
HP Best Practices
Software Version: 3.00

Service Modeling

Document Release Date: January 2015



Legal Notices

Warranty
The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software,
Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial license.

Copyright Notice
© Copyright 2005 - 2015 Hewlett-Packard Development Company, L.P.

Trademark Notices
Adobe® is a trademark of Adobe Systems Incorporated.

Microsoft® andWindows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of TheOpenGroup.

Documentation Updates
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.
l Document Release Date, which changes each time the document is updated.
l Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using themost recent edition of a document, go to: http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign in. To register for an HP Passport ID, go to: http://h20229.www2.hp.com/passport-registration.html

Or click theNew users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support service. Contact your HP sales representative for details.

Support
Visit the HP Software Support Online web site at: http://www.hp.com/go/hpsoftwaresupport

This web site provides contact information and details about the products, services, and support that HP Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and efficient way to access interactive technical support tools needed tomanage your
business. As a valued support customer, you can benefit by using the support web site to:

l Search for knowledge documents of interest
l Submit and track support cases and enhancement requests
l Download software patches
l Manage support contracts
l Look up HP support contacts
l Review information about available services
l Enter into discussions with other software customers
l Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a support contract. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

To findmore information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

ServiceModeling

HP Best Practices (3.00) Page 2 of 113



HP Software Solutions Now accesses the HPSW Solution and Integration Portal Web site. This site enables you to explore HP Product Solutions tomeet your business
needs, includes a full list of Integrations between HP Products, as well as a listing of ITIL Processes. The URL for this Web site is
http://h20230.www2.hp.com/sc/solutions/index.jsp

ServiceModeling

HP Best Practices (3.00) Page 3 of 113



Contents

Welcome to This Guide 7

How This Guide is Organized 7

Prerequisites 8

Who Should Read This Guide 8

Resources 9

Additional Online Resources 9

Glossary 10

Part I: Service Modeling Concepts 12

Chapter 1: ServiceModeling 13
What is a Model? 13
What is a Service? 13
What is a ServiceModel? 14

Overview 14
ServiceModel Example 16
Understanding Service versus Application 17

Class Model 18
Overview 18
Populating the CMS 18
Queries 19
Configuration Item Types 19
Relationships 20
Valid Links 20
Using the Class Model 21
Simplicity, the first best practice 21

Chapter 2: Modeling Use Cases 22
Overview 22
CommonGoals: Key Driver of ServiceModeling 23
Data Quality 24
Non-Discoverable Data in ServiceModels 25
Modeling Use Cases Hierarchy 25
Topology Visualization 26
Impact Analysis: Analytical Modeling 27
ChangeManagement 27

HP Best Practices (3.00) Page 4 of 113



ConfigurationManagement 27
Auditing and Compliance 28
Data Center Transformation 28
Major ServiceModeling Use Cases 29

Closed Loop Incident Process (CLIP) 30
Change Control and ReleaseManagement (CCRM) 32
Business ServiceManagement (BSM) 33
Service Asset and ConfigurationManagement (SACM) 33

Chapter 3: ServiceModeling Approaches 35
Bottom-UpModeling 35
Top-DownModeling 37

Part II: Service Model Development Cycle 39

Chapter 4: ServiceModel Development Cycle 40
Overview 40
Modeling Quick Reference 42

Overview 43
CMS Content 43
ServiceModel Building Blocks 44

Discovery Verification 44
ServiceModel Upper Layers 45
Find Generic n-tier Applications 47
Link Upper and Lower Layers of a ServiceModel 48

Modeling Process 49
Overview 50
Step 1: Use Cases and Research 51
Step 2: Model Top Layers of the Service 51
Step 3: Verify Required CIs and Relationships in the CMS 52
Step 4: Identify Service Entry Points 53
Step 5: Identify Running Software 54
Step 6: Link Software to Communication Endpoints 55
Step 7: Model and View Bottom Layers 56

Overview 56
Creating the Presentation Layers of theModel 57
Creating and Using Templates 57
Ownership versus Dependencies 58

Step 8: Reuse, Maintain and Refine 58
OrganizingModels 59
ServiceModeling Challenges 61

ServiceModeling

HP Best Practices (3.00) Page 5 of 113



New versus Existing Services 61
Value Realizationmay be Protracted 62
Expect Ambiguity 62
Expect Discovery Problems 62

Part III: Service Models in UCMDB 63

Chapter 5: Developing ServiceModels in UCMDB 64
Modeling Studio Overview 65
Choosing the Right Model Type 67
Example End State 68
Modeling Studio 69

Overview 69
"Get Related" CIs Tool 69
Reveal Path: IncreaseModeling Efficiency 71
Dynamic Models 76

Queries (TQL) 77
Pattern-based Views 87
Modeling Studio “Models” 89

Model Contents 90
Pattern-basedModels 91
Static Models 93
CI Collections 93
Instance-BasedModels 95
Perspective-based Views 100
Perspectives 103

What is a Perspective? 103
Using Out-of-the-Box Perspectives 105

Templates 106
Overview 106
Template-based Views 110

ServiceModeling

HP Best Practices (3.00) Page 6 of 113



Welcome to This Guide
Welcome to the HP Service Modeling Best Practices Guide. This guide provides the guidelines and
recommendations for IT servicemodeling design, process, and practice. Most modeling practices are
product-independent.

This chapter includes:

How This Guide is Organized 7

Prerequisites 8

Who Should Read This Guide 8

Resources 9

Additional Online Resources 9

Glossary 10

How This Guide is Organized
This guide is structured in three parts—from general to specific.

Part I "Service Modeling Concepts"

Part I describes why servicemodels are created, explains use cases, and describes how models are
consumed.

Part II "Service Model Development Cycle"

Part II explains in detail how to design and implement consumer-oriented servicemodels that are
manageable—describing how to transform use cases and conceptual models into logical, then realized
models.

Quick Reference Guide: If you are already experienced with servicemodeling concepts and
HP Universal CMDB (UCMDB), Part II contains a Quick ReferenceGuide, tool kit, and quick steps for
creating servicemodels. This section can be used as a cookbook to accelerate model development.

Part III "Service Models in UCMDB"

Part III is based on HP Universal CMDB (UCMDB) version 10, and takes Advantage, Inc., an example
banking company, through the servicemodeling process. This section explains how to transform a
logical model, use case, and requirements into a functional servicemodel using an industry-leading tool
set.

HP Best Practices (3.00) Page 7 of 113



Prerequisites
Readers may find it helpful to familiarize themselves with:

l Consumer/Owner/Provider (COP)model inCMS Strategy Guide in the CMS Best Practices Library

l Provider Onboarding Guide andConsumer Onboarding Guide in the CMS Best Practices Library

l Universal DataModel (UDM) and Discovery Best Practices from theCMS BP-DataModeling and
CMS BP-Discovery Planning guides in the CMS Best Practices Library

l HP Business ServiceManagement (BSM)modeling best practices document RTSM Best
Practices in the HP Cross-Portfolio Software Best Practices Library

l HP Universal CMDB Modeling Guide in the product documentation

Who Should Read This Guide
This guide is intended for anyone who needs to understand, build, or use servicemodels in an IT
environment. People in the following roles commonly work with servicemodels:

l ConfigurationManagers

l ChangeManagers

l Asset Managers

l Service Desk Managers

l Business owners

l Application owners

l Business Service Architects

l Technical Project Managers

l Technical Consultants

l Content developers

The information in this guidemay duplicate information available in other Best Practices
documentation, but is provided here for convenience.

ServiceModeling
Welcome to This Guide

HP Best Practices (3.00) Page 8 of 113

https://hpln.hp.com/node/1630/attachment
https://hpln.hp.com/node/1630/attachment
https://hpln.hp.com/node/1630/attachment
http://support.openview.hp.com/selfsolve/document/KM00412300/binary/BSM_922_RSTM_BP.pdf
http://support.openview.hp.com/selfsolve/document/KM00412300/binary/BSM_922_RSTM_BP.pdf
https://hpln.hp.com/group/best-practices-hpsw


Resources
l HP Live Network: https://hpln.hp.com/home

l HP Software Cross-Portfolio Best Practices Library: https://hpln.hp.com/page/all-best-practices

l CMS Best Practices Library: https://hpln.hp.com/node/1630/attachment

l BSM Best Practices:
http://support.openview.hp.com/selfsolve/document/KM00412297/binary/BSM_922_
EffectiveModeling_BP.pdf

Additional Online Resources
Troubleshooting & Knowledge Base accesses the Troubleshooting page on the HP Software
Support Web site where you can search the Self-solve knowledge base. ChooseHelp >
Troubleshooting & Knowledge Base. The URL for this Web site is
http://h20230.www2.hp.com/troubleshooting.jsp.

HP Software Support accesses the HP Software Support Web site. This site enables you to browse
the Self-solve knowledge base. You can also post to and search user discussion forums, submit
support requests, download patches and updated documentation, andmore. ChooseHelp >
HP Software Support. The URL for this Web site is www.hp.com/go/hpsoftwaresupport.

Most of the support areas require that you register as an HP Passport user and sign in. Many also
require a support contract.

To findmore information about access levels, go to:
http://h20230.www2.hp.com/new_access_levels.jsp

To register for an HP Passport user ID, go to:
http://h20229.www2.hp.com/passport-registration.html.

HP Software Web site accesses the HP SoftwareWeb site. This site provides you with themost up-
to-date information on HP Software products. This includes new software releases, seminars and trade
shows, customer support, andmore. ChooseHelp > HP Software Web site. The URL for this Web
site is www.hp.com/go/software.

HP Software Solutions Now accesses the HPSW Solution and Integration Portal Web site. This site
enables you to explore HP Product Solutions tomeet your business needs, includes a full list of
Integrations between HP Products, as well as a listing of ITIL Processes. The URL for this Web site is
http://support.openview.hp.com/sc/solutions/index.jsp.

ServiceModeling
Welcome to This Guide

HP Best Practices (3.00) Page 9 of 113

https://hpln.hp.com/home
https://hpln.hp.com/page/all-best-practices
https://hpln.hp.com/node/1630/attachment
http://support.openview.hp.com/selfsolve/document/KM00412297/binary/BSM_922_EffectiveModeling_BP.pdf
http://h20230.www2.hp.com/troubleshooting.jsp
http://www.hp.com/go/hpsoftwaresupport
http://h20230.www2.hp.com/new_access_levels.jsp
http://h20229.www2.hp.com/passport-registration.html
http://www.hp.com/go/software
http://support.openview.hp.com/sc/solutions/index.jsp


Glossary
API Application Programming Interface

BSM HP Business ServiceManagement

CCRM HP Change Control and ReleaseManagement

CI Configuration Item

CLIP HP Closed Loop Incident Process

CMDB ConfigurationManagement Database

CMS ConfigurationManagement System

COP Consumer/Owner/Provider

CSV CommaSeparated Values

DNS Domain Name Server

EA Enterprise Architecture

ERP Enterprise Resource Planning

FSC Forward Schedule of Change

FTP File Transfer Protocol

IDE Integrated Development Environment

IP Internet Protocol

IT Information Technology

ITSM IT ServiceManagement

JDBC Java Database Connectivity

MTBF Mean Time Between Failures

MTTR Mean Time to Recovery

ROI Return on Investment

SACM HP Service Asset and ConfigurationManagement

SAN Storage Area Network

SM HP ServiceManager

ServiceModeling
Welcome to This Guide

HP Best Practices (3.00) Page 10 of 113



SME Subject Matter Expert

SQL Structured Query Language

TCP Transmission Control Protocol

TQL Topology Query Language

UCMDB HP Universal CMDB

UD HP Universal Discovery

UDM Universal DataModel

ServiceModeling
Welcome to This Guide

HP Best Practices (3.00) Page 11 of 113



HP Best Practices (3.00) Page 12 of 113

Part I: Service Modeling Concepts



Chapter 1: Service Modeling
This chapter includes:

What is a Model? 13

What is a Service? 13

What is a ServiceModel? 14

Class Model 18

What is a Model?
A model is a representation of objects/entities that collectively combine to serve a functional purpose to
the IT environment and either directly or indirectly support the business. Models referred to here are
non-physical, existing as data, andmanaged by systems engaged in configuration and IT service
management.

What is a Service?
ITIL V3 defines a service as ameans of delivering value to customers by facilitating outcomes
customers want to achieve without the ownership of specific costs and risks.

A simple way of saying this is: A service is an abstraction of a way of doing something for someone or
something. But there is more to a service than the service itself. The new style of IT seeks to
understand the service in action. When the service is used, we also want to understand what is
happening with the consumer, the consumer experience, and the value generated as a result of the
consumptive act.

By including these aspects of the service in our notion of amodel, we can give IT a better way of
accounting for cost, andmanaging the services as services rather than a collection of parts. In this
document, the definition of a service includes the operation of the service, as well as its interactions
with consumers.

An IT service is a foundational component for business services. Business services may be composed
of multiple IT services. IT services themselves may be composed of other, more granular, IT services.
Fundamentally, a service can also be thought of as a generic name for any functional component, all
the way down to small, discrete services, such as an IP address, a network interface, or a database
table.

HP Best Practices (3.00) Page 13 of 113



What is a Service Model?
This section includes:

Overview 14

ServiceModel Example 16

Understanding Service versus Application 17

Overview

A servicemodel is composed of configuration items (CIs) and relationships. CIs represent the actual
components of the real service. CIs and relationships are contained in the ConfigurationManagement
System (CMS). The CMS is a specific collection of data providers and consumers built around a
ConfigurationManagement Database (CMDB) such as HP Universal CMDB (UCMDB).

