HP OpenView Business Process Insight

For the Windows® Operating System

Software Version: 02.10

Integration Training Guide - Importing BPEL

Document Release Date: January 2007
Software Release Date: January 2007

invent

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Copyright Notices
© Copyright 2007 Hewlett-Packard Development Company, L.P.

Trademark Notices

Java™ is a US trademark of Sun Microsystems, Inc.

Microsoft® is a US registered trademark of Microsoft Corporation.

UNIX® is a registered trademark of The Open Group.

Windows® and MS Windows® are US registered trademarks of Microsoft Corporation.

Documentation Updates

This manual’s title page contains the following identifying information:

e Software version number, which indicates the software version

¢ Document release date, which changes each time the document is updated

e Software release date, which indicates the release date of this version of the software

To check for recent updates, or to verify that you are using the most recent edition of a
document, go to:

http://ovweb.external.hp.com/lpe/doc_serv/

You will also receive updated or new editions if you subscribe to the appropriate product
support service. Contact your HP sales representative for details.

Support

Please visit the HP OpenView support web site at:
http:/www.hp.com/managementsoftware/support

This web site provides contact information and details about the products, services, and
support that HP OpenView offers.

HP OpenView online software support provides customer self-solve capabilities. It provides a
fast and efficient way to access interactive technical support tools needed to manage your
business. As a valuable support customer, you can benefit by using the support site to:

e Search for knowledge documents of interest

¢ Submit enhancement requests online

e Download software patches

e Submit and track progress on support cases

e Manage a support contract

e Look up HP support contacts

¢ Review information about available services

¢ Enter discussions with other software customers
e Research and register for software training

Most of the support areas require that you register as an HP Passport user and log in. Many
also require a support contract.

To find more information about access levels, go to:
http:/www.hp.com/managementsoftware/access_level
To register for an HP Passport ID, go to:

http:/www.managementsoftware.hp.com/passport-registration.html

Contents

1 Introduction to BPEL. 9
BPE L Basics. . ittt it e e 10
ABPEL Business Process e 11

XML Elements e e e e e 11
Partner Links e e 12
The Insurance Selection Process. it 13
BPEL Process Engines/Development Tools, 19
Exporting BPEL e 21

2 The OVBPIModeler. 23

Importing BPEL. 24
Junction Nodest e 26
Closing Junction Nodes et 26
Start and End Nodes e 26
No Partner Links e e e e 27
Node Names e e 27

Cleaning up the Flow Diagram. i, 29
Startand End Nodes it e 29
dJunction Nodes 29
Activity Nodes. 29
Isthe Flow Correct? i e e e e e e 30
A Final Flow Diagramt e i 30
What Next? ... e e 32

The BPEL Import Wizard e e 33
Replace Existing Flow Definition. 33
Overall Size of the Flow Canvas 34

Name Generation. e e e e 36
File Location i e e e e e e 36

File Format 38

Built-in Transformations (_hex_)......... i, 42
Custom Transformations. i e e 43
Transformer Code. 43
Compilingthe Code. i e e e 45
The Name Generator Properties File 46
Update the Modeler Script. e e 47
BPEL Element Mappingsoeii 49
Formatting Conventions it e 50
PrOCESS v ittt et e e e e e e e e e e 51
The BPEL XM L. e e e e e e e e e e e 51
OVBPI Node Structure. i e e e e 54
=TT < o 56
The BPEL XM L. e e e e e e e e 56
OVBPI Node Structure. e e 56
COMIPENS At e e 58
The BPEL XM L. e e e e e e e e e 58
OVBPI Node Structure. e e 58
BT P Y . .ottt 59
The BPEL XM L. e e e e e 59
OVBPI Node Structure. e 59
oW .« o e e e 60
The BPEL XM L. e e e 60
OVBPI Node Structure.t e e et 60
IVOKE . . o 62
The BPEL XM L. e e e 62
OVBPI Node Structure. i e e e e e 63
PICK . o 65
The BPEL XM L. e e e e e e e e e e 65
OVBPI Node Structure. e e ie e e 66
=Y A= S 68
The BPEL XM L. e e e e e e e e e 68
OVBPI Node Structure. e e e e 68

OVBPI Node Structure.t e e et 70
YT) o 72
The BPEL XML, e e 72
OVBPI Node Structure.t e e e et e 73
Y=Y L0 =Y 0 < 75
The BPEL XM L. e e e e et e e e e 75
OVBPI Node Structure. i e ie e e 75
SWILCH . . 77
The BPEL XM L. e e e e e e e e e 77
OVBPI Node Structure. e e e 78
terminate e e e 80
The BPEL XM L. e e e e e e e e e e 80
OVBPI Node Structure. e 80
PRrOW. . . e e 81
The BPEL XM L. e e e e e 81
OVBPI Node Structure. e e 81
WAL . . e e e e 82
The BPEL XM L. e e 82
OVBPI Node Structure.t e e et 82
While . .o e 84
The BPEL XML, e e e 84
OVBPI Node Structure. e e e ie e e 84

1 Introduction to BPEL

This chapter provides an introduction to Business Process Execution
Language (BPEL) and leads you through an example business process.

10

BPEL Basics

Business Process Execution Language (BPEL) defines a notation for
specifying business process behavior, typically based on Web Services.
Sometimes BPEL is also known by the acronyms WS-BPEL (Web Services
BPEL) or BPEL4WS (BPEL for Web Services).

BPEL was first developed back in 2002 by BEA, IBM, and Microsoft. Since
then the majority of vendors have become involved which has resulted in
several modifications and improvements, and adoption of version 1.1 in March
2003. In April 2003, BPEL was submitted to OASIS (Organization for the
Advancement of Structured Information Standards) for standardization
purposes. This has led to even broader acceptance across the industry. Having
said that, BPEL is still in its early days and you find that actual
implementations of BPEL can vary between the different manufacturers.

BPEL has been designed specifically as a language for the definition of
business processes. BPEL supports two different types of business processes:

e Executable processes

This is where you specify the exact details of your business process. This
business process definition can then be executed by a BPEL Process
Engine.

e Abstract processes

This is where you specify a high level overview of your business process.
An abstract process definition does not include the internal details of each
step and decision within the business process, and an abstract process
definition can not be executed by a BPEL Process Engine.

A BPEL process specifies the order in which participating services should be
invoked. Service can be invoked sequentially or in parallel. With BPEL, you
can express conditional behavior, for example, a Web service invocation can
depend on the value of a previous invocation. You can also construct loops,
declare variables, copy and assign values, define fault and exception handlers,
and so on. By combining all these constructs, you can define complex business
processes in an algorithmic manner. So BPEL is indeed a form of
programming language. Hence a BPEL Process Engine can be given an
executable BPEL process definition, and actually run the business process.

BPEL process definitions are written in XML.

Chapter 1

A BPEL Business Process

A BPEL business process is initiated by receiving a request. To fulfill this
request, the process then invokes the specified Web service(s) and finally
responds to the original caller. To be able to communicate with the involved
Web services, the BPEL process requires the WSDL (Web Service Definition
Language) definitions for each Web service.

A BPEL process consists of steps. Each step is called an activity.

XML Elements

Within BPEL there are XML elements for specifying actual work activities,
such as the following:

e <invoke> -toinvoke a Web service.

® <receive> -to wait for the client to invoke the business process through
sending a message.

e <reply> - to generate a response for synchronous operations.
e <assign> - to manipulate data variables.

e <throw> -toindicate faults and exceptions.

e <wait> - to wait for some time.

e <terminate> - to terminate the entire process.

There are also XML elements within BPEL for defining code structures, such
as the following:

® <sequence> - to define a set of activities that are to be invoked in an
ordered sequence.

e <flow> -to define a set of activities that are to be invoked in parallel.
e <switch> and <case> - to implement branches.

e <while> - to define a while loop.

e <pick> - to select one of a number of alternative paths.

Each BPEL process also declares variables, using the <variable> element.

Introduction to BPEL 11

12

Partner Links

All external services that a BPEL process interacts with, are called partner
links. Partner links can be links to Web services that are invoked by the BPEL
process. Partner links can also be links to clients which invoke the BPEL
process. Each BPEL process has at least one client partner link, because there
has to be a client that invokes the BPEL process itself.

It is usual for a BPEL process to have at least one invoked partner link,
because the process most likely invokes at least one Web service :-) Invoked
partner links may, however, become client partner links - this is usually the
case with asynchronous services, where the process invokes an operation.
Later the service (or partner) invokes the call-back operation on the process to
return the requested data.

