which you must allow communications will
depend upon the port numbers that you enabled when you configured the

371

371

Probe and the number of instrumented VMs. See “Configuring the Probes
for Multiple Application Server Instances” on page 183 for information on
setting the Probe port range.

Note: In addition to the above topology, if you are using the LoadRunner
Analysis Tool to view offline J2EE results, see “Collating Mediator Offline
Files over a Firewall” to properly configure the LoadRunner Controller and
the Mediators for offline file retrieval.

Collating Mediator Offline Files over a Firewall

During a LoadRunner scenario, the Diagnostics Mediator will generate an
offline analysis file on the Mediator host machine. LoadRunner retrieves
this file when it collates the results of a load test.

If your system has a firewall in between the LoadRunner Controller and the
Mediator involved in a load test, you must configure the Controller and
Mediator to use the MI Listener utility to enable the transfer of the offline
analysis file. The MI Listener utility comes with LoadRunner and should be
installed on a machine inside your firewall as shown in the following
diagram.

To configure the Controller to access Mediators that are behind a firewall:

➤ Install and configure the Mercury MI Listener

➤ Configure the Mediator to work with a firewall

➤ Configure the LoadRunner scenario

Part IV • Appendixes

372

Installing and Configuring the Mercury MI Listener

The Mercury MI Listener component is the same LoadRunner component
that is used to serve Load Generators that are outside of a firewall. Refer to
the Mercury LoadRunner Controller User's Guide for more information about
how to install MI Listener and configure your firewall ports.

Configuring the Mediator to Work with a Firewall

Once you have installed and configured the Mediator as described in
Chapter 5, “Installing the Mercury Diagnostics Mediator,” you must
complete additional configuration steps so that the Mediator will be
permitted to work across a firewall.

Configuring the Mediator for a Firewall on a Windows Machine

 1 Modify the <mediator_install_dir>\launch_service\merc_asl\process.asl
file. Add the following lines:

nanny.exe=
nanny=
javaw.exe=
javaw=

 2 Modify the
<mediator_install_dir>\launch_service\dat\nanny\mediator.nanny file.

➤ Locate the start_nt line:

start_nt="d:\Program Files\Mercury Interactive\Diagnostics\Mediator\jre\bin\
javaw.exe"-server -Xmx256m -Xms256m.....

➤ Remove the quotes that surround the java.exe path and add the caret (^)
after javaw.exe as shown below:

start_nt=d:\Program Files\Mercury Interactive\Diagnostics\Mediator\jre\bin\
javaw.exe^-server -Xmx256m -Xms256m

373

373

 3 Modify the <mediator_install_dir>/etc/mediator.properties file.

➤ Uncomment the dispatcher.offline.locationprefix property.

➤ Set the value of the property to “C:/Documents and Settings/Default
User/Local Settings/Temp/MOfflineFiles” as shown in the following
example. Make sure that you use the correct drive letter and path for
your installation.

dispatcher.offline.locationprefix= C:/Documents and Settings/Default
User/Local Settings/Temp/MOfflineFiles

 4 Launch the Agent Configuration by running
<mediator_install_dir>/bin/AgentsConfig.exe.

The Agent Configuration process opens the following dialog box opens:

 5 Select Enable Firewall Agent. The Settings button becomes enabled.

 6 Click Settings. The Agent Configuration settings dialog box opens.

Part IV • Appendixes

374

 7 In Value column of the MI Listener Name property, enter the host name or
IP address of the machine where the MI Listener was installed.

375

375

 8 For the Local Machine Key property, enter the machine name of the
Mediator host.

Use the System Health Monitor to determine the machine name for the
Mediator host. For more information on the System Health Monitor, see
Appendix A, “Using the System Health Monitor.”

Click OK to close the setting dialog box.

 9 Click OK again to close the Agent Configuration dialog box.

Part IV • Appendixes

376

 10 The Restart Agent dialog box opens. Click OK to restart the Agent.

 11 Restart the Mercury Diagnostics Mediator service.

Configuring the Mediator for a Firewall on a Solaris Machine

See “Installing the Mediator on a UNIX Machine” on page 60 for
information on installing the Mediator on Solaris.

 1 Modify the <mediator_install_dir>\launch_service\merc_asl\process.asl file
by adding the following lines:

nanny.exe=
nanny=
java=

 2 Modify the
<mediator_install_dir>\launch_service\dat\nanny\mediator.nanny file:

➤ Locate the start_nt line:

start_solv4= "/opt/Diagnostics/Mediator/jre/bin/java" -server -Xmx256m -
Xms256m.....

➤ Remove the quotes that surround the java path and add the caret (^)
after java as shown below:

start_solv4= /opt/Diagnostics/Mediator/jre/bin/java^-server -Xmx256m -
Xms256m.....

 3 Modify the <mediator_install_dir>/dat/br_lnch_server.cfg file.

Change the value of the FireWallServiceActive property to 1.

377

377

 4 Modify the <mediator_install_dir>/etc/mediator.properties file.

➤ Uncomment the dispatcher.offline.locationprefix property.