The following is a conceptual diagram of a servicemodel showing typical objects and their
relationships:

The servicemodel's purposes are:

l To establish an ideal standard, amodel service, or to allow rapid construction of an uncertain ideal
in order to make an early evaluation of the ideal—for example, to answer the question “Is this really
what we wanted?”

l To present the same view of a service to all involved parties—to facilitate communication between
them and answer the question “Do we agree on exactly what it is?”

l To simulate reality to improve real return on investment (ROI)—aminimal investment in time to
simulate an operation in themodel and observe the results—with the possibility of changing the

ServiceModeling
Chapter 1: ServiceModeling

HP Best Practices (3.00) Page 14 of 113



intended actions prior to actually incurring any risk or cost. To answer what-if questions based on
real-world situations to discover and prevent potential problems before they happen.

l To store information about the reality represented by themodel—aworking or appliedmodel such
as is the case with HP Universal CMDB today.

l To answer any working questions about CIs, relationships, and themodels constructed from them;
such as using the UCMDB Browser as a common tool to consumeCI and topology information
from them. For example, an IT application administrator needs information about a specific
application server in order to plan an upcoming change.

l To help owners and administrators manage the service's components through their life cycles, and
to ensure the service provides the expected value to the organization. The servicemodel is
consumed by various people, processes, and tools in themanagement of IT environments.

A servicemodel calls out, makes conscious, and enables visualization of the discrete components
and, critically, the relationships between them. To this end, the servicemodel is a tool to decompose a
service into its constituent parts in order to manage and depict the service in useful ways. For example,
a business service calledOnline Bankingmay use several IT services, such as Bill Pay, Account
Management, Money Transfer, Stock Quotes, and Live Chat. Each of these IT services is, in turn,
composed of software programs that run on hardware and communicate with each other, store data,
and so on.

ServiceModeling
Chapter 1: ServiceModeling

HP Best Practices (3.00) Page 15 of 113



Service Model Example

Everything just described works in combination to create value—to provide a service. These objects
and relationships can be expressed as a topology. The following diagram is a high-level example of a
servicemodel namedSharepoint, a common business application that is simple enough to be readily
understood, and complex enough to demonstrate useful servicemodeling techniques. The high-level
servicemodel for a working Sharepoint system is depicted below. The diagram is visualized
topologically and is grouped by CI type.

Note how the business serviceSharepoint is composed of business and infrastructure layers
consisting of multiple CI types and relationships. This service will be the focus of our running example
with HP’s example company, Advantage, Inc.

ServiceModeling
Chapter 1: ServiceModeling

HP Best Practices (3.00) Page 16 of 113



Understanding Service versus Application

Even though theSharepointCI type is BusinessApplication, Sharepoint can still be called a service.
Either hierarchy works. Models used for different purposes may have different starting points, such as
BusinessService, BusinessApplication, both—or something else. Part of the best practices is not to
prescribe a rigid structure, but to learn how to find what structure works for a particular IT environment,
based on size, needs, and limitations. Service is generally considered a higher-level entity than
Application, but in isolation, the definitions of the two terms may blur. Service is generally a business-
facing entity, seeking to establish the presence and identity of the service, whereas Application is a
technology-facing entity, seeking to describe the service components.

In this example, the Sharepoint application can be understood in some detail at a glance:

l Sharepoint is a business application and is linked to the rest of the infrastructure by a URI endpoint.
Since this is in fact the sameway a consumer would access the service, this CI is always
guaranteed to exist. This is why a communication endpoint is the best practice to link the upper and
lower layers of a servicemodel.

l Sharepoint consists of several application and infrastructure layers. The presentation, application,
and database layers may easily be seen. The view of this model is grouped by CI type, allowing the
relationships to bemore restrained and letting the focus rest on the types of CIs that form this
application.

This servicemodel is useful for someone who needs to understand the service at a high level. More
details may be needed about themodel in order to answermore detailed questions. The servicemodel
may be extended with additional CIs and relationships depending on the consumer and use case
requirements.

HP Universal Discovery does not discoverBusinessApplication orBusinessServiceCI types.

ServiceModeling
Chapter 1: ServiceModeling

HP Best Practices (3.00) Page 17 of 113



Class Model
This section includes:

Overview 18

Populating the CMS 18

Queries 19

Configuration Item Types 19

Relationships 20

Valid Links 20

Using the Class Model 21

Simplicity, the first best practice 21

Overview

The class model is themeta-language of the servicemodel and is a fundamental part of the CMS. This
class model is the data dictionary of all the types of objects, their attributes, and relationships to other
objects that are considered valid in the CMS. Each instance of an object in the CMS must be of a valid
CI or relationship type. Furthermore, relationships must make sense with regard to the two CIs on
either end. A relationship cannot go between any two CIs. The link must be a valid link as defined by
the class model. As a best practice, research and understand the class model, including relationships
and valid links, before getting far into servicemodeling.

Populating the CMS

All the object types in servicemodels are based on the class model. By instantiating CIs and
relationships, the CMS is populated. Populationmay occur in many ways, and is beyond the scope of
this document, other than to say the need for additional discovery may be revealed only after the
modeling process has started. As a best practice, discovery should be a continuous process. If
possible, do not rely on a single discovery to create servicemodels since theremay be no easy way to
addmissing datamanually. From a servicemodeling perspective, any population strategy must
account for all the objects necessary to fulfill the use case.

ServiceModeling
Chapter 1: ServiceModeling

HP Best Practices (3.00) Page 18 of 113



Queries

Queries extract subsets of data from the CMS. Queries are the basis for servicemodels. Queries can
retrieve only the objects belonging to a single service. In UCMDB, queries are implemented in a visual
modeling paradigm called topology query language (TQL). TQL and query can and are used
interchangeably for the remainder of this document. TQLs consist of a set of CI types, relationships,
and other configuration data which can dynamically and selectively retrieve the actual CIs and
relationships—for example, a TQL tomodel the upper layers of the Sharepoint service.

TQLs are powerful and can be used inmany ways. It is possible to control the CI types, relationships,
conditions for matching, and complex expressions to include or exclude exactly what results. For more
information on TQLs, refer to the UCMDB product documentation on the HP Software Product Manuals
Web site. A UCMDB user interface online search for TQLwill provide direct links to the relevant
document sections.

Configuration Item Types

Configuration Item (CI) types and relationships commonly used in servicemodels include:

l Node. represents device types, such as a computer or network device

l Computer. a sub-type of Node that is not a network device

Sub-types such asWindows, UNIX, Router, andPrinter each carry device-specific attributes
relevant to that platform or hardware.

l IpAddress. an IP address

l RunningSoftware. represents the specific application instances running the service—for example,
a specific instance of aWebserver

Sub-types of RunningSoftware includeApplicationServer, Database,WebServer, and
MessageQueueServer.

l CommunicationEndpoint. TCP connection from one instance of running software to another and
linked by a dependency relationship

ServiceModeling
Chapter 1: ServiceModeling

HP Best Practices (3.00) Page 19 of 113

http://support.openview.hp.com/selfsolve/manuals


Relationships

Relationships, or links, exist between exactly two CIs. A relationship must always have a start and
endCI. Below are some of the common relationships used in servicemodels:

l Dependency. a relationship representing one entity’s reliance on another for operation

Dependency relationships are used by impact analysis to show critical reliance between CIs, but to
indicate that the CIs are separate entities—for example, one server may depend on another server,
but the two are physically separate.

l Containment. a relationship representing a logical entity contained within or as an aspect of
another CI—for example, the network card which has been assigned the IP

Containment is used to indicatemore than dependency, but encapsulation—for example, a network
interface is contained in a server.

To illustrate the differences, if a server is destroyed in fire, so are its interfaces. Therefore, the
interfaces are contained. This does not necessarily hold true for two dependent servers. One server
may be in a different location, and if it is destroyed, it does not necessarily follow that the other server is
also destroyed. Therefore, the relationship type is dependency.

These examples andmore of the class model will be used throughout this document. For more
information, see the UCMDB product documentation and the DataModeling Guide in the CMS Best
Practices Library (https://hpln.hp.com/node/25/otherfiles).

Valid Links

The Class Model contains rules for relationships calledValid Links. Valid Links define whether a given
relationship typemay be used between two CI types.

In other words, youmay not use relationship types arbitrarily. They must make sense. For example, it
makes sense for aComputerCI type to have a relationship with a diskCI type. The computer
contains the disk. Contains is a Valid Link from computer to disk.

An example of a link that would not make sense in a hypothetical model of reality is a computer
containing a data center. This does not make sense. The relationship is the other way around. In
addition, the data center would not fit in the computer. So containswould not be a valid link between
those two CI types in that model.

Computer andDatacenter are an obvious example of why there is not a valid link between those two
CI types. However, relationships in IT models are not always as intuitive. Therefore, it is necessary to
have a set of rules that enforce the valid links of the reality of the data center model in UCMDB.

ServiceModeling
Chapter 1: ServiceModeling

HP Best Practices (3.00) Page 20 of 113

https://hpln.hp.com/node/25/otherfiles
https://hpln.hp.com/node/25/otherfiles


Using the Class Model

Modeling and using the class model can be intimidating at first. Questions such as "What relationship
do I use?", "How do I know what is there to start with?", "Nothing seems to work, my calculator stays
at zero objects, what do I do?" are common. A few best practices may help:

l Most modeling is done with a small amount of the class model. You will quickly learn which parts
are relevant to you. Refer to "Modeling Quick Reference" on page 42 to see commonly used service
model fragments. Node, Dependency, Containment, RunningSoftware, andCICollection are
some of themost common components used to create servicemodels.

l Reuse out-of-the-box examples

l Keep the size of models small. Smaller models are usually:

n easier to understand

n easier to maintain and debug as they change and grow

n easier to keep focused as themodel changes

l Do not alter the class model itself without help or prior experience.

l Use theGet RelatedCIs tool to navigate around in the CMS without having to build queries or
search in the IT Universe. This will quickly show you what is populated (as well as what is missing)
in the CMS and what you can use in servicemodels.

l The first few successful models can be used as templates. By reusing the parts of the class model
common to your environment and needs, servicemodels can be built much faster.

Simplicity, the first best practice

Good servicemodels allow simple articulation and interpretation of the contents. Despite the initial
apparent complexity, it quickly becomes easy to visually understand which CIs and relationships are
present. It is important for good servicemodels to tell one story, solve one problem, or answer one
question.

Do not overbuild servicemodels. It is easy to overbuild and put things into amodel. It is difficult to take
things out.

ServiceModeling
Chapter 1: ServiceModeling

HP Best Practices (3.00) Page 21 of 113



Chapter 2: Modeling Use Cases
This chapter includes:

Overview 22

CommonGoals: Key Driver of ServiceModeling 23

Data Quality 24

Non-Discoverable Data in ServiceModels 25

Modeling Use Cases Hierarchy 25

Topology Visualization 26

Impact Analysis: Analytical Modeling 27

ChangeManagement 27

ConfigurationManagement 27

Auditing and Compliance 28

Data Center Transformation 28

Major ServiceModeling Use Cases 29

Overview
Both the configurationmanagement system (CMS) and servicemodeling address IT problems of cost,
quality, transparency, operational efficiency, and risk management. Efficient servicemodeling is a key
to realizing themost return on investment (ROI) when implementing IT ServiceManagement.

Servicemodeling is defined here as the activities associated with creating a CMS-based
representation of a business service for the purpose of consumption within and for IT and business
processes.

If created and used properly, servicemodels consumed in a CMS can unlock business value. For
instance:

l Make better decisions with greater visibility into your IT environment

l Enable cloud aware, service-driven IT, including virtual and clustered environments

l Drive information sharing and automation

HP Best Practices (3.00) Page 22 of 113



Core servicemodels are best recognized as tools for:

l Topology visualization of services, applications, and infrastructure

l Topology mapping, as a reference for service owners and administrators

l Impact analysis before, during, and after disruptive operational events

More refined and overarching use cases are constructed from these basic capabilities, such as:

l Closed Loop Incident Process (CLIP) solution that connects event management to incident
management and breaks the silos between these two processes. For more information, see the
HP CLIP Solution Guides v9.30.

l Change Control and ReleaseManagement (CCRM) solution that compares and analyzes service
models. For more information, see theHP CCRM Solution Guides v9.30.

l Service Asset and ConfigurationManagement (SACM) solution that implements the control
function for the service asset life cycle, and builds on the CLIP and CCRM solutions For more
information, refer to theHP SACM Solution Guides v9.30.

l Business ServiceMonitoring (BSM) for service components and endpoints

l Solution Architecture use cases providing continuity throughout the service life cycle

l Auditing use cases, both internal and external

l Security and Risk Mitigation use cases, using the CMS for IT security

CMS value is realized as configuration data and is consumed and used tomake decisions. A key to
efficient and value-generating consumption is the proper use of servicemodels. Servicemodels deliver
the right information to the right consumers at the right time. Servicemodels are driven by and
constructed in the context of consumers and their use cases.

Use cases and process support build on the fundamental CMS capabilities. Models are used for many
purposes. A servicemodel serves as an abstracted representation of an actual service in order to learn,
validate, and forecast useful information about the actual service.

Common Goals: Key Driver of Service Modeling
Despite the potential benefits, implementing servicemodels can be challenging. A populated CMS
must first exist, and this requires some degree of organizational maturity and executional ability. It may
be argued that the organizations least capable of creating servicemodels may be thosemost in need of
them. To hold any expectation of success, concensus and collaboration across the IT
departments/silos is critical. All the department heads and technical influencers in IT should be in
agreement that a common view of services is needed and possible.

The key to getting agreement on common organizational objectives is to agree on a common language
and business context that describes the structure and dependencies between service assets and
services shared by IT silos. This common language, the class model, will not only helpmaintain the

ServiceModeling
Chapter 2: Modeling Use Cases

HP Best Practices (3.00) Page 23 of 113

http://support.openview.hp.com/selfsolve/document/KM00234832
http://support.openview.hp.com/selfsolve/document/KM1413556
http://support.openview.hp.com/selfsolve/document/KM00748981


level of service to which an organizationmay be obligated, but also improve the existing customer
experience and attract further business. A good strategy is to include common goals in the project
charter—such as reducing risk, forecasting capacity, improving support productivity, improving
regulatory compliance, and so on—that are enabled incidentally as services aremodeled for the first
time.

Data Quality
Data quality is imperative to successful servicemodeling. Models created lacking the proper data or
with poor-quality data that is impossible to test are unlikely to deliver value. There aremultiple
approaches to data quality, but an approachmust be adapted and used in any case. Traditionally, HP’s
prescriptivemodel is the Consumer/Owner/Provider paradigm, which calls for processes to ensure
scrutiny of on-boarded data and ensure against provider conflict, data bloat, undirected discovery, and
many other problems associated with CMS population. For more information, refer to theCMS Strategy
Guide in the CMS Best Practices Library.