All partner links are accessed through WSDL port types. A port type is a
WSDL definition that describes the call interface (methods available) for a
Web service.

Chapter 1

The Insurance Selection Process

Introduction to BPEL

Let’s consider an example business process and see how it might be
represented in BPEL.

Suppose you have a simple process that looks for the cheapest insurance quote
from two insurance brokers. The basic steps of this Insurance Selection
process are as follows:

1. A client initiates a request to find the cheapest insurance quote.

2. The process then issues requests to both the insurance brokers, asking
them to provide an insurance quote.

3. The process then compares the two quotes, and chooses the quote that is
for the cheapest amount of money.

4. The cheapest quote is then passed back to the initiator.

Figure 1 on page 14 shows how this process might execute within a BPEL/
Web Services environment.

13

14

Client

Figure 1 Insurance Selection BPEL Process

— Initial Request

Partner
link

prype 1 — —p|_ recave> |

4 ‘@ .
—_ Web
— t portType Partner

- link Service 1

P <«
Insurance A _- .~ Insurance B

R 2~ N
<invoke> <invoke>

Select Cheapest

Quote \\
“a e | Web
portType | I~ arner)
link | Service 2
<7
<case> <case>
\ Provide Quote

e
\ v

7

T e

BPEL Process Definition

\

-

i

i

I

I

|

I

|

|

|
|
\
\

A

—

Let’s consider the steps shown above in Figure 1:

Someone initiates the process.

An external client (a partner link) invokes this BPEL process as a Web
service.

The first step in the BPEL process receives the request for an insurance
quote.

The process then starts up two parallel paths.

Each path of the process invokes the appropriate Web service to get an
insurance quote.

The process then chooses the cheapest quote and assigns the return
details to be this cheapest quote.

The cheapest quote details are then returned to the initiating client.

Chapter 1

Let’s now look in more detail at the actual BPEL XML for defining this
example Insurance Selection process.

The first thing you do is declare the process and all XML name spaces that are
used within this process, as follows:

<process name="Insurance Selection Process"
targetNamespace="http://somewhere.com/bpel /example/"
xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmlns:ins="http://somewhere.com/bpel/insurance/"
xmlns:com="http://somewhere.com/bpel /company/" >

The process is called Insurance Selection Process

You then declare the partner links to the BPEL process client (called client)
and the two insurance Web services (called insuranceA and insuranceB).
The XML looks as follows:

<partnerLinks>
<partnerLink name="client"
partnerLinkType="com: selectionLT"
myRole="insuranceSelectionService" />

<partnerLink name="insuranceA"
partnerLinkType="ins:insuranceLT"
myRole="insuranceRequester"
partnerRole="insuranceService" />

<partnerLink name="insuranceB"
partnerLinkType="ins:insuranceLT"
myRole="insuranceRequester"
partnerRole="insuranceService" />

</partnerLinks>
The actual syntax for these <partnerLink> elements is not important for

your basic understanding of BPEL. Essentially, each partner link is defining
the link to each Web service used by this BPEL process definition.

Introduction to BPEL 15

Next, you declare the variables for the insurance request, insurance A and B
responses, and for final selection. The XML looks as follows:

<variables>
<!-- Input for BPEL process -->
<variable name="insuranceRequest"
messageType="1ns:insuranceRequestMessage" />
<!-- Output from insurance A -->
<variable name="insurance-A-Response"
messageType="1ins:insuranceResponseMessage" />
<!-- Output from insurance B -->
<variable name="insurance-B-Response"
messageType="1ns:insuranceResponseMessage" />
<!-- Output from BPEL process -->
<variable name="insuranceSelectionResponse"
messageType="1ns:insuranceResponseMessage" />
</variables>

Finally, you specify the actual steps of the process. First you wait for the
initial request message from the client (<receive>). Then you invoke both
insurance Web services (<invoke>) in parallel using the <flow> activity. The
insurance Web services return the insurance premiums. Then you select the
lower amount (<switch>/<case>/<assign>) and return the result to the client
(the caller of the BPEL process) using the <reply> activity. The XML look as
follows:

<sequence>

<!-- Receive the initial request from client -->
<recelve name="Initial Request"
partnerLink="client"
portType="com: insuranceSelectionPT"
operation="SelectInsurance"
variable="insuranceRequest"
createInstance="yes" />

<!-- Make concurrent invocations to Insurance A and B -->
<flow name="Get Quotes">

<!-- Invoke Insurance A Web service -->

<invoke name="Insurance A"
partnerLink="insuranceA"
portType="1ins:computeInsurancePremiumpPT"
operation="ComputeInsurancePremium"
inputVariable="insuranceRequest"
outputVariable="insurance-A-Response" />

Chapter 1

<!-- Invoke Insurance B Web service -->

<invoke name="Insurance B"
partnerLink="insuranceB"
portType="ins:computeInsurancePremiumPT"
operation="ComputeInsurancePremium"
inputVariable="insuranceRequest"
outputVariable="insurance-B-Response" />

</flow>

<!-- Select the best offer and construct the response -->
<switch name="Select Cheapest Quote">

<case condition="bpws:getVariableData ('insurance-A-Response',
'resultData', '/resultData/Amount"')
&1lt;= bpws:getVariableData ('insurance-B-Response',
'resultData', ' /resultData/Amount') ">

<!-- Select Insurance A -->
<assign>
<copy>
<from variable="insurance-A-Response" />
<to variable="insuranceSelectionResponse" />
</copy>
</assign>
</case>

<otherwise>
<!-- Select Insurance B -->
<assign>
<copy>
<from variable="insurance-B-Response" />
<to variable="insuranceSelectionResponse" />
</copy>
</assign>
</otherwise>
</switch>

<!-- Send a response to the client -->

<reply name="Provide Quote"
partnerLink="client"
portType="com: insuranceSelectionPT"
operation="SelectInsurance"
variable="insuranceSelectionResponse" />

</sequence>

</process>

Notice that you close off the process with a closing </process> element.

Introduction to BPEL

18

As each BPEL process is itself a Web service, each BPEL process also needs a
WSDL document. However, understanding WSDL documents is beyond the
scope of this document.

From this example BPEL process, you might think that this process could
alternatively have been written in a programming language such as Java.
Indeed, it could have been. However, it is important to realize that a BPEL
process is portable, even outside the Java platform. BPEL processes can be
executed on BPEL process engines that are based on either a Java platform,
or on any other software platform (for example .NET). This is particularly
important in business-to-business interactions where different partners may
be using different platforms.

Chapter 1

BPEL Process Engines/Development Tools

There are BPEL process engines for both the J2EE and .NET platforms. Some
examples are as follows:

¢ Oracle BPEL Process Manager (J2EE)

e IBM WebSphere Business Integration Server Foundation (J2EE)
e ActiveBPEL engine (J2EE)

e OpenStorm Service Orchestrator (J2EE or .NET)

e Microsoft BizTalk (NET)

In addition to BPEL process engines, there are also BPEL design tools
available. These tools enable graphical development of BPEL processes and
are often shipped with the BPEL process engine. Some example BPEL
development tools are as follows:

¢ Oracle BPEL Designer

¢ ProVision - from Proforma

e IBM WebSphere Studio Application Developer, Integration Edition
e IBM BPWS4J Editor

e Active Endpoints Active Webflow Designer

To show you an example of how a BPEL design tool might represent a BPEL
business process, let’s consider the example Insurance Selection process as
shown in Figure 1 on page 14. If you were to look at this business process from
within the Oracle BPEL Designer, the business process might be represented
as shown in Figure 2.

Introduction to BPEL 19

Figure 2 Oracle BPEL Designer

Partner Links

client

2EBPPDo

i
¢

5533044 UOIR(RS RIUEINSU]

o fio

Initial-Request

|
k.

5

L=
)

Insurance-& Insurance-B

|
'
ra@

I I
SCases L/] B | cotherwise: B

Provide-Cuote

|
S

Partner Links

; @

insuranceb

3 @

insuranced

Notice that this diagram shows the partner links and the connections to/from
these. The Oracle BPEL Designer also lets you collapse and expand the
various sections of the process diagram.

20

Chapter 1

Exporting BPEL

The BPEL design and development tools allow you to design your BPEL
processes using a user friendly GUI front end. These tools also offer the ability
to export the process as a BPEL XML file.

