Mercury™ IT Governance Center

Commands and Tokens

Guide and Reference
Version 5.5.0

.
MERCURY
A:. INTERACTIVE



This manual, and the accompanying software and other documentation, is protected by U.S. and
international copyright laws, and may be used only in accordance with the accompanying license
agreement. Features of the software, and of other products and services of Mercury Interactive
Corporation, may be covered by one or more of the following patents: U.S. Patent Nos.
5,701,139; 5,657,438; 5,511,185; 5,870,559; 5,958,008; 5,974,572; 6,138,157, 6,144,962,
6,205,122; 6,237,006; 6,341,310; 6,360,332, 6,449,739; 6,470,383; 6,477,483; 6,549,944,
6,560,564; 6,564,342; 6,587,969; 6,631,408; 6,631,411; 6,633,912 and 6,694,288. Other patents
pending. All rights reserved.

Mercury, Mercury Interactive, the Mercury Interactive logo, LoadRunner, LoadRunner Test-
Center, QuickTest Professional, SiteScope, SiteSeer, TestDirector, Topaz and WinRunner are
trademarks or registered trademarks of Mercury Interactive Corporation or its subsidiaries, in the
United States and/or other countries. The absence of a trademark from this list does not constitute
a waiver of Mercury Interactive's intellectual property rights concerning that trademark.

All other company, brand and product names are registered trademarks or trademarks of their
respective holders. Mercury Interactive Corporation disclaims any responsibility for specifying
which marks are owned by which companies or which organizations.

Mercury Interactive Corporation
1325 Borregas Avenue
Sunnyvale, CA 94089 USA

Tel: (408) 822-5200

Fax: (408) 822-5300

© 2004 Mercury Interactive Corporation. All rights reserved.

If you have any comments or suggestions regarding this document, please send them via e-mail to
documentation @merc-int.com.

Publication Number: CommandsAndTokens-0304A



Table of Contents

Chapter 1
INETOTUCHON «...ceineinrinineinrinrnnsnesnncnessassneesssssssssssassasssnssnssssessassssssassassssssssssssassssssnasns 1
AbOUL This DOCUMENL......cicvieiiiinnriieintistsiiesisstsssssssstsssssssssssssssssssssssssssssssssssssssssssssssssssses 1
Intended AUIENCE .....cc.eruieiiiiiiiiiiiiininetsc sttt stsssts s sesssssssasssssssssssassssssssssoses 2
Document CONVENTIONS .......ccovueiiiuriisieiiisueiinsueisieeinsneeesseeesseesessseessssssssseesssssessssessssssssssses 2
AddIONAl RESOUFCES ......couiuiiniiirieiiintiirianistntssasssssssssasssesasssssasssessssssssasssassssssssssssass 3
Related DOCUMENTAHON ..........c.ooviiiie et 3
CUSTOMET SUPPOIT ...ttt ettt ettt e ettt e e e ettt e e e ee e e eas 4
EAUCTHON SEIVICES ... .o.vivvieie e ettt ettt 4

Chapter 2
UsSing COMMANS.......cccecrueeruerreiereecruecsnnsseesssesssessasssesssssssassnsssasssssssssssasssassssassssssasssans 5
ComMANAS OVEIVIEW .....cuuiiuririuneinneisinsensscsstsisssssssssssssessssssssssssessssssssssssssssssossssssssssssossones 5
Where Commands are Used ..............c.ooviiiiiiiiiiiieiceeiceeeeeeeeeeee e 6
Commands INFErfaCe. ........oviviiiviei i )
Obiject Type Commands and Workflow .............c..ccoooviiiiiiii e 9
Request Type Commands and WorkHow ..............ccocoooiiiiiii e, 9
Special COMMANGS .........ccooiiiiiiiiii e 10
CoOMMAND SIEPS ....eeeerenrrrerrrenreenseeceesaeesanesasessessssssassasssssssasssssssssssessassssssasssnsssasssnsssssssasses 11
ComMAN LANGUAGE ...ttt ettt 11
CommANd CONAIIONS .....couvrruieuririiririiiariietininssteststssasssestssssssssnsessssssssssnssssssssssssassssones 12
Example Command USEs ........cceeueereernercsennsennsenseenseesseessessseesasssassssssssssasssasssssssssssasssssssasses 13

Chapter 3
Special CommANAS ........cccuiirierieiieriirienieneeneeneeneeeseeseesseesseesaeessnsssssssssssasssassseans 15
Special CommaAnd INFErfACE ......c.cevueruereeeeereneereecaeerenesseesaesessesseesaessessessessasssesasssessasssssns 16
Special Command Workbench...............ccooviiiiiiiii e, 16
Special Command WIndow ..........cc.ooviiiiiiiiiiic e 17
Creating and Editing Special Commands ........cccceceeueeveinernernecnecsencsenneenneesseesseeseesaeesaenns 25
Creating a New Special Command .............ccooviiiiiiiiiic e, 25
Creating and Editing Special Command Parameters .................ccccocoevvevieiiiieeicieice e, 27
Setting Ownership for Special Commands................cc.ccooviiiiiiiiiic e, 31
Using Special Commands ..........ccceeeieeerrenuncnennneeneensesseessesssesssesssessassssssnsssnsssasssnsssssssasses 32

Table of Contents i



Commands and Tokens Guide and Refence

Adding Special Commands to Command Steps Using the Command Builder ..................... 33
Nesting Special Commands ............ccooiiiiiiiiieiicice et 35
Chapter 4
USING TOKENS ..ceouveneeennnieerenneessnnsnsnssnnsssessessssssessssssssssssssssssssosssssssssossasssssassssssassans 37
What Are TOKENS? ....ccucieiiiiiiiiiriieinsiissansissstssnnssesnssssssssssessssssssssssassssssssssssassssssssoses 37
Where Tokens Are Used .........ccocviiuieiniinininnninnsininnnnneinsiniessnssesssssssssssssssssssssssssssssssessoses 38
Token Builder Window OVEIVIEW........cccciviieureuiiiininnunneisnniinsenscsnsscsssssssssssssesssssssssssssssones 39
TOKEN FOIMALS ....ueieniiniiiiinrintiininntssstssaesesssstssassessssssssasssesassssssssssassssssesssssasssssssssoses 41
Default FOrMQt .....c.ooviiieiiiie et e 43
Explicit Enfity FOrMQ! ......c.viiiitiiiceiiie et 43
User Data FOrMOL..........eiiiiiiii e 46
Parameter FOrmat...........ooiiiiii e 47
SUB-ENtity FOrMQL.......oiiviiiiei ittt 51
Environment and Environment Application Tokens ..............c..cccccoiviiiiiiiiiie e, 52
Token EVAlUGHON. ......ccuiiiiiiiietiiiirinnintntscneteatstsasssssasstsassssssssssssssssassssssssssssasassssns 54
Appendix A
System Special CommANds.........ccccevireririrnrininrrninnnnientnneiesssssssssnssssssssnssssossssssosses 57
Special ComMMANMS........ccccveeirneirneinneinrincieneesnenesesssessasssnsssssssssssssssssssasssassssssesssasssassnsss 57
ksc_connect Special Commands .............ccoovioiiiiiiiiiie e, 58
KSC_@XIt .ttt ettt ettt ettt et 62
ksc_copy Special Commands ...............cooiiiiiiiiiiicice e, 63
KSC_I@SPONM. ... ...iieii ittt 70
ksc_simple_respond............c.cooiiiiiiiiie i e 70
KSC_lOCAI_@XEC .....vv e e 72
KSC_I@PIOCE. ... 73
KSC_SBE .ttt ettt ettt ettt et 74
KSC_SBE BNV ...ttt ettt 75
KSC_STOT® ...ttt ettt ettt ettt 75
KSC_COMMENE ......oiei e ettt et e e 76
KSC_CONCSUD ... vt 77
ksc_begin_script / ksc_end_script...........ccooviiiiiiiiiii e, 78
ksc_copy_script Special Commands...............c.cccooiiiioiiiiiiee e, 79
KSC_OM_MIGIGIE ...ttt ettt 82
KSC_COPIUFE_OUIDUL. ...ttt et 83
KSC_ Gl MIGIOE . . ..ceeeiieeecee e e 84
KSC_PArSE_Cl .. vt e 85
kSC_SUBMIE_JOD. ... .ttt 85
ksc_set_exit_VAlUE ..........coiiiiiiiiciiie et e 86
ksc_clear_exit_value ..............covoviiiiiiieceec e, 86
KSC_TUN_SGl . et 86
Summary of All Special Command Parameters ...........cccceeeueereereereeseessensesseeseesnessesessasnenes 88

iv Table of Contents



Commands and Tokens Guide and Reference

Appendix B

TOKENS .cveenveeieeinneetrnnneesnnsnnsnssnssnsessssnsesssssesssssssssssssssssosssssssssossassessssssssssssssssnssassses 95
SYSIEM TOKENS ....cvveeeveeirienieeeeteeeeceecanesaeesunsnnessnsssssssssssssssssssssssessssssssssssssssasssasssasssnase 96
Field Group TOKENS .......couieuirienirnnenneecnenesencsnesneeseesseessesssnssssssssssnssssssnsssnsssasssssssasssassees 131

Table of Contents v



Commands and Tokens Guide and Refence

vi

Table of Contents



Commands and Tokens Guide and Reference

Chapter

Introduction

Commands and Tokens are used throughout the Mercury IT Governance (ITG)
Center implementation to enable advanced automation and defaulting.

Commands define the heart of the execution layer within the deployment
system and determine which steps to execute at a specific Workflow step. This
can involve activities such as migrating a file, executing a script, performing
some data analysis, or compiling code.

Tokens are variables that can be used to reference information that is
undefined until Mercury ITG Center is actually used in a particular context.
This includes such things as setting variables in commands or using Tokens
within Notifications to specify the recipients.

About This Document

This document provides information on using commands and Tokens. Each
chapter or appendix covers specific topics on commands and Tokens:

Using Commands Provides an overview and examples for using
commands.

Special Commands  Discusses the interface for creating, editing and using
Special Commands in the Mercury ITG Center.

Using Tokens Provides an overview of how to use Tokens
System Special Discusses pre-defined Special Commands.
Commands

Tokens Provides a list of all entity Tokens.

Introduction 1



Commands and Tokens Guide and Reference

Intended Audience

The intended audience for this document include:
e (Configuration experts configuring a deployment system.
e Configuration experts configuring a Request resolution system.

e Business modelers who need to modify the following entities: Workflows,
Object Types, Request Types, Validations, Notifications, and Report
Types.

Users must have the proper Power license to access the screens and windows
@e— described in this document.

Document Conventions

Table 1-1 lists the types of conventions used in this document.

Table 1-1. Document conventions

Convention Description Example

Button, menu, tabs Names of interface components that can be Apply button
clicked (such as buttons, menus, and tabs)
are shown in bold.

Fields, Windows, Pages Names of windows, fields, and pages are New Request window
shown as displayed.

Code Code input and output are shown as CauchoConfigFile
displayed. C:/ITG_Home/conf/

resin.conf

Link Linked URLSs, filenames, and cross references | www.merc-int.com
are shown as blue italicized text.

Variable Variables are shown as italicized text. ITG_Home/bin directory

2 Introduction



Commands and Tokens Guide and Reference

Table 1-1. Document conventions

Convention Description Example

Note Used to identify note boxes that contain
additional information.

Note

Caution Used to identify caution boxes that contain
important information. Follow the instructions
in all caution boxes, failure to do so may result

. Cauti
in loss of data. aution

Example Used to identify example boxes that contain
examples of related procedure.

NN

Excmple

Additional Resources

Mercury Interactive provides the following additional resources to help you
successfully use commands and Tokens:

o Related Documentation
e  Customer Support

o FEducation Services

Related Documentation

The Library includes additional documents related to the topics discussed in
this guide. Access the Library through the Mercury ITG Center online help or
the Download Center at http.//itg.merc-int.com/support/download/login.jsp.

Using the Workbench This document explains how to navigate
through the Workbench interface.

Introduction 3



Commands and Tokens Guide and Reference

Configuring a Request
Resolution System

Configuring a Deployment
System (Change Management)

Configuring a Release
Management System

Customizing the Standard
Interface

Customer Support

This document provides instructions for
configuring a Request resolution system. This
includes requirements gathering, modeling
your processes in a Workflow, defining a
Request Type to be integrated with the
Workflow, and rolling out this system to your
users.

This document provides instructions for
configuring a deployment system. This
includes requirements gathering, modeling
your processes in a Workflow, defining
commands used by the execution engine, and
rolling out this system to your users.

This document provides details for
configuring, defining and processing
Releases.

This document provides details for
customizing the interface, including the
directory structure and methods of
customization for changing the presentation
of the standard interface.

Customer support and downloads for the Mercury ITG Center and additional
product information can be accessed from the Mercury Interactive Support
Web site at http.://support.mercuryinteractive.com.

Education Services

Mercury Interactive provides a complete training curriculum to help you
achieve optimal results using the Mercury IT Governance Center. For more
information, visit the Education Services Web site at http://www.merc-

training.com/main/ITG.

4

Introduction



Commands and Tokens Guide and Reference

Chapter

Using Commands

The following sections provide an overview and examples for using
commands in Mercury ITG Center:

Commands Overview
Command Language
Special Commands
Command Steps
Command Conditions

Example Command Uses

Commands Overview

Commands define the heart of the execution layer within the deployment
system and determine which steps to execute at a specific Workflow step. This
can involve activities such as migrating a file, executing a script, performing
some data analysis, or compiling code.

This section contains the following topics:

Where Commands are Used
Commands Interface

Object Type Commands and Workflow
Request Type Commands and Workflow

Special Commands

Using Commands 5



Commands and Tokens Guide and Reference

Where Commands are Used

Commands are used in the following entities to enhance the implementation
and enable sophisticated command-line automation:

e Object Types
e Request Types
e Report Types
e  Workflows

e Validations

Commands Interface

Access commands through the Commands tab of the following screens:

® Object Type

® Request Type

® Report Type

® Validation

® Workflow Step Source

® Special Command

Commands consist of command information and command steps. In this
chapter, the examples are accessed through the Change Mgmt: Object Types

screen, but the interface is the same in other screens where commands are
configured.

Double-click the Command Step to open the Edit Command window. The Edit
Command window displays the shell script code in the Steps window, as shown
in Figure 2-1.

6  Using Commands



Commands and Tokens Guide and Reference

=10lx|

Qi Object Type : File Client->Client

Object Type Narme: [[HIER

Descrigtion: [File Copy From Client to Client

Extersion | =] Obiect Name Calumr: [PARAMETER1 -
Object Category: |Standard Objects | Obiect Revision Calurnn ~

Meta Layer View: [MPKGL_ [FILE_CLIENT_CLIENT

Enabled: (* Yes Mo

Fields | Layout Commands | o1 250 | ownership

—Conand St
| Cotnma

Desc
ksc_copy_client_client SUB_PATH="[P.P_SUB_PATH]" FILENAME=

Conmant
| command | consition
= client_cop | \cl\em £

Double click the
Command to open
the Edit Commana
window.

L | | ]
oban| =21 new Cmd | Ecit Crmel | Copy Crmd | Remove. |f&

oK Save. Cancel

& Edit Command

Command client_copy
Condition:
Description: client_copy
Timeout (5): 600
Enabled: @ Yes © Mo

eps:
lesc_copy_client_client SUB_PATH="[F.P_SUB_PATH]" FILENAME="[F.P_FILEMAME]"

K| | i
Tokens | Special Cmd | Show Desc | ok I Anply | Cancel |
|

|Ready

Figure 2-1 Commands Tab and Edit Command Window

To generate a new command, click New Cmd in the Commands tab. This opens
the New Command window as shown in Figure 2-2. Table 2-1 lists the fields

contained in this window.

Using Commands 7/



Commands and Tokens Guide and Reference

x|
Command:
Condition:
Description:
Timeout (s} a0
Enabled: @ Yes " No
Steps:
Tokens | Special Cmd | Show Desc | QK I Add | Cancel
|Ready

Figure 2-2 New Command Window

Table 2-1. New Command Window Fields

Field

Description

Command

A simple name for the command.

Condition

A condition that determines whether the steps for the command are
executed or not. (See “Command Conditions” on page 12 below
for more information).

Description

A description of the command.

Timeout

The amount of time the command will be allowed to run before its
process is terminated. This mechanism is used to abort commands
that are hanging or taking an abnormal amount of time.

Enabled?

Determines whether the command is enabled for execution.

Each Object Type, Request Type, Validation, Workflow step source, or Report
Type may have many commands, and each command may have many
command steps. A command may be viewed as a particular function for an
object. Copying a file may be one command, and checking that file into
version control may be another. To perform these functions, a series of events
needs to take place, and these events are defined in the command steps.

8

Using Commands




Commands and Tokens Guide and Reference

An additional level of flexibility is introduced when some commands must
only be executed in certain cases. This is powered by the condition field of the
commands and is discussed in “Command Conditions” on page 12.

Obiject Type Commands and Workflow

Object Type Commands are tightly integrated with the Workflow engine. The
commands contained in an Object Type are executed at Execution Workflow
steps in Change Management Package Lines.

It is important to note the following concepts regarding Command/Workflow
interaction:

e To execute Object Type commands at a particular Workflow step, the
Workflow step must be configured with the following parameters:

o Workflow step must be an Execution type step.
0 Workflow Scope = Packages.
0 Execution Type = Built-in Workflow Event.

0 Workflow Command = execute_object_commands.

e When the object reaches the Workflow step (with Workflow Command =
execute_object_commands), all Object Type commands whose conditions
are satisfied will be run in the order they are entered in the Object Type’s
command panel.

e The Object Type can be configured to run only certain commands at a
particular step. To do this, specify command conditions. For details, see
“Command Conditions” on page 12.

Request Type Commands and Workflow

Similar to Object Type commands, Request Type commands define the
execution layer within Request Management. While most of the resolution
process for a Request is analytically based, cases may arise for specific
Request Types where system changes are required. In these cases, Request
Type commands can be used to automatically perform these changes.

Request Type Commands are tightly integrated with the Workflow engine. The
commands contained in a Request Type are executed at Execution Workflow
steps.

Using Commands 9



Commands and Tokens Guide and Reference

It is important to note the following concepts regarding Command/Workflow
interaction:

To execute Request Type commands at a particular Workflow step, the
Workflow step must be configured with the following parameters:

o Workflow step must be an Execution type step.
0 Workflow Scope = Requests
0 Execution Type = Built-in Workflow Event.

0 Workflow Command = execute_request_commands.

When the Request reaches the Workflow step (with Workflow Command =
execute_request_commands), all commands whose conditions are satisfied
will be run in the order they are entered in the Request Type’s command
panel.

The Request Type can be configured to run only certain commands at a
particular step. To do this, specify command conditions. For details, see
“Command Conditions” on page 12.

Special Commands

Object Types, Request Types, Report Types, Workflows and Validations all
use commands to access the execution layer. In order to simplify the use of
command executions, Mercury ITG Center contains a predefined set of Special
Commands. Users can also create their own Special Commands.

Special Commands are commands with variable parameters, and are used in
Object Type, Request Type, Report Type, Workflow, and Validation
command steps. These command steps perform a variety of functions, such as
copying files between Environments and establishing connections to
Environments for remote command execution. Mercury ITG Center features
two types of Special Commands:

System Special Commands - These commands are shipped with Mercury
ITG Center. System Special Commands are read-only and have the naming
convention “ksc_command_name”. System Special Commands always
begin with “ksc_".

User Defined Special Commands - These commands are user-defined and
have the naming convention “sc_command_name”. User-defined Special
Commands must begin with “sc_"

10 Using Commands



Commands and Tokens Guide and Reference

Special Commands act as sub-programs that can be reused where needed. It it
often more convenient to create a Special Command for a program that will be
used in multiple places, rather than placing the individual commands into
every Object Type or Request Type that need them.

Command Steps

Command steps represent the actual directives that Mercury ITG Center
specifies to execute the commands. A command step can be an actual
command-line directive that is sent to the Mercury ITG Server or target
machine, or it can be one of the many “Special Commands.” Table 2-2
describes the fields in the Command Steps region of the New/Edit Commands
dialog.

Table 2-2. Command Steps

Field Description
Steps Defines the command-line directive or Special Command to be
issued.
Description Describes each of the command steps.

The Execution Engine will execute the commands and command steps in the
order they are displayed in the Commands tab. To change the order of the
commands or the command steps, in the Commands tab, select the given
command or command step and use the arrow buttons to move the selected
1tem.

Command Language

The command steps in a command define the actual system-level executions
that need to be performed to achieve the desired function of the command.
Command steps can be UNIX commands, third party application commands,
or Special Commands. Special commands are reusable routines defined in
Mercury ITG Center. Mercury ITG Center also supplies a number of system
Special Commands used to perform common execution events (such as

Using Commands 11



Commands and Tokens Guide and Reference

connecting to Environments or copying files). Tokens can be used within
command steps.

Command Conditions

In many situations, it may be necessary to run a different set of commands
depending on the context of execution. This flexibility is achieved through the
use of conditional commands. The Condition field for a command is used to
define the situation under which the associated command steps execute.

Conditions are evaluated as boolean expressions. If the expression evaluates to
true, the command is executed. If false, the command is skipped and the next
command is evaluated. If no condition is specified, the command is always
executed. The syntax of a condition is identical to the “where” clause of a SQL
statement, which allows enormous flexibility when evaluating scenarios. Some
example conditions are detailed in the following table:

Table 2-3. Example Conditions

Condition Evaluates to
BLANK Command will be executed in all situations.
‘[P.P_VERSION_LABEL] Command will be executed if the parameter
IS NOT NULL with the Token P_VERSION_LABEL in the

Package line is not null.

‘[DEST_ENV.ENVIRONMENT_NA | Command will be executed when the

MEY = ‘Archive’ destination Environment is named “Archive”.
‘[AS.SERVER_TYPE_CODE] = Command will be executed if the application
‘UNIX’ server is installed on a UNIX machine.

‘ Be sure to place single quotes around string literals or Tokens that will
Tip evaluate strings.

The condition can include Tokens. For more information, see “Using Tokens”
on page 37.

12 Using Commands



Commands and Tokens Guide and Reference

Example Command Uses

This section provides a number of operations that can be executed using
commands. Sample code for configuring many of these cases is included in
“System Special Commands” on page 57.

e Commands for connecting to machines.
o Connect to the destination Environment and run system commands

o Connect to an alternate Environment and run command (Environment
override)

e Commands for manipulating data (fields and other information stored in
files or database).

o Seta value in a Package Line
o Create, run and delete a script

o Extract information from a file (version number)

e (Commands for running operating system-specific commands (NT and
Unix).

o Starting a server

o Stopping a server

e Commands for running program-specific commands.

0o Checking files in and out of a Version control system

e Commands for copying files.

Using Commands 13



Commands and Tokens Guide and Reference

14 Using Commands



Commands and Tokens Guide and Reference

Chapter

Special Commands

Object Types, Request Types, Report Types, Workflows and Validations all
use commands to access the execution layer. In order to simplify the use of
command executions, Mercury ITG Center contains a predefined set of Special
Commands. Users can also create their own Special Commands.

Special Commands are commands with variable parameters and are used in
Object Types, Request Types, Report Types, Workflows, and Validation
command steps. (Workflows use Special Commands in their Workflow Step
Sources.) These command steps perform a variety of functions, such as
copying files between Environments and establishing connections to
Environments for remote command execution. Mercury ITG Center features
two types of Special Commands:

e System Special Commands - These commands are shipped with the
Mercury ITG Center. System Special Commands are read-only and have
the naming convention “ksc_command_name.” System Special
Commands always begin with “ksc_.”

e User Defined Special Commands - These commands are user-defined and
have the naming convention “sc_command_name.” User-defined Special
Commands must begin with “sc_.”

This chapter discusses the interface for creating, editing and using Special
Commands in Mercury ITG Center. The following topics are discussed:

e “Special Command Interface” on page 16
e “Creating and Editing Special Commands” on page 25
e “Using Special Commands” on page 32

See “System Special Commands” on page 57 for a detailed description of
System Special Commands and their parameters.

Special Commands 15



Commands and Tokens Guide and Reference

Special Command Interface

Use the Special Command interface to create, view and edit Special
Commands. The Special Command interface consists of the Special Command
Workbench and Special Command window, as shown in Figure 3-1. To access
the Special Command interface, click Configuration in the shortcut bar and
click the Special Commands icon.

This section details the Special Command interface and discusses the
following topics:

e  Special Command Workbench

e  Special Command Window

Special Command Workbench

Use the Special Command Workbench to search for a particular Special
Command in the Query tab using the following criteria:

® Special Command Name - Filter for Special Commands where the name
matches a given string.

e Description - Filter for Special Commands where the description matches a
given string.

® Enabled - Filter for Special Commands that are enabled or disabled.

16  Special Commands



Commands and Tokens Guide and Reference

Demand Mgmt rai Special Command Workbench =1o]

Froject Mgmt
Change Mamt
Time Mamt
Dashboard
Environments

Sys Admin

L
Special
c::lmnds

Special Command Mame: Cluery: INDne LI

Description:

Query

Enabled: |ALL LI

'Qesulis

1

Workflows

Validations Mew Special Commandd | Save Guery | Clear: | Li:

ﬂ heady

User Data

=t

£

Notification
Templates

Report Types

“E Special Command Warkbench

Figure 3-1 Special Command Workbench

Special Command Window

Use the Special Command window to define and configure Special Commands.
As shown in Figure 3-2, the Special Command window consists of the
following region and tabs:

Special Command General Information Region
Parameters Tab

Commands Tab

Ownership Tab

Used By Tab

Special Commands 17



Commands and Tokens Guide and Reference

~ioix
Mo General

Command Marme: Iﬂ Enabled: @ Yes
Description: | Infor.matlon
: Region
Fararmeters | commands | ownership | Used By|
Parameter Mame I IDefauIt Token I Description
L Tabs for
defining
Parameters
and
Commands

e | Edit | Remayve |f|&|

Ok | Save | Cancel

|Ready

Figure 3-2 Special Command Window

Special Command General Information Region

The Special Command general information region displays the basic header
information for the Special Commands. It consists of the fields described in

Table 3-1.

