

 Setting up Single Sign-on in Service Manager

SSL Setup and Single Sign-on in Service Manager using Windows or Third Party
Authentication

HP® Service Management

Introduction ... 3
Overview of trusted sign-on ... 3

Prerequisites .. 3
Other prerequisites ... 4

The SSL Handshake ... 4
The parts of the handshake ... 5
Connection scenario between a Windows client and Service Manager application server 7
Connection scenario between a Web server, a Web application server, and the Service Manager application
server ... 7

Server configuration ... 8
Creating the server certificates using the batch file ... 9

Vertically scaled systems ... 10
View the contents of the signed certificate (optional) ... 10
Print the keystore file (optional)... 12

Horizontally scaled systems ... 13
Running the batch file to create slave/secondary server certificates: ... 13

Windows Client or Web Tier configuration ... 14
Running the batch file to create client certificates ... 14

Configuring Service Manager to use SSL .. 16
Setting the security preferences for the clients .. 16

For Service Manager Windows clients .. 16
For Service Manager Web clients .. 16

Adding Service Manager SSL/Single sign-on parameters.. 17
Test the configuration.. 18

Configuration of the Web server and Web application server ... 19
Tomcat with Apache/Internet Information Server .. 19

Tomcat configuration changes.. 19
Apache configuration changes ... 20
Internet Information Server ... 20

WebSphere with IBM HTTP Server ... 24
Installing IBM HTTP Server ... 24
Installing Web server plug-ins for WebSphere Application Server .. 26
Creating a Web server on Websphere ... 29

IBM HTTP Server configuration changes .. 31
Browser security settings ... 32

Internet Explorer ... 32
Firefox .. 32

Troubleshooting ... 32

Appendix A – Explanation of the Batch Files ... 37
Explanation of the steps required to create the server certificates ... 37

Setting the environment variables and passwords ... 40
Generating the private key and root certificate... 40
Import the signed certificate into the keystore ... 43

Explanation of the steps needed to create client certificates ... 44
Setting the environment variables and passwords ... 46
Copying the cacerts file ... 47
Create the client’s keystore .. 47
Create the client’s certificate request ... 48
Sign the client certificate request using the root certificate and private key .. 48
Import the client certificate into the clients keystore ... 48
Creating the trusted certificates file ... 49

Appendix B - Setting up Single Sign-on with third party authentication on the Web Tier 51
Configuring the Web Client for third-party authentication .. 51

Defining a JavaBean® to handle authentication .. 51
Integrating Custom Java Classes into the Java Bean ... 52

Example: Creating a custom Java Class for Single-Sign-On using LDAP ... 53

For more information .. 58

3

Introduction
Service Manager single sign-on functionality addresses the complexity of maintaining duplicate user
accounts, multiple passwords, and separate logins across applications. By replacing the need to log
into multiple applications using the same login and password with a single, secure login process, you
can ensure that information is both secure and easily accessed. This single sign-on solution provides
security and convenience while greatly reducing operational expenses.

This document is intended to help Hewlett Packard customers, consultants, and partners implement
Service Manager single sign-on functionality. It provides the steps required to set up a basic single
sign-on implementation. Custom environments with extensive tailoring may require more detail than
what is provided in this document.

Overview of trusted sign-on
Activating single sign-on requires that you either create or purchase Secure Socket Layer (SSL)
certificates for the Service Manager server, Service Manager Web Tier, and Service Manager
Windows® clients. You can purchase SSL certificates from a certificate authority (CA), which is a
trusted third party that issues root digital certificates and confirms certificate authenticity. You use
these certificates to create a secure network connection between the Service Manager Windows-client
and the Service Manager server, or between the Service Manager Web Tier and the Service
Manager server. The connection between the user's Web browser and the Web Tier remains
unchanged and requires no additional configuration in terms of importing certificates.

Note: When using Internet Explorer, only versions 5 and greater can handle single sign-on
authentication without prompting for a username and a password.

Single sign-on is an optional Service Manager configuration that relies on a working SSL
configuration, and integration with a trusted authentication source such as Integrated Windows
Authentication or a network security management tool. This document addresses both options.

Prerequisites
The following software products must be available before you implement single sign-on for Service
Manager using a private certificate authority:

• Service Manager client and server
• A fully implemented Service Manager Web Tier environment, if Web Clients are used
• Sun Microsystems™ JDK™ version 1.5 or greater
• The CertCreator.zip file, unzipped to a new directory. This zip file includes:

o The keytool executable file

For more information about keytool go to:
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html.

o OpenSSL

Note: If you purchase certificates from a certificate authority, you do not need to
use OpenSSL to create certificates. The examples in this document use OpenSSL to
create your own certificates.

For more information about downloading and installing OpenSSL go to www.openssl.org.

http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html
http://www.openssl.org/

4

Other prerequisites
SSL must be enabled for the Service Manager server to support trusted sign-on. This capability allows
both Windows and Web clients to bypass the Service Manager login screen after they have been
pre-authenticated by a trusted source.

In a single sign-on scenario the Service Manager server grants access to clients only if all the
following conditions are met:

• The signature on the client's signed certificate matches the certificate issued by the selected
certificate authority.

• The client's signed certificate is on the list of trusted certificates in the Service Manager server's
trusted client keystore (required when ssl_reqClientAuth is set to 2 for trusted sign-on).

• When prompted, always use the fully qualified name (computer.domain.com). keystool prompts for
this information with "What is your first and last name?" whereas openssl prompts
with "Common Name"

• The user's logon credentials match an existing operator record in Service Manager or a valid LDAP
source that Service Manager recognizes. The user information must be from a domain user, and
not a local user.

• A trusted authentication authority, such as the operating system, validates the user's logon
credentials.

• All settings in the Web application server, Web server, and Web browser are set correctly. (Refer
to the section Configuration of the Web server and Web application server for more information.)

The SSL Handshake
This section describes the SSL v3 handshake using RSA for key exchange.

SSL is not an encryption algorithm, but a protocol that allows two parties – the client and the server –
to communicate using encryption by negotiating which encryption algorithm and key to use.
Encryption provides confidentiality and ensures that the conversation between both parties is private.
The purpose of the SSL handshake is to authenticate one or both parties of the connection as well as
to negotiate which encryption algorithm and keys to use. The key in an SSL session is generated
during the handshake and is known as the "session key". With a few exceptions, the session key is
used only for the session it was created in.

The steps to the handshake are:

• ClientHello (C(lient) -> S(erver))
• ServerHello (C <- S)
• Certificate (C <- S)
• CertificateRequest (C <- S)
• ServerHelloDone (C <- S)
• Certificate (C -> S)
• ClientKeyExchange (C -> S)
• CertificateVerify (C -> S)
• ChangeCipherSpec (C -> S)
• Finished (C -> S)
• ChangeCipherSpec (C <- S)
• Finished (C <- S)
The steps in italics are only taken when client-side authentication is performed. Typically, only the
server proves its identity during the handshake. "Client-side authentication" indicates the client will
also be required to prove its identity during the handshake. Client-side authentication is not usually

5

done when an average user is browsing a web site using HTTPS (HTTP over SSL), but is more common
with SSL connections between businesses.

The parts of the handshake

ClientHello (C -> S)
The handshake begins with a message from the client to the server called ClientHello. The ClientHello
contains basic information indicating of what the client is capable. This message contains the client
version, a random value, a session ID, a list of cipher suites, and a list of compression methods.

The client version indicates the highest version of SSL the client can support. It is assumed the client is
backwards compatible. A client using SSL version 3 can also support version 2, which the server can
negotiate down to if it chooses to do so.

The random value, known as a nonce, serves two purposes. The nonce is one of the variables used in
generating the session key as discussed below, and also prevents replay attacks which are discussed
in the Finished message.

The session ID can be used to indicate the client wants to resume a previously negotiated session. This
saves time by not having to negotiate a new session key. The client will send a session ID of zero to
indicate that a new session must be negotiated.

The cipher suites are a list of encryption algorithms the client supports, such as RSA with 3DES or RSA
with IDEA. The client provides to the server a complete list of the ciphers it is able to support allowing
the server to choose one.

The list of compression algorithms functions much like the list of cipher suites: the client provides a list
of what it can do and the server can pick one. No compression algorithms are officially defined for
SSL, so the only valid value is NULL. Some implementations of SSL support various compression
methods although none have officially been defined.

ServerHello (C <- S)
The ServerHello message indicates which of the client options the server has chosen. The ServerHello
message includes the SSL version the server will support for this connection, a nonce, a session ID, a
cipher suite, and a compression method.

The nonce is a random value generated by the server that is used in the same fashion as the client's
nonce.

The session ID, cipher suite, and compression method are all values chosen by the server and
imposed onto the client. The client sent the values it can support, and the server makes the decision. If
the server is not willing to support the client for any reason, the server aborts the handshake and
closes the connection. This could happen if the server considers none of the client's cipher suites to be
secure.

Certificate (C <- S)
As the first step in proving the servers identity, the server sends a copy of its digital certificate to the
client. In some cases, such as the use of intermediate CAs, the server will also send the certificate of
the issuer.

CertificateRequest (C <- S) (client-side authentication only)
For client-side authentication, the server can request the client's certificate. This message is issued
when the server wants to verify the identity of the client.

ServerHelloDone (C <- S)
The server sends this message to the client to indicate it is done sending messages at this point.

6

After the client has received the server's certificate or certificate chain, it will validate the certificate.
The client will check the subject name on the certificate and compare it to the domain name used to
connect to the server. If the names do not match, the client may abort the handshake. On many
popular web browsers though, the user is prompted to make a decision on whether to continue with
the handshake or abort.

The client checks the valid dates on the certificate to make sure the certificate is not expired or is not
being used before it was allegedly issued. The client also attempts to validate the digital signature on
the server's certificate, assuming it trusts the issuer. That is, if the server sent a VeriSign certificate, the
client would have to trust VeriSign before the client accepted the certificate. If the client cannot
validate the certificate, the client will abort the handshake. Again, on many popular web browsers,
the user is prompted to make a decision on whether to continue with the handshake or abort it.

Certificate (C -> S) (client-side authentication only)
If the server requested client certification with the CertificateRequest message, the client will send its
own certificate.

ClientKeyExchange (C -> S)
The client uses the nonce values from the ClientHello and ServerHello messages and, using additional
sources of randomization, creates the PreMasterSecret which is used by the client and server to derive
the session key.

The integrity and confidentiality of the PreMasterSecret is important. For these reasons, the client
encrypts the PreMasterSecret with the public key in the server's certificate, and sends it to the server
as part of the ClientKeyExchange message. As long as the server is the legitimate owner of the
certificate, it will have the private key necessary to decrypt the PreMasterSecret. If the server is
actually an attacker posing as the owner of the certificate, it will be unable to decrypt the
PreMasterSecret, which means it will be unable to derive the session key. Without the session key, the
server is unable to complete the handshake.

CertificateVerify (C -> S) (client-side authentication only)
If the server requested the client's certificate with the CertificateRequest message, the client needs to
prove it has the private key that corresponds to the public key in the certificate it sent to the server.
The client accomplishes this by digitally signing the handshake messages sent up to this point using
the client's private key and sends the result to the server.

The server attempts to validate the digital signature using the public key in the certificate provided by
the client. If the signature fails validation, the server aborts the handshake and closes the connection.

ChangeCipherSpec (C -> S)
The client sends the ChangeCipherSpec message to the server to indicate it is switching to the
negotiated encryption algorithm. Every message the client sends during the session from this point on
is encrypted with the session key.

Finished (C -> S)
The client sends the Finished message to the server to indicate it is finished with the handshake. This
message is encrypted with the session key, and contains a digital signature of the session key and the
handshake messages up to this point.

The nonce values sent in the ClientHello and ServerHello messages help to ensure that the handshake
messages from different SSL sessions are different, even if the sessions are between the same client
and server. Without the nonce values, it may be possible under certain circumstances for an attacker
to capture the handshake messages between the client and server and replay them later in an attempt
to impersonate one side.

7

ChangeCipherSpec (C <- S)
The server sends the ChangeCipherSpec message to the client to indicate it is switching to the
negotiated encryption algorithm. All messages from the server during this session will now be
encrypted with the session key.

Finished (C <- S)
The server concludes the handshake by sending the Finished message, which is encrypted with the
session key. This message contains the digital signature of the session key and all handshake
messages in this session.