It is worth noting that the BPEL standard is still in its infancy and (believe it
or not) not all of the BPEL design and development tools necessarily export
BPEL that matches the business process being exported.

The fact that a BPEL development tool says it has “exported the process as
BPEL” does not necessarily means that it is correct. Indeed, with some of the
BPEL tools at the moment, if you export the process as BPEL. and then
re-import that BPEL, you can end up with a business process that bares little
resemblance to the one you started with :-(This can become an issue when
you are given a BPEL file and asked to import it into the OVBPI Modeler. The
OVBPI Modeler correctly interprets the BPEL, but if the BPEL does not
match the actual business process, then the OVBPI flow definition will not
match the business process either.

Introduction to BPEL 21

22

Chapter 1

2 The OVBPI Modeler

This chapter looks at how to import a BPEL process into the OVBPI Modeler,
and looks at the resultant OVBPI flow definition.

23

24

Importing BPEL

The OVBPI Modeler is able to import a business process from a BPEL XML
file.

Let’s consider the Insurance Selection process from Chapter 1. Take a look at
Figure 1 on page 14 to remind yourself of the business process. If you take the
BPEL for this flow (as listed in Chapter 1) and import this into the OVBPI
Modeler (File->Import Definitions...) it creates an OVBPI flow diagram
as shown in the two figures Figure 3 and Figure 4:

Figure 3 Insurance Selection Process - Part 1

Start of
Insurance
Selection

Process

vV
¢

Skark
SegUENCE
no-name
1

4

Iniitial
Requesk
1

v
®

Skart of Flow
. Gek Quotes .,
. “
£ gt

Insurance &, Ansurance B
N /

. ’
5 -
\ /

\ ;
End of flow
et Quokes
|

v

Chapter 2

Figure 4 Insurance Selection Process - Part 2
|

-
®

Start switch
~ Select

s

" Cheapest

,>’ Quote %

Case Othetwise
bpws: getvariableDatalinsurance-A-Response’, 1
'resultData,'fresultDatafAmount’)
=
bpws:getVariableDatalinsur ance-B-Response’,
‘resultData’, ' fresultDatafAmount’)

no-narne no-name
I I

v Vv
® ®

End case End
bpws:getiariableDatalinsurance-A-Response’, otherwise
‘resultData’,'fresultDatafamount’) i
<= o

bpws:get¥ariableDatalinsurance-B-Response’,
‘resultData’,'fresultDatafamount’)

4

End siwitch
Select
Cheapest
Quake
i

Provide
Quote
1

-
®
End

sequence

no-narne

v
®

End of
Insurance
Selection
Process

Let’s talk in more detail about figures Figure 3 and Figure 4, and gain an
understanding of how the OVBPI BPEL importer works.

The OVBPI Modeler

Junction Nodes

The first thing to notice is that the flow contains quite a lot of junction nodes.
This is mainly because the OVBPI BPEL importer has been written to
preserve the BPEL flow structure. The idea is that you can see the original
BPEL structure and this might help you to better understand the resulting
flow diagram.

Closing Junction Nodes

For every junction node that starts a BPEL structure, there is a corresponding
junction node for the closing of this structure. For example, in the BPEL
definition, the <switch> element has a closing </switch> element, hence
the OVBPI flow diagram has a Start switch Select Cheapest Quote
junction node, and an End switch Select Cheapest Quote junction node.

This is true for all BPEL structural elements. This why you also see junction
nodes for the start and end of the process itself, the start and end of the
enclosing sequence that contains the flow, the start and end of the switch, and
the two cases within this switch structure. etc..

Indeed, within BPEL there is an assumption that, unless an element
explicitly terminates the process, then the flow of control continues down to
the next logical element in the process. Thus, when you import BPEL into the
OVBPI Modeler, the default behavior is to draw arcs such that the nodes are
linked to the logically next node in the flow. For example, notice the Start
switch Select Cheapest Quote junction node in Figure 4 on page 25. You
see that two arcs come out of this junction node, and the flow of control
continues until these two paths are merged back at the closing junction node
called End switch Select Cheapest Quote.

Start and End Nodes

The OVBPI BPEL importer tries to identify any BPEL elements that may
start, or end, the BPEL process. Not all BPEL definitions necessarily contain
this information within their elements.

Chapter 2

In this example, the node Initial Request is shown as a start node. This is
because the actual BPEL tag for the corresponding node contained the
createlInstance option, as follows:

<recelve name="Initial Request"

partnerLink="client"
portType="com: insuranceSelectionPT"
operation="SelectInsurance"
variable="insuranceRequest"
createInstance="yes" />

As there was no BPEL element marked as terminating the process, no end

node has been shown in the OVBPI flow diagram.

It is not uncommon to import a BPEL process and not see any start node or
end node. Even if some nodes are shown as start or end nodes, it is up to you,
as the OVBPI developer, to consider the resultant flow and decide which node,
or nodes, should become start or end nodes.

No Partner Links

The resulting OVBPI flow does not show the partner links within the BPEL
process. Partner link information does not have any affect on the resultant
flow diagram, so it is ignored.

Node Names

Notice that in Figure 4 on page 25, some of the nodes have been created with a
name of no-name. This is simply because the corresponding BPEL element
did not contain the name attribute. If you have more than one node with the
name no-name then the OVBPI Modeler marks these as ToDo errors and
you need to assign appropriate names before you can deploy the flow.

You can also see that in Figure 4 on page 25, junction nodes have been created
that represent the test conditions within the <case> elements (within the
<switch> element). When processing a <case> element, the default
behavior is to set the node name to be the test condition. This can help you to
understand the logic of the original BPEL process. In this example scenario,
some of the resultant node names are too long and the OVBPI Modeler ToDo
list highlights these errors. You need to shorten these node names before the
flow can be deployed.

The OVBPI Modeler 27

28

When you use the OVBPI BPEL importer you can specify a name generator
file in which you can alter the way that node names are constructed. For
example, you can configure which properties of the BPEL element are used to

construct the resultant node name. See Name Generation on page 36 for more
details.

Chapter 2

Cleaning up the Flow Diagram

The resultant flow diagram as shown in Figure 3 on page 24 and Figure 4 on
page 25 is a direct interpretation of the BPEL being imported. The Insurance
Selection process was defined as executable BPEL, hence the detailed
information of the actual test criteria in the <case> element. An abstract
BPEL flow might contain less detailed process information.

So how useful is the resultant flow diagram?

Once you have cleaned up details such as any duplicate node names, and/or
node names that are too long, you then need to consider the actual flow itself.

Let’s look at some of the things you need to consider about the resultant flow
diagram...

Start and End Nodes

You need to consider where the start and end node(s) should be on your flow
diagram. Remember, the OVBPI BPEL importer may not be able to correctly
identify the start or end node(s).

Junction Nodes

Do you want all the junction nodes left in the diagram?

The Junction nodes help you to understand the structure of the underlying
business process, however you may not need all this detail within your OVBPI
flow diagram.

Activity Nodes

Are the activity nodes all correct for what you need to monitor?

The fact that the OVBPI BPEL importer has created an activity node does not
necessarily mean that you need to keep this node in your flow diagram. You
may decide that some activity nodes are not needed. On the other hand, you
might decide that more activity nodes need to be added. It all depends on how
you are wanting to monitor the business process.

The OVBPI Modeler 29

Is the Flow Correct?

Not all BPEL development tools produce correct BPEL when they export a
business process. You may find that the resultant OVBPI flow diagram does
not correctly represent your business process.

It is important to go through the OVBPI flow and check that it matches your
understanding of the corresponding business process. Do not simply assume
that the BPEL you have imported is correct.

If there is any doubt about the accuracy of the BPEL, try importing the BPEL
file back into the original BPEL development tool that produced the BPEL
export. You may find that the BPEL development tool is unable to correctly
rebuild the original process from its own exported BPEL.

A Final Flow Diagram

Let’s consider the imported flow as shown in Figure 3 on page 24 and Figure 4
on page 25, and look at one possible way to simplify this flow definition.

You could simplify this flow definition as follows:
1. Remove the first two Start process and Start sequence nodes.
2. Remove the corresponding End process and End sequence nodes.

3. Collapse the switch/case/assign segment of the diagram to be a simple
activity node that assigns the cheapest insurance quote.

4. Change the Provide Quote node to be an End node.

The resultant flow diagram is shown in Figure 5 on page 31.

