
HP Application Life Cycle Management Best
Practices Series
for ALM Practitioners

Workflow Best Practices

Document Release Date: April 2012

Software Release Date: October 2010

2

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or
copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer
Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Copyright Notices

© Copyright 2002 - 2012 Hewlett-Packard Development Company, L.P.

Trademark Notices

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.

Oracle® is a registered U.S. trademark of Oracle and/or its affiliates.

 3

Documentation Updates

The title page of this document contains the following identifying information:

• Software Version number, which indicates the software version.
— The number before the period identifies the major release number.

— The first number after the period identifies the minor release number.
— The second number after the period represents the minor-minor release number.

• Document Release Date, which changes each time the document is updated.

• Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using the most recent edition, visit the
following URL:

http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign-in. To register for an HP
Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

Or click the New users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product
support service. Contact your HP sales representative for details.

http://h20230.www2.hp.com/selfsolve/manuals�
http://h20229.www2.hp.com/passport-registration.html�

4

Support

You can visit the HP Software support web site at:

www.hp.com/go/hpsoftwaresupport

This web site provides contact information and details about the products, services, and
support that HP Software offers.

HP Software online software support provides customer self-solve capabilities. It provides a
fast and efficient way to access interactive technical support tools needed to manage your
business. As a valued support customer, you can benefit by using the support site to:
— Search for knowledge documents of interest
— Submit and track support cases and enhancement requests

— Download software patches
— Manage support contracts
— Look up HP support contacts
— Review information about available services

— Enter into discussions with other software customers
— Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in.
Many also require an active support contract. To find more information about support access
levels, go to the following URL:

http://h20230.www2.hp.com/new_access_levels.jsp

To register for an HP Passport ID, go to the following URL:

http://h20229.www2.hp.com/passport-registration.html

http://www.hp.com/go/hpsoftwaresupport�
http://h20230.www2.hp.com/new_access_levels.jsp�
http://h20229.www2.hp.com/passport-registration.html�

Introduction 5

Contents

About Workflows ... 9

Audience .. 10

Prerequisites ... 10

Structure ... 11

Feedback.. 11

1 Introduction to Workflow .. 12

Importance of Workflow ... 12

Common Steps .. 12

Understand Project Needs ... 12
Create Workflow Requirements Document .. 13
Write Workflow Code ... 13
Test Workflow Code ... 13
Move Workflow to Production ... 14
Manage Workflow Requests .. 14

2 Workflow Customization Guidelines .. 15

Project Customization Options .. 15

Permission Groups ... 15
Project Lists .. 15
Project Entities ... 16
Requirement Types .. 16

Generic Workflow Rules ... 17

Test Environment ... 18

What Is Test Environment? .. 18
Why Set Test Environment? .. 18

Debugging Workflow Code ... 19

Dos and Don’ts of Workflow ... 20

6

Do .. 20
Do Use Globals ... 20
Do Optimize Code .. 21
Do Improve Code Readability ... 21
Do Comment Code ... 22
Do Access By Name ... 23
Do Reset Prior to Setting New Layout ... 23
Do Backup Code ... 23
Do Use Global Constant vs. Field Names .. 24
Do Cleanup of Objects ... 24
Do Standardize .. 24
Do Error Handling ... 24

Do Not ... 25
Do Not Duplicate ... 25
Do Not Put Too Much Code ... 25
Do Not Set Other Properties Prior to Visible .. 26
Do Not Mess Workflow Code... 26
Do Not Update Parameters ... 26
Do Not Modify in New ... 26
Do Not Assign in MoveTo .. 26
Do Not Modify After Post .. 26
Do Not Use Many API Calls ... 27

Using API in Workflow... 27

Use ALM API for Modifications .. 27
Example – Use workflow objects instead of SQL statement 28

Minimize Activity on Client .. 29
Example – Use filter when working with history .. 29
Example – Calculating design steps... 29

3 Workflow Events ... 30

General .. 30

Event Functions ... 30
Event Subroutines.. 30
Naming Conventions .. 31
Entities ... 31

Common Modules ... 32

CanLogin... 32
Example – Notify user upon login .. 32

CanLogout .. 33

7

Example – Notify user before logout .. 33
ActionCanExecute .. 33

Example - Prevent defect deletion .. 34
Example - Find action names ... 34

EnterModule ... 35
Example – Hide a button .. 35

ExitModule ... 36
DialogBox .. 36

Example - Identify view type .. 36
CanCustomize .. 37

Example – No entry to customizations .. 37
Attachment_New .. 38
Attachment_CanOpen ... 38
Attachment_CanPost ... 38
Attachment_CanDelete.. 39
GetDetailsPageName ... 39

Example - Update Tab... 40
Entity Modules.. 41

Entity_New ... 41
Entity_MoveTo ... 42

Example - Update setup when moving .. 43
Example - Dependency list .. 44

Entity_ FieldCanChange ... 44
Example - Allow or deny a change ... 45

Entity_ FieldChange .. 46
Example - Dependency values .. 47
Example – Update setup on change ... 48

Entity_ CanPost ... 48
Example - Disable update ... 49

Entity_CanDelete ... 50
Entity_AfterPost .. 51

Example - Send Mail ... 52
Workflow Sample - Define a Setup ... 53

Check User ... 53
Set Field Appearance .. 53
Reset to Initial ... 53
Set Status ... 54

8

4 Conclusions .. 56

9

Welcome To This Guide
Welcome to the HP Workflow Best Practices guide.

This guide provides concepts, guidelines, and practical examples for the best
implementation of workflows in various organizations.

About Workflows

New technologies, architectures, business trends, and end-user expectations
are changing the very nature of applications. As a result, applications
themselves are changing. New tools and architectures have emerged that
make it faster and simpler to develop and deliver composite applications, rich
Internet applications, and interactive Web 2.0 services. New processes such
as agile development are being implemented with the hope of making it
easier to create adaptable applications quickly.

HP Application Lifecycle Management (ALM) is one complete solution that
covers all the phases that software travels through during its existence.
Embracing ALM practices and solutions enables software teams to meet the
high expectations and demands of the business. HP ALM suite can serve
various companies to achieve their specific needs based on industry segment,
company focus and processes, amount of applications and their types, and so
forth. No company works in the same way as the other, even in the same
industry and under similar circumstances. The ability to customize HP ALM
projects in many ways to meet your organization’s business process needs is
therefore an important aspect of each implementation.

One of the strongest tools provided by HP ALM is the built-in scripting
capability used to define, control, and manage the business flows performed
within the project. The ALM project administrator can write workflow scripts
to customize the HP ALM user interface, and to control the actions that users
can perform.

The purpose of this document is to assist HP ALM customers to assess their
current customization practices and successfully build and maintain efficient
workflow scripts using advanced features provided by HP ALM. All aspects of
this process have been researched using best practice data and expertise from
various sources including HP’s operating system administrators, HP’s
professional services organization, technical documentation, books from

10

industry experts and personal experience of many customer testing
organizations. These guidelines will help reduce the initial creation time and
achieve maximum value in operating HP ALM.

