
Online Guide

 LoadRunner
Creating GUI Vuser Scripts

UNIX
Version 6.0

®

Table of Contents

Creating GUI Virtual User Scripts (UNIX) iii

Click a
 page

Table of Contents

Welcome to LoadRunner ... x
Online Resources.. xi
LoadRunner Documentation Set ...xii
Using the LoadRunner Documentation Setxiv
Typographical Conventions .. xviii

PART I : UNDERSTANDING GUI VUSERS

Chapter 1: Introduction... 2
Working with GUI Virtual Users .. 3
GUI Virtual User Technology.. 5
Creating Virtual User Scripts .. 8
The LoadRunner Testing Process.. 10
Getting Started with GUI Virtual Users ... 11

Chapter 2: Virtual User Development Environment (VUDE)...... 14
Opening the VUDE .. 19
Configuring the VUDE ... 20
Developing Multi-Platform Vuser Scripts .. 22
Locking the VUDE ... 24
Closing the VUDE... 25

Creating GUI Virtual User Scripts (UNIX) iv

Table of Contents

Click a
 page

PART I I : WORKING WITH VXRUNNER

Chapter 3: Recording GUI Virtual User Scripts 27
Recording a GUI Vuser script... 29
Guidelines for Recording .. 31
Converting Existing XRunner Scripts .. 32

Chapter 4: Replaying GUI Virtual User Scripts........................... 33
Replaying a GUI Vuser script ... 35
Stopping Script Execution .. 36
Pausing Script Execution.. 37

Chapter 5: Synchronizing GUI Vuser Script Execution 38
Synchronizing Script Execution Using wait_window 41
Synchronizing Script Execution Using wait_text............................... 47

Chapter 6: Reading Text from the Screen................................... 55
About Text Recognition .. 56
Reading Text .. 57
Searching for Text .. 60
Comparing Text .. 62

Chapter 7: Invoking Applications with VXRunner...................... 63
About Running Applications from within VXRunner 64
Using the System Command to Start an Application........................ 65

Table of Contents

Creating GUI Virtual User Scripts (UNIX) v

Click a
 page

Chapter 8: Viewing Execution Reports 66
About Execution Reports.. 67
Displaying Execution Reports... 71
Viewing Reports During Script Execution... 72
Adding Messages to Reports ... 73

PART I I I : DEBUGGING GUI VUSER SCRIPTS

Chapter 9: Debugging GUI Vuser Scripts 75
Running a Single Line of a GUI Vuser Script 77
Running a Section of a GUI Vuser Script ... 78
Pausing Script Execution.. 79

Chapter 10: Using Breakpoints .. 80
Setting and Removing Breakpoints .. 84
Modifying Breakpoints .. 88
Deleting a Breakpoint .. 89

Chapter 11: Monitoring Variables .. 90
Adding a Variable or Expression to the Watch List 93
Adding an Array to the Watch List .. 95
Modifying an Expression in the Watch List....................................... 97
Assigning a Value to a Variable.. 98
Deleting Expressions and Variables from the Watch List................. 99

Creating GUI Virtual User Scripts (UNIX) vi

Table of Contents

Click a
 page

PART IV: USING LOADRUNNER FUNCTIONS

Chapter 12: Measuring System Performance: Transactions .. 101
Declaring Transactions... 103
Marking the Start of a Transaction .. 104
Marking the End of a Transaction .. 105
A Sample Transaction .. 106

Chapter 13: Emulating Server Load: Rendezvous Points 108
About Synchronizing Multiple Vusers ... 109
Declaring a Rendezvous .. 110
Specifying the Point of Rendezvous in a GUI Vuser Script 111
A Sample Rendezvous... 112

Chapter 14: Enhancing Scripts Using Functions 113
Sending Messages from Vuser scripts ... 115
Obtaining Virtual User Information ... 116
Specifying Your Own Data for Analysis.. 118

Table of Contents

Creating GUI Virtual User Scripts (UNIX) vii

Click a
 page

PART V: PROGRAMMING WITH TSL

Chapter 15: Introducing TSL .. 121
Constants ... 123
Variables... 124
Operators.. 125
Control-Flow Statements .. 130
Built-in Functions.. 132
Comments .. 133

Chapter 16: Creating User-Defined Functions.......................... 135
Function Syntax.. 137
Return Statement ... 143

Chapter 17: Creating Compiled Modules 144
Compiled Module Contents .. 146
Creating a Module .. 148
Loading and Unloading a Compiled Module................................... 149
Incremental Compilation... 153
Compiled Module Example... 154

Chapter 18: Calling Scripts... 155
Using the Call Statement.. 156
Returning to the Calling Script.. 157
Setting the Search Path.. 158
Defining Parameters... 160

Creating GUI Virtual User Scripts (UNIX) viii

Table of Contents

Click a
 page

PART VI: ADVANCED VXRUNNER FEATURES

Chapter 19: Creating Initialization Scripts 167
Types of Initialization Scripts .. 169

Chapter 20: Using Regular Expressions 170
Regular Expression Syntax .. 172

Chapter 21: Setting System Variables....................................... 175
Setting System Variables from within the Script............................. 177
The Controls Dialog Box .. 181
The Test Environment Dialog Box.. 182
System Variables.. 183

Chapter 22: Synchronizing Problematic Windows................... 189
How System Variables Affect wait_window Functions 192
Adjusting the Timeout Interval .. 193
Setting the Delay .. 194

PART VII : GUI VUSER SCRIPT PROGRAMMING REFERENCE

Chapter 23: Function Reference .. 197
Return Values... 198

Table of Contents

Creating GUI Virtual User Scripts (UNIX) ix

Click a
 page

PART VII I : APPENDICES

Appendix A: VXRunner Configuration Files 226
Configuration Parameters... 228
Configuration File Contents .. 239

Index .. 245

Welcome to LoadRunner

x

0
Welcome to LoadRunner

Welcome to LoadRunner, Mercury Interactive’s tool for testing the performance of
client/server systems. LoadRunner stresses your entire client/server system to
isolate and identify potential client, network, and server bottlenecks.

LoadRunner enables you to test your system under controlled and peak load
conditions. To generate load, LoadRunner runs thousands of Virtual Users that are
distributed over a network. Using a minimum of hardware resources, these Virtual
Users provide consistent, repeatable, and measurable load to exercise your
client/server system just as real users would. LoadRunner’s in-depth reports and
graphs provide the information that you need to evaluate the performance of your
client/server system.

Welcome to LoadRunner

Creating GUI Vuser Scripts (UNIX) xi

Online Resources: LoadRunner includes the following online tools:

Read Me First provides last-minute news and information about LoadRunner.

Books Online displays the complete documentation set in PDF format. Online
books can be read and printed using Adobe Acrobat Reader 3.01, which is
included in the installation package. Check Mercury Interactive’s Customer
Support web site for updates to LoadRunner online books.

LoadRunner Online Function Reference gives you online access to all of
LoadRunner’s functions that you can use when creating Vuser scripts, including
examples of how to use the functions. Check Mercury Interactive’s Customer
Support site for updates to the LoadRunner Online Function Reference .

LoadRunner Context Sensitive Help provides immediate answers to questions
that arise as you work with LoadRunner. It describes dialog boxes, and shows you
how to perform LoadRunner tasks. Check Mercury Interactive’s Customer Support
web site for updates to LoadRunner help files.

Technical Support Online uses your default web browser to open Mercury
Interactive’s Customer Support web site.

Support Information presents the locations of Mercury Interactive’s Customer
Support web site and home page, the e-mail address for sending information
requests, the name of the relevant news group, the location of Mercury Interactive’s
public FTP site, and a list of Mercury Interactive’s offices around the world.

Mercury Interactive on the Web uses your default web browser to open Mercury
Interactive’s home page.

Creating GUI Vuser Scripts (UNIX) xii

Welcome to LoadRunner

LoadRunner Documentation Set

LoadRunner is supplied with a set of documentation that describes how to:

• install LoadRunner

• create Virtual User scripts

• use the LoadRunner Controllers

Welcome to LoadRunner

Creating GUI Vuser Scripts (UNIX) xiii

The following diagram shows the structure of the LoadRunner documentation set:

Creating
Vuser
Scripts

Controller
User’s Guide
(Windows)

Controller
User’s Guide

(UNIX)

WinRunner
User’s
Guide

Creating
RTE

Vuser Scripts
(UNIX)

Creating
GUI

Vuser Scripts
(UNIX)

Creating GUI Vuser Scripts (UNIX) xiv

Welcome to LoadRunner

Using the LoadRunner Documentation Set

The LoadRunner documentation set consists of one installation guide, two
Controller user’s guides, and four guides for creating Virtual User scripts.

Installation Guide
For instructions on installing LoadRunner, refer to the Installing LoadRunner
guide. The installation guide explains how to install:

• the LoadRunner Controller—either on a Windows-based or on a UNIX-based
machine

• Virtual User components—for both Windows and UNIX platforms

Note : The installation process that you follow depends on the type of LoadRunner
Controller that you install. The Controller can be either Windows-based or UNIX-
based. Refer to the Installing LoadRunner guide for details.

Welcome to LoadRunner

Creating GUI Vuser Scripts (UNIX) xv

Controller User’s Guides
The LoadRunner documentation pack includes two Controller user’s guides:

The LoadRunner Controller User’s Guide (Windows) describes how to create
and run LoadRunner scenarios using the LoadRunner Controller in a Windows
environment. The Vusers can run on both UNIX and Windows-based platforms.

The LoadRunner Controller User’s Guide (UNIX) describes how to create and
run LoadRunner scenarios using the LoadRunner Controller in a UNIX
environment. The Vusers can run on both UNIX and Windows-based platforms.

Both of the Controller user’s guides present overviews of the LoadRunner testing
process. Note that if you are using a Windows-based Controller, always refer to the
LoadRunner Controller User’s Guide (Windows) ; if you are using a UNIX-based
Controller, always refer to the LoadRunner Controller User’s Guide (UNIX) .

Creating GUI Vuser Scripts (UNIX) xvi

Welcome to LoadRunner

Guides for Creating Vuser Scripts
The LoadRunner documentation pack has four guides that describe how to create
Vuser scripts:

The Creating Vuser Scripts guide describes how to create all types of Vuser
scripts. When necessary, use the following three guides and the TSL Online
Reference in conjunction with this document.

• The WinRunner User’s Guide describes in detail how to use WinRunner to
create GUI Vuser scripts. The resulting Vuser scripts run on Windows
platforms. The TSL Online Reference should be used in conjunction with this
document.

• The Creating GUI Virtual User Scripts (UNIX) guide describes how to create
GUI Vuser scripts using VXRunner, the enhanced version of XRunner. The
resulting Vuser scripts run on UNIX platforms. The TSL Online Reference
should be used in conjunction with this document.

• The Creating RTE Virtual User Scripts (UNIX) guide describes how to create
RTE Vuser scripts that run on UNIX platforms.

Welcome to LoadRunner

Creating GUI Vuser Scripts (UNIX) xvii

For information on Look here...

Installing LoadRunner Installing LoadRunner guide

The LoadRunner testing
process

LoadRunner Controller User’s Guide
(Windows)
LoadRunner Controller User’s Guide (UNIX)

Creating Vuser scripts Creating Vuser Scripts guide

Creating and running scenarios, and analyzing results using a:

Windows-based Controller
LoadRunner Controller User’s Guide
(Windows)

UNIX-based Controller LoadRunner Controller User’s Guide (UNIX)

Creating GUI Vuser Scripts (UNIX) xviii

Welcome to LoadRunner

Typographical Conventions

This book uses the following typographical conventions:

Bold Bold text indicates function names and the elements of the
functions that are to be typed in literally.

Italics Italic text indicates variable names and book names.

Helvetica The Helvetica font is used for examples and statements
that are to be typed in literally.

[] Square brackets enclose optional parameters.

{ } Curly brackets indicate that one of the enclosed values
must be assigned to the current parameter.

... In a line of syntax, three dots indicate that more items of
the same format may be included. In a program example,
three dots are used to indicate lines of a program that have
been intentionally omitted.

| A vertical bar indicates that either of the two options
separated by the bar should be selected.

Creating GUI Virtual User Scripts (UNIX) 1

Part I

Understanding GUI Vusers

Understanding the GUI Virtual User
Introduction

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 2

1
Introduction

LoadRunner emulates an environment in which thousands of users work with a
client/server system concurrently. To do this, LoadRunner replaces the human user
with a virtual user (Vuser). While a machine can accommodate only a single human
user, large numbers of virtual users can work on the same machine at the same
time. Any remote machine can be used as a host for still more virtual users.

LoadRunner provides the following Virtual User technologies:

• GUI Vusers, to operate X Windows and Microsoft Windows applications.

• DB Vusers, to run C programs that access servers directly using API calls.

• RTE Vusers, to operate remote terminal emulator applications (UNIX only).

These Vuser types can be used alone or in combination in order to create effective
load testing scenarios.

This guide describes how to develop GUI Virtual User scripts for X Windows
applications. For information about developing load testing scenarios, refer to your
LoadRunner Controller User’s Guide .

Understanding the GUI Virtual User • Introduction

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 3

Working with GUI Virtual Users

GUI Vuser technology is specially designed to test client/server systems using
graphical user interface (GUI) applications. GUI Vusers emulate the actions of
human users. Like a human user, a GUI Vuser submits input to, and receives output
from, your applications. Many Vusers interact with the system concurrently,
generating load on the server. This enables you to measure the performance of
your server under the load of many users and to test the interaction of the server
with your software.

The actions of each Vuser are described in a Virtual User script. For instance, to
test a bank server that services many automatic teller machines (ATMs), you could
create a Virtual User script that:

• opens the ATM application

• enters an account number

• enters the amount of cash to be withdrawn

• withdraws cash from the account

• checks the balance of the account

• closes the ATM application

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 4

Understanding the GUI Virtual User • Introduction

A Virtual User script includes statements that measure system performance
during a load-testing session. For example, you can measure how long it takes to
check the balance of a bank account. Following a scenario run, you can view
performance analysis and other data in reports and graphs.

You can monitor and manage all the virtual users from the LoadRunner Controller.
You can run, pause, or view Vusers, and monitor scenario status. Following a
scenario run, you can view performance analysis and other data in reports and
graphs.

Understanding the GUI Virtual User • Introduction

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 5

GUI Virtual User Technology

A Vuser emulates the complete UNIX/X environment of a real user. The actual
environment for a human user would consist of:

• an X Server

• a client application

• a window manager (optional)

Human User
X Server

Input

 Output

Input

The UNIX environment of a human user.

Client Application

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 6

Understanding the GUI Virtual User • Introduction

The virtual user environment consists of:

• VXRunner, an enhanced XRunner, which operates the client application

• a “virtual X Server,” which emulates an X server

• the client application

• a window manager (optional)

In the virtual user environment, the person using the client application is replaced
by VXRunner, which runs a Virtual User script. VXRunner has no user interface; it
is controlled remotely from LoadRunner.

VXRunner
Client ApplicationVirtual X Server

Input

 Output

A LoadRunner GUI Vuser

Input

Understanding the GUI Virtual User • Introduction

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 7

The Virtual X Server is the server on which the client application is activated. The
Virtual X Server is an optimized X server that offers a background mode of
operation. In this mode, the Virtual X server receives input from VXRunner only,
and none of its X clients appear on the display.

Mercury Interactive’s X server technology enables you to run several virtual users
simultaneously on a single machine—independent from, and without disturbing
one another—while leaving your current display, keyboard and mouse free for
regular work. Any time you wish to view a virtual user,
LoadRunner can display it on your local host, regardless of the machine on which
the Vuser is actually running.

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 8

Understanding the GUI Virtual User • Introduction

Creating Virtual User Scripts

You create GUI Virtual User scripts in the Virtual User Development Environment
(VUDE). This completely independent environment runs in a separate window on
your display, and provides all of the benefits offered by Mercury Interactive’s Virtual
X Server. In this way you can develop Virtual User scripts in the same environment
in which you will run them.

V

Understanding the GUI Virtual User • Introduction

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 9

The Virtual User Development Environment contains VXRunner, an enhanced
version of XRunner, Mercury Interactive’s single-user testing tool. In addition to all
of the basic test development tools such as recording,
programming, and debugging, VXRunner also supports functions designed
especially for multi-user testing.

Virtual User scripts are written in TSL—Mercury Interactive’s Test Script Language.
TSL is a C-like programming language that is high-level and easy to use. It
combines the power and flexibility of a conventional programming language with
functions designed specifically for testing. For additional information about TSL,
see Chapter 15, Introducin g TSL.

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 10

Understanding the GUI Virtual User • Introduction

The LoadRunner Testing Process

The following illustration shows the LoadRunner testing process. This guide
describes Step II—creating the Vuser scripts. For details on Step I and Steps III–V,
refer to your LoadRunner Controller User’s Guide .

Understanding the GUI Virtual User • Introduction

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 11

Getting Started with GUI Virtual Users

The following procedure outlines how to develop a GUI Virtual User script and
integrate it into a scenario:

 1 Start LoadRunner (LoadRunner UNIX–Controller users only).

At the UNIX prompt, type xlrun& . The LoadRunner Controller and the Scenario
Script windows open.

 2 Open the Virtual User Development Environment.

The Virtual User Development Environment contains a command tool (XTerm)
and VXRunner. For more information about the Virtual User Development
Environment, see Chapter 2, Virtual User Develo pment Environment (VUDE).

 3 Invoke your X Windows applications.

Using the command tool inside the Virtual User Development Environment,
invoke the applications that the Vuser will use. For more information on invoking
your application, see Chapter 2, Virtual User Develo pment Environment
(VUDE).

 4 Create the Virtual User script.

Using VXRunner, create the Virtual User script—using a combination of recording
and programming. For more information about creating Virtual User scripts, see
Chapter 3, Recordin g GUI Virtual User Scri pts and Chapter 15, Introducin g
TSL.

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 12

Understanding the GUI Virtual User • Introduction

 5 Insert transactions into the Virtual User script.

Transactions enable LoadRunner to measure system performance during a
scenario run. For more information about transactions, see Chapter 12,
Measurin g System Performance: Transactions .

 6 Add rendezvous points to the Virtual User script.

Rendezvous points control the execution of Virtual User scripts to emulate intense
user load on the server. For more information, see Chapter 13, Emulatin g Server
Load: Rendezvous Points .

 7 Replay the Virtual User script.

You replay the script to validate that it is functional. If necessary, debug the script.
For more information, see Chapter 4, Replaying GUI Virtual User Scri pts and
Chapter 9, Debugging GUI Vuser Scri pts .

 8 Save the Virtual User script and exit the Virtual User Development
Environment.

 9 Integrate the Vuser script into a scenario.

You incorporate the script into a LoadRunner scenario by defining the name and
path of the Virtual User script that you developed, and the type of GUI Vuser that
will run the Virtual User script.

You also set additional attributes, such as the host on which the Vuser runs, the
display on which it can be viewed and the window manager that the client
application will use.

Understanding the GUI Virtual User • Introduction

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 13

For more information, refer to your LoadRunner Controller User’s Guide .

Execute the scenario—Load, Run, and Kill the Vusers.

Use the LoadRunner Controller to manipulate the Vusers.

View reports and graphs.

After running a scenario, view the performance analysis reports and graphs.

Understanding the GUI Virtual User
Virtual User Development Environment (VUDE)

Creating GUI Virtual User Scripts (UNIX) Chapter 2, page 14

2
Virtual User Development Environment (VUDE)

A Vuser script describes the actions of a Vuser. You create GUI Vuser scripts using
the Virtual User Development Environment (VUDE).

This chapter describes:

• Openin g the VUDE

• Confi gurin g the VUDE

• Develo ping Multi-Platform Vuser Scri pts

• Closin g the VUDE

• Lockin g the VUDE

Understanding the GUI Virtual User • Virtual User Development Environment (VUDE)

Creating GUI Virtual User Scripts (UNIX) Chapter 2, page 15

About the Virtual User Development Environment

You use LoadRunner’s Virtual User Development Environment (VUDE) to create
GUI Vuser scripts that run on UNIX platforms. The VUDE is a window on your
display that runs its own, independent environment, based on Mercury Interactive’s
Virtual X Server technology.

Creating GUI Virtual User Scripts (UNIX) Chapter 2, page 16

Understanding the GUI Virtual User • Virtual User Development Environment (VUDE)

The VUDE window includes the following components:

• a window manager

• xterm, a command tool to invoke applications

• VXRunner, a version of XRunner modified specifically for use with LoadRunner.

9

xterm
command tool

VXRunner

Window
Manager

Understanding the GUI Virtual User • Virtual User Development Environment (VUDE)

Creating GUI Virtual User Scripts (UNIX) Chapter 2, page 17

Introducing xterm
The xterm command tool is included in the VUDE so that you can invoke
applications for development purposes. If you plan to access a command tool from
within a Vuser script, be sure to invoke a separate instance of the command tool.
You can do this in either of two ways:

• From within the Vuser script using the system function. For more information
about the TSL system function, see the TSL Online Reference .

• From within the scenario script using an _add_app function. This option is
available to UNIX–based Controllers only. For more information, refer to the
LoadRunner Controller User’s Guide (UNIX) .

Creating GUI Virtual User Scripts (UNIX) Chapter 2, page 18

Understanding the GUI Virtual User • Virtual User Development Environment (VUDE)

Introducing VXRunner
VXRunner is a complete Vuser script development tool that has been specially
adapted for client/server load testing.

Note : VXRunner supports Analog recording only. Unlike XRunner, VXRunner
does not support Context Sensitive recording. However, you can take advantage
of the full functionality of XRunner in a scenario by designating XRunner as a
virtual user in your scenario script. For more information, refer to the LoadRunner
Controller User’s Guide (UNIX) and the XRunner User’s Guide .

Using VXRunner, you can:

• Record: Operate an application. Your actions are recorded and transcribed as
TSL statements in a Vuser script. For details, see Chapter 3, Recordin g GUI
Virtual User Scri pts .

• Program: Program a Vuser script from scratch or enhance a recorded script. For
more information on programming, see Chapter 15, Introducin g TSL.

• Replay: Replay the Vuser script in the VUDE to ensure that it executes properly. If
necessary, debug the script. For details, see Chapter 4, Replaying GUI Virtual
User Scri pts and Chapter 9, Debugging GUI Vuser Scri pts .

Understanding the GUI Virtual User • Virtual User Development Environment (VUDE)

Creating GUI Virtual User Scripts (UNIX) Chapter 2, page 19

Opening the VUDE

To open the VUDE (using the UNIX-based Controller):

 1 Select Develop > GUI Virtual User. The Virtual User Environment dialog box
appears.

The host on which the VUDE will be displayed appears in the Virtual User Display
area.

 2 Click Start. The VUDE opens.

Note: If you are currently running a scenario, choosing the GUI Virtual User
command does not display the environment of a virtual user currently running, but
rather opens a new environment. The VUDE is for script development only.