Connection scenario between a Windows client and Service
Manager application server
The following figure depicts the connection process between a Service Manager Windows client and
the Service Manager application server:

Service Manager Server

Verify user name
information against
Service Manager
operator record

7

Verify that the
certificate authority is

in the trusted
certificate authorities

file (cacerts)

Review certificate to
determine which

certificate authority
signed it

Review certificate to
determine the

encrypted server
address and verify
that it matches the
host name of the
Service Manager

server

3

4

5

Secure Connection Request

1

2

6

8

User & Domain Name

Connection is Established

SSL Certificate Information

 Figure 1: Service Manager client/server SSL handshake process

During the client/server handshake process, the client reads the server certificate, determines which
certificate authority signed the certificate, and compares the certificate signature to a list of trusted
certificate authorities that are identified in the cacerts file.

Note: Service Manager includes a sample server certificate signed by a fictitious certificate authority,
and a modified cacerts file that includes the certificate for the fictitious certificate authority.

The client also compares the IP address or host name of the server to the address encrypted in the
server certificate. If they do not match, Service Manager displays an alert and denies the connection.
The Service Manager application server also checks whether the user was authenticated by a valid
domain. Local machine authentication is not accepted by the Service Manager server.

Connection scenario between a Web server, a Web
application server, and the Service Manager application
server
The following figure depicts this connection process:

8

 Figure 2: Service Manager Web Tier/server SSL handshake process

The Web server receives the user information from the client via the browser, and passes the user
name and domain name to the Web application server.

Note: The Web application server (such as Tomcat, WebSphere®, or WebLogic Server®) acts as a
client, and communicates with the Service Manager application server. All Web clients will
authenticate with the Service Manager server using the certificates on the Web application server that
they connect through.

The Service Manager application server also checks whether the user was authenticated by a valid
domain. Local machine authentication is not accepted; if attempted the Service Manager server will
reject such a request.

Server configuration
The SSL integration is performed in two parts: First on the server and then on the client. If you bought
the certificates from a certificate authority, you may have to create the trusted clients keystore as
shown in section “Import the signed certificate into the keystore” and you will have to edit the sm.ini
as shown in section “Adding Service Manager SSL/Single sign-on parameters”.

A configuration file (openssl.conf) is necessary to perform the following steps. You can open this file
with any text editor (for example Notepad) and modify the [req_distinguished_name] section only
to fit your needs, such as in the following example:

[req_distinguished_name]

countryName = Country Name (2 letter code)

countryName_default = US

countryName_min = 2

countryName_max = 2

9

stateOrProvinceName = State or Province Name (full name)

stateOrProvinceName_default = CA

localityName = Locality Name (eg, city)

localityName_default = San Diego

0.organizationName = Organization Name (eg, company)

0.organizationName_default = Hewlett Packard

Note: You can modify the openssl.conf file, but do not delete any sections from it. Modifications to
other sections are not recommended.

The OpenSSL configuration file has to be stored in the directory from which the openssl.exe
command is called, usually the Service Manager RUN directory. To use a modified file called
openssl.conf, append –config ./openssl.conf to each of the openssl req commands. For
example:

openssl req -new -key cakey.pem -x509 -days 1095 -out mycacert.pem -
config ./openssl.conf

Creating the server certificates using the batch file
The following batch file is provided with this paper. Each command used in the batch file will be
described in more detail in this paper, but does not have to be performed manually if the batch file is
used.

Note: Although the certificates will be created on windows using a batch file, they can be used on
any supported platform.

You need to modify the following line in the batch file before running it:
set JAVA_HOME="C:\Program Files\Java\jre1.5.0_12"

Set the JAVA_HOME variable to the location of your 1.5.x JRE.

The batch file will be called as follows from a DOS command prompt in the directory that contains the
content of the zip file provided with this document:

tso_srv_svlt.bat

You will be prompted for the following information. You can use the defaults by pressing enter or
modify them according to your information. Please enter the proper fully qualified common name and
the correct email address.
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a
DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [US]:
State [CA]:
Locality Name (eg, city) [San Diego]:
Organizational Name [HPSW]:
Organizational Unit Name (eg, section) [BTO]:
Common Name (eg, computer hostname) [server.domain.com]:server.domain.com
Email Address [user@domain.com]:first.last@company.com

When prompted if you trust this certificate, enter yes.

10

Importing the certificate into the System-wide keystore (cacerts)
Owner: EMAILADDRESS=first.last@company.com, CN=server.domain.com, OU=BTO,
O=HPSW, L=San Diego, ST=CA, C=US
Issuer: EMAILADDRESS=first.last@company.com, CN=server.domain.com,
OU=BTO, O=HPSW, L=San Diego, ST=CA, C=US
Serial number: f0ccd9267cf3c330
Valid from: Tue Jun 17 14:15:16 PDT 2008 until: Fri Jun 17 14:15:16 PDT
2011
Certificate fingerprints:
 MD5: 1F:AF:6D:EF:AF:50:D6:2B:66:C2:C5:6E:9E:42:7D:9D
 SHA1:
9C:E0:7E:D7:2C:F7:1E:47:D1:2E:D1:F3:D6:AB:83:A3:8A:2D:E9:35
Trust this certificate? [no]: yes

When prompted enter the fully qualified host name (first and last name) as well as organizational
information. When prompted for the password, press enter if it is the same as the keystore password.
Creating the Server keystore (server.keystore)

What is your first and last name?
 [Unknown]: server.domain.com
What is the name of your organizational unit?
 [Unknown]: HPSW
What is the name of your organization?
 [Unknown]: HP
What is the name of your City or Locality?
 [Unknown]: San Diego
What is the name of your State or Province?
 [Unknown]: CA
What is the two-letter country code for this unit?
 [Unknown]: US
Is CN=server.domain.com, OU=HPSW, O=HP, L=San Diego, ST=CA, C=US correct?
 [no]: yes

Enter key password for <smserver>
 (RETURN if same as keystore password):

After the batch file is finished, copy the cacerts file from the /certs subdirectory into the Service
Manager server RUN directory and copy the server.keystore file from the key directory into the
Service Manager RUN directory.

Vertically scaled systems
Once the batch file was run, copy the cacerts file from the /certs subdirectory into the Service
Manager server RUN directory and copy the server.keystore file from the key directory into the
Service Manager RUN directory.

Important: If the system is horizontally scaled, do not copy any files until the other server
certificates are created and appended. Refer to the horizontally scaled section to continue.

View the contents of the signed certificate (optional)
Type the following command to view the signed certificate:

openssl x509 -in smservercert.pem -text –noout

A message such as the following is displayed:
Certificate:
 Data:

11

 Version: 1 (0x0)
 Serial Number: 2 (0x2)
 Signature Algorithm: md5WithRSAEncryption
 Issuer: C=US, ST=CA, L=San Diego, O=Private HP CA, OU=HP CA,
 CN=server.domain.com/emailAddress=falcon@hp.com
 Validity
 Not Before: Mar 22 17:13:21 2006 GMT
 Not After : Mar 21 17:13:21 2009 GMT
 Subject: /C=US/ST=California/L=San
 Diego/O=HP/OU=TSG/CN=server.domain.com
 Subject Public Key Info:
 Public Key Algorithm: dsaEncryption
 DSA Public Key:
 pub:
 3b:ae:62:00:9c:d9:74:1f:6f:9a:60:f4:ea:30:72:
 4b:2c:a0:2c:68:16:c2:c9:8a:a9:81:57:82:81:52:
 b1:21:e1:02:74:bd:96:3c:75:ab:4f:0b:42:02:00:
 4a:4e:1a:91:00:51:0f:d8:08:83:8a:ce:88:24:15:
 05:5e:9e:4b:27:cc:86:fa:c1:67:ce:1a:1f:40:b5:
 ad:0e:31:3b:76:b4:33:52:19:20:74:49:91:3e:cb:
 68:30:18:92:e7:60:bf:ab:34:5c:c2:b1:ae:ec:9f:
 84:64:f1:5f:7e:58:28:94:be:dc:63:5b:e2:e8:dc:
 6a:cb:7d:78:0e:d3:84:59
 P:
 00:fd:7f:53:81:1d:75:12:29:52:df:4a:9c:2e:ec:
 e4:e7:f6:11:b7:52:3c:ef:44:00:c3:1e:3f:80:b6:
 51:26:69:45:5d:40:22:51:fb:59:3d:8d:58:fa:bf:
 c5:f5:ba:30:f6:cb:9b:55:6c:d7:81:3b:80:1d:34:
 6f:f2:66:60:b7:6b:99:50:a5:a4:9f:9f:e8:04:7b:
 10:22:c2:4f:bb:a9:d7:fe:b7:c6:1b:f8:3b:57:e7:
 c6:a8:a6:15:0f:04:fb:83:f6:d3:c5:1e:c3:02:35:
 54:13:5a:16:91:32:f6:75:f3:ae:2b:61:d7:2a:ef:
 f2:22:03:19:9d:d1:48:01:c7
 Q:
 00:97:60:50:8f:15:23:0b:cc:b2:92:b9:82:a2:eb:
 84:0b:f0:58:1c:f5
 G:
 00:f7:e1:a0:85:d6:9b:3d:de:cb:bc:ab:5c:36:b8:
 57:b9:79:94:af:bb:fa:3a:ea:82:f9:57:4c:0b:3d:
 07:82:67:51:59:57:8e:ba:d4:59:4f:e6:71:07:10:
 81:80:b4:49:16:71:23:e8:4c:28:16:13:b7:cf:09:
 32:8c:c8:a6:e1:3c:16:7a:8b:54:7c:8d:28:e0:a3:
 ae:1e:2b:b3:a6:75:91:6e:a3:7f:0b:fa:21:35:62:
 f1:fb:62:7a:01:24:3b:cc:a4:f1:be:a8:51:90:89:
 a8:83:df:e1:5a:e5:9f:06:92:8b:66:5e:80:7b:55:
 25:64:01:4c:3b:fe:cf:49:2a
 Signature Algorithm: md5WithRSAEncryption
 92:d4:33:b8:39:60:0f:72:c9:43:ee:64:1c:b6:48:85:11:bf:
 b9:d0:51:7d:da:70:1b:f0:7b:02:fc:af:06:07:a6:33:72:c2:
 ca:c7:c8:bf:e1:0a:90:00:a1:6f:cb:05:c0:c2:3e:7c:54:25:
 54:d0:e0:f0:8d:57:ba:7c:6d:0c:84:06:35:a1:f5:78:52:47:
 bb:ed:b4:ca:70:45:32:48:f9:bf:90:9d:30:a0:91:6d:5a:98:
 85:60:82:9b:f8:af:3b:63:4f:39:d0:b6:5f:70:6c:8c:44:83:
 4b:06:9a:3e:85:8b:ab:68:50:ee:0a:ef:d2:83:eb:ff:6f:d6:
 30:0b:ad:04:a8:b4:f5:77:7b:54:8c:21:83:6e:78:02:d8:95:
 0a:0a:e0:43:73:9b:f9:9d:ea:ab:a2:40:40:20:65:82:b1:90:
 b2:49:d6:a0:a0:d9:df:20:b3:50:23:61:c6:8b:7d:b1:1d:82:
 a8:32:f6:29:f2:f1:7f:1f:95:d8:39:89:0c:90:b8:64:e8:d9:
 df:70:87:d6:69:46:03:52:e4:63:d8:8a:0d:33:3d:b1:c5:07:
 68:39:00:ff:95:e1:f3:60:a4:60:ea:73:0a:70:a1:b2:71:9a:

12

 ec:cb:f9:33:e2:65:36:0c:5c:f4:0d:aa:13:3b:bd:e1:65:24:
 b2:df:29:6c

Print the keystore file (optional)
Enter the following command:

keytool -list -v -keystore server.keystore

A message such as the following is displayed:
Enter keystore password: serverkeypwd