➤ Set the value of the property file to “/tmp/MOfflineFiles” as shown in the
following example. The letter for your drive may be different but the
path to the directory must be the same.

dispatcher.offline.locationprefix= /tmp/MOfflineFiles

 5 Run the following commands to launch the Agent Configuration utility:

export LD_LIBRARY_PATH=.

export M_LROOT=/opt/Diagnostics/Mediator

cd $M_LROOT

./agent_config

 6 In the Agent Configuration Utility window, press 2, Change a Setting.

Part IV • Appendixes

378

 7 A list of settings appears.

Press 1 to select MI Listener Name, and enter the machine name or IP
address of the MI Listener host.

 8 Press 2 to select Local Machine Key, and enter the machine name of the
Mediator host as displayed in the Host: field on the System Health Monitor.

Use the System Health Monitor to determine the machine name for the
Mediator host. For more information on the System Health Monitor, see
Appendix A, “Using the System Health Monitor.”

379

379

 9 Press 3, Save changes and exit, to complete the updates.

 10 Restart the Mediator with the following commands:

./daemon_setup -remove

./daemon_setup -install

Configuring a Diagnostics LoadRunner Scenario
for a Firewall

After the MI Listener has been installed and your Mediator machines have
been configured, you must update the Diagnostics Configuration for your
LoadRunner scenario so that LoadRunner will know to use the MI Listener
when it is transferring the offline data from a Mediator that is outside of a
firewall.

See “Configuring LoadRunner Scenarios to use Diagnostics for J2EE & .NET”
on page 196 for information about configuring LoadRunner to use the
Diagnostics components.

In the J2EE/.NET Diagnostics Configuration dialog box shown below:

 1 Select There is a firewall between the mediator and the Controller.

Part IV • Appendixes

380

 2 Specify the machine name of the MI Listener host in the MI listener server
text box.

381

G
Configuring Diagnostics Components for
HTTPS

This appendix describes the configuration steps that you must perform to
enable HTTPS communications between the Diagnostics for J2EE & .NET
components.

Note: The following configuration instructions are intended for experienced
users with in-depth knowledge of Diagnostics for J2EE & .NET. Please use
caution when modifying any configuration settings for the Diagnostics
components.

The appendix includes the following sections:

➤ Configuring the Commander to Receive HTTPS

➤ Configuring a Mediator to Communicate via HTTPS with the Commander

➤ Configuring a J2EE Probe to Communicate via HTTPS with the Commander

➤ Configuring the Mediator to Receive HTTPS

➤ Configuring the Commander to Communicate via HTTPS with the Mediator

Part IV • Appendixes

382

Configuring the Commander to Receive HTTPS

To configure the Commander for incoming HTTPS connections:

 1 Generate the keystore in the Commander etc directory using the following,
replacing the strings between the “< > with the value requested:

Note: The value specified for the <commander_hostname> must be the
machine name for the commander host and not the IP address.

 2 Generate the Commander public.key file using the following, replacing the
strings between the “< >” with the value requested:

Note: The public.key file must be imported into the host machines of those
Diagnostics Components that will be accessing the Commander. The
instructions for importing the public.key for each Diagnostics component
are provided below

<commander_install_dir>/jre/bin/keytool -keystore
<commander_install_dir>/etc/keystore -storepass <password> -alias
SERVER -genkey -keyalg RSA -keypass <password> -dname
"CN=<commander_hostname>, OU=Diagnostics, O=Mercury, L=Mountain
View, S=CA, C=USA" -validity 3650

<commander_install_dir>/jre/bin/keytool -keystore
<commander_install_dir>/etc/keystore -storepass <password> -alias SERVER -
export -rfc -file <commander_install_dir>/etc/public.key

383

383

 3 Generate an OBF password string using the following, replacing the strings
between the “< >” with the value requested:

 4 Enable the Commander’s SSL listener in
<commander_install_dir>/etc/jetty.xml by uncommenting the SSL Listener
section.

By default the SSL Listener section in the jetty.xml file is commented out. To
uncomment the section, remove the “<!--SSL Listener” line from the
beginning of the section and the “END SSL LISTENER -->” line from the end
of the section.

<commander_install_dir>/jre/bin/java -cp
<commander_install_dir>/lib/ThirdPartyLibs.jar org.mortbay.util.Password
<password>

<!-- SSL LISTENER

 <Call name="addListener">
 <Arg>
 <New class="org.mortbay.http.SunJsseListener">
 <Set name="Port">8443</Set>
 <Set name="PoolName">main</Set>
 <Set name="Keystore"><SystemProperty name="jetty.home" default="."/>/etc/keystore</Set>
 <Set name="Password">__STORE_PASSWORD__</Set>
 <Set name="KeyPassword">__KEY_PASSWORD__</Set>
 <Set name="NonPersistentUserAgent">MSIE 5</Set>
 <Set name="MinThreads">10</Set>
 <Set name="MaxThreads">100</Set>
 <Set name="MaxIdleTimeMs">30000</Set>
 <Set name="LowResourcePersistTimeMs">5000</Set>
 </New>
 </Arg>
 </Call>

 END SSL LISTENER -->

Part IV • Appendixes

384

 5 Replace the text "__STORE_PASSWORD__" and "__KEY_PASSORD__" in
<commander_install_dir>/etc/jetty.xml with the OBF password string that
you generated in step 3.

For example, if the OBF password string that you generated was
“OBF:a2cx9yvqwe9zv”, the uncommnented SSL Listener section of the
jetty.xml file would look as shown below.

 6 You may need to enable the normal, non-SSL HTTP listener for the
Commander if your deployment involves the following situations:

➤ The Commander is being used with LoadRunner. LoadRunner cannot
connect to Commander using HTTPS.