Audience

This guide is intended for:

• Project Administrators

• Template Administrators

• Customization Specialists

Prerequisites

To use this book, you should have a good acquaintance with major phases of
Software Development Life Cycle (SDLC). You should also be familiar with
the business processes in actual IT organizations.

Operational knowledge and administrative privileges of HP ALM are
essential in implementing these best practices.

11

Structure
This guide is organized as follows:

• Introduction to Workflow

• Workflow Customization Guidelines

• Workflow Events

• Conclusions

Feedback

If you have questions, comments, or valuable best practice information you
want to share, send a message to the following email address:

alm_cust_feedback@hp.com

mailto:alm_cust_feedback@hp.com�

 12

1 Introduction to Workflow

Importance of Workflow

No company is like another – different business processes, industry
affiliation, development methodologies, legacy and modern technologies in
use dictate the need for unique implementation of HP ALM. A “one size fits
all” philosophy can hardly be found in real IT organizations. Therefore every
HP ALM customer eventually takes advantage of the flexibility provided by
workflow scripting.

However, workflow scripts can have a significant impact on a project’s and
the overall site’s performance. Therefore, it is extremely important to develop
workflow code that is logical and organized. It is also critical to implement a
sound process for developing and maintaining workflow code.

The following steps describe the proper workflow steps in detail.

Common Steps

Understand Project Needs

Before creating or modifying workflow code, it is important to understand the
project structure, methodology for working with the project, organizational
processes, and the various personas involved.

To succeed with your workflow code, first gain an understanding of each
group’s or persona’s requirements, and determine workflow that takes all
groups into account. Identify the common denominators to create a combined
process that meets the overall needs.

13

Create Workflow Requirements Document

Before rushing to write the code, start from the requirements document,
which should contain planned workflow customizations. The purpose of this
document is to define initial customization. Once the workflow is in
production, this document must be updated regularly to include all changes
that are implemented.

This document should include the following:

• The complete workflow process

• The required functionality of the workflow

Here are some examples:

– Requirement review process - your organization may demand that
each requirement must be reviewed and approved before it can be
linked to a test.

– Actions that users or groups can execute according to their
permissions.

– Send email notification when a specific field change is made.

• Layout and format

For example, you may want to determine which fields are available when
creating a new defect, defining different sets of fields per user group, field
locations in different tabs, and so forth.

 The document should then be approved by all relevant stakeholders.

Write Workflow Code

After the workflow customization document is approved, begin writing the
workflow code in a testing environment. For more details on the testing
environment, see the Test Environment section.

Test Workflow Code

Invite end users to the testing environment to validate your changes. Ensure
that the workflow implementation meets their needs.

14

Move Workflow to Production

Workflow is enforced on the client side. During login, customization and
workflow files are downloaded to your local client machine under the
following directory: %temp%\TD_80.

After the workflow code is moved to the production environment, it is
necessary to log out and log in again to access the latest customization and
workflow modifications.

Manage Workflow Requests

To be in control of your workflow code, especially when multiple people are
involved, define a system to manage new workflow requests.

This system can be used to trace requests, understand the business needs
behind them, the impact of the change, its importance, the request scope
(how many people need the feature), and so forth. Such a system should also
provide the ability to send notifications and status about the requests
progress.

One possible solution can be to define an ALM project for the specific purpose
of managing new workflow requests.

 15

2 Workflow Customization Guidelines

Project Customization Options

HP ALM Workflow scripting capabilities are based on different customization
sections as explained below. Before writing the code, identify all other
customization needs in Project Customization. Those will be used to
implement the workflow.

Permission Groups

To protect a project from unauthorized access, ALM enables you to assign
each user to one or more user groups. ALM includes predefined groups with
default privileges. Each group has access to certain ALM capabilities.

You can create a new group, based on the privileges of an existing group.
Choosing an existing group that has similar access privileges to the new user
group you want to create minimizes the level of customization you need to do.

Note that setting permissions according to user group can be used not only to
enforce accessibility, but also for mail actions, notifications, and so forth.

HP does not recommend assigning a user to more than one user group.

Project Lists

An ALM project contains a set of predefined lists that are used for default
project customization, such as defect statuses and Yes-No lists. Some of those
lists can be customized to support individual processes used in your
organization. Other lists cannot be customized, as ALM relies on the list’s
values in its internal system logic. You can also create user-defined lists
containing values that you can enter in a lookup list field.

16

Project Entities

Entities are the building blocks of any ALM project. Entities contain data
entered by users for a specific application management process and the data
is stored in tables. An entity can be any work object, such as requirements,
tests, design steps, attachments, or defects.

Project Customization allows you to set attributes and properties for the
ALM entities, such as required fields, read only, and verify value. Each entity
contains ALM default fields, called system fields. Entities can also include
user fields that you can create. A user field can be of the following types:

— User list (list of all users in the project)

— List

— Number

— Date

— String

In Project Customization, you can define properties for each project entity,
such as defining which fields are required to be filled in by users and for
which fields data history is logged. Some of these properties can be set using
workflow as well. It is recommended to set the default behavior using Project
Customization and change it only in special cases using workflow scripts.

Each entity has a limit of up to 99 user-defined fields. Therefore, HP
recommends working together with all stakeholders to include fields that
match most stakeholders’ needs and will not become redundant after a short
time.

Requirement Types

You can define requirement types for your project. A requirement type
defines which fields are optional and which user-defined fields are available.
This enables you to create user-defined fields that are only available for
requirements of a specific type.

17

Generic Workflow Rules

Using workflow code, you can further customize your project. You can define
settings such as:

— visible and required fields

— the order in which fields are displayed in a dialog box

— which fields display in each dialog box tab

— lists to be assigned to specific fields

— default values for specific fields

— dependencies between field values

You can define these settings according to user group.

Important notes:

• Workflow code overrides any settings defined in the specific
customization category in Project Customization.

• You can perform certain customization, such as defining transition rules
for user groups or set field properties for requirement types, using either
the specific Project Customization page or through workflow code. It is
recommended to decide on one method for this customization, and not
combine both methods.

• Using Automail, ALM enables you to automatically notify users via email
each time changes are made to specified defect fields. Using the
SendMail_AfterPost function, the workflow enables you to define
automatic notification for all project entities, add complex conditions, or
use it for specific users or user groups. It is recommended to ensure that
you do not create any overlap between Automail and the workflow
function.

• Workflow scripts enable you to control actions of entering and exiting
modules, as well as limiting module access. To prevent access to a specific
module for a user group, HP recommends using the Module Access page
in Project Customization. Do not block access to modules using workflow
scripts as it conflicts with the Module Access functionality.

18

Test Environment

Before implementing workflow customization on your production
environment, HP recommends validating custom functionality in a test
environment that reflects your specific configuration.

What Is Test Environment?

The testing environment is separate from and precisely reflects the
production environment. It simulates the configurations and applications
installed on the production system, including the database server, software,
and production projects. By testing the workflow in your test environment,
you can get a better picture of the results you can achieve, while identifying
and preventing any potential negative impact to your production
environment.