Keystore type: jks
Keystore provider: SUN

Your keystore contains 1 entry

Alias name: tomcat
Creation date: Mar 22, 2006
Entry type: keyEntry
Certificate chain length: 2
Certificate[1]:
Owner: CN=host.domain.com, OU=Server RTE, O=HP, L=San Diego,
ST=California, C=US
Issuer: EMAILADDRESS=name@domain.com, CN=host.domain.com, OU=HP CA,
O=Private HP CA, L=San Diego, ST=CA, C=US
Serial number: 2
Valid from: Wed Mar 22 09:13:21 PST 2006 until: Sat Mar 21 10:13:21 PDT
2009
Certificate fingerprints:
 MD5: 65:7C:11:5E:B6:D9:A4:CD:18:00:E4:82:20:54:95:CE
 SHA1: DB:9C:FD:7D:71:1A:A7:C3:04:DA:8B:24:26:33:47:11:56:81:
 70:61
Certificate[2]:
Owner: EMAILADDRESS=name@hp.com, CN=host.domain.com, OU=HP CA, O=Private
HP CA, L=San Diego, ST=CA, C=US
Issuer: EMAILADDRESS=name@hp.com, CN=host.domain.com, OU=HP CA,
O=Private HP CA, L=San Diego, ST=CA, C=US
Serial number: 0
Valid from: Tue Mar 21 14:38:00 PST 2006 until: Fri Mar 20 15:38:00 PDT
2009
Certificate fingerprints:
 MD5: C1:52:73:03:30:69:21:33:CB:89:14:06:2F:3F:E2:1B
 SHA1: 53:D0:61:87:AB:5E:E8:E5:67:23:7E:A9:77:C7:EC:F0:99:6D:
 F9:00

To test that the server certificates are set up correctly, you can force SSL encryption by adding the
ssl:1 parameter into the sm.ini file of the server and restarting the server. In the sm.log file, the
line shown in italics below verifies that the startup was successful:
 2328(312) 10/06/2006 11:35:36 JRTE I SC servlet initialization
 2328(312) 10/06/2006 11:35:36 Initializing Coyote HTTP/1.1 on
 http-13080
 2328(312) 10/06/2006 11:35:36 Starting Coyote HTTP/1.1 on http-13080
 2328(312) 10/06/2006 11:35:37 Initializing Coyote HTTP/1.1 on
 http-13084
 2328(312) 10/06/2006 11:35:37 Starting Coyote HTTP/1.1 on http-13084
 2328(312) 10/06/2006 11:35:37 JRTE I Started Tomcat - HTTP port
 is 13080

13

 2328(312) 10/06/2006 11:35:37 JRTE I Started Tomcat - HTTPS port
 is 13084

Horizontally scaled systems
Important Requirements

On a horizontally scaled system, it is very important that all certificates are created from the same
machine.- Ensure to not copy any files to their target directories until all certificates for all server
machines in the horizontally scaled environment are created.

Running the batch file to create slave/secondary server certificates:
For each server node, create a server keystore. Append the same cacerts certificate to each newly
created server keystore.

Once the tso_srv_svlt.bat batch job has finished, keep all files it created in the certs, crs and key
directories.

tso_2nd_srvs_svlt.bat
This batch file is distributed in a zip file with this document. It is called from a DOS command prompt
from the directory containing the unzipped content of the zip file.

Adjust the following line in the batch file to point to the correct location of your installed JRE prior to
executing the batch file:

set JAVA_HOME ="INSERT PATH HERE"

Then call the batch file to create each of the slave server certificates as follows:

tso_2nd_srvs_svlt.bat <slave server machine name>

When prompted for the first and last name, enter the fully qualified computer name. When prompted
for the password, press enter for a password that is the same as the keystore password.
Creating the Server keystore (<slavename.keystore)
What is your first and last name?
[Unknown]: fully qualified server.domain.co
What is the name of your organizational unit?
[Unknown]: HPSW
What is the name of your organization?
[Unknown]: HP
What is the name of your City or Locality?
[Unknown]: San Diego
What is the name of your State or Province?
[Unknown]: CA
What is the two-letter country code for this unit?
[Unknown]: US
Is CN=client.domain.com, OU=HPSW, O=HP, L=San Diego, ST=CA, C=US
correct?
[no]: yes
Enter key password for <Server>
(RETURN if same as keystore password):

When prompted enter yes for trusting the certificate.

Importing Server public certificate into slavename.keystore
Owner: CN=server.domain.com, OU=HPSW, O=HP, L=San Diego, ST=CA, C=US
Issuer: EMAILADDRESS=first.last@company.com, CN=client.domain.com,
OU=BTO, O=HPSW, L=San Diego, ST=CA, C=US
Serial number: b6b6c8903ea66438
Valid from: Tue Jun 17 14:30:04 PDT 2008 until: Fri Jun 17 14:30:04 PDT
2011
Certificate fingerprints:
MD5: 76:4F:D9:2D:D4:4E:80:C0:F9:5A:1B:67:C0:D0:50:A1

14

SHA1:
F0:A4:36:F0:BD:CC:D5:BB:9D:35:8F:AD:BE:AB:EE:A7:F5:2B:9D:E9
Trust this certificate? [no]: yes

Repeat running the tso_2nd_srvs_svlt.bat <slave server machine name> batch file for every server
node in the horizontally scaled environment.

Once all the server keystores are created, copy the cacerts from the certs folder to the Service
Manager server\RUN directory on each server in the horizontally scaled environment. Then copy the
server.keystore file from the key directory that was created in section Creating the server certificates
using the batch file to the primary server’s – the Loadbalancer server’s – RUN directory.

Finally copy the <slavename_server>.keystore files from the key directory to each of the perspective
machine’s Service Manager server\RUN directories. The sm.ini on each server will reference the
<slavename_server>.keystore using the keystoreFile parameter. Only the LoadBalancer servers’s
sm.ini will point to the server.keystore created in section Creating the server certificates using the
batch file.
ssl:1
#ssl_reqClientAuth:2
trustedsignon:1
keystoreFile:slavename.keystore
keystorePass:serverkeystore
ssl_trustedClientsJKS:trustedclients.keystore
ssl_trustedClientsPwd:trustedclients
truststoreFile:cacerts
truststorePass:changeit

Windows Client or Web Tier configuration
This section shows how you configure the Windows client or the Web Tier.

Notes:

• For each Windows client you need a unique client certificate.
• For each Service Manager Web application server you need a unique client certificate.
• If a Windows client and the Web application server are on the same physical machine, it is

possible to use the same cacerts and clientcerts files for both, rather than creating two sets
of nearly identical keystores. In such a case, copy the files created for the Windows or Web client
– whichever was created first– into either the
<Service Manager Client>/plugins/com.hp.ov.sm.client.common_x.xx directory
or the Service Manager/WEB-INF folder of the Web application server.

Best Practice recommendation: When you configure the Web tier, type the word web in front
the keystore, certificate request and certificate name. For Windows client certificates, enter the name
of the machine in front of all names to make them unique and easier to distinguish.

Running the batch file to create client certificates
The following batch file will be distributed with this document. It will be called as follows from a DOS
command prompt in the directory that contains the content of the zip file provided with this document.

You need to modify the following line in the batch file before running it:
set JAVA_HOME="C:\Program Files\Java\jre1.5.0_12"

Set the JAVA_HOME variable to the location of your 1.5.x JRE.

Call the batch file to create the client certificates as follows:

tso_cln_svlt.bat <client machine name>

15

When prompted, enter the following information. First and last name are the fully qualified computer
name. When prompted for the password, press enter if the password is the same as the keystore
password.
Creating the Client keystore (client.keystore)

What is your first and last name?
 [Unknown]: client.domain.com
What is the name of your organizational unit?
 [Unknown]: HPSW
What is the name of your organization?
 [Unknown]: HP
What is the name of your City or Locality?
 [Unknown]: San Diego
What is the name of your State or Province?
 [Unknown]: CA
What is the two-letter country code for this unit?
 [Unknown]: US
Is CN=client.domain.com, OU=HPSW, O=HP, L=San Diego, ST=CA, C=US correct?
 [no]: yes
Enter key password for <client>
 (RETURN if same as keystore password):

When prompted enter yes for trusting the certificate.
Importing Client public certificate into Trustedclients keystore
(trustedclients.keystore)

Owner: CN=client.domain.com, OU=HPSW, O=HP, L=San Diego, ST=CA, C=US
Issuer: EMAILADDRESS=first.last@company.com, CN=client.domain.com,
OU=BTO, O=HPSW, L=San Diego, ST=CA, C=US
Serial number: b6b6c8903ea66438
Valid from: Tue Jun 17 14:30:04 PDT 2008 until: Fri Jun 17 14:30:04 PDT
2011
Certificate fingerprints:
 MD5: 76:4F:D9:2D:D4:4E:80:C0:F9:5A:1B:67:C0:D0:50:A1
 SHA1:
F0:A4:36:F0:BD:CC:D5:BB:9D:35:8F:AD:BE:AB:EE:A7:F5:2B:9D:E9
Trust this certificate? [no]: yes

Copy the trustedclients.keystore from the certs directory to the Service Manager server RUN directory.
Copy the smclient.keystore and the certs/cacerts to the <Service Manager
Client>/plugins/com.hp.ov.sm.client.common_x.xx directory for windows clients or the
WEB-INF folder of the Service Manager Web Application Server for web clients.

Note: smclient.keystore in this paper is a placeholder for <clientname>.keystore, since every client’s
keystore file will be named differently.

To import more client public keys into the trustedclients.keystore file, repeat these steps
below for each client certificate:

Import this certificate into the truststore
@echo Importing Client public certificate into Trustedclients keystore
(trustedclients.keystore)
@echo.
%KEYTOOL% -import -alias %1 -file certs/clientpubkey.cert -keystore
certs/trustedclients.keystore -storepass %TRUSTEDCLIENTS_KEYSTORE_PASSWD%
@echo.

Enter the following command:

16

keytool -import -alias <host name> -file clientpubkey.crt -keystore
trustedclients.keystore -storepass <TRUSTEDCLIENTS_KEYSTORE_PASSWD>

A message such as the following is displayed:
Owner: CN=server.domain.com, OU=Client, O=HP, L=SD, ST=CA, C=US
Issuer: EMAILADDRESS=falcon@hp.com, CN=server.domain.com, OU=HP CA,
O=Private HP CA, L=San Diego, ST=CA, C=US
Serial number: 3
Valid from: Thu Mar 30 16:38:57 PST 2006 until: Sun Mar 29 16:38:57 PST
2009
Certificate fingerprints:
 MD5: 8B:F4:57:C4:BD:C6:92:8A:CB:3B:F2:4E:44:3A:75:EE
 SHA1:
46:3C:6E:A8:B3:1D:0B:D3:33:C2:A0:B8:C0:98:90:28:38:C7:3E:FD
Trust this certificate? [no]: yes
Certificate was added to keystore

Configuring Service Manager to use SSL

Setting the security preferences for the clients
Whether you are using the Web client or the Windows client, you need to copy its signed client
certificate to the Service Manager RUN directory and set SSL preferences in Service Manager. This
task varies based on the client type.

For Service Manager Windows clients
1. Copy the cacerts and smclient.keystore files to the
<Service Manager Client>/plugins/com.hp.ov.sm.client.common_x.xx directory.

2. Open the Service Manager Windows client.
3. Click Windows -> Preferences -> Service Manager -> Security to open the Security

Preferences window.
4. Set the CA certificates file to the fully qualified path of the cacerts file that you copied to the
com.hp.ov.sm.client.common_x.xx directory.

5. Set the client keystore file to the fully qualified path of the smclient.keystore file that you
copied to the com.hp.ov.sm.client.common_x.xx directory.

6. Enter the password of the client’s keystore (CLIENT_KEYSTORE_PASSWD from the batch
file) into the client Keystore Password field.

7. Click OK to save the settings and close any open connections.
8. Once the server is configured for SSL authentication and ssl:1 is activated in the sm.ini, click File ->

Connect -> Connections to open the Service Manager Connections window. Click the
Advanced tab and click to select the Use SSL Encryption option.

9. Under the connections, make sure to use the host name that was used in the section Er ror !
Reference sou rce not fou nd.. Do not use localhost if server and client reside on the same
machine.

10. Click Apply -> Close to apply and save the options.

For Service Manager Web clients
1. Copy the cacerts and smclient.keystore files to the WEB-INF folder of the Service

Manager Web Application Server.

Note: These files can also be copied to a shared network drive that is accessible to the Service
Manager Web Tier client.