➤ A Probe cannot connect to the commander using SSL. If a Probe is
running in a VM less than 1.4 or running without JSSE, the Commander
will need to have the non-SSL HTTP listener enabled.

Note: You are responsible for securing network communications so that
access to the non-SSL port is restricted to only the authorized systems.

Enable the Commanders non-SSL listener in <commander_install_dir>/etc/
jetty.xml by uncommenting the non-SSL Listener section.

By default the non-SSL Listener section in the jetty.xml file is commented
out.

 <Call name="addListener">
 <Arg>
 <New class="org.mortbay.http.SunJsseListener">
 <Set name="Port">8443</Set>
 <Set name="PoolName">main</Set>
 <Set name="Keystore"><SystemProperty name="jetty.home" default="."/>/etc/keystore</Set>
 <Set name="Password">OBF:a2cx9yvqwe9zv</Set>
 <Set name="KeyPassword">OBF:a2cx9yvqwe9zv</Set>
 <Set name="NonPersistentUserAgent">MSIE 5</Set>
 <Set name="MinThreads">10</Set>
 <Set name="MaxThreads">100</Set>
 <Set name="MaxIdleTimeMs">30000</Set>
 <Set name="LowResourcePersistTimeMs">5000</Set>
 </New>
 </Arg>
 </Call>

385

385

Note: If the non-SSL section is missing from the jetty.xml file you should
add the following immediately after the SSL section.

To uncomment the section delete the line "<!-- NON-SSL LISTENERS" from
the beginning of the section and the line "END NON-SSL LISTENER-->"
from the end of the section.

The following shows the non-SSL section of the jetty.xml file with the
comment lines still in place.

<!-- NON-SSL LISTENER

 <Call name="addListener">
 <Arg>
 <New class="org.mortbay.http.SocketListener">
 <Set name="Port">2006</Set>
 <Set name="MinThreads">10</Set>
 <Set name="MaxThreads">100</Set>
 <Set name="MaxIdleTimeMs">30000</Set>
 <Set name="LowResourcePersistTimeMs">5000</Set>
 <Set name="ConfidentialPort">8443</Set>
 <Set name="IntegralPort">8443</Set>
 </New>
 </Arg>
 </Call>

 END NON-SSL LISTENER -->

Part IV • Appendixes

386

The following shows the jetty.xml file with the comment lines
removed.so that the non-SSL listener will be activated.

 7 To verify that you have updated the Commander configuration correctly:

➤ Start the Commander.

➤ Open your Web browser to http://localhost:2006 and verify that the page
successfully loads.

➤ Open your Web browser to https://localhost:8443 and verify that the
page loads.

The other Diagnostics components should now be able to connect to
Commander via HTTP or HTTPS.

Configuring a Mediator to Communicate via HTTPS with
the Commander

To configure the Mediator to enable HTTPS communications with the
Commander:

 1 Import the Commander's public.key into the Mediator JRE cacerts keystore.
The instructions for generating the Commander’s public.key can be found
in step 2 in “Configuring the Commander to Receive HTTPS” on page 382.

< <Call name="addListener">
 <Arg>
 <New class="org.mortbay.http.SocketListener">
 <Set name="Port">2006</Set>
 <Set name="MinThreads">10</Set>
 <Set name="MaxThreads">100</Set>
 <Set name="MaxIdleTimeMs">30000</Set>
 <Set name="LowResourcePersistTimeMs">5000</Set>
 <Set name="ConfidentialPort">8443</Set>
 <Set name="IntegralPort">8443</Set>
 </New>
 </Arg>
 </Call>

387

387

➤ Execute the following command on the Mediator host machine.

➤ You will be prompted to enter keystore password. Enter the value: changeit.

➤ You will be asked if the certificate should be trusted:

“Trust this certificate? [no]:” Enter the value: yes.

 2 Set the following Mediator properties using the Mediator Configuration
Web page located using the following URL:

http://<mediator_host>:8081/configuration/Component+Communications

Note: These properties are stored in the property file,
<mediator_install_dir>/etc/mediator.properties. You should modify the
properties using the configuration Web pages in order to make sure that
your changes are made correctly.

<mediator_install_dir>/jre/bin/keytool -import -file
<commander_install_dir>/etc/public.key -keystore <mediator
_install_dir>/jre/lib/security/cacerts -alias SERVER

Configuration Page
Label

Property Value Property

Commander URL
https://
<commander_hostname>:8443

commander.url

Diagnostics Server/
Commander Proxy Host

<commander_hostname> dispatcher.server.delivery.url_host

Diagnostics Server/
Commander Proxy Port

8443 dispatcher.server.delivery.url_port

Diagnostics Server/
Commander Proxy
Protocol

https dispatcher.server.delivery.url_protocol

Part IV • Appendixes

388

Important! Make sure that the <commander_hostname> specified in the
property settings above EXACTLY matches the name specified in the "CN="
value when you created the Commander keystore in step 1 in “Configuring
the Commander to Receive HTTPS” on page 382. Also, ensure that both
values are machine names and not IP addresses.