Why Set Test Environment?

Workflow has a great impact on the way your project functions. HP
recommends setting up a test environment for the following reasons:

— It is advisable to test the workflow before going live.

— If the workflow fails, no real harm is done since the test environment
is independent of the production environment. Possible harm in
production would be data loss, functionality blocked by workflow
errors, and so forth.

— Early identification and detection of problems.

— Verification by stakeholders of the planned process.

19

Debugging Workflow Code

You can debug workflow code in a number of different ways:

Option Tool Functionality Used for

Adding
Msgbox via
ALM
workflow

This is a built-in capability of ALM
Workflow code.

You can add Msgbox (message box)
to any place in the workflow, in
order to view the field value, action
name, location in the code, and so
forth.

Using this method, it is
recommended to comment the error
handling line in your code:
On Error Resume Next

Debugging a specific
location in the code

Dbgview This freeware monitor debugs
output on your local system and
prints out all application events.
In order to view only workflow
events, you can filter by the word
‘workflow’.
Please note – this option allows you
to see only built-in events and not
additional functions that you added.

Vendor: Microsoft (SysInternals)
URL:
http://technet.microsoft.com/en-
us/sysinternals/bb896647

Viewing the workflow
procedures invoked
by ALM

Microsoft
Visual Studio

This is a commercial product that
allows you to validate your code by
using breakpoints, inspect variables,
and so forth.

To attach the workflow code to
Visual Studio, produce an error in
the workflow code at the point you
want Visual Studio to attach. One
way to do so is to call a subroutine
that does not exist. When Visual

• Debugging a
specific location
in the code

• Viewing the
flow of the code
that you wrote

• Observing the
code in runtime

20

Studio is installed, such an error in
the script will pop up a dialog
allowing you to attach to the script.
Please note that you should
comment On Error Resume Next in
your workflow code to use this
option.

In addition to the above tools, you can implement your own logger. HP
recommends that if you use your own logger, please ensure you implement
the option to enable or disable it according to your needs, to prevent a
negative impact on performance.

Dos and Don’ts of Workflow

Here are the recommended common practices that should help you with
mastering workflow.

Do

Do Use Globals

In order to pass values between different events, it is necessary to use Global
Variables or Global Constant.

The variable can exist at the Module level. The variable can be used in the
Module events.

21

In order to pass values between different module events, the global variable
should be defined in the common module.

Do Optimize Code

When programming in VBScript, you may find that you have to repeatedly
program the same code. This is usually an indication that you should be
using a function to reduce code repetition:

— Use procedures and functions instead of the redundant code

The following common tasks are examples of good subjects for
separate functions or procedures:

– Setting field properties

– Setting up fields on the form

– Setting list dependencies

– Any procedure that works with OTA API

— Use a Switch statement instead of repetitive ElseIf statements

The rule of thumb here is that if there are two or more ElseIf
conditions, use a Switch statement.

Do Improve Code Readability

In addition to reuse of repetitive code, functions are also useful to increase
code readability. The following are the recommended good practices to help
achieve better code readability:

— Use blank lines to logically separate related blocks of code.

— Make use of introductory (header) comments from the first variable
declaration and the last declared variable from the code itself.

— Precede all comments with a blank line.

22

— Indent code and comments within a procedure by using a two- to four-
space tab stop. (The Visual Basic Editor uses a four-space tab stop by
default.) As with white space, indents are used to organize code
logically and make it visually appealing. The following list contains
some general guidelines on using indentation correctly to make your
code more readable and maintainable:

– Indent all code and comments within a procedure at least one tab
stop. The only code lines that are not indented are the beginning
and end of the procedure and line labels used in connection with
your error handler.

– If you use line breaks to format a procedure's argument list, use
tabs to indent the arguments and their data-type declarations, so
they are aligned with the first argument in the list.

– Indent declared variables one tab stop. Declare only one variable
on a line.

– Indent control structures at least one tab stop. If one control
structure is embedded within another, indent the embedded
structure one tab stop. Indent code within a control structure one
additional tab stop.

– If you use a line-continuation character to break a line of code,
indent the new line one extra tab stop. This creates a visual cue
that the two (or more) lines belong together. If the line following
the continued line is indented as much as the continued line
would be, add one more tab to the continued line to distinguish it
from the next line.

– Indent comments to the same level as the code to which the
comment refers.

Do Comment Code

Use comment templates like the one below to document your code:

'##

'#Date:

'#Designer:

'#Purpose:

'##

23

Do Access By Name

It is a common task to access a field or fields in the certain entity:

— Use statement <Entity>_Fields.Field(“<Field_Name>”) to
access a field by name.

— Use loop on <Entity>_Fields.FieldById(i) to access all fields in
the collection. This can be used, for example, to reset the fields’ order.

Both methods allow working with the fields of the current entity.

The current entity can be defined in the following way:

— Current entity

The entity for which the current event is triggered. Almost each event
points to the entity type for which the fields can be retrieved. For
example, in Defects_Bug_ events, only Bug_Fields can be
manipulated; in TestPlan_DesignStep_ events, only
DesignStep_Fields can be accessed.

— Focused item

From all entities of the collection defined by the event, only the fields
of the currently focused entity can be retrieved. For example, the test
on which the cursor is placed, or the current run in manual runner.

To retrieve the fields of other objects of the same or other object type, use
OTA API.

Do Reset Prior to Setting New Layout

Make sure you reset the layout for all fields before setting the specific fields’
layout such as PageNo and ViewOrder.

Since the fields have some default predefined order, it is important to reset
this order before defining the new, custom one. Otherwise, you can have a
field other than the desired field with the same order, resulting in an
unknown order for all remaining fields.

See Workflow Sample later in the book.

Do Backup Code

HP recommends performing regular backup of your workflow code. You can
copy all or part of your workflow script and paste into an external text file to
save in the file system.

24

Do Use Global Constant vs. Field Names

In order to facilitate code readability, use Global Constants instead of the
field names.

You would need to declare Global Constant for each field name - see section
Do Use Globals above.

Example:

If Bug_Fields.Field(Bug_Status).Value=”Closed” then

Bug_Fields.Field(Bug_Closed_In_Version).isRequired = true

End if

Do Cleanup of Objects

Make sure you clean objects at the end of their scope. For each object
instance, it is imperative to clean the unused objects. It improves ALM
performance and helps prevent errors.

set myTDConnection = TDConnection

set myTDConnection = nothing

Do Standardize

HP recommends applying standardization across all projects. The ALM
project administrator, who is responsible for more than one project, should
use common conventions in all projects. This contributes to code readability
and maintainability and enables cross-project functionality.

Do Error Handling

One of the most important factors that affect quality of the workflow
scripting is the proper implementation of error handling.

In general, here are some recommended simple practices of error handling
that would help better control application behavior:

— Use an On Error Resume Next statement at the beginning of each
procedure and function

— Use On Error GoTo 0 at the end of each procedure or function

— Show errors to the user in some standard message box

25

The code should be added once to each workflow script (Defects, Test
Plan, and so forth) like in the PrintError function below.