17

2. Stop the Web application server running the Service Manager Web Tier.
3. Open the Web configuration file, web.xml, in a text editor.
4. Make sure that the serverHost parameter contains the fully qualified name of the Service Manager

Server, as follows:

<init-param>
<param-name>serverHost</param-name>
<param-value>servername.domainname.com</param-value>
</init-param>

5. Control the encryption of network communication between the application server and the Service

Manager server, using the following entries to the web.xml file:

<init-param>
<param-name>ssl</param-name>
<param-value>true</param-value>
</init-param>

6. Set the cacerts parameter to the keystore file that contains your server's certificate authority (for

example cacerts). This is the keystore file that you copied into the WEB-INF folder in step 1.
7. Specify the client's private keystore to use in encrypted communication. If this is a relative path, it

will be relative to the Web application's deploy directory, but still needs a leading backslash
(for example /WEB-INF/smclient.keystore)

<init-param>
 <param-name>keystore</param-name>
 <param-value>enter path to smclient.keystore here</param-value>
</init-param>

8. Specify the password for the client's private keystore

<init-param>
 <param-name> keystorePassword</param-name>
 <param-value>enter keystore password here</param-value>
</init-param>

9. For using trusted sign on, set the value of the isCustomAuthenticationUsed parameter to false in

order for Service Manager to send the current user name in the HTTP header. If set to false without
trusted sign on, web client users will not be able to login to the system.

<context-param>

 <param-name>isCustomAuthenticationUsed</param-name>
 <param-value>false</param-value>
</context-param>

Adding Service Manager SSL/Single sign-on parameters
This section provides information about parameters that you add to enable SSL/Trusted sign-on.

1. Using a text editor, open the sm.ini file located in your Service Manager RUN directory.
2. Set the sslConnector parameter to 1 if it is 0.
3. Add the following parameters to the sm.ini file.

Mandatory parameters for all single sign-on implementations
Parameter Description

18

ssl:1 Enables SSL encryption requiring all clients to use SSL
connections.

ssl_reqClientAuth:2 Clients are required to present signed certificates to the
server and need to be on the list of trusted clients.

trustedsignon:1 Single sign-on capability is enabled.

keystoreFile:server.keystore keystore file containing the Service Manager server
certificate and private key

keystorePass:<ServerKeyPwd> Password to the Service Manager server keystore

ssl_trustedClientsJKS:trustedClients.jks keystore file containing the signed certificates of trusted SC
clients

ssl_trustedClientsPwd:<TrustedClientsPwd> Password to the trusted client keystore

truststoreFile:cacerts keystore containing the certificate authority’s certificate

truststorePass:<changeit> Password to the CA keystore

4. Save the sm.ini file and close the text editor.
5. All these parameters will apply to each new client connection that is established; however HP

recommends restarting the Service Manager server to ensure that all clients are using SSL
connections.

Test the configuration
You should now be able to start the Service Manager server, and then log on to the server through
your Windows client using SSL. Test the SSL connection first before enabling trusted sign-on. To use
trusted sign-on, ensure that you have an operator record with the same username and password as
those you use to log on to the network. No third-party product is necessary to set up single sign-on
with the Windows client. On the connections screen, use the following setup:

19

Set up your Web application server (such as Apache or IIS) to allow for trusted sign-on using the web
client.

Configure Service Manager Web clients to validate the Service Manager server's signed certificate,
present signed client certificates, and identify the trusted authentication source as described in the
section Setting the security preferences - For Service Manager Web clients.

Configuration of the Web server and Web application
server
This section provides some examples for configuring the Web server and the Web application server
to enable trusted sign-on. The Web server must be compatible with the Web tier application server.

Note: The following sections assume that the Web server and Web application server configurations
are already established, and that the only necessary changes to the configurations of these servers
are those described in this document.

Tomcat with Apache/Internet Information Server

Tomcat configuration changes
1. If you are using Tomcat 5.0.x, enter

request.tomcatAuthentication=false

at the end of the /tomcat/conf/jk2.properties file.

20

2. As of Tomcat 5.5.x, it no longer uses jk2.properties by default. For Tomcat 5.5.x, include the
tomcatAuthentication=”false” parameter in the jk2 worker port definition.

3. Open the Tomcat/conf/server.xml file in the same directory and search for the following line:

<!-- Define a Coyote/JK2 AJP 1.3 Connector on port 8009 -->

Change the parameters in this section from

<Connector port=”8009”
enableLookups="false" redirectPort="8443" debug="0" protocol="AJP/1.3" />

to

<Connector port=”8009”
enableLookups="false" tomcatAuthentication="false" redirectPort="8443"
debug="0" protocol="AJP/1.3" />

4. Save the file.
5. Restart Tomcat for the changes to take effect.

Apache configuration changes
Note: The mod_auth_sspi.so module is available only for Windows. If Apache is installed on a
UNIX® operating system, it is necessary to create a custom class to perform trusted sign-on.

6. Add the mod_auth_sspi.so module to the /modules directory in the Apache installation.
7. Add the following lines to the bottom of the http.conf file to allow for trusted sign-on:

#SspiAuth Module
LoadModule sspi_auth_module modules/mod_auth_sspi.so

<Location "/sm">
 AllowOverride None
 Options None
 Order allow,deny
 Allow from all
 AuthType SSPI
 SSPIAuth On
 SSPIDomain MYDOMAIN
 SSPIAuthoritative On
 SSPIOfferBasic Off
 SSPIPerRequestAuth On
 require valid-user
</Location>

The name within the Location tag needs to be the path the user enters to open the Service
Manager Web Client Web site; it is usually /sm, since the name is taken from the sm.war file. In
a configuration with multiple domains, comment out the SSPIDomain parameter by adding a
crosshatch character (#) in front of the line.

Internet Information Server
In the Properties window for the Service Manager virtual directory, click the Directory Security tab
and enter information as shown below:

21

Configuring Internet Information Server version 6
1. Open the IIS Manager (Start – Administrative Tools – Internet Information Services (IIS) Manager)
2. Click on Web Service Extensions
3. Set extension status to Allowed for All Unknown ISAPI Extensions
4. Optionally set Active Server Pages on Allowed.
5. Check the properties of the Default Web Site.

22

6. Go to the ISAPI Filters tab and check if the green upward arrow is in the Status column points
7. Go to the Directory Security tab and click on the Edit button in the Authentication and access

control frame. The Authentication Methods page should have the following settings:

Ensure to disable “Enable anonymous access” and enable “Integrated Windows authentication”

Optionally, Advanced Digest Authentication can be enabled.

23

Addit ional In form at ion : Advanced Digest Authentication is an extension of Digest security. Digest
security uses MD5 hashing to encrypt user credentials (user name, password and user roles).

Basic authentication sends the user name and password details over the network in base64 encoded
format. These details can be easily "sniffed" (captured with a protocol analyzer) and decoded by an
intruder, who could then use the credentials for nefarious purposes. Digest security's MD5 hash
enhances security by applying cipher algorithms that are more sophisticated and more difficult to
crack. An MD5 hash is binary data consisting of the encrypted user name, password and realm. The
'realm' is the name of the domain that authenticates the user.

The MD5 hash is embedded into an HTTP 1.1 header thus is only supported by HTTP 1.1-enabled
browsers. Digest or Advanced Digest authentication mechanisms can not be enabled if the target
browsers do not support HTTP 1.1.

Advanced Digest Security takes the Digest authentication model a bit further by storing the user
credentials on a domain controller as an MD5 hash in the Active Directory database. Intruders would
need to get access to the Active Directory to steal the credentials. This adds another layer of security
to protect access to Windows 2003 Web sites.

Both Digest and Advanced Digest Authentication only work on Web Distributed Authoring and
Versioning (WebDAV) enabled directories. WebDAV (formerly called Web Folders) is a secure file
transfer protocol that lets people download, upload, and manage files on remote computers across
the internet and intranets WebDAV is similar to the File Transfer Protocol (FTP) except that WebDAV
always uses password security and data encryption on file transfers, whereas FTP doesn't support
those features.

When you enable this feature, you’ll get the message: “Digest authentication only works with Active
Directory domain accounts. For more Information about configuring Active Directory domain accounts
to allow digest authentication click Help. Are you sure you want to continue (Yes, No, Help).

Clicking on Help gives the following information:

Digest Authentication Warning

The authenticated access method, Digest authentication, applies only to domain accounts on servers
running Microsoft® Windows® Server 2003 and requires the accounts to store passwords using
reversible encryption. Internet Information Services (IIS) sends a hash value rather than the password
over the network, working across proxy servers and other firewalls.

Requirements for Digest Authentication

Before enabling Digest authentication on your server running IIS, ensure that all of the following
minimum requirements are met. Only domain administrators can verify that the domain controller
requirements are met. Check with your domain administrator if you are unsure about whether your
domain controller meets the following requirements:

• · All clients that access a resource that is secured with Digest authentication are using Microsoft
Internet Explorer 5.0 or later.

• · The user and the server running IIS must be members of, or be trusted by, the same domain.
• · Users must have a valid Windows user account stored in Active Directory® on the domain

controller.
• · The domain must have a Windows 2000 or later domain controller.
• · The IIS server must be running a member of the Windows Server 2003 family or later.

8. In the Default Web Site Folder, right click on Jakarta and select Properties
Ensure to have the following settings on the Virtual Directory tab:

24

9. On the Directory Security Tab, click on Edit in the Authentication and access control frame.
10. Ensure to have Enable anonymous access disabled and Integrated Windows authentication

enabled.
11. Restart the Internet Information Server service.

WebSphere with IBM HTTP Server
This section provides an example for how to enable trusted sign-on using IBM WebSphere
Application Server 7.0 and IBM HTTP Server 7.0.

Note: IBM HTTP Server is not officially supported by Service Manager as of the writing of this
section. Therefore, the configurations provided in this section just serve for your reference only. For
more information about the officially supported Web tier application servers and Web servers, see
document Compatibility Matrix available on HP Software Product Manuals web site.

Installing IBM HTTP Server
1. Download IBM HTTP Server 7.0 from IBM web site.
2. Unzip the installation package you downloaded, and then run the install program under the IHS

directory.

http://support.openview.hp.com/

25

3. Define Windows Service.

4. Create a user ID and password for HTTP administration server authentication.

26

5. Follow the on-screen instruction to complete the installation of IBM HTTP Server.

Installing Web server plug-ins for WebSphere Application Server
1. Run the install program under the plugin directory.

2. Select IBM HTTP Server v7 as the Web server to configure.

27

3. Select the installation scenario.

4. Specify the installation location.

5. Choose the installation location of WebSphere Application Server Version 7.0.

28

6. Select the Web server configuration file and specify the Web server port.

7. Specify a unique Web server name.

8. Create the Web server plug-in configuration file (plugin-cfg.xml).

29

9. Click Finish to complete the installation.

Creating a Web server on Websphere
1. From the Windows Start menu, click All Programs -> IBM Websphere -> Application

Server7.0 -> Profiles -> AppSvr01 -> Administrative Console.
2. Enter the admin user name and password to log on to the Integrated Solution Console.
3. From the left panel, select Servers -> Server Types -> Web servers.

The page for creating a new Web server appears.

4. Specify the Web server name, type, host name and platform.

5. Select IHS as the Web server template.

30

6. Enter the properties for the new Web server.

7. Click Finish to confirm the new Web server.
8. From the left panel, click Environment -> Update global Web server plug-in

configuration, and then click OK to update the plug-in configuration file.

9. Generate and propagate plug-in.

a. From the left panel, select Servers -> Server Types -> Web servers.

31

A list of installed Web servers appears.
b. Select the Web server you created, and then click Generate Plug-in.

c. Click Propagate Plug-in.

IBM HTTP Server configuration changes
Note: The mod_auth_sspi.so module is available only for Windows. If IBM HTTP Server is installed
on a UNIX® operating system, it is necessary to create a custom class to perform trusted sign-on.

1. Add the mod_auth_sspi.so module to the <IHS Install Dir>/modules.
2. Create a file named as mod_auth_sspi.conf under directory <IHS Install Dir>/conf.

LoadModule sspi_auth_module modules/mod_auth_sspi.so

<Location "/sm">
 AllowOverride None
 Options None
 Order allow,deny
 Allow from all
 AuthType SSPI
 SSPIAuth On
 SSPIDomain MYDOMAIN
 SSPIAuthoritative On
 SSPIOfferBasic Off
 #SSPIPerRequestAuth On
 require valid-user
</Location>

Note: The name within the Location tag needs to be the path the user enters to open the Service
Manager Web Client Web site; it is usually /sm, since the name is taken from the sm.war file.
Make sure that the SSPIPerRequestAuth On is commented out with a crosshatch character (#).

3. Add the following lines to the bottom of the http.conf file:

include conf/mod_auth_sspi.conf
LoadModule was_ap22_module "<IHS Install
Dir>\Plugins\bin\mod_was_ap22_http.dll"

32

WebSpherePluginConfig "<IHS Install
Dir>\Plugins\config\webserver1\plugin-cfg.xml"

Browser security settings

Internet Explorer
1. In Internet Explorer, select Internet Options on the Tools menu.
2. On the Security tab, select Local intranet, and then click the Sites button.
3. Add the following address to the list of trusted web sites: http://<Fully Qualified Domain Name of

Service Manager Web Sever>. Make sure that the “Require server verification (https:) for all site in
this zone” option is not selected.

4. On the Security tab, select Local intranet, and then click the Custom Level... button.
5. Under Logon in User Authentication section, select Automatic logon with current username

and password.
6. Click OK to save the settings.

Firefox
1. Open Firefox and then type about:config in the address bar.
2. In the Filter field, type network.automatic-ntlm-auth.trusted-uris.
3. Double click the preference name as in Step 2.
4. Enter the URL of Service Manager Web server in the form of: http://<Fully Qualified Domain Name

of Service Manager Web Sever>. You can use a comma separated list in this field.

Troubleshooting
Errors can occur both during the setup of the certificates and keystore files as well as when you start
Service Manager. This section shows error messages that you may encounter and then describes the
cause of each.

General Troubleshooting

If errors occur when you attempt to connect to the Service Manager server, add the debugstartup and
debughttp parameters to your sm.ini file. Restart the Service Manager server and attempt to log on
with the client again. Check your sm.log file for details about any errors you may receive. Using
Service Manager, it is possible that no errors are written to the sm.log file on startup, but that the
SSL connection is still not successful. If that is the case, you can read the error message on failed
startup by stopping the Service Manager server and then entering the following command from the
DOS command prompt:
sm –servletcontainer –httpPort:13080 –httpsPort:13081

Then wait for the error message to be displayed in the DOS command prompt.

The following errors are commonly seen in the sm.log when first setting up the SSL connection, after
successful startup of the server:

Error message:
keytool error: Failed to establish chain from reply

Cause:

This message is issued during the import of a certificate when the cacerts file in the
<JAVA_HOME>/lib/security folder is not the same as the cacerts file used to create the
certificates. To fix this issue, copy the cacerts file used when building the certificates to the
<JAVA_HOME>/lib/security folder.

Error Message:

33

Not a trusted client. IP/host name: <IP Address of Client>/<Hostname of Client>
Cause:
The hostname of the client that sent the request was different from the DN in the client's certificate.
To fix this, recreate the client certificate correctly.
Error Message:

No SSL certificate was presented by the peer!
Cause:
The request was an HTTPS request, but no client certificate is available. Ensure that the web.xml or the
windows client preferences point to the correct client certificate.
Error Message:

SSL debug: Could not load trusted client file.
Cause:
Service Manager could not find the trusted client JKS file to which the ssl_trustedClientsJKS parameter
points. Verify that the parameter points to the correct location.
Error Message:

Client <DN in the client's certificate> is not in the trusted list file.
Cause:
The client's certificate is not in the trusted list file. To fix this issue, follow the steps described in section
“Error! Reference source not found.”.
Error message:
SOAP FAULT: SOAP-ENV:Server
"SSL_ERROR_SSL"
Detail: SSL_accept() failed in soap_ssl_accept()

Cause:

Under the Windows Preferences in the Service Manager security section, check if the client
keystore file and client keystore password are entered correctly. If not, correct the values and
restart the client. If the issue still occurs, check the path to the cacerts file as well. If necessary,
correct this information and restart the client. If the error message is still issued, perform the following
steps:

1. Enter the following commands

keytool –list –keystore ./cacerts
keytool –list –keystore ./sm clien t .k ey s tore

2. Check if the imports into the private certificates were done correctly. You should see an output such
as:
Keystore type: jks
Keystore provider: SUN
Your keystore contains 1 entry
test, May 3, 2006, keyEntry,
Certificate fingerprint (MD5):
ED:BF:05:81:0D:BF:CD:53:33:6F:39:07:14:60:87:B3

Error message:

34

Cause:

The Server Host Name in the client connections window or the web.xml file is not the same as that
used in the server key file. Make the Server Host Name the client tries to connect to the same name
as that used when creating the server certificates. Generally, this is the fully qualified server name.

Error Message:

In the sm.log file:

SOAP FAULT: SOAP-ENV:Client
"Peer is not a trusted client"
Detail: SSL_accept() failed in soap_ssl_accept()

Cause:

Either the ssl_trustedClientsJKS parameter is missing in the server’s sm.ini file, or the contents of the
client keystore file (smclient.keystore) were not imported into the trusted JKS correctly,
and thus a trusted connection could not be established.

Error message:

Failed to verify user name for trusted sign-on

Cause:

A local user name was entered to connect to Service Manager instead of a domain user name. Only
domain user names are accepted to log on to the Service Manager server.

Error message:

With debugging in sm.log:
 7768(8052) 06/17/2008 15:06:34 Error initializing endpoint
java.io.IOException: Keystore was tampered with, or password was
incorrect
 at
sun.security.provider.JavaKeyStore.engineLoad(JavaKeyStore.java:768)

35

 at java.security.KeyStore.load(KeyStore.java:1150)
 at
org.apache.tomcat.util.net.jsse.JSSESocketFactory.getStore(JSSESocketFact
ory.java:282)
 at
org.apache.tomcat.util.net.jsse.JSSESocketFactory.getKeystore(JSSESocketF
actory.java:222)
 at
org.apache.tomcat.util.net.jsse.JSSE14SocketFactory.getKeyManagers(JSSE14
SocketFactory.java:141)
 at
org.apache.tomcat.util.net.jsse.JSSE14SocketFactory.init(JSSE14SocketFact
ory.java:109)
 at
org.apache.tomcat.util.net.jsse.JSSESocketFactory.createSocket(JSSESocket
Factory.java:88)
 at
org.apache.tomcat.util.net.PoolTcpEndpoint.initEndpoint(PoolTcpEndpoint.j
ava:292)
 at
org.apache.coyote.http11.Http11BaseProtocol.init(Http11BaseProtocol.java:
138)
 at
org.apache.catalina.connector.Connector.initialize(Connector.java:1016)
 at org.apache.catalina.startup.Embedded.start(Embedded.java:826)
 at com.hp.ov.sm.tomcat.EmbeddedTomcat.main(EmbeddedTomcat.java:267)

Cause:

The server Keystore password is incorrect. Check the sm.ini to make sure the password for the server
keystore is entered exactly as in the batch file, or as entered manually. Restart the server after
correcting the issue.

Error message:

Cause:

The machine name entered in the client does not match the machine name of the certificate. Change
the machine name to the one used for certificate creation and reconnect.

Error:

Incorrect user is passed through to Service Manager when using IIS for the Web Tier

Cause:

Sometimes, the user name / password from the Service Manager server is passed through instead of
the domain user logged in to the client. To troubleshoot this issue, set the Internet Explorer security
settings to: prompt for user name and password. This allows the user to see that the user name /
password provided by Windows is actually the correct one.

36

37

Appendix A – Explanation of the Batch Files

Explanation of the steps required to create the server
certificates
The following is a copy of the batch file. The document sections following this batch file describe in
detail what each section of the file is doing as well as provide information on how to create the
certificates and keystores manually. If you have used the batch file to create the certificates, you do
not have to perform the steps in this section.
REM #
REM # SM SSL Certificates Creator (server component)
REM #
REM # This batch file facilitates the creation of the SSL certificates
REM # that are needed to setup SSL encryption for Service Manager 7.0x.
REM #
REM # Run this batch file only once to create the certificates for the
REM # Service Manager server.
REM #
REM #--
cls

@echo off

REM # OpenSSL settings
REM #
REM # This batch file uses the openssl.conf file as input for the
REM # OpenSSL program. All _default values can be set according to your
REM # organization.
REM #
REM # Only one openssl.conf is needed.
REM #
REM #--
set OPENSSL=openssl

REM # Java Settings
REM #
REM # set the JAVA_HOME variable to the installation path of the JRE you
REM # want to use.
REM #
REM #--
set JAVA_HOME="C:\Program Files\Java\jre1.5.0_12"
set KEYTOOL=%JAVA_HOME%\bin\keytool

REM # Password settings
REM #
REM # These are the default password settings used by the OpenSSL and
REM # keytool programs. All passwords can be changed, EXCEPT the
REM # CACERT_PASSWD, as this is the default password that the SUN cacert
REM # from the JRE uses!
REM #
REM #--
set CAROOT_PASSWD=caroot
set CACERT_PASSWD=changeit
set SERVER_KEYSTORE_PASSWD=serverkeystore
set CLIENT_KEYSTORE_PASSWD=clientkeystore
set TRUSTEDCLIENTS_KEYSTORE_PASSWD=trustedclients

38

@del /q key
@del /q certs
@del /q crs

@mkdir key
@mkdir certs
@mkdir crs

copy %JAVA_HOME%\lib\security\cacerts
%JAVA_HOME%\lib\security\cacerts.orig
copy %JAVA_HOME%\lib\security\cacerts certs\cacerts

REM #---
REM # Private Key & Root Certificate generation
REM #---

REM create the private key for your private CA
@echo.
@echo
__
@echo.
@echo Creating a Self-Signed Certificate (cakey.pem)
@echo.
%OPENSSL% genrsa -des3 -passout pass:%CAROOT_PASSWD% -out key/cakey.pem
2048
@echo.
@echo

@echo.

REM create the root CA cert
@echo.
@echo

@echo.
@echo Creating the root ca certificate (mycacert.pem)
@echo.
%OPENSSL% req -new -key key/cakey.pem -x509 -days 1095 -out
certs\mycacert.pem -config ./openssl.conf -passin pass:%CAROOT_PASSWD%
@echo.
@echo

@echo.

REM import the certificate into the System-wide keystore
@echo.
@echo

@echo.
@echo Importing the certificate into the System-wide keystore (cacerts)
@echo.
%KEYTOOL% -import -keystore certs/cacerts -trustcacerts -alias
servicemanager -file certs/mycacert.pem -storepass %CACERT_PASSWD%
@echo.
@echo

@echo.

copy certs\cacerts %JAVA_HOME%\lib\security

39

REM #--
REM # Server Key & Certificate generation
REM #--

REM generate private server key and keystore
@echo.
@echo

@echo.
@echo Creating the Server keystore (server.keystore)
@echo.
%KEYTOOL% -genkey -alias smserver -keystore key/server.keystore -
storepass %SERVER_KEYSTORE_PASSWD%
@echo.
@echo

@echo.

REM generate the server request certificate to be signed using our CA key
& cert
@echo.
@echo

@echo.
@echo Generating the Server request certificate (servercert_request.crs)
@echo.
%KEYTOOL% -certreq -alias smserver -keystore key/server.keystore -file
crs/servercert_request.crs -storepass %SERVER_KEYSTORE_PASSWD%
@echo.
@echo

@echo.

REM sign the server request certificate using our CA
@echo.
@echo

@echo.
@echo Signing the Server request certificate (smservercert.pem)
@echo.
%OPENSSL% x509 -req -days 1095 -in crs/servercert_request.crs -CA
certs/mycacert.pem -CAkey key/cakey.pem -CAcreateserial -out
certs/smservercert.pem -passin pass:%CAROOT_PASSWD%
@echo.
@echo

@echo.

REM import the server certificate into the keystore
@echo.
@echo

@echo.
@echo Importing Server certificate into Server keystore
@echo.
%KEYTOOL% -import -trustcacerts -alias smserver -keystore
key/server.keystore -file certs/smservercert.pem -storepass
%SERVER_KEYSTORE_PASSWD%

40

@echo.
@echo

@echo.

Setting the environment variables and passwords
set OPENSSL=openssl

REM # Java Settings
set JAVA_HOME="C:\Program Files\Java\jre1.5.0_12"
set KEYTOOL=%JAVA_HOME%\bin\keytool

REM # Password settings
set CAROOT_PASSWD=caroot
set CACERT_PASSWD=changeit
set SERVER_KEYSTORE_PASSWD=serverkeystore
set CLIENT_KEYSTORE_PASSWD=clientkeystore
set TRUSTEDCLIENTS_KEYSTORE_PASSWD=trustedclients

First the OpenSSL (if running the commands from the same directory as the batch file, just set
OPENSSL to the name of the executable: openssl. If running it from a different directory, include the
path to the executable.), Java, and password settings have to be provided. If you choose to create the
certificates manually instead of using the batch file, set the JAVA_HOME environment variable and
write all passwords down for later reference.

Generating the private key and root certificate
Copying the cacerts file
@del /q key
@del /q certs
@del /q crs

@mkdir key
@mkdir certs
@mkdir crs

copy %JAVA_HOME%\lib\security\cacerts
%JAVA_HOME%\lib\security\cacerts.orig
copy %JAVA_HOME%\lib\security\cacerts certs\cacerts

It is very important that the cacerts file in the JAVA_HOME\lib\security folder is updated to include
the root CA information. Because of this requirement, copy the original cacerts file to a new name
and then copy the original cacerts file to the certificates working directory that was created earlier
during this step.

Generate an RSA® private key
REM #---
REM # Private Key & Root Certificate generation
REM #---

REM create the private key for your private CA
@echo Creating a Self-Signed Certificate (cakey.pem)
@echo.
%OPENSSL% genrsa -des3 -passout pass:%CAROOT_PASSWD% -out key/cakey.pem
2048
@echo.

The following steps are required to create your Service Manager private key:

3. Open a command window from the Service Manager RUN directory and execute the following
command to create the private key (cakey.pem):

41

openssl genrsa -des3 –passout pass:<passw ord> -out key/cakey.pem 2048

4. Enter a password for your CA (Certificate Authority) and verify it when prompted.

Important: Write down this password, because you will need it later to sign certificates.

Create a self-signed root certificate for the Certificate Authority (CA)

A root certificate is a trusted copy of the CA's certificate that is used to sign other certificates. Its
private key is highly sensitive and should never be compromised by removing the password that
protects it. Before SSL communications can succeed, connections need to trust the self-signed root
certificate by downloading and registering it.
REM create the root CA cert
@echo Creating the root ca certificate (mycacert.pem)
@echo.
%OPENSSL% req -new -key key/cakey.pem -x509 -days 1095 -out
certs\mycacert.pem -config ./openssl.conf -passin pass:%CAROOT_PASSWD%
@echo.

When prompted for locale information and common name, enter the information as prompted. The
common name is the fully qualified machine name for which the certificate is created.

If creating the certificates manually, follow these steps.

1. From the Service Manager RUN directory or the OpenSSL directory command window, execute the
following to create the self-signed root certificate (mycacert.pem):

openssl req -new -key cakey.pem -x509 -days 1095 -out mycacert.pem -config
./openssl.conf –passin pass:<passw ord>

Enter the CA password that you created in the section Generate an RSA® private key when
prompted to do so.

2. When prompted for certificate details such as country and state, you can enter either the
appropriate data, choose the system defaults, or leave the items blank. When prompted for the
Common Name, ensure to enter the fully qualified name for your machine.

Importing the self-signed root certificate (mycacert.pem) into the system-wide
keystore (cacerts)

In the JRE, SSL certificates are stored in two files: a keystore file and a truststore file. The keystore file
holds key entries, each of which is an entity's identity and private key that is used to identify oneself
to a server as a trusted client. The truststore file holds trusted certificate entries, each of which
contains the identity and public key of an entity (usually a CA), which are used to identify trusted
servers.

For normal SSL communications, where the only requirement is that the client trusts the server, the self-
signed root certificate (mycacert.pem) must be imported into the system-wide keystore (cacerts).

@echo Importing the certificate into the System-wide keystore (cacerts)
@echo.
%KEYTOOL% -import -keystore certs/cacerts -trustcacerts -alias
servicemanager -file certs/mycacert.pem -storepass %CACERT_PASSWD%
@echo.

Respond to the prompt “Trust this certificate” by typing y.

Follow these steps to import the signed CA certificate into the keystore file:

42

1. Open a command window from the <JDK|JRE>/bin directory (see KEYTOOL environment
variable defined above) and execute the following:

keytool -import -keystore cacerts -trustcacerts -alias servicemanager -file
mycacert.pem -storepass <passw ord>

2. When a dialog box prompts “Trust this certificate?” type y.
3. Verify that a message is received stating that the certificate was added to the keystore file.
4. You can run the following command to ensure that the import was successful:

keytool -list -keystore ./cacerts

and enter the <passw ord> created above when prompted.

Note: Although it is possible to create your own cacerts file, HP recommends copying the
JAVA_HOME/lib/security/cacerts file, import the new certificate and then copy the modified cacerts
file back to JAVA_HOME/lib/security.

Move the trusted certificates file and the Certificate Authority (CA)

The keytool utility allows an administrator to manage keystore files and certificates from trusted
entities. The utility can be found in the <JRE|JDK>/bin directory.

The system-wide keystore that holds CA certificates, the cacerts file, and the self-signed root
certificate, mycacert.pem created in the section Er ror ! Reference sou rce not fou nd., must be
moved so that the keytool utility in the Java™ Runtime Environment (JRE™) can access them.

@echo.

copy certs\cacerts %JAVA_HOME%\lib\security

Copy the cacerts file from the directory where it was updated in the previous step to the
<JRE|JDK>/lib/security directory.

Creating the server keystore

The following steps apply to setting up single sign-on and required SSL communication in Service
Manager.

Note: It is very important to always enter the fully qualified machine name when prompted for the
name (machine.domain.com).

Create a private key and keystore for the Service Manager server
@echo Creating the Server keystore (server.keystore)
@echo.
%KEYTOOL% -genkey -alias smserver -keystore key/server.keystore -
storepass %SERVER_KEYSTORE_PASSWD%
@echo.

Enter all other input when prompted.

In this step, you create the server.keystore file. To do so, enter the following command and fill in
the requested information as shown below:

keytool -genkey -alias smserver -keystore server.keystore –storepass <passw ord>
What is your first and last name?
 [Unknown]: machinename.domain.com
What is the name of your organizational unit?
 [Unknown]: TSG

43

What is the name of your organization?
 [Unknown]: HP
What is the name of your City or Locality?
 [Unknown]: San Diego
What is the name of your State or Province?
 [Unknown]: California
What is the two-letter country code for this unit?
 [Unknown]: US
Is CN=server.domain.com, OU=TSG, O=HP, L=San Diego, ST=California, C=US
correct?
 [no]: yes

Enter key password for <smserver>
 (RETURN if same as keystore password):

Create a certificate request for the Service Manager server
@echo Generating the Server request certificate (servercert_request.crs)
@echo.
%KEYTOOL% -certreq -alias smserver -keystore key/server.keystore -file
crs/servercert_request.crs -storepass %SERVER_KEYSTORE_PASSWD%
@echo.

You can enter the password when prompted or via the –storepass <passw ord> parameter.

From the keystore file created in the previous section, you create a certificate request for the Service
Manager server, using the following command:

keytool -certreq -alias smserver -keystore server.keystore -file servercert_req.crs –
storepass <passw ord>

Sign the Service Manager server's certificate request with your private certificate
authority
@echo Signing the Server request certificate (smservercert.pem)
@echo.
%OPENSSL% x509 -req -days 1095 -in crs/servercert_request.crs -CA
certs/mycacert.pem -CAkey key/cakey.pem -CAcreateserial -out
certs/smservercert.pem -passin pass:%CAROOT_PASSWD%
@echo.

The following command will sign the server’s certificate request (servercert_req.crs) with the private
certificate authority (mycacert.pem) and create the smservercert.pem file as a result:

openssl x509 -req -days 1095 -in servercert_req.crs -CA mycacert.pem -CAkey
cakey.pem -CAcreateserial -out smservercert.pem -passin pass:<CAROOT_P ASSWD>
You can either enter the pass phrase when prompted or use the -passin pass:<passw ord>
parameter.

The following message is displayed:
Loading 'screen' into random state - done
Signature ok
subject=/C=US/ST=California/L=San Diego/O=HP/OU=TSG/CN=server.domain.com
Getting CA Private Key

Import the signed certificate into the keystore
After the certificate request is signed, you import it into the server’s keystore with the following
command:
@echo Importing Server certificate into Server keystore
@echo.

44

%KEYTOOL% -import -trustcacerts -alias smserver -keystore
key/server.keystore -file certs/smservercert.pem -storepass
%SERVER_KEYSTORE_PASSWD%
@echo.

keytool -import -trustcacerts -alias smserver -keystore server.keystore -file
smservercert.pem -storepass <SERVER_KEYSTORE_P ASSWORD>

A message such as the following is displayed:
Certificate reply was installed in keystore

Explanation of the steps needed to create client certificates
The following section describes the batch file and each of its sections in more detail.
REM #
REM # SC-SM SSL Certificates Creator (client component)
REM #
REM # This batch file facilitates the creation of the SSL certificates
that are needed to setup SSL encryption for Service Manager 7.0x.
REM #
REM # Run this batch file with the fully-qualified domain name of the
client machine as the first argument (%1), from the command line :
REM #
REM # \prompt>tso_cln_svlt <fully-qualified domain name>
REM #
REM # Rerun this batch file for each client machine to create a unique
REM # set of certificates for the Service Manager Eclipse or Web client.
REM #
REM #--
cls

@echo off

REM # OpenSSL settings
REM #
REM # This batch file uses the openssl.conf file as input for the the
OpenSSL program. All _default values can be set according to your
REM # organization.
REM #--
set OPENSSL=openssl

REM # Java Settings
REM #
REM # set the JAVA_HOME variable to the installation path of the JRE you
REM # want to use.
REM #
REM #--
set JAVA_HOME="C:\Program Files\Java\jre1.5.0_12"
set KEYTOOL=%JAVA_HOME%\bin\keytool

REM # Password settings
REM #
REM # These are the default password settings used by the openssl and
REM # keytool programs. All passwords can be changed, EXCEPT the
REM # CACERT_PASSWD, as this is the default password that the SUN

45

REM # cacert from the JRE uses..!!
REM #
REM #--
set CAROOT_PASSWD=caroot
set CACERT_PASSWD=changeit
set SERVER_KEYSTORE_PASSWD=serverkeystore
set CLIENT_KEYSTORE_PASSWD=clientkeystore
set TRUSTEDCLIENTS_KEYSTORE_PASSWD=trustedclients

Only do this step if run from a different machine than the one that
created the server certs

copy %JAVA_HOME%\lib\security\cacerts
%JAVA_HOME%\lib\security\cacerts.origcopy
copy %SSL_CERT_HOME%\certs\cacerts %JAVA_HOME%\lib\security

echo Client Key and Certificate creation

REM #--
REM # Client Key & Certficate generation
REM #--

REM generate private client key and keystore
@echo.
@echo

@echo.
@echo Creating the Client keystore (%1.keystore)
@echo.
%KEYTOOL% -genkey -alias %1 -keystore key/%1.keystore -storepass
%CLIENT_KEYSTORE_PASSWD%
@echo.
@echo

@echo.

REM generate the Client request certificate to be signed using our CA key
REM & cert
@echo.
@echo

@echo.
@echo Generating the Client request certificate (clientcert_request.crs)
@echo.
%KEYTOOL% -certreq -alias %1 -keystore key/%1.keystore -file
crs/clientcert_request.crs -storepass %CLIENT_KEYSTORE_PASSWD%
@echo.
@echo

@echo.

REM sign the Client certificate using our CA
@echo.
@echo -------------------------------------
@echo.
@echo Signing the Client request certificate (scclientcert.pem)
@echo.

46

%OPENSSL% x509 -req -days 1095 -in crs/clientcert_request.crs -CA
certs/mycacert.pem -CAkey key/cakey.pem -CAcreateserial -out
certs/scclientcert.pem -passin pass:%CAROOT_PASSWD%
@echo.
@echo

@echo.

REM import the client certificate into the keystore
@echo.
@echo

@echo.
@echo Importing Client certificate into Client keystore
@echo.
%KEYTOOL% -import -trustcacerts -alias %1 -keystore key/%1.keystore -file
certs/scclientcert.pem -storepass %CLIENT_KEYSTORE_PASSWD%
@echo.
@echo

@echo.

REM #--
REM # Adding the client Certificate to Trusted Keystore
REM #--

REM export client public key/certificate
@echo.
@echo

@echo.
@echo Exporting Client public certificate from Client keystore
(clientpubkey.cert)
@echo.
%KEYTOOL% -export -alias %1 -keystore key/%1.keystore -file
certs/clientpubkey.cert -storepass %CLIENT_KEYSTORE_PASSWD%
@echo.
@echo

@echo.

REM import public key/certificate into the keystore
@echo.
@echo

@echo.
@echo Importing Client public certificate into Trustedclients keystore
(trustedclients.keystore)
@echo.
%KEYTOOL% -import -alias %1 -file certs/clientpubkey.cert -keystore
certs/trustedclients.keystore -storepass %TRUSTEDCLIENTS_KEYSTORE_PASSWD%
@echo.
@echo

@echo.

Setting the environment variables and passwords
set OPENSSL=openssl

47

REM # Java Settings
set JAVA_HOME="C:\Program Files\Java\jre1.5.0_12"
set KEYTOOL=%JAVA_HOME%\bin\keytool

REM # Password settings
set CAROOT_PASSWD=caroot
set CACERT_PASSWD=changeit
set SERVER_KEYSTORE_PASSWD=serverkeystore
set CLIENT_KEYSTORE_PASSWD=clientkeystore
set TRUSTEDCLIENTS_KEYSTORE_PASSWD=trustedclients

First the OpenSSL (if running the commands from the same directory as the batch file, just set
OPENSSL to the name of the executable: openssl. If running it from a different directory, include the
path to the executable.), Java, and password settings have to be provided. If you choose to create the
certificates manually instead of using the batch file, set the JAVA_HOME environment variable and
write all passwords down for later reference.

Copying the cacerts file
@del /q key
@del /q certs
@del /q crs

@mkdir key
@mkdir certs
@mkdir crs

Only do this step if run from a different machine than the one that
created the server certs

copy %JAVA_HOME%\lib\security\cacerts
%JAVA_HOME%\lib\security\cacerts.origcopy
%JAVA_HOME%\lib\security\cacerts certs\cacerts
copy %SSL_CERT_HOME%\certs\cacerts %JAVA_HOME%\lib\security

It is very important that the cacerts file in the JAVA_HOME\lib\security folder is updated to include
the root CA information. To ensure that the original cacerts is not accidentally overwritten, copy it to a
different name before proceeding.

Create the client’s keystore
Certificate requests for both Service Manager Windows and Web clients can be generated using the
same client keystore file. The steps in this section apply to both client types. The entries in italics
will have to be different for each client.
@echo Creating the Client keystore (%1.keystore)
@echo.
%KEYTOOL% -genkey -alias %1 -keystore key/%1.keystore -storepass
%CLIENT_KEYSTORE_PASSWD%
@echo.

1. From the <JDK|JRE>/bin directory command window, execute the following command:
keytool -genkey -alias sm clien t -keystore sm clien t .k ey s tore -storepass
<CLIENT_KEYSTORE_PASSWD>

2. Select a password value that is easily remembered. The password passed in the storepass
parameter will be the password for your client’s keystore.

3. When prompted for first and last name, enter the fully qualified domain name of the Service
Manager client or the Service Manager Web server. For example, enter:

48

smclient01.HP.com or webtier02.HP.com.

• When prompted for certificate details such as country, state, and locality, you can enter the
appropriate data, choose the system defaults, or leave the items blank.

4. When a dialog box prompts “Is this correct?” type y.

Create the client’s certificate request
@echo.
@echo Generating the Client request certificate (clientcert_request.crs)
@echo.
%KEYTOOL% -certreq -alias %1 -keystore key/%1.keystore -file
crs/clientcert_request.crs -storepass %CLIENT_KEYSTORE_PASSWD%
@echo.

1. To generate the client certificate request, execute the following command (where entries in italics
will have to be different for each client):
keytool -certreq -alias sm clien t -keystore sm clien t .k ey s tore -file
sm clien tcer t_reques t .crs -storepass <CLIENT_KEYSTORE_PASSWD>

2. The password needs to be the same as the one used for creating the client’s keystore in step 2 in
the section above..

3. To verify that this worked, you can enter the following command:

keytool -list -keystore ./sm clien t .k ey s tore

4. and enter the password when prompted.

Sign the client certificate request using the root certificate and private
key
@echo Signing the Client request certificate (smclientcert.pem)
@echo.
%OPENSSL% x509 -req -days 1095 -in crs/clientcert_request.crs -CA
certs/mycacert.pem -CAkey key/cakey.pem -CAcreateserial -out
certs/smclientcert.pem -passin pass:%CAROOT_PASSWD%
@echo.

1. Copy the client certificate request file, smclientcert_request.crs, to the Service Manager
RUN directory.

2. Execute the following command from the Service Manager RUN directory command window:
openssl x509 -req -days 1095 -in sm clien tcer t_reques t .crs -CA mycacert.pem -
CAkey cakey.pem -CAcreateserial -out sm clien tcer t .pem-passin
pass:<CAROOT_PASSWD>

3. You can check if this was successful by entering the following command:

openssl x509 -in sm clien tcer t .pem -text –noout

Import the client certificate into the clients keystore
@echo Importing Client certificate into Client keystore
@echo.
%KEYTOOL% -import -trustcacerts -alias %1 -keystore key/%1.keystore -file
certs/smclientcert.pem -storepass %CLIENT_KEYSTORE_PASSWD%
@echo.

49

1. Enter the following command to import the client certificate into the client keystore:
keytool -import -trustcacerts -alias smclient -keystore ./smclient.keystore -file
smclientcert.pem -storepass <CLIENT_KEYSTORE_PASSWD>

A message such as the following is displayed:
Certificate reply was installed in keystore

Creating the trusted certificates file
In Service Manager you first export the public key/certificate, and then import the public
key/certificate into the truststore.

Export the public key / certificate
@echo Exporting Client public certificate from Client keystore
(clientpubkey.cert)
@echo.
%KEYTOOL% -export -alias %1 -keystore key/%1.keystore -file
certs/clientpubkey.cert -storepass %CLIENT_KEYSTORE_PASSWD%
@echo.

Enter the following command in the directory where keytool is installed, usually jre/bin:

keytool -export -alias smclient -keystore smclient.keystore -file clientpubkey.cert -
storepass <CLIENT_KEYSTORE_PASSWD>

A message such as the following is displayed:
Certificate stored in file <clientpubkey.crt>

Import this certificate into the truststore
@echo Importing Client public certificate into Trustedclients keystore
(trustedclients.keystore)
@echo.
%KEYTOOL% -import -alias %1 -file certs/clientpubkey.cert -keystore
certs/trustedclients.keystore -storepass %TRUSTEDCLIENTS_KEYSTORE_PASSWD%
@echo.

Enter the following command:

keytool -import -alias <host name> -file clientpubkey.crt -keystore
trustedclients.keystore -storepass <TRUSTEDCLIENTS_KEYSTORE_PASSWD>

A message such as the following is displayed:
Owner: CN=server.domain.com, OU=Client, O=HP, L=SD, ST=CA, C=US
Issuer: EMAILADDRESS=falcon@hp.com, CN=server.domain.com, OU=HP CA,
O=Private HP CA, L=San Diego, ST=CA, C=US
Serial number: 3
Valid from: Thu Mar 30 16:38:57 PST 2006 until: Sun Mar 29 16:38:57 PST
2009
Certificate fingerprints:
 MD5: 8B:F4:57:C4:BD:C6:92:8A:CB:3B:F2:4E:44:3A:75:EE
 SHA1:
46:3C:6E:A8:B3:1D:0B:D3:33:C2:A0:B8:C0:98:90:28:38:C7:3E:FD
Trust this certificate? [no]: yes
Certificate was added to keystore

50

51

Appendix B - Setting up Single Sign-on with third party
authentication on the Web Tier

Configuring the Web Client for third-party authentication
1. To activate single sign-on in Service Manager’s Web Tier navigate to the
<path to Web applica t ion>/WEB-INF/classes/ directory.

In the application-context.xml file modify the following line. Change
/**=httpSessionContextIntegrationFilter,anonymousProcessingFilter

To

/**=httpSessionContextIntegrationFilter,preAuthenticationFilter,
anonymousProcessingFilter

as described in the comment in the application-context.xml file.

2. Save your changes and restart the Web server on the Service Manager Web Tier.
3. When using IIS you need to configure an ISAPI connector for your Web application server, and you

need to modify the virtual directory to use Integrated Windows Authentication.

See the HP Customer Support Web site for Knowledge Base articles about configuring Integrated
Windows Authentication on common Web application servers or refer to the section Configuration
of the Web server and Web application server in this document.

Defining a JavaBean® to handle authentication
All modifications for the single or trusted sign-on settings in the Service Manager Web Tier are done
in the <path to web application>/WEB-INF/classes directory in the

application-context.xml file.

For Windows-based authentication, out-of-box Service Manager ships with a JavaBean called
preAuthenticationFilter, which is defined as:
<bean id="preAuthenticationFilter"

 class="com.hp.ov.cwc.security.acegi.PreAuthenticationFilter">
 <property name="authenticationManager">
 <ref bean="authenticationManager"/>
 </property>
 <property name="defaultRole">
 <value>ROLE_PRE</value>
 </property>
</bean>

To use another authentication source that passes the username in the HTTP header, you add or
replace the preAuthenticationFilter block with code such as the following.

The following example shows how to add a new filter. To replace the filter, set the bean ID to
preAuthenticationFilter (rather than SiteminderPreAuthenticationFilter as shown below).
<bean id="SingleSignOnpreAuthenticationFilter"
 class="com.hp.ov.cwc.security.acegi.SiteminderPreAuthenticationFilter">
 <property name="authenticationManager">
 <ref bean="authenticationManager"/>
 </property>
 <property name="defaultRole">
 <value>ROLE_PRE</value>
 </property>
 <property name="keepDomain">
 <value>true</value>

52

 </property>
 <property name="siteminderUsernameHeaderKey">
 <value>USERNAME</value>
 </property>
 <property name="siteminderPasswordHeaderKey">
 <value>PASSWORD</value>
 </property>
</bean>

In this definition the siteminderUsernameHeaderKey property passes the user name value from the
single sign-on tool to Service Manager. To successfully pass the user name value, set the <value>
element to the name of the property in the HTTP header that stores the user name in the third-party
authentication tool's configuration.

If the HTTP header was…
POST /sc61server/ws HTTP/1.1
Content-Type: text/xml; charset=utf-8
SOAPAction: "Retrieve"
Content-Length: 1474
Expect: 100-continue
[…]
REMOTE_USER: falcon
Cookie: $Version=1; SessionId=127.0.0.1:4819

Then replace the <USERNAME> with REMOTE_USER.

To activate the sign-on filters, modify the following line in the application-context.xml file.

/**=httpSessionContextIntegrationFilter,
SingleSignOnpreAuthenticationFilter,preAuthenticationFilter,
anonymousProcessingFilter

The SingleSignOnpreAuthenticationFilter has to match the bean ID from above. If you want multiple
sign-on filters, add them in order to the filter chain. If you do this, the first to succeed will provide the
authenticated username.

Note: The httpSessionContextIntegrationFilter always needs to be in first position within the chain.

Integrating Custom Java Classes into the Java Bean
In Service Manager, it is possible to develop and use a custom Java class for third party
authentication as well. You can either write a new custom Java class or modify the existing Java class
to fit the new requirements for Service Manager. The requirements for the new Java class are
described on the example of integrating an old Java class into the Service Manager system. The
modified Java class then needs to be put into the web-inf/classes directory, or as a jar file into
web-inf/lib.

The following changes are necessary to go from a ServiceCenter 6.1 Java class to the Service
Manager Java class:

• Instead of implementing the com.HP.shared.cwc.security.AuthenticationHandler interface, change it
to extend the com.HP.shared.security.acegi.PreAuthenticationFilter class.

• Change the authenticate(HttpServletRequest, User) method to
getAuthenticatedUsername(HttpServletRequest)

• Instead of calling user.setUserName() and user.setAuthenticated(), the
getAuthenticatedUsername method returns the user name as a String if the user is
authenticated, or null if not. This user name must match the operator record in Service Manager, so
include the domain in the String if the operator names in Service Manager include the domain.

53

In the <path to web application>/WEB-INF/classes directory in the
application-context.xml file, your bean will then look as follows:

<bean id="preAuthenticationFilter"
 class="com.hp.ov.cwc.security.acegi.<custom java class>">
 <property name="authenticationManager">
 <ref bean="authenticationManager"/>
 </property>
 <property name="defaultRole">
 <value>ROLE_PRE</value>
 </property>
</bean>

In short examples, here are the changes you need to implement going from ServiceCenter version 6.1
to Service Manager. Instead of:
public class <custom class> implements AuthenthicationHandler

You now do:
public class <custom class> extends PreAuthenticationFilter

…where “extends” means that the custom public class following will replace a method in the
PreAuthenticationFilter java class.