If these values do not match or if you used an IP address instead of a
machine name, you will see error messages in the Mediator log file:

2005-04-14 22:36:30,727: WARNING event_listener EventListener.register[522]
: error registering with registrar at
RemoteHttpComponent@{https://localhost:8443/registrar}:
com.mercury.diagnostics.common.net.registrar.RegistrarException: error registering:
java.io.IOException: HTTPS hostname wrong: should be <localhost>

 3 Start the Mediator. For instructions on starting the Mediator, See “Starting
and Stopping Mediators” on page 68.

 4 Verify that the Mediator was properly configured.

Check that the Mediator icon in the System Health Monitor is colored
green. If icon for the Mediator is not displayed or if the color of the icon
indicates that there might be trouble, review the log for the Mediator for
possible problems.

For instructions on accessing the System Health Monitor see “Accessing the
System Health Monitor” on page 300.

389

389

Configuring a J2EE Probe to Communicate via HTTPS with
the Commander

To configure the J2EE Probe to enable HTTPS communications with the
Commander:

Note: For a J2EE Probe to be able to communicate using HTTPS, the VM
being instrumented with the J2EE Probe must be at least a 1.4 VM or have
JSSE if the VM version is less than 1.4.

 1 Import the Commander's public.key into the application servers cacerts
keystore. The Instructions for generating the Commanders public.key can be
found in step 2 in “Configuring the Commander to Receive HTTPS” on
page 382.

➤ Execute the following command on the J2EE Probe host machine.

➤ You will be prompted to enter keystore password. Enter the value
“changeit”

➤ You will be asked if the certificate should be trusted:

“Trust this certificate? [no]:” Enter the value “yes”.

 2 Set the J2EE Probe’s properties so that the Probe can communicate with the
HTTPS port on the Commander.

In the <probe_install_dir>/etc/dispatcher.properties file set the property,
registrar.url to "https://<commander_hostname>:8443".

<applications_JRE_dir>/bin/keytool -import -file
<commander_install_dir>/etc/public.key -keystore
<applications_JRE_dir>/lib/security/cacerts -alias SERVER

Part IV • Appendixes

390

Important!<commander_hostname> should EXACTLY match the name
specified in the "CN=" value used when creating the Commander keystore in
Configure Commander for HTTPS - step 2 above. Also, ensure that both
values are machine names and not IP addresses.

If these values do not match or if you used an IP address instead of a
machine name, you will see error messages in the Mediator log file:

2005-04-14 23:12:09,513 WARN com.mercury.opal.capture.dispatcher [shared
InfrequentEventScheduler] registrar.register:
RemoteHttpComponent@{https://localhost:8443/registrar}com.mercury.diagnost
ics.common.net.registrar.RegistrarException: error registering:
java.io.IOException: HTTPS hostname wrong: should be <localhost>

 3 Start the instrumented application. This will also start the J2EE Probe.

 4 Verify that the J2EE Probe was properly configured.

Check that the icon for the J2EE Probe in the System Health Monitor is
colored green. If it is not displayed or if problems are shown, review the log
for the Probe to investigate possible problems.

For instructions on accessing the System Health Monitor see “Accessing the
System Health Monitor” on page 300.

391

391

Configuring the Mediator to Receive HTTPS

To configure the Mediator to receive HTTPS communications:

 1 Generate the keystore in the <mediator_install_dir>/etc directory using the
following, replacing the strings between the “< >” with the value requested:

Note: The value specified for the <mediator_hostname> must be the
machine name for the mediator host and not the IP address.

 2 Generate the Mediator public.key file using the following, replacing the
strings between the “< >” with the value requested:

Note: The public.key file must be imported into the host machines of those
Diagnostics Components that will be accessing the Mediator. The
instructions for importing the public.key for each Diagnostics component
are provided below

<mediator_install_dir>/jre/bin/keytool -keystore
<mediator_install_dir>/etc/keystore
-storepass <password> -alias MEDIATOR -genkey -keyalg RSA -keypass
<password>
-dname "CN=<mediator_hostname>, OU=Diagnostics, O=Mercury, L=Moun-
tain View, S=CA, C=USA" -validity 3650

<mediator_install_dir>/jre/bin/keytool -keystore
<mediator_install_dir>/etc/keystore
-storepass <password> -alias MEDIATOR -export -rfc -file
<mediator_install_dir>/etc/
public.key

Part IV • Appendixes

392

 3 Generate an OBF password string using the following, replacing the strings
between the “< >” with the value requested:

 4 Enable the Mediator’s SSL listener in <mediator_install_dir>/etc/jetty.xml by
uncommenting the SSL Listener section.

By default the SSL Listener section in the jetty.xml file is commented out. To
uncomment the section, remove the “<!--SSL LISTENER “ from the
beginning of the section and the “END SSL LISTENER-->” from the end of
the section.

<mediator_install_dir>/jre/bin/java -cp <mediator_install_dir>/lib/ThirdPartyL-
ibs.jar org.mortbay.util.Password <password>

 <!-- SSL LISTENER
 <Call name="addListener">
 <Arg>
 <New class="org.mortbay.http.SunJsseListener">
 <Set name="Port">8445</Set>
 <Set name="PoolName">main</Set>
 <Set name="Keystore"><SystemProperty name="jetty.home" default="."/>/etc/keystore</Set>
 <Set name="Password">__STORE_PASSWORD__</Set>
 <Set name="KeyPassword">__KEY_PASSWORD__</Set>
 <Set name="NonPersistentUserAgent">MSIE 5</Set>
 <Set name="MinThreads">1</Set>
 <Set name="MaxThreads">5</Set>
 <Set name="MaxIdleTimeMs">30000</Set>
 <Set name="LowResourcePersistTimeMs">5000</Set>
 </New>
 </Arg>
 </Call>
 END SSL LISTENER -->

393

393

 5 Replace the text "__STORE_PASSWORD__" and "__KEY_PASSORD__" in
<mediator_install_dir>/etc/jetty.xml with the OBF password string that you
generated in step 3.