The keys to data quality are:

l Completeness of relationships between service assets and between various services

l Organization’s understanding for the importance of a service to the business

l Processes in place to filter out bad data, preferably by preventing it from getting into service
models, but in any case, preventing it from getting to the consumer

In the example from the previous section, the Sharepoint servicemay rely on several IT services—
such as authentication services, email services, storage services—all working in harmony to provide
customers with a working service. These services may utilize various service assets—such as
standalone applications, computers and network devices—which house critical information and run
essential processes.

The services themselves are ultimately the end benefactors of well-defined servicemodels. Having a
common view of services could improvemany outcomes.

For example:

l Planning amaintenance period for a poorly performing network device that affects many revenue
generating business services

l Coordinating changes to common infrastructure amongmultiple groups

l Creatingmore accurate charge-back models based on resources utilized by various constituencies

l Identifying services which are at higher risk of change due to poorly designed or implemented
architectures, such as single points of failure or major security vulnerabilities

l Reducing the unplanned down time of the service

ServiceModeling
Chapter 2: Modeling Use Cases

HP Best Practices (3.00) Page 24 of 113

https://hpln.hp.com/node/18174/attachment
https://hpln.hp.com/node/18174/attachment


Non-Discoverable Data in Service Models
First consider the source of CIs and relationships in the CMS:

• Autodiscovery

• Integrations and Federation

• Manual entry

Next consider a servicemodel as layers—an upper and a lower layer. The upper layer is the business
section, and the lower layer is the infrastructure layer. The upper layer CIs are typically
BusinessService orBusinessApplication. An IT organization will usually have a list of application
and/or service names somewhere, even if only on a spreadsheet on the CTO’s laptop. The datamay or
may not be accessible via discovery, andmay need to be enteredmanually, using a tool such as the
HP Universal CMDB (UCMDB) Browser, HP ServiceManager, or an Enterprise Architecture tool.

In the lower layer, some relationships may be difficult to discover, yet may be a key part of a service
model. The relationship may be createdmanually, or advanced discovery techniques may be used to
discover relationships in specific ways—for example, a custom script may be developed to read a
configuration file that is used by an application to create connections.

Most importantly, the knowledge required to connect the upper and lower layers may often be obscure
or tribal, unstructured, or non-electronic (for example, paper) in nature and, as a result, can create
miscommunication between silos when dealing with entities which cross silo boundaries. The best
practices in this document provide a consistent, reliable way to do this in all cases, regardless of the
application role, platform, complexity, or consumer type. Modeling becomes easier by looking at the
service from the consumer’s perspective.

UCMDB offers various methods to easily find this information and rapidly develop this connection
based on discovered data or integrating existing repositories of authorized data.

Modeling Use Cases Hierarchy
Models are fundamentally used for two primary purposes:

l topology visualization

l impact analysis

It is easy to understand how servicemodeling enables these capabilities. All other use cases are based
on these two—adding context, user requirements, and granularity as necessary.

ServiceModeling
Chapter 2: Modeling Use Cases

HP Best Practices (3.00) Page 25 of 113



Buildingmore refined use cases can be thought of as being built on top of more general use cases:

CMS
Capability ITSM Processes Supported Major Use Cases

Topology
Visualization

ConfigurationManagement Dynamic Visual Configuration
Reference Architecture

Topology
Visualization

ConfigurationManagement Service Asset and
ConfigurationManagement
(SACM) Control Function

Topology
Visualization

ConfigurationManagement, Security
Management, Continual Service Improvement,
Service Level Management

Audit and Compliance,
Infrastructure Quality

Topology
Visualization

Event Management, Operations Monitoring Business ServiceManagement
(BSM)

Impact
Analysis

Change Planning Change Control and Release
Management (CCRM)

Impact
Analysis

Change Planning CCRM

Impact
Analysis

Risk Assessment CCRM

Impact
Analysis

Problem Isolation and Notification Closed Loop Incident Process
(CLIP)

Topology Visualization
Topology visualization as a reference diagram was one of the earliest uses for servicemodeling. Think
of service topology visualization as a dynamic version of a static picture of the service. For example,
Microsoft Visio® has traditionally been used to build pictures of services as an architectural and
operational reference. In a CMS, the same service is constructed from discovered and other
authoritative components, and updated as those components and the relationships between them
change.

l Updated information: What does the service look like right now?

l Visualization reference of the service: Is the service correct?

l Validation of the authenticity and authoritativeness of the components that comprise the service

l Ad hoc information about the components in many daily working IT scenarios (UCMDB Browser)

ConfigurationManagement embodies this old use case in a fundamental sense—providing the right
information to the right user at the right time, for everyone, all the time.

ServiceModeling
Chapter 2: Modeling Use Cases

HP Best Practices (3.00) Page 26 of 113



Impact Analysis: Analytical Modeling
Visual topography adds value for human consumption becausemost people think visually. Topology is
also useful for tracing paths from one component to another systematically.

For example:

l Consider the potentially complex compound paths between a problem, the server encountering the
problem, the application running on that server, and the business service that depends on that
application. Easily visualizing these paths is useful for problem isolation, notification, prioritization,
and creating an accurate incident.

l Prior to creating a request for change (RFC), an IT administrator may need to know whomay
potentially be affected if something goes wrong with a change. Part of the change process notifies
all the owners of the potentially impacted services. This provides the context for discussion in
change control meetings.

Change Management
ChangeManagement asks the following questions:

l How do I understand the risk a specific change or set of changes pose tomy most critical IT
services?

l How do I coordinate the right discussions to ensure the changes are implemented correctly?

l How do I coordinate changes between groups?

Servicemodeling impact analysis, as well as topology visualization, are used in ChangeManagement
processes. By tying in the Service Desk and the CMS, you enable the Change Control and Release
Management (CCRM) and Closed Loop Incident Process (CLIP) use cases (discussed in "Major
ServiceModeling Use Cases" on page 29).

Configuration Management
Like the CMS, the ConfigurationManagement process underlies many other ITSM and SACM
processes:

l How do I ensure that I control and track all of the configurations that make up our IT environments?

l How do I provide a common view of services to IT?

l How do the change and releasemanagement processes coordinate complex change activity?

ConfigurationManagement is an underpinning process for servicemodeling because it establishes the
CMS. The CMS is the source and foundation for creating servicemodels.

ServiceModeling
Chapter 2: Modeling Use Cases

HP Best Practices (3.00) Page 27 of 113



ConfigurationManagement may also be responsible for servicemodeling. Therefore, it is also naturally
involved in Continuous Service Improvement and Service Level Management processes, being
well-positioned in IT to provide servicemodeling guidance and assistance, driving IT towards a
common view of services, and the positive outcomes resulting from the giant maturity step forward that
is servicemodeling.

Auditing and Compliance
Auditing and compliance are broad consumers of CMS data, including servicemodels. Auditors may
request topology for audit. Administrators may review models for internal policy and compliance. For
example, critical business services should not rely on a single point of failure or exposemajor security
vulnerabilities. An understanding of IT topologies is necessary in order to find non-compliant topology
such as single points of failure.

Data Center Transformation
In recent years, data center transformations have become consumers of CMS data. Project managers
are asking:

l How do I develop a verifiable, accurate, and comprehensive view of what I have?

l How does it relate in order to effectively executemy data center consolidation?

l What aremy move groups?What must move together?

l What will be impacted if I separate two components of a service?

l How can I comply with themassive reporting effort?

l How can I ensure all services and components are accounted for in the transformation plan?

l What is the business impact of an identified threat and how can I lower the risk to the business?

Cloud-building, virtualization, application rationalization, and similar use cases all involve some type of
transformation. Servicemodels easily represent move groups. If themove groups are created along
application and service boundaries, themove groups becomemodels of the transformed services in the
target environment—a potentially large ROI of time, cost, and risk to build a separate CMS after the
transformation. There is a collection of UCMDB models and views for data center transformations in
the Data Center Transformations Accelerator.

ServiceModeling
Chapter 2: Modeling Use Cases

HP Best Practices (3.00) Page 28 of 113



Major Service Modeling Use Cases
Now that the individual uses for services models are understood, they can be assembled into some
general use cases that apply broadly to most IT organizations.

This section includes:

Closed Loop Incident Process (CLIP) 30

Change Control and ReleaseManagement (CCRM) 32

Business ServiceManagement (BSM) 33

Service Asset and ConfigurationManagement (SACM) 33

ServiceModeling
Chapter 2: Modeling Use Cases

HP Best Practices (3.00) Page 29 of 113



Closed Loop Incident Process (CLIP)

CLIP is the solution that connects event management to incident management and breaks the silos
between these two processes. Servicemodeling increases automation and efficiency, reduces Mean
Time to Recovery (MTTR) and increases Mean Time Between Failures (MTBF). CLIP creates the
common language of CIs and relationships so that the consumer and providers of the service see the
same things.

Customers may implement CLIP from any starting point, provided the technology provides the proper
integrations. A CMS properly enables all the components to exchange CIs and servicemodels and
work together.

CLIP is implemented by exposing servicemodels to all components in the loop. To understand how to
create good servicemodels for CLIP, it is helpful to understand the process flow. For a detailed
explanation of CLIP flows, see theHP CLIP Solution Configuration Guides v9.30.

ServiceModeling
Chapter 2: Modeling Use Cases

HP Best Practices (3.00) Page 30 of 113

http://support.openview.hp.com/selfsolve/document/KM00234832


For event detection and notification, servicemodels can be used for impact analysis and service
impact notification.

For Incident management, subject matter experts (SME)may use servicemodels for topology
visualization and configuration reference (obtaining detailed information about components involved in
the incident). ServiceModels may also be used to determine root cause and isolate the source of other
related problems that may be contributing to the primary incident.

This whole notion of business impact reporting and impact analysis is a strong driver for the CLIP flow.

Usually we notify the SME that investigates the incident, but that is not necessarily the only persona.
There are others that may need to learn about this incident that may consumeCIs related to any
affected services at this point.

Best Practice:Do not build a servicemodel for a consumer that does not need one. If a user only
needs a list, or access to a few attributes of a few CI types, it may bemore efficient for them to use the
UCMDB Browser rather than a servicemodel.

For downtimemanagement, servicemodels can be used in two ways, depending on the timing and how
critical the required changes are.

l For changes that can or must take some time, starting from an approved change request, a window
is assigned to implement the change.

For example, an integration with BSM communicates the downtime window so BSMwill not create
alerts during the downtime. A list of CIs is usually communicated, but depending onmonitoring
setup and technology, servicemodels may be used as well.

l Administrators typically handle low-level emergency, immediate, or other short-term changes.

For example, an administrator learns there will be some downtime, but the details are not yet
known. The administrator sets up a downtime event for an entire servicemodel for an entire service.
All the CIs connected to that service will be shown to be in a down state, so BSM or OMi will not
send alerts. The exact mechanism of either turning off themonitor or not creating or sending the
event is in the domain of thosemonitoring products. The service desk technicians will then know
the status of all the CIs and can communicate this to the business users.

Servicemodels provide the ability to generate a downtime event for an entire servicemodel’s CIs,
including theBusinessServiceCI and everything underneath. All the components use the same
servicemodels—for example:

n HP ServiceManager (SM) defines a blackout window.

n Integration to BSM disables event generation during the blackout window.

n UCMDB ConfigurationManager identifies impacted CIs and services and reports any missed
CIs not identified as impacted during the blackout window.

ServiceModeling
Chapter 2: Modeling Use Cases

HP Best Practices (3.00) Page 31 of 113



Change Control and Release Management (CCRM)

CCRM is another main use case using servicemodels. Like CLIP, CCRM implements a closed-loop
feedback/management process.

Whereas CLIP is post-incident, CCRM spans the entire changemanagement process. The goal of
CCRM is to ensure only authorized changes aremade to services, and to detect and prevent
unauthorized changes.

Using data from both configurationmanagement and changemanagement, changes can be verified;
that is, correlated to an approved Request For Change (RFC). CCRM provides a common view of a
service to the CAB, the change implementors, and the change requestors, so that a precise dialog can
be conducted about changes:

l Excessively risky or problematic changes can be assessed as such and disapproved before any
change is made. A history of changes is collected and analyzed to assess elements of risk.

l Any discovered changes immediately become part of the change process, so there is little delay
between the change and the verification of the change. If any change is unauthorized, remediation
can take place as soon as possible. In the case of a change that does more damage or incurs cost
the longer it is in place, early detection is essential to remediation and for improvedMTTR.

l Consistent impact analysis of services related to changed CIs is enabled.

The schedule of downtime Forward Schedule of Change (FSC) can be communicated quickly enough
to reschedule changes without last-minute disruptions to change schedules.

A basic diagram of the CCRM cycle is shown here:

The reporting and correlation capabilities are based on the servicemodel. For more information, see the
CCRM 9.30 Solution Configuration Guides in the UCMDB product documentation library.

ServiceModeling
Chapter 2: Modeling Use Cases

HP Best Practices (3.00) Page 32 of 113

http://support.openview.hp.com/selfsolve/document/KM1413556


Business Service Management (BSM)

BSM is a separate domain, with its own product line. Servicemodels are consumed regularly in these
environments. BSM is usually a consumer of CMS data and servicemodels. Modeling for BSM has a
separate best practice document, EffectiveModeling for BSM: Best Practices, which describes
specific requirements for modeling for BSM. Generally, BSMmodels include precisely what is to be
monitored—nomore, no less.

During and after disruptive events, models are consumed for impact analysis and problem isolation
(root cause analysis). As problem and incident management processes execute, models keep
operations and the Service Desk synchronized.

For example:

l When I see a server having problems, how do I know what business services are being impacted?

l Who should be notified?

l Who should be assigned to resolve the problem?

All of these processes may use servicemodel impact analysis.

Operationally, BSM andUCMDB must work together and exchange servicemodels. If BSM reports
new CIs from its monitors, these new CIs may represent new parts of a service.

The ConfigurationManager should work with the Operations Manager to ensure that CIs are exchanged
properly between BSM andUCMDB:

l Aged CIs should not become zombies; that is, untouched by anything besides the integration.

l If a servicemodel should be updated, newly reported CIs should be under ChangeManagement.