18 Special Commands



Commands and Tokens Guide and Reference

Table 3-1. Special Commands Information Fields

Field
. Description
Name Required Type

Command Y Text Field The name of the Special Command.

Name This can only be updated when
generating or editing a user-defined
Special Command.

Enabled? Y Yes/No Determines whether or not the Special

Radio Button | Command is enabled for use in

Workflows, Object Types, Report Types,
Request Types and Validations.

Description N Text Field A description of the Special Command.

This can only be updated when
generating or editing a user-defined
Special Command.

Parameters Tab

The Parameters tab displays the current parameters for the Special Command.
Most Special Commands have parameters to override standard behavior.
Nearly all parameters are optional. When a parameter is not passed to a Special
Command and the default value for the parameter is a custom Token, the entity
using the command must contain a field with that Token.

Special Commands 19




Commands and Tokens Guide and Reference

The ‘ksc_copy_server_server’ Special Command shown in this example is used
@ in an Object Type. The parameter FILENAME is not specified and defaults to

[P.P_FILENAME] because it is not explicitly passed.

ksc_copy_server_server

This makes ‘ksc_copy_server_server’ equivalent to:

ksc_copy_server_server FILENAME="[P.P_FILENAME]"”

because “[P.P_FILENAME]” is the default Token for the parameter
FILENAME. The command execution engine evaluates the Token
[P.P_FILENAME] so it must be defined for the entity (the specific Object
Type, Report Type or Request Type).

To override the default Token, pass in another value for the parameter. A few
examples are:

ksc_copy_server_server FILENAME="document.txt”
ksc_copy_server_server FILENAME=" [P.DOCUMENT NAME]”

This method of passing parameters is explained in more detail in the section
entitled “Special Command Builder” on page 24.

Report Types, and are referenced using the ‘(P.TOKEN_NAME]’ syntax.
See “System Special Commands” on page 57 for a list of all predefined
Special Command parameters and their default Tokens.

(‘ Custom Tokens are defined for specific Object Types, Request Types, and
Note

Commands Tab

Use the Commands tab to define and configure the commands and command
steps used by each user-defined Special Command. It is also possible to view
the command information for the predefined system Special Commands.

Commands are designed to have a similar look-and-feel to the UNIX and DOS
operating system command structure. The specific parts of a command, the
command steps, are often just command-prompt directives.

20  Special Commands



Commands and Tokens Guide and Reference

~1o/x]

Command Name:lsc_ Enahled: * Yes Mo
Description: |
Parameters Commands | Ownershipl Used By
riComman: rCommand Step:
Comrnamcd | Condition | Description Comrnamcd Description

<| | | 1 2
ﬂl—_Alll Mew Cmd | Edit Crrd | Coapy Crad Remoyve |£|i|

Ok | Save | Cancel |

|Ready

Figure 3-3 Special Commands - Commands Tab

Commands are accessible through the Commands tab of the Special Commands
window and consist of command information and command steps.

Command Conditions

In many situations, it may be necessary to run a different set of commands
depending on the context of execution. For example, one command may be
needed to update a Web page, while another command may be required to set-
up an account on the Sales Automation application.

This flexibility is achieved through the use of conditional commands. The
Condition field for an object command provides the ability to define the
situation under which the associated command steps will execute.

Conditions are evaluated as Boolean expressions. If the expression evaluates to
TRUE, the command is executed. If FALSE, the command is skipped and the
next command is evaluated to see if it should run. If no condition is specified

the command is always executed. The syntax of a condition is identical to the

WHERE clause of a SQL statement, which allows flexibility when evaluating
scenarios. Some example conditions are given in Table 3-2.

Table 3-2. Example Conditions

Condition Evaluates to

BLANK Command executes in all situations.

Special Commands 21



Commands and Tokens Guide and Reference

Table 3-2. Example Conditions

Condition Evaluates to

[REQ.DEPARTMENT] = ‘SALES’ Command executes when the department
for the Request is named SALES.

[REQ.PRIORITY] = ‘HIGH’ Command executes if the priority assigned to

the Request is HIGH.

When using conditional commands, strings must be enclosed by single
quotes.

The condition can include a Token. See “Using Tokens” on page 37 for more
information.

Parameters in Command Steps

In the command steps within a Special Command, parameters are referred to as
their default Tokens. When the Special Command is executed with a value
specified for a parameter, this value will replace the default Token throughout
the Special Command steps.

Example - Special Command

An existing Special Command echoes a string as an HTML tag named
sc_echo_html and takes the parameter RAW_TEXT. This example shows how
to create another Special Command named sc_new_command. This Special
Command will use sc_echo_html to echo the parameter value FILENAME,
which has a default Token of [P.P_FILENAME)].

22 Special Commands




Commands and Tokens Guide and Reference

rﬁ Special Command

|0l x|
Command Name:lsc_new_command Enahled: * Yes Mo
Description: |
Parameters | commands | Ownership | Used By |
Parameter Mame Default Taken | Description
FILEMAME |P.P_FILEMAME [Filename
1 |»
(W | Elit | Remove |1|i|
Ok | Save | Cancel |
Ready

To accomplish this, the following command steps are entered in a command
for sc_new_command:

sc_echo_html RAW_TEXT="The value of FILENAME is...”
sc_echo_html RAW _TEXT="[P.P_FILENAME]"”

rﬁ Special Command

|0l x|
Command Name:lsc_new_command Enahled: * Yes Mo
Description: |
Parameters Commands | ownership | Used By |
riComman: rCommand Step:
| Comrancd | Condition | C Comrancd | Descr
= Echo valueof FILEMAME sc_echo_html RaW_TEXT="The value of FILENAME is .."
sc_echo_html RAW_TEXT="[P.P_FILEMNAME]"
1] | | K| | 0|
—AII| Mew Crd | Edit Crrd | Copy Crad Remayve |f|&|
Ok | Save | Cancel |
Ready

Note that the command step uses the default Token to refer to the value of the

Special Command parameter. The parameter name is only used when invoking
a Special Command.

Special Commands 23



Commands and Tokens Guide and Reference

( Parameters cannot be used in command conditionals.
Note
Continuing from the previous example, suppose that a Special Command has
the parameter FILENAME, whose default Token is [P.P_FILENAME]. In
command conditionals, the Token [P.P_FILENAME] will always be

evaluated normally, regardless of whether our Special Command was called
with a value for the parameter FILENAME.

Special Command Builder

The Special Command Builder is a tool designed to simplify the use of Special
Commands by ensuring proper formatting of the Command Step. The Special
Command Builder, shown in Figure 3-4, is an interface where a Special
Command can be selected and appropriate parameters can be entered. The
Special Command Builder outputs a line of text to the Command field which
can be used as a command step.

& Special Command Builder

Command Mame: | kzc_connect_source_client

LUISERMAME Jismith

NT_DOMAIN I[SOURCE_ENV.CLIENT_NT_DOMAIN]

PASSWORD I[SOURCE_ENV.CLIENT_NT_PASSWORD]

SOURCE_BASE_PATH I [SOURCE_EMY.CLIENT_NT_BASE_PATH]

CONMECTION_PROTOCOL I [SOURCE_EMY.CLIENT_CON_PROTOCOL_MEANIMNG]

SOURCE_ENY |[20URCE_ENY]

(R TION _PROTOCOL="[SOURCE_ENY.CLIENT_COMN_PROTOCOL_MEANING]'
Clear | Show Default Tokens | Cloze |
Figure 3-4 Special Command Builder

Ownership Tab

The Ownership tab is used to select Ownership Groups for a specific Special
Command. Members of Ownership Groups are the only users who have the
right to edit, copy or delete this Special Command. This tab also displays
Ownership Groups that have been linked to this entity. Ownership Groups can
be deleted from this tab by selecting them and clicking Remove.

See “Setting Ownership for Special Commands” on page 31 for more
information about setting Ownership for a new or existing Special Command.

24 Special Commands



Commands and Tokens Guide and Reference

—igix]

Command Name:lsc_new_command Enahled: * Yes Mo

Description: |

Parameters | Commands Ownership | Used By |
Give ability to edit this Special Command to:
& All users with the Edit Special Commands Access Grant

" Only groups listed below that have the Edit Special Commands Access Grant

Security Group Description

Add Rermaoyve |

Ok | Save | Cancel

|Ready

Figure 3-5 Ownership Tab

Used By Tab

Click the Used By tab to view a list of entities that currently refer to the
selected Special Command.

Creating and Editing Special Commands

This section describes the following procedures for creating and editing
Special Commands:

® C(Creating a New Special Command
e C(Creating and Editing Special Command Parameters

® Adding Special Commands to Command Steps Using the Command
Builder

Creating a New Special Command

To create a new Special Command:
1. From the Special Command Workbench, click New Special Command.

The Special Command window opens.

Special Commands 25



Commands and Tokens Guide and Reference

2. Click the Commands tab.
3. Click New Cmd.

The New Command window opens. This window’s fields are defined in
Table 3-3 on page 27.

x|
Command:
Condition:
Description:
Enabled: @ Yes " No
Steps:
Tokens | Special Cmd | Show Desc | QK I Add | Cancel |
|Ready

4. Enter information in the Command, Condition and Description fields.

See “Command Conditions” on page 21 for more details about defining
Conditions.

5. Set the Enabled radio button to Yes.
6. Add Tokens to the new Special Command as desired.

a. Click Tokens.

The Token Builder window opens.

b. Copy a Token from the Token Builder window.

c. Paste it into the New Command window’s Steps text area.
7. Add another Special Command to the new Special Command.

a. Click Special Cmd.

The Special Command Builder window opens.

26 Special Commands



Commands and Tokens Guide and Reference

b. In the Command Name field, select a Special Command and enter any
required parameters.

c. Copy the Special Command from the Special Command Builder window.
d. Paste it into the New Command window’s Steps text area.

8. To add the new command to the Command tab of the Special Command
window without closing the New Command window, click Add.

9. To add the new command to the Command tab of the Special Command
window and close the New Command window, click OK.

The new Special Command has been created.

10. To save the new Special Command, click Save.

Table 3-3. New Command Window Fields

Field Description
Name Required Type

Command Y Text Field The name of the command.

Condition N Text Field A condition that determines whether the
Command steps for the command are
executed or not. (See “Command
Conditions” on page 21 for more

information).
Description | N Text Field A description of the command.
Enabled? Y Yes/No Determines whether the command is
Radio enabled for execution.

Button

Creating and Editing Special Command Parameters

This section describes the following procedures for creating and editing
Special Command parameters:

® Adding Parameters to Special Commands
e FEditing Special Command Parameters

® Deleting Parameters

Special Commands 27



Commands and Tokens Guide and Reference

Adding Parameters to Special Commands

This section describes the procedure for adding parameters to a Special
Command.

To add a new parameter to a user-defined Special Command:
1. In the Parameters tab of the Special Command window, click New.

The Parameter window opens.

x
RETE|F ILEMAME
Description: |Fi|ename
Default Token: |P.P_FILENAME
Tokens | ok I Apply | Cancel
|Ready

2. Fill in the Name, Description and Default Token fields.

To select an existing global Token, follow Step 3 through Step 9. To
manually entered a Token name in the Default Token field, go to Step 7.

3. To select an existing global Token, click Tokens.

The Token Builder window opens.

28  Special Commands



Commands and Tokens Guide and Reference

{77 Walickation

x|
[Token Cortext [Tokens
{77 Token Cortesxt Token
------ {ak er ALLOW_SAVE_REQUEST_DRAFT |
ALL_KINTANA_SERVER_MAME J

APPLET_KEY_CLEAMUP_INTERWAL
ATTACHMENT_DIRMNAME
AUTHEMTICATE_REPORTS
AUTHENTICATION_MODE
AUTOCOMPLETE_STATUS_REFRESH_RATE
BASE_LOG_DIR

BASE_PATH

BASE_URL

BUDGET_CACHE_SIZE
BUDGET_CACHE_TIMEOUT
CHANGE_MAMNAGEMENT_POWER_LICEMNSE..
CHANGE_MAMNAGEMENT_STAMDARD_LICE...
CLASSPATH

CLIENT_TIMEQUT
CLOSE_BROWSER_OM_APPLET_EXIT
COMMANDS_CLEANUP_INTERWVAL
CONCURRENT_REQUEST WATCH_DOG_|...
CONC_LOG_TRANSFER_PROTOCOL =
e _>l_|

Contest Yalue: I E

Cloze |

Toker: I [A5]

Refresh |

In the Token Context pane of the window, select a folder.

The available Tokens for each folder display in the Tokens pane of the
window.

In the Token column, select a Token.

When a Token is selected, it enables the Token field and displays the name
of the selected Token (including its prefix).

Copy the Token.
a. Select the Token in the Token field.
b. Press Ctrl+C on the keyboard.

In the Parameter window, paste the Token name into the Default Token field
by pressing Ctrl+V on the keyboard.

To add the field to the Parameters tab and close the Parameter window,
click OK.

To add the field to the Parameters tab without closing the Parameter
window, click Add.

Special Commands 29



Commands and Tokens Guide and Reference

Editing Special Command Parameters
This section describes the procedure for editing Special Command parameters.

To edit an existing parameter:

p—

Open the Special Command.
2. In the Parameters tab, double-click the Parameter.
The Parameter window opens.
3. Make the desired changes in the Parameter window.
4. Click Apply to apply the changes without closing the Parameter window.

5. Click OK to apply the changes and close the Parameter window.

The parameter order can be altered by selecting a parameter in the
@e— Parameters tab and clicking either the Up or Down arrow.

Changes to parameters already used by existing Request Types, Object

Types, or Report Types can affect the way these entities function.

Deleting Parameters

This section describes the procedure for deleting Special Command
parameters.

To delete a parameter:

1. Open the Special Command.

2. Select the parameter in the Parameters tab.

3. Click Remove.

4. Click OK to save the information and close the Special Command window.

5. Click Save to save the information without closing the Special Command
window.

The parameter is deleted from the Special Command.

30  Special Commands



Commands and Tokens Guide and Reference

Setting Ownership for Special Commands

Different groups of users can have exclusive control over the Special
Commands used by their group. These groups are referred to as Ownership
Groups. Members of the ownership group are the only users who can edit,
delete or copy the Special Commands. Each Special Command can be assigned
multiple ownership groups.

Ownership groups are defined in the Security Group window in the Workbench.
See Security Model Guide and Reference for instructions on setting up
Security Groups.

To set the Ownership for a Special Command:
1. Open the Special Command window.

2. Click the Ownership tab.

—igix]

Command Name:lsc_new_command Enahled: * Yes Mo

Description: |

Parameters | Commands Ownership | Used By |
Give ability to edit this Special Command to:
& All users with the Edit Special Commands Access Grant

" Only groups listed below that have the Edit Special Commands Access Grant

Security Group Description

Add Rermaoyve |

Ok | Save | Cancel |

|Ready

3. Select the Only groups listed below that have the Edit Special Commands
Access Grant option.

4. Click Add.
The Add Security Groups window opens.
5. In the Security Group auto-complete list, select a Security Group.

6. To close the Add Security Group window, click OK.

Special Commands 31



Commands and Tokens Guide and Reference

The selected Security Groups are display in the Ownership tab under the
Security Group column.

7. To save the changes and close the window, click OK in the Special
Command window.

To save the selection and leave the Special Command window open, click
Save

Only members of the Security Group(s) specified in the Ownership tab can
edit, delete or copy this Special Command.

If no Ownership groups are associated with the entity, the entity is

@j considered global and any user with the Edit Access Grant for the entity can
edit, copy or delete it. For more information on Access Grants, see Security
Model Guide and Reference.

By default, administrators have the 'Ownership Override' Access Grant and
can access configuration entities even if the administrator is not a member of
one of the Ownership Groups and does not have the Edit Access Grant.

If a Security Group is disabled or loses the Edit Access Grant, that group will
no longer have edit access for the entity.

Using Special Commands

Special Commands are added to Command Steps directly in the entity
windows (Object Types, Request Types, Report Types, Validations and
Workflows). For example, Figure 3-6 shows an Object Type that has been
generated using a combination of Special Commands.

32 Special Commands



Commands and Tokens Guide and Reference

@i Dbject Type : RCS File Migration =lal=l
el MR ERET R S File Migration
Description: |This ohject manages the checkout and distribution of code in RCS
Extension: | 7| Object Name Colurr: [PARAMETER |
Object Category: IStandard Ohjects LI Chject Revizion Columi: I LI
Meta Layer Yiew: [MPKGL_  |RCS_FILE_MIG
Enabled: ' Yes Mo
Fields | Layout Commands | | owrership |
riComman: rCommand Step:
| Comrancd
® Connectto RCS Emvironment (not expanded)
® Checkout of RCS (not expanded)
=l Copyform RCS (serven to client ksc_copy_sener_client SOURCE_ENY="RCE" SUE_PATH="[F.P_E
=l Copyform RCS (server to server ksc_copy_sener_server SOURCE_ENWV="RCE" SUB_PATH="[F.P_
® Connectto RCS Emvironment (not expanded)
| Promote File in RCS (not expanded)
=l Attach Wersion Labels res -n"CR[P.P_VERSION_LABEL]""[DEST_ENVY.UD.RCS_PROMO_
# Cleanupfiles {not expanded)
2T | & | 2l
+AII| —Alll Mewy Crdd | Eclit Grrcl | Copy Crid | Retnoyve | {‘r|{5|
Ok | Save | Cancel |
heady

Figure 3-6 RCS File Migration Object Type

This section describes the following ways to use Special Commands:

Adding Special Commands to Command Steps Using the Command

Builder

Nesting Special Commands

Adding Special Commands to Command Steps Using the Command

Builder

Special Commands can be added to any set of command steps in the following

(2

ntities:
Object Types
Request Types
Report Types
Validations
Workflow Step sources

Other Special Commands

Special Commands 33



Commands and Tokens Guide and Reference

Access the Special Command Builder in the Commands tab for each of these
entities.

To build a command step using the Special Command Builder:

1.

Go to the Commands tab for the entity which commands will be added.

2. Click New Cmd or edit an existing command.

The Command window opens.
Click Special Cmd.
The Special Command Builder window opens.

Enter the a command name in the Command Name field, or select it from
the auto-complete list.

When selecting a command name from the auto-complete list, its
parameters appear in the Special Command Builder.

Both predefined (ksc_command) and user defined (sc_command) Special
Commands can be used to build the command steps line. For more
information on generating Special Commands, see “Special Command
Interface” on page 16.

Replace the associated default Token value with any desired parameter
information.

a. To view the default Tokens, click Show Default Tokens.
b. To hide the default Tokens, click Hide Default Tokens.

When the parameters have been modified, select the text in the Command
field.

To copy the formatted Special Command, press Ctrl+C on the keyboard.
To close the Special Command Builder window, click Close.

To paste the Special Command step, click in the Steps text area of the New
Command window and press Ctrl+V on the keyboard.

34  Special Commands



Commands and Tokens Guide and Reference

9. Fill in the remaining fields in the New Command window.
10. Set the Enabled radio button to Yes.

11. To add the command step to the Command tab, click OK.

The new Special Command is now ready to be used in an Object Type,
Request Type, Report Type, Validation or Workflow.

Special Commands can be used in an execution Workflow Step Source.
@e— After the Workflow Step Source is created (which contains the Special

Commands), it can be dragged and dropped into a Workflow.

Nesting Special Commands

Special Commands can be used within other Special Commands, but must be
used within a command step. However, a Special Command cannot refer to
itself.

Special Commands 35



Commands and Tokens Guide and Reference

36  Special Commands



Commands and Tokens Guide and Reference

Chapter

Using Tokens

This chapter provides an overview of how to use Tokens. This chapter
discusses the following topics:

e  What are Tokens?

o Where Tokens Are Used

® Token Builder Window Overview
e Token Formats

o Token Evaluation

What are Tokens?

While configuring certain features, it is often necessary to reference
information that is undefined until Mercury ITG Center is actually used a
particular context. Instead of generating objects that are valid only in specific
contexts, Mercury ITG Center uses variables to facilitate the creation of
general objects that can be applied to a variety of contexts. These variables are
called Tokens.

There are two types of Tokens found within Mercury ITG Center: custom
Tokens and standard Tokens. Standard Tokens are provided with the product.
Custom Tokens are generated to suit specific needs. Each field of the following
entities can be referenced as a custom Token:

e Object Types
e Request Types and Request Header Types
e Report Types

Using Tokens 37



Commands and Tokens Guide and Reference

User Data

Workflow Parameters

In addition, numerous standard Tokens are available that provide other useful
pieces of information related to the system. For example, Mercury ITG Center
has a Token that represents the users currently logged onto the system.

Where Tokens Are Used

Tokens can be used in the following entity windows:

Object Type commands

Request Type commands

Validation commands and SQL statements
Report Type commands

Executions and notifications for a Workflow
Workflow Step commands

Notifications in a Report Submission
Special Command commands

Notifications for Tasks

Notes for Requests Details

38  Using Tokens



Commands and Tokens Guide and Reference

ﬁ'__i Yalidation : DRY - Project Names - All - Depend on [P_SHO =lal=l

RELERIDRY - Project Mames - All - Depend on [P_SHOW_WMASTER_ORLY]
Description: |DRY - Prajects

Enablect [+ s inwiorkflowe? [
Campanent Type: |Auto Complete List LI
Validated By: [S0L- Custorm =l Expected list length:  Short 6 Long
Selection mode; (% Startswith € Contains Mumber of results per page: ISD

Configuration | Fiter Fisids | Fiter Layout |

Koolumn Headers: | BaL =T
- Parent_project_id=- -
Seq (.Zolumn Header | Displayed | Column v OR ([P.P_SHOW_MASTER_ ONLY]="NT) _I
1Hidden Code N AND ternplate_flag = N’
2|Project Mame | AND
3|Praject D [ KDRV_SECURITY.Can_User_Access_Project(SYS.USER J
_ID], master_project_id) =" _|
arder by 2 hd
1 | B
Takens Uz Bind Variables? [
wew | Bt | oemte | (& = 4'
Used By | Ovvnership | Ok | Save | Cancel |

Ready (Reac-Only, Seed Dats)

Figure 4-1 Example of a Token Used in a SQL Statement

Token Builder Window Overview

In each of the entity windows listed in “Where Tokens Are Used” on page 38,
a Token can be created by opening the Token Builder window.

To open the Token Builder window through the Request Types window:

1. Open a Request Type window, either by generating a new Request Type or
by opening an existing one.

2. Click the Commands tab.
3. Click New Cmd.
4. Click Tokens.
The Token Builder window opens, as shown in Figure 4-2.

5. Use the Token Builder window to help construct valid Tokens.

Using Tokens 39



Commands and Tokens Guide and Reference

& Token Builder x|

[Token Context [Tokens
{77 Token Cortesxt

|»

Token Description

------ {77 Distribution
E-{2] Erviranment
{17 Execution
{77 Financial Benetit
------ {77 Motification

------ {77 Organization Unit
{77 Package

------ {77] Package Line

------ {77 Project Detail

{17 Release

{77 Request ||
------ {77 Request Detail

------ {77 Resource Pool

------ {77 Security Group

------ {77 Staffing Profile LI

T e T

Contest Yalue: I E

Token: I 1]

Refresh | Cloze |
Figure 4-2 Token Builder Window

Folders are displayed in the left pane of the Token Builder window. These
folders contain groups of Tokens that correspond to entities defined in
Mercury ITG Center. For a list of entities and associated Tokens, see “Tokens”
on page 95. For instance, the Packages folder contains Tokens that reference
various Package attributes. If the Packages folder is selected, the available
Package Tokens are displayed in the list in the right pane of the window.

Some entities (folders) have sub-entities (sub-folders) that can be referenced
by Tokens. Click the plus sign (+) next to an entity to see the list of sub-entities
for an entity. Each sub-entity also has Tokens, and it is possible to reference
any of the Tokens of sub-entities, as well as Tokens of the parent entity. For
example, the Package Line entity is a sub-entity of the Package entity.

As entity folders and the subsequent Tokens in the list are selected, a character
string is constructed in the Token field at the bottom of the Token Builder
window. This is the formatted string used to reference the Token. Either copy
and paste the character string, or type this string where needed.

40 Using Tokens



Commands and Tokens Guide and Reference

Token Formats

Tokens can use one of several different formats, depending on how they are
going to be evaluated. Tokens can be expressed in the following formats:

® Default Format

e FExplicit Entity Format
e User Data Format

® Parameter Format

e  Sub-Entity Format

e FEnvironment and Environment Application Tokens - the Environment and
Environment App entities evaluate differently than the other entities.

Table 4-1 lists the entities and the formats each entity supports. Each format is
discussed in a section following the table.

Table 4-1. Entities

Prefix (Entity) Entity and Description User Data Parameter
Format? Format?
AS App Server N N
BGT Budget Y N
CON Contact Y N
DEST_ENV Destination Environment. If an App Code is Y N

specified, it will be used. Otherwise use only
values from Env.