For example, if the OBF password string that you generated was
“OBF:a2cx9yvqwe9zv”, the uncommnented SSL Listener section of the
jetty.xml file would look as shown below.

 6 To verify that you have updated the Mediator configured correctly:

➤ Start the Mediator.

➤ Open your Web browser to http://localhost:8443 and verify that the page
successfully loads.

➤ Verify that the hostname with which the Mediator registers is EXACTLY
the same as the mediator hostname specified when creating the keystore
in step 1 above.

If the hostname does not match, then the Commander will have
problems starting a LoadRunner run.

 <Call name="addListener">
 <Arg>
 <New class="org.mortbay.http.SunJsseListener">
 <Set name="Port">8445</Set>
 <Set name="PoolName">main</Set>
 <Set name="Keystore"><SystemProperty name="jetty.home" default="."/>/etc/keystore</Set>
 <Set name="Password">OBF:a2cx9yvqwe9zv</Set>
 <Set name="KeyPassword">OBF:a2cx9yvqwe9zv</Set>
 <Set name="NonPersistentUserAgent">MSIE 5</Set>
 <Set name="MinThreads">1</Set>
 <Set name="MaxThreads">5</Set>
 <Set name="MaxIdleTimeMs">30000</Set>
 <Set name="LowResourcePersistTimeMs">5000</Set>
 </New>
 </Arg>
 </Call>

Part IV • Appendixes

394

Configuring the Commander to Communicate via HTTPS
with the Mediator

To configure the Commander to enable HTTPS communications with the
Mediator:

 1 Import the Mediator's public.key into the Commanders JRE cacerts keystore.
The Instructions for generating the Mediator’s public.key can be found in
step 2 in “Configuring the Mediator to Receive HTTPS” on page 391.

➤ Execute the following command on the Commander’s host machine.

➤ You will be prompted to enter keystore password. Enter the value
“changeit”

➤ You will be asked if the certificate should be trusted:

“Trust this certificate? [no]:” Enter the value “yes”.

 2 Start the Mediator.

 3 Verify that the Commander was properly configured.

Check that the icon for the Mediator in the System Health Monitor is
colored green. If it is not displayed or if problems are shown, review the log
for the Mediator to investigate possible problems.

For instructions on accessing the System Health Monitor see “Accessing the
System Health Monitor” on page 300.

<commander_install_dir>/jre/bin/keytool -import -file
<mediator_install_dir>/etc/public.key -keystore
<commander_install_dir>/jre/lib/security/cacerts -alias MEDIATOR

395

H
Configuring Diagnostics Components for
HTTP/HTTPS Proxy

This appendix describes the configuration steps that you must perform to
enable HTTP/HTTPS proxy communications between the Diagnostics for
J2EE & .NET components.

Note: The following configuration instructions are intended for experienced
users with in-depth knowledge of Diagnostics for J2EE & .NET. Please use
caution when modifying any configuration settings for the Diagnostics
components.

The appendix includes the following sections:

➤ Configuring the Mediator to Communicate Through an HTTP/HTTPS Proxy

➤ Configuring the J2EE Probe to Communicate Through an HTTP/HTTPS
Proxy

➤ Configuring a .NET Probe to Communicate Through an HTTP/HTTPS Proxy

➤ Proxy from Commander To Mediator/Probes in LoadRunner Environment

➤ Proxy Server Configuration for HTTPS

Part IV • Appendixes

396

Configuring the Mediator to Communicate Through an
HTTP/HTTPS Proxy

The following section describes how to configure the Mediator to
communicate with the Commander through and HTTP/HTTPS proxy.

To configure the Mediator for HTTP/HTTPS Proxy Communications:

 1 Set the following Mediator properties in
<mediator_install_dir>/etc/mediator.properties:

➤ Set "proxy.host" to the hostname of the proxy server.

➤ Set "proxy.port" to the port of the proxy server.

➤ Set "proxy.protocol" to the protocol to use for proxy server (http or
https).

 2 If the proxy server’s protocol is HTTPS, import the proxy server's certificate
into the Mediator's JRE cacerts keystore.

➤ Enter keystore password: changeit

➤ Trust this certificate? [no]: yes

 3 Restart the Mediator. For instructions see “Starting and Stopping Mediators”
on page 68.

Configuring the J2EE Probe to Communicate Through
an HTTP/HTTPS Proxy

The following section describes how to configure the Java Probe to
communicate with Commander through and HTTP/HTTPS proxy:

To configure the J2EE Probe for HTTP/HTTPS Proxy Communications:

 1 Set the following J2EE Probe properties in
<J2ee_install_dir>/etc/dispatcher.properties:

<mediator_install_dir>/jre/bin/keytool -keystore -import -file <ProxyCer-
tificateFile>
-keystore <mediator_install_dir>/jre/lib/security/cacerts -alias PROXY

397

397

➤ Set "proxy.host" to the hostname of the proxy server.

➤ Set "proxy.port" to the port of the proxy server.