To open the VUDE (for LoadRunner Windows–based Controller users):

• Type vude& at the UNIX prompt. The VUDE opens.

Creating GUI Virtual User Scripts (UNIX) Chapter 2, page 20

Understanding the GUI Virtual User • Virtual User Development Environment (VUDE)

Configuring the VUDE

You can configure the following aspects of the VUDE:

• The Window Manager : The window manager used by the VUDE. The default
window manager is mwm.

• The Command tool: The command tool displayed in the VUDE. The default
command tool is xterm.

• The Host: The host on which the VUDE runs. The default host is the Controller
host.

• The Display: The display on which VXRunner appears. The default display for
VXRunner is the VUDE window. If your application fills the entire display, you may
want to run VXRunner on a remote display. (The command tool is automatically
assigned the display name of the Virtual X Server running the VUDE window.)

Understanding the GUI Virtual User • Virtual User Development Environment (VUDE)

Creating GUI Virtual User Scripts (UNIX) Chapter 2, page 21

To configure the VUDE (UNIX Controller):

 1 Select Develop > GUI Virtual User. The Virtual User Environment dialog box
appears.

 2 Click Start. The VUDE opens.

 3 In the Virtual User Environment dialog box, click Options.

The Virtual User Development Options dialog box appears.

 4 Modify the available options as necessary.

To configure the VUDE (LoadRunner–Windows users):

• At the UNIX prompt, type vude— adding any of the following command line
options:

The VUDE opens, configured according to the options you specify.

vude [-wm <windows manager> (mwm)] [-cmd <command> (xterm)]
[-display <display> (localhost:0)]&

Creating GUI Virtual User Scripts (UNIX) Chapter 2, page 22

Understanding the GUI Virtual User • Virtual User Development Environment (VUDE)

Developing Multi-Platform Vuser Scripts

Using LoadRunner, you can develop multi-platform scenarios—scenarios having
Vusers that run on a variety of UNIX machines. When creating multi-platform
scenarios, you can develop Vuser scripts on a machine other than the one on which
the Controller is running.

Note: To support multi-platform scenarios, you must install LoadRunner in a
separate directory for each platform. Refer to the Installing LoadRunner guide
for further details.

Understanding the GUI Virtual User • Virtual User Development Environment (VUDE)

Creating GUI Virtual User Scripts (UNIX) Chapter 2, page 23

To develop a Vuser script on another machine:

 1 Select Develop > GUI Virtual User. The Virtual User Environment dialog box
appears.

 2 Click Start. The VUDE opens.

 3 In the Virtual User Environment dialog box, click Options.

The Virtual User Development Options dialog box appears.

 4 In the “Use Host” area, type in the name of the host machine on which you want to
develop the Vuser script. Click OK.

 5 In the Virtual user Environment dialog box, click Start. The VUDE opens on the
local display. The Virtual Xserver, Xterm and VXRunner will run on the selected
machine.

Creating GUI Virtual User Scripts (UNIX) Chapter 2, page 24

Understanding the GUI Virtual User • Virtual User Development Environment (VUDE)

Locking the VUDE

You can lock the VUDE to ensure that no mouse or keyboard input is accidentally
entered there when you are working on the regular display. For instance, when you
are replaying a Vuser script, you might want to ensure that you do not accidentally
enter mouse clicks in the Vuser window and disturb script replay.

To prevent input:

• In the Virtual User Environment dialog box, click On.

To enable input:

• In the Virtual User Environment dialog box, click Off.

Understanding the GUI Virtual User • Virtual User Development Environment (VUDE)

Creating GUI Virtual User Scripts (UNIX) Chapter 2, page 25

Closing the VUDE

To close the VUDE:

 1 In the Virtual User Environment dialog box, click Terminate. The VUDE closes.

 2 In the Virtual User Environment dialog box, click Done. The Virtual User
Environment dialog box closes.

Creating GUI Virtual User Scripts (UNIX) 26

Part II

Working with VXRunner

Working with VXRunner
Recording GUI Virtual User Scripts

Creating GUI Virtual User Scripts (UNIX) Chapter 3, page 27

3
Recording GUI Virtual User Scripts

To create a GUI Virtual User script you can use recording, programming, or a
combination of both. Usually, you begin by recording a basic script and then
enhance the script by programming additional TSL statements.

This chapter describes:

• Recordin g a GUI Vuser scri pt

• Guidelines for Recordin g

• Convertin g Existin g XRunner Scri pts

For more information about programming, see Chapter 15, Introducin g TSL.

Creating GUI Virtual User Scripts (UNIX) Chapter 3, page 28

Working with VXRunner • Recording GUI Virtual User Scripts

About Recording GUI Virtual User Scripts

When you record a GUI Virtual User script, VXRunner creates a script consisting
of TSL statements. These statements describe the sequence of commands and
data that VXRunner sends to an application when you replay the script.

VXRunner records keyboard input, mouse clicks, and the precise coordinates
traveled by the mouse across the screen. For example, when select the File > Open
in an application, VXRunner records the movements of the pointer on the screen.
When you replay the script, VXRunner returns the mouse pointer to the same
coordinates.

Note : VXRunner supports Analog recording only. Unlike XRunner, VXRunner
does not support Context Sensitive recording. However, you can take advantage
of the full functionality of XRunner in a scenario by designating XRunner as a
virtual user in your scenario script. For more information, refer to the LoadRunner
Controller User’s Guide (UNIX) and the XRunner User’s Guide .

Working with VXRunner • Recording GUI Virtual User Scripts

Creating GUI Virtual User Scripts (UNIX) Chapter 3, page 29

Recording a GUI Vuser script

To record a Vuser script:

 1 Open the Virtual User Development Environment (VUDE).

 2 Invoke your application using the command tool provided with the VUDE.

 3 Select Record > Start Recording, or press the corresponding softkey (F4).
VXRunner starts recording the Vuser script.

 4 Position your application window. Record its location by pressing the
WAIT_WINDOW softkey. (See the last page of this manual for a list of the default
softkey definitions.)

 5 Using the keyboard and mouse, perform the sequence of operations you want the
Vuser to perform on your application.

Note : VXRunner records mouse and keyboard input only from within the VUDE. If
you move the mouse out of the window, VXRunner does not record any actions.

 6 To stop recording, select Record > Stop Recording, or press the STOP softkey.
(See the last page of this manual for a list of the default softkey definitions.)
VXRunner stops recording the Vuser script.

 7 Select File > Save to save the script.

Creating GUI Virtual User Scripts (UNIX) Chapter 3, page 30

Working with VXRunner • Recording GUI Virtual User Scripts

Note : If you do not save a script and you quit the VUDE, all unsaved changes to
all open Vuser scripts are discarded.

When you have stopped recording, you can edit your Vuser script and program
additional TSL statements. For instance, you can enhance a Vuser script using
loops and other control-flow structures. You will also want to program statements
that define transactions and mark synchronization points. For more information,
see Chapter 12, Measurin g System Performance: Transactions , and
Chapter 13, Emulatin g Server Load: Rendezvous Points .

Working with VXRunner • Recording GUI Virtual User Scripts

Creating GUI Virtual User Scripts (UNIX) Chapter 3, page 31

Guidelines for Recording

Consider the following guidelines when recording a GUI Vuser script:

• Before you start recording, close all applications not required for the test.

• You can invoke applications from within the GUI Vuser script by using the system
function. For more information, see Chapter 7, Invokin g Applications with
VXRunner .

• Create your script so that it “cleans up” after itself. When the script is completed,
the environment should be as it was at the beginning of the script. For example, if
you started with the application window closed, then the script should also close
the window—and not minimize it to an icon. This helps ensure accurate replay.

• If the size of your application window can change, resize the window to ensure a
consistent size and placement during replay.

• The first time an application window appears on the screen, press the
 softkey. (See the last page of this manual for a list of the default softkey

definitions.) This ensures that during replay, VXRunner moves the window to the
correct location and waits for it to be completely redrawn before continuing the
replay.

• Avoid typing ahead. For example, when you want to open a window, wait until it is
completely redrawn before continuing work.

• Avoid holding down the mouse when this results in a repeated action (for example,
using the scroll bar to move the screen display). Doing so can initiate a time-
sensitive operation that cannot be precisely recreated. Instead, use discrete,
multiple clicks to achieve the same results.

Creating GUI Virtual User Scripts (UNIX) Chapter 3, page 32

Working with VXRunner • Recording GUI Virtual User Scripts

Converting Existing XRunner Scripts

In addition to creating Vuser scripts specifically for LoadRunner, you can use
existing XRunner scripts. The following limitations apply to XRunner scripts that are
replayed by VXRunner:

• Context Sensitive functions may not be used.

• Vuser scripts must be created using XRunner version 2.0 or later.

• All check_window statements are treated as wait_window statements.

If you designate XRunner as a Vuser, you can run unconverted XRunner scripts as
part of a scenario. For more information, see your LoadRunner Controller User’s
Guide .

Working with VXRunner
Replaying GUI Virtual User Scripts

Creating GUI Virtual User Scripts (UNIX) Chapter 4, page 33

4
Replaying GUI Virtual User Scripts

Once you have developed a basic GUI Virtual User script, you replay the script to
check that it functions as you planned.

This chapter describes:

• Replaying a GUI Vuser scri pt

• Stopping Scri pt Execution

• Pausin g Scri pt Execution

Creating GUI Virtual User Scripts (UNIX) Chapter 4, page 34

Working with VXRunner • Replaying GUI Virtual User Scripts

About Replaying GUI Virtual User Scripts

Once you have created all or part of a Virtual User script, replay it in order to see
that it runs properly, and debug it if necessary.

You can replay a GUI Vuser script in either of two modes: Replay and Verify.

• Replay mode is used to execute a Vuser script without performing any verification.

• Verify mode is used to compare the current behavior of an application to its
behavior during a previous run.

Note : The Verify mode is included in VXRunner solely for reasons of compatibility
with XRunner. When developing GUI Vuser scripts for load testing purposes,
there is no reason to execute a script in the Verify mode.

Working with VXRunner • Replaying GUI Virtual User Scripts

Creating GUI Virtual User Scripts (UNIX) Chapter 4, page 35

Replaying a GUI Vuser script

To replay a GUI Vuser script:

 1 Open the script.

 2 Move the execution marker to the first line of the script by clicking the left mouse
button in the left margin next to the first line of the script.

 3 Select Replay > Animate or Replay > Run, or press the corresponding softkeys.
(See the last page of this manual for a list of the default softkey definitions.)

The Run command executes the script in the VXRunner window, starting from the
line marked by the execution marker. If you do not interrupt the run (by pressing the
PAUSE or STOP softkey), execution stops when the script is completed.

The Animate command is the same as the Run command, but the execution
marker indicates the line that VXRunner is currently processing. If the script calls
another script, the called script is displayed in the VXRunner window. Once the
called script is completely processed, the calling script is displayed again.

To debug a script, you can also replay line by line and define breakpoints. For
details, see Chapter 9, Debugging GUI Vuser Scri pts , and Chapter 10, Usin g
Break points .

Creating GUI Virtual User Scripts (UNIX) Chapter 4, page 36

Working with VXRunner • Replaying GUI Virtual User Scripts

Stopping Script Execution

You can stop script execution by pressing the STOP softkey. This terminates
execution immediately. (See the last page of this manual for a list of the default
softkey definitions.)

When you stop script execution, all values stored for script variables and arrays are
lost, as are functions not loaded using the load function. These functions must be
recompiled. For more information, see Chapter 17, Creatin g Compiled Modules .

The values for system variables, however, are retained when a script execution is
stopped. Before running the script again, you can restore the default values of
system variables by clicking Default in the Controls dialog box, which you open
using the Options menu.

Working with VXRunner • Replaying GUI Virtual User Scripts

Creating GUI Virtual User Scripts (UNIX) Chapter 4, page 37

Pausing Script Execution

When you use the PAUSE softkey to stop execution of a GUI Vuser script, the script
continues running until all previously interpreted TSL statements are executed.
Test variables are not initialized. During a pause, you can access all VXRunner
menus. (See the last page of this manual for a list of the default softkey definitions.)

To resume execution of a paused script, select the desired replay command using
its softkey. Execution resumes from the point that you paused the script.

Working with VXRunner
Synchronizing GUI Vuser Script Execution

Creating GUI Virtual User Scripts (UNIX) Chapter 5, page 38

5
Synchronizing GUI Vuser Script Execution

Synchronizing your scripts ensures that during execution, VXRunner performs two
functions: VXRunner checks the position of a window and relocates it if necessary;
VXRunner also delays execution until the window is redrawn or until a specified text
string appears.

This chapter describes:

• Synchronizin g Scri pt Execution Usin g wait_window

• Synchronizin g Scri pt Execution Usin g wait_text

Working with VXRunner • Synchronizing GUI Vuser Script Execution

Creating GUI Virtual User Scripts (UNIX) Chapter 5, page 39

About Synchronizing Vuser Script Execution

You use synchronization functions to control the timing of script execution. By
inserting synchronization points in your Vuser scripts, you ensure that VXRunner
performs operations on your applications at the right time. For instance, assume
that your Vuser script opens a terminal window and types in a command at the
prompt. A human user would naturally wait for the window to open up, redraw, and
come into focus, and for the prompt to appear before typing in the command. Using
synchronization functions, you can instruct LoadRunner to wait in order to ensure
accurate replay.

Another important use of synchronization functions is in transactions. Transactions
measure the amount of time it takes for a Vuser to perform a specific task. Suppose
you want to measure the amount of time it takes for the bank to accept a deposit
from an automatic teller. The Vuser types in $50 and presses the confirm button.
You know that the operation is completed when the message “Done” appears. You
use the synchronization functions to control the execution of the transaction in a
precise way; LoadRunner measures only the interval between the click and the
appearance of the message.

For more information about defining transactions, see Chapter 12, Measurin g
System Performance: Transactions .

Creating GUI Virtual User Scripts (UNIX) Chapter 5, page 40

Working with VXRunner • Synchronizing GUI Vuser Script Execution

While developing a Vuser script, you can define synchronization points using the
wait_window and wait_text functions.

• The wait_window function instructs VXRunner to wait for the appearance of a
specified window before continuing script replay. For more information about the
wait_window function, see “Synchronizin g Scri pt Execution Usin g
wait_window ” below.

• The wait_text function instructs VXRunner to wait for the specified text to appear
in a given window before continuing script replay. It provides a method of
synchronizing transactions whose beginning or end result is text. For more
information, see Synchronizin g Scri pt Execution Usin g wait_text on page 47.

Working with VXRunner • Synchronizing GUI Vuser Script Execution

Creating GUI Virtual User Scripts (UNIX) Chapter 5, page 41

Synchronizing Script Execution Using wait_window

The wait_window function tells VXRunner to wait for a specific window to appear
before continuing script execution.

The syntax of the wait_window function is:

wait_window (time, image, window, width , height, x, y);

• time is the interval between the previous input event and the generation of the
wait_window statement, in seconds. This parameter is added to the timeout
variable during replay.

• image is always an empty string.

• window is a string expression indicating the name in the window banner.

• width, height are the size of the window, in pixels.

• x, y are the position of the upper left corner of the active window.

Creating GUI Virtual User Scripts (UNIX) Chapter 5, page 42

Working with VXRunner • Synchronizing GUI Vuser Script Execution

In GUI Vuser scripts, the wait_window function waits for a window to appear on
the screen and remain stable for the interval defined by the delay system variable.
The function also checks the position of the window. If the window does not appear
at the coordinates specified in the wait_window statement, VXRunner moves the
window to the correct position.

Note that VXRunner does not capture or compare bitmap images. The value of the
image parameter is always a null string (""). Rather, only data related to the window
is saved. During replay, VXRunner uses this data to identify and position the
window to be redrawn before continuing execution—the contents of the window are
not evaluated.

For more information about the wait_window function, see the TSL Online
Reference .

Working with VXRunner • Synchronizing GUI Vuser Script Execution

Creating GUI Virtual User Scripts (UNIX) Chapter 5, page 43

In the following example, a wait_window statement is used to delay script
execution until the specified window is redrawn. After the window is redrawn, a text
string is typed into the window.

Note: The execution of the wait_window function is affected by the current
values specified for the following system variables: timeout, delay,
move_windows, and raise_windows. These values can be modified using the
Controls dialog box or from within the script using the setvar statement. For
information on how these variables affect the wait_window function, see
Chapter 22, Synchronizin g Problematic Windows .

move_locator_abs(391, 196, 0);
rc = wait_window(4, "","cmdtool - /usr/local/bin/tcsh",855,802,292,88);
If (rc == 0)

type ("<t6>ls \-l<kReturn>");
else

texit;

Creating GUI Virtual User Scripts (UNIX) Chapter 5, page 44

Working with VXRunner • Synchronizing GUI Vuser Script Execution

Generating wait_window Statements
You can generate a wait_window statement in the following ways:

• automatically, by pressing the WAIT_WINDOW softkey.

• manually, by typing the statement into your Vuser script.

To generate a wait_window statement automatically:

 1 If you are not currently in the Record mode, select Record > Start Recording.

 2 Place your mouse pointer anywhere within the desired window.

 3 Press the WAIT WINDOW softkey. (See the last page of this manual for a list of the
default softkey definitions.) A wait_window statement is generated in your script.

For example, if you place the mouse pointer in the window of the DrawTool drawing
application after the zoomed object is displayed and press the WAIT WINDOW
softkey, the resulting wait_window statement might be:

wait_window (35, "", "DrawTool", 800, 600, 100, 120);

Working with VXRunner • Synchronizing GUI Vuser Script Execution

Creating GUI Virtual User Scripts (UNIX) Chapter 5, page 45

During Replay

When the script is played back and a wait_window statement is interpreted,
VXRunner performs the following operations:

• Waits for a window to appear that has a DrawTool banner, a width of 800, and a
height of 600 pixels. (Note that if you assign a negative value to the width and
height parameters, VXRunner ignores the window size.)

• Checks that the window is brought up in the same position as during recording
(coordinates 100, 120), and repositions the window if necessary.

Creating GUI Virtual User Scripts (UNIX) Chapter 5, page 46

Working with VXRunner • Synchronizing GUI Vuser Script Execution

Unnamed Windows
If the window you instruct VXRunner to wait for has no banner, the window
parameter will be an empty string, as follows:

wait_window (time, image, "", width, height, x, y,);

During replay VXRunner waits for an unnamed window image with the specified
width and height to appear at the x, y coordinates.

Note that if the window captured is not recognized by the server, or if an icon is
captured, the syntax of the wait_window statement will be:

wait_window (time, image);

Windows with Varying Names
If the window to wait for has a name that varies from run to run, you may edit the
window parameter so that the window name is a regular expression, rather than a
string. For more details see Chapter 20, Usin g Regular Ex pressions .

Working with VXRunner • Synchronizing GUI Vuser Script Execution

Creating GUI Virtual User Scripts (UNIX) Chapter 5, page 47

Synchronizing Script Execution Using wait_text

The wait_text function instructs VXRunner to wait for text to appear at a given
location before continuing script replay. The function has the following syntax:

wait_text (pattern, timeout, [ret_text, ret_index, x1, y1, x2, y2, ret_bbox]);

• pattern is the text VXRunner waits for. This can be a text or null string, or a regular
expression.

• timeout is the number of seconds that VXRunner waits for the text to appear. By
default the timeout is equal to the timeout system variable.

• ret_text is an output variable that stores the actual string that LoadRunner
identified as matching the pattern.

• ret_index is the index of the subexpression that was matched. If pattern is a string
ret_index will equal one when matched. However, if pattern is a regular
expression it may include a number of or operators. In these cases, ret_index
contains the index of the matched or subexpression.

• x1,y1,x2,y2 are the coordinates of a rectangle that encloses the text to be read.
The pairs of coordinates designate the two diagonally opposite corners of the
rectangle.

• ret_bbox is an optional array that describes the exact location of the text string
within the enclosed rectangle. The array also follows the format x1, y1, x2, y2.

Creating GUI Virtual User Scripts (UNIX) Chapter 5, page 48

Working with VXRunner • Synchronizing GUI Vuser Script Execution

Note : When using the wait_text function:

The spaces returned by the wait_text function are dependent on the application
being run. To see the results that a wait_text statement will return, preview the
text when you generate a wait_text statement. To preview the string that will be
captured, press the middle mouse button. The string is displayed directly beneath
the selected text.

If the text specified in the pattern parameter appears on the display for only a very
short time, the VXRunner may not be able to locate the text.

Working with VXRunner • Synchronizing GUI Vuser Script Execution

Creating GUI Virtual User Scripts (UNIX) Chapter 5, page 49

Waiting for Single Strings
In the following example, the wait_text statement waits for the appearance of the
message “Done” within a certain location on the screen. The timeout is set to five
seconds.

You can also generate wait_text statements to wait for empty (null) strings. This
enables you to instruct the VXRunner to pause script execution until text is erased.
For instance, you could program a wait_text statement to record the end of a
transaction when the “Done” message is erased. To instruct VXRunner to wait for
an empty string you set the pattern parameter to "".

In the following example, the wait_text statement waits for an empty string to
appear at a specified location. The timeout is set to five seconds.

Wait for the string “Done” to appear.
r = wait_text ("Done", 5, ret_text, ret_index, 0, 0, 500, 500);

Wait for text to disappear.
r = wait_text ("", 5, ret_text, ret_index, 0, 0, 500, 500);

Creating GUI Virtual User Scripts (UNIX) Chapter 5, page 50

Working with VXRunner • Synchronizing GUI Vuser Script Execution

Waiting for Multiple Strings
You can instruct VXRunner to wait for one or more strings by using logical
operators. Logical operators may be included in the pattern parameter if the
parameter is a regular expression.

For example, the function call:

sets the ret_index parameter if either the “OK” or the “ Error” string is found. The
exclamation point is specific to LoadRunner and is not part of the regular
expression. If the OK string is found, the ret_text is assigned the string “OK”, and
ret_index is assigned the value 1. If the “Error” string is found, ret_text is assigned
the string “Error” , and ret_index is assigned the value 2.

The following is a more complex example:

wait_text ("!OK\| Error", 10, ret_text, ret_index);

pattern = "!\\(\xrunner\|lrunner\) error\)\|OK";
wait_text (pattern, 10, ret_text, ret_index);

Working with VXRunner • Synchronizing GUI Vuser Script Execution

Creating GUI Virtual User Scripts (UNIX) Chapter 5, page 51

In this case, the wait_text expression will return a value if any of the following
strings appear:

The or operator separating the “xrunner” and “lrunner” is not counted as a
subexpression for the ret_index value.

The grouping operators "\(" and "\)" are limited to a maximum of 10 pairs in each
wait_text statement. The or operator is not limited.