DEST_ENV.APP Destination Environment (for the Environment |Y N
Application). Only use App Code values, even
if they’re null.
DEST_ENV.ENV Destination Environment. Ignores App Codes |Y N
and only uses the ENV values.
DIST Distribution Y N
ENV Environment Y N
ENV.APP Environment (for the Environment Application). |Y N
Only use App Code values, even if they're null.
ENV.ENV Environment. Ignores App Codes and only Y N
uses the ENV values.
EXEC Execution N N
NOTIF Notification N N
ORG Organization Unit Y N
PKG Package Y N

Using Tokens 41




Commands and Tokens Guide and Reference

Table 4-1. Entities

Prefix (Entity) Entity and Description User Data Parameter
Format? Format?
PKG.PKGL Package (Package Line) Y N
PKG.PEND Package (Pending Package) Y N
PKGL Package Line Y Y
PRG Program Y N
PRJ Project Y N
PRJD Project Details N Y
REL Release N N
REL.DIST Release (Distribution) Y N
REQ Request Y Y
REQ.PEND Request (Pending) N N
REQD Request Details N Y
RP Report Submission N Y
RSCP Resource Pool Y N
SG Security Group Y N
SKL Skill Y N
STFP Staffing Profile Y N
SOURCE_ENV Source Environment Y N
SOURCE_ENV.APP Source Environment (for Environment Y N
Application). Only use App Code values, even
if they’re null.
SOURCE_ENV.ENV Source Environment. Ignores App Codes and |Y N
only uses the ENV values.
SYS System N N
TSK Task Y N
TSK.PEND Task (Pending) N N
USR (User) User Y N
VAL Validation N N
VAL.VALUE Validation (Value). Use this format to specify a |Y N
specific Validation.
VALUE Validation (Value) Y N
WF Workflow Y N
WF.WFS Workflow (step). Use this format to specifya |N Y
specific Workflow.
WES Workflow Step Y N

42  Using Tokens




Commands and Tokens Guide and Reference

Default Format

Tokens are expressed as a prefix (a short name for the entity) followed by a
Token name. The prefix and Token name are separated by a period and
enclosed in square brackets with no spaces:

[PREFIX.TOKEN_NAME]

The Token for the Package Number is expressed as:
[ PKG . NUMBER]

The Token for a Request's Workflow Name is expressed as:

[REQ.WORKFLOW_NAME ]

Certain Tokens also support a sub-format. This sub-format is required for
certain entities in order to evaluate to the correct context. For example, WF
Tokens will resolve to information related to the Workflow, whereas WEF.WES
Tokens will resolve to Workflow Step information. Token sub-formats are
included in the prefix, appended to the parent prefix, and separated by a period:

[PREFIX.SUB-PREFIX.TOKEN_NAME ]

Tokens are evaluated according to the current context of Mercury ITG Center,
which is derived based on information known at the time of evaluation. For
more information, see “Token Evaluation” on page 54.

Explicit Entity Format

It is possible to provide a specific context value for an entity. This allows the
default context to be overridden. Some Tokens can never be evaluated in the

default context. In these cases, the context must be set using an explicit entity
format:

[PREFIX="<entity name>".TOKEN_NAME]

The Token Builder helps generate Tokens in this format by providing a list of
possible entity name values. When such a list is available, the Context Value
auto-complete field at the bottom of the Token Builder becomes enabled. Like
any other auto-complete field, either type into the field to reduce the list or
click the auto-complete icon in the field to open the Validate window. Once a
value is selected, it is inserted into the Token in the Token field, generating an
explicit entity Token (see Figure 4-3).

Using Tokens 43



Commands and Tokens Guide and Reference

x|
[Token Context [Tokens

T L] CRECLIT -
[#-{77 Firancial Benefit ;I floken Desctiptior
...... {271 Natification CREATED_BY The user identifier that creater
...... {77 Organization Urit CREATION_DATE The date the workflow was cre
{7 Package DESCRIPTION The description of the workflow
ENABLED_FLAG The flag to determine if a work

------ {77] Package Line

FIRST_WORKFLOW _STEP_ID [The ID of the first warkflow ste

------ {27 Program

...... {27 Project FIRST_WORKFLOW_STEP_... [The Name ofthe first workflow

...... {77 Project Detail ICON_MNAME The icon path and filename fo
{7 Release LAST_UFPDATED_BY The user identifier that last up
E{:I Request LAST_UPDATE_DATE The date the workflow was las

...... {771 Request Detai FRODUCT _SCOPE_CODE The praduct scope far the wor

REOPEN_WORKFLOW_STE.. |The internal identifier of the W

------ {7 Resource Pool
REOPEN_WORKFLOW_STE... [The Warkflow Step Mame of t

------ {77 Security Group

...... 27 skl SUBWORKFLOW_FLAG An indicator whether this Worl
...... {77 Staffing Profile WORKBENCH_WORKFLOW... [URLto access the Workflow v
...... {07 Step Ton WORKFLOW_ID The identifier for the workflow
...... {07 System WORKFLOW_NAME The name of the workflow

{77 Yalidation

{7 wiorkflow Step 7 4] | |
Contest Yalue: I EH
Toker: I[\-'\I’F.]

Refresh | Cloze |
Figure 4-3 Explicit Entity Format

Suppose the Email Address for the user “jsmith” is to be referenced. The
Token would be:

[USR="jsmith” .EMAIL_ADDRESS]

To construct this Token in the Token Builder window:
1. Select the User folder.

Available Tokens are displayed in the list on the right pane. The Context
Value field at the bottom of the Token Builder is enabled. The string [USR.]
appears in the Token field below the Context Value field.

2. Click the auto-complete icon in the Context Value field.
A Validate window opens with a list of users.
3. Scroll through the list to find user “jsmith.” Select this user and click OK.

The string [USR="jsmith”] appears in the Token field.

44  Using Tokens



Commands and Tokens Guide and Reference

4. In the list of Tokens, select EMAIL_ADDRESS.

The string [USR="jsmith”. EMAIL_ADDRESS] appears in the Token
field. This is the complete Token. Since the Token is now complete, the
Token field becomes enabled.

5. Select the Token.
6. Press Ctrl+C on the keyboard to copy the Token.

7. Press Ctrl+V on the keyboard to paste the Token into another field.

Using Tokens within Other Tokens

The explicit entity format can be used to put Tokens within other Tokens to
generate a value. For example, to print the description of the Workflow that is
associated with Package #10203, the Token would be:

[WEF="[PKG="10203" .WORKFLOW_NAME] ” .DESCRIPTION]

This Token would have to be built in two steps. First, build the Description
Token for the Workflow. Copy and paste that Token into another field, then
build the Workflow Name Token for the Package. Copy and paste that Token
within the Description Token that was previously pasted.

Internally, this Token is evaluated in two stages. The inner Token is evaluated
and the Token has the following internal representation:

[WF="Workflow_ Name” .DESCRIPTION]
The remaining Token is evaluated and the final result is printed:
description of my Workflow

Table 4-2 includes a list of the Tokens that support the explicit entity format.

It is important to note that entity_name is case-sensitive and can contain
spaces or other ASCII symbols.

Tokens for the User and Security Group entities can never be evaluated in the
default format, and require the use of the explicit entity format. An example
would be the Token [USR.EMAIL_ADDRESS]. This Token can never be
evaluated because Mercury ITG Center cannot determine to which user it
should refer.

Using Tokens 45



Commands and Tokens Guide and Reference

Table 4-2. Tokens supporting explicit entity format

Token Prefix

Example

Acceptable Explicit Entry

BGT [BGT="Development Budget”.CREATED_BY] Budget Name

CON [CON="Smith, John”.PHONE_NUMBER] Last Name, First Name

ENV [ENV="ITG_SERVER".CLIENT_TRANSFER_PR | Environment Name
OTOCOL]

ORG [ORG="Project Managers".MANAGER_ID] Organization Unit Name

PKG [PKG="30010".CREATED_BY] Package Number

REQ [REQ="30006".CREATED_BY] Request Number

RSCP [RSCP="Development Resource Pool Name
Resources".CREATED_BY]

SG [SG="Administrator’.LAST_UPDATED_BY] Security Group Name

SKL [SKL="Architect". AVERAGE_COST_RATE] Skill Name

STFP [STFP="ITG Pilot".CREATED_BY] Staffing Profile Name

USR [USR="jsmith".LAST_NAME] User Name

VAL [VAL="Date".CREATED_BY] Validation Name

WF [WF="Dev -> Test -> Prod".CREATED_BY] Workflow Name

WF.WFS [WF="Workflow Name”.WFS="“1".STEP_NAME] | Workflow Step Sequence Number

User Data Format

User Data fields use Tokens differently, as shown below:

[PREFIX.UD.USER_DATA_TOKEN]

The Prefix is the name of the entity that has User Data. The modifier UD
indicates that User Data for that entity is being referenced.
USER_DATA_TOKEN is the name of the Token for the specific User Data
field. For example, suppose that a field for Package User Data has been
generated whose Token is GAP_NUMBER. In the default format, the Token

would be:

[PKG.UD.GAP_NUMBER]

46  Using Tokens




Commands and Tokens Guide and Reference

In this context, PKG indicates that the Package entity is being referenced, UD
indicates that User Data is being referenced, and GAP_NUMBER is the Token
name.

When User Data fields are generated, a Validation that has both a hidden and
visible value can be used. For example, if the Validation ‘KNTA - Usernames -
All’ is used, the hidden value is the User ID and the displayed value is the
Username. The previous syntax references the hidden value only. To reference
the visible value for a User Data field, the syntax shown below must be used:

[PREFIX.VUD.USER_DATA_TOKEN]

If the modifier VUD is used instead of UD, the visible User Data value is
referenced.

Drop Down Lists and Auto-complete Lists may have different hidden and
displayed values. For all other Validations, the hidden and displayed values
are identical.

When context can be determined, User Data Tokens are displayed with the
system-defined Tokens in the Token Builder.

Table 4-1 indicates which Tokens support the User Data format.

Parameter Format

Object Type custom fields, Request Type custom fields, Request Header Type
fields, Project fields, and Workflow Parameters use the Parameter format for
Tokens as shown below:

[PREFIX.P.PARAMETER_ TOKEN]

In this specific case, the Prefix is the name of the entity that uses a custom
field. The modifier “P” indicates that Parameters for that entity are being
referenced. PARAMETER_TOKEN is the name of the Token for the specific
Parameter field.

e Package Lines reference Object Type fields.
e Requests reference Request Type and Request Header Type fields.

o Workflows reference Workflow Parameters.

Using Tokens 47



Commands and Tokens Guide and Reference

For example, suppose a field for an Object Type named Gap Number (Token =
GAP_NUMBER) has been generated that is used on Package Lines. In the
default format the Token would be:

[PKGL.P.GAP_NUMBER]

In this context, PKGL is the prefix since the Package Lines entity has been
referenced, “P” indicates that Parameters have been referenced, and
GAP_NUMBER is the Token name.

Custom fields store both a hidden and visible value. For example, if the field
uses the Validation ‘KNTA - Usernames - All’, the hidden value is the User ID
and the displayed value is the Username. The previous syntax references the
hidden value only. To reference the visible value for a Parameter, use the
syntax as shown:

[PREFIX.VP.PARAMETER_TOKEN]

If the modifier ‘VP’ is used instead of ‘P’, the visible Parameter value is
referenced.

Drop Down Lists and Auto-complete Lists may have different hidden and
displayed values. For all other Validations, the hidden and displayed values
are identical.

Request Field Tokens

Tokens can access information on custom fields included on a Request. These
fields can be defined in a:

e Custom Request Type field

e Request Header Field (standard)

e Request Header Field (custom fields)
e Request Header Field (Field Groups)
e Table Component field

This section provides some additional details and examples on using Request
Tokens in the following context:

® Request Token Prefixes

e Tokens in Request Table Components

48 Using Tokens



Commands and Tokens Guide and Reference

Table Column

Table Row *4— 1 KEYBOARD 1 15 15

Table Cell

Request Token Prefixes

All fields defined in the Request Header Type (Field Group Fields, Custom
Header Fields, and Standard Header Fields) use the REQ prefix. The following
examples could use “P” or “VP.”

REQ.<standard header Token>
Example: REQ.DEPARTMENT_CODE

REQ.P.<custom header field Token>
Example: REQ.P.BUSINESS_UNIT

REQ.P.<field group Token starting with KNTA_>
Example: REQ.P.KNTA_SKILL

Fields defined in the Request Type use the REQD prefix. It is also possible to
access standard header fields using the REQD prefix:

REQD.P.<custom detail field>

REQD.<standard header Token>

Tokens in Request Table Components

When referring to items in a Table Component, the Tokens need to follow
specific formats. These formats differ depending on the item that is being
referenced within the table. Figure 4-4 illustrates the basic elements of the
table. These elements will be referenced when discussing the different options
for referencing data within the table using Tokens.

Product f Item to order

Select the Project an antity of the items that you wish to order,

| Seq | Prod;.lcts | Quantity Price Total

z MONITOR 1 250 250
r

Check All | clear t‘ Add |

Done Cancel

Figure 4-4 Table component formats

The format [REQD.T.<TABLE_TOKEN>] represents the table and specific
Tokens will be represented as [REQD.T.<TABLE_TOKEN>.<SPECIFIC
TOKENS>]. The following sections provide examples of the formats used for
Tokens referencing items related to the table component:

Using Tokens 49



Commands and Tokens Guide and Reference

e To access the table row count from a Request context

e To access the Salary Column Total value from a Request context

e To access the Name of the first employee in the table from a Request
e To access the Code of the first employee in the table from a Request

® To access the Department Cell value of the current row (Table Row
Context)

e To obtain a delimited list of a column’s contents (Request Context)

In these examples, the following example will be used. A table component
named Employee with 4 columns:

® Name of Employee

® Years of Service of the Employee

e Department where the Employee belongs to
e Salary of the Employee.

These columns are defined as shown.

Table Component “Employee Table” with [EMPLOYEE] as the Token.
Column 1 - Name of Employee; Token [NAME ]

Column 2 - Years of Service; Token [YEARS_OF_SERVICE]
Column 3 - Department of Employee; Token = [DEPARTMENT]
Column 4 - Salary of Employee; Token = [SALARY]

To access the table row count from a Request context

[REQD.P.EMPLOYEE] - returns the raw row count without any
descriptive information.

[REQD.VP.EMPLOYEE] - returns the row count with descriptive
information. Example "13 Entry(s)".

WHERE: EMPLOYEE is the Token given to a table component type.

To access the Salary Column Total value from a Request context

[REQD.T.EMPLOYEE.TC.VP.SALARY.TOTAL]

WHERE: EMPLOYEE is the Token given to a table component type and
SALARY is the Token name given the table's first column.

50  Using Tokens



Commands and Tokens Guide and Reference

To access the Name of the first employee in the table from a Request

[REQD.T.EMPLOYEE.TE="1".VP.NAME]

To access the Code of the first employee in the table from a Request

[REQD.T.EMPLOYEE.TE="1".P.NAME]

To access the Department Cell value of the current row (Table Row
Context)

[TE.VP.DEPARTMENT]

It is possible to use this Table Component Token in a Table Column Header
Validation SQL or in a Table Component Rule SQL.

To obtain a delimited list of a column’s contents (Request Context)

[REQD.T.EMPLOYEE.TC.VP.NAME]

where EMPLOYEE is the Token given to a table component type and SALARY is
the Token name given the table's first column.

This is particularly useful when a column is a list of user names, and this list
can be used for sending these users notification.

Sub-Entity Format

Some entities have sub-entities that can be referenced. In the Token Builder,
click the plus sign (+) next to an entity to see the list of its sub-entities. To
reference a Token from a sub-entity, in the context of a parent entity, use the
syntax shown below:

[PREFIX.SUB_ENTITY_ PREFIX.TOKEN]

In this case, the prefix is the name of the entity, the sub-entity prefix is the
prefix for a sub-entity, and Token is a Token of the sub-entity. Typically, it is
not necessary to use this syntax. However, it is possible to reference specific
sub-entities using the explicit entity syntax.

For example, to reference the step name of the Workflow Step in the current
context, both of the following Tokens have the same meaning:

[WFS.STEP_NAME]

Using Tokens 51



Commands and Tokens Guide and Reference

Environment

[WF.WFS.STEP_NAME]

However, to reference the Step Name of the first Workflow Step for the current
Workflow, use the following Token:

[WF.WFS="1".STEP_NAME]

By not using the explicit entity format for the Workflow entity, the Token
indicates that the Workflow in the current context should be used. But by using
the explicit entity format for the Workflow Step entity, the current context is
overridden and a specific Workflow Step is referenced. In contrast, to
reference the Step Name of the first Workflow Step in a Workflow whose
name is 'my Workflow', use the following Token:

[WF=“workflow _name” .WFS=“1".STEP_NAME]

With this Token, the current context for both the Workflow and the Workflow
Step will be overridden.

and Environment Application Tokens

Tokens for the Environments and Environment Application entities can have
many different forms depending on the information to be referenced. During
Object Type command execution, there is generally a source and a destination
Environment. The Token prefixes SOURCE_ENYV and DEST_ENYV are used
to reference the current source and destination, respectively, as shown in the
following example:

[SOURCE_ENV.DB_USERNAME]
[DEST_ENV.SERVER_BASE_PATH]

In addition, a general ENV Prefix can be used in the explicit entity format to
reference specific Environments, as shown in the following example:

[ENV="Prod” .CLIENT_USERNAME ]

During normal Environment Token evaluation, the evaluation engine first
evaluates the App Code on the Package Line (if one is specified). If the
corresponding App Code Token has a value, then the value is used. Otherwise,
if no App Code was specified or the App Code Token has no value, the
corresponding base Environment information is used.

To override the normal Environment Token evaluation and only evaluate the
Environment information (without first checking for the App Code), construct
the SOURCE_ENYV and DEST_ENV Tokens as shown in the following

examples:

[SOURCE_ENV . ENV.DB_USERNAME ]

52 Using Tokens



Commands and Tokens Guide and Reference

[DEST_ENV.ENV.SERVER_BASE_PATH]
[ENV="Prod” .ENV.CLIENT_ USERNAME ]

The evaluation engine can be instructed to look only at the App Code
information (without checking the base Environment information if the App
Code Token has no value). Construct the SOURCE_ENYV and DEST_ENV
Tokens as shown in the following example:

[SOURCE_ENV.APP.DB_USERNAME]
[DEST_ENV.APP.SERVER_BASE_PATH]
[ENV="Prod” .APP.CLIENT_USERNAME ]

The prefix ‘APP’ can only be used in the sub-entity format. For example, the
following Token is invalid, since a context Environment that includes the app
code has not been specified.

[APP.SERVER_BASE_PATH]

In addition, the explicit entity format can be used with the App Code entity to
reference a specific App Code, as shown in the following examples:

[SOURCE_ENV.APP="AR” .DB_USERNAME]
[DEST_ENV.APP="0OE” . SERVER_BASE_PATH]
[ENV="Prod” .APP="HR” . CLIENT_USERNAME ]

For example, suppose objects are being migrated on a Package Line at a given
Workflow Step, and the line uses App Code “HR”. The Workflow Step has
‘QA’ as the Source Environment, and ‘Prod’ as the Destination Environment.
Table 4-3 shows other attributes of the Environments and Applications.

Table 4-3. Sample Environment and App Attributes

Environment App Code Server Base Path
QA /qa
QA OE /qaloe
QA HR /qa/hr
Prod /prod
Prod OE /prod/oe
Prod HR <no value>

Given this setup, Table 4-4 shows some sample Tokens and how each would
evaluate.

Using Tokens 53



Commands and Tokens Guide and Reference

Table 4-4. Sample Environment Tokens

Token Evaluation
[SOURCE_ENV.SERVER_BASE_PATH] /qa/hr
[DEST_ENV.SERVER_BASE_PATH] /prod
[SOURCE_ENV.ENV.SERVER_BASE_PATH] /qa
[DEST_ENV.ENV.SERVER_BASE_PATH] /prod
[SOURCE_ENV.APP.SERVER_BASE_PATH] /qa/hr
[DEST_ENV.APP.SERVER_BASE_PATH] <no value>
[ENV="QA”.APP="OE”.SERVER_BASE_PATH] /qaloe

Token Evaluation

Tokens are evaluated at the point when Mercury ITG Center must know their
context-specific values. At the time of evaluation, the Token evaluation engine
gathers information from the current context and tries to derive the value for
the Token. Values can only be derived for specific, known contexts (the
current context is defined as the current Package, Package Line, Request,
Project, Workflow Step, or Source and Destination Environments).

The Token evaluation engine takes as many passes as necessary to evaluate all
Tokens, so one Token can be nested within another Token. During each pass, if
the evaluation engine finds a valid Token, it replaces that Token with its
derived value. Tokens that are invalid for any reason (such as the Token is
misspelled or no context is available) are left alone.

For example, suppose an Object Type Command has the following Bourne-
shell script segment as one of its Command Steps:

if [ ' -f [PKGL.P.P_SUB PATH]/[PKGL.P.P_BASE FILENAME].fmx ];
then exit 1; fi

At the time of execution, [PKGL.P.P_SUB_PATH] = “Forms” and
[PKGL.P.P_BASE_FILENAME] = “obj_maint”. After Token evaluation, this
Command step would reduce to:

if [ ! -f Forms/obj_maint.fmx ]; then exit 1; fi

As another example, suppose a User Data field has been generated for all Users
called ‘MANAGER.’ The email address of the manager of the person who
generated a Request could be found using the Token:

[USR=" [USR=" [REQ.CREATED_BY_ NAME]” .VUD.MANAGER]” .EMAIL_ADDRESS]

54 Using Tokens



Commands and Tokens Guide and Reference

The Token evaluation engine would first evaluate the innermost Token
([REQ.CREATED_BY_NAME]). Once that is complete, the next Token
([USR="“<name>".VUD.MANAGERY]) is evaluated. Finally, the outermost
Token is evaluated, giving the manager's email address.

Tokens are evaluated at different points based on the Token type. Tokens used
in Object Type Parameters and Commands are evaluated during Command
execution. Tokens in a Validation SQL statement are evaluated just before that
statement is executed (such as generating a new Package Line). Tokens in an
email Notification are evaluated when a Notification is generated.

Using Tokens 55



Commands and Tokens Guide and Reference

56  Using Tokens



Commands and Tokens Guide and Reference

Appendix

System Special Commands

This appendix discusses the pre-defined Special Commands:
e  Special Commands

e  Summary of All Special Command Parameters

Special Commands

The following sections describe each Special Command in detail:
® “ksc_connect Special Commands” on page 58
® “ksc_exit” on page 62

e  “ksc_copy Special Commands” on page 63

® “ksc_respond” on page 70

e “ksc_simple_respond” on page 70

® “ksc_local_exec” on page 72

® “ksc_replace” on page 73

® “ksc_set” on page 74

® “ksc_set_env” on page 75

® “ksc_store” on page 75

® “ksc_comment” on page 76

® “ksc_concsub” on page 77

® “ksc_begin_script/ksc_end_script” on page 78

System Special Commands 57



Commands and Tokens Guide and Reference

e “ksc_copy_script Special Commands” on page 79
® “ksc_om_migrate” on page 82

® “ksc_capture_output” on page 83

o “ksc_gl _migrate” on page 84

® “ksc_parse_jcl” on page 85

e “ksc_submit_job” on page 85

® “ksc_set_exit_value” on page 86

® “ksc_clear_exit_value” on page 86

® “ksc_run_sql” on page 86

ksc_connect Special Commands

The ksc_connect Special Commands instruct the execution engine to open a
connection to a specified Environment. This command initiates a TELNET,
SSH or SSH2 session with the server or client defined for the Environment.
The command then sends all command steps that follow it directly to the
machine, as though someone was actually typing the command on that
machine. In this way, the execution engine is able to run virtually any
command-line directive that the machine understands.

All ksc_connect Special Commands must end with the ‘ksc_exit’ Special
@: Command to exit the TELNET, SSH or SSH2 session.

The ksc_connect Special Commands include:
® ksc_connect_dest _client

® ksc_connect_dest_server

® ksc_connect_source_client

L4 kSC_COI’ll’l€Cl_SOMI’C€_S€I”V€I"

ksc_connect_dest client

This command initiates a TELNET, SSH or SSH2 session with the client of the
destination Environment. The destination Environment refers to the destination
Environment of the Workflow Step initiating command execution.

58 System Special Commands



Commands and Tokens Guide and Reference

Table A-1. ksc_connect_dest_client Parameters

Parameter Default Token Description

USERNAME [DEST_ENV.CLIENT_ Username on [DEST_ENV].
USERNAME

PASSWORD [DEST_ENV.CLIENT_ Password on [DEST_ENV].
PASSWORD

NT_DOMAIN [DEST_ENV.CLIENT_NT_ | Windows NT Domain name of
DOMAIN [DEST_ENV].

DEST_BASE_ [DEST_ENV.CLIENT_ Base Path of [DEST_ENV].

PATH BASE_PATH

CONNECTION_ | [DEST_ENV.CLIENT_CON | Specifies the connection
PROTOCOL _PROTOCOL_MEANING] | protocol. Possible values are
listed in Validation
“CONNECTION_PROTOCOL".

DEST_ENV [DEST_ENV] Name of the destination
Environment to be used instead
of the destination Environment
on the current Workflow Step.