Service Asset and Configuration Management (SACM)

SACM is the ITIL process that establishes the service life cycle. ITIL defines SACM as a process that
manages the service assets in support of the other ServiceManagement processes. According to ITIL,
SACM’s objective is to define and control the components of services and infrastructure andmaintain
accurate configuration information on the historical, planned, and current state of the services and
infrastructure.

ServiceModeling
Chapter 2: Modeling Use Cases

HP Best Practices (3.00) Page 33 of 113

http://support.openview.hp.com/selfsolve/document/KM00412297


SACM enables IT to connect activities and investments of IT Asset Management and Configuration
Management, accurately record and track the various costs associated with delivering IT services, and
maintain an accurate picture of the organization’s IT infrastructure used throughout the IT Service
Management processes.

The cycle shown here begins with the asset management processes that acquire and deploy service
components prior to those components being discovered. CIs are provided to Configuration
Management by the Asset Management function. This is to enable IT processes to work on the
deployment and provisioning of a new service while using the CLIP and CCRM processes. For
example, an RFC must still be created to install software on a server, even though that server is not yet
an auto-discovered CI.

Once the service components are deployed and the service begins operating, SACM prescribes and
implements the control functions for monitoring, changing, and administering services throughout the
life of the service.

Servicemodels are updated by new CIs in the CMS from different sources. For example, if Asset
Manager is used to create a new server asset, the CMS should see this and all the consumers should
act accordingly. For example, BSMmight not deploy monitors because the server is not yet online.
However, ServiceManager would accept the new server CI in order for subsequent RFCs to be
created to continue provisioning and deployment of the new server.

For more information, refer to theHP SACM 9.30 Concept Guide.

ServiceModeling
Chapter 2: Modeling Use Cases

HP Best Practices (3.00) Page 34 of 113

http://support.openview.hp.com/selfsolve/document/KM00245585


Chapter 3: Service Modeling Approaches
Once the goals, consumers, and use cases are understood, amodel can be constructed. There are two
fundamental ways to think about modeling—bottom-up or top-down. Bottom-up is the older approach,
and is problematic. Top-downmodeling is themodern approach, which is more reliable andmakes it
easier to build models.

This chapter includes:

Bottom-UpModeling 35

Top-DownModeling 37

Bottom-Up Modeling
From an IT perspective, the service is a collection of infrastructure working together. IT consumers
tend to think about services in this way, since they usually support some subset of this infrastructure.
Servicemodeling by IT, for IT, with infrastructure-focused contents, andmost importantly, defining a
service by its infrastructure, is called bottom-upmodeling.

The general approach to bottom-upmodeling is to first discover the infrastructure, then identify
applications and architecturally unique characteristics of the application as it exists in the
infrastructure—for example, the name of a database. A database name is an architecturally unique
characteristic of an application-specific component. Names of components such as databases are a
provenmethod of applicationmapping and servicemodeling.

HP Best Practices (3.00) Page 35 of 113



A basic illustration of the bottom-up approach is shown here:

This is not the best approach. Because bottom-up servicemodeling is based on naming conventions, it
is subject to the quality and accuracy of the environment's past architectural naming decisions as well
as all the operation since then.

Architecture can be defined as planning that which will be difficult to change, and an organization’s
naming conventions can be categorized as architecture. While bottom-up servicemodeling can
potentially work well, it may also be impossible to use if the organization’s naming conventions cannot
be used to reliably or consistently identify servicemodel components.

There aremany sources of difficulties that make bottom-upmodeling problematic, including:

l non-existent or inconsistent naming conventions

l virtualization

l security restrictions

In any given IT environment, it is likely that at least one application will be problematic to model using a
bottom-up approach.

Since traditionally over time things that are static becomemore dynamic, the bottom-up approach has
become less useful. A moremodern way of thinking about service is needed.

ServiceModeling
Chapter 3: ServiceModeling Approaches

HP Best Practices (3.00) Page 36 of 113



Top-Down Modeling
From an end-user perspective, the service is a consumption end-point. The consumer is insulated from
the internal processes and resources required to provide the service. All these capabilities and
resources are Service Assets. A service as modeled and viewed starting from the consumption point is
called top-downmodeling.

In modern IT terms, a service is composed of more services, eachmore specific in nature. Services
consume and provide from each other in order to provide the overall service. Modularizing services in
this way allows for greater control of change over the lifetime of a service. Top-downmodeling ties the
actual operating servicemore closely back to everything that comes before production operation, such
as:

l Business case requiring the service

l Design and development

l Deployment

l Parameters for how the service operates

A basic illustration of the top-down approach is shown here:

ServiceModeling
Chapter 3: ServiceModeling Approaches

HP Best Practices (3.00) Page 37 of 113



Both the top-down and bottom-up approaches rely on discovered relationships tomodel a service. The
starting point is themajor difference. The top-down approach uses service entry points and the running
software that creates them—something that is always known—whereas the bottom-up approach uses
infrastructure component names traditionally associated by ownership or other human knowledge. This
type of information is often difficult to find and obtain, or may not exist at all. Service entry points will
always exist (otherwise the service could not be consumed).

Top-downmodeling focuses on the consumer and the services they consume. The terms,
visualization, and questions asked during planning—everything—becomes more closely tied together
throughout the life cycles of a service.

Since top-downmodeling is the best practice, the rest of this document assumes a top-downmodeling
strategy.

Top-downmodeling does not call for a specific type of topology discovery or inclusion of infrastructure.
The exact contents of the CMS will vary depending on what is able to be discovered and what is
required for the use cases. Impact analysis and topology visualization can sometimes omit lower
layers of infrastructure intentionally.

The top-down approachmakes it simpler to includemore CIs The best practice is still not to include
something in themodel unless it will be used. Resist the temptation to create 100% perfect service
models using all possible infrastructure CIs, unless the use cases absolutely require it.

One example is performing impact analysis to determine potential impact to services based on a
change to one server. Anything that makes the server unavailable could reasonably have the same
level of impact. Therefore, a servicemodel used for server impact analysis would not benefit from
having the network interfaces and all the host resources included in themodel. The server would
suffice to propagate impact.

Consider using CI collections, or models to contain all the CIs in a service. These collections are useful
for ad hoc reporting and essentially compose the service catalog. UCMDB can produce the service
catalog by a TQL containing a single CI—BusinessService—or a list of business applications using
the same technique.

ServiceModeling
Chapter 3: ServiceModeling Approaches

HP Best Practices (3.00) Page 38 of 113



HP Best Practices (3.00) Page 39 of 113

Part II: Service Model Development Cycle



Chapter 4: Service Model Development Cycle
This chapter includes:

Overview 40

Modeling Quick Reference 42

Modeling Process 49

Overview
The service assets used to operate a service can cover a wide range of entities. In the digital world,
these entities may refer to items such as a network router, database software, or an organizational
directory service. Infrastructure items such as these typically work in mixed groups to support various
applications, simple or complex, such as a simple shared FTP service or a complex enterprise email
system running in multiple clustered virtual environments. By combining various technical service
assets for different purposes, IT organizations are able to reduce their costs and also create new and
valuable IT services which the business can package and sell as a business service. Therefore, a
model of a service primarily defines a logical boundary around a collection of service assets and
relationships which help operate the service.

Servicemodeling can be described as an exercise in defining the logical boundaries around a collection
of technical service assets and explains how those service assets support services that are used by
the service consumers. This Application Boundary problem is a fundamental aspect of service
modeling. Shared infrastructure, for example, must be shared; that is, overlap, among servicemodels.

The top-down approach generally states that you define the upper layers of themodel first. These upper
layers are the business or abstract or non-discoverable layers.

The upper layers are used to describe the service itself, and to show any other sub-services that
compose this service.

There are usually one to three layers in the upper tier of a servicemodel.

The upper-most layer is a single CI. The CI type is a business element such as BusinessService or
BusinessApplication. At aminimum, this CI is named to reflect the name of the service to be
modeled. As a best practice, add other information, such as the type and owner of the service.

Layers 2-n of the upper layers are used to show services that are composed of other services. If a
service was composed of no other services and only consisted of specific infrastructure, there should
be only one upper layer. Layers 2-n CIs are usually of theBusinessApplication type or similar CI
types.

The upper layers are complete when everything about the service, except its infrastructure, is
described. Primarily, this is the upper-most CI, and includes all of the CIs representing other services
that compose this service.

HP Best Practices (3.00) Page 40 of 113



The lower layers are understood as the discoverable, or actual, or infrastructure layers. The service
endpoints will identify the relationships from the upper layers to the lower layers.

For example, using the standard set of layers of a servicemodel, the following diagram depicts an
example of an abstract servicemodel:

The diagram displays a generic hierarchy for a single business service. Applying the Sharepoint
example to the figure above, Sharepoint could be the business application that relies on various IT
services such as SPWeb and SPSearch (Business Application boxes). All applications have service
endpoints which are related to running software. The service endpoints are traced to all infrastructure
required tomake the service endpoint available and functional. The communication infrastructure, such
as routers, switches, and interfaces, are shown as the Network layer.

It is important to note that the business service in the diagram above could also be viewed as a service
asset for a higher level business service. For example, the Sharepoint servicemay be viewed as one of
many internal applications that make up Advantage, Inc. Services may be and are, in fact, commonly
composed of other services.

At this point we should understand conceptually the layered approach for servicemodeling and the
purposes of the layers. How and where should these layers be assembled?What is added first?What
are the critical paths?

ServiceModeling
Chapter 4: ServiceModel Development Cycle

HP Best Practices (3.00) Page 41 of 113



It is important at this point to understand the difference between a servicemodel and the class model
used as part of the CMDB and CMS. Any servicemodelingmust be done in the context of a class
model—a data dictionary that defines what CIs and relationships can be used in themodels.

The class model contains all the definitions of the CIs and relationships that can be created. The
CMDB contains this model, as well as the actual CIs and relationships instantiated from this model.
The CIs and relationships are populated by discovery and other methods to form aCMS. The CMS is
consumed by querying data through servicemodels. The servicemodels represent the reality in the
actual data center, so when the consumers use configuration data in the servicemodels, they are
always working with some aspect of maintaining, monitoring, or changing that service.

Modeling Quick Reference
This section includes:

Overview 43

CMS Content 43

ServiceModel Building Blocks 44

ServiceModel Upper Layers 45

Find Generic n-tier Applications 47

Link Upper and Lower Layers of a ServiceModel 48

ServiceModeling
Chapter 4: ServiceModel Development Cycle

HP Best Practices (3.00) Page 42 of 113



Overview

This section is a collection of modeling tools and templates which can be used to quickly create
ServiceModels. This section can be thought of as a cookbook; a collection of recipes that may or may
not work for a given situation.

Examples are shown using UCMDB queries and views. The examples are presented in roughly
sequential order, but may be used in any order as needed.

CMS Content

One problem with servicemodeling is the variability of the CMS contents available to model. CMS
contents differ based onmany variables:

l Use cases on which the CMS is founded—what is expected versus what is available

l ITSM strategies and product portfolio—technical capabilities of IT

l Budget and organizational executional capabilities of the business and IT

l Time and expertise availability/constraints

l Organization’s sector—policies may restrict credentials, discovery, or access to SMEs

l Ability to continue discovery—one-time discoveries tend to stagnate

l Ability to discover additional relationships and CIs as needed

For these reasons, it is impossible to provide a single servicemodel template which works in all cases
for all organizations. Servicemodeling strategies may need to bemodified based on the available data
and resources.

ServiceModels should also reflect the organization’s way of thinking about its services. For example, if
a business thinks of its services hierarchically or flat, the upper layers of that business’s service
models should reflect that. If an organization thinks of its service catalog as a flat list of atomic
services, the upper layers of its servicemodels should be flat.

The same holds in the infrastructure layers of a servicemodel. For example, if the relationship:
UriEndpoint < composition < Node does not exist, the same use cases may bemodeled using an
indirection relationship, such as: UriEndpoint < Composition < RunningSoftware < Node.

ServiceModeling
Chapter 4: ServiceModel Development Cycle

HP Best Practices (3.00) Page 43 of 113



Service Model Building Blocks

This section contains query fragments that can be used to build servicemodels and perform other
related tasks.

Discovery Verification

In themodeling process, it is common to findmissing data which requires additional discovery or
population. Queries can be constructed to systematically or randomly verify the presence of the
required data. Here is an example to check the progress of discovery—for example, to verify that the
credentials supplied for host discovery were correct and that the required network connectivity was in
place.

This query consists of only four parts—aNode containing an IP Address as shown above, and a
cardinal condition for the IP Address as shown below.

This TQL shows all IPs connected to exactly zero hosts.

Note the use of cardinality zero on the IP address CI type. If an IP’s host is expected to already be
discovered—that is, following host-level discovery—then this TQLwill show IPs that remain
unconnected.

If these unconnected IPs belong to any devices whichmay be needed in a servicemodel, then the
servicemodel will remain incomplete until the host is discovered.

ServiceModeling
Chapter 4: ServiceModel Development Cycle

HP Best Practices (3.00) Page 44 of 113



Service Model Upper Layers

Multiple methods of organizing a servicemodel's upper layers have been used successfully. The keys
are to have a single CI at the top and a CI to hold links to infrastructure. Shown here are several TQL
queries of servicemodels which have been used in the past.

ServiceModeling
Chapter 4: ServiceModel Development Cycle

HP Best Practices (3.00) Page 45 of 113



These are all acceptable ways to organize your hierarchy of services and applications in the upper
layers of the servicemodels. The Infrastructure element is used to represent any other CIs that may be
related. A CI collection is shown as a container for all of a service’s CIs. The communication endpoints
will be related to other CIs in the CI collection. TheCommunicationEndpoint is shown directly
related to theBusinessApplication (orBusinessService, if desired) because the service’s point of
consumptionmust be known to use the service, thereforemust be known tomodel the service.

This example shows amethod of modeling InfrastructureServiceCIs underBusinessApplication
CIs. Note the relationships. The service is connected to the nodes (physical or virtual machines) where
the application uses it. The application used by infrastructure uses a usage relationship. The
InfrastructureService component is used for nodes that have the same function for a
BusinessApplication grouping. The infrastructure servicemakes, in turn, a usage relationship to one
or more nodes. The life cycle of these nodes can be determined by the service that delivers these
servers.