➤ Set "proxy.protocol" to the protocol to use for proxy server (http or
https).

 2 If the proxy server’s protocol is HTTPS, import the proxy server's certificate
into the cacerts keystore of the JRE used by the instrumented application.

➤ Enter keystore password: changeit

➤ Trust this certificate? [no]: yes

 3 Restart the instrumented application VM.

Configuring a .NET Probe to Communicate Through
an HTTP/HTTPS Proxy

To configure the .NET Probe for HTTP/HTTPS Proxy Communications:

 1 Set the following .NET Probe property in
<.NET_probe_install_dir>/etc/probe_config.xml to point to the Commander
host machine:

 2 Restart the instrumented application process.

<ApplicationJRE>/bin/keytool -keystore -import -file <ProxyCertificate-
File> -keystore <ApplicationJRE>/jre/lib/security/cacerts -alias PROXY

<registrar url="http://<commander_host_name>:2006/registrar/"
proxy="http://proxy:8080" />

Part IV • Appendixes

398

Proxy from Commander To Mediator/Probes in LoadRunner
Environment

To configure the .NET Probe for HTTP/HTTPS Proxy Communications:

 1 Make sure the Mediator and Probe have been configured with a LAN ID that
permits the Commander to establish a proxy to them. For example, if the
Commander must communicate with Mediator1 and Probe1 through one
proxy and to Mediator2 and Probe2 through another proxy, make sure the
Mediator1 and Probe1 are configured with a different LAN ID than
Mediator2 and Probe2.

➤ The .NET Probe LAN ID can be set in the
<ProbeHome>/etc/probe_config.xml with the "lanid" attribute.

➤ The Java Probe LAN ID can be set in
<ProbeHome>/etc/dispatcher.properties with the "probe.lanid" property.

➤ The Mediator LAN ID can be set in the
<MediatorHome>/etc/mediator.properties with the "lanid" property.

 2 Point your browser to
http://<commander_host>t:2006/registrar/add_proxy?action=display to add
a proxy for a specific LAN ID. Enter the "LAN ID" the proxy should be used
for, the Host Name of the proxy host, the Port of the proxy and the protocol
support of the proxy (http or https). Click Submit when finished. Repeat
this process for each LAN ID -> Proxy combination.

 3 If any proxy server entered in the previous step is HTTPS, import the proxy
server's certificate into the Mediator's JRE cacerts keystore.

➤ Enter keystore password: changeit

➤ Trust this certificate? [no]: yes

<mediator_install_dir>/jre/bin/keytool -keystore -import -file <ProxyCer-
tificateFile>
-keystore <mediator_install_dir>/jre/lib/security/cacerts -alias PROXY

399

399

Proxy Server Configuration for HTTPS

If you've configured any Diagnostics component to communicate with
other components using HTTPS and you are proxying, you will need to
import the public certificate of the remote component into your proxy
server.

To extract the public certificate for any component, run the following
command using the JRE for the component. For example, the following will
extract the public certificate for the Commander:

Note: Make sure that you have already setup the component for SSL. See
“Configuring Diagnostics Components for HTTPS” on page 381 for more
information.

Note: If you need to export the certificate in a certain formation,
instructions for how to do this can be found at:
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html.

<commander_install_dir>/jre/bin/keytool -keystore
<commander_install_dir>/etc/key
store -storepass <password> -alias SERVER -export -rfc -file <Commander
Home>/etc/public.key

Part IV • Appendixes

400

401

Symbols

.NET Probe, installing 117

.NET Probes
system requirements 18

A

add-in
installing 41

advanced Commander configuration 315
advanced Mediator assignment 333
advanced Mediator configuration 321
Apache Tomcat error 293
application server configuration 133
Automatic Method Trimming

controlling 352
depth 353
latency 352

B

before you install 13
breaking down J2EE/.NET transaction data

255

C

capture points file 341, 357
changing java executable (Windows) 104
ClassLoader class, recreating 294
Commander 5

configuring for multi-home 317
installing 27, 28
UNIX installation 34

Commander configuration
advanced 315

configuring application servers 133
generic procedure 181
JBoss 176, 179
multiple instances 183
Oracle9i 172
WebLogic 164
WebSphere 150

configuring Mediators (advanced) 321

D

data flow diagram 6
default Mediator assignment 332
depth trimming 353
Diagnostics Commander 5

installing 27
Diagnostics Distribution dialog box 198, 301
Diagnostics for J2EE

capture points file 341, 357
Diagnostics for J2EE/.NET

about 3
data flow 6
diagram of data flow 6
information 8
overview 3
processing data 7
setup window 29, 43, 52, 75, 119
troubleshooting 291
viewing data 205

Diagnostics for J2EE/.NET graphs
working with 205, 219

Diagnostics Mediator 5
installing 51

direct Assignment 333
direct buffer allocation limit 322
disable Probes 200

Index

Index

402

E

enable Probes 200
End of Logical Transaction 7

G

graph
J2EE Average Method Response Time

270, 280
J2EE Average Number of Exceptions

275, 285
J2EE Average Number of Timeouts

276, 286
J2EE Method Calls per Second 274,

284
J2EE Time Spent in Element 271, 281
J2EE Transaction Response Time

Server Side 269, 279
J2EE Transactions per Second 273,

283
graph types, Analysis

J2EE Diagnostics 251–276, ??–287

H

heap size 324

I

installing Commander 28
installing the .NET Probe 117
installing the J2EE Probe 73
installing the LoadRunner Add-in 41
installing the Mediator 51