Example Using ksc_connect_dest_client

# Make a remote connection to the client of the
# destination environment defined for the current
# workflow step.

ksc_connect_dest_client
<commands>
ksc_exit

# Make a remote connection to the client defined for
# the environment named ‘STAGING’.

ksc_connect_dest_client DEST_ENV="STAGING"
<commands>
ksc_exit

ksc_connect dest server

This command initiates a TELNET, SSH or SSH2 session with the server of
the destination Environment. The destination Environment refers to the
destination Environment of the Workflow Step initiating command execution.

System Special Commands 59



Commands and Tokens Guide and Reference

Table A-2. ksc_connect_dest_server Parameters

Parameter Default Token Description

USERNAME [DEST_ENV.SERVER_ | Username on [DEST_ENV].
USERNAME

PASSWORD [DEST_ENV.SERVER_ | Password on [DEST_ENV].
PASSWORD

NT_DOMAIN [DEST_ENV.SERVER_ Windows NT Domain name of
NT_DOMAIN [DEST_ENV].

DEST_BASE_ [DEST_ENV.SERVER_ | Base Path of [DEST_ENV].

PATH BASE_PATH

CONNECTION_ | [DEST_ENV.SERVER_ | Specifies the connection protocol.

PROTOCOL CON_PROTOCOL_ Possible values are listed in
MEANING] Validation

“CONNECTION_PROTOCOL".

DEST_ENV [DEST_ENV. Name of the destination
ENVIRONMENT_NAME] | Environment to be used instead of
the destination Environment on the
current Workflow Step.

Example using ksc_connect_dest_server

# Make a remote connection to the server of the
# destination environment defined for the current
# workflow step.

ksc_connect_dest_server
<commands>
ksc_exit

# Make a remote connection to the server defined for
# the environment named ‘Staging’.

ksc_connect_dest_server DEST_ENV="STAGING"
<commands>
ksc_exit

ksc_connecf_source_c/ienf

This command initiates a TELNET, SSH or SSH2 session with the client of the
source Environment. The source Environment refers to the source
Environment of the Workflow Step initiating command execution.

60 System Special Commands



Commands and Tokens Guide and Reference

Table A-3. ksc_connect_source_client Parameters

Parameter Default Token Description

USERNAME [SOURCE_ENV.CLIENT_ | Username on [SOURCE_ENV].
USERNAME

PASSWORD [SOURCE_ENV.CLIENT_ | Password on [SOURCE_ENV].
PASSWORD

NT_DOMAIN [SOURCE_ENV.CLIENT_ | Windows NT Domain name of
NT_DOMAIN [SOURCE_ENV].

SOURCE_BASE | [SOURCE_ENV.CLIENT_ | Base Path of [SOURCE_ENV].

_PATH BASE_PATH

CONNECTION_ | [SOURCE_ENV.CLIENT_ | Specifies the connection

PROTOCOL CON_PROTOCOL_ protocol. Possible values are
MEANING] listed in Validation

“‘CONNECTION_PROTOCOL".

SOURCE_ENV [SOURCE_ENV] Name of the source Environment
to be used instead of the source
Environment on the current
Workflow Step.

Example using ksc_connect_source_client

# Make a remote connection to the client of the source
# environment defined for the current workflow step.

ksc_connect_source_client
<commands>
ksc_exit

# Make a remote connection to the client defined for
# the environment named ‘STAGING’.

ksc_connect_source_client SOURCE_ENV="STAGING"
<commands>
ksc_exit

I(SC_COF)HGC"_SOUI’CG_SGI’VGI’

This command initiates a TELNET, SSH or SSH2 session with the server of
the source Environment. The source Environment refers to the source
Environment of the Workflow Step initiating command execution.

System Special Commands 61



Commands and Tokens Guide and Reference

ksc_exit

Table A-4. ksc_connect_source_server Parameters

Parameter Default Token Description
USERNAME [SOURCE_ENV.SERVER_ | Username on [SOURCE_ENV].
USERNAME
PASSWORD [SOURCE_ENV.SERVER_ | Password on [SOURCE_ENV].
PASSWORD
NT_DOMAIN [SOURCE_ENV.SERVER_ | Windows NT Domain name of
NT_DOMAIN [SOURCE_ENV].

SOURCE_BASE | [SOURCE_ENV.SERVER_ | Base Path of[SOURCE_ENV].
_PATH BASE_PATH

CONNECTION_ | [SOURCE_ENV.SERVER_ | Specifies the connection
PROTOCOL CON_PROTOCOL_ protocol. Possible values are
MEANING] listed in Validation
“CONNECTION_PROTOCOL".

SOURCE_ENV [SOURCE_ENV] Name of the source
Environment to be used instead
of the source Environment on
the current Workflow Step.

Examples using ksc_connect_source_server

# Make a remote connection to the server of the source
# environment defined for the current workflow step.

ksc_connect_source_server
<commands>
ksc_exit

# Make a remote connection to the server defined for
# the environment named ‘STAGING’.

ksc_connect_source_server SOURCE_ENV="STAGING"
<commands>
ksc_exit

This command exits the TELNET, SSH or SSH2 session initiated by the
ksc_connect Special Commands. For examples using ksc_exit, see
“ksc_connect Special Commands” on page 58.

62  System Special Commands




Commands and Tokens Guide and Reference

ksc_copy Special Commands

The ksc_copy Special Commands provide the mechanism for transferring files
to and from the various Environments defined in Mercury ITG Center.

The default use of these commands requires that the entity containing the
command has three fields with the following Tokens defined:

1 [P.P_FILENAME]
2 [P.P_FILE_TYPE]

3 [P.P_SUB_PATH]

If these fields are not defined as part of the entity, they must be passed as
parameters or the command will fail.

Files are copied using either FTP, SCP or SCP2, depending on the
configuration of the Environment.

The ksc_copy Special Commands include:

ksc_copy_client client
ksc_copy_client_server
ksc_copy_server_client
ksc_copy_server_server
ksc_copy_client_tmp
ksc_copy_server_tmp
ksc_copy_tmp_client

ksc_copy_tmp_server

ksc_copy._client_client

This command copies a file from the source client Environment to the
destination client Environment.

System Special Commands 63



Commands and Tokens Guide and Reference

Table A-5. ksc_copy._client_client Parameters

Parameter Default Token Description

SUB_PATH [P.P_SUB_PATH] The sub-directory that should be
used to locate the file relative to the
base path of each Environment.

SOURCE_BASE | [SOURCE_ENV. The base path of the source client
_PATH CLIENT_BASE_PATH] | Environment to be used instead of
what is defined for the current
source Environment.

DEST_BASE [DEST_ENV. The base path of the destination
_PATH CLIENT_BASE_PATH] | client Environment to be used

instead of what is defined for the
current destination Environment.

FILENAME [P.P_FILENAME] Name of the file to be copied.

FILE_TYPE [P.P_FILE_TYPE] The file type associated with the file
(ASCII or BINARY).

SOURCE_ENV [SOURCE_ENV] Name of the source Environment to
be used instead of the source
Environment on the current
Workflow Step.

DEST_ENV [DEST_ENV] Name of the destination
Environment to be used instead of
the destination Environment on the
current Workflow Step.

Example #1 using ksc_copy_client_client
# Copy a file between source and destination clients.

ksc_copy_client_client SUB_PATH="forms"
FILENAME="[P.P_MODULE].fmb" FILE_TYPE="BINARY"

# Copy a file between the client defined in the ‘STAGING’
# environment and the destination client.

ksc_copy_client_client DEST_ENV="STAGING”
Example #2 using ksc_copy_client_client

# Override the base path of the destination directory.

ksc_copy_client_client DEST_BASE_PATH="/ul/datatree/exl”
SUB_PATH=".” FILENAME="[P.P_MODULE].fmb" FILE_TYPE="BINARY"

64  System Special Commands



Commands and Tokens Guide and Reference

ksc_copy._client_server

This command copies a file from the source client Environment to the
destination server Environment.

Table A-6. ksc_copy_client_server Parameters

Parameter Default Token Description

SUB_PATH [P.P_SUB_PATH] The sub-directory that should be
used to locate the file relative to
the base path of each
Environment.

SOURCE_BASE | [SOURCE_ENV.CLIENT_ | The base path of the source client
_PATH BASE_PATH] Environment to be used instead of
what is defined for the current
source Environment.

DEST_BASE [DEST_ENV. The base path of the destination
_PATH SERVER_BASE_PATH] server Environment to be used

instead of what is defined for the
current destination Environment.

FILENAME [P.P_FILENAME] Name of the file to be copied.

FILE_TYPE [P.P_FILE_TYPE] The file type associated with the
file (ASCII or BINARY).

SOURCE_ENV [SOURCE_ENV] Name of the source Environment
to be used instead of the source
Environment on the current
Workflow Step.

DEST_ENV [DEST_ENV] Name of the destination
Environment to be used instead of
the destination Environment on
the current Workflow Step.

Example using ksc_copy_client_server

# Copy a file between source client and
# destination server.

ksc_copy_client_server SUB_PATH="install/sqgl"
FILENAME="[P.P_SQL_SCRIPT]" FILE_TYPE="ASCII"

ksc_copy._server_client

This command copies a file from the source server Environment to the
destination client Environment.

System Special Commands 65



Commands and Tokens Guide and Reference

Table A-7. ksc_copy_server_client Parameters

Parameter Default Token Description

SUB_PATH [P.P_SUB_PATH] The sub-directory that should be
used to locate the file relative to the
base path of each Environment.

SOURCE_BASE | [SOURCE_ENV. The base path of the source server
_PATH SERVER_BASE_PATH] | Environment to be used instead of
what is defined for the current
source Environment.

DEST_BASE [DEST_ENV. The base path of the destination
_PATH CLIENT_BASE_PATH] client Environment to be used

instead of what is defined for the
current destination Environment.

FILENAME [P.P_FILENAME] Name of the file to be copied.

FILE_TYPE [P.P_FILE_TYPE] The file type associated with the file
(ASCII or BINARY).

SOURCE_ENV [SOURCE_ENV] Name of the source Environment to
be used instead of the source
Environment on the current
Workflow Step.

DEST_ENV [DEST_ENV] Name of the destination
Environment to be used instead of
the destination Environment on the
current Workflow Step.

Example using ksc_copy_server_client

# Copy a file between source server and
# destination client.

ksc_copy_server_client SUB_PATH="[P.P_SUB_DIRECTORY]"
FILE_TYPE="[P.P_FILE_TYPE]"

ksc_copy_server_server

This command copies a file from the source server Environment to the
destination server Environment.

66  System Special Commands



Commands and Tokens Guide and Reference

Table A-8. ksc_copy_server_server Parameters

Parameter Default Token Description

SUB_PATH [P.P_SUB_PATH] The sub-directory that should be
used to locate the file relative to the
base path of each Environment.

SOURCE_BASE | [SOURCE_ENV. The base path of the source server
_PATH SERVER_BASE_PATH] | Environment to be used instead of
what is defined for the current
source Environment.

DEST_BASE [DEST_ENV. The base path of the destination
_PATH SERVER_BASE_PATH] | server Environment to be used

instead of what is defined for the
current destination Environment.

FILENAME [P.P_FILENAME] Name of the file to be copied.

FILE_TYPE [P.P_FILE_TYPE] The file type associated with the
file (ASCII or BINARY).

SOURCE_ENV [SOURCE_ENV] Name of the source Environment
to be used instead of the source
Environment on the current
Workflow Step.

DEST_ENV [DEST_ENV] Name of the destination
Environment to be used instead of
the destination Environment on the
current Workflow Step.

Example using ksc_copy_server_server

# Copy a file between source and destination servers.
ksc_copy_server_server FILENAME="[P.P_FILE]"

# Copy a file between the source server and the
# destination server overriding the base bath.

ksc_copy_server_server FILENAME="install_driver.sh”
DEST_BASE_PATH="/u2/app/drivers”

# Copy a form between the ‘STAGING’ and destination servers.

ksc_copy_server_server SOURCE_ENV="STAGING" SUB_PATH="forms"
FILENAME="[P.P_MODULE] . fmb" FILE_TYPE="BINARY"

System Special Commands 67



Commands and Tokens Guide and Reference

ksc_copy._client_tmp

This command copies a file from the source client Environment to the
temporary Package transfer directory on the application server. This temporary
directory is automatically cleaned up after an execution completes and can be
referenced using the [AS.PKG_TRANSFER_PATH] Token.

Table A-9. ksc_copy._server_tmp Parameters

Parameter Default Token Description

SUB_PATH [P.P_SUB_PATH] The sub-directory that should be
used to locate the file relative to the
base path of each Environment.

SOURCE_BASE | [SOURCE_ENV. The base path of the source client
_PATH CLIENT_BASE_PATH] | Environment to be used instead of
what is defined for the current source
Environment.

FILENAME [P.P_FILENAME] Name of the file to be copied.

FILE_TYPE [P.P_FILE_TYPE] The file type associated with the file
(ASCII or BINARY).

SOURCE_ENV [SOURCE_ENV] Name of the source Environment to
be used instead of the source
Environment on the current Workflow
Step.

ksc_copy._server_tmp

This command copies a file from the source server Environment to the
temporary Package transfer directory on the application server. This temporary
directory is automatically cleaned up after an execution completes and can be
referenced using the [AS.PKG_TRANSFER_PATH] Token.

Table A-10. ksc_copy._server_tmp Parameters

Parameter Default Token Description

SUB_PATH [P.P_SUB_PATH] The sub-directory that should be
used to locate the file relative to the
base path of each Environment.

68  System Special Commands




Commands and Tokens Guide and Reference

Table A-10. ksc_copy._server_tmp Parameters

Parameter

Default Token

Description

SOURCE_BASE
_PATH

[SOURCE_ENV.
SERVER_BASE_PATH]

The base path of the source server
Environment to be used instead of
what is defined for the current
source Environment.

FILENAME [P.P_FILENAME] Name of the file to be copied.

FILE_TYPE [P.P_FILE_TYPE] The file type associated with the file
(ASCII or BINARY).

SOURCE_ENV [SOURCE_ENV] Name of the source Environment to

be used instead of the source
Environment on the current
Workflow Step.

ksc_copy_tmp_client

This command copies a file from the temporary Package transfer directory on
the application server to the destination client Environment. This temporary
directory is automatically cleaned up after an execution completes and can be
referenced using the [AS.PKG_TRANSFER_PATH] Token.

Table A-11. ksc_copy._server_tmp Parameters

Parameter Default Token Description

SUB_PATH [P.P_SUB_PATH] The sub-directory that should be
used to locate the file relative to the
base path of each Environment.

DEST_BASE [DEST_ENV. The base path of the destination

_PATH CLIENT_BASE_PATH] | server Environment to be used
instead of what is defined for the
current destination Environment.

FILENAME [P.P_FILENAME] Name of the file to be copied.

FILE_TYPE [P.P_FILE_TYPE] The file type associated with the file
(ASCII or BINARY).

DEST_ENV [DEST_ENV] Name of the destination
Environment to be used instead of
the destination Environment on the
current Workflow Step.

System Special Commands 69



Commands and Tokens Guide and Reference

ksc_copy_tmp_server

This command copies a file from the temporary Package transfer directory on
the application server to the destination server Environment. This temporary
directory is automatically cleaned up after an execution completes and can be
referenced using the [AS.PKG_TRANSFER_PATH] Token.

Table A-12. ksc_copy._server_tmp Parameters

Parameter Default Token Description

SUB_PATH [P.P_SUB_PATH] The sub-directory that should be
used to locate the file relative to the
base path of each Environment.

DEST_BASE [DEST_ENV. The base path of the destination
_PATH SERVER_BASE_PATH] | server Environment to be used

instead of what is defined for the
current destination Environment.

FILENAME [P.P_FILENAME] Name of the file to be copied.

FILE_TYPE [P.P_FILE_TYPE] The file type associated with the
file (ASCII or BINARY).

DEST_ENV [DEST_ENV] Name of the destination
Environment to be used instead of
the destination Environment on the
current Workflow Step.

ksc_respond

This command is currently only used to support Patch*Applicator. This
command is able to intelligently respond to interactive prompts generated by
the Oracle “adpatch” and “adadmin” programs. General use of this Special
Command for arbitrary programs is not yet supported. For simple interactive
programs, see “ksc_simple_respond” on page 70.

ksc_simple_respond

This command executes an interactive UNIX command on a remote computer.
This command is useful when the command to be executed will prompt for
additional information (such as the UNIX ‘su’ command to switch user
accounts) or may not return an exit code upon completion (such as starting up a
new shell using ‘sh’).

70 System Special Commands



Commands and Tokens Guide and Reference

This command can only be used from within a remote execution session,
Note such as between ‘ksc_connect’ and ‘ksc_exit’ commands.

The following syntax is supported:

ksc_simple_respond “command”

ksc_simple_respond “command” “prompt 1" “response 1" [“prompt
2" “response 2" .. ]

ksc_simple_respond “command” -hide “prompt 1" “response 1"
[“prompt 2" “response 2" .. ]

There can be as many prompt-response pairs as necessary. Each prompt must
be matched with a response, even if the response is an empty string. The
prompts must appear in the exact order they will be displayed as the command
is run. All arguments must be enclosed in quotes. In addition, if the command
or any of the arguments contains double quotes (), any other character can be
used as the quote character. The first character after the string
‘ksc_simple_respond’ will be interpreted as the quote character, and that
character must appear at the beginning and end of each argument.

By using the -hide option, the value passed in for the response will not be
displayed in the execution log. In the log, the value will be displayed as ***%*,
This flag should be used for each prompt/response pair that needs this
treatment.

The execution engine will wait for each specified prompt. If a prompt does
@: not appear for some reason, then the execution engine will continue to wait

for it until the command times out.

Examples using ksc_simple_respond

If it becomes necessary to invoke a new shell while in a remote session, it
would be ideal to simply use the command ‘sh’. However, this can cause the
execution engine to wait indefinitely while waiting for an exit code. To avoid
this problem, the ‘sh’ command can be encapsulated in a ksc_simple_respond
command with no prompts as shown:

ksc_simple_respond “sh”

System Special Commands 71



Commands and Tokens Guide and Reference

As another example, suppose it becomes necessary to switch to another user
account while in a remote session using the ‘su’ command. This command
always prompts for password, unless performed by a root user. By utilizing the
-hide feature, the password will not be displayed in the execution logs. This
interactivity can be handled using ksc_simple_respond as follows:

ksc_simple_respond "su <username>" -hide "word:" "<password>"

Note that “word:” was used as the prompt instead of the entire word
“password:”. The execution engine will wait for the specified prompt string,
whether it is all—or just a part—of the prompt text.

As one more example, consider the following Bourne shell command:

echo "Enter a string:\c"; read str; echo $str

Normally, this command line would cause the execution engine to hang while
waiting for an exit code (the command will never exit because it is waiting for
input), which would eventually timeout when the execution timeout time is
reached. Use ksc_simple_respond to process this command as shown (this
command should be entered on a single line):

ksc_simple_respond #echo "Enter a string:\c"; read str; echo
Sstr# #a string:# #my_ value#

Since the command line contained double quotes, the pound sign (#) is used as
the quote character. During execution, this command step will prompt “Enter a
string:” and wait for input. The string “my_value” would be entered
automatically, this value will then be echoed to the output device (in this case,
the execution log), and execution will continue as normal with the next
command step.

ksc_local exec

This command invokes a local process on the machine running the Mercury
ITG Server. It can be used to run any program that does not require interactive
input. Each call using ‘ksc_local_exec’ is an independent process. It does not
execute in the context of other commands that precede it. The starting directory
for the processes generated using ‘ksc_local_exec’ is the home directory of the
Mercury ITG Server. Full paths to the executable being called are necessary if
the Mercury ITG Server does not have the correct system path information.

/2 System Special Commands



Commands and Tokens Guide and Reference

The ksc_local_exec command does not open a TELNET, SSH or SSH2
connection to the Mercury ITG Server. It operates by creating a new child
process on the machine that is running the Mercury ITG Server. Therefore,
the user account and password for this process will be the same as the
account and password used to start the Mercury ITG Server.

Example using ksc_local_exec

ksc_replace

# Rename existing file ‘file.txt’ to ‘newfile.txt’
ksc_local_exec mv file.txt newfile.txt

# Run a DOS batch file
ksc_local_exec cmd /c runme.bat

System commands do not invoke either Unix shells or DOS shells. This means
that the following code segment using ‘ksc_local_exec’ is not valid, because it
cannot use the ‘pipe’ () or redirect commands (>):

ksc_local_exec cat names.txt | grep address > file.out

An effective way to use the ksc_local_exec command is to put a series of
commands into a .sh file, and then execute the .sh file as shown:

ksc_begin_script + [AS.CR_TRANSFER_PATH] run.sh

<series of commands>
ksc_end_script

ksc_local_exe ksh run.sh

This command is used to edit the contents of a file and place it into another file.
This command works in a way similar to the ‘sed’ utility and supports the same
substituting expressions.

The files must be located on the Mercury ITG Server in the
[AS.PKG_TRANSFER_PATH] directory. This requires the use of the
ksc_copy_tmp_* commands.

System Special Commands 73



Commands and Tokens Guide and Reference

Table A-13. ksc_replace Parameters

Parameter | Default Token Description

FILENAME | [P.P_FILENAME] | Name of the source file to be edited.

OUTFILE [OUTFILE] Name of the output file after applying the
substitution expressions.

SUBST The substitution expression.

Example using ksc_replace

ksc_set

ksc_copy_server_tmp FILENAME="config.template”
FILE_TYPE="ASCII”

ksc_replace FILENAME="config.template” OUTFILE="config.cfg”
SUBST="s/NAME/ [P.NAME] /g”

ksc_copy_tmp_server FILENAME="config.cfg”

This command sets the value of a temporary variable which may be used to
manage command conditions or aid in command processing.

The following syntax is supported:

ksc_set VARIABLE="Value”

To reference the value of this variable, use the familiar Token syntax without
any prefix. Unlike the ‘ksc_store’ command, ‘ksc_set’ does not write values to
the database. The scope of the variable that is set is valid from when the
variable is defined to the end of the command steps for the entity. This make
using ‘ksc_set’ more attractive than shell variables because the values are
retained between separate ‘ksc_connect’ sessions. Another advantage of using
‘ksc_set’ is that the Token values are visible in the logs, not just the variable
names. This command may be nested within a ‘ksc_connect’ command (see
the following example).

Example using ksc_set

# Set the value of a compile flag.

#

ksc_set COMPILE="YES”

# ksc_set nested within a ksc_connect

/4 System Special Commands




Commands and Tokens Guide and Reference

ksc_set env

ksc_store

ksc_connect_dest_server
ksc_set REBUILD="NO"
ksc_exit

Later, a temporary variable can be referenced in a command condition or in
another command step. For example, the command condition may look like:

*[COMPILE]’ = ‘YES’

Use this command to set the correct Environment context of an execution in
cases where the Workflow source and destination Environments are overridden
using the DEST_ENV and SOURCE_ENYV parameters. Normally it is not
necessary to use this command since it is called internally from other Special
Commands. If it is used on a stand-alone basis, it must come after any
‘ksc_copy’ commands.

Table A-14. ksc_set_env Parameters

Parameter Default Token Description

DEST_ENV_ID [DEST_ENV. ID of the destination Environment to
ENVIRONMENT_ID] | be used instead of the destination
Environment on the current Workflow
Step.

SOURCE_ENV_ID | [SOURCE_ENV. ID of the source Environment to be
ENVIRONMENT_ID] | used instead of the source
Environment on the current Workflow
Step.

SOURCE_ENV [SOURCE_ENV] Name of the source Environment to
be used instead of the source
Environment on the current Workflow
Step.

DEST_ENV [DEST_ENV] Name of the destination Environment
to be used instead of the destination
Environment on the current Workflow

Step.

This command dynamically sets the values of fields defined for Object Types,
Request Types, and Report Types. This command is useful to set or alter the

System Special Commands 75



Commands and Tokens Guide and Reference

value of fields based on the command output. This command may only be used
on fields which have been custom configured. Custom configured fields are
those with Tokens that are evaluated using the [P.<TOKEN>] or
[VP.<TOKEN>] format. After altering a Token, future evaluations of the
Token will use the new value. The new values are written to the database, so
the changes are not temporary as in ‘ksc_set’.

This command may be nested within a ‘ksc_connect’ command (as seen in the
following example) and its value can be referenced in command conditions.

The following syntax is supported:

ksc_store TOKEN="Value”
ksc_store TOKEN="Hidden Value”, “Visible Value”

In the first case, the hidden and visible values of the field will be set to the
same value. In the second case, the hidden and visible values are set
independently. “Hidden Value” refers to the [P.<TOKEN>] format. “Visible
Value” refers to the [VP.<TOKEN>] format.

Example using ksc_store

In the following example, it is assumed that the entity in question has the
following Tokens defined:

[P.DRIVER]
[P.REVISION]
[P.RESULT]

# Store the name of the driver file.
ksc_store DRIVER="driver.sh”

# Capture the Revision number of a file.
#

ksc_connect_dest_server

cd “SourceCode/java”

grep ‘SRevision’ ServerAdmin.java
ksc_store REVISION=" [EXEC.OUTPUT]”
ksc_exit

# Set the hidden and visible result codes of a parameter.

#
ksc_store RESULT="IN_PROG”,”In Progress”

ksc_comment

This command adds single line comments to the execution log. It can be used
to indicate informational or error messages. HTML tags are supported.

/6 System Special Commands



Commands and Tokens Guide and Reference

The following syntax is supported:

ksc_comment <comment>

The comment text can be any text string.

ksc_concsub

This command submits Oracle Application concurrent requests from the
operating system command line. It is treated as a Special Command because
the command engine must capture the concurrent request ID, which is an
output of successful submission. To work properly, this command must be
called within a ‘ksc_connect - ksc_exit’” command block.