ServiceModeling
Chapter 4: ServiceModel Development Cycle

HP Best Practices (3.00) Page 46 of 113



Self-containment of business services is allowed in the class model without two nodes in a TQL, but it
is shown here to emphasize the point.

Find Generic n-tier Applications

Servicemodels should be constructed using the least granularity possible. However, this does not
mean servicemodels must be constructed CI by CI. Reusable components save time and effort.
Simple servicemodels may consist of only a few CI types in their queries. Many complex models can
be composed of rather standard tiers—for example, the traditional 3-tier application consisting of
database, application, and presentation tiers. Queries for standard tiers can be used as building blocks
similar to the upper layer templates in the previous section. Below is a TQL tomodel a single tier of an
n-tier application.

By usingRunningSoftware/CommunicationEndpoint chains, application structures can be revealed
generically without knowing whether the applications exist or the application's structure. Continue the
chain by connecting additional running software chains to one of the nodes, and link as shown above.

HP Universal Discovery will discover the above CI chain using out-of-the-box discovery jobs.
However, differences in standard infrastructuremay require modifications to discovery and the
corresponding sections of servicemodels to accommodate the differences. For example, old or new
versions, security hardening, in-house or custom-developed applications could all require adjustments
to both discovery and servicemodels.

ServiceModeling
Chapter 4: ServiceModel Development Cycle

HP Best Practices (3.00) Page 47 of 113



Link Upper and Lower Layers of a Service Model

This TQL query fragment shows how the upper layers of a servicemodel are linked to the lower layers
using aCommunicationEndpointCI—in this case, UriEndpoint, a sub-type of
CommunicationEndpoint.

TheUriEndpointCI is identified (and discovered at some point) as the primary entry point of the
service. The running software that instantiates the listening port of the entry point is also discovered
and related.

The URI endpoint is known andmanually related to the lowest-level CI of the upper layers of the
service. The running software is followed through its relationships to other infrastructure tomap out and
model the rest of the service’s infrastructure.

ServiceModeling
Chapter 4: ServiceModel Development Cycle

HP Best Practices (3.00) Page 48 of 113



Modeling Process
This section includes:

Overview 50

Step 1: Use Cases and Research 51

Step 2: Model Top Layers of the Service 51

Step 3: Verify Required CIs and Relationships in the CMS 52

Step 4: Identify Service Entry Points 53

Step 5: Identify Running Software 54

Step 6: Link Software to Communication Endpoints 55

Step 7: Model and View Bottom Layers 56

Step 8: Reuse, Maintain and Refine 58

OrganizingModels 59

ServiceModeling Challenges 61

ServiceModeling
Chapter 4: ServiceModel Development Cycle

HP Best Practices (3.00) Page 49 of 113



Overview

The preferredmodel development flow is shown below. Start with the Use Case at the upper left, and
follow the arrows.

This process is iterative and is composed of repeatable processes to create servicemodels. Missing
data will be revealed by validation andmay require additional population. The goal is to do precisely
what makes the servicemodel consumable—nomore, no less. Once the servicemodel is consumable,
time passes, change occurs, and at some point a change to the servicemodel will be necessary for it to
remain consumable.

As a best practice, the top layers should be the first layers to be created. The processes that design,
develop, and implement services also create servicemodels—as diagrams, white-board drawings, and
so on. This design information should be captured and used to create the upper layers of the service
model, the business service, and IT service layers.

The connection between the known list of business services and the discovered IT infrastructure falls
within themodeling layers. Even if the entire stack is 1discoverable, the process of collecting the
information is not enough. Themodel boundaries are use-case dependent. Therefore, they must be

1Discoverable really means the data is in electronic (and usually but not always, structured) form. A
few shops havematured to this point where there is a discoverable connection between infrastructure,
applications, and business services. Change and ReleaseManagement process maturity can enable
meta-data to be placed andmaintained on production servers that represent relationships between that
server and the services of which it is a service asset.

ServiceModeling
Chapter 4: ServiceModel Development Cycle

HP Best Practices (3.00) Page 50 of 113



defined. The ultimate choices of what to include and exclude should be clearly enumerated by the
consumer on-boarding process. For more information, refer to theConsumer Onboarding Guide in the
CMS Best Practices Library.

Most organizations must collect at least part of the top of the stack manually. Preferably, an application
should be used to collect the business CIs and information which relates to the service endpoints or, if
necessary, at least a part of the infrastructure.

The following steps describe the flow inmore detail.

Step 1: Use Cases and Research

Part I of this document is dedicated to understanding how servicemodeling will benefit an organization.
Building servicemodels is part of an overall service life cycle with many other associated activities and
processes. If done properly, use cases will be commonly known before developing servicemodels.
Plan the servicemodeling process by linking to higher level objectives which influence planning factors
such as:

l What is the granularity the company wants to define for different business services?What is
everyone used to? Is there a need to change the norm?

l Which services and applications have priority for modeling?Who are themost important
consumers?

l What services will bring themost value for the least effort?What is at stake for the use cases?

l Who are the stakeholders of the servicemodels?Who sponsors the consumers?

l What processes do you hope to improve by modeling services?What are the KPIs for the
consumer processes?

Modeling services which support specific processes such as ChangeManagement may also influence
implementation factors such as depth or breadth of service views or the rate of refresh for discovery
sources. The consumers drive the providers. The overarching goal in any servicemodeling process is
to model once and consume anywhere.

Step 2: Model Top Layers of the Service

Once the use case is defined and understood, modeling begins by assigning a name to the service. The
use case generally supplies the name and is meaningful to its consumers.

Youmay or may not use an Enterprise Architecture (EA) product to manage the top layers of the
business services. Large organizations with many business services usually need a solution to
manage them all. Applications like Troux®, ARIS®, or Casewise® can be used to define the top level
business service layers, and integrate with HP Universal CMDB (UCMDB) to supply these to the
CMS, ready to use in servicemodels by relating them to the lower levels of running software and other
infrastructure.

For more information, see Troux (http://www.Troux.com). Software AG (http://www.Aris.com), and
Casewise (http://www.Casewise.com).

ServiceModeling
Chapter 4: ServiceModel Development Cycle

HP Best Practices (3.00) Page 51 of 113

https://hpln.hp.com/node/18176/attachment
http://www.troux.com/
http://www.aris.com/
http://www.casewise.com/


If you do not use an EA application to define the top level business layers, there are several options to
create them:

l HP UCMDB user interface

The UCMDB Modeling Studio can automatically create aBusinessService or
BusinessApplication CI and relate it to everything in a query. This arrangement is called amodel
and can be used as a servicemodel.

l HP UCMDB Browser

l HP ServiceManager (SM)

l An integration to an external list such as a spreadsheet, text, or database

In order to properly model services, it is important to capture certain critical information about the
services. Relevant questions may include:

l Who are the SMEs that can help validatemodels or be given the task of owning themodels?

It is important not only to know whom to contact but get mutual agreement on the business priority
of the servicemodeling task. Interview SMEs to identify what service assets make up the service.
In cases where the service asset is an application, architectural diagrams and installation guides
are a big help if there is no existing knowledge on the application’s structure.

l Who are the service owners and does their role need to be redefined?

It is important to understand the existing service assets and their structure and also who are the
business and technical owners of these assets going forward.

l Is there a definitive repository for business service names/definitions/sub components such as an
organization-wide service catalog or enterprise architecture tool?

These are the names of the logical entities that you will eventually tie to the underlying resources in
the CMDB. Answering this questionmay result in additional work during discovery to synchronize
this data with the CMDB.

Step 3: Verify Required CIs and Relationships in the CMS

In the past, all modeled data would reside in a single database—the CMDB. Today, not all modeled
data is necessarily inside the CMDB. The entire CMS, all of the integrated systems, with a CMDB at
its core, is thought of as the repository, with many providers exposing data in place, retrieved at query
time through federation, merging with a set of core CIs in the CMDB acting as an anchor.

The use case will call for a set of CI types and relationships. The configurationmanager must work with
the consumers, providers, and owners of the data to decide what is to be left in place, what will be
discovered, and how configuration data will be provided to consumers. From this study, a discovery
plan will emerge.

Does the discovery plan cover all the technology and environments necessary tomodel the prioritized
services? SMEs can help define the scope or depth of discovery required to accurately recognize

ServiceModeling
Chapter 4: ServiceModel Development Cycle

HP Best Practices (3.00) Page 52 of 113



service assets utilized by the business service. Any gaps in coveragemay require customizations to
discovery such as enhancing discovery packages or customizing features such as the Application
Signatures feature of UCMDB.

Thorough research at the inception stage of a servicemodeling initiative will significantly improve the
chances of success and will most likely improve related processes such as Discovery Planning.

Step 4: Identify Service Entry Points

After the top-layer CIs, the next layer is the entry points of the service. Because there are relatively few
networking protocols, most entry points are based around common addressing schemes. In a TCP/IP
world, the entry points can be expressed as:

l URLs forWeb clients

l URIs forWeb Service clients

l Known domain name server (DNS) or domain or server name (load balancers or redirects connect
the entry point)

l Java Database Connectivity (JDBC) connection point (if the service is a database service)

Other connection points, such as mainframe technology, will use equivalent but different technologies
and formats of entry points, but these can still be used in the servicemodeling process provided the
technology can be populated into the CMS. Most protocols—such as SNA, IPX, Vines—have TCP/IP
bridging technology allowing at least basic discovery without much additional time and effort.

Examples of service entry points:

l https://sharepoint.advantageinc.com (domain name)

l http://www.advantageinc.com:80/sharepoint (virtual directory)

l https://google.com (Internet application)

l https://www.ImaWebService.myco.wslb1:8085/ws/SAPws.uriLB1.DCAEP1.ws.li?wsdl (internal
web service)

l “file:c:\config\SAP1\config_data_containing_entry_point_here.cfg” (configuration file as the entry
point)

l sql://SPSQL\POWERPIVOT (entry point for a database service)

More entry points and the CIs that represent them will be documented in "ServiceModels in UCMDB"
on page 63. Entry points are represented as CommunicationEndpointCIs.

ServiceModeling
Chapter 4: ServiceModel Development Cycle

HP Best Practices (3.00) Page 53 of 113

https://google.com/


Step 5: Identify Running Software

RunningSoftware is a key CI type. It allows granular tracing of entry points to other infrastructure. It
acts as a bridge between the upper and lower layers of the servicemodel. UCMDB
Universal Discovery (UD) can discover running software in several ways and is fairly comprehensive,
so it is a reliable way of connecting entry points and infrastructure.

Software running on production servers will always be communicating with other entities such as
clients, databases, and other servers. Mapping these communications provides a fairly accurate
picture of a real operating service that can be traced through abstraction layers such as load-balancing,
clustering, virtualization and storage networks.

Running software is always discovered in context with its relationships to other CIs.
RunningSoftware and its many sub-types can be related tomany other CI types:

Many CI types (and their sub-types) may be related toRunningSoftware, including these commonly
used in-servicemodels:

l CommunicationEndpoint (IpServiceEndpoint andUriEndpoint)

l BusinessApplication

l BusinessElement

l Service

l Node

l JDBCDatasource

l Process

ServiceModeling
Chapter 4: ServiceModel Development Cycle

HP Best Practices (3.00) Page 54 of 113



Step 6: Link Software to Communication Endpoints

Running software and communication endpoints are actually parts of the same thing.
RunningSoftware has many sub-types which account for all the application tiers, including:

l WebServer

l ApplicationServer

l Database

l MessageQueueResource

l Cluster

l Virtual Host Resource

For example, theRunningSoftwareCI sub-typemay be an ApacheWeb server, an SQL database
server, or aWebsphere application server. Running software creates and listens on ports that are
configured as entry points; in other words, URLs, URIs, and other connection protocols. A Web server
accepts a URL, which is an underlying communication endpoint (and in fact this is how the UCMDB
datamodel represents this). All that is required is that the discovery jobs must be executed to discover
both the running software and the communication endpoints. The relationships between these will be
created by the discovery jobs.

For example, BusinessService > BusinessApplication is created by hand. Part of the process is to
obtain the entry point of the service.

The users and owners of a service are the best places to obtain service entry points. Since entry points
must always be provided for access, they are generally well-known and easy to obtain.

The entry point is used to find the service’s CommunicationEndpointCI. The UCMDB Modeling
Studio is used to easily relate theBusinessService to theCommunicationEndpointCI and any
other related CIs. For more details, see Part III: "ServiceModels in UCMDB" on page 63.

Now we haveBusinessService > BusinessApplication > UriEndpoint.

Follow theUriEndpoint’s relationships toRunningSoftwareCIs and add these to themodel.

Then we haveBusinessService > BusinessApplication > UriEndpoint > RunningSoftware.

For example, Collect Money (business service name) > Online Retail (service) > http URL
(endpoint) > Apache (running software).

TheRunningSoftwareCIs now enable the top layers of themodel to be related to the bottom layers.

ServiceModeling
Chapter 4: ServiceModel Development Cycle

HP Best Practices (3.00) Page 55 of 113



Step 7: Model and View Bottom Layers

This section includes:

Overview 56

Creating the Presentation Layers of theModel 57

Creating and Using Templates 57

Ownership versus Dependencies 58

Overview

The next step is to evaluate what is left and finish themodel. The use cases will drive this. The
RunningSoftwareCI has relationships to the infrastructure on which it is running.

Some best practices to keep inmind:

l Model splitting. If possible, allow multiple consumers to use commonmodels, but avoid non-
overlapping CIs. If there is a small non-overlap, this is usually acceptable, but be wary of scope
expansion. If necessary, split themodel into multiple models. This is a normal part of IT evolution,
so do not be alarmed if some servicemodels, in great demand, are asked to be expanded on a
regular basis. Youmust determine a cutoff point that is acceptable for your needs on how much and
what kind of non-overlap warrants amodel split.

l No extra CIs. Do not populate the CMS today with CIs that only solve tomorrow's problems. Do
not overpopulate the CMS or your servicemodels just in case. Servicemodels are an excellent
example of the axiom less is more. For example, if RunningSoftware is used to create a service
model, but this is not called for in the deliveredmodel, then it should be hidden from the delivered
results—no just-in-case CIs.

l Use case priority efficiency. Some use cases call for comprehensive discovery of a given CI
type. Use cases such as CCRM andCLIP have the scope of the entire data center. Large
organizations may have hundreds or thousands of servicemodels. Time and cost efficiency is
important when developing large numbers of servicemodels. As a best practice, carefully prioritize
the order in which you develop a large number of servicemodels. Start with themodels which will
serve themost important consumers.