Use the Visual Basic Err object that contains information about run-
time errors for that purpose.

Sub GetBug1

 On Error Resume Next

 Set Bug1 = TDConnection.BugFactory.item(1)

 PrintError(“GetBug1”)

End Sub

Sub PrintError(strFunctionName)

 If Err.Number <> 0 Then

 MsgBox "Error #" & Err.Number & ": " & Err.Description, _

 vbOKOnly, "Workflow Error in Function " & strFunctionName

 End If

End Sub

Do Not

Do Not Duplicate

Do not duplicate your code in the Entity_CanChange event and in the
EntityChange event.

The code based on a field change could be written in the Entity_canChange
event or in the Entity_Change event. Please make sure you understand the
difference between these events and follow the simple rules below in your
workflow code:

— The code that deals with permissions (allow change status) should be
written in the Entity_CanChange event

— The code that processes dependency values or dependency lists should
be written in the EntityChange event

Do Not Put Too Much Code

Too much code in the CanLogin event or in the EnterModule event impacts
performance. A common error is to update entities during the CanLogin
event.

26

Do Not Set Other Properties Prior to Visible

Set the IsVisible property before setting the IsRequired or IsReadOnly
property of the field.

Setting the mandatory or read-only property for the field that is not visible on
the screen is meaningless and is ignored by ALM. So it is important to ensure
that the field is visible before setting any of these properties.

See Workflow Sample later in the book.

Do Not Mess Workflow Code

Even though an ALM project may be in use for several years, the workflow
code should still be clear and extendable.

— Prefer Select over If

— Use functions

Do Not Update Parameters

Do not update parameter values from a workflow function. Specifically, do
not update the NewValue parameter in the Entity_CanChange event.

Do Not Modify in New

In the new entity event, it is not recommended to modify actions, because
the new entity event is called when the entity is created and not when the
new entity dialog box is opened.

A common use case is when a user opens the new entity dialog box for the
second time. The new entity event will not be called since the entity was
already created the first time the dialog box was opened.

Do Not Assign in MoveTo

Do not assign values to a field in the MoveTo event. It is a bad practice
because the MoveTo event would lock the entity.

Do Not Modify After Post

Do not perform any object modification on the After_Post event.

27

Do Not Use Many API Calls

Do not use many API calls, because calling the APIs increases the level of
communication between the server and the database. Each call to an API
results in a network communication, causing the script to take longer to run.

For example, in order to process 100 entities, try to get all of them in one
filter instead of retrieving each one separately.

Using API in Workflow

Use ALM API for Modifications

ALM API provides a separation layer between the user interface (or any
application that uses it) and the server logic. HP recommends following
these rules when using API calls:

• Use a predefined TDConnection object to get the current session

When using OTA API from external applications like Visual Basic or
Excel, the first step for any application that uses OTA is to create the
instance of the TDConnection object, initialize the connection to the
server, and connect to the database. However, in the workflow there is
the predefined TDConnection object (in this case TDConnection is not
only a class name, but also the name of the global variable that contains
the instance of TDConnection), which points to the same session in which
the current user works. This means that access to all ALM collections and
objects is always available from any place in the workflow.

• Avoid direct update of the database using the Command object because of
the following potential problems:

— Bypassing server mechanism leads to:

– Entity locking

– Loss of history

– Unwanted other functionality (setup mail)

— High maintenance of the queries

— Can result in data corruption or inconsistency

28

• Use mailing methods available in OTA to send the custom mails to the
users

OTA allows access to ALM mailing, which allows you to:

— Create custom conditions that cannot be implemented using the
automatic notification system of ALM

— Change the subject or the text of the e-mail

— Send an e-mail to the specific ALM groups or users

— Send the e-mail from the specific user, rather than “admin” as
automatic mail notification does

The mailing methods are available from any ALM object such as Defect,
Test, and so forth, or directly from the TDConnection object. Using the
Mail method from the TestDirector object you can send the e-mail that
contains that object and your custom subject and text.

Example – Use workflow objects instead of SQL statement

Do not use these commands:

Com.CommandText = "UPDATE TESTCYCL SET TC_TESTER_NAME =

'" & Cstr(ASSIGNED_TESTER) & "' " &_

"Where TC_CYCLE_ID = " & iTestSetId & " and TC_TESTER_NAME is
NULL"

Set UpdateRecSet = Com.Execute

Instead use this code snippet:

Set tstestF = currentTestSet.tstestFactory

Set tsFilter = tstestF.Filter

tsFilter("TC_TESTER_NAME")= ""

Set tsTestList = filter.newList

For each tsTest in tsTestList

 tsTest.Field("TC_TESTER_NAME") = "admin"

Next

29

Minimize Activity on Client

When fetching data from the server, it is recommended to filter the
information on the server side instead of on the client. The performance
overhead of filtering on the client is very high. Loading too many records can
also impact the server’s performance.

Example – Use filter when working with history

When using the Command object to go over the HISTORY table, you should
create a filter in the SQL by implementing the WHERE condition, so it does not
bring all recordsets to the client.

Example – Calculating design steps

Design step has a user defined field holding the duration of the step. Our goal
is to get the number of design steps with duration bigger than 30 minutes.

The code below represents bad practice:

For Each Test In TestLists

 Set DesStepF = Test.DesignStepFactory

 Set DSList = DesStepF.NewList("")

 For Each DStep In DSList

 If DStep.Field(“DS_USER_01”)>30 Then

 HowManyFound = HowManyFound + 1

 End If

 Next

Next

Instead, try using the following code block:

Set TestF = TDConnection.TestFactory

Set TestList = TestF.NewList("")

For Each Test In TestList

 Set DesStepF = Test.DesignStepFactory

 Set DSList = DesStepF.NewList("select * from DESSTEPS WHERE
DS_USER_01>30 ")

 HowManyFound = HowManyFound + DSList.count

Next

30

3 Workflow Events
During an ALM user session, as the user initiates various actions, ALM
triggers event procedures. You can place code in these procedures to
customize the execution of the associated user actions. Event procedures can
be functions or subroutines.

General

The following gives some general background on event functions and
subroutines as well as naming conventions used in HP ALM.

Event Functions

These procedures are triggered by ALM to check whether the user’s action
should be performed. You can place code in these functions to determine
whether ALM can execute the user’s request. If your code returns a value of
false, ALM does not proceed with the action.

For example, when a user clicks the Submit button on the Add Defect dialog
box, ALM invokes the function Bug_CanPost before posting the defect to the
database on the server. You can add code to the Bug_CanPost function to
control whether ALM posts the defect. For example, you can ensure that a
user cannot reject a defect without adding a comment.

Event Subroutines

These procedures are triggered to perform actions when an event takes place.

For example, when a user opens the Add Defect dialog box, ALM invokes the
subroutine Bug_New. You can add code to the Bug_New subroutine to perform
actions that should be performed when a user opens the dialog box. For
example, you can change the value of the Detection Mode field to BTW if the
user is not in the QA Tester user group.