If ‘ksc_concsub’ is used to submit a concurrent request to an Oracle
Applications database other than where Mercury ITG Center is currently
installed, the ORA_APPS_DB_LINK parameter must be added to the
‘ksc_concsub’ command. Otherwise, the status of the concurrent request
cannot be determined after submission.

The following syntax is supported:

ksc_concsub ORA_APPS_DB_LINK="DB_LINK" CONCSUB

DB_LINK corresponds to the database link from the Mercury ITG Center
schema to the APPS schema of the database to which the concurrent request is
submitted.

Example using ksc_concsub

ksc_concsub ORA_APPS_DB_LINK=[DEST_ENV.ORA_APPS_DB_LINK]

CONCSUB
[DEST_ENV.APP.DB_USERNAME]/[DEST_ENV.APP.DB_PASSWORD]@[DEST_ENV
.DB_CONNECT_STRING] FND 'Application Developer' SYSADMIN
WAIT=N CONCURRENT FND FNDFMREG [DEST_ENV.APP_CODE]
[P.P_FILENAME]

The Special Command ‘ksc_concsub’ is followed by the exact CONCSUB
6: call that will be executed directly at the command line.

The complete syntax for Oracle's CONCSUB is shown below. Optional
parameters are in square brackets.

System Special Commands /7



Commands and Tokens Guide and Reference

CONCSUB

<ORACLE ID>

<Responsibility Application Short Name>
<Responsibility Name>

<User Name>

[WAIT=N]

CONCURRENT

<Concurrent Program Application Short Name>
<Concurrent Program Name>

[START=<Requested Start Date>]
[REPEAT_DAYS=<Repeat Interval>]
[REPEAT_END=<Request Resubmission End Date>]
<Concurrent Program Arguments...>

For additional information on using the CONCSUB command, see the Oracle
documentation.

It is not possible to retrieve the concurrent request logs from a ‘ksc_concsub’
submission submitted against a remote database.

ksc_begin_script / ksc_end_script

The object command structure of Mercury ITG Center lends itself nicely to
standard, step-by-step processes. In most cases, these commands are fully
capable of automating the migration of an object. However, in some
circumstances, it is necessary to add additional logic to the commands for an
object. For example, perhaps a loop must be generated to repeat a command
several times. This is where scripts-on-the-fly are best applied.

Scripts-on-the-fly are designed to leverage the architecture, tools, and
knowledge already present in an organization. By using a script-on-the-fly,
administrators can define migration logic in their preferred scripting language
(such as Bourne Shell, C Shell or Perl). The scripts only need to be defined
once. The execution engine copies the script wherever it needs to be executed.
The execution engine can also be instructed to clean up the script after it has
been executed, leaving no traces behind.

The following syntax is supported:

ksc_begin_script <full_path_to_file_to_be_generated>
<directives from any scripting language>
ksc_end_script

It is commonly used in the following format:

ksc_begin_script [AS.PKG_TRANSFER_PATH] [P.P_SCRIPT_FILENAME]

78  System Special Commands



Commands and Tokens Guide and Reference

Since the script will be generated into a temporary directory by use of the
[AS.PKG_TRANSFER_PATH] Token, this Token will reference a unique
temporary directory per execution and end with the proper directory slash ‘/* or
‘\’. After generation, the script can be transferred to another machine for
execution using the ‘ksc_copy_script’ commands described in ksc_copy_script
Special Commands.

Example using ksc_begin_script and ksc_end_script

ksc_begin_script [AS.PKG_TRANSFER_PATH] [P.P_SCRIPT_ FILENAME]
#!/usr/bin/csh

#

# Script to lock, check in, and re-checkout the original

# file using RCS commands.

#

# Print a warning if the file does not exist.

#

if ($#argv != 2) then
echo "$0 : wrong number of arguments"
echo "Usage: $0 sub_path filename"
exit 1

endif

set sub_path = Sargv[1l]

set filename = Sargv([2]

if (-e "$sub_path/RCS/$filename,v") then
rcs -1 $sub_path/$filename
ci -m"Before Copy." S$sub_path/$filename
co -1 S$sub_path/$filename
else
echo "Warning: File $sub_path/$filename not found in
RCS repository"
endif

exit O
ksc_end_script

# Copy the script to the destination server and excute it.
ksc_copy_script_dest_server

ksc_connect_dest_server

csh [P.P_SCRIPT_ FILENAME]

rm [P.P_SCRIPT_FILENAME]

ksc_exit

ksc_copy_script Special Commands

Use these Special Commands to transfer files from the temporary file transfer
directory (defined by Token [AS.PKG_TRANSFER_PATHY]) to other
machines. These commands are typically used in conjuction with the

System Special Commands 79



Commands and Tokens Guide and Reference

‘ksc_begin_script’ and ‘ksc_end_script’ commands, but can also be used in

other ways.

The ksc_copy_script Special Commands include:

® ksc_copy_script_dest_client

® ksc_copy_script_dest_server

® ksc_copy_script_source_client

® ksc_copy_script_source_server

ksc_copy._script_dest_client

This command copies a script contained in [AS.PKG_TRANSFER_PATH], a
temporary directory located on the Mercury ITG Server, to the base path of the
destination client Environment.

Table A-15. ksc_copy._script_dest_client Parameters

Parameters

Default Token

Description

SCRIPT
_FILENAME

[P.P_SCRIPT_FILENAME]

The name of the script file to transfer.

DEST_BASE
_PATH

[DEST_ENV.
CLIENT_BASE_PATH]

The base path of the destination
client Environment to be used

instead of what is defined for the
current destination Environment.

DEST_ENV

[DEST_ENV]

Name of the destination Environment
to be used instead of the destination
Environment on the current Workflow
Step.

ksc_copy._script_dest_server

This command copies a script contained in [AS.PKG_TRANSFER_PATH], a
temporary directory located on the Mercury ITG Server, to the base path of the
destination server Environment.

Table A-16. ksc_copy._script_dest_server Parameters

Parameters

Default Token

Description

SCRIPT
_FILENAME

[P.P_SCRIPT_FILENAME]

The name of the script file to transfer.

80 System Special Commands




Commands and Tokens Guide and Reference

Table A-16. ksc_copy._script_dest_server Parameters

Parameters Default Token Description
DEST_BASE | [DEST_ENV. The base path of the destination
_PATH SERVER_BASE_PATH] server Environment to be used

instead of what is defined for the
current destination Environment.

DEST_ENV [DEST_ENV] Name of the destination Environment
to be used instead of the destination
Environment on the current Workflow
Step.

ksc_copy_script_source_client

This command copies a script contained in [AS.PKG_TRANSFER_PATH], a
temporary directory located on the Mercury ITG Server, to the base path of the
source client Environment.

Table A-17. ksc_copy._script_source_client Parameters

Parameters Default Token Description
SCRIPT [P.P_SCRIPT_FILENAME] | The name of the script file to
_FILENAME transfer.
DEST_BASE [SOURCE_ENV. The base path of the source client
_PATH CLIENT_BASE_PATH] Environment to be used instead of

what is defined for the current
source Environment.

SOURCE_ENV | [SOURCE_ENV] Name of the source Environment to
be used instead of the destination
Environment on the current
Workflow Step.

ksc_copy_script_source_server

This command copies a script contained in [AS.PKG_TRANSFER_PATH], a
temporary directory located on the Mercury ITG Server, to the base path of the
source server Environment.

System Special Commands 81



Commands and Tokens Guide and Reference

Table A-18. ksc_copy._script_source_client Parameters

Parameters Default Token Description
SCRIPT [P.P_SCRIPT_FILENAME] | The name of the script file to
_FILENAME transfer.

SOURCE_BASE | [SOURCE_ENV. The base path of the source
_PATH SERVER_BASE_PATH] server Environment to be used

instead of what is defined for the
current source Environment.

SOURCE_ENV [SOURCE_ENV] Name of the source Environment
to be used instead of the source
Environment on the current
Workflow Step.

ksc_om_migrate
Use this command to launch migrations supported by the Object*Migrator.
The following syntax is supported:

ksc_om_migrate CONC_PROGRAM=<conc_program_name>
APP_SHORT_NAME=<APP_SHORT_NAME> OM_ARCHIVE_FLAG=<Y/N>

The parameters CONC_PROGRAM and APP_SHORT_NAME are required.
All other parameters are optional and are used to override the default behavior.

Table A-19. ksc_om_migrate Parameters

Parameter Default Token Description
CONC None. This is a The concurrent program name. This
_PROGRAM mandatory parameter. has been pre-configured and will not
need to be modified.
OM_ARCHIVE | [WFS. Specifies whether the migration will
_FLAG OM_ARCHIVE_FLAG] | store to the archive rather than using

what has been specified for the current
Workflow Step.

APP_SHORT None. This is a required | This value is normally “CLM” but can
_NAME parameter. be modified if the Object*Migrator has
been installed into a custom account.

82 System Special Commands



Commands and Tokens Guide and Reference

Table A-19. ksc_om_migrate Parameters

Parameter Default Token Description
SOURCE [SOURCE_ENV] The Environment to migrate from rather
_ENV than the one defined on the Workflow
Step.
DEST [DEST_ENV] The Environment to migrate to rather
_ENV than the one defined on the Workflow
Step.

Example using ksc_om_migrate

#

#Launch an AOL Concurrent Program Migration

#

ksc_om_migrate CONC_PROGRAM="CLMRMCP1" APP_SHORT_NAME="CLM"

ksc_capture_output

The ‘ksc_capture_output’ Special Command is only used in Validations. It is
used to get data from an alternate source, and use that data to populate an auto-
complete field. This functionality provides additional flexibility when
designing auto-complete lists.

Many enterprises have found that they need to use alternate sources of data
within their applications. Examples of these sources might be a flat file, an
alternate database source, or output from a command line execution. The
‘ksc_capture_output’ command may be used in conjunction with these
alternate data sources, in the context of a Validation, to provide a list of values
on the fly.

The syntax for the ‘ksc_capture_output’ is:

ksc_capture_output <command>

In the Validation Workbench, under Validated By, choose either Command With
Delimited Output or Command With Fixed Width Output and input the
delimiting character or field length information. Then, under New Command,
enter the steps. The example below would put the Validations into the
address.txt file, then run the ‘ksc_capture_output’ against the address.txt file:

ksc_begin_script [AS.PKG_TRANSFER_PATH]address.txt
street

city

state

System Special Commands 83




Commands and Tokens Guide and Reference

zipcode
ksc_end_script
ksc_capture_output cat[AS.PKG_TRANSFER PATH]address.txt

In this case, the entire sequence of commands would be executed on the local
machine where the Mercury ITG Server is running. This is the preferred
method of invoking ‘ksc_capture_output’. The ‘ksc_capture_output’ command
may be embedded between ‘ksc_connect’ and ‘ksc_exit’ commands, but the
time delay is significant depending on network load (because the Validation
actually requires an entire TELNET, SSH or SSH2 session to be generated to
the remote machine). It is recommended that ‘ksc_capture_output’ only be
used in a local execution scenario.

‘ksc_capture_output’ may be called more than once. Each call will append the
results to the previous call.
ksc_gl_migrate
Use this command to launch migrations supported by the GL *Migrator.
The following syntax is supported:

ksc_gl_migrate CONC_PROGRAM=<conc_program_name>
APP_SHORT_NAME=<APP_SHORT_NAME> GL_ARCHIVE_FLAG=<Y/N>

The parameters CONC_PROGRAM and APP_SHORT_NAME are required.
All other parameters are optional and are used to override the default behavior.

Table A-20. ksc_gl_migrate Parameters

Parameter Default Token Description

CONC None. This is a The concurrent program name. This

_PROGRAM mandatory parameter. has been pre-configured and will not
need to be modified.

GL_ARCHIVE | [WFS. Specify whether the migration will store

_FLAG OM_ARCHIVE_FLAG] to the archive rather than using what
has been specified for the current
Workflow Step.

APP_SHORT | None. This is a required | This value is normally “CLGM” but can
_NAME parameter. be modified if the GL*Migrator has
been installed into a custom account.

SOURCE [SOURCE_ENV] The Environment to migrate from
_ENV rather than the one defined on the
Workflow Step.

84  System Special Commands



Commands and Tokens Guide and Reference

Table A-20. ksc_gl_migrate Parameters

Parameter Default Token Description
DEST [DEST_ENV] The Environment to migrate to rather
_ENV than the one defined on the Workflow
Step.

Example ksc_gl_migrate

#
# Launch a Budget Organization migration

#
ksc_gl_migrate CONC_PROGRAM="CLGMRBOl" APP_SHORT NAME="CLGM"

ksc_parse_jcl

This command is only used by the ‘OS/390 JCL Migration’ Object Type to
parse a JCL script using the Mainframe parameters for the specified
Environment.

Table A-21. ksc_parse_jcl Parameters

Parameter Default Token Description
FILENAME | [P.P_FILENAME] Name of the JCL source file to be edited.
OUTFILE [OUTFILE] Name of the output JCL file after applying the

substitution expressions.

ENV_ID [DEST_ENV. The ID of the Environment containing the
ENVIRONMENT_ID] | mainframe substitution expressions.

ksc_submit_job

This command is only used by the ‘OS/390 JCL Migration’ Object Type to
submit JCL to the Mainframe JES.

Table A-22. ksc_submit_job Parameters

Parameter Default Token Description
PATH [AS.PKG_TRANSFER_ | Path to the JCL file.
PATH]

System Special Commands 85



Commands and Tokens Guide and Reference

Table A-22. ksc_submit_job Parameters

Parameter Default Token Description

FILENAME | [P.P_FILENAME] Name of the JCL source file to be edited.

ksc_set exit value

Use this command to set the exit value of the command execution to any value.
When not used, the command execution engine returns standard execution
results, such as FAILURE, SUCCESS, and ERROR (if an internal error
occurred) that the Workflow engine can transition on. Using
‘ksc_set_exit_value’ allows for the flexibility to set any exit value and enables
custom Workflow transitions.

The following formats are supported:

# Sets the hidden and visible value to <value>.
ksc_set_exit_value "<value>"

# Sets both the hidden and visible values independently.
ksc_set_exit_value "<hidden_value>", "<visible_value">

The Workflow engine will key off of the hidden value to determine if a
transition should be made. The visible value is for display purposes.

‘ksc_set_exit_value’ is ideal for situations where there could be a number of
different execution results, not just Success or Failure. Using
‘ksc_set_exit_value’ allows the Workflow engine to transition on any number
of execution outcomes.

ksc_clear exit value

Use this command to clear the exit value set by ‘ksc_set_exit_value’. When
cleared, the execution engine will return its standard results, SUCCESS,
FAILURE, or ERROR.

ksc_run_sql

This command runs a SQL query against the chosen Environment. The result
of the last row queried is returned in the [SQL_OUTPUT] Token. The result of
the entire query is placed in the
[AS.PKG_TRANSFER_PATH][PKGL.SEQ].txt file in ITG_Home.

86  System Special Commands



Commands and Tokens Guide and Reference

To run this Special Command, any Execution Steps in the Change
Management Workflow must have their Source Environments defined in the
Workflow Step window.

Table A-23 lists this Special Command’s parameters.

Table A-23. ksc_run_sql Parameters

Parameter Default Token Description
QUERY_STRING [QUERY_STRING] A SQL select statement.
ENV_NAME [ENV_NAME] The name of the Environment

where data will be queried.
The JDBC connection should
be checked in the
Environment checker.

EXCEPTION_OPTION | [EXCEPTION_OPTION] | If no data is returned,
determines if an exception
should be thrown. The only
available option is
'-no_data_exception.'

Example ksc_run_sql

ksc_run_sqgl QUERY_STRING="select sysdate from sys.dual"
ENV_NAME=" [SOURCE_ENV.ENVIRONMENT_ NAME]"

The ‘ksc_run_sql’ Special Command can be used to populate a Validation.
This is appropriate when the Validation is validated by a Command with
Delimited Output. In this case, the Data Delimiter should be set to “#@#”.

The following code is an example of ksc_run_sql in a Validation.

ksc_run_sqgl QUERY_STRING="select id, name from some_table”
ENV_NAME=" [ SOURCE_ENV.ENVIRONMENT_ NAME]”
ksc_capture_output cat [AS.PKG_TRANSFER_PATH] [PKGL.SEQ].txt

System Special Commands 87



Commands and Tokens Guide and Reference

Summary of All Special Command Parameters

Table A-24 provides the parameters for all predefined Special Commands.

Table A-24. Special Command Parameters

Special Command Parameters

Defaults

ksc_begin_script

ksc_comment

ksc_concsub

ksc_connect_dest_client USERNAME

[DEST_ENV.CLIENT_USERNAME]

PASSWORD

[DEST_ENV.CLIENT_PASSWORD]

NT_DOMAIN

[DEST_ENV.CLIENT_NT_DOMAIN]

DEST_BASE_PATH

[DEST_ENV.CLIENT_BASE_PATH]

CONNECTION_ [DEST_ENV.CLIENT_CON_PROTOCOL_
PROTOCOL MEANING]
DEST_ENV [DEST_ENV]

ksc_connect_dest_server USERNAME [DEST_ENV.SERVER_USERNAME]
PASSWORD [DEST_ENV.SERVER_PASSWORD]
NT_DOMAIN [DEST_ENV.SERVER_NT_DOMAIN]

DEST_BASE_PATH

[DEST_ENV.SERVER_BASE_PATH]

CONNECTION_ [DEST_ENV.SERVER_CON_PROTOCOL
PROTOCOL _MEANING]
DEST_ENV [DEST_ENV]

ksc_connect_source_client USERNAME [SOURCE_ENV.CLIENT_USERNAME]
PASSWORD [SOURCE_ENV.CLIENT_PASSWORD]
NT_DOMAIN [SOURCE_ENV.CLIENT_NT_DOMAIN]
SOURCE_BASE_ [SOURCE_ENV.CLIENT_BASE_PATH]
PATH
CONNECTION_ [SOURCE_ENV.CLIENT_CON_PROTOC
PROTOCOL OL_MEANING]
SOURCE_ENV [SOURCE_ENV]

88  System Special Commands




Commands and Tokens Guide and Reference

Table A-24. Special Command Parameters

Special Command Parameters Defaults
ksc_connect_source_server USERNAME [SOURCE_ENV.SERVER_USERNAME]
PASSWORD [SOURCE_ENV.SERVER_PASSWORD]
NT_DOMAIN [SOURCE_ENV.SERVER_NT_DOMAIN]

SOURCE_BASE_
PATH

[SOURCE_ENV.SERVER_BASE_PATH]

CONNECTION_ [SOURCE_ENV.SERVER_CON_PROTO
PROTOCOL COL_MEANING]
SOURCE_ENV [SOURCE_ENV]
ksc_copy_client_client SUB_PATH [P.P_SUB_PATH]

SOURCE_BASE_
PATH

[SOURCE_ENV.CLIENT_BASE_PATH]

DEST_BASE_PATH

[DEST_ENV.CLIENT_BASE_PATH]

FILENAME [P.P_FILENAME]
FILE_TYPE [P.P_FILE_TYPE]
SOURCE_ENV [SOURCE_ENV]
DEST_ENV [DEST_ENV]
ksc_copy_client_server SUB_PATH [P.P_SUB_PATH]

SOURCE_BASE_
PATH

[SOURCE_ENV.CLIENT_BASE_PATH]

DEST_BASE_PATH

[DEST_ENV.SERVER_BASE_PATH]

FILENAME [P.P_FILENAME]
FILE_TYPE [P.P_FILE_TYPE]
SOURCE_ENYV [SOURCE_ENV]
DEST_ENV [DEST_ENV]

System Special Commands 89




Commands and Tokens Guide and Reference

Table A-24. Special Command Parameters

Special Command

Parameters

Defaults

ksc_copy_server_client

SUB_PATH

[P.P_SUB_PATH]

SOURCE_BASE_PATH

[SOURCE_ENV.SERVER_BASE_PATH]

DEST_BASE_PATH

[DEST_ENV.CLIENT_BASE_PATH]

FILENAME [P.P_FILENAME]
FILE_TYPE [P.P_FILE_TYPE]
SOURCE_ENV [SOURCE_ENV]
DEST_ENV [DEST_ENV]
ksc_copy_server_server SUB_PATH [P.P_SUB_PATH]

SOURCE_BASE_
PATH

[SOURCE_ENV.SERVER_BASE_PATH]

DEST_BASE_PATH

[DEST_ENV.SERVER_BASE_PATH]

FILENAME [P.P_FILENAME]
FILE_TYPE [P.P_FILE_TYPE]
SOURCE_ENV [SOURCE_ENV]
DEST_ENV [DEST_ENV]

ksc_copy_client_tmp SUB_PATH [P.P_SUB_PATH]

SOURCE_BASE_
PATH

[SOURCE_ENV.CLIENT_BASE_PATH]

DEST_BASE_PATH

[DEST_ENV.CLIENT_BASE_PATH]

FILENAME [P.P_FILENAME]

FILE_TYPE [P.P_FILE_TYPE]

SOURCE_ENV [SOURCE_ENV]
ksc_copy_server_tmp SUB_PATH [P.P_SUB_PATH]

SOURCE_BASE_
PATH

[SOURCE_ENV.SERVER_BASE_PATH]

FILENAME [P.P_FILENAME]
FILE_TYPE [P.P_FILE_TYPE]
SOURCE_ENV [SOURCE_ENV]

90 System Special Commands




Commands and Tokens Guide and Reference

Table A-24. Special Command Parameters

Special Command Parameters Defaults
ksc_copy_tmp_client SUB_PATH [P.P_SUB_PATH]
DEST_BASE_ [DEST_ENV.CLIENT_BASE_PATH]
PATH
FILENAME [P.P_FILENAME]
FILE_TYPE [P.P_FILE_TYPE]
DEST_ENV [DEST_ENV]
ksc_copy_tmp_server SUB_PATH [P.P_SUB_PATH]
DEST_BASE_ [DEST_ENV.SERVER_BASE_PATH]
PATH
FILENAME [P.P_FILENAME]
FILE_TYPE [P.P_FILE_TYPE]
DEST_ENV [DEST_ENV]

ksc_copy_script_dest_client

SCRIPT_FILENAME

[P.P_SCRIPT_FILENAME]

DEST_BASE_PATH

[DEST_ENV.CLIENT.BASE_PATH]

DEST_ENV

[DEST_ENV]

ksc_copy_script_dest_server

SCRIPT_FILENAME

[P.P_SCRIPT_FILENAME]

DEST_BASE_PATH

[DEST_ENV.SERVER_BASE_PATH]

DEST_ENV

[DEST_ENV]

ksc_copy_script_source_client

SCRIPT_FILENAME

[P.P_SCRIPT_FILENAME]

SOURCE_BASE_
PATH

[SOURCE_ENV.CLIENT_BASE_PATH]

SOURCE_ENYV

[SOURCE_ENV]

ksc_copy_script_source_
server

SCRIPT_FILENAME

[P.P_SCRIPT_FILENAME]

SOURCE_BASE_
PATH

[SOURCE_ENV.SERVER_BASE_PATH]

SOURCE_ENYV

[SOURCE_ENV]

ksc_clear_exit_value

ksc_end_script

ksc_exit

System Special Commands 91




Commands and Tokens Guide and Reference

Table A-24. Special Command Parameters

Special Command Parameters Defaults
ksc_gl_migrate CONC_PROGRAM
SOURCE_ENV [SOURCE_ENV]
DEST_ENV [DEST_ENV]

GL_ARCHIVE_FLAG

[WFS.GL_ARCHIVE_FLAG]

APP_SHORT_NAME

ksc_local_exec

ksc_om_migrate

CONC_PROGRAM

SOURCE_ENV

[SOURCE_ENV]

DEST_ENV

[DEST_ENV]

OM_ARCHIVE_FLAG

[WFS.OM_ARCHIVE_FLAG]

APP_SHORT_NAME

ksc_parse_jcl FILENAME [P.P_FILENAME]

OUTFILE

ENV_ID [DEST_ENV.ENVIRONMENT_ID]
ksc_replace FILENAME [P.P_FILENAME]

OUTFILE

SUBST

ksc_respond

ksc_run_sql
ksc_set Custom Token
ksc_set_env DEST_ENV_ID [DEST_ENV.ENVIRONMENT_ID]

SOURCE_ENV_ID

[SOURCE_ENV.ENVIRONMENT_ID]

SOURCE_ENV

[SOURCE_ENV]

DEST_ENV

[DEST_ENV]

ksc_set_exit_value

ksc_simple_respond

ksc_store

Custom Token

92  System Special Commands




Commands and Tokens Guide and Reference

Table A-24. Special Command Parameters

Special Command

Parameters

Defaults

ksc_submit_job

PATH

[AS.PKG_TRANSFER_PATH]

FILENAME

[P.P_FILENAME]

System Special Commands 93




Commands and Tokens Guide and Reference

94  System Special Commands



Commands and Tokens Guide and Reference

Appendix

Tokens

This appendix provides a list of all entity Tokens. Use Table B-1 as a quick
reference guide to jump to the desired location.