"xrunner error": (ret_text == "xrunner error", ret_index ==1)
"lrunner error": (ret_text == "lrunner error", ret_index ==1)
"OK" : (ret_text == "OK", , ret_index ==2)

Creating GUI Virtual User Scripts (UNIX) Chapter 5, page 52

Working with VXRunner • Synchronizing GUI Vuser Script Execution

Generating wait_text Statements
You can generate a wait_text statement in either of the following ways:

• automatically, by pressing the WAIT_TEXT softkey

• manually, by typing a wait_text statement into your Vuser script.

To generate a wait_text statement automatically:

 1 Place the mouse pointer in the Vuser script at the place where you want the
wait_text statement.

 2 Press the WAIT_TEXT softkey. (See the last page of this manual for a list of the
default softkey definitions.) The mouse pointer becomes a cross-hairs.

 3 Drag the cross-hairs to enclose the text in a rectangle.

To preview the string that will be captured, press the middle mouse button. The
string is displayed directly beneath the text. However, if there is not enough space
to the right, the string to be captured is displayed in the upper left corner of the
screen.

 4 Click the right mouse button. VXRunner inserts a wait_text statement in your
Vuser script.

Working with VXRunner • Synchronizing GUI Vuser Script Execution

Creating GUI Virtual User Scripts (UNIX) Chapter 5, page 53

Waiting for the Re-appearance of a Specified String
The expect_text function ensures that wait_text statements accurately
synchronize transactions. The wait_text function monitors all strings in the given
rectangle. If the string you defined in the pattern parameter is already displayed,
wait_text will return a result immediately and continue script replay. The
transaction you measure will not accurately reflect the time taken to perform this
task.

Suppose you create a Vuser script that deposits $50 and then withdraws $50 from
an ATM. The text window in the ATM application is not refreshed after the Vuser
makes the deposit. When the Vuser selects the withdraw option the message
“Done” is still displayed in the ATM window. However, the wait_text function sees
the message “Done” and instructs LoadRunner to stop measuring the “withdraw”
transaction before the action has been performed.

By inserting expect_text statements into your Vuser script you can ensure that
wait_text function waits for the re-appearance of the specified string. The
expect_text function instructs VXRunner to ignore all the text currently displayed.
The syntax of the expect_text function is:

expect_text ();

Note that inserting an expect_text statement before a wait_text statement that
waits for an empty string is meaningless.

Creating GUI Virtual User Scripts (UNIX) Chapter 5, page 54

Working with VXRunner • Synchronizing GUI Vuser Script Execution

A Sample Synchronized Transaction
In the following example, the deposit transaction is defined to measure how long it
takes for a Vuser to deposit fifty dollars using the ATM application. The expect_text
statement instructs VXRunner to ignore all text currently displayed. The wait_text
function instructs VXRunner to wait for the “Done” message to appear. When the
message appears, script replay resumes and the duration of the deposit
transaction is recorded.

Ignore the text in the ATM window.
expect_text ();

Mouse pointer moved to deposit button.
move_locator_abs (10, 10, 0);

Start measuring deposit operation.
start_transaction ("deposit");

Click left mouse button on deposit button.
click ("Left");

Wait for “Done” to appear in the ATM window.
r = wait_text ("Done", 5, ret_text, ret_index, 0, 0, 500, 500, ret_bbox);

End Deposit transaction.
if (r == 0)

end_transaction ("deposit", PASS);
else

end_transaction ("deposit", FAIL);

Working with VXRunner
Reading Text from the Screen

Creating GUI Virtual User Scripts (UNIX) Chapter 6, page 55

6
Reading Text from the Screen

VXRunner can read text from the graphical user interface (GUI) of an application,
and then perform various tasks with the text that is read.

This chapter describes how to develop a GUI Virtual User script that includes:

• Readin g Text

• Searchin g for Text

• Comparin g Text

Creating GUI Virtual User Scripts (UNIX) Chapter 6, page 56

Working with VXRunner • Reading Text from the Screen

About Text Recognition

Text recognition allows you to:

• read text from the screen, using the get_text function.

• search for text on the screen, using the find_text function.

• compare two text strings, using the compare_text function.

You read text from the screen using the get_text function. The get_text function
returns one line of text from a specified area of the screen, and assigns the text to
a variable.

To search for text, you use the find_text function. The find_text function performs
the reverse process of get_text . Whereas get_text accesses any text found in the
designated area, find_text looks for a specified string and returns its location on
the screen. This location is expressed as a pair of x,y coordinates that delineate a
rectangle.

The compare_text function compares two strings, ignoring any specified
differences. It may be used in conjunction with the get_text function, or separately.

Working with VXRunner • Reading Text from the Screen

Creating GUI Virtual User Scripts (UNIX) Chapter 6, page 57

Reading Text

You read text from the screen using the get_text function. The get_text function
returns one line of text from a specified area of the screen, and assigns the text to
a variable.

Generating get_text Statements
You can generate a get_text statement in the following ways:

• automatically, by pressing the GET TEXT softkey.

(See the last page of this manual for a list of the default softkey definitions.)

• manually, by typing the statement into your Virtual User script.

Creating GUI Virtual User Scripts (UNIX) Chapter 6, page 58

Working with VXRunner • Reading Text from the Screen

Manually programming a get_text statement

The get_text function can be programmed into the script, using either of the
following two syntax formats:

variable = get_text(x,y);

The x and y parameters define the coordinates of a single pixel on the screen. The
variable is assigned the value of the string closest to this pixel. (The search radius
around the specified point is defined by the XR_TEXT_SEARCH_RADIUS parameter.
For details, see Appendix A, VXRunner Confi guration Files .)

variable = get_text ();

When no parameter is specified (the parentheses are empty), the string closest to
the position of the mouse pointer is read. (The search radius is defined by the
XR_TEXT_SEARCH_RADIUS configuration parameter. For details, see Appendix A,
VXRunner Confi guration Files .)

Example Using get_text
The following script segment searches an application for the input name (read from
an array). When the name is found, VXRunner reads the contents of the field
containing the associated address. The address is read from the application
window using the get_text function.

Working with VXRunner • Reading Text from the Screen

Creating GUI Virtual User Scripts (UNIX) Chapter 6, page 59

Both the input name and address are then printed to an external report file. This
search and print operation is repeated until the script fails to find an address for the
last input name.

i = 0;
do {

mouse is brought to Search Address command
move_locator_track(5);
mtype ("<kLeft>");

name is input from the name array
type (name[i]);

input name is searched for
type ("<kCR>);

acquire contents of address field
AddressForName = get_text (100,34,150,50);
printf ("Name : %s, Address : %s \n",

 name[i],
 AddressForName) >> "u/bart/srch_res.rep";

i++;
} while (SearchResult != "");
close ("u/bart/srch_res.rep");

Creating GUI Virtual User Scripts (UNIX) Chapter 6, page 60

Working with VXRunner • Reading Text from the Screen

Searching for Text

To search for text, you can use the find_text function, which performs the opposite
function of get_text . Whereas get_text accesses any text found in the designated
area, find_text looks for a specified string and returns its location on the screen.
This location is expressed as a pair of x,y coordinates that delineate a rectangle.

The find_text function must be programmed in the script, using the following
syntax:

find_text (regular_expression, identifier, area);

The parameters included in this statement are:

• regular expression specifies a literal, case-sensitive string (in which case it must
be enclosed between quotation marks), or the name of a string variable. In the
latter case, the value of the string variable can include a regular expression.

The regular expression should not include blank spaces. The regular expression
does not have to begin with a quotation mark.

• identifier is the name assigned to the four-element array in which the location of
the found string is stored.

• x and y specify the region of the screen in which the search is to be executed. The
area is defined as a pair of coordinates. The values x1,y1,x2,y2 can specify any
two diagonally opposite corners of the region to be searched.

Working with VXRunner • Reading Text from the Screen

Creating GUI Virtual User Scripts (UNIX) Chapter 6, page 61

The find_text function returns a Boolean value indicating whether the search was
successful (1 no, 0 yes). In addition, the function generates the coordinates of the
rectangle which bounds the string matching the regular expression. These
coordinates are stored in a four-element array specified by the identifier parameter
in the find_text statement.

The elements of the array are numbered 1 to 4. Elements 1 and 2 store the x and
y coordinates of the upper left corner of the rectangle; elements 3 and 4 store these
coordinates for the lower right corner of this rectangle.

Moving the Pointer to a String
The move_locator_text function searches for the specified string in the indicated
area of the screen. The position of the string is specified in terms of the rectangle
that encloses it. Once the text is located, the mouse pointer is moved to the center
of the rectangle. For more information, see the TSL Online Reference .

Clicking on a Specified Text String
The click_on_text function searches for a specified string in the indicated area of
the screen, moves the mouse pointer to the center of the string, and enters a
sequence of mouse button clicks. For more information, see the TSL Online
Reference .

Creating GUI Virtual User Scripts (UNIX) Chapter 6, page 62

Working with VXRunner • Reading Text from the Screen

Comparing Text

The compare_text function compares two strings, ignoring any specified
differences. It may be used in conjunction with the get_text function, or separately.

The compare_text function has the following syntax:

variable = compare_text (str1, str2[,chars1, chars2]);

• str1 and str2 represent the literal strings or string variables to compare.

• The optional parameters chars1 and chars2 represent the literal characters or
string variables to be ignored during comparison. Note that chars1 and chars2
may specify multiple characters.

The compare_text function returns the value 1 when the compared strings are
judged to be the same, and 0 when the strings are different.

For example, a portion of your script compares the text string "File" returned by the
get_text function. Because the lowercase "l" character has the same shape as the
uppercase "I", you specify that these two characters be ignored.

t = get_text (10, 10, 90, 30);
if (compare_text (t, "File", "l", "I"))

move_locator_abs (10, 10);

Working with VXRunner
Invoking Applications with VXRunner

Creating GUI Virtual User Scripts (UNIX) Chapter 7, page 63

7
Invoking Applications with VXRunner

You can run an application from within VXRunner by including its command line in
your Virtual User script.

This chapter describes the system function that is used to invoke applications.

Creating GUI Virtual User Scripts (UNIX) Chapter 7, page 64

Working with VXRunner • Invoking Applications with VXRunner

About Running Applications from within VXRunner

You can run applications from within VXRunner by using the system function. The
system function has the following syntax:

system ("expression [&]");

The expression parameter designates the system command to be executed
(including command line options). For example, the script line

causes the contents of the current directory to be written to the file filelist.

Note that you can run the invoked application in the background by adding an
ampersand (&) character to the system statement. This means that after the
system statement is processed, VXRunner will continue processing the TSL
script, even if the application has not yet been invoked. If no ampersand is added,
processing of the remainder of the TSL script pauses until the system function is
completed.

It is recommended to run an application in the background when the application
being invoked is interactive.

The system statement is interpreted by a Bourne shell, and therefore can include
only Bourne shell commands.

system ("ls > filelist");

Working with VXRunner • Invoking Applications with VXRunner

Creating GUI Virtual User Scripts (UNIX) Chapter 7, page 65

Using the System Command to Start an Application

By including the appropriate command line options within a system statement, you
can specify the exact location at which the application window is displayed. For
example, the TSL statement

invokes the calculator application so that the upper left corner of its window is
located at screen coordinates 300, 400. By immediately following this script line
with the statement

you can instruct VXRunner to wait until the window is completely redrawn before
continuing execution.

system ("calctool -Wp 300 400&");

wait_window (3,"", "calculator",123, 234, 300, 400)

Working with VXRunner
Viewing Execution Reports

Creating GUI Virtual User Scripts (UNIX) Chapter 8, page 66

8
Viewing Execution Reports

Every time you run a GUI Vuser script, VXRunner generates an execution report
that details the major events that occurred during the run.

This chapter describes:

• Displaying Execution Re ports

• Viewin g Reports Durin g Scri pt Execution

• Addin g Messages to Re ports

Working with VXRunner • Viewing Execution Reports

Creating GUI Virtual User Scripts (UNIX) Chapter 8, page 67

About Execution Reports

An execution report contains details about script execution. The exact nature of the
information in the report depends on whether the script was run in Replay or in
Verify mode.

An execution report includes the following sections:

• A report header which details the name of the script; the date of execution;
operator name; and miscellaneous comments included in the Test Header.

• A report summary with details on the success and duration of execution, and data
pertinent to window or file captures performed.

• A detailed description of the major events that occurred during the execution run.
These can include the start and termination times of the test; windows, or files
captured; calls to other scripts; changes to system variables; instances of
displayed report messages; and run-time errors.

Creating GUI Virtual User Scripts (UNIX) Chapter 8, page 68

Working with VXRunner • Viewing Execution Reports
Execution Report Format

To: Arthur

From: Ford

CC: Marvin

Date: Mon June 16 12:03:07 1996

Subject:Test Report

Test name: /home/qa/calculator/mode tst

Test Results name: ver 4

Date: Mon June 16 12:03:07 1996

Operator name: Charlie

Operator notes: Third run on June 16

Summary:

Process termination: OK

Total number of checked windows: 1

Process duration time: 00:00:41

Total windows sync time: 3 sec 764 milli sec

Detailed Results Description

#EventResultNameTestLineTime

1 start-run------mode tst1 00:00:00

2 Message:The time is Mon Nov 18 09:31:50

3 wait-windownot foundWin 1mode_tst600:00:17

4 Message:Calling another test

5 stop-runend-of-test---mode tst 1100:00:41

Working with VXRunner • Viewing Execution Reports

Creating GUI Virtual User Scripts (UNIX) Chapter 8, page 69

The following information can appear in an execution report:

Report Header Section
To: A free text field.

From : Author of the script (supplied by the system).

CC: A free text field.

Date: Report print date and time.

Test Name : The name of the executed script.

Test Results name : The name assigned to the verification results generated for
the current execution run.

Date: The date and time of the script run.

Operator name : Name of the user who ran the script.

Operator notes : A free text field.

Creating GUI Virtual User Scripts (UNIX) Chapter 8, page 70

Working with VXRunner • Viewing Execution Reports

Report Summary Section
Process Termination : Indicates whether the script was executed to completion
(OK) or prematurely terminated (ABORT).

Total number of checked windows : Number of captured windows (for a Replay
run).

Process duration time : The total time (in hr:min:sec) that elapsed from start to
finish of the current script run.

Total windows sync time: The total time (in seconds and milliseconds) that was
spent on synchronizing window events.

Detailed Description Section
Detailed Results Description : Each major Event in the execution of the script is
accompanied by its Result; the object involved in the event (for example, a called
script) is designated by its Name; the Script and Line number in which the event
occurred are indicated; Time is the amount of time (in hr:min:sec) that elapsed from
the start of the run until the occurrence of the event.

Working with VXRunner • Viewing Execution Reports

Creating GUI Virtual User Scripts (UNIX) Chapter 8, page 71

Displaying Execution Reports

To display an execution report:

 1 Select Utilities > Reports. The View Report dialog box appears.

By default, the “Get Report From” text area displays the directory of the last run,
and the “Report Type Full” is selected.

 2 Click OK.

The Report is displayed. You can edit the report as desired.

Creating GUI Virtual User Scripts (UNIX) Chapter 8, page 72

Working with VXRunner • Viewing Execution Reports

Viewing Reports During Script Execution

During execution of a script, you can view the report currently generated for the
script. Simply pause the script and select Utilities > Reports. The name of the
current script appears in the Test Name field of the Reports dialog box. The
displayed report includes only the Detailed Results Description section.

Working with VXRunner • Viewing Execution Reports

Creating GUI Virtual User Scripts (UNIX) Chapter 8, page 73

Adding Messages to Reports

You can include your own message in an execution report by inserting a
report_msg statement in the script:

report_msg (message);

The message can be a string, variable, or both. For example, the following
report_msg statement gets the current value of the searchpath system variable,
and enters a statement in the execution report containing your message and the
current value of searchpath:

x = getvar ("searchpath");
report_msg ("The current searchpath is" & x);

Creating GUI Virtual User Scripts (UNIX) 74

Part III

Debugging GUI Vuser Scripts

Debugging GUI Virtual User Scripts
Debugging GUI Vuser Scripts

Creating GUI Virtual User Scripts (UNIX) Chapter 9, page 75

9
Debugging GUI Vuser Scripts

VXRunner provides several line-by-line replay commands that enable you to debug
your GUI Vuser scripts.

This chapter describes:

• Runnin g a Single Line of a GUI Vuser Scri pt

• Runnin g a Section of a GUI Vuser Scri pt

• Pausin g Scri pt Execution

Creating GUI Virtual User Scripts (UNIX) Chapter 9, page 76

Debugging GUI Virtual User Scripts • Debugging GUI Vuser Scripts

About Debugging GUI Vuser Scripts

VXRunner lets you replay scripts line-by-line in order to isolate and eliminate
defects in your scripts. You can use three commands to control replay of
statements and functions: Step, Step Into and Step Out. Another controlled replay
command is Step to Cursor. This lets you replay segments of your scripts between
two specified points.

You can also control script execution by setting breakpoints. A breakpoint pauses
a script run at a predetermined point. For more information, see Chapter 10, Usin g
Break points .

To help you debug your tests,VXRunner allows you to monitor variables in a script.
You define the variables you want to monitor in a Watch List. As the test runs, you
can view the values that are assigned to the variables. For more information see
Chapter 11, Monitorin g Variables .

Debugging GUI Virtual User Scripts • Debugging GUI Vuser Scripts

Creating GUI Virtual User Scripts (UNIX) Chapter 9, page 77

Running a Single Line of a GUI Vuser Script

You can perform controlled execution by selecting the Step, Step Into, or the Step
Out commands from the Replay Menu, or by pressing the corresponding softkeys.
(See the last page of this manual for a list of the default softkey definitions.)

• The Step command executes the current line of the script (the line indicated by
the execution marker). When the current line calls another script or user-defined
function, the called script or function is executed in its entirety, but is not displayed
in the VXRunner window.

• The Step Into command, like Step, processes a single line of the current script.
However, when the current line of the executed script calls another script or a
user-defined function, the called script or function is displayed in the VXRunner
window. The individual lines of the called script or function can then be executed
using either Step or Step Into.

• The Step Out command is used after a called script or function was entered using
the Step Into command. Step Out animates to the end of the called script or
function and then pauses. Step Out eliminates the need to execute a called script
or function line-by-line using the Step command.

Creating GUI Virtual User Scripts (UNIX) Chapter 9, page 78

Debugging GUI Virtual User Scripts • Debugging GUI Vuser Scripts

Running a Section of a GUI Vuser Script

The Step to Cursor command allows you to perform an animated replay of one
section of a script.

To use the Step to Cursor command:

 1 Move the execution marker to the line of the script where you want execution to
begin. Then execute one line by selectiong Replay > Step (or by pressing the STEP
softkey [F7]).

 2 Move the insertion point to the line where you want execution to stop.

 3 Select Replay > Step to Cursor. VXRunner executes the script up to the line you
marked in step 2.

 4 To resume execution, select a command from the Replay menu or press the
appropriate softkey. (See the last page of this manual for a list of the default
softkey definitions.)

Debugging GUI Virtual User Scripts • Debugging GUI Vuser Scripts

Creating GUI Virtual User Scripts (UNIX) Chapter 9, page 79

Pausing Script Execution

You can interactively stop the execution of a script by using the Pause command.
To pause script execution, select Replay > Pause, or press the PAUSE softkey. (See
the last page of this manual for a list of the default softkey definitions.) To resume
execution of a paused script, activate the desired replay command using its softkey.
The execution continues from the point that you invoked Pause, or from the position
of the execution marker if you moved it while the script was suspended.

Debugging GUI Virtual User Scripts
Using Breakpoints

Creating GUI Virtual User Scripts (UNIX) Chapter 10, page 80

10
Using Breakpoints

A breakpoint stops script execution at any point in a script. You can use breakpoints
together with the controlled execution commands to identify flaws in your scripts.

This section describes:

• Settin g and Removin g Break points

• Modif ying Break points

• Deletin g a Break point

Debugging GUI Virtual User Scripts • Using Breakpoints

Creating GUI Virtual User Scripts (UNIX) Chapter 10, page 81

About Breakpoints

Setting a breakpoint tells VXRunner to stop execution at a specified line or function
in a Vuser script. During replay, VXRunner halts before executing the specified line.
The script execution can be restarted from that point. Once restarted, it continues
to run until it is completed or the next breakpoint is reached. Breakpoints can be
set in any script, compiled module, or function.

Breakpoints are created, modified, and deleted using the Breakpoints dialog box.
They can also be set using the mouse, the Toggle Breakpoints command, or the
Break in Function command.

Creating GUI Virtual User Scripts (UNIX) Chapter 10, page 82

Debugging GUI Virtual User Scripts • Using Breakpoints

Breakpoints are indicated by markers that appear in the left margin of the
VXRunner window.

You can set a pass counter for each breakpoint to define how many times the
breakpoint is passed before execution stops. For example, suppose you create a
loop that performs a command fifty times. The pass counter is set by default to zero
so VXRunner stops execution each time the loop is performed. If you set the pass
counter to 25, execution stops only after the twenty-fifth iteration of the loop.

Breakpoint

Debugging GUI Virtual User Scripts • Using Breakpoints

Creating GUI Virtual User Scripts (UNIX) Chapter 10, page 83

There are two types of breakpoints: Break at Line and Break in Function.

A Break at Line breakpoint is defined by a script name and a line number. The
breakpoint marker appears in the left margin of the VXRunner window, next to the
designated line. For example, a Break at Line breakpoint could be listed in the
Breakpoint dialog box as:

The breakpoint appears in the script, my_test, at line 137. The number following
the colon is the pass counter, here set to zero.

A Break in Function breakpoint is defined by the name of a function or a compiled
module in the script. The breakpoint marker appears in the left margin of the
VXRunner window next to the first line of the function definition. VXRunner halts
execution each time the specified function is called. For example, a Break in
Function breakpoint could be listed in the Breakpoints dialog box as:

The function appears in the script derick. The breakpoint appears in the line
containing the function my_func, in this case line 25. The pass counter is set to ten.

my_test[137]:0

my_func[derick:25]:10

Creating GUI Virtual User Scripts (UNIX) Chapter 10, page 84

Debugging GUI Virtual User Scripts • Using Breakpoints

Setting and Removing Breakpoints

You can set breakpoints in a variety of ways, as described below.

To set a Break at Line breakpoint using the mouse:

 1 Move the mouse pointer to the left margin of the line of the script where you want
execution to stop.

 2 Click the right mouse button. The breakpoint symbol appears in the left margin of
the VXRunner window.

 3 Click the right mouse button again to remove the breakpoint.

To set a Break at Line breakpoint using the Toggle Breakpoint command:

 1 Move the insertion point to the line of the script where you want execution to stop.

 2 Select Debug > Toggle Breakpoint, or press the BREAKPOINT softkey. (See the last
page of this manual for a list of the default softkey definitions.) The breakpoint
symbol appears in the left margin of the VXRunner window.