Chapter 2

Figure 5 Final Insurance Selection Process

4

Initial
Request
|

Vi
[]

 Skart of Flow
< et Quotes ™.

L
| |

Insurance & "~ .+ Insurance B

‘\-}:‘5 -

End af Flow
Get Quokes
1

Vi
|

Select
Cheapest
CQuote
i

i
4

Provide
Quote

How you choose to alter your flow definition is up to you. For example, you
may decide to leave all the junction nodes in the diagram. It also depends on
the business events that you configure and the progression rules you set up
for the nodes. The flow diagram shown in Figure 5 on page 31 is just one
possible alternative.

The OVBPI Modeler 31

32

What Next2

So how helpful is it that you can import the BPEL into the OVBPI Modeler?

Some people might make the observation that, given a diagram of the original
business process, the flow diagram as shown in Figure 5 on page 31 would not
take very long to define yourself using the OVBPI Modeler - and for some
processes that is going to be the case.

The main benefit that BPEL importing gives you is a starting point. That is,
you are not just staring at a blank OVBPI Modeler screen and wondering how
to start defining your flow. Mind you, the flow definition that is created from a
BPEL import is likely to contain almost every step in you business process.
Don'’t forget that in OVBPI you are trying to produce a high-level flow
definition that is useful for monitoring this business process, not run it.

The other thing to realize is that the BPEL import helps you define the flow
definition. You still need to then define and configure the data definition, the
event definitions, the event subscriptions and node progression rules.

The BPEL importer can help you get started with the flow definition, but you
still have work to do before you can deploy this flow and have it monitor your
business process.

Chapter 2

The BPEL Import Wizard

To actually import a BPEL process into the OVBPI Modeler, it is as simple as
selecting the menu option: File->Import Definitions...

The various menu options within the BPEL import wizard are fully described
in the OVBPI Modeler on-line help subsystem, so refer to the Modeler help if
you need any details explained.

There are just a few points that are worth reiterating in this manual.

Replace Existing Flow Definition

When importing a BPEL process into the OVBPI Modeler, the default
behavior is to import the process and create it as a brand new flow within the
Model Repository. So the default is to not replace an existing flow definition.

If you have previously imported the same BPEL process, the default behavior
is to create a new flow. This can cause some confusion at first, as you can end
up with two (or more) flows in the Modeler, both listed in the Navigator pane
with the same name. If you click on each flow name within the Navigator
pane, the Summary pane (below the Navigator pane) shows you the date and
time at which that selected flow was created.

If you want to replace an existing flow, then you need to select an existing flow
from the pull-down, as shown in Figure 6 on page 33. Once you have selected
a flow name from the pull-down, the BPEL flow is imported and then renamed
to the flow name you selected. The imported flow then replaces that selected
flow within the Model Repository. You need to make sure that you select the
correct flow name, otherwise you can overwrite a completely unrelated flow
definition.

Figure 6 Replacing an Existing Flow
,é?ﬂ Import Definitions @
These options control how the BPEL process is converted to an OVBPI Flow definition, and haw it is laid out on the page.

Replace existing Flow definition: | Mo - create a new flow definition W

Mo - create a nesw Flow definition
[Flows | Call System
Flows Insurance Selection Process

[Flows | Order Flow

Include optional parts of the prd

The OVBPI Modeler 33

34

Overall Size of the Flow Canvas

When you import a BPEL process into the OVBPI Modeler, you are presented
with various options such as Grid cell size, Gaps between cells, Page
border, and Minimum page size. These options all contribute to the
resultant layout of the imported flow. Again, please refer to the OVBPI
Modeler on-line help for specific details about each option.

But there is one overall detail that is worth discussing here. When you import
a BPEL process, you are probably only thinking about the final layout of the
resultant flow. You might also want to think about whether you intend adding
more nodes to this flow and whether you will have enough room to do this.

Whenever a flow is created within the OVBPI Modeler, the flow is created
within a flow canvas. That is, each flow has a limit to the overall size that it
can grow to.

When you import a BPEL process, the resultant flow might be quite large. So
the OVBPI BPEL importer starts by allocating a default flow canvas, as
defined by the import setting Mimimum page size. The importer then goes
about creating the OVBPI flow within this canvas. If the importer needs to
grow the flow canvas to fit a node on to the flow, it does. The canvas is
increased accordingly until all the nodes and arcs have been added, and the
flow is complete.

Once a flow has been created, the flow canvas is set and cannot grow any
further. So when you import a BPEL process, take a look at the boundaries of
the resultant flow canvas. If you do not have enough space to add or reposition
nodes, then you might want to re-import the BPEL process with different
values for settings such as the Page Border.

For example:

Suppose you import the Insurance Selection BPEL process where you
explicitly set the import option Mimimum page size to be zero(0)/zero(0).
This imports the process, and creates a flow with a flow canvas just large
enough to fit the newly imported flow, plus any Page border size
specified.

The flow might look in the OVBPI Modeler as shown in Figure 7 on

page 35. The flow canvas is just wide enough to fit the nodes of the flow.
Notice also that the flow canvas calculation does not take into account any
extra-long node names that may be created.

Chapter 2

Figure 7 Minimum Flow Canvas

The OVBPI Modeler

Identity | Flow Editor | Related Data|

G CIEIEDe X
LZ]

Inikial
Request
1

v
@

Skart of Flow
Get Quokes
!’ ‘\
L <
O O

Insurance A Insurance B
N\ ¢

N /
\ £
\Q s
End o.F Flas
Get Quokes
i
o

Skart switch
Select
+ Cheapest

‘5’ Quote ‘&l
. ®

Case Okherwise
ariablelatal'insurance-A-Response’,
ItData’, fresultDatalamount’)
= i
ariablel ance-B-Respo

Ikoata','| [l Eta/amourey |

| >

35

Name Generation

When you import a BPEL file into the OVBPI Modeler you need to specify a
Name Generator file. The option appears on the import screen as shown in
Figure 8.

Figure 8 BPEL Import - Name Generator File

.,E?u Import Definitions

These options control how the BPEL process is conwverted ta an OWBPI Flow definition, and how it is laid out on the page.

Replace existing Flow definition: | Mo - create a new Flow definition w |

Include optional parts of the process?

Fault handlers [v] Compensation handlers

Mame gensratar file: |C:'|,Prograrn Files\HP Openview\OVBPTimsglbia\BPELImparter _MameGeneratariMameOnly properties | [Browse...] I

36

Flows diagram layout

Horizontal — Wertical

=] 4Am e

The name generator file determines how the OVBPI flow name and node
names are constructed from the BPEL elements being imported.

File Location

When the import dialog appears, as shown in Figure 8, you can browse to any
location on your network, and choose a name generator file.

OVBPI provides a directory that contains some default name generator files
that are set up ready for you to use. These name generator files are located in
the directory:

OVBPI-install-dir\msg\bia\BPELImporter_ NameGenerator
The name generator files provided in this BPELImporter_NameGenerator
directory are as follows:
® NameOnly.properties

This file specifies that the flow name and node names are to be generated
by using only the name attribute from the corresponding BPEL element.

Chapter 2

® EscapedNameOnly.properties

This file specifies that the flow name and node names are to be generated
by using only the name attribute from the corresponding BPEL element,
in the same way that the file NameOnly.properties does. However, if
the name attribute contains any hexidecimal encoding of the form _xN_
where N is a two, three or four digit number, then this is transformed
(decoded) into the actual character it represents. (See Built-in
Transformations (_hex_) on page 42 for further details.)

® FullNames.properties

This file specifies that the flow name and node names are to be generated
by using more than just the name attribute from the corresponding BPEL
element. The main feature of this name generator file is that the resultant
node names contain the name of their corresponding BPEL element. This
allows you to see which BPEL elements map to which OVBPI nodes.

Be aware that selecting this property file can produce very long node
names that you may need to manually edit, and shorten, within the
OVBPI Modeler.

® EscapedFullNames.properties

This file is similar to the FullNames.properties file, and it also
specifies that any hexidecimal encoding of the form _xN_ where N is a
two, three or four digit number, is transformed (decoded) into the actual
character it represents. (See Built-in Transformations (_hex_) on page 42
for further details.)

Be aware that selecting this property file can produce very long node
names that you may need to manually edit, and shorten, within the
OVBPI Modeler.

The OVBPI Modeler 37

File Format

Each name generator file contains a set of entries that specifies how to
construct a name from each BPEL element.