Table B-1. Token Tables

Table Page

Table B-2, App Server Properties 96

Table B-3, Budget 97

Table B-4, Contacts 97

Table B-5, Distribution 98

Table B-6, Environments 99

Table B-7, Environment Applications 101
Table B-8, Command Execution 103
Table B-9, Notifications 104
Table B-10, Organization Unit 104
Table B-11, Packages 105
Table B-12, Package Lines 107
Table B-13, Package Pending 108
Table B-14, Program 109
Table B-15, Projects 109
Table B-16, Project Details 112
Table B-17, Releases 112
Table B-18, Requests 113
Table B-1, Request Details 116

Tokens 95



Commands and Tokens Guide and Reference

Table B-1. Token Tables

Table Page
Table B-19, Request Pending 116
Table B-20, Report Submissions 117
Table B-21, Resource Pools 118
Table B-22, Security Groups 119
Table B-23, Skill 119
Table B-24, Staffing Profile 120
Table B-25, System 121
Table B-26, Tasks 121
Table B-27, Tasks Pending 123
Table B-28, Users 124
Table B-29, Validations 126
Table B-30, Validation Values 126
Table B-31, Workflows 127
Table B-32, Workflow Steps 128
Table B-33, Workflow Step Transaction 130

For a list of the Tokens that are associated with Field Groups, see “Field
Group Tokens” on page 131.

System Tokens

Table B-2. App Server Properties

Prefix Token Description

AS PKG_TRANSFER_PATH Temporary directory used for files during command executions.

server.conf file. For a description of each server parameter, see System

Other App Server Properties Tokens are generated from the parameters in the
Administration Guide.

96 Tokens



Commands and Tokens Guide and Reference

Table B-3. Budget

Prefix Token Description

BGT ACTIVE_FLAG The active flag of the Budget.

BGT BUDGET_ID The ID of the Budget (defined in the table
KCST_BUDGETS).

BGT BUDGET_IS_FOR_ENTITY_NAME | The entity name (Project, Program, or Org Unit) to which

the Budget is linked.

BGT BUDGET_IS_FOR_ID The ID of the Project/Program/Org Unit to which the
Budget is linked.

BGT BUDGET_IS_FOR_NAME The name of the Project/Program/Org Unit to which the
Budget is linked.

BGT BUDGET_NAME The name of the Budget.

BGT BUDGET_ROLLS_UP_TO_ID The ID of the Budget to which this Budget rolls up to.

BGT BUDGET_ROLLS_UP_TO_NAME | The name of the Budget to which this Budget rolls up to.

BGT BUDGET_URL The URL to view this Budget.

BGT CREATED_BY The username of the user who created the Budget.

BGT CREATION_DATE The date when the Budget was created.

BGT DESCRIPTION The description of the Budget.

BGT END_PERIOD The end period of the Budget.

BGT INITIATION_REQ The initiation Request ID of the Budget.

BGT PERIOD_SIZE The period size of the Budget.

BGT START_PERIOD The start period of the Budget.

BGT STATUS_CODE The status code of the Budget.

BGT STATUS_NAME The status name of the Budget.

Table B-4. Contacts

Prefix Token Description
CON COMPANY The company the Contact works for.
CON COMPANY_NAME The name of the company the Contact works for.

CON

CONTACT_ID

The ID of the Contact (defined in the table KCRT_CONTACTS).

CON

CREATED_BY

The ID of the User that created the Contact.

97

Tokens



Commands and Tokens Guide and Reference

Table B-4. Contacts

Prefix Token Description
CON CREATION_DATE The date the Contact was created.
CON EMAIL_ADDRESS The email address of the Contact.
CON FIRST_NAME The first name of the Contact.
CON FULL_NAME The full name of the Contact.
CON LAST_NAME The last name of the Contact.
CON LAST_UPDATED_BY | The ID of the User that last updated the Contact.
CON LAST_UPDATE_DATE | The date the Contact was last updated.
CON PHONE_NUMBER The phone number of the Contact.
CON USER_ID The UserlID of the Contact, if the Contact is a Mercury ITG Center
user.
CON USERNAME The username of the Contact (if applicable). This may be a

username for an external system, not necessarily Mercury ITG

Center.

Table B-5. Distribution

Prefix Tokens Description

DIST CREATED_BY The ID of the user that created the Distribution.

DIST CREATED_BY_USERNAME The Mercury ITG Center Username of the user that
created the Distribution.

DIST DESCRIPTION The description of the Release.

DIST DISTRIBUTION_ID The ID of the Distribution (defined in table
KREL_DIESTRIBUTION).

DIST DISTRIBUTION_NAME The name of the Distribution.

DIST DISTRIBUTION_STATUS The Workflow status of the Distribution Workflow.

DIST FEEDBACK_FLAG Whether the Distribution has fed back a specified value
to the Package Lines being distributed.

DIST FEEDBACK_VALUE The value to be returned to the original Package Lines.

DIST LAST_UPDATED_BY The ID of the user that last updated the Distribution.

DIST LAST_UPDATED_BY_ The Mercury ITG Center username of the user that

USERNAME last updated the Distribution.
DIST LAST_UPDATE_DATE The date the Distribution was last updated.

98 Tokens




Commands and Tokens Guide and Reference

Table B-5. Distribution

Prefix Tokens Description
DIST RELEASE_ID The ID of the Release that created this Distribution.
DIST RELEASE_NAME The name of the Release that created this Distribution.
DIST WORKFLOW The Workflow used to process the Distribution.

Table B-&. Environments

Prefix Token Description

ENV CLIENT_BASE_PATH The base (root) path of the client.

ENV CLIENT_CON_PROTOCOL The protocol used to connect to this client.

ENV CLIENT_CON_PROTOCOL_MEANING | The visible value of the client connect protocol.

ENV CLIENT_NAME The DNS name or IP address of the client
computer.

ENV CLIENT_NT_DOMAIN The domain name for the client, if the client
machine type is Windows.

ENV CLIENT_ENABLED_FLAG The flag indicating whether the client portion of the
Environment is enabled.

ENV CLIENT_PASSWORD The password Mercury ITG Center uses to log
onto or access the client. This value is encrypted.

ENV CLIENT_TYPE_CODE The Validation value code of the client machine
type.

ENV CLIENT_USERNAME The username Mercury ITG Center uses to log
onto or access the client.

ENV CLIENT_TRANSFER_PROTOCOL The protocol used to transfer files to or from this
client.

ENV CLIENT_TRANSFER_PROTOCOL_ The visible value of the client transfer protocol.

MEANING

ENV CREATED_BY The ID of the User that created the Environment.

ENV CREATION_DATE The date the Environment was created.

ENV DATABASE_ENABLED_FLAG The flag indicating whether the database portion of
the Environment is enabled.

ENV DATABASE_TYPE The Validation value code of the database type.

ENV DB_CONNECT_STRING For Oracle database type, the connect string used

to access the database from the command line.

Tokens

99



Commands and Tokens Guide and Reference

Table B-6. Environments [continued]

ENV DB_LINK For Oracle database type, the database link from
the Mercury ITG Center schema to the
Environment’s database schema.

ENV DB_NAME The DNS name or IP address of the database
server.

ENV DB_ORACLE_SID For Oracle database type, the SID of the database
(often the same as the DB_CONNECT_STRING).

ENV DB_PASSWORD The password Mercury ITG Center uses to log
onto or access the database. This value is
encrypted.

ENV DB_PORT_NUMBER For Oracle database type, the port number on
which SQL*Net is listening for remote SQL
connections on the database server.

ENV DB_USERNAME The username or schema name Mercury ITG
Center uses to log onto or access the database.

ENV DB_VERSION The version of the database (such as 8.1.7).

ENV DESCRIPTION The description of the Environment.

ENV ENABLED_FLAG The flag indicating whether the Environment is
enabled and available for use in Workflows.

ENV ENVIRONMENT_ID The ID of the Environment in the table
KENV_ENVIRONMENTS.

ENV ENVIRONMENT_NAME The name of the Environment.

ENV LAST_UPDATED_BY The ID of the User that last updated the
Environment.

ENV LAST_UPDATE_DATE The date the Environment was last updated.

ENV LOCATION The location of the Environment.

ENV MSSQL_DB_NAME For MS SQL Server database type, the database
name used to access the database from the
command line.

ENV SERVER_BASE_PATH The base (root) path of the server.

ENV SERVER_CON_PROTOCOL The protocol used to connect to this server.

ENV SERVER_CON_PROTOCOL_ The visible value of the server connection protocol.

MEANING
ENV SERVER_TRANSFER_PROTOCOL The protocol used to transfer files to or from this

server.

100 Tokens




Commands and Tokens Guide and Reference

Table B-6. Environments [continued]

ENV SERVER_TRANSFER_PROTOCOL_
MEANING

The visible value of the server transfer protocol.

ENV SERVER_ENABLED_FLAG

The flag indicating whether the server portion of
the Environment is enabled.

ENV SERVER_NAME

The DNS name or IP address of the server
computer.

ENV SERVER_NT_DOMAIN

The domain name for the server, if the server
machine type is Windows.

ENV SERVER_PASSWORD

The password Mercury ITG Center uses to log
onto or access the server. This value is encrypted.

ENV SERVER_TYPE_CODE

The Validation value code of the server machine
type.

ENV SERVER_USERNAME

The username Mercury ITG Center uses to log
onto or access the server.

If any Mercury ITG Extensions have been installed, there will be more
Environment Tokens with the prefix ‘AC.” For more detailed information on

these Tokens, see the Mercury ITG Extensions documentation.

Table B-7. Environment Applications

Prefix Token Description

ENV.APP APP_CODE The short name (code) for the Application.

ENV.APP APP_NAME The descriptive name for the Application.

ENV.APP CLIENT_BASE_PATH The Application-specific base (root) path of the
client.

ENV.APP CLIENT_PASSWORD The Application-specific password Mercury ITG
Center uses to log onto or access the client. This
value is encrypted.

ENV.APP CLIENT_USERNAME The Application-specific username Mercury ITG
Center uses to log onto or access the client.

ENV.APP CLIENT_CON_PROTOCOL The Application-specific protocol used to connect to
this client.

ENV.APP CLIENT_CON_PROTOCOL_ The visible value of the client connection protocol.

MEANING

Tokens 101



Commands and Tokens Guide and Reference

Table B-7. Environment Applications

PROTOCOL

ENV.APP CLIENT_TRANSFER_ The application-specific protocol used to transfer
PROTOCOL files to and from this client.

ENV.APP CLIENT_TRANSFER_ The visible value of the client transfer protocol.
PROTOCOL_MEANING

ENV.APP CREATED_BY The ID of the User that created the Application.

ENV.APP CREATION_DATE The date the Application was created.

ENV.APP DB_LINK For Oracle database type, the Application-specific
database link from the Mercury ITG Center schema
to the Environment’s database schema.

ENV.APP DB_NAME For MS SQL Server database type, the Application-
specific database name used to access the
database from the command line.

ENV.APP DB_PASSWORD The Application-specific password Mercury ITG
Center uses to log onto or access the database.
This value is encrypted.

ENV.APP DB_USERNAME The Application-specific username or schema name
Mercury ITG Center uses to log onto or access the
database.

ENV.APP DESCRIPTION The description of the Application.

ENV.APP ENABLED_FLAG The flag indicating whether the Application is
enabled and available for selection in Package
Lines.

ENV.APP ENVIRONMENT_APP_ID The ID of the Application in the table
KENV_ENVIRONMENT_APPS.

ENV.APP ENVIRONMENT_ID The ID of the Environment the Application is
associated with.

ENV.APP ENVIRONMENT_NAME The name of the Environment the application is
associated with.

ENV.APP LAST_UPDATED_BY The ID of the User that last updated the Application.

ENV.APP LAST_UPDATE_DATE The date the Application was last updated.

ENV.APP SERVER_CON_PROTOCOL The Application-specific protocol used to connect to
this server.

ENV.APP SERVER_CON_PROTOCOL_ The visible value of the server connection protocol.

MEANING
ENV.APP SERVER_TRANSFER_ The application-specific protocol used to transfer

files to and from this server.

102 Tokens




Commands and Tokens Guide and Reference

Table B-7. Environment Applications

ENV.APP SERVER_TRANSFER_ The visible value of the server transfer protocol.
PROTOCOL_MEANING
ENV.APP SERVER_BASE_PATH The Application-specific base (root) path of the
server
ENV.APP SERVER_PASSWORD The Application-specific password Mercury ITG
Center uses to log onto or access the server. This
value is encrypted.
ENV.APP SERVER_USERNAME The Application-specific username Mercury ITG
Center uses to log onto or access the server.
ENV.APP WORKBENCH_ENVIRONMENT_ | The URL of the Environment window in the
URL Workbench.
Table B-8. Command Execution
Prefix Token Description
EXEC EXIT_CODE The exit code of a Command execution.
EXEC OUTPUT The last line of output from a Command execution.

The Command Execution Tokens, [EXEC.OUTPUT] and
[EXEC.EXIT_CODE], can be used in the following contexts:

e Inside Command step segments that use the ksc_connect and ksc_exit

Special Commands.

e Immediately after Command step segments that use the

ksc_local_exec Special Command.

For example, the following code segment demonstrates how to use both

Command Execution Tokens to retrieve the output and exit code

immediately upon execution. The Tokens are used immediately after the

ksc_local_exec Special Command.

ksc_local_exec pwd

ksc_set MY PATH=" [EXEC.OUTPUT]”

ksc_set MY _EXIT_ CODE=" [EXEC.EXIT_ CODE]”
ksc_local_exec echo ‘[MY_PATH]/bin’
ksc_local_exec echo '[MY_EXIT_CODE]’

Tokens 103



Commands and Tokens Guide and Reference

Table B-9. Notifications

Prefix Tokens Description

NOTIF CC_USERS The list of users on the Cc: header of the Notification.

NOTIF CHANGED_FIELD The field that changed to trigger a notification.

NOTIF EXCEPTION_RULE The exception rule that was met by the task exception that
caused the notification to be sent.

NOTIF EXCEPTION_RULE_NAME The name of the task exception that caused the notification
to be sent.

NOTIF EXCEPTION_VIOLATION The specific violation of the exception that caused the
notification to be sent.

NOTIF NEW_VALUE The new value of the changed field.

NOTIF NOTIFICATION_DETAILS Notification details for linked Tokens.

NOTIF OLD_VALUE The previous value of the changed field.

NOTIF TO_USERS The list of users on the To: header of the notification.

Table B-10. Organization Unit
Prefix Tokens Description

ORG BUDGET_ID The ID of the Budget linked to this Org unit.

ORG BUDGET_NAME The name of the Budget linked to this Org unit.

ORG CATEGORY_CODE The lookup code of the Org unit category (lookup type =
RSC - Org Unit Category)

ORG CATEGORY_NAME The category name of the Org unit.

ORG CREATED_BY The ID of the user that created the Org unit.

ORG CREATED_BY_USERNAME | The name of the user that created the Org unit.

ORG CREATION_DATE The date that the Org unit was created.

ORG DEPARTMENT_CODE The lookup code of the Org unit department (lookup type =
DEPT)

ORG DEPARTMENT_NAME The department name of the Org Unit.

ORG LOCATION_CODE The lookup code of the Org Unit Location (lookup type =
RSC - Location)

ORG LOCATION_NAME The location name of the Org unit.

ORG MANAGER_ID The ID of the manager of the Org unit.

104 Tokens




Commands and Tokens Guide and Reference

Table B-10. Organization Unit

Prefix Tokens Description
ORG MANAGER_USERNAME The name of the manager of the Org unit.
ORG ORG_UNIT_ID The ID of the Org unit (defined in table
KRSC_ORG_UNITS).
ORG ORG_UNIT_NAME The name of the Org unit.
ORG PARENT_ORG_UNIT_ID The ID of the parent Org unit.
ORG PARENT_ORG_UNIT_NAME | The name of the parent Org unit.

Table B-11. Packages

Prefix Token Description

PKG | ASSIGNED_TO_EMAIL The email address of the User that the Package is
assigned to.

PKG | ASSIGNED_TO_GROUP_ID The ID of the Security Group that the Package has been
assigned to.

PKG | ASSIGNED_TO_GROUP_NAME | The Security Group that the Package has been assigned
to.

PKG | ASSIGNED_TO_USERNAME The name of the User that the Package has been
assigned to.

PKG | ASSIGNED_TO_USER_ID The ID of the user that the Package has been assigned to.

PKG CREATED_BY The ID of the user that created the Package.

PKG CREATED_BY_EMAIL The email address of the User that created the Package.

PKG CREATED_BY_USERNAME The Mercury ITG Center username of the User that
created the Package.

PKG CREATION_DATE The date the Package was created.

PKG DESCRIPTION The description of the Package.

PKG ID The ID of the Package in the table KDLV_PACKAGES.

PKG LAST_UPDATED_BY The ID of the User that last updated the Package.

PKG LAST_UPDATED_BY_EMAIL The email address of the User that last updated the
Package.

PKG LAST_UPDATED_BY_ The Mercury ITG Center username of the User that last

USERNAME updated the Package.
PKG LAST_UPDATE_DATE The date the Package was last updated.

Tokens 105



Commands and Tokens Guide and Reference

Table B-11. Packages

Prefix Token Description
PKG MOST_RECENT_NOTE_ First and last name of the author of the most recent
AUTHOR_FULL_NAME (chronological) note.
PKG | MOST_RECENT_NOTE_ Username of the author of the most recent (chronological)
AUTHOR_USERNAME note.
PKG | MOST_RECENT_NOTE_ Date of the most recent (chronological) note.
AUTHORED_DATE
PKG | MOST_RECENT_NOTE_TEXT Text of the most recent (chronological) note.
PKG NOTES All notes for the Package.
PKG | NUMBER The name/number of the Package.
PKG PACKAGE_GROUP_CODE The Package Group code.
PKG | PACKAGE_GROUP_NAME The name of the Package Group.
PKG | PARENT_REQUEST_ID The ID of the Request that created this Package (if
applicable).
PKG | PRIORITY The priority of the Package.
PKG | PRIORITY_CODE The Validation value code of the Package priority.
PKG | PRIORITY_NAME The Validation value meaning of the Package priority.
PKG | PRIORITY_SEQ The priority sequence of the Package.
PKG PROJECT_CODE The Validation value code of the Project the Package
belongs to.
PKG PROJECT_NAME The Validation value meaning of the Project the Package
belongs to.
PKG | SUBMIT_DATE The date that the Package was submitted.
PKG REQUESTED_BY_EMAIL The email address of the User who requested the
Package.
PKG | REQUESTED_BY_USERNAME The Mercury ITG Center username of the User who
requested the Package.
PKG REQUESTED_BY_USER_ID The ID of the user that requested the Package.
PKG | PACKAGE_ID The ID of the Package in the table KDLV_PACKAGES.
PKG | PACKAGE_NO_LINK Shows up as a standard hyperlink to the Package in
HTML-format Notifications.
PKG PACKAGE_TYPE The Validation value meaning of the Package type.
PKG PACKAGE_TYPE_CODE The Validation value code of the Package type.

106 Tokens




Commands and Tokens Guide and Reference

Table B-11. Packages

Prefix Token Description
PKG PACKAGE_URL The URL of the Package in the standard interface.
PKG | PERCENT_COMPLETE Percent complete of the Package.
PKG RUN_GROUP The run group of the Package.
PKG STATUS The Validation value meaning for the status of the
Package.
PKG | STATUS_CODE The Validation value code for the status of the Package.
PKG | WORKBENCH_PACKAGE_NO_ | The URL of the Package in the Workbench.
LINK
PKG | WORKBENCH_PACKAGE_URL The URL of the Package screen in the Workbench.
PKG | WORKFLOW_ID The ID of the Workflow used by the Package.
PKG | WORKFLOW_NAME The name of the Workflow used by the Package.

Table B-12. Package Lines

Prefix Token Description

PKGL APP_CODE The App Code for the Package Line.

PKGL APP_NAME The name of the Application for the Package Line.

PKGL ID The ID of the Package Line in the table
KDLV_PACKAGE_LINES.

PKGL OBJECT_CATEGORY_CODE | The Validation value code of the Object Type category of
the line.

PKGL OBJECT_CATEGORY_NAME | The Validation value meaning of the Object Type category
of the line.

PKGL OBJECT_NAME The Object name of the Package Line.

PKG OBJECT_REVISION The value of the Object Revision column (if any) as
specified by the Object Type of the Package Line.

PKGL OBJECT_TYPE The Object Type of the Package Line.

PKGL OBJECT_TYPE_ID The ID of the Object Type of the Package Line.

PKGL PACKAGE_LINE_ID The ID of the Package Line.

PKGL SEQ The sequence of the Package Line (relative to other lines in

the same Package).

Tokens 107




Commands and Tokens Guide and Reference

Table B-12. Package Lines

Prefix Token Description

PKGL WORKBENCH_OBJECT_ URL to access the Object Type window for this Object Type
TYPE_URL in the Workbench.

Table B-13. Package Pending

Prefix Tokens Description
PKG.PEND | ID The ID of the entity that is being blocked by the
Package.
PKG.PEND | NAME The name of the entity that is being blocked by the
Package.
PKG.PEND | DETAIL Detail information for the entity that is being blocked

by the Package.

PKG.PEND | DESCRIPTION The description of the entity that is being blocked by
the Package.

PKG.PEND | STATUS_ID The ID of the state or code of the status of the entity
that is being blocked by the Package.

PKG.PEND | STATUS_NAME The name of the status (or state) of the entity that is
being blocked by the Package.

PKG.PEND | STATE The name of the state of the entity of the Request
that is being blocked by the Package.

PKG.PEND | ASSIGNED_TO_USERNAME The name of the assigned user (or resource) of the
entity that is being blocked by the Package.

PKG.PEND | ASSIGNED_TO_USER_ID The username of the assigned user (or resource) of
the entity that is being blocked by the Package.

PKG.PEND | ASSIGNED_TO_GROUP_NAME | The name of the assigned group (or resource group)
of the entity that is being blocked by the Package.

PKG.PEND | ASSIGNED_TO_GROUP_ID The ID of the assigned group (or resource group) of
the entity that is being blocked by the Package.

PKG.PEND | RESOURCE_USERNAME The name of the resource associated with the entity
that is being blocked by the Package.

PKG.PEND | RESOURCE_ID The username of the assigned user (or resource)
associated with the entity that is being blocked by
the Package.

PKG.PEND | RESOURCE_GROUP_NAME The name of the assigned group (or resource group)
associated with the entity that is being blocked by
the Package.

108 Tokens



Commands and Tokens Guide and Reference

Table B-13. Package Pending

Prefix

Tokens

Description

PKG.PEND | RESOURCE_GROUP_ID

The ID of the assigned group (or resource group)
associated with the entity that is being blocked by
the Package.

PKG.PEND | PERCENT_COMPLETE

The current percent complete value associated with
the entity that is being blocked by the Package.

PKG.PEND | ENTITY_TYPE_ID

The ID of the type of entity that is being blocked by
the Package.

PKG.PEND | ENTITY_TYPE_NAME

The name of the type of entity that is being blocked
by the Package.

Table B-14. Program

Prefix Token Description

PRG CREATED_BY The ID of the user that created the Program.

PRG CREATED_BY_USERNAME The name of the user that created the Program.

PRG LAST_UPDATED_BY The ID of the user that last updated the Program.

PRG LAST_UPDATED_BY_ The name of the user that last updated the Program.
USERNAME

PRG MOST_RECENT_NOTE_ First and last name of the author of the most recent
AUTHOR_FULL_NAME (chronological) note.

PRG MOST_RECENT_NOTE_ Username of the author of the most recent (chronological)
AUTHOR_USERNAME note.

PRG MOST_RECENT_NOTE_ Date of the most recent (chronological) note.
AUTHORED_DATE

PRG MOST_RECENT_NOTE_TEXT | Text of the most recent (chronological) note.

PRG PROGRAM_MANAGER The ID(s) of the user(s) assigned to manage this Program.

Table B-15. Projects

Prefix Tokens Description

PRJ ACTUAL_DURATION The actual duration of the Project.

PRJ ACTUAL_EFFORT The actual effort associated with the Project.
PRJ ACTUAL_FINISH_DATE The actual finish date of the Project.

PRJ ACTUAL_START_DATE The actual start date of the Project.

Tokens 109




Commands and Tokens Guide and Reference

Table B-15. Projects

Prefix Tokens Description

PRJ BUDGET_ID The ID of the Budget linked to the Project.

PRJ BUDGET_NAME The name of the Budget linked to the Project.

PRJ CONFIDENCE_CODE The code of the confidence value entered by the user.

PRJ CONFIDENCE_NAME The name of the confidence value entered by the user.

PRJ CREATED_BY The user who created the Project.

PRJ CREATED_BY_EMAIL The email address of the user who created the Project.

PRJ CREATED_BY_USERNAME The username of the person who created the Project.

PRJ CREATION_DATE The creation date of the Project.

PRJ DEPARTMENT_CODE The code of the department value entered by the user.

PRJ DEPARTMENT_NAME The name of the department value entered by the user.

PRJ DESCRIPTION The description of the Project.

PRJ ESTIMATED_REMAINING_ The estimated remaining duration of the Project.
DURATION

PRJ ESTIMATED_REMAINING_ The estimated remaining effort involved in the Project.
EFFORT

PRJ ESTIMATED_FINISH_DATE The estimated finish date of the Project.

PRJ LAST_UPDATE_DATE The date the Project was last updated.

PRJ LAST_UPDATED_BY The last person to update the Project.

PRJ LAST_UPDATED_BY_EMAIL The email address of the last person to update the Project.

PRJ LAST_UPDATED_BY_ The username of the last person to update the Project.
USERNAME

PRJ MASTER_PROJECT_ID The ID of the Master Project.

PRJ MASTER_PROJECT_NAME The name of the Master Project.

PRJ MOST_RECENT_NOTE_ First and last name of the author of the most recent
AUTHOR_FULL_NAME (chronological) note.