 3 Select Toggle Breakpoint again to remove the breakpoint.

Debugging GUI Virtual User Scripts • Using Breakpoints

Creating GUI Virtual User Scripts (UNIX) Chapter 10, page 85

To set a Break in Function breakpoint Using the Break in Function
Command:

 1 Select Debug > Break in Function (or press CTRL+B.) The New Breakpoint dialog
box opens.

 2 Enter a function name in the Function text box. The function must be one already
compiled by VXRunner.

 3 Type a value in the Pass Count text box.

 4 Close the dialog box by clicking OK. The breakpoint symbol appears in the left
margin of the VXRunner window.

Creating GUI Virtual User Scripts (UNIX) Chapter 10, page 86

Debugging GUI Virtual User Scripts • Using Breakpoints

To set a Break at Line breakpoint using the Breakpoints dialog box:

 1 Select Debug > Breakpoints.The Breakpoints dialog box opens.

 2 Click New. The New Breakpoint dialog box opens.

 3 The Break box is set to At Line, by default. The script name is set to the current
active script, by default. The At Line box is set to the line number of the insertion
point. The Pass Counter is set to zero. You can change any of these values. see
Modif ying Break points on page 88.

 4 Click OK to set the breakpoint and close the New Breakpoint dialog box. The
breakpoint appears in the Break at Line list. The breakpoint marker appears in the
left margin of the VXRunner window, next to the selected line.

Debugging GUI Virtual User Scripts • Using Breakpoints

Creating GUI Virtual User Scripts (UNIX) Chapter 10, page 87

To set a Break in Function breakpoint using the Breakpoints dialog box:

 1 Select Debug > Breakpoints. The Breakpoint dialog box opens.

 2 Click New. The New Breakpoint dialog box opens.

 3 In the Break list, click In Function. The dialog box changes in order to let you type
in a function name and a pass count value.

 4 Type a function name in the In Function text box. The function must be one
already compiled by VXRunner.

 5 Type a value in the Pass Count text box.

6 Close the dialog box by clicking OK. The breakpoint appears in the Break in Func-
tion list. The breakpoint symbol appears in the left margin of the VXRunner win-
dow.

Creating GUI Virtual User Scripts (UNIX) Chapter 10, page 88

Debugging GUI Virtual User Scripts • Using Breakpoints

Modifying Breakpoints

You can modify breakpoints by using the Breakpoints dialog box.

To modify a breakpoint:

 1 Open the Breakpoints dialog box. Click on a breakpoint in one of the list boxes.
The breakpoint is highlighted.

 2 Click Modify. The Modify breakpoint dialog box opens.

 3 To change the type of Breakpoint, click the Break list and then click a breakpoint
type.

 4 To select another script, click the In Test list. Click another script in the calls chain.

 5 To change the location of the Breakpoint, type a new line number in the At Line
Text box.

 6 To change the Pass Count, type a new number in the Pass Count text box.

 7 Click OK to close the dialog box.

Debugging GUI Virtual User Scripts • Using Breakpoints

Creating GUI Virtual User Scripts (UNIX) Chapter 10, page 89

Deleting a Breakpoint

You can delete a single breakpoint or all the breakpoints listed in the Breakpoints
dialog box.

To delete a single breakpoint:

 1 Open the Breakpoints dialog box.

 2 Click a breakpoint in either of the two breakpoint lists. The breakpoint is high-
lighted.

 3 Click Delete. The breakpoint is removed from the list.

4 Click OK to close the Breakpoints dialog box.

To delete all the breakpoints listed in the Breakpoints dialog box:

 1 Open the Breakpoints dialog box.

 2 Click Delete All. All the breakpoints are deleted from both lists.

3 Click OK to close the dialog box.

Debugging GUI Virtual User Scripts
Monitoring Variables

Creating GUI Virtual User Scripts (UNIX) Chapter 11, page 90

11
Monitoring Variables

The Watch List monitors specified variables and expressions during debugging.
Use this feature to check the value of variables and to observe how they influence
script execution. The Watch List can be used with any variable, array, or TSL
expression.

This chapter describes:

• Addin g a Variable or Ex pression to the Watch List

• Addin g an Arra y to the Watch List

• Modif ying an Expression in the Watch List

• Assi gnin g a Value to a Variable

• Deletin g Expressions and Variables from the Watch List

Debugging GUI Virtual User Scripts • Monitoring Variables

Creating GUI Virtual User Scripts (UNIX) Chapter 11, page 91

About Monitoring Variables

The Watch List helps you to debug scripts by monitoring the value of variables,
arrays and array elements, and legal TSL expressions. The variables in the Watch
List are updated each time VXRunner stops execution (after a Step command, stop
on a breakpoint, etc.) You can modify the expressions in the Watch List, and assign
new values to variables. In the following script, the Watch List is used to measure
and track the value of the variable a.

The following expressions and values appear in the Watch List:

a:1
a+1:2
b+a:3

After the script is run the Watch List shows the following results:

a:9
a + 1:10
b + a:19

for (i = 1; i < 10; i++){
a = i;
b = a + 1;
c = a + b;
}

Creating GUI Virtual User Scripts (UNIX) Chapter 11, page 92

Debugging GUI Virtual User Scripts • Monitoring Variables

If a test script has several variables with the same name but different scopes, the
variable is evaluated according to the current scope of the interpreter. For example,
suppose both test_a and test_b use a static variable x, and test_a calls test_b. If
you include the variable x in the Watch List, the value of x displayed at any time
depends on whether VRunner is interpreting test_a or test_b.

Selecting a script from the Calls List also changes the context of watch variables
and expressions, and updates the Watch List.

Debugging GUI Virtual User Scripts • Monitoring Variables

Creating GUI Virtual User Scripts (UNIX) Chapter 11, page 93

Adding a Variable or Expression to the Watch List

You can add variables to the Watch List by selecting Debug > Add Watch, or by
using the Watch List dialog box. Variables can include expressions, arrays, and
array elements.

To add a variable to the Watch List using the Add Watch Command:

 1 Select Debug > Add Watch (or press Ctrl-W). The Add Watch dialog box opens.

 2 Type the variable name in the Expression box. Click Evaluate to see the current
value of the variable.

If the variable has not been executed or contains an error, the message “<cannot
evaluate>” appears in the Value box.

 3 Click OK. The Add Watch dialog box closes and the expression appears in the
Watch List.

Creating GUI Virtual User Scripts (UNIX) Chapter 11, page 94

Debugging GUI Virtual User Scripts • Monitoring Variables

Note : Do not add expressions to the Watch List that assign or increment the value
of variables, because this can affect script execution.

To add a variable to the Watch List using the Watch List dialog box:

 1 Select Debug > Watch List to open the Watch List dialog box.

 2 Click the Add button to open the Add Watch dialog box.

 3 Type the variable name in the Expression box. Click Evaluate to see the current
value of the variable.

If the variable was not executed or contains an error, the message “<cannot
evaluate>” appears in the Value field.

 4 To close the Add Watch dialog box, click OK. The dialog box closes and the
expression appears in the Watch List.

Debugging GUI Virtual User Scripts • Monitoring Variables

Creating GUI Virtual User Scripts (UNIX) Chapter 11, page 95

Adding an Array to the Watch List

To add an array to the Watch List:

 1 Select Debug Add Watch (or press Ctrl-W). The Add Watch dialog box opens.

 2 Type the array variable in the Expression box. Type the value of the array in the
Value box.

 3 To close the Add Watch dialog box, click OK.

 4 Select Debug > Watch List. The Watch List dialog box opens with the array
variable displayed.

Creating GUI Virtual User Scripts (UNIX) Chapter 11, page 96

Debugging GUI Virtual User Scripts • Monitoring Variables

 5 To view the array elements, double-click the item containing the array variable.
Click the array to return to the array variable.

Debugging GUI Virtual User Scripts • Monitoring Variables

Creating GUI Virtual User Scripts (UNIX) Chapter 11, page 97

Modifying an Expression in the Watch List

You can modify variables and expressions using the Modify Watch dialog box. For
example, you can turn variable b into the expression b + 1. The Watch List is
automatically updated to produce a new value for the expression.

To modify an expression in the Watch List:

 1 Open the Watch List.

 2 Click on an expression.

 3 Click Modify to open the Modify Watch dialog box.

 4 Type changes in the Expression box. Click Evaluate to see the value of the
modified expression. The expression is evaluated again and the new value
appears in the Value field.

 5 Click OK to close the dialog box. The modified value appears in the Watch List.

Creating GUI Virtual User Scripts (UNIX) Chapter 11, page 98

Debugging GUI Virtual User Scripts • Monitoring Variables

Assigning a Value to a Variable

You can assign new values to variables. For example, you can change the value of
variable b from 2 to 10. Values can be assigned only to variables or array
subscripts, not to TSL expressions.

To assign a value to a variable:

 1 Open the Watch List.

 2 Click on an expression in the Watch List.

 3 Click Assign to open the Assign Variable dialog box.

 4 Type the new value in the New Value box.

 5 To close the dialog box, click OK. The new value appears in the Add Watch dialog
box.

Debugging GUI Virtual User Scripts • Monitoring Variables

Creating GUI Virtual User Scripts (UNIX) Chapter 11, page 99

Deleting Expressions and Variables from the Watch List

To delete an expression or variable:

 1 Open the Watch List.

 2 Click on an expression in the Watch List. The expression is highlighted.

 3 Click Delete to remove the expression from the list.

4 Click Close to close the Watch List.

Deleting All Expressions and Variables
To delete all expressions and variables in the Watch List:

 1 Open the Watch List.

 2 Click Delete All. All expressions are deleted from both lists.

3 Click Close to close the dialog box.

Creating GUI Virtual User Scripts (UNIX) Chapter , page 100

 •

Part IV

Using LoadRunner Functions

Using LoadRunner Functions
Measuring System Performance: Transactions

Creating GUI Virtual User Scripts (UNIX) Chapter 12, page 101

12
Measuring System Performance: Transactions

LoadRunner measures server performance by measuring the time taken to
perform certain tasks or transactions. In the GUI Vuser script, you define the
transactions to be measured.

This chapter describes:

• Declarin g Transactions

• Markin g the Start of a Transaction

• Markin g the End of a Transaction

Creating GUI Virtual User Scripts (UNIX) Chapter 12, page 102

Using LoadRunner Functions • Measuring System Performance: Transactions

About Measuring System Performance

When you develop a GUI Vuser script you insert transaction statements into the
script. LoadRunner uses the transactions to measure the time it takes for a Vuser
to perform a specific task. This enables you to measure how your system performs
under various load conditions.

A transaction may be a single task—such as a deleting a file—or it may include
multiple tasks. Within a script, you can mark an unlimited number of transactions
for analysis, each with a different name, and starting and ending in different places.
Transactions can be nested.

To use the transactions to measure intense server load, you can define rendezvous
points. For more information, see Chapter 13, Emulatin g Server Load:
Rendezvous Points .

You can analyze system performance using a variety of graphs and reports. For
more information about analyzing system performance, refer to the LoadRunner
Controller User’s Guide .

Using LoadRunner Functions • Measuring System Performance: Transactions

Creating GUI Virtual User Scripts (UNIX) Chapter 12, page 103

Declaring Transactions

You must declare all the transactions in a Vuser script in the beginning of the script.
To declare a transaction, you use the declare_transaction function. The syntax of
this functions is:

declare_transaction (transaction_name);

The transaction_name parameter can be any string. It must be a literal string
constant, and not a variable or an expression.

In the following example, the declare_transaction function is used to declare the
transactions “deposit”, “withdraw” and “balance”:

declare_transaction ("deposit");
declare_transaction ("withdraw");
declare_transaction ("balance");

Creating GUI Virtual User Scripts (UNIX) Chapter 12, page 104

Using LoadRunner Functions • Measuring System Performance: Transactions

Marking the Start of a Transaction

To indicate the start of the transaction, you insert a start_transaction statement
into your Vuser script—immediately before the action you want to measure. The
syntax of this function is:

start_transaction (transaction_name [, when]);

• transaction_name can be any transaction that you declared using the
declare_transaction function.

• when determines when LoadRunner begins to measure the transaction, and can
be set to NOW or ONINPUT. NOW, the default, causes LoadRunner to begin
measuring as soon as the start_transaction statement is interpreted. ONINPUT
causes LoadRunner to begin measuring the transaction only when the first mouse
or keyboard input is submitted to the application.

In the following example, start_transaction is used to mark the start of the
transaction “deposit”. LoadRunner begins to measure the transaction as soon as
the start_transaction statement is interpreted:

start_transaction ("deposit", NOW);

Using LoadRunner Functions • Measuring System Performance: Transactions

Creating GUI Virtual User Scripts (UNIX) Chapter 12, page 105

Marking the End of a Transaction

To indicate the end of a transaction, you insert an end_transaction statement into
your Vuser script—after the action you want to measure. The syntax of this function
is:

end_transaction (transaction_name [, status]);

• transaction_name can be any transaction that you declared using the
declare_transaction function.

• status can be set to PASS or FAIL. This tells LoadRunner if the transaction passed
or failed. The default is PASS.

In the following example, end_transaction is used to mark the end of the
transaction “deposit”.

end_transaction ("deposit", PASS);

Creating GUI Virtual User Scripts (UNIX) Chapter 12, page 106

Using LoadRunner Functions • Measuring System Performance: Transactions

A Sample Transaction

In the following sample Vuser script, the “deposit” transaction is defined to measure
how long it takes for a Vuser to deposit $50 at an ATM. LoadRunner starts
measuring the transaction as soon as the Vuser clicks the OK button. The
transaction passes if the message “Done” appears in the ATM display. If any other
message appears, the transaction fails.

Declare the transaction name.
declare_transaction ("deposit");

Move mouse to deposit button.
move_locator_abs (127, 198, 0);

Click left mouse button.
click ("Left");

Move to amount field.
move_locator_abs (141, 350,0);

Type in $50.
type ("50");

Move to the OK button.
move_locator_abs (135, 378, 0);

Using LoadRunner Functions • Measuring System Performance: Transactions

Creating GUI Virtual User Scripts (UNIX) Chapter 12, page 107

Define a Deposit transaction.
start_transaction ("deposit", ONINPUT);

Click on the OK button.
click ("Left");

Wait for “Done” to appear in the ATM window.
rc=wait_text ("Done", 5, ret_text, ret_index, 0, 0, 500, 500, ret_bbox);

End Deposit transaction.
if (rc == 0)

end_transaction ("deposit", PASS);
else

end_transaction ("deposit" , FAIL);

Using LoadRunner Functions
Emulating Server Load: Rendezvous Points

Creating GUI Virtual User Scripts (UNIX) Chapter 13, page 108

13
Emulating Server Load: Rendezvous Points

By inserting rendezvous points into your Vuser scripts you can control the actions
of multiple Virtual Users. This allows you to emulate specific and peak load
conditions on the server.

This chapter describers:

• Declarin g a Rendezvous

• Specif ying the Point of Rendezvous in a GUI Vuser Scri pt

Using LoadRunner Functions • Emulating Server Load: Rendezvous Points

Creating GUI Virtual User Scripts (UNIX) Chapter 13, page 109

About Synchronizing Multiple Vusers

When designing a scenario, you will want to synchronize the actions of two or more
virtual users. You can do this by creating inter-user synchronization points in your
Vuser scripts. An inter-user synchronization point is called a rendezvous. A
rendezvous is used to:

• emulate interaction between Vusers (for example, two users access the same
account at the same time).

• create a specific or peak load (for example, fifty users try to withdraw cash
simultaneously from automatic teller machines).

To create a rendezvous in a scenario:

 1 Declare the rendezvous at the start of the Vuser script.

 2 Designate the point at which the rendezvous will take place in the Vuser script.

 3 If you are using a UNIX Controller, define the rendezvous in the scenario script,
set its attributes, and determine which Vusers should attend. For more details,
refer to the LoadRunner Controller User’s Guide (UNIX) .

For information on how to synchronize the execution of a Vuser script with the
responses from an application, see Chapter 5, Synchronizin g GUI Vuser Scri pt
Execution .

Creating GUI Virtual User Scripts (UNIX) Chapter 13, page 110

Using LoadRunner Functions • Emulating Server Load: Rendezvous Points

Declaring a Rendezvous

You must declare all the rendezvous points in a Vuser script at the beginning of the
script. This tells LoadRunner which rendezvous points are included in a script
before interpreting the entire script.

To declare a rendezvous, you use the declare_rendezvous function. The syntax
of this functions is:

declare_rendezvous (rendezvous_name);

where rendezvous_name is the name that you defined in the scenario script for
the rendezvous point.

In the following example, the declare_rendezvous function is used to declare the
rendezvous points “load_10” and “load_20.”

declare_rendezvous ("load_10");
declare_rendezvous ("load_20");

Using LoadRunner Functions • Emulating Server Load: Rendezvous Points

Creating GUI Virtual User Scripts (UNIX) Chapter 13, page 111

Specifying the Point of Rendezvous in a GUI Vuser Script

You designate the point at which the rendezvous will take place, you insert a
rendezvous statement into the Vuser script. The function has the following syntax:

rendezvous (rendezvous_name);

where rendezvous_name is the name of the rendezvous that you declared at the
beginning of the script.

Creating GUI Virtual User Scripts (UNIX) Chapter 13, page 112

Using LoadRunner Functions • Emulating Server Load: Rendezvous Points

A Sample Rendezvous

Suppose that while testing the sample bank application, you want to see what
happens when ten Vusers simultaneously deposit, and then withdraw, cash from
automatic teller machines. In the scenario script you create a rendezvous named
“load_10” and define a Vuser rendezvous list of ten Vusers.

In the Vuser script, you would insert the following in the section where the deposit
and withdrawal are performed:

Declare rendezvous
declare_rendezvous ("load_10");

Define rendezvous points
rendezvous ("load_10");
deposit (50);
rendezvous ("load_10");
withdraw (100);

Using LoadRunner Functions
Enhancing Scripts Using Functions

Creating GUI Virtual User Scripts (UNIX) Chapter 14, page 113

14
Enhancing Scripts Using Functions

Once you have developed a GUI Vuser script, you can enhance your script with
LoadRunner functions.

This chapter describes:

• Sendin g Messages from Vuser scri pts

• Obtainin g Virtual User Information

• Specif ying Your Own Data for Anal ysis

Creating GUI Virtual User Scripts (UNIX) Chapter 14, page 114

Using LoadRunner Functions • Enhancing Scripts Using Functions

About Enhancing Vuser Scripts with LoadRunner Functions

LoadRunner provides many functions that you can use to enhance your Vuser
scripts. For example, you can send messages from Vuser scripts, obtain Virtual
User information, and specify your own data for analysis.

For details of all functions specific to LoadRunner GUI Vuser scripts, see
Chapter 1, Function Reference .

Using LoadRunner Functions • Enhancing Scripts Using Functions

Creating GUI Virtual User Scripts (UNIX) Chapter 14, page 115

Sending Messages from Vuser scripts

You can use the print and printf functions in Vuser scripts to write to the Vuser
standard output. The information in the Vuser standard output is saved in a file
called stdout in the directory scenario/result_dir/group/vuser. You can view this file
during scenario execution using the View menu in the Controller. For more
information on the print and printf functions, see the TSL Online Reference .

During scenario execution, the LoadRunner Output window displays valuable
information about scenario status. In addition to the messages automatically sent
by LoadRunner, you can send messages from Vuser scripts to the Output window.
Note that only messages relating to scenario execution status should be sent to the
LoadRunner output window rather than to standard output.

The following functions enable a Vuser script to send information to the
LoadRunner Output window:

• The error_message function is used to send an error message.

• The output_message function is used to send a special notification that is not an
error message.

For more information about each of these functions, see Chapter 1, Function
Reference .

Creating GUI Virtual User Scripts (UNIX) Chapter 14, page 116

Using LoadRunner Functions • Enhancing Scripts Using Functions

Obtaining Virtual User Information

When you execute a scenario, many Vusers may run the same Vuser script. You
may want to know which Vuser is running a particular instance of a script. For
instance, consider a Group consisting of 100 Vusers. Every Vuser needs to log in
to a remote machine using its own name and password.

LoadRunner provides several functions that enable a Vuser script to obtain
information about the Vuser that is running the script. These functions include:

• lr_whoami: returns the Vuser, Group, and scenario ID for a Vuser.

• get_host_name: returns the name of the host machine for a Vuser.

• get_master_host_name: returns the name of the LoadRunner Controller host
machine.

For more information about each of these functions, see Chapter 1, Function
Reference .

In the following script segment, the Vuser enters a secret code and then deposits
$50 in an automatic teller machine (ATM). The Vuser’s secret code is equal to its
ID number plus 100. The lr_whoami function is used to determine the ID number
of the Vuser currently running the script.

Using LoadRunner Functions • Enhancing Scripts Using Functions

Creating GUI Virtual User Scripts (UNIX) Chapter 14, page 117

Insert bank card.
move_locator_abs(127, 198, 0);

Click on the Card_in button.
click ("Left");

Secret code is Vuser id no + 100. Get Vuser id number.
lr_whoami(id, group);
code = id + 100;

Type the secret code.
type (code & "<kReturn>");

Move mouse to deposit button.
move_locator_abs(127, 198, 0);

Click the deposit button.
click ("Left");

Move to amount field.
move_locator_abs(141, 350, 0);

Type in $50.
type ("50" "<kReturn>");

Move to the OK button.
move_locator_abs(135, 378, 0);

Click on the OK button.
click ("Left");

Creating GUI Virtual User Scripts (UNIX) Chapter 14, page 118

Using LoadRunner Functions • Enhancing Scripts Using Functions

Specifying Your Own Data for Analysis

User data points instruct LoadRunner to record the value of specified variables. For
example, you could define a user data point to measure CPU utilization over a
period of time.

You define a user data point by inserting a user_data_point statement into your
Vuser script. Every time LoadRunner interprets a user_data_point statement, an
event is created in the Vuser event file, and the following information is recorded:

• the name of the data point

• the value of the data point

• the time that the data was recorded

Using LoadRunner Functions • Enhancing Scripts Using Functions

Creating GUI Virtual User Scripts (UNIX) Chapter 14, page 119

You can use LoadRunner’s User Defined report and graph facilities to analyze this
data. The syntax of the user_data_point function is:

user_data_point (sample_name, value);

• sample_name is a string that contains the name of the data point.

• value contains the value to be recorded.

for (i=0;i<100;i++) {
cpu_val=cpu_check();
user_data_point("cpu", cpu_val);
sleep(60);

}

Creating GUI Virtual User Scripts (UNIX) 120

Part V

Programming with TSL

Programming with TSL
Introducing TSL

Creating GUI Virtual User Scripts (UNIX) Chapter 15, page 121

15
Introducing TSL

GUI Vuser scripts are composed of statements coded in Mercury Interactive’s Test
Script Language (TSL). These statements are either generated automatically
(recorded), or are programmed manually.