Add the remaining required CIs and relationships to themodel—trimming and adjusting as needed—
until the servicemodel delivers precisely what is required by all of its consumers. Do not be
concerned at this stage with presentation and visualization. Do not be concerned with how to
present themodels. Just assemble its contents. Other tools will be used to further subdividemodel
contents into specific data sets for specific consumers.

ServiceModeling
Chapter 4: ServiceModel Development Cycle

HP Best Practices (3.00) Page 56 of 113



Creating the Presentation Layers of the Model

Validate the contents with the consumers or owners of the use case, and iterate themodeling process
until the contents andmodel are correct. As this process occurs, use UCMDB Modeling Studio. The
correct details of consumption will be forthcoming.

Youmay or may not stay with a specific type of model delivery as you test the consumption of the
model. If a change canmake things simpler or save risk or cost, then do it as a normal part of IT.

During this period, create andmodify queries, views, models, templates, and perspectives. Do this in a
manner that lets you deliver the final contents easily and without having to rebuild the production
content afterward. For more information about specific parts of theModeling Studio, see Part III:
"Developing ServiceModels in UCMDB" on page 64.

Creating and Using Templates

Once service assets can be uniquely identified, use amodular approach to build service asset models.
Creating complex servicemodels through smaller, shared, reusable building blocks can helpmodels
scale tomeet organizational complexity while addingminimummaintenance. The following graphic
shows the top layers of business service building blocks. Each of the blocks in the diagram could be re-
used in other servicemodels.

The business servicemodel is owned by John and the underlying business applications/IT services are
owned by various other members of the organization. By distributing themaintenance of individual
business service asset models to individuals or groups, John does not need to worry about the

ServiceModeling
Chapter 4: ServiceModel Development Cycle

HP Best Practices (3.00) Page 57 of 113



contents within each service asset component. For example, if Mary changes the servers owned by
Application 2, the Business Applicationmodel that Jennifer maintains, which depends on both
Application 1 and 2, will automatically reflect the change in underlying infrastructure to Application 2, as
will the overarching business servicemodel Johnmaintains.

It also helps to create a template of the core architecture that can be reused as a foundation for building
models, as well as rendering stakeholder-specific views. For example, to create a template for a
generic three-tier J2EE application used by a business service, it may be necessary that each
application server utilize a specific database instance and that the application contains a specific
domain name in its URL. By applying the unique fingerprints for an application on the generic three-tier
J2EE application template, such as a URLwhich ends with a unique suffix, you can find a specific
instance of an application from the production environment. By using a building block approach such as
templates, any change to an underlying service asset will automatically be reflected in higher level
services which utilize the service assets.

Ownership versus Dependencies

After specific service assets have beenmodeled, they can be tied together to form a higher level
business service. In some cases, it is important to make a distinction between which service assets
are owned by a service versus which service assets a service depends on. For example, a self-service
portal may own a set of applications that create the portal. but depend on a shared service such as a
central single sign-on application. Although the relationships between business services and its
underlying service assets can be defined in a CMDB, the list of available business services which need
to be tied to underlying infrastructuremay stem from an alternative authoritative source. In either case,
the CMDB provides features to accommodatemultiple paths to servicemodeling.

Step 8: Reuse, Maintain and Refine

It is essential to continue validating the accuracy of servicemodels to reflect reality. Take steps to
periodically review models which have changed or createmechanisms to alert model owners of
changes to the structure. Many customers do quarterly, semi-annual, or annual reviews of their service
models.

It is a best practice to incorporate servicemodeling into standard change control practices. Ensure that
proper controls are used tomanage and refine servicemodels.

The key points are:

l Identify unique service assets

l Build servicemodels in amodular fashion

l Servicemodels should support rendering of stakeholder-specific views

Change control is important because service assets in amodel can be owned or depended on by a
service. Consequently, the impact of changemay not be apparent to any one person involved in
maintaining the service.

Good documentation is necessary to aid those whomay work with themodel in the future. Notes may
be added to themodels themselves—in the notes and descriptions provided. Maintenance is much

ServiceModeling
Chapter 4: ServiceModel Development Cycle

HP Best Practices (3.00) Page 58 of 113



simpler when the inner workings of themodel are briefly described—for example, why you are including
or excluding things, why youmust have amany-to-many relationship, and so on. For specific
techniques described inmore detail, see Part III: "Developing ServiceModels in UCMDB" on page 64.

Organizing Models

Any medium or larger-size organization with more than a few dozen services will need amethod of
naming and storingmodels andmodel parts. Enterprise-sized organizations with upwards of 1,000
services and applications must carefully choose naming conventions and hierarchy of services.
Without this, it is sometimes necessary to stop building further models, perhaps in themid-hundreds,
and reorganize all themodels—a potentially costly and time-consuming detour.

The following is a list of guidelines for avoiding themost common problems:

l Having a naming convention for services. One possible format is:

ServiceName_Customer_Owner_Status

For example, Sharepoint_Infrastructure_Advinc_Prod

l Namemodels according to the services, such as:

n Online Banking

n Online Customer Sharepoint

n Quote to Cash

n Shipping

l Names should account for:

n Name of the service

n Owner or owning organization

n Status or production environment (Test/Production/and so on)

l Name all Queries, Models, Templates, Perspectives, Enrichments and Views consistently.

l Create folders for all of the objects for step 4. For queries without views, create a folder—for
example, Advantage Inc under the query folders. View TQLs will be placed under theView
subfolder under queries. Also create a user folder here and place view queries in it.

ServiceModeling
Chapter 4: ServiceModel Development Cycle

HP Best Practices (3.00) Page 59 of 113



l When creating views, UCMDB will store queries in the View subfolder but not any further subfolder.

This figure shows all of the folders where custom folders should be created for model content.

ServiceModeling
Chapter 4: ServiceModel Development Cycle

HP Best Practices (3.00) Page 60 of 113



Service Modeling Challenges

This section includes:

New versus Existing Services 61

Value Realizationmay be Protracted 62

Expect Ambiguity 62

Expect Discovery Problems 62

New versus Existing Services

Modeling new services is not as common as modeling existing services. However, lower TCO
services can result from trackingmodeling requirements from the start of the service life cycle. This
means soon after the executive decision is made to create a new service, the service’s uppermost CI
should be created somewhere, and remain for the life of the service. As the service is developed, used,
maintained, and eventually retired, the rest of the service’s model comes and goes to reflect reality.

Existing services are generally already hardened and have complex relationships with many entities
internal and external to IT. Discovery may bemore problematic. Collecting informationmay be
problematic if the original developers or implementers are not available. Some relationships may be
unknown, andmust be found empirically. The use cases for existing services are often laced with long-
term or deeply foundational problems that servicemodelingmay or may not be able to resolve
depending on the value realized from the chain of consumers. However, this is by far themost common
type of service environment you will be called on tomodel.

Here are some best practices that may be helpful:

l Go beyond discovery. Do as much research and see as many people as you can. Fill in discovery
gaps by finding and discussing issues with application, business, and IT service people.

l Dependencies are the most important, yet hardest relationships to discover completely.
Youwill never discover 100% of them. Use your time wisely and discover the dependencies as
early in the process as possible. You will needmore time later to discover missing dependencies. It
is not against best practices tomanually create hard-to-discover, yet known dependencies to
facilitate proper servicemodeling. Refer to the CMS Best Practices library for advanced
dependency discovery techniques.

l Freeze Scope to accelerate progress. Scope Creep can be devastating to a small project where
every resource unit counts. Once a detail is validated with a customer, freeze that detail until
delivered unless it is clear that it must be adjusted for technical reasons. In the later stages of model
development, make it clear to the consumer that only big problems warrant changes in
requirements. At some point, youmust freeze themodel entirely until it is delivered, and
accumulate any later changes for a later version. It is almost always the best practice to deliver the
originally requestedmodel on time, rather than deliver a greatly modifiedmodel late.

ServiceModeling
Chapter 4: ServiceModel Development Cycle

HP Best Practices (3.00) Page 61 of 113



l Small, more frequent iterations get the job done sooner.Make the consumer understand that
theremay bemultiple validationmeetings. Do not be trapped by a one-chance situation where it is
politically painful or costly to meet with the user. Theremust be an initial, rough-draft validation; a
refined, heading-in-the-right-direction validation; and a final-inspection validation. Do not compress
all of these into a single meeting, if possible.

Value Realization may be Protracted

It may take a while from the time the configurationmanagement system (CMS) is purchased and built
to return on investment (ROI) realized. Sponsorship is key to successfully driving the IT organization to
provide the correct data, discovery credentials, and so on. The servicemodeling quality will be directly
proportional to this.

Expect Ambiguity

Designing and developing servicemodels is closely tied to the development and design of the service
itself. This means, ideally, the same people are involved in creating the servicemodel as those who
developed the service. The ConfigurationManager (or designee) is responsible for interacting with
people in IT to identify and validate that the servicemodel is developed correctly. However, these
people are not always available and their knowledgemay be limited. Therefore, developing service
models can be as much art as skill. In any case, it takes some time to learn. Many servicemodeling
practices are not intuitive at first.

Servicemodeling is a balance between prescriptive best practices and customization to accommodate
unique characteristics of a specific IT environment. Servicemodeling is neither completely generic nor
completely tailor-made.

Expect Discovery Problems

Servicemodels ultimately depend on the available CIs and relationships in the CMS, which in turn
depends on the discovery technology. Even the best modeling tools and techniques are nomatch for
missing or inaccurate data. Some technology is different and challenging to discover and reconcile—for
example, themany types of clustering and virtualization technology. Depending on the specific version
and vendor, it may be impossible to collect information on the present locations of a collection of virtual
machines without specific code in a specific discovery job. This means additional codemust be
developed to complete the discovery. The situation arises where the servicemodeling project is waiting
for the answer to an enhancement request to the vendor, which could take weeks, months—ormay
never happen. To keep the servicemodeling project on track, work closely with the person responsible
for discovery.

ServiceModeling
Chapter 4: ServiceModel Development Cycle

HP Best Practices (3.00) Page 62 of 113



HP Best Practices (3.00) Page 63 of 113

Part III: Service Models in UCMDB



Chapter 5: Developing Service Models in UCMDB
HP Universal CMDB (UCMDB) offers several unique features which can help your organization build
accurate and scalable servicemodels. This chapter describes features of the View Manager and the
Modeling Studio in HP UCMDB 10.x. Earlier chapters refer to this section for details on creating
various types of servicemodels. Advantage, Inc.’s Sharepoint service is used as the example.

This chapter includes:

Modeling Studio Overview 65

Choosing the Right Model Type 67

Example End State 68

Modeling Studio 69

Queries (TQL) 77

Pattern-based Views 87

Modeling Studio “Models” 89

Pattern-basedModels 91

Static Models 93

CI Collections 93

Instance-BasedModels 95

Perspective-based Views 100

Perspectives 103

Templates 106

HP Best Practices (3.00) Page 64 of 113



Modeling Studio Overview
HP Universal CMDB's Modeling Studio is a suite of tools used to develop and use servicemodels.

TheModeling Studio’s main value comes from its ease of use, rapid time to value, andmodular
approach. Newer users can quickly browse the CMDB to locate specific resources with a simplified but
powerful query engine which can save and reusemulti-step searches.

Newer users also appreciate an intuitive drag-and-drop interface that enables users to build service
assets in blocks which can be combined to createmodels of complex business services.

Subject matter experts who ownmodels find theModeling Studio ideal for creating andmaintaining
their models, as well as quickly providing stakeholder-specific views using perspectives.

Finally, theModeling Studio has the ability to define service ownership and dependencies that are
crucial for accurate accountability and impact analysis.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 65 of 113



The UCMDB product documentation explains how to use the parts of theModeling Studio, but does not
show how theModeling Studio as a whole is used in the overall context of servicemodeling. The
following diagram shows all of the types of models that can be created:

TheModeling Studio can be thought of as a set of layers that work together to provide both simple and
complex CMS data sets.

Queries (TQLs) retrieve a precise set of CIs and relationships from the CMS. Models contain queries to
filter and aggregate sets of data. Views present the data for direct human consumption. Instance-based
Models also use a query, but the query is only a place to store a static list of instances.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 66 of 113



Choosing the Right Model Type
The following table shows suggestedmodel types based on the type of consumer:

I want to ...
Consuming
frequency

Use this type of
service model Why

Typical
Consumer

Just see a list of
specific CIs

One time Instance-based
model

Least cost, least resource
usage, least time to deliver
one-time result

Customer
Support
Business
User

Model a business
service

Ad hoc Pattern-based
model

Automates business
service CI handling

All major IT
functions

See attributes of
a specific CI

Ad hoc UCMDB Browser
(nomodel)

Browser specifically suited
for ad hoc content and
periodicity

IT and
Applications
Administrator

Look at a
different set of
CIs based on
information I
supply

Ad hoc Template-based
view

Parameters allow users to
supply controlled
information to affect query
results

IT and
Applications
Administrator

See a high-level
view of my
application

Periodically Pattern-based
model

Allows immediate
development and
visualization of the business
service layers

Business
Application
Owner

See all the
databases inmy
applications

Periodically Perspectives and
Perspective-based
views

Perspectives efficiently
filter results, and same
query can be reused for
many users

Applications
and
Operations
Support

See application
parts in different
ways

Ad hoc Perspective-based
view

Perspectives allow themost
reusable consumption of the
base applicationmodel

Operations
and IT
Administrator

Consume a list of
CIs in my
application

Periodically Pattern-based
report (nomodel,
reuses application
query)

Simple, non-technical way
to consume servicemodel
data. reuses model query to
produce the report.

Business
User

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 67 of 113



Example End State
When all the servicemodels are created, themodels will collectively represent the configuration of the
entire service catalog.