J

J2EE Average Method Response Time
graph 270, 280

J2EE Average Number of Exceptions
graph 275, 285

J2EE Average Number of Timeouts
graph 276, 286

J2EE Diagnostics
graphs 251–287

J2EE Diagnostics graphs
call stack 263
chain of calls 263
class level 258
example 255
layer level 257
Measurements Tree window 264
method/query level 259
SQL logical name 268, 278
summary report 253
transaction level 256
viewing 255

J2EE Method Calls per Second
graph 274, 284

J2EE Probe
installing 73

J2EE Probe throttling
controlling 354

J2EE Probes
system requirements 18

J2EE Time Spent in Element
graph 271, 281

J2EE Transaction Response Time Server Side
graph 269, 279

J2EE Transactions per Second
graph 273, 283

J2EE/.NET Diagnostics Configuration dialog
box 199, 200, 301

java executable (Windows)
changing 104

JDK/JRE executable 89

L

latency trimming 352
layers, specifying 341, 357
LoadRunner Add-in

installing 41
Logical LAN ID 65

M

Mediator 5
configuring for multi-home 329
installing 51
troubleshooting 68

Index

403

403

tuning for POC 327
UNIX installation 60

Mediator assignment
advanced 333
default 332

Mediator configuration, advanced 321
Mediator configuration, large installations

321
Mediator garbage collection, tuning 326
Mediators (Windows)

starting and stopping 68
Multiple Assignment 334

O

overview 3

P

Probe
disable 200
enable 200

Probe event buffer size 322
Probes

incorrect installation 294
installing on z/OS 104
UNIX installation 91

processing J2EE/.NET data 7

R

requirements
.NET Probes 18
J2EE Probes 18

S

Show Load Using Scale 311
starting Mediators (Windows) 68
stopping Mediators (Windows) 68
Summary report

J2EE Diagnostics graphs 253
System Health Check

additional component information
307, 309

adjusting refresh rate 304
Commander properties 305

disabling automatic refresh 304
enabling automatic refresh 304
exporting snapshots 312
icons 303
importing snapshots 313
invoking 300
invoking from browser 300
legend 303
manual refresh 304
Mediator properties 306
Probe properties 306
refreshing display 304
system log information 310
using 299
viewing 302
viewing component properties 305
viewing troubleshooting information

309

T

thread execution 8
throttling

J2EE Probe 354
troubleshooting 291
troubleshooting Mediators 68
Troubleshooting Tips, viewing 309

U

Unique Probe Name 79
UNIX installation of Commander 34
UNIX installation of Mediator 60
UNIX installation of Probes 91

V

View Log History 310
View Troubleshooting Tips 309

W

Web Service support 289
Web Service transactions

writing VuGen scripts 290
Web Service transactions,breakdown 289
Web Services 289

Index

404

Weblogic 6.1 164
Weblogic 7 166
WebLogic 8.1 168

Z

z/OS
installing the Probe 104

	Mercury Diagnostics 3.5 for J2EE & .NET Supporting LoadRunner 8.0 Installation and User's Guide
	Table of Contents
	Introduction
	Mercury Diagnostics for J2EE & .NET Product Overview

	Installation and Configuration of Diagnostics for J2EE & .NET Components
	Preparing to Install Mercury Diagnostics for J2EE & .NET
	Recommended Deployment Configuration
	Host System Requirements for the Diagnostics Components
	Other Considerations Before Installing the Diagnostics Components
	Recommended Order of Installation
	Planning the Installation

	Installing the Mercury Diagnostics Commander
	Installing the Commander on a Windows Machine
	Installing the Commander on a UNIX Machine
	Verifying the Commander Installation
	Starting and Stopping the Commander
	Determining the Version of the Commander that is Installed
	Uninstalling the Commander

	Installing LoadRunner 8.0 and the LoadRunner Diagnostics Add-in
	Understanding the LoadRunner Diagnostics Add-in
	Installing Mercury LoadRunner 8.0
	Installing the Mercury LoadRunner Diagnostics Add-in for J2EE/.NET
	Configuring LoadRunner for Diagnostics for J2EE & .NET

	Installing the Mercury Diagnostics Mediator
	Installing the Mediator on a Windows Machine
	Installing the Mediator on a UNIX Machine
	Verifying the Mediator Installation
	Troubleshooting Mediator Issues
	Configuring the Mediator
	Starting and Stopping Mediators
	Determining the Version of the Installed Mediator
	Uninstalling the Mediator
	Upgrading to a Newer Version of the Mediator

	Installing the Mercury Diagnostics Probe for J2EE
	Installing the J2EE Probe on a Windows Machine
	Installing the J2EE Probe on a UNIX Machine
	Installing the J2EE Probe on a z/OS Mainframe
	Installing the J2EE Probe Using the Generic UNIX Installer
	Verifying the J2EE Probe Installation
	Using the J2EE Probe with Deep Diagnostics
	Overriding the Default Probe Host Machine Name
	Determining the Version of the J2EE Probe that is Installed
	Upgrading to a Newer Version of the J2EE Probe
	Uninstalling the J2EE Probe

	Installing the Mercury Diagnostics Probe for .NET
	About the Mercury Diagnostics Probe for .NET
	Installing the .NET Probe
	Verifying the .NET Probe Installation
	Configuring the .NET Probe