PRJ MOST_RECENT_NOTE_ Username of the author of the most recent (chronological)
AUTHOR_USERNAME note.

PRJ MOST_RECENT_NOTE_ Date of the most recent (chronological) note.
AUTHORED_DATE

PRJ MOST_RECENT_NOTE_TEXT | Text of the most recent (chronological) note.

110 Tokens




Commands and Tokens Guide and Reference

Table B-15. Projects

Prefix

Tokens

Description

PRJ

MOST_RECENT_NOTE_TYPE

Type of the most recent (chronological) note (USER or
FIELD CHANGE).

PRJ MOST_RECENT_USER_NOTE | First and last name of the author of the most recent user
_AUTHOR_FULL_NAME note.
PRJ MOST_RECENT_USER_NOTE | Username of the author of the most recent user note.
_AUTHOR_USERNAME
PRJ MOST_RECENT_USER_NOTE | Date of the most recent user note.
_AUTHORED_DATE
PRJ MOST_RECENT_USER_NOTE | Text of the most recent user note.
_TEXT
PRJ MOST_RECENT_USER_NOTE | Type of the most recent user note (USER or FIELD
_TYPE CHANGE).
PRJ PARENT_PROJECT_ID The ID of the parent Project.
PRJ PARENT_PROJECT_NAME The name of the parent Project.
PRJ PERCENT_COMPLETE The Project’'s completed percentage.
PRJ PRIORITY The priority of the Project.
PRJ PROJECT_ID The number that uniquely identifies the Project (same as
PROJECT_NUMBER) in the table KDRV_PROJECTS.
PRJ PROJECT_MANAGER The Manager of the Project.
PRJ PROJECT_MANAGER_EMAIL | The email address of the Project Manager.
PRJ PROJECT_MANAGER_ The username of the Project Manager.
USERNAME
PRJ PROJECT_NAME The name of the Project.
PRJ PROJECT_NAME_LINK Shows up as a standard hyperlink to the Project in HTML-
format Notifications.
PRJ PROJECT_NUMBER The number that uniquely identifies the Project (same as
PROJECT_ID).
PRJ PROJECT_PATH The Project Path. This is a hierarchy of parent Projects that
contain this Project.
PRJ PROJECT_STATE The Project State.
PRJ PROJECT_TEMPLATE The name of the Project Template used to create the
Project.
PRJ PROJECT_TYPE_CODE Returns TASK for Tasks and PROJECT for Projects.

Tokens 111




Commands and Tokens Guide and Reference

Table B-15. Projects

Prefix Tokens Description

PRJ PROJECT_URL The URL for the Project Overview.

PRJ SCHEDULED_EFFORT The scheduled effort defined in the Project.

PRJ SCHEDULED_DURATION The Project’s scheduled duration.

PRJ SCHEDULED_FINISH_DATE The Project’s scheduled finish date.

PRJ SCHEDULED_START_DATE The Project’s scheduled start date.

PRJ SUMMARY_CONDITION The Project’'s Summary Condition.

PRJ WORKBENCH_PROJECT_URL | The URL to access this Project in the Workbench.

Table B-16. Project Details

Prefix Tokens* Description
PRJD PROJECT_DETAIL_ID | The ID of Project Detail in the table KDRV_PROJECT_DETAILS.
PRJD PROJECT_ID The ID of the Project in the table KDRV_PROJECT_DETAILS.

* Parameters are accessible with this prefix (similar to Request Detail):
[PRID.P.CUSOM_TOKEN].

Table B-17. Releases

Prefix Tokens Description

REL RELEASE_ID The ID of the Release in the table KREL_RELEASES.

REL RELEASE_NAME The name of the Release.

REL RELEASE_STATUS The status of the Release.

REL CREATED_BY The ID of the user who created the Release.

REL CREATED_BY_USERNAME | The Mercury ITG Center username of the user who

created the Release.

REL LAST_UPDATED_BY The ID of the user who last updated the Release.

REL LAST_UPDATED_BY_ The Mercury ITG Center username of the user who last
USERNAME updated the Release.

REL LAST_UPDATE_DATE The date that the Release was last updated.

REL MOST_RECENT_NOTE_ First and last name of the author of the most recent

AUTHOR_FULL_NAME

(chronological) note.

112 Tokens




Commands and Tokens Guide and Reference

Table B-17. Releases

Prefix Tokens Description
REL MOST_RECENT_NOTE_ Username of the author of the most recent (chronological)
AUTHOR_USERNAME note.
REL MOST_RECENT_NOTE_ Date of the most recent (chronological) note.
AUTHORED_DATE
REL MOST_RECENT_NOTE_ Text of the most recent (chronological) note.
TEXT
REL RELEASE_MANAGER The Mercury ITG Center user who is designated the
Release Manager.
REL RELEASE_TEAM The group of Mercury ITG Center users associated with
the Release.
REL RELEASE_GROUP The high level categorization of the Release.
REL DESCRIPTION The description of the Release.
REL NOTES The notes contained within the Release.

Table B-18. Requests

Prefix Token Description

REQ | APPLICATION_CODE The Validation value code for the application that the
Request is assigned to.

REQ | APPLICATION_NAME The Validation value meaning of the application that the
Request is assigned to.

REQ | ASSIGNED_TO_EMAIL The email address of the user the Request has been
assigned to.

REQ | ASSIGNED_TO_GROUP_ID The ID of the Security Group that the Request has been
assigned to.

REQ | ASSIGNED_TO_GROUP_NAME | The name of the Security Group that the Request has
been assigned to.

REQ | ASSIGNED_TO_USERNAME The Mercury ITG Center username of the user that the
Request has been assigned to.

REQ | ASSIGNED_TO_USER_ID The ID of the user that the Request has been assigned to.

REQ | COMPANY The Company employing the user that created the
Request.

REQ | COMPANY_NAME The name of the Company employing the user that created
the Request.

Tokens 113




Commands and Tokens Guide and Reference

Table B-18. Requests

AUTHOR_FULL_NAME

Prefix Token Description
REQ | CONTACT_EMAIL The email address of the Contact for the Request.
REQ | CONTACT_NAME The full name of the Contact for the Request.
REQ | CONTACT_PHONE_NUMBER The phone number of the Contact for the Request.
REQ | CREATED_BY The ID of the user that created the Request.
REQ | CREATED_BY_EMAIL The email address of the user that created the Request.
REQ | CREATED_BY_USERNAME The Mercury ITG Center username of the user that created
the Request.
REQ | CREATION_DATE The date the Request was created.
REQ | DEPARTMENT_CODE The Validation value code of the department for the
Request.
REQ | DEPARTMENT_NAME The Validation value meaning of the department for the
Request.
REQ | DESCRIPTION The description of the Request.
REQ | LAST_UPDATED_BY The ID of the user that last updated the Request.
REQ | LAST_UPDATED_BY_EMAIL The email address of the user that last updated the
Request.
REQ | LAST_UPDATED_BY_ The Mercury ITG Center username of the user that last
USERNAME updated the Request.
REQ | LAST_UPDATE_DATE The date the Request was last updated.
REQ | MOST_RECENT_NOTE_ First and last name of the author of the most recent
AUTHOR_FULL_NAME (chronological) note.
REQ | MOST_RECENT_NOTE_ Username of the author of the most recent (chronological)
AUTHOR_USERNAME note.
REQ | MOST_RECENT_NOTE_ Date of the most recent (chronological) note.
AUTHORED_DATE
REQ | MOST_RECENT_NOTE_TEXT Text of the most recent (chronological) note.
REQ | MOST_RECENT_NOTE_TYPE Type of the most recent (chronological) note (USER or
FIELD CHANGE).
REQ | MOST_RECENT_NOTE_ In the case of Requests, this is the Request Status; blank
CONTEXT in all other cases.
REQ | MOST_RECENT_USER_NOTE_ | First and last name of the author of the most recent user

note.

114 Tokens




Commands and Tokens Guide and Reference

Table B-18. Requests

Prefix Token Description
REQ | MOST_RECENT_USER_NOTE_ | Username of the author of the most recent user note.
AUTHOR_USERNAME
REQ | MOST_RECENT_USER_NOTE_ | Date of the most recent user note.
AUTHORED_DATE
REQ | MOST_RECENT_USER_NOTE_ | Text of the most recent user note.
TEXT
REQ | MOST_RECENT_USER_NOTE_ | Type of the most recent user note (USER or FIELD
TYPE CHANGE).
REQ | MOST_RECENT_USER_NOTE_ | Status of the Request.
CONTEXT
REQ | NOTES All notes for the Request.
REQ | PERCENT_COMPLETE The percent complete of the Request.
REQ | PRIORITY_CODE The Validation value code of the Request priority.
REQ | PRIORITY_NAME The Validation value meaning of the Request priority.
REQ | PROJECT_CODE The Validation value code of the Project the Request
belongs to.
REQ | PROJECT_NAME The Validation value meaning of the Project the Request
belongs to.
REQ | SUBMIT_DATE The date that the Request was submitted.
REQ | REQUEST_GROUP_CODE The code for the Request Group.
REQ | REQUEST_GROUP_NAME The name of the Request Group.
REQ | REQUEST_ID The ID of the Request in the table KCRT_REQUESTS.
REQ | REQUEST_ID_LINK Shows up as a standard hyperlink to the Request in HTML-
format Notifications.
REQ | REQUEST_SUB_TYPE_ID The ID of the sub-type for the Request.
REQ | REQUEST_SUB_TYPE_NAME The name of the sub-type for the Request.
REQ | REQUEST_TYPE_ID The ID of the Request Type of the Request.
REQ | REQUEST_TYPE_NAME The name of the Request Type of the Request.
REQ | REQUEST_URL URL of the Request in standard interface.
REQ | STATUS_ID The ID of the status of the Request.
REQ | STATUS_NAME The status of the Request.

Tokens 115



Commands and Tokens Guide and Reference

Table B-18. Requests
Prefix Token Description
REQ | WORKBENCH_REQUEST_ The URL of the Request Type in the Workbench.

TYPE_URL

REQ

WORKFLOW_ID

The ID of the Workflow used by the Request.

REQ

WORKFLOW_NAME

The name of the Workflow used by the Request.

Figure B-1 Request Details

Prefix* Tokens Description
REQD CREATED_BY The ID of the User who created the Request Detail.
REQD CREATION_DATE The date the Request Detail was created.
REQD LAST_UPDATED_BY The ID of the User that last updated the Request Detail.
REQD LAST_UPDATE_DATE | The date the Request Detail was last updated.
REQD REQUEST_DETAIL_ID | The ID for the Request Detail in the table
KCRT_REQUEST_DETAILS.
REQD REQUEST_ID The ID of the Request for the Request Detail.
REQD REQUEST_TYPE_ID The ID of the Request Type for the Request Detail.
* Prefix is mainly used for accessing custom fields: [REQD.P.CUSTOM_TOKEN]
Table B-19. Request Pending

Prefix Tokens

Description

REQ.PEND | ID

Request.

REQ.PEND | NAME

Request.

REQ.PEND | DETAIL

by the Request.

REQ.PEND | DESCRIPTION

the Request.

REQ.PEND | STATUS_ID

that is being blocked by the Request.

REQ.PEND | STATUS_NAME

being blocked by the Request.

116 Tokens

The ID of the entity that is being blocked by the

The name of the entity that is being blocked by the

Detail information for the entity that is being blocked

The description of the entity that is being blocked by

The ID of the state or code of the status of the entity

The name of the status (or state) of the entity that is




Commands and Tokens Guide and Reference

Table B-19. Request Pending

Prefix Tokens Description

REQ.PEND | STATE The name of the state of the entity of the Request
that is being blocked by the Request.

REQ.PEND | ASSIGNED_TO_USERNAME The name of the assigned user (or resource) of the
entity that is being blocked by the Request.

REQ.PEND | ASSIGNED_TO_USER_ID The username of the assigned user (or resource) of
the entity that is being blocked by the Request.

REQ.PEND | ASSIGNED_TO_GROUP_NAME | The name of the assigned group (or resource group)
of the entity that is being blocked by the Request.

REQ.PEND | ASSIGNED_TO_GROUP_ID The ID of the assigned group (or resource group) of
the entity that is being blocked by the Request.

REQ.PEND | RESOURCE_USERNAME The name of the resource associated with the entity
that is being blocked by the Request.

REQ.PEND | RESOURCE_ID The username of the assigned user (or resource)
associated with the entity that is being blocked by
the Request.

REQ.PEND | RESOURCE_GROUP_NAME The name of the assigned group (or resource group)
associated with the entity that is being blocked by
the Request.

REQ.PEND | RESOURCE_GROUP_ID The ID of the assigned group (or resource group)
associated with the entity that is being blocked by
the Request.

REQ.PEND | PERCENT_COMPLETE The current percent complete value associated with
the entity that is being blocked by the Request.

REQ.PEND | ENTITY_TYPE_ID The ID of the type of entity that is being blocked by
the Request.

REQ.PEND | ENTITY_TYPE_NAME The name of the type of entity that is being blocked

by the Request.

Table B-20. Report Submissions

Prefix

Tokens

Description

RP CREATED_BY

The ID of the User who submitted the Report.

RP CREATION_DATE

The date the Report was submitted.

RP FILENAME

The filename for the Report. This file name is found
in the REPORT_URL.

Tokens 117



Commands and Tokens Guide and Reference

Table B-20. Report Submissions

RP LAST_UPDATED_BY The ID of the User that last updated the Report
submission.

RP LAST_UPDATE_DATE The date the Report submission was last updated.

RP NEW_STATUS The visible value for the Report’'s new Status.

RP NEW_STATUS_CODE The code for the Report’s new Status.

RP OLD_STATUS The visible value for the Report’s old status.

RP OLD_STATUS_CODE The code for the Report’s old status.

RP REPORT_LOG_URL The Web address where the Report log is located.

RP REPORT_SUBMISSION_ID The ID of the Report submission in the table
KNTA_REPORT_SUBMISSIONS.

RP REPORT_TYPE_NAME The name of the Report Type of the Report
submission.

RP REPORT_TYPE_ID The ID of the Report Type of the Report submission.

RP REPORT_URL The Web address where the Report output is
located.

RP STATUS The status of the Report submission.

RP STATUS_CODE The Validation value code for the status of the
Report submission.

RP WORKBENCH_REPORT_TYPE_URL | The URL of the Report Type in the Workbench.

Table B-21. Resource Pools

Prefix Tokens Description

RSCP | ACTIVE_FLAG The active flag of the Resource Pool.

RSCP | CREATED_BY The username of the user who created the
Resource Pool.

RSCP | CREATION_DATE The date that the Resource Pool was created.

RSCP | DESCRIPTION The description of the Resource Pool.

RSCP | END_PERIOD The end period of the Resource Pool.

RSCP | INITIATION_REQ The initiation Request ID of the Resource Pool.

RSCP | PERIOD_SIZE The period size of the Resource Pool.

RSCP | RESOURCE_POOL_URL The URL to view this Resource Pool.

118 Tokens




Commands and Tokens Guide and Reference

Table B-21. Resource Pools

Prefix Tokens Description

RSCP | RSC_POOL_ID The ID of the Resource Pool in table
KRSC_RSC_POOLS.

RSCP | RSC_POOL_IS_FOR_ENTITY_NAME | The entity name to which the Resource Pool is

linked (Program or Org Unit).

RSCP | RSC_POOL_IS_FOR_ID The ID of the Program or Org unit to which the
Resource Pool is linked.

RSCP | RSC_POOL_IS_FOR_NAME The name of the Program or ORg unit to which the
Resource Pool is linked.

RSCP | RSC_POOL_NAME The name of the Resource Pool.

RSCP | START_PERIOD The start period of the Resource Pool.

RSCP | STATUS_CODE The status code of the Resource Pool.

RSCP | STATUS_NAME The status name of the Resource Pool.

Table B-22. Security Groups

Prefix Tokens Description

SG CREATED_BY The ID of the User who created the Security Group.

SG CREATION_DATE The date the Security Group was created.

SG DESCRIPTION The description for the Security Group.

SG LAST_UPDATED_BY The ID of the User that last updated the Security Group.

SG LAST_UPDATE_DATE The date the Security Group was last updated.

SG SECURITY_GROUP_ID The ID of the Security Group in the table
KNTA_SECURITY_GROUPS.

SG SECURITY_GROUP_NAME | The name of the Security Group.

Table B-23. Skill

Prefix Tokens Description
SKL AVERAGE_COST_RATE The average cost rate associated with the skill.
SKL CREATED_BY The user ID that created the Skill.
SKL CREATED_BY_USERNAME | The name of the user that created the Skill.
SKL CREATION_DATE The date that the Skill was created.

Tokens 119




Commands and Tokens Guide and Reference

Table B-23. Skill

Prefix Tokens Description
SKL SKILL_CATEGORY_CODE The lookup code of Skill Category (lookup type = RSC -
Skill Category).
SKL SKILL_CATEGORY_NAME The name of the Skill category.
SKL SKILL_ID The ID of the Skill in table KRSC_SKILLS.
SKL SKILL_NAME The name of the Skill.

Table B-24. Staffing Profile

Prefix Tokens Description
STFP ACTIVE_FLAG The active flag of the Staffing Profile.
STFP CREATED_BY The username of the user who created the Staffing Profile.
STFP CREATION_DATE The date that the Staffing Profile was created.
STFP DESCRIPTION The description of the Staffing Profile.
STFP END_PERIOD The end period of the Staffing Profile.
STFP INITIATION_REQ The initiation Request ID of the Staffing Profile.
STFP PERIOD_SIZE The period size of the Staffing Profile.
STFP STAFFING_PROFILE_URL The URL to view this Staffing Profile.
STFP STAFF_PROF_ID The ID of the Staffing Profile in table
KRSC_STAFF_PROFS.
STFP STAFF_PROF_IS_FOR_ The entity name to which the Staffing Profile is linked.
ENTITY_NAME
STFP STAFF_PROF_IS_FOR_ID The ID of the Project, Program or Org unit to which the
Staffing Profile is linked.
STFP STAFF_PROFL_IS_FOR_ The name of the Project, Program or Org unit to which the
NAME Staffing Profile is linked (Project, Program, or Org Unit).
STFP STAFF_PROF_NAME The name of the Staffing Profile.
STFP START_PERIOD The start period of the Staffing Profile.
STFP STATUS_CODE The status code of the Staffing Profile.
STFP STATUS_NAME The status name of the Staffing Profile.

120 Tokens




Commands and Tokens Guide and Reference

Table B-25. System

Prefix Tokens Description

SYS DATE The date at the time the Token is parsed.

SYS NEWLINE A new line character.

SYS TIME_STAMP A date and time stamp at the time the Token is parsed.

SYS UNIQUE_IDENTIFIER | Used to obtain a unique number from the database. It can be used to

generate unique filenames, etc. It is often necessary to use with the
‘ksc_set’ Special Command.

SYS UNIX_NEWLINE The UNIX new line character.

SYS USERNAME The Mercury ITG Center username of the User currently logged onto
Mercury ITG Center.

SYS USER_ID The ID of the User currently logged onto Mercury ITG Center.

Table B-26. Tasks

Prefix Tokens Description

TSK ACTUAL_DURATION The actual duration of the Task.

TSK ACTUAL_EFFORT The actual effort associated with the Task.

TSK ACTUAL_FINISH_DATE The actual finish date of the Task.

TSK ACTUAL_START_DATE The actual start date of the Task.

TSK CONFIDENCE_CODE The code of the confidence value entered by the user.

TSK CONFIDENCE_NAME The name of the confidence value entered by the user.

TSK CONSTRAINT_DATE The Task’s constraint date.

TSK CREATED_BY The user who created the Task.

TSK CREATED_BY_EMAIL The email address of the user who created the Task.

TSK CREATED_BY_USERNAME The username of the person who created the Task.

TSK CREATION_DATE The creation date of the Task.

TSK DEPARTMENT_CODE The code of the department value entered by the user.

TSK DEPARTMENT_NAME The name of the department value entered by the
user.

TSK DESCRIPTION The description of the Task.

Tokens 121




Commands and Tokens Guide and Reference

Table B-26. Tasks

Prefix Tokens Description
TSK ESTIMATED_REMAINING_ The estimated remaining duration of the Task.
DURATION
TSK ESTIMATED_REMAINING_EFFORT | The estimated remaining effort involved in the Task.
TSK ESTIMATED_FINISH_DATE The estimated finish date of the Task.
TSK HAS_EXCEPTIONS The flag to show whether or not the Task has
exceptions.
TSK LAST_UPDATE_DATE The date the Task was last updated.
TSK LAST_UPDATED_BY The last person to update the Task.
TSK LAST_UPDATED_BY_EMAIL The email address of the last person to update the
Task.
TSK LAST_UPDATED_BY_USERNAME The username of the last person to update the Task.
TSK MASTER_PROJECT_ID The ID of the Master Project.
TSK MASTER_PROJECT_NAME The name of the Master Project.
TSK MOST_RECENT_NOTE_ First and last name of the author of the most recent
AUTHOR_FULL_NAME (chronological) note.
TSK MOST_RECENT_NOTE_ Username of the author of the most recent
AUTHOR_USERNAME (chronological) note.
TSK MOST_RECENT_NOTE_ Date of the most recent (chronological) note.
AUTHORED_DATE
TSK MOST_RECENT_NOTE_TEXT Text of the most recent (chronological) note.
TSK PARENT_PROJECT_ID The ID of the parent Project.
TSK PARENT_PROJECT_NAME The name of the parent Project.
TSK PERCENT_COMPLETE The Task’s completed percentage.
TSK PRIORITY The priority of the Task.
TSK PROJECT_PATH The Project Path. Hierarchy of parent Projects that
contain this Task.
TSK PROJECT_TEMPLATE The name of the Project Template used to create the
Project containing the Task.
TSK PROJECT_TYPE_CODE Returns TASK for Tasks and PROJECT for Projects.
TSK RESOURCE_ID The ID of the Resource assigned to the Task.
TSK RESOURCE_EMAIL The email address of the Resource.
TSK RESOURCE_GROUP_ID The ID of the Resource Group assigned to the Task.

122 Tokens




Commands and Tokens Guide and Reference

Table B-26. Tasks

Prefix Tokens Description

TSK RESOURCE_GROUP_NAME The name of the Resource Group assigned to the
Task.

TSK RESOURCE_USERNAME The username of the Resource.

TSK SCHEDULED_EFFORT The scheduled effort involved in the Task.

TSK SCHEDULED_DURATION The Task’s scheduled duration.

TSK SCHEDULED_FINISH_DATE The Task’s scheduled finish date.

TSK SCHEDULED_START_DATE The Task’s scheduled start date.

TSK SCHEDULING CONSTRAINT The Task’s scheduling constraint.

TSK TASK_CATEGORY The predefined category the Task belongs to.

TSK TASK_ID The number that uniquely identifies the Task (same as
TASK_NUMBER). This corresponds to the
PROJECT_ID column in table KDRV_PROJECTS.

TSK TASK_NAME The name of the Task.

TSK TASK_NAME_LINK Standard hyperlink to the Task in HTML-format
Notifications.

TSK TASK_NUMBER The number that uniquely identifies the Task (same as
TASK_ID).

TSK TASK_STATE The Task State.

TSK TASK_URL The URL for the Task Detail page.

TSK WORKBENCH_TASK_URL The URL to access this Task in the Workbench.

Table B-27. Tasks Pending

Prefix Tokens

Description

TSK.PEND | ID

The ID of the entity that is being blocked by the Task.

TSK.PEND | NAME

The name of the entity that is being blocked by the
Task.

TSK.PEND | DETAIL

Detail information for the entity that is being blocked
by the Task as shown in the References panel.

TSK.PEND | DESCRIPTION

The description of the entity that is being blocked by
the Task.

TSK.PEND | STATUS_ID

The ID of the state or the code of the status of the
entity that is being blocked by the Task.

Tokens 123



Commands and Tokens Guide and Reference

Table B-27. Tasks Pending

Prefix Tokens Description

TSK.PEND | STATUS_NAME The name of the status (or state) of the entity that is
being blocked by the Task.

TSK.PEND | STATE The name of the state of the entity that is being
blocked by the Task.

TSK.PEND | ASSIGNED_TO_USERNAME The name of the assigned user (or resource) of the
entity that is being blocked by the Task.

TSK.PEND | ASSIGNED_TO_USER_ID The username of the assigned user (or resource) of
the entity that is being blocked by the Task.

TSK.PEND | ASSIGNED_TO_GROUP_NAME | The name of the assigned group (or resource group)
of the entity that is being blocked by the Task.

TSK.PEND | ASSIGNED_TO_GROUP_ID The ID of the assigned group (or resource group) of
the entity that is being blocked by the Task.

TSK.PEND | RESOURCE_USERNAME The name of the resource associated with the entity
that is being blocked by the Task.

TSK.PEND | RESOURCE_ID The username of the resource (or assigned user)
associated with the entity that is being blocked by the
Task.

TSK.PEND | RESOURCE_GROUP_NAME The name of the resource group (or assigned user)
associated with the entity that is being blocked by the
Task.

TSK.PEND | RESOURCE_GROUP_ID The ID of the resource group (or assigned group)
associated with the entity that is being blocked by the
Task.

TSK.PEND | PERCENT_COMPLETE The current percent complete value associated with
the entity that is being blocked by the Task.

TSK.PEND | ENTITY_TYPE_ID The ID of the type of entity that is being blocked by
the Task.

TSK.PEND | ENTITY_TYPE_NAME The name of the type of entity that is being blocked by

the Task.