Within the public class, you define which part of the PreAuthenticationFilter you want to replace and
how to replace it by defining the method:
protected String getAuthenticatedUsername(HttpServletRequest request)

to your specification. If this is a new implementation, you will do your custom programming here.

The main modification you have to do to the old Java code is to remove all mention of the user object,
which is not passed into the class in Service Manager any longer. Instead we return the user name, if
authentication succeeded, or return null if it failed. This username has to be returned after a successful
run of the class.

Example: Creating a custom Java Class for Single-Sign-On using LDAP
Note: This is an example on how to create a custom Java class for Single Sign-On using LDAP
authentication. Actual implementation will vary from system to system, depending on the LDAP server,
setup and configuration.

The following classes are required to compile this example:

class jar file comments

jasypt-1.4.1.jar* Part of the jasypt package. Copy the jar to <web-inf>\lib

commons-lang-2.2.jar Part of SM7 web client

commons-codec-1.3.jar Part of SM7 web client

com.ibm.icu_3.4.5.20061213.jar From the full client plugins folder

security-4.0.jar Part of SM7 web client

spring-2.0.5.jar Part of SM7 web client

servlet-api.jar* Copied from Tomcat, only required for compilation. Same classes are
provided by WebSphere at runtime.

//Provided by B.Hartley
package com.hp.ov.cwc.security.acegi;

54

// servlet-api.jar
import javax.servlet.http.HttpServletRequest;

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.NamingEnumeration;
import javax.naming.NamingException;
import javax.naming.directory.Attributes;
import javax.naming.directory.SearchControls;
import javax.naming.directory.SearchResult;
import javax.naming.ldap.InitialLdapContext;
import javax.naming.ldap.LdapContext;

// defined in jasypt-1.4.1.jar
// should copy to app-lib folder
import org.jasypt.util.text.*;

// require spring-2.0.5.jar in classpath

public class LDAPPreAuthenticationFilter extends PreAuthenticationFilter
{
 public LDAPPreAuthenticationFilter ()
 {
 keepDomain = false;
 credentialProvider = null;
 //implements upn lookup if set to true can bbe overridden in

application-context.xml
 useUPN = true;
 ldapBindDn = "";
 //for example CN=adm2hartley,OU=Admins,OU=Users and Groups,OU=GC

CTR,OU=CTR,OU=Organizations,DC=company,DC=com";
 ldapBindPassword = "";
 ldapBaseDn= ""; //OU=Admins,OU=Users and Groups,OU=GC

CTR,OU=CTR,OU=Organizations,DC=company,DC=com";
 ldapServerURL= ""; //ldap://ldap.company.com:389";
 //to implement - the filter would be iserted in an AND clause
 //ldapExcludeFilter = (!(dn=*Contractors*))

 }

 protected String getAuthenticatedUsername(HttpServletRequest request)
 {
 String username = null;
 if(credentialProvider == null ||

credentialProvider.getUserName(request) != null &&
credentialProvider.getUserName(request).equals(""))

 {
 username = request.getRemoteUser();
 System.out.println("Default remote user : " + username);
 if(username != null)
 if(username.length() == 0)
 username = null;
 else
 if(!keepDomain)
 {
 int i = username.indexOf('\\');
 username = username.substring(i + 1);
 }
 }

55

 else
 {
 username = credentialProvider.getUserName(request);
 }
 if(useUPN)
 {
 System.out.println("Using UPN. SamAcctName : " + username);
 String userUPNname = lookupUPN(username);
 System.out.println("Found this UPN : " + userUPNname);
 return userUPNname ;
 }
 else
 {
 System.out.println("Not using UPN. Username : " + username);
 return username ;
 }
 }

 public boolean useUPN(){return useUPN;}
 public void setuseUPN(boolean useUPN){this.useUPN = useUPN;}

 public void setCredentialProvider(CredentialProvider

credentialProvider)
 {
 this.credentialProvider = credentialProvider;
 }

 public String getldapBindDn(){return ldapBindDn;}
 public void setldapBindDn(String ldapBindDn){this.ldapBindDn =

ldapBindDn;}
 public String getldapBindPassword(){return ldapBindPassword;}
 public void setldapBindPassword(String

ldapBindPassword){this.ldapBindPassword = ldapBindPassword;}
 public String getldapBaseDn(){return ldapBaseDn;}
 public void setldapBaseDn(String ldapBaseDn){this.ldapBaseDn =

ldapBaseDn;}
 public String getldapServerURL(){return ldapServerURL;}
 public void setldapServerURL(String ldapServerURL)
 {
 this.ldapServerURL = ldapServerURL;
 }
 protected String lookupUPN(String samUserName)
 String myUPNuser="";
 {
 try
 {
 Hashtable env = new Hashtable();
 String adminName = ldapBindDn;
 String adminPassword = ldapBindPassword;
 String ldapURL = ldapServerURL;
 env.put(Context.INITIAL_CONTEXT_FACTORY,"com.sun.jndi.ldap.

LdapCtxFactory");
 //set security credentials, note using simple cleartext

authentication
 env.put(Context.SECURITY_AUTHENTICATION,"simple");
 env.put(Context.SECURITY_PRINCIPAL,adminName);

 //decrypt the password if it starts with *** else it is clear

text, use as is.
 if (adminPassword.indexOf("***")==0)

56

 {
 adminPassword = adminPassword.substring(3);
 BasicTextEncryptor textEncryptor = new BasicTextEncryptor();
 // this password the same as that used to encrypt the

adminpassword with FilterEncrypt
 textEncryptor.setPassword("PssWrd");

 adminPassword = textEncryptor.decrypt(adminPassword);
 }
 env.put(Context.SECURITY_CREDENTIALS,adminPassword);
 //connect to my domain controller
 env.put(Context.PROVIDER_URL,ldapURL);

 //Create the initial directory context
 LdapContext ctx = new InitialLdapContext(env,null);
 //Create the search controls
 SearchControls userSearchCtls = new SearchControls();
 //Specify the search scope
 userSearchCtls.setSearchScope(SearchControls.SUBTREE_SCOPE);

 //specify the LDAP search filter to find the user in question
 String userSearchFilter = "(&(objectClass=user)(sAMAccountName="

+ samUserName +"))";

 //Specify the Base for the search
 String userSearchBase = ldapBaseDn;

 //Specify the attributes to return
 String userReturnedAtts[]={"userPrincipalName"};
 userSearchCtls.setReturningAttributes(userReturnedAtts);

 //Search for objects using the filter
 NamingEnumeration userAnswer = ctx.search(userSearchBase,

userSearchFilter, userSearchCtls);

 //Loop through the search results
 while (userAnswer.hasMoreElements())
 {
 SearchResult sr = (SearchResult)userAnswer.next();
 Attributes attrs = sr.getAttributes();

 if (attrs != null)
 {
 myUPNuser =

attrs.get("userPrincipalName").get().toString();
 }
 }

 }

 catch (Exception e)
 {
 System.err.println("Problem searching directory: " + e);
 System.out.println("Problem searching directory: " + e);
 }
 return myUPNuser;
 }
// added for UPNLookup
boolean useUPN;
String ldapBindDn;

57

String ldapBindPassword;
String ldapBaseDn;
String ldapServerURL;

}

This class contains a reference to FilterEncrypt, which is shown below:
import org.jasypt.util.text.*;
public class FilterEncrypt
{
 public static void main(String arg[])
 {
 try
 {
 String GivenPwd = arg[0];
 BasicTextEncryptor textEncryptor = new BasicTextEncryptor();
 textEncryptor.setPassword("PssWrd");
 String myEncryptedText = "***" + textEncryptor.encrypt(GivenPwd

);
 System.out.println("here is the encrypted : " +

myEncryptedText);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

58

For more information
Please visit the HP OpenView support web site at:
http://www.hp.com/managementsoftware/support

This web site provides contact information and details about the products, services, and support that
HP OpenView offers.

HP OpenView online software support provides customer self-solve capabilities. It provides a fast and
efficient way to access interactive technical support tools needed to manage your business. As a
valuable support customer, you can benefit by being able to:

• Search for knowledge documents of interest
• Submit and track progress on support cases
• Submit enhancement requests online
• Download software patches
• Manage a support contract
• Look up HP support contacts
• Review information about available services
• Enter discussions with other software customers
• Research and register for software training

Note: Most of the support areas require that you register as an HP Passport user and sign in. Many
also require an active support contract.

To find more information about support access levels, go to the following URL:

http://www.hp.com/managementsoftware/access_level

To register for an HP Passport ID, go to the following URL:

http://www.managementsoftware.hp.com/passport-registration.html

© 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained in examples in this document regarding OpenSSL technology is provided by Hewlett-Packard Development Company, L.P as a
courtesy to our customers and partners. This documentation does not replace an OpenSSL reference, and HP encourages you to conduct additional
research regarding OpenSSL technology by consulting with sources outside of this document. HP hereby disclaims all liability associated with the use and
accuracy of this information. As OpenSSL technology evolves, HP may or may not update this reference.

Peregrine Systems, Service Manager, and Evolve Wisely are registered trademarks of Hewlett-Packard Development Company, L.P. Windows is a
registered trademark of Microsoft Corporation in the United States and other countries. SiteMinder is a registered trademark of Computer Associates
International, Inc. Sun Microsystems, Java, JRE, and JDK are trademarks of Sun Microsystems, Inc. in the United States and other countries. UNIX is a
registered trademark of the Open Group. RSA is a registered trademark of RSA Data Security Inc. WebSphere is a trademark of International Business
Machines Corporation in the United States, other countries, or both. WebLogic Server is a registered trademark of BEA Systems, Inc. All other trademarks
are the property of their respective owners.

01/2012

http://www.hp.com/managementsoftware/support

	Introduction
	Overview of trusted sign-on

	Prerequisites
	Other prerequisites

	The SSL Handshake
	The parts of the handshake
	ClientHello (C -> S)
	ServerHello (C <- S)
	Certificate (C <- S)
	CertificateRequest (C <- S) (client-side authentication only)
	ServerHelloDone (C <- S)
	Certificate (C -> S) (client-side authentication only)
	ClientKeyExchange (C -> S)
	CertificateVerify (C -> S) (client-side authentication only)
	ChangeCipherSpec (C -> S)
	Finished (C -> S)
	ChangeCipherSpec (C <- S)
	Finished (C <- S)

	Connection scenario between a Windows client and Service Manager application server
	Connection scenario between a Web server, a Web application server, and the Service Manager application server

	Server configuration
	Creating the server certificates using the batch file
	Vertically scaled systems
	View the contents of the signed certificate (optional)
	Print the keystore file (optional)

	Horizontally scaled systems
	Running the batch file to create slave/secondary server certificates:
	tso_2nd_srvs_svlt.bat

	Windows Client or Web Tier configuration
	Running the batch file to create client certificates

	Configuring Service Manager to use SSL
	Setting the security preferences for the clients
	For Service Manager Windows clients
	For Service Manager Web clients

	Adding Service Manager SSL/Single sign-on parameters
	Test the configuration

	Configuration of the Web server and Web application server
	Tomcat with Apache/Internet Information Server
	Tomcat configuration changes
	Apache configuration changes
	Internet Information Server
	Configuring Internet Information Server version 6

	WebSphere with IBM HTTP Server
	Installing IBM HTTP Server
	Installing Web server plug-ins for WebSphere Application Server
	Creating a Web server on Websphere
	IBM HTTP Server configuration changes

	Browser security settings
	Internet Explorer
	Firefox

	Troubleshooting
	Appendix A – Explanation of the Batch Files
	Explanation of the steps required to create the server certificates
	Setting the environment variables and passwords
	Generating the private key and root certificate
	Import the signed certificate into the keystore

	Explanation of the steps needed to create client certificates
	Setting the environment variables and passwords
	Copying the cacerts file
	Create the client’s keystore
	Create the client’s certificate request
	Sign the client certificate request using the root certificate and private key
	Import the client certificate into the clients keystore
	Creating the trusted certificates file

	Appendix B - Setting up Single Sign-on with third party authentication on the Web Tier
	Configuring the Web Client for third-party authentication
	Defining a JavaBean® to handle authentication
	Integrating Custom Java Classes into the Java Bean
	Example: Creating a custom Java Class for Single-Sign-On using LDAP

	For more information