This chapter describes:

• Constants

• Variables

• Operators

• Control-Flow Statements

• Built-in Functions

• Comments

Creating GUI Virtual User Scripts (UNIX) Chapter 15, page 122

Programming with TSL • Introducing TSL

About TSL

TSL combines general-purpose programming language features (variables,
control-flow statements, arrays, user-defined functions), and built-in functions
specifically designed for script creation. Certain words are therefore reserved by
TSL and may not be used as variable names. Note that TSL is a case sensitive
language.

This chapter provides a brief overview of TSL. For more information, see the TSL
Online Reference .

Programming with TSL • Introducing TSL

Creating GUI Virtual User Scripts (UNIX) Chapter 15, page 123

Constants

TSL supports two types of constants, strings and numbers. Strings are enclosed
within quotes; numbers are either an integer or floating point type. VXRunner
identifies the constant type according to its context.

Creating GUI Virtual User Scripts (UNIX) Chapter 15, page 124

Programming with TSL • Introducing TSL

Variables

Variables are the basic data objects manipulated in a script. As with constants,
variables can be either a string or a number.

TSL supports the use of static variables. A static variable is local to the script in
which it is declared and does not affect a variable having the same name belonging
to another script.

Programming with TSL • Introducing TSL

Creating GUI Virtual User Scripts (UNIX) Chapter 15, page 125

Operators

TSL supports six types of operators:

• arithmetical

• string

• relational

• logical

• conditional

• assignment

Creating GUI Virtual User Scripts (UNIX) Chapter 15, page 126

Programming with TSL • Introducing TSL

Arithmetical Operators
The signs used to represent each of the four binary arithmetical operators are:

+ addition
- subtraction
* multiplication
/ division

In addition, TSL provides modulus and exponentiation operators. Their signs are:

% modulus
^ or ** exponentiation

TSL also supports increment and decrement operators for variables:

++ adds 1 to its operand (incremental)
- - subtracts 1 from its operand (decremental)

The increment and decrement operators may be placed before the variable (++n),
or after the variable (n++). As a result, the variable is incremented or decremented
either before or after the value is used.

Programming with TSL • Introducing TSL

Creating GUI Virtual User Scripts (UNIX) Chapter 15, page 127

String Operator
The ampersand (&) character is used by TSL to concatenate adjacent strings. For
example, the statement

X = "ab" & "cd";

assigns the value abcd to variable X.

Relational Operators
The relational operators used in TSL are:

> greater than
>= greater than or equal to
< less than
<= less than or equal to
= = equal to
!= not equal to

Creating GUI Virtual User Scripts (UNIX) Chapter 15, page 128

Programming with TSL • Introducing TSL

Logical Operators
Logical operators are used to create logical expressions by combining two or more
basic expressions. TSL supports the following logical operators:

&& and
|| or
! not

When evaluated, a logical expression is assigned the value 1 if true and 0 if false.

Conditional Operator
In TSL, the question mark (?) character is the conditional operator. Conditional
expressions have the format:

expression1 ? expression2 : expression3

First, expression1 is evaluated, and if it is true, expression2 is evaluated and
becomes the value of the expression. If expression1 is false (zero or null), then
expression3 is evaluated.

Programming with TSL • Introducing TSL

Creating GUI Virtual User Scripts (UNIX) Chapter 15, page 129

Assignment Operators
The following assignment operators can be used to assign a value to a variable:

Sign Example Meaning
= a = b assign the value of b to a
+= a += b assign the value of a plus b to a
-= a -= b assign the value of a minus b to a
*= a *= b assign the value of a times b to a
/= a /= b assign the value of a divided by b to a
%= a %= b assign the value of a modulus b to a
^= or ** a ^ =b assign the value of a to the power of b, to a

Creating GUI Virtual User Scripts (UNIX) Chapter 15, page 130

Programming with TSL • Introducing TSL

Control-Flow Statements

Control-flow statements determine the sequence and conditions in which script
statements are interpreted. The control-flow elements supported by TSL include:

• brackets for creating a compound statement from an enclosed list of simpler
statements

• if ... else, and switch statements for decision making

• while, for, and do statements for looping

Programming with TSL • Introducing TSL

Creating GUI Virtual User Scripts (UNIX) Chapter 15, page 131

The following is a summary of the TSL control-flow statements:

{ statements }

if (expression) statement;

if (expression) statement1;else statement2;

while (expression) statement;

for (expression1; expression2; expression3) statement;

do statement while expression;

switch (expression) {
case case_expr1: statements
case case_expr2: statements
case case_exprn: statements
[default : statements]}

break ;

continue ;

Creating GUI Virtual User Scripts (UNIX) Chapter 15, page 132

Programming with TSL • Introducing TSL

Built-in Functions

TSL provides an assortment of built-in functions. These are described in detail in
the TSL Online Reference .

Programming with TSL • Introducing TSL

Creating GUI Virtual User Scripts (UNIX) Chapter 15, page 133

Comments

A number sign (#) in a line of a TSL script indicates that all text located between
this sign and the end of the line is a comment. The VXRunner interpreter does not
process comments.

Creating GUI Virtual User Scripts (UNIX) Chapter 15, page 134

Programming with TSL • Introducing TSL

Programming with TSL
Creating User-Defined Functions

Creating GUI Virtual User Scripts (UNIX) Chapter 16, page 135

16
Creating User-Defined Functions

You can expand VXRunner’s capabilities by creating your own, user-defined TSL
functions. Functions can appear in a script or a compiled module.

This chapter describes:

• Function S yntax

• Variable, constant, and array declarations

• Return Statement

Creating GUI Virtual User Scripts (UNIX) Chapter 16, page 136

Programming with TSL • Creating User-Defined Functions

About User-Defined Functions

In addition to its built-in functions, TSL allows you to design and implement your
own functions. The following main options are available:

• You can create user-defined functions in a script. Once the function is replayed, it
can be called from anywhere within a script.

• You can create user-defined functions in a compiled module. Once the module is
loaded, the function can be called from any script. For more information, see
Chapter 17, Creatin g Compiled Modules .

User-defined functions are convenient in situations when you want to perform the
same operation in a script several times. Instead of repeating the code over and
over, you can write a single function that performs the operation. As a result your
scripts are modular, more readable, and easier to debug and maintain.

A function can be called from anywhere in the script. Since it is already compiled,
execution time is faster. For instance, suppose you create a script that opens a
number of files and checks their contents. Instead of recording or programming the
sequence that opens the file several times, you could write a function and call it
each time you want to open a file.

Programming with TSL • Creating User-Defined Functions

Creating GUI Virtual User Scripts (UNIX) Chapter 16, page 137

Function Syntax

A user-defined function has the following structure:

[class] function name ([mode] parameter...)
{
declarations;
statements;
}

Class
The class of a function may be either static or public. A static function is available
only to the script or module within which the function was defined.

Once you replay a public function, it is available to all scripts, as long as the script
containing the function remains open. This is convenient when you want the
function to be accessible from called scripts. However, if you want to create a
function that will be available to many scripts, you should place it in a compiled
module.

If no class is explicitly declared, the function is assigned the default class, public.

Creating GUI Virtual User Scripts (UNIX) Chapter 16, page 138

Programming with TSL • Creating User-Defined Functions

Parameters
Function parameters can be of mode in, out, or inout. For all non-array parameters,
the default mode is in. The significance of each of these parameter types is as
follows:

in: A parameter that is assigned a value from outside the function.

out: A parameter that is assigned a value from inside the function.

inout : A parameter that can be assigned a value from outside the function, as well
as pass on a value to the outside.

Array parameters are designated by square brackets. For example, the following
parameter list would indicate that variable a is an array:

function my_func (a[], b, c){
 ...
}

Array parameters can be either out or inout. If no class is specified, the default
inout is assumed.

While variables used within a function must be explicitly declared, this is not the
case for parameters.

Programming with TSL • Creating User-Defined Functions

Creating GUI Virtual User Scripts (UNIX) Chapter 16, page 139

Declarations
Normally in TSL, declaration is optional. In functions, however, variables,
constants, and arrays must all be declared. The declaration can be within the
function itself, or anywhere else within the script or module. Additional information
about declarations can be found in the TSL Online Reference .

Variables

Variable declarations have the following syntax:

class variable [= init_expression];

The init_expression assigned to a declared variable can be any valid expression.
If an init_expression is not set, the variable is assigned an empty string. The
variable class can be one of the following:

auto : An auto variable may be declared only within a function. It is limited in scope
to the function within which it is defined, and exists only as long as the function is
still running. Note that a recursive call of the function creates a new copy of an auto
variable.

static : A static variable is limited in scope to the function, script, or module within
which it is defined.

public : A public variable may be declared only outside a function. Such a variable
is available to all scripts.

extern : An extern variable is defined outside of the function, script, or module in
which it appears. An extern declaration cannot initialize the variable.

Creating GUI Virtual User Scripts (UNIX) Chapter 16, page 140

Programming with TSL • Creating User-Defined Functions

With the exception of the auto variable, all variables continue to exist until the Abort
command is executed. The following table summarizes the scope, lifetime, and
availability (where the declaration can appear) of each type of variable:

Note : In compiled modules, the Abort command initializes static and public
variables. For more information about compiled modules, Chapter 17, Creatin g
Compiled Modules .

Declaration Scope Lifetime Availability

auto local end of function within function only

static local until abort function, script, or module

public global until abort script or module only

extern global until abort function, script, or module

Programming with TSL • Creating User-Defined Functions

Creating GUI Virtual User Scripts (UNIX) Chapter 16, page 141

Constants

The const specifier indicates that the declared value cannot be modified. The
syntax of this declaration is:

[class] const name [= expression];

The class of a constant may be either public or static. (If no class is explicitly
declared, the constant is assigned the default class public.) Once a constant is
defined, it remains in existence until you exit VXRunner.

For example, defining the constant TMP_DIR using the declaration:

const TMP_DIR = "/tmp";

means that the assigned value /tmp cannot be modified. (This value can only be
changed by explicitly making a new constant declaration for TMP_DIR.)

Creating GUI Virtual User Scripts (UNIX) Chapter 16, page 142

Programming with TSL • Creating User-Defined Functions

Arrays

The following syntax is used to define the class and the initial expression of an
array. Array size need not be defined in TSL.

class array_name [] [=init_expression]

The array class may be any of the classes listed under Variable Declarations,
above.

An array can be initialized using the C language syntax. For example:

public hosts [] = {"lithium", "silver", "bronze"};

This statement creates an array with the following elements:

hosts[0]="lithium"
hosts[1]="silver"
hosts[2]="bronze"

Note that like in C, arrays with the class auto cannot be initialized.

In addition, an array can be initialized using a string subscript for each element. The
string subscript may be any legal TSL expression. Its value is evaluated during
compilation.

Statements

Any valid statement used within a TSL script can be used within a function, except
for the treturn statement.

Programming with TSL • Creating User-Defined Functions

Creating GUI Virtual User Scripts (UNIX) Chapter 16, page 143

Return Statement

The return statement is used exclusively in functions. The syntax is:

return [expression];

This statement halts execution of the called function and passes control back to the
calling function or script. It also returns the value of the evaluated expression to the
calling function or script. If no expression is assigned to the return statement, an
empty string is returned.

Programming with TSL
Creating Compiled Modules

Creating GUI Virtual User Scripts (UNIX) Chapter 17, page 144

17
Creating Compiled Modules

Compiled modules enhance your TSL programming capabilities, providing all the
advantages of a compiled environment within your interpreted script.

This chapter describes:

• Compiled Module Contents

• Creatin g a Module

• Loadin g and Unloadin g a Compiled Module

• Incremental Com pilation

Programming with TSL • Creating Compiled Modules

Creating GUI Virtual User Scripts (UNIX) Chapter 17, page 145

About Compiled Modules

A compiled module contains user-defined functions that you want to call frequently
from within many different scripts. When you load the module, the functions are
compiled and remain in memory. You can call them directly from within any script.

For instance, you might want to create a module which includes functions that:

• initialize an application: position it, and resize the window.

• compare the size of two files.

• handle error messages that your application displays in a popup window.

Using compiled modules, you can improve the organization and performance of
your scripts. Compiled modules are libraries of frequently-used functions. Your
scripts can use functions from libraries instead of creating new ones each time.
Since you debug compiled modules before using them, your scripts will require less
error-checking. In addition, calling a function that is already compiled is
significantly faster than interpreting a function in a script.

You can compile a module in one of two ways. You can use the TSL load function,
or you can replay the function interactively using any of the VXRunner replay
commands. If you need to debug a module or make changes, you can use the Step
command to perform incremental compilation. You only need to replay the part of
the module that was changed in order to update the entire module.

Creating GUI Virtual User Scripts (UNIX) Chapter 17, page 146

Programming with TSL • Creating Compiled Modules

Compiled Module Contents

A compiled module is similar to any regular script you create in TSL: it can be
opened, edited, and saved. You indicate that a script is a compiled module by
clicking Compiled Module in the Test Header dialog box (see “Creating a Module,”
in this chapter).

In terms of its content, a compiled module is different from an ordinary script in that
it has no database: it cannot include screen captures or any other analog input
such as mouse tracking. Remember that the purpose of a compiled module is to
store those functions that you use most in a module so that they can be quickly and
conveniently accessed from other scripts.

Programming with TSL • Creating Compiled Modules

Creating GUI Virtual User Scripts (UNIX) Chapter 17, page 147

Unlike in a regular script, all data objects (variables, constants, arrays) must be
declared before use. The structure of a compiled module is similar to a C program
file, in that it may contain the following elements:

• function definitions and declarations for variables, constants and arrays (For more
information, Chapter 16, Creatin g User-Defined Functions .)

• prototypes of external functions (For more information, see the TSL Online
Reference .)

• load statements to other modules (see Loadin g and Unloadin g a Compiled
Module on page 149)

Note that when user-defined functions appear in compiled modules:

• A public function is available to all modules and scripts, while a static function is
available only to the module within which it was defined.

• The loaded module remains resident in memory even when execution is aborted.
However, all variables defined within the module (whether static or public) are
initialized.

Creating GUI Virtual User Scripts (UNIX) Chapter 17, page 148

Programming with TSL • Creating Compiled Modules

Creating a Module

To create a compiled module:

 1 Open a new script.

 2 Write the module script.

 3 Open the Header dialog box (select File > Header), and click Compiled Module.
Click OK.

 4 Select File > Save.

 5 Save your modules in a location that is readily available to all your scripts. When a
module is loaded, VXRunner locates it according to the Search Path.

 6 Compile the module by choosing one of the Replay commands or using the load
function.

Programming with TSL • Creating Compiled Modules

Creating GUI Virtual User Scripts (UNIX) Chapter 17, page 149

Loading and Unloading a Compiled Module

In order to access the functions in a compiled module you need to load the module.
You can load it from within any script; all scripts can then access the function until
you quit VXRunner or unload the module.

If you create a module that contains frequently-used functions (such as the ones
described at the beginning of this chapter), you can load the module from your
initialization script. For more information, see Chapter 19, Creatin g Initialization
Scri pts .

You may load a module either as a system module or as a user module. A system
module is generally a closed module that is “invisible” to the user. It is not animated
when it is loaded and it is not stopped by a pause command. A system module is
not unloaded when you execute an unload() statement with no parameters (global
unload).

A user module is the opposite of a system module in these respects. Generally, a
user module is one that is still being developed. In such a module you might want
to make changes and incrementally compile them.

Creating GUI Virtual User Scripts (UNIX) Chapter 17, page 150

Programming with TSL • Creating Compiled Modules

load
The load function has the following syntax:

load (module_name, [,1|0] [,1|0]);

The module_name is the name of an existing compiled module.

Two additional, optional parameters indicate the type of module. The first
parameter indicates whether the module is a system module or a user module. 1
indicates a system module. 0 indicates a user module. (Default=0)

The second optional parameter indicates whether the module will appear in the
Switch To menu. 1 indicates that the module will not appear in the menu. 0
indicates that the module will appear in the menu. (Default=0)

When the load function is executed the first time, the module is compiled and
stored in memory. This module is now ready for use by any script and need not be
interpreted again.

A loaded module remains resident in memory even when execution is aborted.
However, all variables defined within the module (whether static or public) are
initialized.

Programming with TSL • Creating Compiled Modules

Creating GUI Virtual User Scripts (UNIX) Chapter 17, page 151

unload
The unload function removes a loaded module or selected functions from memory,
and has the following syntax:

unload (module|test [,function_name]);

For example, the following statement removes all functions loaded within the script
named my_test.

An unload statement with empty parentheses removes all modules loaded within
all scripts during the current session, except for system modules.

reload
If you make changes to a module, you can reload it. The reload function removes
a loaded module from memory, and reloads it (combining the functions of unload
and load).

The syntax of the reload function is:

reload (module_name, [,1|0] [,1|0});

The module_name is the name of an existing compiled module.

unload ("my_test");

Creating GUI Virtual User Scripts (UNIX) Chapter 17, page 152

Programming with TSL • Creating Compiled Modules

Two additional optional parameters indicate the type of module. The first parameter
indicates whether the module is a system module or a user module. 1 indicates a
system module. 0 indicates a user module. (Default=0)

The second optional parameter indicates whether the module will appear in the
“Switch to” menu. 1 indicates that the module will not appear in the menu. 0
indicates that the module will appear in the menu. (Default=0)

Note : Do not load a module more than once. To recompile a module, use unload
followed by load , or the reload function.

If you try to load a module that has already been loaded, VXRunner does not load
it again. Instead, it initializes variables and increments a load counter. If a module
has been loaded several times, then the unload statement does not unload the
module, but rather decrements the counter. For instance, suppose that script A
loads a module math_functions, and then calls script B. Script B also loads
math_functions, and then unloads it at the end of the script. VXRunner does not
unload the function; it decrements the load counter. When execution returns to
script A, math_functions is still loaded.

Programming with TSL • Creating Compiled Modules

Creating GUI Virtual User Scripts (UNIX) Chapter 17, page 153

Incremental Compilation

You can also compile a module by replaying it. This is especially useful when you
are developing or modifying a module. If a module has already been loaded, and
you modify or add just a few lines, you can replay those statements step by step.
The compiled version of the module is automatically updated. Note that if you make
a change within a function, you must replay the entire function.

To compile a module by replaying it:

 1 If the module is not already open, open it.

 2 To load an entire module, move the execution marker to the first line of the script,
and select Animate or Run.

 3 To incrementally compile part of a module, replay the necessary statements using
the Step command.

 4 Save the module if required, and close it.

Creating GUI Virtual User Scripts (UNIX) Chapter 17, page 154

Programming with TSL • Creating Compiled Modules

Compiled Module Example

The following module contains two simple functions that you can call from any
script. The modules receive a pair of numbers and returns the number with the
maximum and minimum value.

return maximum of two values
function max (x,y){
if (x>=y)

return x;
else

return y;
}

return minimum of two values
function min (x,y){
if (x<y)

return x;
else

return y;
}

Programming with TSL
Calling Scripts

Creating GUI Virtual User Scripts (UNIX) Chapter 18, page 155

18
Calling Scripts

The GUI Vuser scripts you create with VXRunner can call, or be called by, any other
GUI Vuser script. This is done by means of the call statement. Using this
statement, a script can be invoked from within another script, and parameter values
can be passed to the called script.

This chapter discusses:

• Usin g the Call Statement

• Returnin g to the Callin g Scri pt

• Settin g the Search Path

• Definin g Parameters

Creating GUI Virtual User Scripts (UNIX) Chapter 18, page 156

Programming with TSL • Calling Scripts

Using the Call Statement

A script is invoked from within another script by means of a call statement. A call
statement has the following syntax:

call script_name ([parameter1, parameter2, ...parametern]);

Parameters are optional. However, when one script calls another, the call
statement should designate a value for each parameter defined for the called
script. If no parameters were defined for the called script, the call statement must
include an empty set of parentheses.

Any called script must be stored in a directory specified in the search path, or else
must include a full pathname within quotation marks.

While replaying a called script, you can pause execution and view the current call
chain. To do so, select Debug > Calls.

Programming with TSL • Calling Scripts

Creating GUI Virtual User Scripts (UNIX) Chapter 18, page 157

Returning to the Calling Script

The treturn and texit statements are used to stop execution.

• The treturn statement stops the current script, and returns control to the calling
script.

• The texit statement stops execution entirely.

Both functions provide a return value for the called script. If treturn or texit is not
used, or if no value is specified, then the return value of the call statement is 0.

The treturn statement terminates execution of the called script and returns control
to the calling script. The syntax is:

treturn [(expression)];

The optional expression is the value returned to the call statement used to invoke
the script. For example:

Here, if the screen comparison in script_b is successful, then the string “success”
is returned to the calling script, script_a. If there is a mismatch, then script_b
returns the string “failure” to script_a.

script a
if (call script b() == "success")

report_msg("script b
succeeded");

script b
if
check_window(3,"Win_2","Calc"
,20,35,35,45);

treturn("success");
else

treturn("failure");

Creating GUI Virtual User Scripts (UNIX) Chapter 18, page 158

Programming with TSL • Calling Scripts

Setting the Search Path

The search path determines the directories searched for a called script. To set the
search path, select Options > Search Path. The directories are searched in the
order of their appearance in the Search Path dialog box.

Programming with TSL • Calling Scripts

Creating GUI Virtual User Scripts (UNIX) Chapter 18, page 159

To add a directory:

 1 Type the directory name in the Pathname box. Alternatively, click a directory in the
list, click Copy to copy it to the Pathname box, and edit as needed.

 2 Click a directory in the Directories list.

 3 Click either Add after or Add before to indicate where to place the directory.

To change a directory:

 1 Click a directory in the Directories list.

 2 Click Copy to copy the directory to the Pathname text box.

 3 Make the desired changes.

 4 Click Change.

To delete a directory:

 1 Click a directory in the Directories list.

 2 Click Delete.

Creating GUI Virtual User Scripts (UNIX) Chapter 18, page 160

Programming with TSL • Calling Scripts

Defining Parameters

A parameter is a variable that is assigned a value from outside the script in which
it is defined. You can define one or more parameters for a script; any calling script
must then supply values for these parameters.

For example, you might define two parameters (starting_x and starting_y) for a
script. The intended function of these parameters is to assign a value to the initial
mouse position when the script is called. Subsequently, two values supplied by a
calling script would supply the x and y coordinates of the mouse pointer.

Parameters are defined for a script using the Test Header dialog box. The
parameter list displays the names of all parameters defined for the script.

Parameter list displays all
available parameters.

Programming with TSL • Calling Scripts

Creating GUI Virtual User Scripts (UNIX) Chapter 18, page 161

The Test Header dialog box includes the following fields and buttons:

Parameter Name : A text box where you can type in the name of new or changed
parameters.

Author: The name of the script developer.

Date: The day, date and time of script creation (system-supplied).

AUT Function: A text box that you can use to specify the name of the AUT function.

Functional Spec Traceback: A text box that you can use to reference the relevant
section in the AUT functional specifications.