Table B-28. Users

Prefix Tokens Description
USR AUTHENTICATION_MODE_CODE | The authentication mode for the user (such as LDAP).
USR AUTHENTICATION_MODE_NAME | The authentication mode for the user (such as LDAP).
USR COMPANY The Company employing the user.

124 Tokens




Commands and Tokens Guide and Reference

Table B-28. Users

USR COMPANY_NAME The name of the Company employing the user.

USR COST_RATE The cost rate of the user ($/hour - subject to security of
user evaluating the Token).

USR CREATED_BY The ID of the user that created the user.

USR CREATED_BY_USERNAME The Mercury ITG Center username of the user that
created the user.

USR CREATION_DATE The date the user was created.

USR DEPARTMENT_CODE The lookup code of the department the user belongs to
(lookup type = DEPT).

USR DEPARTMENT_NAME The name of the department that the user belongs to.

USR EMAIL_ADDRESS The email address of the user.

USR END_DATE The date the user is made inactive in the application.

USR FIRST_NAME The first name of the user.

USR LAST_NAME The last name of the user.

USR LAST_UPDATED_BY The ID of the user that last updated the user.

USR LAST_UPDATED_BY_USERNAME | The Mercury ITG Center username of the user that last
updated the user.

USR LAST_UPDATE_DATE The date the user was last updated.

USR LOCATION_CODE The lookup code of the user’s location (lookup type =
RSC - Location).

USR LOCATION_NAME The name of the user’s location.

USR MANAGER_USERNAME The username of the user's manager.

USR MANAGER_USER_ID The ID of the user's manager.

USR PASSWORD The password for the user to use to log onto Mercury
ITG Center. This value is encrypted.

USR PASSWORD_EXPIRATION_DATE | The date the password needs to be reset for the user.

USR PASSWORD_EXPIRATION_DAYS | The number of days until the password must be reset for
the user.

USR PHONE_NUMBER The phone number of the user.

USR PRIMARY_SKILL_ID The ID of the primary skill associated with the user.

USR PRIMARY_SKILL_NAME The name of the primary skill associated with the user.

USR RESOURCE_CATEGORY_CODE The lookup code of Resource Category (lookup type =

RSC - Category) to which the user belongs.

Tokens 125




Commands and Tokens Guide and Reference

Table B-28. Users

USR RESOURCE_CATEGORY_NAME The name of the category to which the user belongs.

USR RESOURCE_TITLE_CODE the lookup code of the user’'s Resource Title (lookup
type = RSC - Resource Title).

USR RESOURCE_TITLE_NAME The name of the user’s resource title.

USR START_DATE The date the user is made active in the application.

USR USERNAME The username for the user to use to log onto Mercury
ITG Center.

USR USER_ID The ID of the user in the table KNTA_USERS.

USR WORKLOAD_CAPACITY The workload capacity of the user (% of FTE)

Table B-29. Validations

Prefix Tokens Description

VAL COMPONENT_TYPE The component type associated with the Validation.

VAL CREATED_BY The ID of the User that created the Validation.

VAL CREATION_DATE The date the Validation was created.

VAL DESCRIPTION The description of the Validation.

VAL LAST_UPDATED_BY The ID of the user that last updated the Validation.

VAL LAST_UPDATE_DATE The date the Validation was last updated.

VAL LOOKUP_TYPE The lookup type associated with the Validation (if
applicable).

VAL VALIDATION_ID The ID of the Validation in the table
KNTA_VALIDATIONS.

VAL VALIDATION_NAME The name of the Validation.

VAL VALIDATION_SQL The SQL statement associated with the Validation (if
applicable).

VAL WORKBENCH_VALIDATION_URL | The URL for the Validation in the Workbench.

Table B-30. Validation Values

Prefix Tokens Description
VALUE | CREATED_BY The ID of the user that created the value.
VALUE | CREATION_DATE The date the value was created.

126 Tokens




Commands and Tokens Guide and Reference

Table B-30. Validation Values

VALUE | DEFAULT_FLAG The flag to indicate whether the value is the default value for the
associated lookup type.

VALUE | DESCRIPTION The description of the value.

VALUE | ENABLED_FLAG The flag to indicate whether the value is enabled for selection in
a drop-down list.

VALUE | LAST_UPDATED_BY The ID of the user that last updated the value.

VALUE | LAST_UPDATE_DATE The date the value was last updated.

VALUE | LOOKUP_CODE The code associated with the value.

VALUE | LOOKUP_TYPE The lookup type the value belongs to.

VALUE | MEANING The meaning associated with the value.

VALUE | SEQ The sequence relative to other values in the associated lookup

type in which this value will be displayed in a drop-down list.

Table B-31. Workflows

Prefix Tokens Description

WF CREATED_BY The ID of the User that created the Workflow.

WF CREATION_DATE The date the Workflow was created.

WF DESCRIPTION The description of the Workflow.

WF ENABLED_FLAG The flag indicating whether the Workflow is enabled
and available to use in Packages and/or Requests.

WF FIRST_WORKFLOW_STEP_ID The ID of the first Workflow Step in the Workflow.

WF FIRST_WORKFLOW_STEP_NAME The name of the first Workflow Step in the
Workflow.

WF ICON_NAME The name of the Workflow Step icon.

WF LAST_UPDATED_BY The ID of the user that last updated the Workflow.

WF LAST_UPDATE_DATE The date the Workflow was last updated.

WF PRODUCT_SCOPE_CODE The Validation value code for the product scope of
the Workflow.

WF REOPEN_WORKFLOW_STEP_ID The ID of the reopened Workflow Step.

WF REOPEN_WORKFLOW_STEP_NAME | The name of the reopened Workflow Step.

WF SUBWORKFLOW_FLAG An indicator that specifies whether this Workflow

can be used as a Subworkflow.

Tokens 127




Commands and Tokens Guide and Reference

Table B-31. Workflows

WF WORKFLOW_ID The ID of the Workflow defined in the table
KWFL_WORKFLOWS.

WF WORKFLOW_NAME The name of the Workflow.

WF WORKBENCH_WORKFLOW_URL The URL to open the Workflow in the Workbench.

Table B-32. Workflow Steps

Prefix Tokens Description

WFS ACTION_BUTTON_LABEL The label displayed on the Package or Request
action button for the Workflow Step.

WFS AVERAGE_LEAD_TIME The average lead time in days defined for the
Workflow Step.

WFS CREATED_BY The ID of the user that created the Workflow Step.

WFS CREATION_DATE The date the Workflow Step was created.

WFS DESCRIPTION The description of the Workflow Step.

WFS DEST_ENV_GROUP_ID The ID of the destination Environment Group for
the Workflow Step.

WFS DEST_ENV_GROUP_NAME The name of the destination Environment Group
for the Workflow Step.

WFS DEST_ENVIRONMENT_ID The ID of destination Environment for the
Workflow Step.

WFS DEST_ENVIRONMENT_NAME The name of the destination Environment for the
Workflow Step.

WFS ENABLED_FLAG The flag indicating whether the Workflow Step is
enabled and able to be traversed in a Package or
Request.

WFS GL_ARCHIVE_FLAG For GL object migration, the flag indicating
whether to save the GL object being migrated to
the GL*Migrator archive.

WFS INFORMATION_URL The Workflow Step’s information URL.

WFS JUMP_RECEIVE_LABEL_CODE The code for a Jump/Receive Workflow Step.

WFS JUMP_RECEIVE_LABEL_NAME The name of a Jump/Receive Workflow Step.

WFS LAST_UPDATED_BY The ID of the User that last updated the Workflow
Step.

WFS LAST_UPDATE_DATE The date the Workflow Step was last updated.

128 Tokens




Commands and Tokens Guide and Reference

Table B-32. Workflow Steps

WFS OM_ARCHIVE_FLAG For AOL object migration, the flag indicating
whether to save the AOL object being migrated to
the Object*Migrator archive.

WFS PARENT_ASSIGNED_TO_GROUP_ID | The ID of the Security Group that the current
Package or Request is assigned to (determined by
context at time of evaluation).

WFS PARENT_ASSIGNED_TO_GROUP_ The Security Group that the current Package or

NAME Request is assigned to (determined by context at
time of evaluation).

WFS PARENT_ASSIGNED_TO_USERNAME | The name of the user that the current Package or
Request is assigned to (determined by context at
time of evaluation).

WFS PARENT_ASSIGNED_TO_USER_ID The ID of the user that the current Package or
Request is assigned to (determined by context at
time of evaluation).

WFS PARENT_STATUS The Validation value code of the status of the
Request that is using the Workflow Step.

WFS PARENT_STATUS_NAME The Validation value meaning of the status of the
Request that is using the Workflow Step.

WFS PRODUCT_SCOPE_CODE The Validation value code for the product scope of
the Workflow containing the Workflow Step.

WFS RESULT_WORKFLOW_PARAMETER_ | The ID of the Workflow parameter that the result of

ID the Workflow Step is written to.
WFS RESULT_WORKFLOW_PARAMETER_ | The name of the Workflow parameter that the
NAME result of the Workflow Step is written to.

WFS SORT_ORDER The display sequence of the Workflow Step
relative to all other Steps in the Workflow.

WFS SOURCE_ENV_GROUP_ID The ID of the source Environment Group for the
Workflow Step.

WFS SOURCE_ENV_GROUP_NAME The name of the source Environment Group for
the Workflow Step.

WFS SOURCE_ENVIRONMENT_ID The ID of the source Environment for the
Workflow Step.

WFS SOURCE_ENVIRONMENT_NAME The name of the source Environment for the
Workflow Step.

WFS STEP_NAME The name of the Workflow Step.

WFS STEP_NO The display sequence of the Workflow Step

relative to all other Steps in the Workflow.

Tokens 129



Commands and Tokens Guide and Reference

Table B-32. Workflow Steps

WFS STEP_SOURCE_NAME The name of the Workflow Step Source.

WEFS STEP_TYPE_NAME The name of the Workflow Step Source type.

WFS WORKFLOW_ID The ID of the Workflow containing the Workflow
Step.

WFS WORKFLOW_NAME The name of the Workflow containing the
Workflow Step.

WFS WORKFLOW_STEP_ID The ID of the Workflow Step in the table
KWFL_WORKFLOW_STEPS.

Table B-33. Workflow Step Transaction

Prefix Tokens Description

WST CONCURRENT_REQUEST_ID The ID of the concurrent request that was launched
in Oracle Applications.

WST CREATED_BY The ID of the user that created the Step transaction.

WST CREATION_DATE The date the Step transaction was created.

WST ERROR_MESSAGE The error message for the Step transaction.

WST EXECUTION_BATCH_ID The ID of the Execution Batch for the Workflow Step.

WST HIDDEN_STATUS The hidden value for the status of the Step
transaction.

WST LAST_UPDATED_BY The ID of the user that last updated the Step
transaction.

WST LAST_UPDATED_BY_EMAIL The email address of the user that last updated the
Step transaction.

WST LAST_UPDATED_BY_USERNAME | The Mercury ITG Center username of the user that
last updated the Step transaction.

WST LAST_UPDATE_DATE The date the Step transaction was last updated.

WST NEW_HIDDEN_STATUS The new hidden value for the status of the Step
transaction.

WST NEW_STATUS The new status of the Step transaction.

WST OLD_HIDDEN_STATUS The old hidden value for the status of the Step
transaction.

WST OLD_STATUS The old status of the Step transaction.

WST STATUS The status of the Step transaction.

130 Tokens




Commands and Tokens Guide and Reference

Table B-33. Workflow Step Transaction

WST STEP_TRANSACTION_ID The ID of the Step transaction in the table
KWFL_STEP_TRANSACTIONS.

WST TIMEOUT_DATE The date that the Step transaction times out.

WST USER_COMMENT The user comment for the Step transaction.

WST WORKFLOW_ID The ID of the Workflow for the Step transaction.

WST WORKFLOW_STEP_ID The ID of the Workflow Step for the Step transaction.

Field Group Tokens

Field Groups can be attached to Request Header Types to enable additional
pre-configured fields on Requests. Field Groups are often delivered as a part of
Mercury ITG Center Best Practice functionality. You will only have access to
Field Groups associated with products that are licensed at your site.

Use Table B-34 as a quick reference guide to jump to the desired location.

Table B-34. Field Group Token Tables

Table Page

Table B-35, Demand Management Field 132
Group Tokens

Table B-36, Master Project Reference on 132
Request Field Group Tokens

Table B-37, PFM Asset Field Group Tokens | 132

Table B-38, PFM Project Field Group 133
Tokens
Table B-39, PFM Proposal Field Group 134
Tokens
Table B-40, PMO Field Group Tokens 134

Table B-41, Program Reference on Request | 135
Field Group Tokens

Table B-42, Work Item Field Group Tokens | 135

Tokens 131




Commands and Tokens Guide and Reference

Table B-35. Demand Management Field Group Tokens

Field Token
SLA Level KNTA_SLA_LEVEL
SLA Violation Data KNTA_SLA_VIOLATION_DATE
Service Request Date KNTA_SLA_SERV_REQUESTED_ON
Service Satisfied Date KNTA_SLA_SERV_SATISFIED_ON
Estimated Start Date KNTA_EST_START_DATE
Estimated Effort KNTA_EFFORT
Reject Date KNTA_REJECTED_DATE
Demand Satisfied Date KNTA_DEMAND_SATISFIED_DATE

Table B-36. Master Project Reference on Request Field Group Tokens

Field Token

Master Project KNTA_MASTER_PROJ_REF

Table B-37. PFM Asset Field Group Tokens

Field Token
Business Unit KNTA_BUSINESS_UNIT
Asset Name KNTA_PROJECT_NAME
Asset Health KNTA_PROJECT_HEALTH
Project Class KNTA_PROJECT_CLASS
Asset Class KNTA_ASSET_CLASS
Business Objective KNTA_BUSINESS_OBJECTIVE
Project Plan KNTA_PROJECT_PLAN
Budget KNTA_BUDGET
Financial Benefit KNTA_FINANCIAL_BENEFIT
Staffing Profile KNTA_STAFFING_PROFILE
Net Present Value KNTA_NET_PRESENT_VALUE
Value Rating KNTA_VALUE_RATING

132 Tokens



Commands and Tokens Guide and Reference

Table B-37. PFM Asset Field Group Tokens

Field

Token

Risk Rating

KNTA_RISK_RATING

Return on Investment

KNTA_RETURN_ON_INVESTMENT

Custom Field Value

KNTA_CUSTOM_FIELD_VALUE

Total Score

KNTA_TOTAL_SCORE

Discount Rate

KNTA_DISCOUNT_RATE

Table B-38. PFM Project Field Group Tokens

Field

Token

Business Unit

KNTA_BUSINESS_UNIT

Project Name

KNTA_PROJECT_NAME

Project Health

KNTA_PROJECT_HEALTH

Project Class

KNTA_PROJECT_CLASS

Asset Class

KNTA_ASSET_CLASS

Business Objective

KNTA_BUSINESS_OBJECTIVE

Project Plan

KNTA_PROJECT_PLAN

Project Manager

KNTA_PROJECT_MANAGER

Budget

KNTA_BUDGET

Financial Benefit

KNTA_FINANCIAL_BENEFIT

Staffing Profile

KNTA_STAFFING_PROFILE

Net Present Value

KNTA_NET_PRESENT_VALUE

Value Rating

KNTA_VALUE_RATING

Risk Rating

KNTA_RISK_RATING

Custom Field Value

KNTA_CUSTOM_FIELD_VALUE

Return on Investment

KNTA_RETURN_ON_INVESTMENT

Total Score

KNTA_TOTAL_SCORE

Discount Rate

KNTA_DISCOUNT_RATE

Tokens 133




Commands and Tokens Guide and Reference

Table B-39. PFM Proposal Field Group Tokens

Field

Token

Business Unit

KNTA_BUSINESS_UNIT

Project Name

KNTA_PROJECT_NAME

Project Class

KNTA_PROJECT_CLASS

Asset Class

KNTA_ASSET_CLASS

Business Objective

KNTA_BUSINESS_OBJECTIVE

Project Template

KNTA_PROJECT_TEMPLATE

Project Manager

KNTA_PROJECT_MANAGER

Budget

KNTA_BUDGET

Expected Benefit

KNTA_FINANCIAL_BENEFIT

Staffing Profile

KNTA_STAFFING_PROFILE

Net Present Value

KNTA_NET_PRESENT_VALUE

Value Rating

KNTA_VALUE_RATING

Risk Rating

KNTA_RISK_RATING

Return on Investment

KNTA_RETURN_ON_INVESTMENT

Custom Field Value

KNTA_CUSTOM_FIELD_VALUE

Total Score

KNTA_TOTAL_SCORE

Discount Rate

KNTA_DISCOUNT_RATE

Table B-40. PMO Field Group Tokens

Field

Token

Escalation Level

KNTA_ESCALATION_LEVEL

Role Description

KNTA_ROLE_DESCRIPTION

Risk Impact Level

KNTA_RISK_IMPACT_LEVEL

Probability

KNTA_PROBABILITY

CR Level

KNTA_CR_LEVEL

Business Impact Severity

KNTA_IMPACT_SEVERITY

134 Tokens




Commands and Tokens Guide and Reference

Table B-41. Program Reference on Request Field Group Tokens

Field

Token

Program

KNTA_PROGRAM_REFERENCE

Table B-42. Work Item Field Group Tokens

Field

Token

Scheduled Start Date

KNTA_USR_SCHED_START_DATE

Actual Start Date

KNTA_USR_ACTUAL_START_DATE

Scheduled Finish Date

KNTA_USR_SCHED_FINISH_DATE

Actual Finish Date

KNTA_USR_ACTUAL_FINISH_DATE

Scheduled Duration

KNTA_SCHED_DURATION

Actual Duration

KNTA_ACTUAL_DURATION

Scheduled Effort

KNTA_SCHED_EFFORT

Actual Effort

KNTA_ACTUAL_EFFORT

Workload?

KNTA_WORKLOAD

Workload Category

KNTA_WORKLOAD_CATEGORY

Skill

KNTA_SKILL

Allow External Update of Actual Effort

KNTA_ALLOW_EXTERNAL_UPDATE

_Scheduled Start Date

KNTA_SCHED_START_DATE

_Actual Start Date

KNTA_ACTUAL_START_DATE

_Scheduled Finish Date

KNTA_SCHED_FINISH_DATE

_Actual Finish Date

KNTA_ACTUAL_FINISH_DATE

_Scheduled Effort Over Duration

KNTA_SCHED_EFF_OVER_DUR

Tokens 135




Commands and Tokens Guide and Reference

136 Tokens



Commands and Tokens Guide and Reference

Index

A

App Server Properties 96

C

Command Conditions 12, 21
examples 12
Command Language 11
Command Steps 11
Commands
overview 5
triggering from Workflow
9
using 5
Contact 97

E

Entity Token
app server properties 96
command execution 103
contacts 97
Demand Management
Fields 132
distributions 98
Environment
tions 101
Environments 99
Extension 101
Notifications 104
Organization Units 104
Package Lines 107
Package Pending 108

Applica-

Index

PMO Field Group 134

Program 109

Program Reference Field
Group 135

Project 109

Project details 112

Project Field Group 132

Releases 112

Report Submissions 117

Request Details 116

Requests 113

Requests Pending 116

resource pools 118

Security Groups 119

Skills 119

staffing profile 120

Tasks 121

Tasks Pending 123

Users 124

Work Item Field Group
135

Workflow Steps 128

Workflows 127

Entity Tokens
Validations 126

F

Field Group Tokens 131

K

ksc_begin_script 78
example 79

ksc_capture_output 83
ksc_clear_exit_value 86
ksc_comment 76

ksc_conc_sub 77
example 77

ksc_connect 58

ksc_connect_dest_client 58
example 59

ksc_connect_dest_server 59
example 60

ksc_connect_source_client 60
example 61

ksc_connect_source_server
61
examples 62

ksc_copy 63

ksc_copy_client_client 63
example 64

ksc_copy_client_server 65
example 65

ksc_copy_client_tmp 68
ksc_copy_script 79

ksc_copy_script_dest_client
80

ksc_copy_script_dest_server
80

ksc_copy_script_source_clie
nt 81

ksc_copy_script_source_serv
er 81

ksc_copy_server_client 65
example 66

ksc_copy_server_server 66
example 67

137



Commands and Tokens Guide and Reference

ksc_copy_server_tmp 68
ksc_copy_tmp_client 69
ksc_copy_tmp_server 70

ksc_end_script 78
example 79

ksc_exit 62

ksc_gl_migrate 84
example 85

ksc_local _exec 72

ksc_om_migrate 82
example 83

ksc_parse_jcl 85
ksc_replace 73
ksc_respond 70

ksc_set 74, 85
example 73, 74

ksc_set_env 75
ksc_set_exit_value 86

ksc_simple_respond 70
examples 71

ksc_store 74, 75, 85
example 76

ksc_submit_job 85

O

Object Types
commands and Workflow
9
Ownership
setting for Special Com-
mands 31

R

Request Field Tokens 48
prefixes 49
table components 49

Index

S

Special Command
Parameters tab 19

Special Command Builder 24
using to build steps 33

Special Commands
adding parameters 20, 28
building steps with com-

mand builder 33

Commands tab 20
creating new 25
Deleting Parameters 30
editing parameters 30
header fields 18
ksc_begin_script 78
ksc_capture_output 83
ksc_clear_exit_value 86
ksc_comment 76
ksc_conc_sub 77
ksc_connect 58
ksc_copy 63
ksc_copy_script 79
ksc_end_script 78
ksc_exit 62
ksc_gl_migrate 84
ksc_local_exec 72
ksc_om_migrate 82
ksc_parse_jcl 85
ksc_respond 70
ksc_run_sql 86
ksc_set 74, 85
ksc_set_env 75
ksc_set_exit_value 86
ksc_simple_respond 70
ksc_store 74, 75, 85
ksc_submit_job 85
nesting 35
ownership tab 24
parameters 88
predefined 57
setting ownership 31

used by tab 25
user interface 16
using 32
window 17
Workbench 16

Table Components
using tokens in 49

Token Builder Window 39
Token Evaluation 54

Tokens
building 44
default format 43
Environment Tokens 52
explicit entity format 43
Field Groups 131
formats 41
overview 37
parameter format 47
request fields 48
sub-entity format 51
User Data format 46
within tokens 45

138



	Return to Mercury ITG Library
	Table of Contents
	Introduction
	About This Document
	Intended Audience
	Document Conventions
	Additional Resources
	Related Documentation
	Customer Support
	Education Services


	Using Commands
	Commands Overview
	Where Commands are Used
	Commands Interface
	Object Type Commands and Workflow
	Request Type Commands and Workflow
	Special Commands

	Command Steps
	Command Language

	Command Conditions
	Example Command Uses

	Special Commands
	Special Command Interface
	Special Command Workbench
	Special Command Window
	Special Command General Information Region
	Parameters Tab
	Commands Tab
	Command Conditions
	Parameters in Command Steps
	Example - Special Command
	Special Command Builder

	Ownership Tab
	Used By Tab


	Creating and Editing Special Commands
	Creating a New Special Command
	Creating and Editing Special Command Parameters
	Adding Parameters to Special Commands
	Editing Special Command Parameters
	Deleting Parameters

	Setting Ownership for Special Commands

	Using Special Commands
	Adding Special Commands to Command Steps Using the Command Builder
	Nesting Special Commands


	Using Tokens
	What are Tokens?
	Where Tokens Are Used
	Token Builder Window Overview
	Token Formats
	Default Format
	Explicit Entity Format
	Using Tokens within Other Tokens

	User Data Format
	Parameter Format
	Request Field Tokens
	Request Token Prefixes
	Tokens in Request Table Components


	Sub-Entity Format
	Environment and Environment Application Tokens

	Token Evaluation

	System Special Commands
	Special Commands
	ksc_connect Special Commands
	ksc_connect_dest_client
	Example Using ksc_connect_dest_client

	ksc_connect_dest_server
	Example using ksc_connect_dest_server

	ksc_connect_source_client
	Example using ksc_connect_source_client

	ksc_connect_source_server
	Examples using ksc_connect_source_server


	ksc_exit
	ksc_copy Special Commands
	ksc_copy_client_client
	Example #1 using ksc_copy_client_client
	Example #2 using ksc_copy_client_client

	ksc_copy_client_server
	Example using ksc_copy_client_server

	ksc_copy_server_client
	Example using ksc_copy_server_client

	ksc_copy_server_server
	Example using ksc_copy_server_server

	ksc_copy_client_tmp
	ksc_copy_server_tmp
	ksc_copy_tmp_client
	ksc_copy_tmp_server

	ksc_respond
	ksc_simple_respond
	Examples using ksc_simple_respond

	ksc_local_exec
	Example using ksc_local_exec

	ksc_replace
	Example using ksc_replace

	ksc_set
	Example using ksc_set

	ksc_set_env
	ksc_store
	Example using ksc_store

	ksc_comment
	ksc_concsub
	Example using ksc_concsub

	ksc_begin_script / ksc_end_script
	Example using ksc_begin_script and ksc_end_script

	ksc_copy_script Special Commands
	ksc_copy_script_dest_client
	ksc_copy_script_dest_server
	ksc_copy_script_source_client
	ksc_copy_script_source_server

	ksc_om_migrate
	Example using ksc_om_migrate

	ksc_capture_output
	ksc_gl_migrate
	Example ksc_gl_migrate

	ksc_parse_jcl
	ksc_submit_job
	ksc_set_exit_value
	ksc_clear_exit_value
	ksc_run_sql
	Example ksc_run_sql


	Summary of All Special Command Parameters

	Tokens
	System Tokens
	Field Group Tokens

	Index