	Configuring the J2EE Probe and Application Server
	About Configuring the J2EE Probe and Application Server
	Running the JRE Instrumenter
	About Configuring the Application Server
	Using the Configuration Utility
	Configuring WebSphere Application Servers
	Configuring WebLogic Application Servers
	Configuring the Oracle9i Application Server
	Configuring the JBoss Application Server
	Configuring the SAP NetWeaver Application Server
	Configuring a Generic Application Server
	Configuring the Probes for Multiple Application Server Instances

	Setting Up Diagnostics for J2EE & .NET on LoadRunner 8.0
	About Setting Up Diagnostics for J2EE & .NET
	Setting Up Diagnostics for J2EE & .NET on LoadRunner 8.0
	Configuring LoadRunner Scenarios to use Diagnostics for J2EE & .NET

	Using Mercury Diagnostics for J2EE & .NET
	Introducing Diagnostics for J2EE & .NET Screens
	Viewing Diagnostics Data from the LoadRunner Controller
	Introducing the Diagnostics Screens
	Drilling Down Into the Diagnostics Metrics
	Using the Diagnostics Navigation and Display Controls

	Using the Diagnostics for J2EE & .NET Screens
	Analyzing Performance Using the Diagnostics Overview Screen
	Analyzing Performance with the Transactions Screen
	Analyzing Performance with the Server Request Screens
	Analyzing Performance with the Layer Screens
	Analyzing Performance with the Virtual Machines Screen
	Analyzing Performance with the Aggregate Profile Screen

	Analysis J2EE & .NET Diagnostics Graphs
	About J2EE & .NET Diagnostics Graphs
	Viewing the J2EE & .NET Summary Report
	Viewing J2EE & .NET Diagnostics Data
	J2EE/.NET Transaction Breakdown Graphs
	J2EE & .NET Server Request Graphs

	Web Service Support
	About Web Service Support
	Writing VuGen Scripts for Web Service Support

	Troubleshooting Mercury Diagnostics for J2EE & .NET
	Component Installation Interrupted on a Solaris Machine
	Version Mismatch Between Diagnostics Commander and LoadRunner Add-In
	Apache Tomcat Error When Displaying J2EE Information
	J2EE Probe Fails to Operate Properly
	Connecting with Named Pipes Regardless of cliconfg.exe Settings

	Appendixes
	Using the System Health Monitor
	Introducing the System Health Monitor
	Accessing the System Health Monitor
	Using the System Health Monitor
	Drilling Down Into The System Health Monitor Map
	Customizing the System Health Monitor Display
	Creating and Using System Health Monitor Snapshots
	Troubleshooting Using the System Health Monitor

	Advanced Diagnostics Commander Configuration
	Adjusting the Heap Size for the Commander’s VM
	Configuring the Commander for Multi-Homed Environments

	Advanced Diagnostics Mediator Configuration
	Configuring the Mediator for Large Installations
	Tuning the Mediator Garbage Collection
	Tuning the Mediator for a Smaller Installation
	Overriding the Default Mediator Host Machine Name
	Configuring the Mediator for Multi-Homed Environments
	Reducing Mediator Memory Usage
	LoadRunner Diagnostics Mediator Assignments
	Using the Mediator Configuration Web Pages
	Configuring the Mediator for the LoadRunner Offline file

	Advanced J2EE Probe and Application Server Configuration
	Configuring the J2EE Probe for Use With Mercury Products
	Setting the J2EE Probe Product Mode Properties
	Configuring the J2EE Probe and Application Server for Deep Diagnostics
	Configuring the Application Server for Allocation Capture
	Unconfiguring the Probe for a Product
	Specifying Layers to Instrument
	Controlling Automatic Method Trimming
	Controlling J2EE Probe Throttling
	Configuring a Probe With a Proxy Server
	Specifying Probe Properties as Java System Properties

	Advanced .NET Probe Configuration
	Automatically Discovering ASP.NET Applications
	Customizing the Instrumentation for ASP.NET Applications
	Restarting IIS
	Elements Used in the Probe_config.xml File
	Disabling Logging
	Overriding the Default Probe Host Machine Name

	Configuring Diagnostics Components to Work with a Firewall
	Overview of Configuring Diagnostics for a Firewall
	Collating Mediator Offline Files over a Firewall
	Installing and Configuring the Mercury MI Listener
	Configuring the Mediator to Work with a Firewall
	Configuring a Diagnostics LoadRunner Scenario for a Firewall

	Configuring Diagnostics Components for HTTPS
	Configuring the Commander to Receive HTTPS
	Configuring a Mediator to Communicate via HTTPS with the Commander
	Configuring a J2EE Probe to Communicate via HTTPS with the Commander
	Configuring the Mediator to Receive HTTPS
	Configuring the Commander to Communicate via HTTPS with the Mediator

	Configuring Diagnostics Components for HTTP/HTTPS Proxy
	Configuring the Mediator to Communicate Through an HTTP/HTTPS Proxy
	Configuring the J2EE Probe to Communicate Through an HTTP/HTTPS Proxy
	Configuring a .NET Probe to Communicate Through an HTTP/HTTPS Proxy
	Proxy from Commander To Mediator/Probes in LoadRunner Environment
	Proxy Server Configuration for HTTPS

	Index