Syntax

The syntax is as follows:

BPEL-element.identifier.pattern=
BPEL-element. identifier.number.source=
BPEL-element.identifier.number.default=
BPEL-element. identifier.number. transform=

where:

BPEL-element
This is set to the name of the BPEL element.
identifier

For each BPEL element there are pre-defined identifiers. For example, the
code that handles the BPEL element case, looks for the two identifiers
start and end. Hence in the name generator file you see entries prefixed
with case.start and case.end.

The name generator files shipped with OVBPI define the mappings for all
elements handled by the OVBPI BPEL importer. So you just have to look
into any of the name generator files to see all the identifiers for each
BPEL element.

pattern
You specify the pattern for the resultant name.

To substitute values from the corresponding BPEL element you can
specify parameter substitution. For example, the pattern Node {0} forms
a name starting with the text Node , followed by the contents of
parameter zero. You then need to define parameter zero by setting up the
source, default and transform properties.

Chapter 2

number.source
number.default
number . transform

This is how you set up parameter values that can then be substituted into
the pattern string.

You must set all three properties for each numbered parameter. You can
specify more than one parameter. Parameter numbers must be
consecutive, starting from zero.

You set source to be the value of an attribute within the current BPEL
element. You simply specify the name of the BPEL attribute, prefixed by
the @ sign. For example, assign.node.0.source=@name sets parameter
zero to be the contents of the name attribute from within the assign
BPEL element.

You set default to be the string you wish to use if the specified source
attribute does not exist.

You set transform to be either none or the name of a predefined
transformation. OVBPI provides one predefined transformation, which is
called _hex_. (See Built-in Transformations (_hex_) on page 42 for
further details.)

Example 1

The following properties configure how the BPEL element assign is used to
create a name for the node that is created in the OVBPI flow:

assign.node.pattern={0}
assign.node.(0.source=@name
assign.node.0.default=unnamed assign
assign.node.0.transform=none

where:

The OVBPI Modeler

The resulting name is simply the contents of the name attribute from the
BPEL assign element.

The string {0} is replaced by the contents of parameter zero.

The source defines that parameter zero is the contents of the name
attribute from the BPEL assign element.

If the name attribute does not exist then parameter zero is set to the
string unnamed assign.

39

e The transform=none line simply says that no transformation is to be
applied to this parameter.

So if the BPEL element is defined as follows:
<assign name="My Assign">

the corresponding node name within the OVBPI flow becomes My Assign.

Example 2

The following properties configure how the BPEL element case is used to
create OVBPI node names:

case.start.pattern=Case {0}
case.start.0.default=no-condition
case.start.0.source=@condition
case.start.0.transform=none

case.end.pattern=End case {0}
case.end.0.default=no-condition
case.end.(0.source=@condition
case.end. 0. transform=none

where:

e The OVBPI importer code that handles the case element is able to
handle the creation of both a start case and an end case node.

¢ When creating the case start node, the node name is going to be the string
Case , followed by the value of the condition attribute within the BPEL
element.

e When creating the case end node, the node name is going to be the string
End case , followed by the value of the condition attribute within the
BPEL element.

e Ifthereis no condition attribute within the BPEL element, the
condition parameter is set to the string no-condition.

40 Chapter 2

If the BPEL element is defined as follows:

<case condition="ExpediteOrder=No">

the corresponding node name within the OVBPI flow becomes:

Case ExpediteOrder=No

Example 3

The following properties configure how the BPEL element receive is used to
create a name for the node that is created in the OVBPI flow:

receive.node.
receive.node.
receive.node.
receive.node.
receive.node.
receive.node.
receive.node.
receive.node.
receive.node.
receive.node.

where:

The OVBPI Modeler

pattern="{0}" - {1} - {2} (receive)

0.
. source=@name
.transform=_hex
.default=no-partnerLink
.source=@partnerLink
.transform=none
.default=no-operation
.source=@Qoperation
.transform=_hex

NMNNMNNRRPRPRPROO

default=no-name

The pattern substitutes three parameters.

Parameter zero is set to the name attribute and this is passed through the
hex transformation. (See Built-in Transformations (_hex_) on page 42
for further details.)

Parameter one is set to the partnerlink attribute and this is not passed
through any transformation.

Parameter two is set to the operation attribute and this is passed
through the _hex_ transformation. (See Built-in Transformations
(_hex_) on page 42 for further details.)

41

If the BPEL element is defined as follows:

<receive name="Initial Request"
partnerLink="client"
portType="com: insuranceSelectionPT"
operation="SelectInsurance"
variable="insuranceRequest"
createInstance="yes" />

the corresponding node name within the OVBPI flow becomes:

"Initial Request" - client - SelectInsurance (receive)

Built-in Transformations (_hex_)

OVBPI provides one predefined transformation that you can use when
configuring your name mapping. This transformation is called _hex .

The _hex_ transformation converts any hexidecimal encoding of the form
xXN, where N is a two, three or four digit number, into the actual character
it represents.

For example, suppose you have the following scenario.
Your BPEL element is defined as:

<receive name="Initial x20_ Request"
partnerLink="client"
portType="com: insuranceSelectionPT"
operation="SelectInsurance"
variable="1insuranceRequest"
createlnstance="yes" />

Your name generator file has the entry:

receive.node.pattern="{0}" (receive)
receive.node.0.default=no-name
receive.node.0.source=@name
receive.node.(0.transform=_hex

The resultant node name becomes: "Initial Request" (receive).This
is because the string _x20_ is transformed into the space character.

Chapter 2

Custom Transformations

OVBPI provides the built-in transformation called _hex_. But suppose you
are importing BPEL files that use a different type of encoding within the
XML. Maybe you have a combination of _xN_ style encoding and some other
more involved encoding.

If you need to be able to carry out additional name transformations, then you
simply need to write some Java code to extend the supplied name generator
class, and provide your own transformations.

Transformer Code

The default name generator class that you need to extend is:
com.hp.ov.bia.model.repository.api.utils.bpel .NameGenerator.

Your class then needs to do the following main things:
1. Initialize itself by calling super ().

2. Define a new NameGenerator.Transform, and implement the
transform() method.

3. Call addTransform() to add this new transformation and assign it a
name.

The code might look as follows:

The OVBPI Modeler 43

package com.customer.bpel;
import com.hp.ov.bia.model.repository.api.utils.bpel.NameGenerator;

public class MyNameGenerator extends NameGenerator
{
public MyNameGenerator ()

{

super () ;

/ * %
* Now define an additional transform called "MyXform".
*/

addTransform("MyXform", new NameGenerator.Transform()

{
public String transform(String text)

{
if (text == null)
{

}

return null;

// Now do the transformation
return text.replaceAll ("-mysub-", "***");

where:
e The MyNameGenerator class extends NameGenerator.

e The addTransform() method adds a new NameGenerator.Transform
class, and calls this transform MyXform.

e The NameGenerator.Transform class just needs to implement the
method transform().

The transform() method is passed the current name as a string. You
then code whatever transformations you require and return the resultant
string.

This example shows a substitution where any occurrence of the string
-mysub- is replaced with the string ***,

44 Chapter 2

Compiling the Code

To compile your transformer code, you need the following JAR files on your

classpath:
® (OVBPI-install-dir\java\bia-model-repository.jar

® (OVBPI-install-dir\nonOV\jdom\jdom.jar

An example compilation script might look as follows:

@echo off

set OVBPI_ROOT=C:/Program Files/HP OpenView/OVBPI

set CP=.

set CP=%CP%; $0OVBPI_ROOT%/java/bia-model-repository.jar
set CP=%CP%; $OVBPI_ROOT%/non0OV/jdom/jdom. jar

javac -classpath "%CP%" com\customer\bpel\MyNameGenerator.java

The OVBPI Modeler

45

The Name Generator Properties File

You can now edit your name generator file to make use of your newly created
transformation (MyXform).

You set the transform property for all BPEL elements where you would like
this MyXform transform to be performed.

Note that you can only call one transformation for a BPEL attribute. Hence if
you need this single transformation to cope with both the -mysub-
replacement and the built-in _xN_ replacement, then you need to implement
both transformations within your own transform code.

Each element in your name generator properties file can use a different
transform, but each element can only invoke one transform.

An extract from your name generator properties file might look as follows:

assign.node.pattern={0}
assign.node.0.default=unnamed assign
assign.node.(0.source=@name
assign.node.0.transform=MyXform

process.flow.pattern={0}
process.flow.0.default=no-name
process.flow.0.source=@name
process.flow.0.transform=_hex

where:

e The assign element has its name passed through the MyXform
transformation.

e The process element has its name passed through the _hex_
transformation.