Description: A text box that you can use to describe the current script in detail.

Add After/Add Before: Adds the parameter in the text box immediately before or
after the highlighted parameter in the list.

Delete button : Deletes the highlighted parameter in the Parameter list.

Creating GUI Virtual User Scripts (UNIX) Chapter 18, page 162

Programming with TSL • Calling Scripts

To define a new parameter:

 1 Type the name of the parameter in the Parameter Name box.

 2 Click one of the parameters in the list and then click either Add After or Add
Before.

 3 Note that the order in which parameters are listed determines which value is
assigned to a parameter by the calling script, since parameter values are
assigned sequentially.

 4 Click OK to complete the operation and close the dialog box.

To delete a parameter from the parameter list:

 1 Click the name of the parameter to delete.

 2 Click Delete.

 3 Click OK to complete the operation and close the dialog box.

Programming with TSL • Calling Scripts

Creating GUI Virtual User Scripts (UNIX) Chapter 18, page 163

Parameter Scope
The parameter defined in the called script is known as a formal parameter. Test
parameters can be constants, variables, expressions, array elements, or complete
arrays.

Parameters that are expressions, variables, or array elements are evaluated and
then passed to the called script by value. This means that a copy is passed to the
called script. This copy is local; if its value is changed in the called script, the
original value in the calling script is not affected. For example:

In the calling script (script_1), the variable i is assigned the value 5. This value is
passed on to the called script (script_2) as the value for the formal parameter x.
Note that when a new value (8) is assigned to x in script_2, this change does not
affect the value of i in script_1.

Complete arrays are passed by reference. This means that, unlike array elements,
variables, or expressions, they are not copied. Any change made to the array in the
called script influences the corresponding array in the calling script. For example,

script 1 (calling_script)
i = 5;
call script 2(i);
print(i); # prints "5"

script 2 (called script), with
formal parameter x
x = 8;
print (x); # prints "8"

script q
a[1] = 17;
call script r(a);
print(a[1]); # prints "104"

script r, with parameter x
x[1] = 104;

Creating GUI Virtual User Scripts (UNIX) Chapter 18, page 164

Programming with TSL • Calling Scripts

In the calling script (script_q), element 1 of array a is assigned the value 17. Array
a is then passed to the called script (script_r), which has a formal parameter x. In
script_r, the first element of array x is assigned the value 104. Unlike the previous
example, this change to the parameter in the called script does affect the value of
the parameter in the calling script, because the parameter is an array.

Once again, with the exception of arrays, formal test parameters are local to the
script for which they are defined. Changes made to them do not affect variables of
the same name outside of the script, and their values are lost when the script is
completed. For example:

The value of variable c in script_z is changed. However, since this variable is a
formal parameter of script_z, it is local. Therefore, the value of variable c in script_y
is not affected.

All undeclared variables that are not on the formal parameter list of a called script
are global and may be accessed and altered from another called, or calling script.
If a parameter list is defined for a script, and that script is not called but is run
directly, then the parameters function as global variables for the run. For more
information about variables, refer to the TSL Online Reference .

script y
c = 12;
call script z(c);
print(c); # prints "12"

script z, with parameter c
c = 42;

Programming with TSL • Calling Scripts

Creating GUI Virtual User Scripts (UNIX) Chapter 18, page 165

The script segments below summarize the difference between local and global
variables. Note that script_a is not called but is run directly.

script a, with parameter k
i = 1;
j = 2;
k = 3;
call script b(i);
print(j & k & l);
prints '2 5 6'

script b, with parameter j
j = 4;
k = 5;
l = 6;
print (i & j & k);
prints '1 4 5'

Creating GUI Virtual User Scripts (UNIX) 166

Part VI

Advanced VXRunner Features

Advanced VXRunner Features
Creating Initialization Scripts

Creating GUI Virtual User Scripts (UNIX) Chapter 19, page 167

19
Creating Initialization Scripts

Using initialization scripts, you can ensure that each time VXRunner is invoked, it
is configured correctly for your scripts. This saves time and guarantees uniform
conditions.

This chapter describes how to use initialization scripts.

Creating GUI Virtual User Scripts (UNIX) Chapter 19, page 168

Advanced VXRunner Features • Creating Initialization Scripts

About Initialization Scripts

You can use initialization scripts to customize VXRunner to your requirements. The
types of data inserted into an initialization script can include load statements that
load compiled modules containing user-defined functions.

By creating an initialization script, each time you invoke VXRunner all needed
functions are compiled. You can create an initialization script for a group of users,
or you can create initialization scripts for each individual user.

Advanced VXRunner Features • Creating Initialization Scripts

Creating GUI Virtual User Scripts (UNIX) Chapter 19, page 169

Types of Initialization Scripts

The different types of initialization scripts are as follows:

• The first level initialization script is named tslinit. This is a system-wide
initialization script provided with VXRunner which resides under $M_ROOT/dat.
This script contains internal information needed by VXRunner, and should not be
changed (any modifications will be erased when you install the next VXRunner).

• The second level initialization script is optional. You define the environment
variable XR_TSL_INIT so it points to the full path of this script. This script can be
used to customize VXRunner for a group of users using the same application. For
example:

setenv XR_TSL_INIT /qa/share/qinit

• The third level initialization script (also optional) is the tslinit script stored in your
home directory. This script can be used to tailor VXRunner to your individual
needs.

Each time VXRunner is started, the three scripts are searched for and are run
sequentially before the VXRunner window is displayed.

Advanced VXRunner Features
Using Regular Expressions

Creating GUI Virtual User Scripts (UNIX) Chapter 20, page 170

20
Using Regular Expressions

You can use regular expressions in many different ways to increase the flexibility
and adaptability of your scripts.

This chapter describes:

• Using regular expressions

• Regular Ex pression S yntax

Advanced VXRunner Features • Using Regular Expressions

Creating GUI Virtual User Scripts (UNIX) Chapter 20, page 171

About Regular Expressions

Regular expressions can be used in several different ways:

• For synchronization wait_window TSL statement: to indicate the window name.

• For text recognition with the find_text function: to indicate the string to locate.

VXRunner regular expressions include options similar to some of those offered by
the UNIX grep command. For additional information, see the UNIX manpages for
ed(1).

Creating GUI Virtual User Scripts (UNIX) Chapter 20, page 172

Advanced VXRunner Features • Using Regular Expressions

Regular Expression Syntax

All regular expressions must begin with an exclamation point (!). Any character that
is not one of the special characters described below is searched for literally. When
a special character is preceded by a backslash, VXRunner searches for the literal
character.

The following options can be used to create regular expressions:

Matching Any Single Character
A period (.) instructs VXRunner to search for any single character. For example,

welcome.

matches welcomes, welcomed, or welcome followed by a space or any other single
character. A series of periods indicates a range of unspecified characters.

Advanced VXRunner Features • Using Regular Expressions

Creating GUI Virtual User Scripts (UNIX) Chapter 20, page 173

Matching Any Single Character within a Range
In order to match a single character within a range, you can use square brackets ([
]). For example, to search for a date which is either 1968 or 1969, write:

196[89]

You can use a hyphen (-) to indicate an actual range. For instance, to match any
year in the 1960s, write:

196[0-9]

Brackets can be used in a physical description to specify the label of a static text
object that may vary.

A hyphen does not signify a range if it appears as the first or last character within
brackets, or after a caret (^).

A caret (^) instructs VXRunner to match any character except for the ones specified
in the string. For example:

[^A-Za-z]

matches any non-alphabetic character. The caret has this special meaning only
when it appears first within the brackets.

Note that within brackets, the characters “.”, “*”, “[“ and “\” are literal. If the right
bracket is the first character in the range, it is also literal. For example:

[]g-m]

matches the right bracket, and g through m.

Creating GUI Virtual User Scripts (UNIX) Chapter 20, page 174

Advanced VXRunner Features • Using Regular Expressions

Matching One or More Specific Characters
An asterisk (*) instructs VXRunner to match zero or more occurrences of the
preceding character. For example:

Q*

causes VXRunner to match Q, QQ, QQQ, etc. In the following wait_window
statement, the regular expression causes VXRunner to find any text editor window.

Because the asterisk follows a period, VXRunner locates any combination of
characters. You could also use a combination of brackets and an asterisk to limit
the window banner name to a combination of non-numeric characters only:

wait_window (3, "", "!Text Editor.*", 560, 560, 30, 30);

wait_window (3, "", "!clock-\[[a-zA-Z]*\]", 560, 560, 30, 30);

Advanced VXRunner Features
Setting System Variables

Creating GUI Virtual User Scripts (UNIX) Chapter 21, page 175

21
Setting System Variables

 provides several ways to view and set the system variables that affect script replay.

This chapter describes:

• Settin g System Variables from within the Scri pt

• The Controls Dialo g Box

• The Test Environment Dialo g Box

• System Variables

Creating GUI Virtual User Scripts (UNIX) Chapter 21, page 176

Advanced VXRunner Features • Setting System Variables

About System Variables

 system variables affect various aspects of script replay.

Each system variable has a default value, listed in the system configuration file.
System variables can be set before or during script execution. You can set system
variables in two ways:

• through the Controls dialog box

• with the setvar function

Advanced VXRunner Features • Setting System Variables

Creating GUI Virtual User Scripts (UNIX) Chapter 21, page 177

Setting System Variables from within the Script

The getvar and setvar built-in functions allow you to read and assign values of
system variables from within a script. Using these functions, you can locally modify
parameter values during execution as required. For example, you might want to
conditionally set different replay speeds for certain sections of the script,
depending on the value returned to some user-defined variable. Note that some
variables are read-only. The list under setvar indicates the variables that can be
set.

Creating GUI Virtual User Scripts (UNIX) Chapter 21, page 178

Advanced VXRunner Features • Setting System Variables

getvar
The getvar function is used to retrieve the current value of a system variable. The
syntax of this statement is:

user_variable = getvar (system_variable);

In this function, system_variable may specify any one of the following:

For example:

assigns the current value of the replay speed to the user-defined variable,
nowspeed.

nowspeed = getvar ("speed");

beep
delay
exp
fast_replay

key_editing
line_no
mismatch_break
move_windows
raise_windows
result
searchpath

speed
sysmode
testname
timeout

Advanced VXRunner Features • Setting System Variables

Creating GUI Virtual User Scripts (UNIX) Chapter 21, page 179

setvar
The setvar function is used to set the current value of a system variable from within
the script. This function has the syntax:

setvar (system_variable, value);

In this function, system_variable may specify any one of the following:

For example:

Sets the break on mismatch system variable to off. A variable retains a value until
it is reassigned from within the script, or from the Controls dialog box.

You can use a combination of getvar and setvar statements to control script
execution. For example, in the following script fragment, checks the image win_2.
The getvar and setvar functions are used to control the value of the timeout and

setvar ("mismatch_break", "off");

beep
delay
exp
fast_replay

key_editing
mismatch_break
move_windows
raise_windows
result

searchpath
speed
timeout

Creating GUI Virtual User Scripts (UNIX) Chapter 21, page 180

Advanced VXRunner Features • Setting System Variables

delay system variables. The getvar statement is used to retrieve the values of
timeout and delay, and setvar is used to assign values to these variables. After the
window is checked, setvar is used to return timeout and delay to their original
values.

t = getvar ("timeout");
d = getvar ("delay");

setvar ("timeout", 30);
setvar ("delay", 3);

wait_window (2,"","calculator",261,269,93,42);

setvar ("timeout", t);
setvar ("delay", d);

Advanced VXRunner Features • Setting System Variables

Creating GUI Virtual User Scripts (UNIX) Chapter 21, page 181

The Controls Dialog Box

The Controls dialog box allows you to set values for system variables. You can set
values before script execution. Note that certain system variables cannot be set
from the Controls dialog box.

The Controls dialog box appears when you select Options > Controls. Changes
made in the dialog box are implemented after you click the OK button.

You can return all system variables to their default values by clicking Defaults and
then clicking OK. The default values are determined by the configuration
parameters in the system configuration file.

Creating GUI Virtual User Scripts (UNIX) Chapter 21, page 182

Advanced VXRunner Features • Setting System Variables

The Test Environment Dialog Box

The Test Environment dialog box contains a list of read-only fields that provide
general information about the current script. To view the System Variables dialog
box, select Options > Test Environment.

Advanced VXRunner Features • Setting System Variables

Creating GUI Virtual User Scripts (UNIX) Chapter 21, page 183

System Variables

The following section describes ’s system variables in detail. The default value for
each system variable is listed in Appendix A, VXRunner Confi guration Files .

beep
Causes to issue a beep each time a window is checked. The default value is set
by the XR_BEEP configuration parameter.

curr_dir
Indicates the current working directory for the test. There is no default value for this
variable.

delay
During replay when reads a check_window statement, it captures the window
only when it determines that the window is stable. For example, when delay is two
seconds, and timeout is ten seconds, checks the AUT window every two seconds
until two consecutive checks produce the same results, or until ten seconds have
elapsed. The delay default value is set by the XR_RETRY_DELAY parameter. Setting
the delay variable to 0 disables all image checking.

exp
The full pathname of the expected results directory associated with the current
execution of the test. There is no default value for this parameter.

Creating GUI Virtual User Scripts (UNIX) Chapter 21, page 184

Advanced VXRunner Features • Setting System Variables

fast_replay
Replays tests at the fastest speed at which the AUT is capable of receiving input.
Selecting fast_replay disables the speed bar in the Controls dialog box. The
fast_replay default value is set by the XR_FAST_REPLAY parameter.

key_editing
Generates more concise type statements so that they represent only the net result
of pressing and releasing input keys. This makes your test script easier to read.
Whenever the exact order of keystrokes is important for your test, you should
disable key_editing.

For example, typing the letter “A” with key_editing off, produces the following
statement:

type ("<kShift>-a-<kShift>+a+");

With key_editing on, the statement is:

type ("A");

For more information on key_editing, see the type function in the TSL Online
Reference . The default value is set by the configuration parameter
XR_KEY_EDITING.

line_no
Displays the current line of the execution marker in the test script. There is no
default value for this variable.

Advanced VXRunner Features • Setting System Variables

Creating GUI Virtual User Scripts (UNIX) Chapter 21, page 185

move_windows
Causes to automatically return a window to the location specified in a
wait_window statement.

If you deactivate move_windows, you must take measures to ensure that during
replay, each AUT window opens at the same screen location as when the test was
recorded. The default value is set by the XR_MOVE_WINDOW parameter.

raise_windows
Brings the window to be checked to the front of the screen display during replay.
The default value is set by the XR_RAISE_WINDOW parameter.

result
The full pathname of the results directory during a verification run. There is no
default value for this variable.

searchpath
The path(s) which searches for called tests. The searchpath value is set by the
XR_SEARCH_PATH parameter.

Creating GUI Virtual User Scripts (UNIX) Chapter 21, page 186

Advanced VXRunner Features • Setting System Variables

speed
The speed at which a test script is replayed. At 0, the test is played back using the
time parameters recorded in the script. If the speed is set to +5, the test is played
back approximately five times faster than the speed at which it was recorded.
Setting the speed to -5 causes the test to be executed at approximately one fifth
the specified speed.

To set execution speed, either drag the square marker on the speed bar in the
Controls dialog box or type the desired value in the Replay Speed field. The values
displayed on the Speed Bar can be configured using the XR_SPEED_RANGE
parameter.

sysmode
The current mode: either Replay or Verify.

testname
The full pathname of the current test. There is no default value for this parameter.

timeout
The maximum time that waits for the execution of wait_window statements during
replay, before proceeding to the next statement. The maximum time is calculated
by adding the time parameter of the statement to the timeout variable.

For example, in the statement:

wait_window (2, "", "calculator", 120, 240, 85, 150);

Advanced VXRunner Features • Setting System Variables

Creating GUI Virtual User Scripts (UNIX) Chapter 21, page 187

if the timeout variable is 10 seconds, this operation takes a maximum of 12 (2+10)
seconds. The default value for the timeout variable is set by the XR_TIMEOUT
parameter in the system configuration file.

Creating GUI Virtual User Scripts (UNIX) Chapter 21, page 188

Advanced VXRunner Features • Setting System Variables

Advanced VXRunner Features
Synchronizing Problematic Windows

Creating GUI Virtual User Scripts (UNIX) Chapter 22, page 189

22
Synchronizing Problematic Windows

Some windows that are redrawn slowly require the adjusting of one or more system
variables in order to ensure reliable script replay.

This chapter describes:

• How System Variables Affect wait_window Functions

• Adjustin g the Timeout Interval

• Settin g the Dela y

Creating GUI Virtual User Scripts (UNIX) Chapter 22, page 190

Advanced VXRunner Features • Synchronizing Problematic Windows

About Synchronizing Problematic Windows

Some “problematic” windows— such as large windows that are redrawn slowly—
require the adjusting of one or more system variables in order to ensure reliable
execution of wait_window statements.

The execution of wait_window functions is affected by the values you set for the
following system variables:

• timeout

• delay

• move_windows

• raise_windows

The values of system variables can be modified either using the Controls dialog
box or from within a script by using the setvar statement. For a detailed description
of each of these variables and how they can be set, see Chapter 21, Settin g
System Variables .

Advanced VXRunner Features • Synchronizing Problematic Windows

Creating GUI Virtual User Scripts (UNIX) Chapter 22, page 191

The following examples demonstrate how system variables affect the execution of
the wait_window function. For each example, assume that the following values are
assigned to the VXRunner configuration parameters:

Configuration Parameter Value

TIMEOUT 10 (seconds)

DELAY 2 (seconds)

MOVE_WINDOWS "on"

RAISE_WINDOWS "on"

Creating GUI Virtual User Scripts (UNIX) Chapter 22, page 192

Advanced VXRunner Features • Synchronizing Problematic Windows

How System Variables Affect wait_window Functions

The following example illustrates how various system variables affect the execution
of a wait_window function.

When this statement is executed, VXRunner first sets a time limit of 17 seconds for
the wait_window operation. (This is the value of the time parameter plus the
timeout system variable.) VXRunner then waits for the appearance of a window
named calctool having a width of 400 and a height of 300 pixels.

Suppose that the calctool window takes 3 seconds to come up on the screen.
When it appears, VXRunner repositions the window so that its upper left corner is
located at screen coordinate 120, 180. VXRunner now monitors the calctool
window to determine if it is stable. If no input is sent to the window for the delay
period (2 seconds), then the window is stable and VXRunner moves on to the next
line of the script. If there have been changes to the calctool window, VXRunner
waits a further 2 seconds before rechecking the window. VXRunner repeats this
process until either the window is stable or the time limit (17 seconds) is reached.

wait_window(7, "", "calctool", 400, 300, 120, 180);

Advanced VXRunner Features • Synchronizing Problematic Windows

Creating GUI Virtual User Scripts (UNIX) Chapter 22, page 193

Adjusting the Timeout Interval

Drawing applications such as DrawTool allow you to issue a “zoom” command.
When you give this command, the program starts a complex and lengthy
calculation and the enlarged image is gradually displayed. The content of the
window changes continuously until the zoom operation is completed.

In your script, you may want execution to wait until the final zoomed image is
displayed before entering any further input to the application. To do this, when
recording the script, move the pointer into the window after the zoomed image is
displayed and press the WAIT WINDOW softkey. (See the last page of this manual for
a list of the default softkey definitions.) A statement like the following is generated
in the TSL script:

When the script is played back, this statement fails if the value recorded for the time
parameter (56 seconds) is too small to allow the lengthy calculation to be
completed and the desired image to be displayed.

To ensure that the screen has sufficient time to come up, increase the specified
time to 100 seconds. Note that this does not waste time, since VXRunner continues
to the next statement as soon as the window is stable.

wait_window (56, "", "DrawTool", 800, 600, 100, 100);

Creating GUI Virtual User Scripts (UNIX) Chapter 22, page 194

Advanced VXRunner Features • Synchronizing Problematic Windows

Setting the Delay

Suppose that you want to wait for a window of DrawTool to be redrawn.You can use
the WAIT REDRAW softkey to produce a statement such as the following:

During script replay, you may discover that VXRunner samples the window twice
and then moves on to the next line before the window is redrawn. This occurs if the
intervals between consecutive samplings are too short. For example, if the redraw
starts after 20 seconds and VXRunner samples the window every two seconds,
then after the first two samplings VXRunner concludes that the window is stable
and has been completely redrawn.

wait_window (150, "", "DrawTool", 900, 700, 125, 116);

Advanced VXRunner Features • Synchronizing Problematic Windows

Creating GUI Virtual User Scripts (UNIX) Chapter 22, page 195

VXRunner allows you to adapt the script to the behavior of a specific window by
controlling the delay system variable. For a window that is redrawn slowly, you can
use the getvar and setvar functions from within the script to temporarily increase
the delay. For example:

In the above example, VXRunner samples the window every thirty seconds. This
is enough time for a change to appear in the window. VXRunner therefore
concludes that the window is redrawn if no input is sent to the DrawTool window for
a 30 second period.

old_delay = getvar("delay");

sample window every 30 seconds
setvar("delay", 30);
wait_window(150,"", "DrawTool",900,700,125,116);

revert to previous value
setvar("delay", old_delay);

Creating GUI Virtual User Scripts (UNIX) Chapter , page 196

 •

0

GUI Vuser Script Programming Reference

GUI Vuser Script Programming Reference
Function Reference

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 197

1
Function Reference

The following pages provide an alphabetical reference of all TSL functions specific
to LoadRunner GUI Vuser scripts. These functions are defined in the vxrlib module,
which is loaded automatically by the tslinit startup script. For a full list of TSL
functions, see the TSL Online Reference .

The name of each function, along with a brief description, appears at the top of the
page. The following information is also provided for each function:

• complete syntax

• parameter definitions

• details on how the function works

• an example of the function

• return value

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 198

GUI Vuser Script Programming Reference • Function Reference

Return Values

All LoadRunner functions return one of the following return values. These
constants are predefined in the system initialization script.

Code Name Description

0 E_OK Operation successful.

-10001 E_GENERAL_ERROR
A general error. For example, memory
allocation has failed.

-10002 E_NOT_FOUND Object was not found.

-10003 E_NOT_UNIQUE
More than one object has the same
name.

-10007 E_FILE_OPEN Could not open file.

-10008 E_WRITE_ERROR Could not perform write operation.

-10014
E_OPERATION_ABORTE
D

The operation was aborted.

-10016 E_TIMEOUT
Timeout was reached before operation
could be performed.

-10017 E_COMM
Operation did not succeed due to
communication problems.

GUI Vuser Script Programming Reference • Function Reference

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 199

-10201 E_SG_NF
The specified Group could not be
found.

-10202 E_VU_NF
The specified Vuser could not be
found.

-10203 E_ATTR The set attribute is not legal.

-10204 E_VU_LOST The system has lost the Vuser.

-10205 E_HOST_NF The given host could not be found.

-10206 E_SHADOWS_NF
The given shadow server could not be
found.