31

Naming Conventions

The naming convention in HP ALM for an event procedure is as follows:

<entity>_<event>

Note: Some event procedure names, such as GetDetailsPageName, do not
include an entity name.

Entities

Entity Description

AnalysisItem Reports and graphs data

AnalysisItemFolder Reports and graphs folder data

Bug Defect data

BusinessModel Business model data

BusinessModelActivity Business model activity data

BusinessModelFolder Business model folder data

BusinessModelPath Business model path data

Component Business component data

ComponentFolder Business component folder data

ComponentStep Business component step data

DashboardFolder Dashboard folder data

DashboardPage Dashboard page data

DesignStep Design step data

Resource Test resource data

Resource Folder Test resource folder data

Run Test run data

Step Test run step data

TestSet Test set data

TestSetTests Test instance data

Some extensions may also be supported by workflow.

32

Common Modules

CanLogin

This event is triggered to check whether the specified user can log in to the
specified project. It is to allow or forbid the login to a project. This event can
be used to update the users.

Topic Description

Syntax CanLogin(DomainName,
ProjectName, UserName)

where DomainName is the domain
name, ProjectName is the project
name, and UserName is the user
name

Type Function

Returns True or False

Availability CanLogin (all modules)

Example – Notify user upon login

Function CanLogin(DomainName, ProjectName, UserName)

CanLogin = false

Call MsgBox("Hi " & User.UserName & “,” _

 & vbCrLf & "" _

 & vbCrLf & "Your project " & TDConnection.ProjectName
& " was upgraded to ALM 11.0" _

 & vbCrLf & "" _

 & vbCrLf & "The Project was moved to the server :
http://ALM:port/qcbin" _

 & vbCrLf & "" _

 & vbCrLf & "QC Admin" _

 , vbExclamation, "Important Message")

Exit function

End function

33

CanLogout

This event is triggered to check whether the current user can log out of the
current project.

Topic Description

Syntax CanLogout

Type Fun ction

Returns True or False

Availability CanLogout (all m odules)

Example – Notify user before logout

Function CanLogout

Call MsgBox("Hi " & User.UserName & “,” _

 & vbCrLf & "" _

 & vbCrLf & "Your project " & TDConnection.ProjectName
& " will be upgraded to ALM 11.0 on 01/01" _

 & vbCrLf & "" _

 & vbCrLf & "The Project will be moved to the server:
http://ALM:port/qcbin" _

 & vbCrLf & "" _

 & vbCrLf & "QC Admin" _

 , vbExclamation, "Important Message")

End Function

ActionCanExecute

This event is triggered before ALM performs an action that has been initiated
by the user, to check whether the action can be executed. You can add code to
this event procedure to perform actions when the user has initiated a
particular action, or to prevent the action from being executed in specific
cases.

34

Topic Description

Syntax ActionCanExecute(ActionName)

where ActionName is the action that
the user has initiated

Actions are in the format
context.action

User-defined actions start with the
prefix UserDefinedActions

Type Fun ction

Returns True or False

Availability ActionCanExecute (all modules)

Example - Prevent defect deletion

Function ActionCanExecute(ActionName)

On Error Resume Next

if ActionName= "Defects.DeleteDefect" then

if Bug_Fields.Field("BG_STATUS").value =”Closed” then

ActionCanExecute = true

Else

Msgbox “You don’t have enough credentials to perform Delete”

ActionCanExecute = false

Exit function

End if

End if

‘……

End function

Example - Find action names

Function ActionCanExecute(ActionName)

On Error Resume Next

if user.Username=”Project_admin” then

MsgBox actionname

35

End if

End function

EnterModule

This event is triggered when the user switches to an ALM module.

You can add code to this event procedure to perform an action whenever the
user switches to the specified module.

Topic Description

Syntax EnterModule

Type Sub

Returns

Availability EnterModule (all modules)

Example – Hide a button

Sub EnterModule

'hides the button Send Mail in the Defects grid

 On Error Resume Next

 Actions.action("Defects.SendByEmail").Visible= false

 On Error GoTo 0

End Sub

Sub DialogBox(DialogBoxName, IsOpen)

'hides the button Send Mail in the Defect details Dialog

'Use ActiveModule and ActiveDialogName to get the current context

On Error Resume Next

if (DialogBoxName="actBugDetails" or DialogBoxName="Details" or
DialogBoxName="Bug Details") and IsOpen=true then

Actions.action("BugDetails.SendByEmail").Visible= false

End if

 On Error GoTo 0

End Sub

36

ExitModule

This event is triggered when the user exits the specified module.

Topic Description

Syntax ExitModule

Type Sub

Returns

Availability ExitModule (all modules)

DialogBox

This event is triggered when a dialog box is opened or closed.

Topic Description

Syntax DialogBox(DialogBoxName,
IsOpen)

where DialogBoxName is the name
of the dialog box, and IsOpen
indicates whether the dialog box is
open

Type Sub

Returns

Availability DialogBox (all modules)

Example - Identify view type

This example helps identify the current view type - Grid, Details, New
Entity. The type is maintained in a global variable in the common module
called DialogIsOpen.

Sub DialogBox(DialogBoxName, IsOpen)

On error resume next

If DialogBoxName="New Bug" and IsOpen=true then

 DialogIsOpen = "NEW"

 Else

37

 DialogIsOpen =”OTHER” ‘Details Or Grid

End if

 On Error GoTo 0

End sub

CanCustomize

This event is triggered when a user attempts to open the Customization
window, to check whether the user can customize the specified project.

Topic Description

Syntax CanCustomize(DomainName,
ProjectName, UserName)

where DomainName is the domain
name, ProjectName is the project
name, and UserName is the user
name

Type Fun ction

Returns True or False

Availability CanCustomize (all modules)

Example – No entry to customizations

This example prevents entrance into customizations for unauthorized users.

Function CanCustomize(DomainName, ProjectName, UserName)

on error resume next

if User.IsInGroup("TDAdmin”) then

 CanCustomize = true

else

 MsgBox User.FullName & vbcrlf & vbcrlf & "You don't have
enough privileges" &vbcrlf & vbcrlf &"Please Open a SR in Project
Center Admin", vbExclamation, "Not Allowed"

 CanCustomize = false

end if

On Error GoTo 0

End Function

38

Attachment_New

This event is triggered when an attachment is added to ALM.

Topic Description

Syntax Attachment_New(Attachment)

where Attachment is the
lAttachment interface

Type Sub

Returns

Availability Attachment_New (all modules)

Attachment_CanOpen

This event is triggered before ALM opens an attachment from the server, to
check whether the attachment can be opened.

Topic Description

Syntax Attachment_CanOpen(Attachment)

where Attachment is the
IAttachment interface

Type Fun ction

Returns True or False

Availability Attachment_CanOpen (all modules)

Attachment_CanPost

This event is triggered before ALM updates an existing attachment on the
server, to check whether the attachment can be updated.

Topic Description

Syntax Attachment_CanPost(Attachment)

where Attachment is the
IAttachment interface

39

Type Fun ction

Returns True or False

Availability Attachment_CanPost (all modules)

Attachment_CanDelete

This event is triggered before ALM deletes an attachment from the server, to
check whether that attachment can be deleted.

Topic Description

Syntax Attachment_CanDelete(Attachment)

where Attachment is the IAttachment
interface

Type Fun ction

Returns True or False

Availability Attachment_CanDelete (all modules)

GetDetailsPageName

This event is triggered by ALM to retrieve the name of the page (tab) that
has the index number specified in PageNum in the following dialog boxes:

— An entity’s Details dialog box

— An entity’s New <entity> dialog box

Topic Description

Syntax GetDetailsPageName(PageName,
PageNum)

where PageName is the default page
name (for example, Page 1) and
PageNum is the page number.

Note: The page number is the
absolute page number, regardless of
the page relative position in relation
to the other displayed pages in the
dialog box

40

Type Fun ction

Returns Strin g con tain in g th e page n am e

Availability GetDetailsPageName (all modules)

Example - Update Tab

Function GetDetailsPageName(PageName,PageNum)

 On Error Resume Next

 Select Case activemodule

 Case "Requirements"

 Select Case PageNum

 Case 1

GetDetailsPageName="Req_Details-First Tab"

 Case 2

 GetDetailsPageName="Req_Details-Second Tab"

 Case 3

 GetDetailsPageName="Req_Details-Third Tab"

 End select

 Case "Defects"

 Select Case PageNum

 Case 1

 GetDetailsPageName="Def_Details-First Tab"

 Case 2

 GetDetailsPageName="Def_Details-Second Tab"

 Case 3

GetDetailsPageName="Def_Details-Third Tab"

 End select

 End select

 On Error GoTo 0

End Function

41

Function GetNewBugPageName(PageName,PageNum)

On Error Resume Next

 Select Case PageNum

 Case 1

 GetNewBugPageName="Def_Details-First Tab"

 Case 2

 GetNewBugPageName="Def_Details-Second Tab"

 Case 3

 GetNewBugPageName="Def_Details-Third Tab"

 End select

 On Error GoTo 0

End Function

Entity Modules

Entity_New

This event is triggered when an object is added to ALM. You can add code to
this event procedure to perform an action when a new object is added.

Topic Description

Syntax <entity>_New

Type Sub

Returns

Availability AnalysisItem_New

AnalysisItemFolder_New

Baseline_New

Bug_New

BusinessModelFolder_New

BusinessModelPath_New

Component_New

ComponentFolder_New

ComponentStep_New

42

Cycle_New

DashboardFolder_New

DashboardPage_New

DesignStep_New

Library_New

LibraryFolder_New

Release_New

ReleaseFolder_New

Req_New

Resource_New

ResourceFolder_New

Step_New

Test_New

TestConfiguration_New

TestFolder_New

TestSet_New

TestSetFolder_New

Entity_MoveTo

This event is triggered when the user changes focus from one object to
another.

You can add code to this event procedure to perform actions when the user
changes the focus.

Topic Description

Syntax <entity>_MoveTo

Type Sub

Returns

Availability AnalysisItem_MoveTo

AnalysisItemFolder_MoveTo

Baseline_MoveTo

Bug_MoveTo

BusinessModel_MoveTo

BusinessModelActivity_MoveTo

BusinessModelFolder_MoveTo

BusinessModelPath_MoveTo

43

Component_MoveTo

ComponentFolder_MoveTo
(formerly
MoveToComponentFolder)
ComponentStep_MoveTo

Cycle_MoveTo

DashboardFolder_MoveTo

DashboardPage_MoveTo

DesignStep_MoveTo

Library_MoveTo

LibraryFolder_MoveTo

Release_MoveTo

ReleaseFolder_MoveTo

Req_MoveTo

Resource_MoveTo

ResourceFolder_MoveTo

Run_MoveTo

Step_MoveTo

Test_MoveTo

TestConfiguration_MoveTo

TestFolder_MoveTo

TestSet_MoveTo

TestSetFolder_MoveTo

TestSetTests_MoveTo

Example - Update setup when moving

Update setup when moving to another entity.

Sub Bug_MoveTo

Select Case Bug_Fields.Field("BG_STATUS").value

 Case “New”

 Setup_Status_New

 Case “Open”

 Setup_Status_Open

 Case “Fixed”

 Setup_Status_Fixed

 Case “Closed”

44

 Setup_Status_Closed

End select

 End sub

Example - Dependency list

The following code shows how to change a list associated with a field
according to the value of a different field.

Let’s assume there are user-defined fields added to the Requirement entity
named SUB_AREA (RQ_USER_01) and TESTING_AREA (RQ_USER_02)
and there is a user-defined list added per each testing area with the name
SUB_LIST_<testing area>.

This code should be called in the <entity>_MoveTo and in the
<entity>_FieldChange event.

Req_Fields.field(“RQ_USER_02”).List = Lists("SUB_LIST_" &
Req_Fields.field(“RQ_USER_01”).value)

Entity_ FieldCanChange

This event is triggered before ALM changes a field value, to determine
whether the field can be changed.

You can add code to this event procedure to prevent a field from being
changed in specific cases.

Topic Description

Syntax <entity>_FieldCanChange(FieldName,
NewValue)

where FieldName is the name of the field
and NewValue is the field value

Type Function

Returns True or False

Availability AnalysisItem_FieldCanChange

AnalysisItemFolder_FieldCanChange

Baseline_FieldCanChange

Bug_FieldCanChange

BusinessModel_FieldCanChange

BusinessModelActivity_FieldCanChange

45

BusinessModelFolder_FieldCanChange

BusinessModelPath_FieldCanChange

Component_FieldCanChange

ComponentFolder_FieldCanChange

ComponentStep_FieldCanChange

Cycle_FieldCanChange

DashboardFolder_FieldCanChange

DashboardPage_FieldCanChange

DesignStep_FieldCanChange

Library_FieldCanChange

LibraryFolder_FieldCanChange

Release_FieldCanChange

ReleaseFolder_FieldCanChange

Req_FieldCanChange

Resource_FieldCanChange

ResourceFolder_FieldCanChange

Run_FieldCanChange

Step_FieldCanChange

Test_FieldCanChange

TestConfiguration_FieldCanChange

TestFolder_FieldCanChange

TestSet_FieldCanChange

TestSetFolder_FieldCanChange

TestSetTests_FieldCanChange

Example - Allow or deny a change

This function enables or denies certain user groups the permission to change
the Status field in the defect according to its current and new value.

Function Bug_FieldCanChange(FieldName, NewValue)

On Error Resume Next

if FieldName = "BG_STATUS" then

 if User.IsInGroup("QATester") then

 if Bug_Fields.Field("BG_STATUS").value ="Fixed" then

 Select Case NewValue

 Case "Fixed", "Closed"

 Bug_FieldCanChange = true

46

 Case else

 Bug_FieldCanChange = false

 Exit function

 End select

 End if

 End if

End if

 On Error GoTo 0

End Function

Entity_ FieldChange

This event is triggered when the value of the specified field changes. Every
change of value triggers the field change event when the field loses focus.

You can add code to this event procedure to perform an action when the value
of a particular field is changed. For example, you can hide or display one field
depending on the value the user enters into another field.

Topic Description

Syntax <entity>_FieldChange(FieldName)

where FieldName is the name of the
field

Type Sub

Returns

Availability AnalysisItem_FieldChange

AnalysisItemFolder_FieldChange

Baseline_FieldChange

Bug_FieldChange

BusinessModel_FieldChange

BusinessModelActivity_FieldChange

BusinessModelFolder_FieldChange

BusinessModelPath_FieldChange

Component_FieldChange

ComponentFolder_FieldChange

ComponentStep_FieldChange

Cycle_FieldChange

47

DashboardFolder_FieldChange

DashboardPage_FieldChange

DesignStep_FieldChange

Library_FieldChange

LibraryFolder_FieldChange

Release_FieldChange

ReleaseFolder_FieldChange

Req_FieldChange

Resource_FieldChange

ResourceFolder_FieldChange

Run_FieldChange

Step_FieldChange

Test_FieldChange

TestConfiguration_FieldChange

TestFolder_FieldChange

TestSet_FieldChange

TestSetFolder_FieldChange

TestSetTests_FieldChange

Example - Dependency values

When changing a test status to the To Automate value, a template
description is added.

Sub Test_FieldChange(FieldName)

On Error Resume Next

 if Test_Fields.Field("TS_STATUS").Value="To Automate" then

 if Test_Fields.Field("TS_DESCRIPTION").value="" then

 myComments="<html><body>TO AUTOMATE-" & Now & "/ Checked
by " & user.UserName & "
</body></html>"

 Test_Fields.Field("TS_DESCRIPTION").value= myComments

 Else

myComments="
TO AUTOMATE-" & Now & "/ Checked by "&
user.UserName & "
"

Test_Fields.Field("TS_DESCRIPTION").value =
Test_Fields.Field("TS_DESCRIPTION").value & "
 "&
myComments

 End if

 End if

48

 On Error GoTo 0

End Sub

Example – Update setup on change

Update the setup when a field, such as defect status, changes:

Sub Bug_FieldChange(FieldName)

On Error Resume Next

If FieldName=”BG_STATUS” then

 Select Case Bug_Fields.Field("BG_STATUS").value

 Case “New”

 Setup_Status_New

 Case “Open”

 Setup_Status_Open

 Case “Fixed”

 Setup_Status_Fixed

 Case “Closed”

 Setup_Status_Closed

 End select

End if

 On Error GoTo 0

End Sub

Also see the Dependency List example.

Entity_ CanPost

This event is triggered before ALM posts an object to the server, to check
whether the object can be posted.

You can add code to this event procedure to prevent an object from being
posted in specific cases.

Topic Description

Syntax <entity>_CanPost

Type Function

49

Returns True or False

Availability AnalysisItem_CanPost

AnalysisItemFolder_CanPost

Baseline_CanPost

Bug_CanPost

BusinessModel_CanPost

BusinessModelFolder_CanPost

BusinessModelPath_CanPost

Component_CanPost

ComponentFolder_CanPost

Cycle_CanPost

DashboardFolder_CanPost

DashboardPage_CanPost

Library_CanPost

LibraryFolder_CanPost

Release_CanPost

ReleaseFolder_CanPost

Req_CanPost

Resource_CanPost

ResourceFolder_CanPost

Run_CanPost

Step_CanPost

Test_CanPost

TestConfiguration_CanPost

TestFolder_CanPost

TestSet_CanPost

TestSetFolder_CanPost

Example - Disable update

If a requirement is completed without a comment, the user is not allowed to
submit the requirement.

Function Req_CanPost

On Error Resume Next

if Req_Fields.Field("RQ_REQ_PRIORITY").IsModified then

 if Req_Fields.Field("RQ_DEV_COMMENTS").IsModified=false then

 Req_CanPost=false

50

 MsgBox "The priority was updated, you have to add a comment"

 Exit function

 End if

End if

On Error GoTo 0

End Function

Entity_CanDelete

This event is triggered before ALM deletes an object from the server, to check
if the object can be deleted.

Topic Description

Syntax <entity>_CanDelete

Type Function

Returns True or False

Availability AnalysisItem_CanDelete

AnalysisItemFolder_CanDelete

Baseline_CanDelete

Bug_CanDelete

BusinessModel_CanDelete

BusinessModelFolder_CanDelete

BusinessModelPath_CanDelete

Component_CanDelete

ComponentFolder_CanDelete

Cycle_CanDelete

DashboardFolder_CanDelete

DashboardPage_CanDelete

Library_CanDelete

LibraryFolder_CanDelete

Release_CanDelete

ReleaseFolder_CanDelete

Req_CanDelete

Resource_CanDelete

ResourceFolder_CanDelete

Test_CanDelete

51

TestConfiguration_CanDelete

TestFolder_CanDelete

TestSet_CanDelete

TestSetFolder_CanDelete

Entity_AfterPost

This event is triggered after an object has been posted to the server. Project
fields should not be changed after they have been posted, because the new
value is not stored in the database.

Topic Description

Syntax <entity>_AfterPost

Type Sub

Returns

Availability AnalysisItem_AfterPost

AnalysisItemFolder_AfterPost

Baseline_AfterPost

Bug_AfterPost

BusinessModel_AfterPost

BusinessModelFolder_AfterPost

BusinessModelPath_AfterPost

Component_AfterPost

ComponentFolder_AfterPost

Cycle_AfterPost

DashboardFolder_AfterPost

DashboardPage_AfterPost

Library_AfterPost

LibraryFolder_AfterPost

Release_AfterPost

ReleaseFolder_AfterPost

Req_AfterPost

Resource_AfterPost

ResourceFolder_AfterPost

Run_AfterPost

Step_AfterPost

Test_AfterPost

52

TestConfiguration_AfterPost

TestFolder_AfterPost

TestSet_AfterPost

TestSetFolder_AfterPost

Example - Send Mail

A notification mail will be sent to the Requirement author if the Target
Release field was modified. In order to send a mail, we need to add a
customized function called sendreqmail.

Sub Req_AfterPost

If Req_Fields.field("RQ_TARGET_RCYC").IsModified Then

Sendreqmail Req_Fields.field("RQ_REQ_ID").Value,
Req_Fields.field("RQ_REQ_AUTHOR").Value, "", "Target Cycle has
changed", "Please Review"

End if

End sub

Sub sendreqmail(ReqId,Mto,cc,msubject,mcomment)

Dim tdc, bgf, bg

 Set tdc = TDConnection

 Set rf = tdc.ReqFactory

 Set req = rf.Item(ReqId)

 req.Mail mto , cc, 2, mSubject, mComment

 Set req = Nothing

 Set rf = Nothing

 Set tdc = Nothing

End sub

53

Workflow Sample - Define a Setup

This workflow code updates field properties: visibility, mandatory, read-only,
and order.

Add these functions to the Defect Module node.

Check User

Check if the user is in a certain group to decide on the next action.

If User.IsInGroup("Developer") then

 Mygroup=”DEV”

End if

Set Field Appearance

This subroutine sets field appearance – visibility, mandatory status, page
number and order on the screen.

Sub SetFieldApp(FieldName, Vis, Req, PNo, VOrder)

 With Bug_Fields(FieldName)

 .IsVisible = Vis

 .IsRequired = Req

 .PageNo = PNo

 .ViewOrder = VOrder

 End With

 End Sub

Reset to Initial

Add the following subroutine to hide all defect fields.

Sub ResetMetadata

For i=0 to Bug_Fields.Count

 Bug_Fields.FieldById(i).IsVisible = false

Next

End sub

54

Set Status

The following subroutine sets status New according to user permissions.

You have to write this subroutine for each status.

Sub Setup_Status_New

 If User.IsInGroup("Developer") then

 Mygroup=”DEV”

 ElseIf User.IsInGroup("QATester") then

 Mygroup=”QA”

ElseIf User.IsInGroup("Documentation") then

 Mygroup=”DOC”

 End if

Call ResetMetadata ‘set to initial status

 Select case Mygroup

 Case ”DEV”

 SetFieldApp "BG_ACTUAL_FIX_TIME", True, False, 0, 0

 SetFieldApp "BG_CLOSING_DATE", True, False, 0, 1

 SetFieldApp "BG_CLOSING_VERSION", True, False, 0, 2

 SetFieldApp "BG_DETECTED_BY", True, True, 0, 3

 SetFieldApp "BG_DETECTED_IN_RCYC", True, False, 0, 4

 SetFieldApp "BG_DETECTED_IN_REL", True, False, 0, 5

 SetFieldApp "BG_DETECTION_DATE", True, True, 0, 6

 SetFieldApp "BG_DETECTION_VERSION", True, False, 0, 7

 SetFieldApp "BG_ESTIMATED_FIX_TIME", True, False, 0, 8

 SetFieldApp "BG_PLANNED_CLOSING_VER", True, False, 0, 8

 SetFieldApp "BG_PRIORITY", True, False, 0, 10

Case ” QA”

 SetFieldApp "BG_ACTUAL_FIX_TIME", True, False, 0, 0

 SetFieldApp "BG_CLOSING_DATE", True, False, 0, 1

 SetFieldApp "BG_CLOSING_VERSION", True, False, 0, 2

 SetFieldApp "BG_DETECTED_BY", True, True, 0, 3

 SetFieldApp "BG_DETECTED_IN_RCYC", True, False, 0, 4

 SetFieldApp "BG_DETECTED_IN_REL", True, False, 0, 5

55

 SetFieldApp "BG_DETECTION_DATE", True, True, 0, 6

 SetFieldApp "BG_DETECTION_VERSION", True, False, 0, 7

Case ”DOC”

 SetFieldApp "BG_ACTUAL_FIX_TIME", True, False, 0, 0

 SetFieldApp "BG_CLOSING_DATE", True, False, 0, 1

 SetFieldApp "BG_CLOSING_VERSION", True, False, 0, 2

 SetFieldApp "BG_DETECTED_BY", True, True, 0, 3

 SetFieldApp "BG_DETECTED_IN_RCYC", True, False, 0, 4

 End Select

 End sub

56

4 Conclusions

The demand for relevant, well-performing software drives business
innovation and success. The increasing business criticality of software,
combined with the emergence of complex, disruptive trends such as
virtualization and cloud, continue to drive the need for process improvement.

HP ALM meets the needs of the modern application lifecycle by providing
increased alignment between teams, including integration into strategy and
planning teams, an offering of best practices to spur innovation and prevent
tactical delays, and a bridge to the critical last mile of the operations
organization. HP ALM is extensible and dynamic — ready to adapt to the
dynamic nature of ALM. Its flexibility allows for covering various industries,
from pharmaceutical to car manufacturing, various types of development,
from classic waterfall to modern agile, various organizational structures,
from flat to hierarchical to matrix, and the list can go on.

In many ways, this the result of the many customization capabilities built
into the product that provide the tools to differentiate the business processes
unique to each organization that adopts ALM. Workflow scripting gives the
power to the project administrator to adjust standard procedures and screens
to the project’s specific needs. This document provides insights into the usage
patterns, shows benefits and disadvantages of different coding approaches,
gives details on the most useful events, and is full of practical examples that
assist in writing the code.

We believe that the best practices listed in this document help in the proper
adoption of HP ALM workflow in your organization.

	HP ALM Workflow Best Practices
	Contents
	Welcome To This Guide
	About Workflows
	Audience
	Prerequisites
	Structure
	Feedback

	Introduction to Workflow
	Importance of Workflow
	Common Steps
	Understand Project Needs
	Create Workflow Requirements Document
	Write Workflow Code
	Test Workflow Code
	Move Workflow to Production
	Manage Workflow Requests

	Workflow Customization Guidelines
	Project Customization Options
	Permission Groups
	Project Lists
	Project Entities
	Requirement Types

	Generic Workflow Rules
	Test Environment
	What Is Test Environment?
	Why Set Test Environment?

	Debugging Workflow Code
	Dos and Don’ts of Workflow
	Do
	Do Use Globals
	Do Optimize Code
	Do Improve Code Readability
	Do Comment Code
	Do Access By Name
	Do Reset Prior to Setting New Layout
	Do Backup Code
	Do Use Global Constant vs. Field Names
	Do Cleanup of Objects
	Do Standardize
	Do Error Handling

	Do Not
	Do Not Duplicate
	Do Not Put Too Much Code
	Do Not Set Other Properties Prior to Visible
	Do Not Mess Workflow Code
	Do Not Update Parameters
	Do Not Modify in New
	Do Not Assign in MoveTo
	Do Not Modify After Post
	Do Not Use Many API Calls

	Using API in Workflow
	Use ALM API for Modifications
	Example – Use workflow objects instead of SQL statement

	Minimize Activity on Client
	Example – Use filter when working with history
	Example – Calculating design steps

	Workflow Events
	General
	Event Functions
	Event Subroutines
	Naming Conventions
	Entities

	Common Modules
	CanLogin
	Example – Notify user upon login

	CanLogout
	Example – Notify user before logout

	ActionCanExecute
	Example - Prevent defect deletion
	Example - Find action names

	EnterModule
	Example – Hide a button

	ExitModule
	DialogBox
	Example - Identify view type

	CanCustomize
	Example – No entry to customizations

	Attachment_New
	Attachment_CanOpen
	Attachment_CanPost
	Attachment_CanDelete
	GetDetailsPageName
	Example - Update Tab

	Entity Modules
	Entity_New
	Entity_MoveTo
	Example - Update setup when moving
	Example - Dependency list

	Entity_ FieldCanChange
	Example - Allow or deny a change

	Entity_ FieldChange
	Example - Dependency values
	Example – Update setup on change

	Entity_ CanPost
	Example - Disable update

	Entity_CanDelete
	Entity_AfterPost
	Example - Send Mail

	Workflow Sample - Define a Setup
	Check User
	Set Field Appearance
	Reset to Initial
	Set Status

	Conclusions