Chapter 2

Update the Modeler Script

To be able to use your new transform, you need to create a new script that can
invoke the OVBPI Modeler and include your name generator class on the
classpath.

Rather than edit the current script that invokes the OVBPI Modeler you
probably should create a copy and make your changes in the copy.

These are the steps you need to carry out:
1. Change to the directory: OVBPI-install-dir\bin
2. Make a copy of the file: biamodeler.bat
Call this copy: mybiamodeler.bat
3. Inthe mybiamodeler.bat script, locate the line:

set NAMEGENERATORCLASS=
com.hp.ov.bia.model.repository.api.utils.bpel .NameGenerator

(all on one line)

4. Edit this line to set NAMEGENERATORCLASS to point to your newly
compiled name generator class (MyNameGenerator.class).

For example:

set NAMEGENERATORCLASS=com.customer .bpel .MyNameGenerator

5. Now add this class (MyNameGenerator) to the classpath.

Locate the lines that set the CLASSPATH variable, and then add your class
to the classpath.

For example:

set CLASSPATH=%CLASSPATHS%;C:\ovbpi\manuals\bpel-tg\sols\src

The OVBPI Modeler 47

48

Now run the mybiamodeler.bat script.
The OVBPI modeler starts up.

Import a BPEL file

— File->Import Definition...

— Select the name generator file that makes use of your new MyXform
transform.

— Import your BPEL process

Your new transformations are applied to the incoming BPEL.

Chapter 2

3 BPEL Element Mappings

This chapter shows how each BPEL XML element is mapped to a
corresponding OVBPI node, or nodes.

This chapter looks at each BPEL element and provides the following
information:

e The general format of the XML for the BPEL element.

e An indication of which attributes within the BPEL element XML are
handled by the OVBPI BPEL Importer.

e The resultant OVBPI node structure.

e Details of how the OVBPI node names are derived.

49

50

Formatting Conventions

Here are the convention used throughout this chapter.

Within the BPEL XML listings:

Attributes shown in bold type are handled by the BPEL Importer.
All non-bold attributes are ignored.

The token activity is used to represent a nested element that may
correspond to more OVBPI nodes. This nested element can be any one of
the elements <assign>, <compensate>, <empty>, <flow>, <invoke>,
<pick>, <receive>, <reply>, <scope>, <sequence>, <switch>, <terminate>,
<throw>, <wait>, <while>.

To save space, wherever you see the token source this refers to the
element definition:

<source linkName="ncname" transitionCondition="bool-expr"?/>
and wherever you see the token target this refers to the element
definition:

<target linkName="ncname" />

Some attributes are optional within BPEL XML and these are shown with
a trailing ? character.

Some attributes can appear more than once. This is indicated by a trailing
+ or * character, where:

— + indicates one or more occurrences.

— * indicates zero or more occurrences.

Within the diagrams that show the resultant OVBPI node structure:

The “cloud” image is used to indicate any nested activities.

Chapter 3

process

The BPEL XML

<process
name="ncname"
targetNamespace="uri"
abstractProcessProfile="anyURI"?
queryLanguage="anyURI"?
expressionLanguage="anyURI"?
suppressJoinFailure="yes |no"?
enableInstanceCompensation="yes|no"
abstractProcess="yes|no"?
xmlns="http://schemas.xmlsoap.org/ws/2004/03 /business-process/"
xmlns="http://schemas.xmlsoap.org/ws/2003/03 /business-process/">
<extensions>?
<extension
namespace="anyURI"
mustUnderstand="yes|no"/>*
</extensions>
<import namespace="uri" location="uri" importType="uri"/>*
<partnerLinks>?
<partnerLink
name="ncname"
partnerLinkType="gname"
myRole="ncname" ?
partnerRole="ncname" ?>+
</partnerLink>
</partnerLinks>
<partners>?
<partner name="ncname">+
<partnerLink name="ncname"/>+
</partner>+
</partners>
<variables>?
<variable
name="ncname"
messageType="gname" ?
type="gname"?
element="gname"?/>+
</variables>
<correlationSets>?
<correlationSet
name="ncname"
properties="gname-list"/>+
</correlationSets>
<faultHandlers>?

BPEL Element Mappings

52

<catch
faultName="gname"?
faultVariable="ncname"?
faultMessageType="gname" ?
faultElement="gname" ?>*
activity
</catch>
<catchAll>?
activity
</catchAll>
</faultHandlers>
<compensationHandler>"?
activity
</compensationHandler>
<eventHandlers>?
<onMessage
partnerLink="ncname"
portType="qgname"?
operation="ncname"
variable="ncname">*

<correlations>?
<correlation
set="ncname"
initiate="yes|no"?/>+
</correlations>
activity
</onMessage>
<onAlarm
for="duration-expr"?
until="deadline-expr"?>*
activity
</onAlarm>
<onEvent
partnerLink="ncname"
portType="gname"?
operation="ncname"
messageType="gname"
variable="ncname"
messageExchange="ncname"? >*
<correlationSets>?
<correlationSet
name="ncname"
properties="gname-list"/>+
</correlationSets>
<correlations>?
<correlation
set="ncname"
initiate="yes|join|no"?/>+
</correlations>

Chapter 3

scope-activity
</onEvent>
<onAlarm>*

(

(<for expressionlanguage="anyURI"?>duration-expr</for> |
<until expressionlLanguage="anyURI"?>deadline-expr</until>)
<repeatEvery expressionLanguage="anyURI"?>
duration-expr
</repeatEvery>?
)
<repeatEvery expressionLanguage="anyURI"?>
duration-expr
</repeatEvery>
scope-activity
</onAlarm>
</eventHandlers>
activity
</process>

BPEL Element Mappings

53

54

OVBPI Node Structure

Stark of -,

"Exemplar
Process"

v
@
End af

"Exemplar
Process"

.1*5_;

Figure 9 Resultant process Node Structure

m| e
Catch/Faultl Cakch all Compensation On alarm
i i handler 2n message "duration-expr"
1

i i
I I "partnerLink’-"operation"
| |
| |
| |

v v v

v
o o - o

End catch End catch all End End on alarm
fFaultl compensation
handler

If there are no fault or compensation handlers defined within the BPEL then
these branches are simply not created in the resultant OVBPI flow definition.

If there is more than one activity where only one is expected, the OVBPI
BPEL Importer issues a warning and continues to import the process anyway.
All activities are included in the resultant flow diagram and they are included
in parallel, but only one of them is then properly linked to following nodes.

If no activities are found when one or more are expected the OVBPI BPEL
Importer issues a warning, and proceeds to attach any following nodes to the
start junction node.

Chapter 3

The OVBPI BPEL Importer issues a message to say whether the process is
executable or abstract. This is derived from the abstractProcess attribute.

The following table shows the identifier used by the name generator to name
each node, the format of the default name assigned to each node, and the
number of occurrences of each node that may be created:

Name Identifier Default Name Occurrence
process.start Start of "{@name}" 1
process.end [End of "{@name}" 1
catch.start Catch {@faultName} 0 or more
catch.end [End catch {@faultName} 0 or more
catchall.start Catch all 0 or more
catchAll.end [End catch all Oorl
compensationHandler.start Compensation handler Oorl
compensationHandler.end [End compensation Oor1l
handler
onMessage.node On message 0 or more
"{@partnerLink}"-"{@oper
ation}"
onAlarm.for.start On alarm "{@for}" 0 or more
onAlarm.until.start On alarm "{@until}"
onAlarm.neither.start On alarm "no-condition"
onAlarm.end [End on alarm 0 or more

The above table assumes that you are using the name generator file
FullNames.properties.

BPEL Element Mappings 55

assign

The BPEL XML

<assign
validate="yes|no"?
name="ncname" ?
suppressJoinFailure="yes |no"?>
source+
target+
(<copy>
from-spec
to-spec
</copy> |
<extensibleAssign>
...assign-element-of-other-namespace. ..
</extensibleAssign>) +
</assign>

OVBPI Node Structure

Figure 10 Resultant assign Node Structure

narme
[assign)
I

Y

The following table shows the identifier used by the name generator to name
the node, the format of the default name assigned to the node, and the number
of occurrences of the node that may be created:

Name Identifier Default Name Occurrence

assign.node (@name} (assign) 1

56 Chapter 3

The above table assumes that you are using the name generator file
FullNames.properties.

BPEL Element Mappings

57

compensate

The BPEL XML

<compensate

scope="ncname"?

name="ncname" ?
suppressJoinFailure="yes |no"?>
source+

target+

</compensate>

58

OVBPI Node Structure

Figure 11 Resultant compensate Node Structure
|

v
o

-
compensate
SCOPE SCOPE

Y

The following table shows the identifier used by the name generator to name
the node, the format of the default name assigned to the node, and the number
of occurrences of the node that may be created:

Name Identifier Default Name Occurrence

compensate.node "{@name}" compensate 1
scope {@scope}

The above table assumes that you are using the name generator file
FullNames.properties.

Chapter 3

empty

The BPEL XML

<empty
name="ncname" ?
suppressJoinFailure="yes|no"?>
source+
target+

</empty>

OVBPI Node Structure

Figure 12 Resultant empty Node Structure

narme
l{emFtyj
I
I

\Y

The following table shows the identifier used by the name generator to name
the node, the format of the default name assigned to the node, and the number
of occurrences of the node that may be created:

Name Identifier Default Name Occurrence

empty.node (@name} (empty) 1

The above table assumes that you are using the name generator file
FullNames.properties.

BPEL Element Mappings 59

flow

The BPEL XML

<flow
name="ncname" ?
suppressJoinFailure="yes|no"?>
source+
target+
<links>?
<link name="ncname"/>+
</links>
activity+
</£low>

OVBPI Node Structure

Figure 13 Resultant flow Node Structure
|
I
I

3
Stark of Flow
"name"

by

W 4
A} 4
\\ ,u"l
.

End aof Flow
"name"
]

Vv

60

Chapter 3

The following table shows the identifier used by the name generator to name

each node, the format of the default name assigned to each node, and the

number of occurrences of each node that may be created:

Name Identifier Default Name Occurrence
flow.start Start of flow "{@name}" 1
flow.end IEnd of flow "{@name}" 1

The above table assumes that you are using the name generator file

FullNames.properties.

BPEL Element Mappings

61

invoke

The BPEL XML

<invoke

</

62

partnerLink="ncname"
portType="gname"?
operation-="ncname"
inputVariable="ncname"?
outputVariable="ncname"?
name="ncname" ?
suppressJoinFailure="yes|no"?>
source+
target+
<correlations>?
<correlation
set="ncname"
initiate="yes|join|no"?
pattern="in|out|out-in"/>+
</correlations>
<catch
faultName="gname" ?
faultvVariable="ncname"?
faultMessageType="gname" ?>*
activity
</catch>
<catchall>?
activity
</catchall>
<compensationHandler>"?
activity
</compensationHandler>

<toPart part="ncname" fromVariable="ncname"/>*
<fromPart part="ncname" toVariable="ncname"/>*

invoke>

Chapter 3

OVBPI Node Structure

Figure 14 Resultant invoke Node Structure

BPEL Element Mappings

"name" -

partnerLink - \\\
operation

(invoke)
]

Caktch
Faulthlame

v
o

End catch
Faulthlame

Cakeh all

End catch &l

““ﬁ_..
Compensation

handler

Y
o

End
compensakion
handler

63

64

The following table shows the identifier used by the name generator to name
each node, the format of the default name assigned to each node, and the
number of occurrences of each node that may be created:

handler

Name Identifier Default Name Occurrence
invoke.node "{@name}" - 1
(@partnerLink} -
(@operation} (invoke)
catch.start Catch {@faultName} 0 or more
catch.end [End catch {@faultName} 0 or more
catchall.start Catch all Oorl
catchAll.end [End catch all Oorl
compensationHandler.start (Compensation handler Oorl
compensationHandler.end [End compensation Oor1l

The above table assumes that you are using the name generator file

FullNames.properties.

Chapter 3

pick

The BPEL XML

<pick
createInstance="yes|no"?
name="ncname" ?
suppressJoinFailure="yes |no"?>
source+
target+
<onMessage
partnerLink="ncname"
portType="gname"?
operation="ncname"
variable="ncname"?
messageExchange="ncname"? >+
<correlations>?
<correlation set="ncname" initiate="yes|join|no"?/>+
</correlations>
<fromPart part="ncname" toVariable="ncname"/>*
activity
</onMessage>
<onAlarm (for="duration-expr" | until="deadline-expr") >*
activity
</onAlarm>
<onAlarm>*
(<for expressionLanguage="anyURI"?>duration-expr</for> |
<until expressionLanguage="anyURI"?>deadline-expr</until>)
activity
</onAlarm>
</pick>

BPEL Element Mappings

65

66

OVBPI Node Structure

Figure 15 Resultant pick Node Structure

v
]

Skart pick
"narne"

s %
F L}

)
A
A
:Q.
On message O £
"duration-expr"
"partnerLink’-"operation” B

7 ¢

\ End on alarm
L
1 4

!
End pick.
"name"
|
I
|
I

v

If the createlInstance attribute in the pick element is set to yes then the
onMessage node(s) are start nodes, otherwise they are activity nodes.

Chapter 3

The following table shows the identifier used by the name generator to name
each node, the format of the default name assigned to each node, and the
number of occurrences of each node that may be created:

Name Identifier Default Name Occurrence
pick.start Start pick "{@name}" 1
pick.end [End pick "{@name}" 1
onMessage.node On message 0 or more
"{@partnerLink}"-"{@oper
ation}"
onAlarm.for.start On alarm "{@for}" 0 or more
onAlarm.until.start On alarm "{@until}"
onAlarm.neither.start On alarm "no-condition"
onAlarm.end [End on alarm 0 or more

The above table assumes that you are using the name generator file
FullNames.properties.

BPEL Element Mappings 67

receive

The BPEL XML

<receive

partnerLink="ncname"
portType="gname"?
operation-="ncname"
variable="ncname"?
createInstance="yes|no"?
messagekExchange="ncname" ?
name="ncname"?
suppressJoinFailure="yes|no"?>
source+
target+
<correlations>?
<correlation
set="ncname"
initiate="yes|join|no"?/>+
</correlations>
<fromPart
part="ncname"
tovVariable="ncname" />*

</receive>

68

OVBPI Node Structure

Figure 16 Resultant receive Node Structure

"name" -
partnerLink -
opetation
(receive)

\Y

This results in a single activity node being created, unless the
createInstance attribute is set to yes, in which case a start node is created.

Chapter 3

The following table shows the identifier used by the name generator to name
the node, the format of the default name assigned to the node, and the number

of occurrences of the node that may be created:

Name Identifier Default Name Occurrence
receive.node "{@name}" - 1
(@partnerLink} -
{@operation) (receive)

The above table assumes that you are using the name generator file

FullNames.properties.

BPEL Element Mappings

69

reply

The BPEL XML

<reply

partnerLink="ncname"
portType="gname"?
operation-="ncname"
variable="ncname"?
faultName="gname" ?
messagekExchange="ncname" ?
name="ncname"?
suppressJoinFailure="yes|no"?>
source+
target+
<correlations>?
<correlation
set="ncname"
initiate="yes|join|no"?/>+
</correlations>
<toPart
part="ncname"
fromvVariable="ncname" />*

</reply>

70

OVBPI Node Structure

Figure 17 Resultant reply Node Structure

Y
]

"narne" -
partnerLink: -
opetation
(rePIy}

I

Y

Chapter 3

The following table shows the identifier used by the name generator to name
the node, the format of the default name assigned to the node, and the number
of occurrences of the node that may be created:

Name Identifier Default Name Occurrence
reply.node "{@name}" - 1
(@partnerLink} -
(@operation} (reply)

The above table assumes that you are using the name generator file
FullNames.properties.

BPEL Element Mappings 71

scope

The BPEL XML

<scope

variableAccessSerializable="yes|no"
isolated="yes|no"
name="ncname" ?
suppressJoinFailure="yes|no"?>
source+
target+
<partnerLinks>?

see process on page 51 for syntax
</partnerLinks>
<variableg>?

see process on page 51 for syntax
</variables>
<correlationSets>?

see process on page 51 for syntax
</correlationSets>
<faultHandlers>?

... see process on page 51 for syntax
</faultHandlers>
<compensationHandler>"?

see process on page 51 for syntax
</compensationHandler>
<terminationHandler>?

</terminationHandler>
<eventHandlers>?
see process on page 51 for syntax
</eventHandlers>
activity
</scope>

72 Chapter 3

OVBPI Node Structure

Figure 18 Resultant scope Node Structure

Catch/Faulkl Catch all Compensation On alarm

1 i handler o On_mel,lsEage _ "duration-expr"
! partmerLink-" operation’ I

I i I

I 1 I

1 i 1

P 0 9 O O

v v v

End catch End catch all End End on alarm
fFault1 compensation
handler

v
Q

End scope
“"name"

v

The following table shows the identifier used by the name generator to name
each node, the format of the default name assigned to each node, and the
number of occurrences of each node that may be created:

Name Identifier Default Name Occurrence
scope.start Start scope "{@name}" 1

scope.end [End scope "{@name}" 1

catch.start Catch {@faultName} 0 or more

BPEL Element Mappings 73

74

Name Identifier Default Name Occurrence
catch.end [End catch {@faultName} 0 or more
catchall.start Catch all Oor1l
catchAll.end [End catch all Oor1l
compensationHandler.start |(Compensation handler Oor1l
compensationHandler.end [End compensation Oor1l
handler
onMessage.node On message 0 or more
"{@partnerLink}"-"{@oper
ation}"
onAlarm.for.start On alarm "{@for}" 0 or more
onAlarm.until.start On alarm "{@until}"
onAlarm.neither.start On alarm "no-condition"
onAlarm.end [End on alarm 0 or more

The above table assumes that you are using the name generator file

FullNames.properties.

Chapter 3

sequence

The BPEL XML

<sequence
name="ncname" ?
suppressJoinFailure="yes|no"?>
source+
target+
activity+

</sequence>

OVBPI Node Structure

Figure 19 Resultant sequence Node Structure

BPEL Element Mappings

Y
L
Skark

sEqUEnCE

"name”

I

I

I

I

I

I

I

I

End
seqUence
"narne"

v

75

76

The following table shows the identifier used by the name generator to name
each node, the format of the default name assigned to each node, and the
number of occurrences of each node that may be created:

Name Identifier Default Name Occurrence
sequence.start Start sequence "{@name}" (1
sequence.end [End sequence "{@name}" |1

The above table assumes that you are using the name generator file

FullNames.properties.

Chapter 3

switch

The BPEL XML

<switch
name="ncname" ?
suppressJoinFailure="yes|no"?>
source+
target+
<case
condition="bool-expr">+
activity
</case>
<otherwise>?
activity
</otherwise>
</switch>

BPEL Element Mappings

77

OVBPI Node Structure

Figure 20 Resultant switch Node Structure

;
o

Start switch
"name"

Case Cthetwise
bool<expr :
i i

I I

I I

| |

y y
o &
End case End

baoal-expr atherwise
\ r

End s.witch
"name"

v

The following table shows the identifier used by the name generator to name
each node, the format of the default name assigned to each node, and the
number of occurrences of each node that may be created:

Name Identifier Default Name Occurrence
switch.start Start switch "{@name}" 1

switch.end [End switch "{@name}" 1

case.start Case {@condition} 1 or more

78

Chapter 3

Name Identifier Default Name Occurrence
case.end [End case {@condition} 1 or more
otherwise.start Otherwise Oor1l
otherwise.end [End otherwise Oor1l

The above table assumes that you are using the name generator file

FullNames.properties.

BPEL Element Mappings

79

terminate

The BPEL XML

<terminate
name="ncname" ?
suppressJoinFailure="yes|no"?>
source+
target+

</terminate>

OVBPI Node Structure

Figure 21 Resultant terminate Node Structure
|

v
i

"name”
(terminate)
I

v

The following table shows the identifier used by the name generator to name
the node, the format of the default name assigned to the node, and the number
of occurrences of the node that may be created:

Name Identifier Default Name Occurrence

terminate.node "{@name}" (terminate) 1

The above table assumes that you are using the name generator file
FullNames.properties.

80 Chapter 3

throw

The BPEL XML

<throw
faultName="gname"
faultVariable="ncname"?
name="ncname" ?
suppressJoinFailure="yes|no"?>
source+
target+

</throw>

OVBPI Node Structure

Figure 22 Resultant throw Node Structure

Vi
]

E—
"narne" -
Faulkianne

{thro)

Y

The following table shows the identifier used by the name generator to name
the node, the format of the default name assigned to the node, and the number

of occurrences of the node that may be created:

Name Identifier Default Name Occurrence
throw.node "{@name}" - {@faultName} (1
(throw)

The above table assumes that you are using the name generator file

FullNames.properties.

BPEL Element Mappings

81

wait

The BPEL XML

<wait

for="duration-expr"

until="deadline-expr"
name="ncname"?

suppressJoinFailure="yes|no"?>

source+

target+

(<for expressionlLanguage="anyURI"?>duration-expr</for> |
<until expressionLanguage="anyURI"?>deadline-expr</until>)

</wait>

82

OVBPI Node Structure

Figure 23 Resultant wait Node Structure

Y
]

"name" wait
unikil
deadline-expr

Y

The following table shows the identifier used by the name generator to name
the node, the format of the default name assigned to the node, and the number
of occurrences of the node that may be created:

Name Identifier Default Name Occurrence
wait.for.node "{@name}" wait for {@for} 1
wait.until.node "{@name}" wait until {@until}
wait.neither.node "{@name}" (wait)

Chapter 3

The above table assumes that you are using the name generator file
FullNames.properties.

BPEL Element Mappings

83

while

The BPEL XML

<while
name="ncname" ?
condition="bool-expr"
suppressJoinFailure="yes |no"?>
source+
target+
<condition expressionLanguage="anyURI"?>

. bool-expr ...

</condition>
activity

</while>

OVBPI Node Structure

Figure 24 Resultant while Node Structure

-
-

while i’

\ !
LY 4

Q

End of while:

-

v

84

Chapter 3

The following table shows the identifier used by the name generator to name

each node, the format of the default name assigned to each node, and the

number of occurrences of each node that may be created:

Name Identifier Default Name Occurrence

while.start Start of while "{@name}" (1
({@condition})

while.end [End of while 1

while.loop Loop back to while 1

The above table assumes that you are using the name generator file

FullNames.properties.

BPEL Element Mappings

85

86

Chapter 3

87

88

Chapter

	Integration Training Guide - Importing BPEL
	Contents
	1 Introduction to BPEL
	BPEL Basics
	A BPEL Business Process
	XML Elements
	Partner Links

	The Insurance Selection Process
	BPEL Process Engines/Development Tools
	Exporting BPEL

	2 The OVBPI Modeler
	Importing BPEL
	Junction Nodes
	Closing Junction Nodes
	Start and End Nodes
	No Partner Links
	Node Names

	Cleaning up the Flow Diagram
	Start and End Nodes
	Junction Nodes
	Activity Nodes
	Is the Flow Correct?
	A Final Flow Diagram
	What Next?

	The BPEL Import Wizard
	Replace Existing Flow Definition
	Overall Size of the Flow Canvas

	Name Generation
	File Location
	File Format
	Syntax
	Example 1
	Example 2
	Example 3

	Built-in Transformations (_hex_)

	Custom Transformations
	Transformer Code
	Compiling the Code
	The Name Generator Properties File
	Update the Modeler Script

	3 BPEL Element Mappings
	Formatting Conventions
	process
	The BPEL XML
	OVBPI Node Structure

	assign
	The BPEL XML
	OVBPI Node Structure

	compensate
	The BPEL XML
	OVBPI Node Structure

	empty
	The BPEL XML
	OVBPI Node Structure

	flow
	The BPEL XML
	OVBPI Node Structure

	invoke
	The BPEL XML
	OVBPI Node Structure

	pick
	The BPEL XML
	OVBPI Node Structure

	receive
	The BPEL XML
	OVBPI Node Structure

	reply
	The BPEL XML
	OVBPI Node Structure

	scope
	The BPEL XML
	OVBPI Node Structure

	sequence
	The BPEL XML
	OVBPI Node Structure

	switch
	The BPEL XML
	OVBPI Node Structure

	terminate
	The BPEL XML
	OVBPI Node Structure

	throw
	The BPEL XML
	OVBPI Node Structure

	wait
	The BPEL XML
	OVBPI Node Structure

	while
	The BPEL XML
	OVBPI Node Structure

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e006700730020007700680065006e0020007300750062006d0069007400740069006e006700200074006f002000410053004d002000610074000d004800650077006c006500740074002d005000610063006b006100720064002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