-10207 E_PATH_NF
The executable file could not be
located.

-10208 E_PARTIAL_ERROR The operation partially succeeded.

-10209 E_SC_NF
The scenario object could not be
found.

-10210 E_NAME_IL The name is illegal.

-10211 E_PARAMETER_IL The specified parameter is illegal.

Code Name Description

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 200

GUI Vuser Script Programming Reference • Function Reference

-10212 E_OP_IL
The operation is illegal. For example,
deleting a running Vuser or running a
Vuser which is not loaded.

-10213 E_RANGE The provided value is out of range.

-10214 E_FAIL The operation failed.

-10215 E_APP_NOT_FOUND The application object was not found.

-10216 E_APP_EXIST The application object already exists.

-10217 E_NO_LICENSE The appropriate license was not found.

-10218 E_REND_NF
No such rendezvous was defined in the
current scenario.

-10219 E_REND_NOT_MEM
The Vuser was not defined as a
participant in the designated
rendezvous.

-10220 E_REND_INVALID
The specified rendezvous is currently
in the invalid state (valid = off).

Code Name Description

GUI Vuser Script Programming Reference • Function Reference

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 201

declare_rendezvous
declares a rendezvous.

declare_rendezvous (rendezvous_name);

rendezvous_name A string that is the name of a rendezvous created in the
scenario script. The rendezvous_name must be a string
constant and not a variable or an expression.

Each rendezvous in the Vuser script must be declared at the beginning of the
Vuser script.

Example
In the following example, the rendezvous “load_10” is declared:

declare_rendezvous ("load_10");

See Also
rendezvous

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 202

GUI Vuser Script Programming Reference • Function Reference

declare_transaction
declares a transaction.

declare_transaction (transaction_name);

transaction_name A string that is the name of a transaction created in the
scenario script. The transaction_name must be a string
constant and not a variable or an expression.

Each transaction in the Vuser script must be declared at the beginning of the
Vuser script.

Example
In the following example, two transactions are declared:

declare_transaction ("deposit");
declare_transaction ("withdraw");

See Also
start_transaction, end_transaction

GUI Vuser Script Programming Reference • Function Reference

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 203

end_transaction
marks the end of a transaction for performance analysis.

end_transaction (transaction_name, [status]);

transaction_name A string expression that names the transaction. The string
cannot contain any spaces.

status Optional parameter that tells LoadRunner to measure the
transaction if it either passed or failed. Set this parameter to
PASS, (0) or to FAIL (any non-zero value). The default value
is PASS.

To indicate a transaction to analyze, use the start_transaction and
end_transaction functions. These are inserted immediately before and after the
transaction, and enable LoadRunner to measure the time it takes for the
transaction to be performed.

Transactions can be nested, but each end_transaction statement must be
associated with a start_transaction statement or it will be interpreted as an illegal
command. Remember that for the transaction time to be meaningful, you should
include a synchronization function before the end of the transaction.

The transaction time is written once the end_transaction statement is interpreted.
If you do not end the transaction, then no duration time will be recorded. The next
time a start_transaction statement with the same transaction name is interpreted,
the timing restarts at 0.

Note that each transaction in the Vuser script must be declared at the beginning of
the Vuser script. You declare transactions using the declare_transaction function.

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 204

GUI Vuser Script Programming Reference • Function Reference

Example
In the following example, the deposit “transaction” measures the time it takes for a
Vuser to deposit fifty dollars at an ATM. Once the deposit is completed and returns
a value to the variable status, the transaction is completed.

#Declare the transaction name.
declare_transaction ("deposit");

Move mouse to Deposit button.
move_locator_abs (127, 198, 0);

Click left mouse button.
click ("Left");

Move to amount field.
move_locator_abs (141, 350,0);

Type in $50.
type ("50");

Move to the OK button.
move_locator_abs (135, 378, 0);

Define a Deposit transaction.
start_transaction ("deposit", ONINPUT);

Click on the OK button.
click ("Left");

Wait for “Done” to appear in the ATM window.
wait_text ("Done", 5, ret_text, ret_index, 0, 0, 500, 500, ret_bbox);

GUI Vuser Script Programming Reference • Function Reference

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 205

End Deposit transaction.
if (rc == 0)

end_transaction ("deposit", PASS);
else

end_transaction ("deposit" , FAIL);

Return Values
This function returns 0 if the operation is successful or a non-zero value if the
operation fails. For more information, see the Return Values table on page 198.

See Also
start_transaction, declare_transaction

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 206

GUI Vuser Script Programming Reference • Function Reference

error_message
sends an error message to the Output window.

error_message (message);

message Any string.

This function enables a Vuser script to send an error message to the LoadRunner
Controller. The message is displayed in the Output window during execution, and
will be stored with the Virtual User test results. The message appears in the
Execution report if the errors option is selected.

Example
In the following example, the Vuser script sends an error message if a specific
value is not met.

if (ret_code < 0){
lr_whoami(vu_num, grp_name);
mess = sprintf("Vuser %s from Group %s can't read the file: %s",vu_num,

grp_name,
file_name);
error_message(mess);
texit(1);

}

GUI Vuser Script Programming Reference • Function Reference

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 207

Return Values
This function returns 0 if the operation is successful or a non-zero value if the
operation fails. For more information, see the Return Values table on page 198.

See Also
output_message

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 208

GUI Vuser Script Programming Reference • Function Reference

expect_text
ignores all the text currently displayed.

expect_text ();

The expect_text function is used in conjunction with the wait_text function to
synchronize script replay. The expect_text function instructs VXRunner to ignore
all the text currently displayed in the active window and wait for the string defined
in the wait_text statement to appear.

Example
In the following example, the deposit transaction is defined to measure how long it
takes for a Vuser to deposit fifty dollars using an ATM application. The expect_text
statement instructs VXRunner to ignore all strings currently displayed in the ATM
window. The wait_text function instructs VXRunner to wait for the “Done” message
to appear. When the message appears, script replay is resumed and the time taken
to perform the deposit transaction is recorded.

Ignore the text in the ATM window.
expect_text ();

Mouse pointer moved to deposit button.
move_locator_abs (10, 10, 0);

Start measuring deposit operation.
start_transaction ("deposit", ONINPUT);

GUI Vuser Script Programming Reference • Function Reference

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 209

Click left mouse button on deposit button.
click ("left");

Wait for the string “Done” to appear.

Wait for “Done” to appear in the ATM window.
rc = wait_text ("Done", 5, ret_text, ret_index, 0, 0, 500, 500, ret_bbox);

End Deposit transaction.
if (rc == 0)

end_transaction ("deposit", PASS);
else

end_transaction ("deposit", FAIL);

Return Values
This function returns 0 if the operation is successful or a non-zero value if the
operation fails. For more information, see the Return Values table on page 198.

See Also
wait_text, start_transaction, end_transaction

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 210

GUI Vuser Script Programming Reference • Function Reference

get_host_name
returns the name of the host that is replaying the current Vuser script.

get_host_name ();

This function returns the name of the host that is running the current script. Any
Virtual User or scenario script can use this function to determine the name of its
host.

Example
In the following example the my_host_name statement gets the host name and
displays it in the Output window and in the execution report.

my_host_name = get_host_name();
pause("my local host name is:" & my_host_name);

Return Values
This function returns the host name if the operation is successful or null if the
operation fails.

See Also
lr_whoami, get_master_host_name

GUI Vuser Script Programming Reference • Function Reference

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 211

get_master_host_name
returns the name of the LoadRunner host machine.

get_master_host_name ();

This function enables a Vuser script to determine the host machine of the
LoadRunner Controller.

Example
In the following example, the Vuser script reads the Vuser host and the LoadRunner
Controller host names. The print function sends this information to the standard
output file.

my_host_name = get_host_name()
master_hostname = get_master_host_name();
print("my local host name is: " & my_host_name);
print("The LoadRunner Controller is running on host: " & master_hostname);

Return Values
This function returns the host name if the operation is successful or null if the
operation fails.

See Also
get_host_name

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 212

GUI Vuser Script Programming Reference • Function Reference

lr_whoami
returns information about the Vuser currently executing the script.

lr_whoami (vuser, group, scenario_id);

vuser The output variable that stores the id of the Vuser.

group The output variable that stores the name of the Group.

scenario_id The output variable that stores the internal id of the
scenario.

This function returns information about the Vuser currently executing a Vuser
script. In the Virtual User Development Environment, the function will always
return the value 0 for vuser, "dev_group" for group, and the actual scenario id. If
you are not interested in one of the values, place a NULL parameter in its place.

Example
In the following example, the Vuser script reads the Vuser information and prints
this information to standard output before calling a login function. The pause
statement displays this information in a popup window.

lr_whoami (vuser, group, NULL);
print ("Virtual User:"& vuser & "Group:"& group &“ starting login...");

Return Values
This function returns 0 if the operation is successful or a non-zero value if the
operation fails. For more information, see the Return Values table on page 198.

See Also
get_host_name, get_master_host_name

GUI Vuser Script Programming Reference • Function Reference

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 213

output_message
sends a message to the Output window.

output_message (message);

message Any string.

This function enables a Vuser script to send a message to LoadRunner. The
message will be displayed in the Output window during execution, and will be
stored with the Vuser test results. The message will appear in the Execution
report, if the errors option is selected.

Example
In the following example, the Vuser script sends a message if a specific value is
met.

if (ret_code ==0){
lr_whoami(vu_num, grp_name);
mess = sprintf("Vuser %s from Group %s is OK: %s",vu_num, grp_name);
output_message(mess);
texit(1);

}

Return Values
This function returns 0 if the operation is successful or a non-zero value if the
operation fails. For more information, see the Return Values table on page 198.

See Also
lr_whoami, error_message

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 214

GUI Vuser Script Programming Reference • Function Reference

rendezvous
sets a rendezvous point in a Vuser script.

rendezvous (rendezvous_name);

rendezvous_name A string that is the name of a rendezvous created in the
scenario script.

This statement indicates a rendezvous point in a Vuser script. When this
statement is interpreted, the Vuser script will stop and the Vuser will wait for
permission from LoadRunner to continue.

Note that in the Virtual User development environment, rendezvous will not have
any effect. It is not possible to test a rendezvous in the Virtual User Development
Environment since the environment contains only a single Vuser, which is not part
of a scenario. For more information, refer to the LoadRunner Controller User’s
Guide .

GUI Vuser Script Programming Reference • Function Reference

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 215

Example
In the following example, a rendezvous begins immediately before a deposit
transaction.

Start monitoring ATM window for strings.
expect_text ();

Set the rendezvous point.
rendezvous ("multi_deposit");

Define a Deposit transaction.
start_transaction ("deposit");

.

.

.

End transaction.
end_transaction ("deposit")

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 216

GUI Vuser Script Programming Reference • Function Reference

Return Values
This function returns 0 if the operation is successful, or one of the following error
codes if it fails:

See Also
declare_rendezvous

Code Name Description

0 E_OK Operation successful.

-10016 E_TIMEOUT
Timeout was reached before operation
could be performed.

-10218 E_REND_NF
No such rendezvous was defined in the
current scenario.

-10219 E_REND_NOT_MEM
The Vuser was not defined as a
participant in the designated
rendezvous.

-10220 E_REND_INVALID
The specified rendezvous is currently
in the invalid state (valid = off).

GUI Vuser Script Programming Reference • Function Reference

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 217

start_transaction
marks the beginning of a transaction for performance analysis.

start_transaction (transaction_name [, when]);

transaction_name A string expression that names the transaction. The string
must not contain any spaces.

when Determines when the function begins to measure the
transaction time. The possible values are NOW and
ONINPUT. When you select NOW (the default), transaction
measurement begins as soon as the function is interpreted.
When you select ONINPUT, transaction measurement
begins when the first input after the start_transaction
command is generated.

To indicate a transaction to be analyzed, use the start_transaction and
end_transaction functions. These are inserted immediately before and after the
transaction, and enable LoadRunner to measure the time it takes for the
transaction to be performed.

Transactions can be nested, but each end_transaction statement must be
associated with a start_transaction statement or it will be interpreted as an illegal
command. Remember that for the transaction time to be meaningful, you should
include a synchronization function before the end of the transaction.

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 218

GUI Vuser Script Programming Reference • Function Reference

The transaction time is written once the end_transaction statement is interpreted.
If you do not end the transaction, then no duration time will be recorded. The next
time a start_transaction statement with the same transaction name is interpreted,
the timing restarts at 0.

Note that each transaction in the Vuser script must be declared at the beginning of
the Vuser script. You declare transactions using the declare_transaction function.
For more information, see Chapter 12, Measurin g System Performance:
Transactions .

Example
In the following example, the deposit “transaction” measures the time it takes for a
Vuser to deposit fifty dollars at an ATM. Once the deposit is completed and returns
a value to the variable status, the transaction is completed.

#Declare the transaction name.
declare_transaction ("deposit");

Move mouse to deposit button.
move_locator_abs (127, 198, 0);

Click left mouse button.
click ("Left");

Move to amount field.
move_locator_abs (141, 350,0);

GUI Vuser Script Programming Reference • Function Reference

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 219

Type in $50.
type ("50");

Move to the OK button.
move_locator_abs (135, 378, 0);

Define a Deposit transaction.
start_transaction ("deposit" ,ONINPUT);

Click on the OK button.
click ("Left");

Wait for “Done” to appear in the ATM window.
wait_text ("Done", 5, ret_text, ret_index, 0, 0, 500, 500, ret_bbox);

End Deposit transaction.
if (rc == 0)

end_transaction ("deposit", PASS);
else

end_transaction ("deposit", FAIL);

Return Values
This function returns 0 if the operation is successful or a non-zero value if the
operation fails. For more information, see the Return Values table on page 198.

See Also
declare_transaction, end_transaction

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 220

GUI Vuser Script Programming Reference • Function Reference
user_data_point
records a user-defined data sample.

user_data_point (sample_name, value);

sample_name A string indicating the name of the sample type.

value The value to be recorded.

This function allows you to record your own data for performance analysis. Each
time you want to record a piece of data, use this function to record the sample
name, and the value. LoadRunner automatically records the time that the sample
is recorded. After scenario execution, you can use LoadRunner’s User Defined
graph to analyze the results. For more information, see Chapter 12, Measurin g
System Performance: Transactions .

Example
In the following example the user data point checks the CPU every second, and
records the result.

for (i=0;i<100;i++) {
cpu_val=cpu_check();
user_data_point (“cpu”, cpu_val);
sleep(1);

}

Return value
This function returns 0 if it succeeds, and -1 if it fails to write the sample data.

See Also
declare_transaction, start_transaction, end_transaction

GUI Vuser Script Programming Reference • Function Reference

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 221

wait_text
waits for a string to appear in a rectangle at a given location.

wait_text (pattern, timeout [, ret_text, ret_index, x1, y1, x2, y2,
ret_bbox]);

pattern The text that VXRunner waits for. This can be a text or
NULL string, or a regular expression. If pattern is a NULL
string, VXRunner waits for timeout if there is any text within
the specified rectangle. If there is no text within the
specified rectangle, VXRunner returns immediately.

timeout The number of seconds that VXRunner waits for the text to
appear.

ret_text An output variable that stores the actual string that
LoadRunner identified as matching the pattern.

ret_index The index of the subexpression that was matched. If
pattern is a string ret_index will equal one when matched.
However, if pattern is a regular expression it may include a
number of or operators. In these cases, ret_index contains
the index of the matched or subexpression. For more
information, see below.

x1,y1,x2,y2 The coordinates of a rectangle that encloses the text to be
read. The pairs of coordinates designate the two diagonally
opposite corners of the rectangle.

ret_bbox An optional array that describes the exact location of the
text string within the enclosed rectangle. The array also
follows the format x1, y1, x2, y2.

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 222

GUI Vuser Script Programming Reference • Function Reference

Logical operators may be included in the pattern if it is a regular expression. The
logical operator or (\ |) is also supported. For example, the function call:

wait_text ("!OK\| Error", 10, ret_text, ret_index);

sets the ret_index parameter if either the “OK” or “ Error” strings are found. The
exclamation point is specific to LoadRunner and is not part of the regular
expression. If the OK string is found, the ret_text is assigned the string “OK”, and
ret_index is assigned the value 1. If the “Error” string is found, ret_text is assigned
the string “Error” , and ret_index is assigned the value 2.

The wait_text function is often used in conjunction with the expect_text function.
The expect_text function instructs VXRunner to ignore all the text currently
displayed in the active window and wait for the string defined in the wait_text
statement to appear. For more information about these two functions, see
Chapter 13, Emulatin g Server Load: Rendezvous Points .

GUI Vuser Script Programming Reference • Function Reference

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 223

Example
In the following example, the deposit transaction is defined to measure how long it
takes for a Vuser to deposit fifty dollars using the ATM application. The expect_text
statement instructs VXRunner to ignore all strings currently displayed in the ATM
window. The wait_text function instructs VXRunner to wait for the “Done” message
to appear. When the message appears script replay is resumed and the time taken
to perform the deposit transaction is recorded.

Find the window id.
win_find ("ATM", 210, 100, win_no);

Ignore the text in the ATM window.
expect_text ();

Mouse pointer moved to deposit button.
move_locator_abs (10, 10, 0);

Start measuring deposit operation.
start_transaction ("deposit", ONINPUT);

Click left mouse button on deposit button.
click ("Left");

Wait for “Done” to appear in the ATM window.
rc = wait_text ("Done", 5, ret_text, ret_index, 0, 0, 500, 500, ret_bbox);

End Deposit transaction.
if (rc == 0)

end_transaction ("deposit", PASS);
else

end_transaction ("deposit", FAIL);

Creating GUI Virtual User Scripts (UNIX) Chapter 1, page 224

GUI Vuser Script Programming Reference • Function Reference

Return Values
This function returns 0 if the operation is successful or a non-zero value if the
operation fails. For more information, see the Return Values table on page 198.

See Also
expect_text, start_transaction, end_transaction

Creating GUI Virtual User Scripts (UNIX) 225

Part VII

Appendices

VXRunner Configuration Files

Creating GUI Virtual User Scripts (UNIX) 226

A
VXRunner Configuration Files

In the VXRunner configuration files, you assign values to the parameters which
affect specific VXRunner functions. This appendix describes the VXRunner
configuration parameters—including their syntax and default values.

LoadRunner includes two sets of configuration files—one for the LoadRunner
Controller, and one for VXRunner. This appendix describes the VXRunner
configuration files. For details of the Controller configuration file, see the
LoadRunner Controller User’s Guide (UNIX) .

VXRunner Configuration Files

Creating GUI Virtual User Scripts (UNIX) 227

About VXRunner Configuration Files

You can set three levels of configuration files for VXRunner:

• The bottom-level configuration file is vrunner.cfg. This is a system-wide
configuration file which is created by the LoadRunner installation program and
which is normally maintained by the system administrator. The file resides in the
directory $M_LROOT/dat.

Included with vrunner.cfg is machine.cfg—a file which holds all platform-
dependent items (such as keyboard configuration). This file is automatically
copied to the correct machine version by the LoadRunner installation script.

• The middle-level configuration file (optional) is vrunner.cfg. A system
environment variable, XR_CFG_FILE, designates the location of this file. This file
can be used to set values specific to a group of users testing the same
application.

• The top-level configuration file (optional) is the .vrunner file stored in your home
directory. This file can be used to tailor VXRunner to your individual needs.

When you invoke VXRunner, these configuration files are loaded in the order listed
above. If the same system variable is assigned a value by more than one of these
files, the value set for this variable is the one specified in the highest level
configuration file.

Creating GUI Virtual User Scripts (UNIX) 228

VXRunner Configuration Files

Configuration Parameters

This section describes the function of each of the system parameters.

File Storage Parameters

XR_FILE_LOCKING = {TRUE|FALSE}
Activates VXRunner file locking.

(Default = TRUE)

XR_SEARCH_PATH = directory pathname(s)
Sets a search path for the tests stored in your LoadRunner database. Any test
stored in a directory specified by this parameter can be opened or called using its
private name.

Each directory must be designated by its full logical pathname. A space serves as
the delimiter between the pathnames of two different directories. The order in
which directories are specified determines the order in which they are checked for
the specified test.

VXRunner Configuration Files

Creating GUI Virtual User Scripts (UNIX) 229

Note that the search path must be set separately for the Scenario Script window
and for the Vuser Development Environment. In the Scenario Script window, the
search path only affects calls to other TSL scripts, and does not affect the location
of Vuser Test scripts. The full path of Vuser test scripts must be specified.

(Default = Current Directory and $M_LROOT/lib)

XR_TMPDIR = pathname
Sets the directory in which LoadRunner will store temporary tests. Each such test
is assigned a name having the format: nonam*******, where each asterisk is a letter
or digit. These tests are created when you select File > New, and are automatically
deleted unless explicitly saved. The directory designated by this parameter should
have at least 5 megabytes of storage available for these temporary tests.

(Default = /tmp)

Creating GUI Virtual User Scripts (UNIX) 230

VXRunner Configuration Files

Input Device Parameters

XR_INP_KBD_NAME = file pathname
Designates the path and name of the keyboard definition file. This file specifies
what string will be generated in the TSL script when each key of the system
keyboard is pressed.

(Default = platform-dependent. Specified within the machine.cfg file.)

XR_INP_MKEYS = mouse_button_code string
Assigns a unique name (string) to each of the mouse buttons. When a test is
recorded, this name is the expression enclosed in the TSL mtype statement
generated whenever the specified button is activated. For example, the default
names assigned to each of the three mouse buttons (when pressed alone as well
as in conjunction with the SHIFT key) are as follows:

XR_INP_MKEYS = x01 Right S_Right \
 x02 Middle S_Middle \

 x04 Left S_Left

Note that button codes are specified here in hexadecimal notation. When defining
your mouse keys, be sure to use hexadecimal notation.

VXRunner Configuration Files

Creating GUI Virtual User Scripts (UNIX) 231

Record/Replay Command Softkeys

XR_SOFT_ABORT = softkey
Defines the ABORT softkey. Pressing this softkey is equivalent to selecting Replay
> Abort.

(Default is platform-dependent. See the Installing LoadRunner guide.)

XR_SOFT_ANIMATE = softkey
Defines the ANIMATE softkey. Pressing this softkey is equivalent to selecting Replay
> Animate.

(Default is platform-dependent. See the Installing LoadRunner guide.)

XR_SOFT_BREAKPOINT = softkey
Defines the BREAKPOINT softkey. Pressing this softkey is equivalent to selecting
Replay > Breakpoint.

(Default is platform-dependent. See the Installing LoadRunner guide.)

XR_SOFT_MARKLOCATOR = softkey
Defines the MARK LOCATOR softkey used to record the absolute coordinate position
(in pixels) of the screen pointer.

(Default is platform-dependent. See the Installing LoadRunner guide.)