All the business services can be understood in relation to each other in terms of how the services form
the business itself. Since all the services are also understood vertically, in terms of infrastructure,
another level of ITILmaturity is reached. The goal is no longer merely to control changes andmanage
configurations, but to improve business agility and lower total cost of service ownership. With
everything in one place—reporting, costing, planning—all becomemore efficient because the
configurationmanagement system provides a common, granular view of business services.

In UCMDB, this list of models can be seen via theModels' Resource Type list:

This list shows the top layer of servicemodels representing the business and infrastructure services of
Advantage, Inc.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 68 of 113



Modeling Studio
This section includes:

Overview 69

"Get Related" CIs Tool 69

Reveal Path: IncreaseModeling Efficiency 71

Dynamic Models 76

Overview

Modeling Studio will findmost of its strength as a workspace for servicemodeling in the following two
conditions:

l When the servicemodeling activity is distributed in nature and various SMEs will own themodels
which they create; that is, individuals or groups are tasked with identifying the structure of a service
model andmaintaining its accuracy through theModeling Studio

l When the CMS contains all the required CIs and relationships andmissing CIs can be discovered
or addedmanually

The drag-and-drop nature of theModeling Studio makes it easy for organizations to distribute the effort
required to create andmaintain servicemodels. Individuals or groups responsible for amodel can find
data to include in servicemodels from a variety of sources within a single interface by browsing
contents of utility views, invoking simple or complex searches directly against the UCMDB, or through
the use of theReveal function against specific instances of a CI in themodel.

"Get Related" CIs Tool

Using theGet RelatedCIs tool is an easy way to quickly and on demand surf the HP Universal CMDB
(UCMDB) to find what CIs and relationships are close to other CIs.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 69 of 113



For example, the Sharepoint business application is partially revealed in the following diagram using the
Get RelatedCIs tool:

Advantage, Inc’s Sharepoint business application

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 70 of 113



The annotations are:

1. BusinessApplication CI

2. Web Tier

3. Application Tier

4. Database Tier

Get RelatedCIs works both inside and outside theModeling Studio. Get RelatedCIs can quickly
retrieve all the related CIs in an application when you are not sure what or if certain relationships are
present.

For example, if the use case required the file systems to be present in themodel, but no file systems
were found using theGet RelatedCIs, this would indicate a need to go back and perform additional
discovery, or implement an additional integration adapter to populate the CMDB with file systems and
their proper relationships.

TheGet RelatedCIs tools may be used anywhere in the UCMDB user interface where a CI is
displayed graphically or tabularly. For example, the IT Universe displays a list of CIs, as well as a
topology map. A right-click on a CI in either of these places reveals theGet Relatedmenu item. Get
Related can also be invoked from any CI list, at any layer in amodel.

For small applications and infrastructure subsets, Get Related is a good tool to use. However, there
are limitations with theGet Related tool that makes it difficult to use to find the topology of large or
complex services. TheReveal Path tool is a better for this purpose.

Reveal Path: Increase Modeling Efficiency

To understand the value of Reveal Path, consider theGet Related tool in the previous section. Most
UCMDB users know and use this tool, and it is a commonway to quickly look at topology closely
related to a CI. However, Get Related is not the best tool to find all the topology and relationships of a
service, in preparation for modeling.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 71 of 113



For example, one limitation of Get Related is CIs can only be revealed by CI Type, not by individual CI.
If a server contains 100 process CIs, two of which are interesting, Get Related quickly becomes
cumbersome to use because 98 process CIs and their containment relationships on the screen take up
most of the space in the topology pane and render the text too small to read. Colloquially, this is known
as a big ugly pyramid and is the problem with theGet Related tool.

In finished views, models are folded by CI type to hide these types of structures. But inGet Related,
there is no easy way to reveal only specific processes and hide the rest. Reveal Path solves this
problem.

Reveal Path finds the related CIs and allows filtering by CI instance, not merely CI type. In this way, a
host containingmany CIs of the same type can quickly be analyzed to find the one CI needed for a
servicemodel. Reveal Pathmanages multiple links from aCI, as well as a compound path (multiple
hops) from one CI type to related CI types. TheReveal Path user interface is iterative and allows a
path similar to a bread crumb trail to bemaintained and saved to use inmodeling.

Saved paths are reused to support quicker browsing and easier access to common queries. The
purpose of revealing information is to traverse a path of relationships in order to find the existence of
configuration item instances with minimal knowledge of the configuration item relationships.

As discussed earlier, the access point of the Sharepoint application will be known. Reveal Path can be
used to find the rest of the application’s infrastructure. Beginning with the entry point, a
UriEndPoint CI, Reveal Pathwill find the unique Sharepoint infrastructure, including clusters,
servers, and network devices. From there, a user could find each server which uses the same unique
cluster ID and add each of these servers to the Sharepoint servicemodel. This simpleReveal Path
can be saved and reused to help quickly find servers which use the unique cluster ID starting with any
specific instance of a server.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 72 of 113



Begin by creating any type of model CI, such as aBusinessApplication, BusinessService or
CiCollection CI, and relating the service’s entry point(s) to it via containment or dependency. These
will show up in theModels pane of theModeling Studio.

At this step, themodel contains only a single CI—theUriEndpoint added in the first step.

From aCI instance in amodel, right-click Reveal > Start Revealing. Then drag the application server
into theReveal Pathwindow and click Next.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 73 of 113



The new list of CI types are revealed to select the desired path. Add specific CIs to the basket from the
list of Reveal CIs type selected in the upper pane. Click theNext button to add the selected CI to the
path and place the next set of related CIs in the upper pane. Repeat until the desired path is complete,
then click Finish, which adds the basket CIs to themodel.

The following image shows a path revealed from the starting CI, UriEndpoint, to the next related CI,
an IIS Web Site.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 74 of 113



Reveal Path is used to easily find related CIs. For example, after seeing theUriEndpoint related only
to aWeb Service, the goal is still to find the running software. Several additional steps of Reveal Path
are necessary to find theRunningSoftwareCIs. ProcessCIs are shown here related to the IIS Web
Server.

In the above example, note the count on theProcessCI type (59). With theGet Related tool, it would
be tedious to find the correct process. WithReveal Path, the one interesting CI can be easily
identified, and only its relationships revealed.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 75 of 113



Dynamic Models

The savedReveal Path could also be used as aWatchpoint in order to dynamically update amodel. By
applying aWatchpoint on a specific node, using the simpleReveal Path saved from above that finds
all servers using the same unique cluster ID as that server, any new servers which were discovered as
using the unique cluster ID will automatically be added to the Sharepoint servicemodel once this
information enters the UCMDB. This avoids themanual step for themodel owner to manually update a
servicemodel each time the cluster dynamically increases or decreases in scale due to reasons such
as capacity or performance.

Each of themodels created andmaintained by an individual or group can be embedded in higher level
models which own or depend on the building block servicemodels. Although servicemodeling in
Modeling Studio has some static qualities, embeddedmodels reflect changes dynamically within
higher level models to match the distributed ownership andmaintenance of servicemodeling in
Modeling Studio.

Once core servicemodels are built, use perspectives to generate stakeholder-specific views of the
model. Perspectives are another way to build once, reuse many times. This helps further reduce
maintenance of stakeholder-specific views by allowing servicemodel changes to be automatically
reflected in views generated with perspectives on themodel. Adding a New Watchpoint is depicted
below:

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 76 of 113



Queries (TQL)
Topology Query Language (TQL) is the visual environment used to create queries in UCMDB. Think of
TQL as a visual SQL—able to easily express and allow manipulation of topology and graphing
concepts.

Many models begin by creating a query. Queries can be created as standalone, used by something else
later, or used in an API with no human consumer.

Most functions in UCMDB that use CIs or relationships use TQLs—enrichments, Discovery jobs,
integrations, as well as user-facing entities like views and perspectives being discussed here.

From theModeling Studio, a new query may be created. Here are the basic steps to create a TQL for a
simple servicemodel showing the URI endpoint, running software, the host, a web server, and a
database server.

In theModeling Studio, click New > Query to start creating a new query.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 77 of 113



Themodeling pane is shown below. Modeling is done in the pane on the right. The class model is in the
list to the left. Drag and drop CI types into themodeling pane to put them in the TQL.

You can quickly find CI type names in the class list by simply typing in the start of the CI type name. To
find a CI type that begins with comm, likeCommunicationEndpoint, start typing anywhere in the
class model, as shown here:

By starting to type communication while focused on the class model tree pane, the cursor jumps to
the next CI typematching what is typed as shown above.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 78 of 113



Next drag theCommunicationEndpoint into the query definition pane to add it to the query:

Now do the same for twomore CI types—RunningSoftware andComputer. Find the CI type in the
CI Types pane and drag it into the query definition pane.Then calculate the counts. You get something
similar to the following:

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 79 of 113



To relate CI types, select exactly two of the CI types. Right-click, and then select Add Relationship.

Note the two selected CI types, RunningSoftware andCommunicationEndpoint, and the right-click
menu showing theAdd Relationship item selected. If your screen looks similar to the screen capture
above, you are in the right place.

Next selectManaged Relationship to add the relationship to the query as shown here:

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 80 of 113



Do not change anything on the Add Relationship screen for now. Just click OK.

The relationship is added.

Click the calculator button (the above the query builder area) and verify the counts are non-zero. If
so, you are doing it correctly.

Now relate theRunningSoftware to theComputer in the sameway. If Computer is selected first, the
Add Relationship dialog box should show up offering a Composition relationship, like this:

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 81 of 113



If it looks like the previous Add Relationship dialog box, showing the dependency tree, you have the
CIs selected backwards. To correct this, either change the direction of the arrow (betweenComputer
andRunningSoftware as shown here), or cancel and re-select the CIs in the reverse order. When you
are finished, your query should look similar to the following:

This query shows CI Types, relationships, and non-zero counts.

If you previewed the query now, youmay get an error message such as:

It is possible but not recommended to increase this 900-count limit to everything in the CMS that looks
likeComputer > RunningSoftware > CommunicationEndpoint. No applications or services have
been distinguished or even identified. This view would be looking literally at every instance in the CMS
of those related CIs.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 82 of 113



The solution is to add specificity to the query. This can be done by:

l Do this anyway. Add the rest of the CI types and relationships (natural specificity).

l Top-Down method. Use only a specific CI known to belong to a specific service, such as the
communication endpoint.

l Bottom-Up method. Find something else in the infrastructure architecturally unique to the service.

Wewill follow the first two bullets, but not the third, according to the best practices in this document.

For example, the use case calls for application, database, and network components. The process is
the same as above:

1. Find the CI Type name by typing over the class model.

2. Drag and drop a CI type into the query pane.

3. Calculate the count.

4. Select two CI types, right-click, add a relationship.

5. Calculate the count.

n If the result is zeros, back up one step and re-evaluate.

n If the result is a large count, continue the process.

n If the result is a small count, preview the query using theSearch button and evaluate the
results.

6. Repeat until the query results are consumable.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 83 of 113



Here is a sample intermediate result:

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 84 of 113



A preview of the query at this point reveals something similar to the following:

Intermediate query results show proto-models matching the generic query.

When building servicemodels, it is not uncommon to build these utility views to expose discovered
data tomodel owners and SMEs in order to validate discovery results, as well as facilitate service
resource identification.

It is not important at this point to see all of the labels and names of the CI types, although zoom works
here. The query is correctly returning subsets of the topology matching the query.

Each of these groups could be part of an application or business service. The bottom-up technique
could be used at this point to arbitrarily add some uniqueness to the CI types by adding a TQL node
condition, but there is a better way. The application or business service can be associated with all the
CIs in a group by creating amodel. Alternatively, create an application orBusinessServiceCI

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 85 of 113



manually and associate it to any CI in the group. This will anchor the CIs and create a servicemodel
which will allow theReveal Path tool to be used.

Moremodeling techniques using queries are shown in the following sections of this guide.

Some infrastructure elements aremore challenging tomodel due to complexities both in the discovery
as well as the representation of themodel—for example:

l Storage Area Network (SAN) infrastructure

l Virtualization

l Clustering technology

These generally havemore complex chains of CIs and relationships. Therefore, utility views are
valuable for developers constructing servicemodels.

Enabling view builders to add nodes to a view’s TQL based on discovered data, as opposed to building
view TQLs based on expected data, helps to quickly point out deficiencies in discovery as well as
rapidly construct views without prior knowledge of the Configuration Item Type schema.

Best Practice: Using the TQL Node Wizard:

1. Add a few nodes to a view to begin.

2. Right-click on a node on the view’s TQL to select and add related CIs by type that have
discovered instances in the UCMDB.

3. Repeat from Step 2 until the ending node is found.

What was avoided here is the necessity to guess which node should be added to the TQL in order to get
to the next step in the relationship path because the TQLNodeWizard reveals only CI types related to
the selected node that have discovered instances. Additionally, because the TQLNodeWizard reveals
only CI types that have a relationship to the selected node, it is not necessary for the user building the
view to repeatedly switch between the View Manager and the CIT Manager to investigate what
possible CI types can be added and related to any particular node in the view. Finally, by using the TQL
NodeWizard, users building views can quickly find dead-ends to the discovered data to alert the
discovery side of potential problems with the discovery scope or access.

Without prior knowledge of the CI types and relationships involved in the database to storage array
path, one would need to build a view’s TQL node-by-node.

For more information on TQL performance and tuning, refer to the best practices documentMaintaining
a High Performing CMDB in the HP Best Practices Library.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 86 of 113

https://hpln.hp.com/node/11/otherfiles?dir=1647
https://hpln.hp.com/node/11/otherfiles?dir=1647
https://hpln.hp.com/group/best-practices-hpsw


Pattern-based Views
In the context of servicemodeling through theModeling Studio, a view of amodel has a special
meaning. In this case, a view is a combination of amodel and a perspective. People use views to
consume topology. Applications usually consume TQL/queries directly.

A view is a good choice when people are directly consuming the content. Views allow TQL/query
results to be displayed in a drill-down fashion—collapsing and expanding topology as needed. Views
also allow folding and grouping based on CI type or attribute values.

As a best practice, building the TQL inside the view builder saves time and avoids accidentally creating
the wrong TQL type.

To conserve resources, ensure the priority is low. Once you have a view TQL, you can create a view:

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 87 of 113



The query is retrieved and displayed in the View Builder.

A view is created by modifying view-level characteristics of each node in the query.

Be sure to save the base query as typeView.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 88 of 113



A view is a convenient way to store how to present the topology. Grouping by CI type and Hierarchical
layout is the default. Try to stay with a common presentation layout, but some exceptions are normal.
Sometimes a circular layout or symmetrical layout is better at displaying groups and clusters of CIs.

Layering allows the presented view to allow drop-down, drill-down navigation. The layering layout is
controlled in the right pane. Automatically arrange the Hierarchy or drag the CIs into the Hierarchy
where desired.

The view may now be tested, consumed, and so on. For more information, refer to the UCMDB
administration reference documentation in the HP Software Product Manuals Web site.

Modeling Studio “Models”
Before proceeding, it is important to disambiguate the termmodel. The sections onmodels here refer
to the entities in theModeling Studio of UCMDB. Where this usage conflicts or is ambiguous with the
meaning of servicemodel (as described in the first part of this document), it will bementioned
specifically as service models.

Modeling Studio models are reusable collections of CIs which describe a logical entity and the
resources it owns or depends on. Typically, an individual or group (of SMEs) would be responsible for
creating andmaintaining themodel of this logical entity.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 89 of 113

http://support.openview.hp.com/selfsolve/manuals


Models automatically create and relate a business CI to the rest of the CIs in themodel:

This is a good way to begin creating servicemodels.

Model Contents

A model’s contents can be populated from a list, by a query, and frommany places in the UCMDB user
interface via the right-click menuAdd CI to Model item.

To simplify this concept further, think of themodel as a box of pebbles where the box represents the
logical entity and the pebbles inside this box are the configuration items which it owns or depends on.
The owner of this box allows anyone to look at the contents of the box and the owner is the only one
able to add or remove pebbles from the box. One important point to add is that amodel can contain
other models. In this case, the owner of any box can add the box of another owner. However, the owner
adding another box into their box does not have authority to change the contents of the embedded
box—only the ability to add or remove an entire box.

A model can also be consumed from a Perspective.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 90 of 113



Pattern-based Models
Pattern-basedmodels are useful for creating servicemodels. The top layers of the service are
automatically created and related to all the CIs in themodel. BothBusinessService and
BusinessApplication CIs are good starting points for most servicemodels. Continuing with the
example above, a pattern-basedmodel will be created using aBusinessServiceCI.

Create theBusinessServiceCI to associate with themodel.

Select the query, or create it if you have not created it yet.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 91 of 113



To add CIs in the query to themodel output, right-click the desired node and select Add to Model
Output. Repeat and save. CI types that are present only to link other CI types and are not intended for
consumption are not be added to themodel output.

TheCommunicationEndpoint andComputerCI types are omitted from themodel output.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 92 of 113



When themodel is saved, all CIs added to themodel output are related to theBusinessServiceCI
created at the beginning of themodeling process (see "Step 2: Model Top Layers of the Service" on
page 51).

Static Models
Models may exist as amanually-selected fixed list of CIs. A model built this way has some advantages
to pattern-basedmodels:

l Quick to create—from start to finish in minutes or hours

l Easy to create—does not require advanced UCMDB TQL knowledge

l The service itself is also fixed and will not change

l Static model may be used even if there are no relationships present

Easy ways to organize CIs into a group that can be used as a servicemodel:

l CI collections

l Instance-basedmodels

CI Collections
CI collections use theCiCollectionCI type to relate CIs to an arbitrary collection. Create a new
CiCollectionCI and name it somethingmeaningful to the collection, such as the business application
to which all the CIs in the collection belong.

There are two relationship types to link CIs to a CI collection:

l Usage

Usagemeans one component uses and therefore depends on another component. This relationship
means that a change in a component carries impact consequences for usage relationship
dependencies, but not direct life cycle impact.

l Containment

Containment is a component in which a self-contained component is contained in a container
component. This container component has a Containment relationship to the contained component.
The container component determines the life cycle of the contained component and is, therefore,
the owner of the relationship and the CI referred. The container component is the sole supplier of the
contained component. For example, a UNIX CI may have a Containment relationship with Memory,
CPU, and Interface CIs representing that host's resources.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 93 of 113



Which CIs should be related to theCiCollection?Only CIs directly used by the containing
business application. For example, do not relate both a node and a database running on the node.
Do not relate both a web service and the web server on which it runs. Only relate the web service.

As shown in the diagram above, do not create additional links to lower layers of the infrastructure
already connected. Creating unnecessary links can complicate or invalidate impact analysis.

To add CIs to the collection, use theRelate to CI tool in the UCMDB user interface. This powerful tool
is often overlooked as a useful way to quickly relate many CIs to a collection. Using theSearch
function in CI mode lets you pick and choose CIs quickly and precisely. Using theViewmode allows a
TQL via a View to present the list of CIs to add. This may potentially be valuable, but since this is a
static list, by definition, a TQLmay not be the best way to produce a static list, unless the list is only
part of what will be in the CI collection. Enrichments may also be used to create the relationships,
based onmatching data, but with the same caveats as using the View search.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 94 of 113



TheRelate to CI tool is accessible in theModeling Studio and from other common tools, such as the
Get Related tool.

An IT Universe view is shown below highlighting theRelate to CI tool.

Use theRelate to CI search function to quickly locate CIs to add to a CI collection.

Instance-Based Models
Instance-basedmodels can be populated frommany places in the UCMDB—wherever a CI is
displayed. Its right-click menu contains Add CI to model. This tutorial will go through creating an
instance-basedmodel in theModeling Studio.

Click New > Instance Based Model.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 95 of 113



Select the type of top-level CI for themodel, and give it a name. The CI types shown in the image
below may all be used as models.

In the example above, a new model namedAdvantage Inc Sharepoint Instance Model is created
using aCiCollection.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 96 of 113



Click OK and then click theCI selector tab.

Click theSearch CIs tab and search for CIs to be included in themodel.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 97 of 113



Drag the CIs into the list pane, then click theSave button.

TheMap button now shows the list.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 98 of 113



Expanding the List shows the CIs contained in the list.

Now themodel is complete and can be consumed.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 99 of 113



Perspective-based Views
Building on the previous example, we can generate a Perspective-based view for the list using the

View Builder button.

A list of perspectives is shown. These are out-of-the-box perspectives and do not need to be created.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 100 of 113



Select theRelated hosts perspective and click OK.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 101 of 113



TheRelated hosts perspective now shows the view’s related CIs by count in a list.

Double-click the container to reveal theRelated hosts perspective. You can now save this model or
use it as a servicemodel or for any other useful purpose.

Click OK to save the Perspective-based View.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 102 of 113



Perspectives

What is a Perspective?

A perspective is a simple and reusable query that exposes additional entities and relationships in order
to render stakeholder-specific views for a givenmodel.

The following are examples of perspectives:

l Network perspective that exposes the underlying network infrastructure

l Storage Fabric perspective that exposes the underlying SAN storage fabric

l J2EE perspective that exposes the J2EE components related to the CIs in themodel

l Many more out-of-the-box perspectives around hosts, resources, applications, and services

Youmust create or select a query first.

Then set one or more nodes as Contact Query Nodes.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 103 of 113



Save the perspective with ameaningful name and click OK. The perspective now appears in all
perspective lists in theModeling Studio and can be used to createmodels.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 104 of 113



The perspective selector in themodel editor now shows the newly created perspective.

Perspectives can be used to filter model results for more specific content. A perspective can be applied
with almost any scheme, allowingmore reuse of models and queries.

Using Out-of-the-Box Perspectives

UCMDB provides many built-in perspectives for you to use or modify. The examples of perspectives
previously listed are a partial list. Generally, the out-of-the-box perspectives are named to describe the
type of content view applied in the perspective. For example, Storage Perspective focuses the view to
SAN, disk, file systems, and related hardware. Likewise, Network Perspective produces a
Layer-2-focused view.

You are encouraged to review and evaluate the default perspectives for use with your servicemodels.
Reusing default perspectives can save time and effort in delivering content that is precisely targeted to
a specific consumer type.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 105 of 113



Templates
This section includes:

Overview 106

Template-based Views 110

Overview

Although utility views can provide a comprehensive listing of IT assets, they typically do not answer
specific questions such as:

l Is server xyz running Solaris 9 or Solaris 10?

or

l Which storage arrays support Oracle 9 databases?

or

l Which databases use the storage array at 10.1.1.34?

These questions may come up as servicemodelers and SMEs use the utility views to validate
discovery results or build models in theModeling Studio. Rather thanmodifying the utility view’s
underlying view TQL to answer each question, a utility view using parameterized view TQLs allow
users of the view the ability to modify attribute conditions on the view to answer specific questions
through the IT UniverseManager. This not only makes modification of the utility views much simpler by
enabling limitedmodification of the view directly from the IT UniverseManager, but it also:

l Supports a security model which prevents users from accessing the utility’s view TQLwhile still
allowing controlled exposure to the view TQL conditions to facilitate consumer-specific viewing,

l Reduces maintenance by creating a one size fits all view that can be used by many consumers to
answer different questions without creating one view to answer one question every time.

Templates, or parameterized views, are simple to enable and only require a few steps to utilize. When
building the parameterized view TQL, add a node condition to any node whose instances vary based on
an attribute value.

For example, to answer the questionWhich hosts use Oracle 9, Oracle 10, or Oracle 11?, a user
would need to define a two-node view TQLwith a host containing a database. Then the user would add
a condition to the database node where theApplication Version attribute has a parameterized value
type. When viewing this parameterized view TQL from the IT Universe page, a small pencil icon along
the top of the left-hand navigation bar exposes themodifiable parameters for the current view.
Changing these values forces the parameterized view TQL to recalculate using a new value for the
condition, resulting in data which helps answer a specific question such asWhich hosts run Oracle
10g?

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 106 of 113



First, create a new template withNew > Template.

The first step in creating a template is to select or create a query. In this example, we will create a new
query withNew Template > Create new query.

The query can represent a use case. For example, an IT administrator needs information about
selected servers that support the Sharepoint service. Using a template, the administrator can supply a
parameter and dynamically alter a template to render only those servers that match a given name. The
parameter is used in the query to filter theName of theComputerCI types.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 107 of 113



If you do not save any parameterized attributes, you can still save the template as a normal pattern
view.

Create one or more parameterized attributes using the Query Node Properties dialog box.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 108 of 113



A template query looks like a normal query with conditions. Save normally.

Now a new Template-based View can be created.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 109 of 113



Template-based Views

Like other views, a template-based view provides visualization configuration items such as folders,
layers, and grouping. Template-based views also provide facilities for a user-friendly name and supply
the parameter values that form the template part of template-based views. Parameter values are fed
into TQL conditions which directly control the view's contents.

To continue the example started earlier, a parameterized query has been created and saved. Now we
create a view to reference this query and render the view itself.

Select the template query created earlier to create the view.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 110 of 113



Parameters can be supplied in many ways via a CSV file, or usingAdvanced Naming.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 111 of 113



Enter parameter names to be used in the template.

Enter parameters to select the parameter value:

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 112 of 113



Apply the value%labm% to theName attribute of the node in the query.

The view now displays only thosemodels with names containing labm in theWeb servers.

ServiceModeling
Chapter 5: Developing ServiceModels in UCMDB

HP Best Practices (3.00) Page 113 of 113


	Welcome to This Guide
	How This Guide is Organized
	Prerequisites
	Who Should Read This Guide
	Resources
	Additional Online Resources
	Glossary

	Part I: Service Modeling Concepts
	Chapter 1: Service Modeling
	What is a Model?
	What is a Service?
	What is a Service Model?
	Overview
	Service Model Example
	Understanding Service versus Application

	Class Model
	Overview
	Populating the CMS
	Queries
	Configuration Item Types
	Relationships
	Valid Links
	Using the Class Model
	Simplicity, the first best practice


	Chapter 2: Modeling Use Cases
	Overview
	Common Goals: Key Driver of Service Modeling
	Data Quality
	Non-Discoverable Data in Service Models
	Modeling Use Cases Hierarchy
	Topology Visualization
	Impact Analysis: Analytical Modeling
	Change Management
	Configuration Management
	Auditing and Compliance
	Data Center Transformation
	Major Service Modeling Use Cases
	Closed Loop Incident Process (CLIP)
	Change Control and Release Management (CCRM)
	Business Service Management (BSM)
	Service Asset and Configuration Management (SACM)


	Chapter 3: Service Modeling Approaches
	Bottom-Up Modeling
	Top-Down Modeling


	Part II: Service Model Development Cycle
	Chapter 4: Service Model Development Cycle
	Overview
	Modeling Quick Reference
	Overview
	CMS Content
	Service Model Building Blocks
	Discovery Verification

	Service Model Upper Layers
	Find Generic n-tier Applications
	Link Upper and Lower Layers of a Service Model

	Modeling Process
	Overview
	Step 1: Use Cases and Research
	Step 2: Model Top Layers of the Service
	Step 3: Verify Required CIs and Relationships in the CMS
	Step 4: Identify Service Entry Points
	Step 5: Identify Running Software
	Step 6: Link Software to Communication Endpoints
	Step 7: Model and View Bottom Layers
	Overview
	Creating the Presentation Layers of the Model
	Creating and Using Templates
	Ownership versus Dependencies

	Step 8: Reuse, Maintain and Refine
	Organizing Models
	Service Modeling Challenges
	New versus Existing Services
	Value Realization may be Protracted
	Expect Ambiguity
	Expect Discovery Problems




	Part III: Service Models in UCMDB
	Chapter 5: Developing Service Models in UCMDB
	Modeling Studio Overview
	Choosing the Right Model Type
	Example End State
	Modeling Studio
	Overview
	Get Related CIs Tool
	Reveal Path: Increase Modeling Efficiency
	Dynamic Models

	Queries (TQL)
	Pattern-based Views
	Modeling Studio “Models”
	Model Contents

	Pattern-based Models
	Static Models
	CI Collections
	Instance-Based Models
	Perspective-based Views
	Perspectives
	What is a Perspective?
	Using Out-of-the-Box Perspectives

	Templates
	Overview
	Template-based Views