Creating GUI Virtual User Scripts (UNIX) 232

VXRunner Configuration Files

XR_SOFT_PAUSE = softkey
Defines the PAUSE softkey. Pressing this softkey is Equivalent to selecting Replay
> Pause.

(Default is platform-dependent. See the Installing LoadRunner guide.)

XR_SOFT_RECORD = softkey
Defines the RECORD softkey. Pressing this softkey is Equivalent to selecting Replay
> Record.

(Default is platform-dependent. See the Installing LoadRunner guide.)

XR_SOFT_RUN = softkey
Defines the RUN softkey. Pressing this softkey is equivalent to selecting Replay >
Run.

(No default defined)

XR_SOFT_STEP = softkey
Defines the STEP softkey. Pressing this softkey is equivalent to selecting Replay >
Step.

(Default is platform-dependent. See the Installing LoadRunner guide.)

XR_SOFT_STEP_INTO = softkey
Defines the STEP INTO softkey. Pressing this softkey is equivalent to selecting
Replay > Step Into.

(Default is platform-dependent. See the Installing LoadRunner guide.)

VXRunner Configuration Files

Creating GUI Virtual User Scripts (UNIX) 233

Synchronization Softkeys

XR_SOFT_LOCATOR_WAIT_REDRAW = softkey
Defines the LOCATOR WAIT REDRAW softkey.

(Default is platform-dependent. See the Installing LoadRunner guide.)

XR_SOFT_WAIT_REDRAW = softkey
Defines the WAIT REDRAW softkey.

(Default is platform-dependent. See the Installing LoadRunner guide.)

XR_SOFT_WAIT_STRING = softkey
Defines the WAIT STRING softkey.

(Default is platform-dependent. See the Installing LoadRunner guide.)

Creating GUI Virtual User Scripts (UNIX) 234

VXRunner Configuration Files

Test Execution Parameters

XR_CLICK_DELAY = integer
Sets the interval, in tenths of a second, that VXRunner waits after inputting a single
click during replay. The value assigned to this parameter in the system
configuration file can be overridden using Click Delay in the Controls dialog box or
the setvar TSL function.

(Default = 3 [tenths of a second])

XR_DBLCLK_TIME = integer
Defines the maximum permitted interval, in tenths of a second, that can elapse
between two clicks that constitute a double-click. The value assigned to this
parameter in the system configuration file can be overridden using Double Click
Time in the Controls dialog box or the setvar TSL function. The minimum value is
10 (tenths of a second).

(Default = 10 [tenths of a second])

XR_FAST_REPLAY = {TRUE|FALSE}
Sets the default value for the Fast Replay check box in the Controls dialog box.
The value assigned to this parameter in the system configuration file can be
overridden using the Fast Replay check box in the Controls dialog box or using the
setvar TSL function. When you select this option, the Synchronize option is
automatically turned on.

(Default = FALSE , regular replay)

VXRunner Configuration Files

Creating GUI Virtual User Scripts (UNIX) 235

XR_FOCUS_DELAY = integer
Defines the interval, in tenths of a second, that VXRunner waits for a window to
come into focus when that window becomes the active window. The value
assigned to this parameter in the system configuration file can be overridden
using the Focus Delay check box in the Controls dialog box or the setvar TSL
function.

(Default = 3 [tenths of a second])

XR_KEY_EDITING = {TRUE|FALSE}
Activates or deactivates key editing. When activated, VXRunner generates TSL
type statements that are more concise. The value assigned to this parameter in
the system configuration file can be overridden using the Key Editing check box in
the Controls dialog box.

(Default = TRUE)

XR_KBD_DELAY = integer
Sets the interval, in tenths of a second, that XRunner waits after inputting a single
keyboard event during replay.

(Default = 0)

XR_MOVE_WINDOWS = {TRUE|FALSE}
Determines whether, after opening a window at some different location during test
replay, VXRunner will automatically move the window to the position recorded in
the TSL script. The value assigned to this parameter in the system configuration
file can be overridden using the Move Windows check box in the Controls dialog
box.

Creating GUI Virtual User Scripts (UNIX) 236

VXRunner Configuration Files

Note : If you set this parameter to FALSE, you will have to take measures to
ensure that, during replay, windows are opened in the correct, previously-
recorded position.

(Default = TRUE)

XR_RAISE_WINDOWS = {TRUE|FALSE}
Sets whether LoadRunner will automatically raise a moved window to the front of
the screen display. The value assigned to this parameter in the system
configuration file can be overridden using the Raise Windows check box in the
Controls dialog box.

(Default = TRUE)

XR_RETRY_DELAY = integer
Sets the interval the VXRunner will wait for a window to be silent before considering
it fully redrawn and entering input. The value assigned to this parameter in the
system configuration file can be overridden using Delay in the Controls dialog box
or the setvar TSL function.

(Default = 2 [seconds])

XR_SPEED_RANGE = integer
Sets the outer limits (minimum and maximum speeds) displayed on the speed bar
control. When the default value (5) is active, you can adjust the replay speed from
one fifth to five times the speed at which the test was recorded. (Activating Fast
Replay will play back the test at the fastest rate possible.) Note: If the value you
enter for this parameter is too high, events may be lost during test execution.

VXRunner Configuration Files

Creating GUI Virtual User Scripts (UNIX) 237

(Default = 5)

XR_SYNC_TIME = integer
Determines the maximum amount of time (in seconds) that the system waits for an
expected synchronization event before giving up and continuing execution of the
test. If this time is exceeded, replay continues after a slight delay. The value
assigned to this parameter in the system configuration file can be overridden using
Sync Time in the Controls dialog box or the setvar TSL function.

(Default = 10 [seconds])

XR_SYNCHRONIZED = {TRUE|FALSE}
Sets whether test execution will utilize synchronization data stored in the test
database. If you set this parameter to FALSE, the reliability of test execution may
be impaired. The value assigned to this parameter in the system configuration file
can be overridden using the Synchronize check box in the Controls dialog box or
the setvar TSL function.

(Default = TRUE)

XR_TIMEOUT = integer
Sets the global timeout (in seconds) used by LoadRunner. This value is added to
the time parameter imbedded in wait_window statements to determine the
maximum amount of time that VXRunner will search for the specified window.

(Default = 30 [seconds])

Creating GUI Virtual User Scripts (UNIX) 238

VXRunner Configuration Files

Script Display Parameters

XR_INSERT_NEWLINES = {TRUE|FALSE}
Sets whether or not VXRunner will insert a blank line before and after
check_window and wait_window statements.

(Default = TRUE)

XR_EDITOR_MAX_CHARS = integer
Determines the maximum number of characters that can be written per line in the
VXRunner window. When, during a Record session, a generated script statement
extends beyond this maximum length, the script line is split between two or more
lines.

(Default = 80)

Text Editor Parameter

XR_TEXTEDIT = text editor name
Specifies the text editor in which execution reports will be loaded. By default, this
parameter is commented. It should be uncommented only if a text editor other than
the OpenWindows textedit program is to be used.

In such a case set this parameter so that it points to the name of a script which will
activate your editor. This script should receive two parameters: (1) the name of the
X display to use and (2) the name of the file to be edited. The script should invoke
the user-specified editor. Note that the referenced script must open a window and
execute the command in the background.

(Default = textedit)

VXRunner Configuration Files

Creating GUI Virtual User Scripts (UNIX) 239

Configuration File Contents

System configuration files are text files that can include the following types of data:

• assignment statements

• directives

• blank lines

• comments

Creating GUI Virtual User Scripts (UNIX) 240

VXRunner Configuration Files

Assignment Statements
The main purpose of a configuration file is to allow the assignment of values to
VXRunner system parameters. The values assigned to these parameters
determine how the program will run. Most of these values will be defined by the top-
level (~/.vrunner) configuration file located in the $M_ROOT/dat directory following
system installation. Other parameters point to system locations.

In addition to assignment statements used to set values for parameters, you can
assign values to user-defined variables. A typical use would be to assign an
arbitrary shorthand name to a path which may appear any number of times in the
configuration file. For example, the line

P153T = /project_15/ver_3/tests

assigns the specified pathname to the variable P153T. Whenever the name of this
variable subsequently appears in the configuration file, the associated path will be
understood. Thus if the location of the search path is specified by the line

XR_search_path = $(P153T)/..

LoadRunner will understand that this directory resides under the pathname
/project_15/ver_3 .

VXRunner Configuration Files

Creating GUI Virtual User Scripts (UNIX) 241

Note the following points:

• The equal sign (=) is always used to assign a value to a variable, whether this
variable is a system parameter or a user-defined variable.

• Whenever a user-defined variable is initiated in the file, the name of this variable
must be enclosed within parentheses; the enclosed variable name is preceded by
a dollar sign ($). Note that environmental variables may also be accessed using
the same convention.

• If the same item appears more than once in the configuration file, the last value
assigned to this item will be used by the system.

Regarding case sensitivity of names, note the following points:

• Names of variables and system parameters appearing in the configuration file are
not case sensitive.

• Boolean values assigned to variables or parameters are not case sensitive.

• Values assigned to certain system variables may be case sensitive, depending on
the nature of the variable.

Creating GUI Virtual User Scripts (UNIX) 242

VXRunner Configuration Files

Directives
The configuration file can contain one or more include directives. An include
directive is used to integrate the entire contents of the specified file in the
configuration data processed by LoadRunner. An include directive consists of:

• the at sign @ in the first column of the file line

• the label include

• the @ character, followed by the name of the file (enclosed between quotation
marks) to be integrated at this point. For example:

@include "@loc_file"
.
.
@include "@/file2"

Note that each file to be integrated in the configuration data must be specified by
its own include entry.

Include directives can be nested: A file that is referenced by an include entry in
the configuration file may in turn contain its own include directives to other files.
Such nesting is supported up to ten levels. When a relative name is used to specify
the file to be integrated, the specified name must express the location of this file
relative to the file in which the calling include directive appears.

VXRunner Configuration Files

Creating GUI Virtual User Scripts (UNIX) 243

Blank Lines and Comments
As it processes a configuration file, LoadRunner ignores blank lines and
comments. Comments may be inserted in a file using the number sign (#). All text
that appears between a number sign and the end of a line is understood to be a
comment.

Line Format
When a record in the configuration file extends beyond a single line, the backslash
character (\) indicates that the record continues on the next line.

XR_INP_MKEYS = 0 x01 Right S_Right \
 0 x02 Middle S_Middle \
 0 x04 Left S_Left

In the above example, the XR_INP_MKEYS parameter is used to assign a unique
name (string) to each of the mouse buttons when pressed alone as well as in
conjunction with the SHIFT key.

When more than one value is assigned to the same parameter or user-defined
variable, the delimiter between the values is a blank space.

Creating GUI Virtual User Scripts (UNIX) 244

VXRunner Configuration Files

Special Characters
The backslash character (\) can also be used within a configuration file as an
escape character. If a record must include a special character which has a different,
reserved function, precede the special character with a backslash. The character
that follows will then be read literally by the LoadRunner interpreter. (For example,
in order that a backslash be understood as a literal backslash, type in a double
backslash [\\].)

The backslash character is also used to indicate literal carriage return (ENTER)
and tab characters in the configuration file:

Quotation marks (") can be used to indicate that two or more string segments
constitute a single value.

Index

Creating GUI Virtual User Scripts (UNIX) 245

Click a
 page

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

A
Abort command 36
Add Watch command 93
Add Watch dialog box 93
Adjusting system variables 189–195
Animate command 35

B
beep system variable 183
Breakpoints 80–89

deleting 89
modifying 88
setting and removing 84

Built-in functions 132

C
call statement 156
Calling tests 155–165

defining parameters 160
returning to tests 157
setting the search path 158
treturn statement 157

Command tool 20
compare_text function 62
Compiled modules 144–152

creating 148
incremental compilation 153
loading 149
reloading 151
structure 146
unloading 151

0
Index

Creating GUI Virtual User Scripts (UNIX) 246

Index

Click a
 page

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

Configuration parameters
XR_CLICK_DELAY 234
XR_DBLCLK_TIME 234
XR_EDITOR_MAX_CHARS 238
XR_FAST_REPLAY 234
XR_FILE_LOCKING 228
XR_FOCUS_DELAY 235
XR_INP_KBD_NAME 230
XR_INP_MKEYS 230
XR_KEY_EDITING 235
XR_MOVE_WINDOWS 235
XR_RAISE_WINDOWS 236
XR_RETRY_DELAY 236
XR_SEARCH_PATH 228
XR_SOFT_ABORT 231
XR_SOFT_ANIMATE 231
XR_SOFT_BREAKPOINT 231
XR_SOFT_LOCATOR_WAIT_REDRAW 233
XR_SOFT_MARKLOCATOR 231
XR_SOFT_PAUSE 232
XR_SOFT_RECORD 232
XR_SOFT_RUN 232
XR_SOFT_STEP 232
XR_SOFT_STEP_INTO 232
XR_SOFT_WAIT_REDRAW 233
XR_SPEED_RANGE 236
XR_SYNCHRONIZE 237
XR_TEXTEDIT 238

XR_TIMEOUT 237
XR_TSL_INIT 169

Controls dialog box 181
curr_dir system variable 183

D
declare_rendezvous function 201
declare_transaction function 202
delay system variable 183

E
end_transaction function 203
error_message function 206
exp system variable 183
expect_text function 208

F
fast_replay system variable 184
find_text function 60
Functions, See User-defined functions

Index

Creating GUI Virtual User Scripts (UNIX) 247

Click a
 page

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

G
get_host_name function 116, 210
get_master_host_name function 116, 211
get_text function 56, 57
getvar function 178

H
Header command 160–162

I
Incremental compilation 153
Initialization tests 167–169

K
key_editing system variable 184

L
line_no system variable 184
load function 150
LoadRunner configuration files 226–244
LoadRunner testing process 10
lr_whoami function 116, 212

M
machine.cfg file 227
Monitoring array variables 95
Monitoring variables 90–99
move_windows system variable 185

O
Output window 114, 115
output_message function 115, 213

P
Parameters, defining for a test 160–165
Pause command 37

R
raise_windows system variable 185
Recording Tests 27–31
Regular expressions 170–174

in find_text function 56, 57, 60
syntax 172

reload function 151
Rendezvous

declaring 110
specifying 111

rendezvous function 111, 214

Creating GUI Virtual User Scripts (UNIX) 248

Index

Click a
 page

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

Replaying Tests 33–37
Abort command 36
Animate command 35
Pause command 37
Run command 35

report_msg function 73
Reports, see test reports
result system variable 185
return statement 143
Run command 35

S
Search path, setting 158
searchpath system variable 185
setvar function 179
shared_checklist_dir system variable 186
speed system variable 186
start_transaction function 217
Step command 77
Step Into command 77
Step Out command 77
STOP softkey 29
Synchronization 108–112

test execution 41, 47
sysmode system variable 186
System Configuration files, see Configuration

files

system function 63
System perfomance

measuring 101–119
specifying your own data for analysis 113,

114, 118
System variables 175–187, 189–195

setting through the Controls dialog box
181

setting with setvar statement 177

T
Test Environment dialog box 182
Test Header dialog box 160
Test reports 66–73

adding messages to 73
viewing during execution 72

Test Script Language, see TSL
testname system variable 186
Text recognition 55–62

comparing text 62
reading text 57
searching for text 60

timeout system variable 186, 192
Transactions

declaring 103
marking the end of 101, 105
marking the start of 104

Index

Creating GUI Virtual User Scripts (UNIX) 249

Click a
 page

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

treturn statement 157
TSL 9
TSL overview 121–133

arithmetical operators 126
assignment operators 129
built-in functions 132
comments 133
conditional operators 128
constants 123
control flow statements 130
logical operators 128
relational operators 127
string operators 127
variables 124

tslint test 169

U
unload function 151
user_data_point function 118, 220
User-defined functions 135–143

class 137
declaration of variables, constants and

arrays 139
parameters 138
syntax 137–142

V
variables

monitoring 90
scope 164

Variables, see System variables
Virtual User Environment dialog box 19, 21,

23
Virtual user, see Vuser
Virtual X Server 7
Virtual XRunner, see VXRunner
Vuser Development Environment 9, 113–119

closing 25
configuring 20
locking 24
opening 19

Vuser scripts
converting XRunner scripts 32
creating 113–119
specifying a rendezvous 111

Vuser tests, see Vuser scripts
Vusers

GUI Vusers 3
obtaining information 113, 114, 116
synchronizing 108–112
Vuser technology 5

VXRunner 7

Creating GUI Virtual User Scripts (UNIX) 250

Index

Click a
 page

QE F G H J K LB RPI M N O S T U V W X Y ZA C D

W

WAIT_REDRAW softkey 29
wait_text function 221
wait_window function 41
Watch List 90–99

Adding an array 95
Assigning a value to a variable 98
Deleting expressions from the Watch List

99
Modifying a Watch List expression 97

Window manager 20

X
xr_cfg_file 227
XRunner

converting XRunner scripts 32
on a remote display 21
running applications from within 63

xrunner.cfg file 227

Command Softkeys

Creating GUI Virtual User Scripts (UNIX) 251

Command Softkeys
When you are recording and replaying GUI Vuser scripts, it is often convenient to use
softkeys instead of selecting menu options with the mouse. The table below shows the
default softkey combinations for the Sun, IBM, HP, and DEC platforms.

Command SUN HP IBM DEC

RECORD F4 F4 F4 F4

ANIMATE F8 F8 F8 F8

RUN Unbound Unbound Unbound Unbound

STEP F7 F7 F7 F7

STEP INTO F9 Ctrl_L+F7 F9 Ctrl_L+F7

ABORT/ STOP STOP F10 F1 Alt_L+F1

PAUSE PAUSE F11 F10 F10

BREAKPOINT F5 F5 F5 Alt_L+F7

MARK LOCATOR F6 F6 F6 F6

WAIT WINDOW F3 F3 F3 F2

GET TEXT Shift_L + F6 Shift_L + F6 Shift_L + F6 F11

WAIT TEXT Shift_L + F5 Shift_L + F5 Shift_L + F5 F1

In

Creating GUI Vuser Scripts (UNIX)— Version 6.0

© Copyright 1994–1999 by Mercury Interactive Corporation

All rights reserved. All text and figures included in this publication are the exclusive property of Mercury
Interactive Corporation, and may not be copied, reproduced, or used in any way without the express permission
in writing of Mercury Interactive. Information in this document is subject to change without notice and does not
represent a commitment on the part of Mercury Interactive.

Patents pending.

WinRunner, XRunner, and LoadRunner are registered trademarks of Mercury Interactive Corporation.
TestSuite, Astra, Astra SiteManager, Astra SiteTest, RapidTest, TestDirector, QuickTest, Visual Testing,
WebTest, Action Tracker, Link Doctor, Change Viewer, Dynamic Scan, Fast Scan and Visual Web Display are
trademarks of Mercury Interactive Corporation.

This document also contains Registered Trademarks, Trademarks and Service Marks that are owned by their
respective companies or organizations. Mercury Interactive Corporation disclaims any responsibility for
specifying which marks are owned by which companies or organizations.

If you have any comments or suggestions regarding this document, please send them via e-mail to
documentation@mercury.co.il.

Mercury Interactive Corporation
1325 Borregas Avenue
Sunnyvale, CA 94089
Tel. (408)822-5200 (800) TEST-911
Fax. (408)822-5300

LRGUIUXUG6.0/01

	Cover Page
	Table of Contents
	Welcome to LoadRunner
	Online Resources
	LoadRunner Documentation Set
	Using the LoadRunner Documentation Set
	Typographical Conventions

	Understanding GUI Vusers
	Introduction
	Working with GUI Virtual Users
	GUI Virtual User Technology
	Creating Virtual User Scripts
	The LoadRunner Testing Process
	Getting Started with GUI Virtual Users

	Virtual User Development Environment (VUDE)
	Opening the VUDE
	Configuring the VUDE
	Developing Multi-Platform Vuser Scripts
	Locking the VUDE
	Closing the VUDE

	Working with VXRunner
	Recording GUI Virtual User Scripts
	Recording a GUI Vuser script
	Guidelines for Recording
	Converting Existing XRunner Scripts

	Replaying GUI Virtual User Scripts
	Replaying a GUI Vuser script
	Stopping Script Execution
	Pausing Script Execution

	Synchronizing GUI Vuser Script Execution
	Synchronizing Script Execution Using wait_window
	Synchronizing Script Execution Using wait_text

	Reading Text from the Screen
	About Text Recognition
	Reading Text
	Searching for Text
	Comparing Text

	Invoking Applications with VXRunner
	About Running Applications from within VXRunner
	Using the System Command to Start an Application

	Viewing Execution Reports
	About Execution Reports
	Displaying Execution Reports
	Viewing Reports During Script Execution
	Adding Messages to Reports

	Debugging GUI Vuser Scripts
	Debugging GUI Vuser Scripts
	Running a Single Line of a GUI Vuser Script
	Running a Section of a GUI Vuser Script
	Pausing Script Execution

	Using Breakpoints
	Setting and Removing Breakpoints
	Modifying Breakpoints
	Deleting a Breakpoint

	Monitoring Variables
	Adding a Variable or Expression to the Watch List
	Adding an Array to the Watch List
	Modifying an Expression in the Watch List
	Assigning a Value to a Variable
	Deleting Expressions and Variables from the Watch List

	Using LoadRunner Functions
	Measuring System Performance: Transactions
	Declaring Transactions
	Marking the Start of a Transaction
	Marking the End of a Transaction
	A Sample Transaction

	Emulating Server Load: Rendezvous Points
	About Synchronizing Multiple Vusers
	Declaring a Rendezvous
	Specifying the Point of Rendezvous in a GUI Vuser Script
	A Sample Rendezvous

	Enhancing Scripts Using Functions
	Sending Messages from Vuser scripts
	Obtaining Virtual User Information
	Specifying Your Own Data for Analysis

	Programming with TSL
	Introducing TSL
	Constants
	Variables
	Operators
	Control-Flow Statements
	Built-in Functions
	Comments

	Creating User-Defined Functions
	Function Syntax
	Return Statement

	Creating Compiled Modules
	Compiled Module Contents
	Creating a Module
	Loading and Unloading a Compiled Module
	Incremental Compilation
	Compiled Module Example

	Calling Scripts
	Using the Call Statement
	Returning to the Calling Script
	Setting the Search Path
	Defining Parameters

	Advanced VXRunner Features
	Creating Initialization Scripts
	Types of Initialization Scripts

	Using Regular Expressions
	Regular Expression Syntax

	Setting System Variables
	Setting System Variables from within the Script
	The Controls Dialog Box
	The Test Environment Dialog Box
	System Variables

	Synchronizing Problematic Windows
	How System Variables Affect wait_window Functions
	Adjusting the Timeout Interval
	Setting the Delay

	GUI Vuser Script Programming Reference
	Function Reference
	Return Values

	Appendices
	VXRunner Configuration Files
	Configuration Parameters
	Configuration File Contents

	Command Softkeys
	Index

	help:
	search:
	home:

