Implementing Backout and Terminate in Service Manager®
Change Management

Best Practice Guide on How to Implement the Backout and Terminate Functionality to
Other Change Categories

HP® Management Software — IT Service Management

"
W

I CeTe (7ot 7o TSRS 2
REQUITEIMENS ...ttt ettt e ettt et e e e ettt e e e e e sttt e e e e e s aaatene 2
Current implementation of Backout and Terminate in Release Managementcccooveeiieiiiiiiiieee, 2
Backout IMPlementaioncuiiiiiiiiie et 2
DACKOULIElEASE PrOCESS .. .vveuiiiiiicit ettt 2
Detail FOrmat Control.......ouiiiiiiiieiit ettt 5
Terminate IMPlemMentatiONccuiiiiiiiiii ettt et eae e et e e e e eare e 5
Detail FOrmat Controlcueiiiiiiii ittt 8
Implementing Backout Phase and Terminate processing in other change categories..............cccoeeviieiiiennnen. 9
What is 0 PhaSE POINTEIT .. .oiiiiiiiiii ettt ettt ettt e et e e eae e eare e 9
Implementing Backout in other categoriesiiiuiiiiiiiiiie e 10
DISPIAYOPHONSeeiti ettt ettt ettt ettt ettt et et e et e e ab e e bt e e ent e entteeenbeeenaeeas 10
Phase DEfiNONiiiieie et ettt ettt ettt en 11
Category DEfiNIHONc.iiiiiiii ittt ettt 11
FOIMAE CONIOL ...t ettt ettt et ettt e ens 12
Implementing Terminate in Other COMEGOTIES ... i viitieitie ittt 13
DISPIAYOPHONS ...ttt ettt ettt ettt ettt et et e et e e ab e e bt e et e anteeeenbeeeaeeas 13
FOIMAE CONIOL ...ttt ettt e e ens 14
Entering Phase - Phase Definitionoiuiiiiiieiie et 14
Implementing conditional phases in Change Management..............ooiiiiiiiiiiiiie e 15
Conditional workflow ViSUGIIZAHONoouiiiiiiii it 15
FOIMQE CONTOL ...ttt ettt ettt ettt et et et e eneeenaeenaeens 15

FOr MOTE INFOIMOHON. ... ettt ettt et ettt et e e et eeneeneas 17

O]

invent

Introduction

The Release Management change category introduces both Backout and Terminate functionalities into
Service Manager. This document shows how to implement Backout and Terminate functionalities in
other change categories.

Requirements

This document is intended solely for Service Manager administrators. Knowledge of setting up
Change Management using Service Manager tailoring tools is required as well.

Important: This document is not intended for novice users of Service Manager; it is intended only
for users who have administrative product knowledge in Service Manager.

Current implementation of Backout and Terminate in
Release Management

The Backout and Terminate functionalities in Service Manager Release Management are implemented
via the Document Engine, using display options and scripts. The Document Engine State record that
handles Backout and Terminate is cm.view. The display options used are associated with the display
screen cm.view.display.

Backout implementation

The Backout button moves the change into the Backout phase; upon closure of the Backout phase, the
change returns to its Plan and Design phase.

The $release.backout variable is set to true in the pre-RAD expressions of the Backout display option
of the cm.view.display displayscreen. A back out invokes the backout.release Process, where the
RAD routines and final expressions described below are executed.

backout.release Process
Initial Expressions

$r el ease. backout =nul | sub($r el ease. backout, fal se)

First RAD routine call

This call determines whether the current phase is the last phase defined for this change; and if so, sets
a variable to indicate that this is the last phase. If the change is in its last phase and the Service Level
Agreement (SLA) module is enabled, the SLA outage confirmation routine is called; otherwise this RAD
routine call is bypassed.

Process Definition

Process Marne:
D Save Cursor Position?

Run in Window?

backout release

O run Standard Process when complete?

‘Window Title:

< Initial Expressions | < Initial Javascripk | & RAD | < Final Expressions | < Final Javascript | < MNext Process

s evaluated before RAD call

$L.file vars={$L.category, $L.phase, $L.fc, $L.fc.master}
if {index{current. phase in $L.file, phases in $L.category)=Ing{denulliphases in $L.cakegory))) then {$L. last=true) else ($L.last=False)

RAD Application:

Post RAD Expressions

sla. confirm, outage

| Q | Condition:

(= (Bl

|$L.Iast and enable in $G.sla. environment

Farameter Names

| Farameter Yalues

file

$L.file

Second RAD routine call

The second RAD routine call always executes the Service Manager scripting routine to call the
backout.release script. The backout.release script brings up the backout.release form, in which you

fill out the reason for the Backout operation.

RAD Application:

Post RAD Expressions

scripk.execute

|Q | Condition:

true

Parameter Names

| Paramneter Yalues

file:
name

$L.file
"backout.releass”

Script Panel Definition

£ General | G Mewt Script |

Scripk Marne!
Farrm Marne:

Display Screen Marne:

Enter the conditions Fo

Skip Display:
Bypass Cond:

Enter=Caontinue?

backout,release

Is this the first panel?

backout,release

Cluster Name:

false

false

|true

nter the skatements k

fterminate, ok=true

< Pre RAD Statements | < Pre RAD Javascript | < RAD | < Post RAD Statements | < Post RAD Javascript

ute after the form tes and after the application runs

$G. backout . comments 2=backout . comments in $script

The backout.release form contains the following fields:

B | = |[sermts =y | V@R | &
=] :RAD Deb :System Elrroperties 52 ®1 = O :_&Main Menu: Falcon aSearch Object R, aProcess: backou. ., &Format Contrali ..
& Text Area V OK $ Canicel
Property IVaIue @ L] | |
Marme ; En
5 . CEfLdhiimEomoy @
8 B
width 140 Release Management Back Out -
Height. g :thange Mumber: :Risk Assessment:
Visible % Cateqgory: & :Impact Assessment:
Wisible Condition Biiss i :
Caption FPhase:) Urgency: -
Caption Conditian #pproval Status: Priatity:
Input backaout, comments lert Stage: Status:
Accessible Name !
Accessible Description
Tab Stop 0
Read-Cnly [=] L
Read-Cnly Condition ~Back Out IHfo -
Mandatary] = - -
Mandatory Condition BackitBrration:
Password T Back Qut Reason
Maximum Chars] ' o
Maximum Characters Bed |
Case Conversion 0 . B
Diecimals Mone
Parse &=

Third RAD routine call

The third RAD routine call forces the closure of any open tasks for the current phase in which the
Backout option was selected. It is executed only when performing a back out.

$L.terminaked.parent. narme=rurmber in $L.filz

RAD Application: cmi3.close.child.tasks |Q | Condition: |$release.backout=true |
Parameter Names | Parameter Values |:
name $L.terminated.parent.name

wv
Post RAD Expressions

Fourth RAD routine call

The fourth RAD routine call is called only when performing a back out. It closes the current phase of
the change in which the Backout option was selected.

ted before RAD cal

RAD Application: cm clase | Q | Candition: |$re|ease.backout=true |
Parameter Names | Parameter Yalues |)
record $L.File
second.file $L.object 0
booleani $L.bg
prompt $L.exit ht

Posk RAD Expressions

cleanupi$release backout)

Final Expressions

These expressions are evaluated after the RAD routine calls are finished, every time this process is
called. It sets Exit variables and resets the phase pointer to a NULL value.

< Initial Expressions | <» Initial Javascript | < RAD | & < Final Javascript | < Mext Process

if ($L.exit="niormal") then ($L.exit="closestate™)

if ($L.exit="bg") then ($L.exit="exit")

if (L. exit="exit") then ($L.exit.when.done=true;if {filename($L.file)="cm3r") then ($phasepntr=NULLY;if (Flename{$L . file)="cm3t") then ($tphasepntr=NULLY)
if ($L.bg and $L.exit="exit") then {$L.exit="normal"}

Detail Format Control

After execution of the process record completes, control is returned to the Document Engine and the
standard processing. The return to the Plan and Design phase is handled in the detail Format Control
(cm3r.release) by performing the statements indicated below. The first highlighted statement always
executes during the Close process, and checks whether the current phase pointer is set to the Backout
phase; if so the statement sets a variable that indicates that the change should go back to the Plan
phase. The second highlighted statement executes during Close processing only if the variable to
return to the Plan phase is set. If executed, the statement sets the phase pointer to the first phase and
sets the current.phase field in the record to the value contained in the variable $L.cur.phase.

Format Control Maintenance - Calculations
Name: 3t .release View: short
add | Ui | delete | display | initial | calculation
true true true $ip.array=nullsub{$ip.array, {});$d.assignment=nullsub{$d. assignment, {}); $loc. arrav=nullsubi$loc. arraw, {+)
nullfa... true $ip.array=4{};$d. assignment=4{}; $loc. arrav=_}
true true true $do.train=false
true true true i {initial.impact in $file<"3") then ($dao.krain=true)
true if {$phasepntr=3 and approval status in $file~="denied" and initial.impact in $file=2) then ($L.skip.training=true)
true if {$phasepntr=3 and approval, status in $file="denied") then ($L.plan. again=true)
true if {$phasepntr=5 and $release. backout=False) then {$L.skip.backout=true)
true if {$L.cur. pntr=6) then ($L.plan. again=true) |
true if {$phasepntr=7 and approval.status in $file="denied") then {$L.plan.again=true)
true if {miscZ in $file="fail" and $L.cur.phase="Build and Test") then {$L.plan. again=true)
| $L. plan. again=true $phasepntr=1;current.phase in $file=$L.cur .phase |
$L.skip. braining=true $phasepntr=4;current.phase in $file=$L.cur .phase
$L.skip. backout=true $phasepntr=6;current . phase in $file=$L.cur .phase
true true $show rlm, testing=False
true true iF {($L.cur.pntr ==3) then ($show.rim.testing=true)
true if {$terminate. release=true) then ($phasepntr=7;current.phase in $file="verification)

Terminate Implementation

The Terminate button moves the Release Management change to the last phase, Verification, and
closes the change with a status of Terminated.

In the pre-RAD Expressions of the Terminate displayoption of the cm.view.display displayscreen, the
$terminate.release variable is set to True. The Terminate action invokes the terminate.release Process,
which performs the following actions:

First RAD routine call:

The first RAD routine call determines whether the current phase is the last phase for this change; if so
it sets a variable to indicate this. If the current phase is the last phase and the SLA module is enabled,
the first RAD routine call then calls the SLA outage confirmation routine; otherwise it bypasses it.

Process Definition

Process Name: kerminate. release
O save Cursor Position? O run Skandard Process when complete?
Fun in Window? Windaow Tide: | |

& RAD | & Final Expressions | < Final Javascript | < Mext Process

$L.file vars={4$L.category, $L.phase, $L.fc, $L.Fc.master}:)
if {index({current.phase in $L.file, phases in $L.category)=Ing{denull{phases in $L.category))) then ($L.last=true) else ($L.last=False) =
“
RAD Application: sla,confirm.outage |Q | Condition; |$L.Iast and enable in $G.sla, environment |
Parameter Names | Parameter Yalues |
file $L.file

Posk RAD Expressions

Second RAD routine call:

The second RAD routine call sets the variable $terminate.ok to false, defines the name of the script to
be executed, and overrides the script name if the change category is for Knowledge Management.
The second RAD call then executes the Service Manager scripting wrapper routine and executes the
script that is passed in.

luated before RAD call

$terminate. ok=Ffalse)
$L.script.name="tarminate releass";if (name in $L. category="KM Document") then ($L. script.name="kM Dacuments closed") i
A
RAD Application: SCHpt . execUte. WrapRer |Q | Condition: | true
Paramneter Mames | Parameker Yalues B
file: $L.file
name $L.script.name
prompk $L.return, script, exit
v
Post RAD Expressions

if {$L.return, scripk, exit="cancel") then ($terminate.ok=Ffalse;$terminate release=False; $L .mode="update")

In the post-RAD expressions the second RAD call checks the return exit of the script; if the script returns
cancel, the second RAD call ensures that the $terminate.ok and $terminate.release variables are both
set fo false and resets $L.mode to update.

The terminate.release script first brings up the terminate.release form and then sets the $terminate.ok
variable to true:

Script Panel Definition

i@ General | < Mext Scripk
Scripk Mame:
Form Mame:

Display Screen Mame:

Enter the conditions For the

Skip Display:
Bypass Cond:

Enter=Conkinue?

& Pre RAD Statements

nter the statements

fterminate. ok=true

“ Pre RAD Javascripk

T "
cerminate.release

| terminate.release

EE

Is this the Firsk panel?

Cluster Mame:

@ RAD | & Post RAD Skakements

nd after the application runs

« Post RAD Javascript

The terminate.release form contains two subforms, terminate.hdr and terminate.close.detail:

terminate.hdr:

Relzase Managerment Terrnination
Change Mumber: |

Cakeqgory:

Fhase:

|
|
Approval Skatus: |
Alert Stage: |

Risk Assessment:
Impact Assessment:
Urgency:

Priarity:

Skatus:

terminate.close.detail:

Messages | System .., Properties &3 | i T | &Main Meru: Falcon | a States: cr.view a scripks;

terminate. release

. [—j Farms

Text Area
Property 1 Walue
Mame MulkiTexts
kS 7
i &
Width 140
Height g
Yisible Il
Yisible Condition
Caption
Caption Condition
Input closing. comments

Accessible Name
Accessible Description
Tab Stop

Read-Only
Read-Only Condition
Mandatory
Mandatory Condition
Password

20 & O

Maxirnum Chars

Maxirnum Characters Be ||

Case Conversion 1}
Decimals Mone
Parse O

Cancel

Termination Info -

;C-Iosure Code:

Termination Reasan

t: berminat

%
=

Third RAD routine call:

The third RAD routine call forces closed any open tasks for the current phase in which the Terminate
option was selected. This RAD call is executed only when the $terminate.ok variable is set to True.

xpressions evaluated before RAD cal

$L.terminated. parent.name=nurmbet in $L.file

RAD Application: |cm3.close.child.tasks

Condition:

3]

| $rerminate. ok=true

Parameter Mames

| Parameter Values

name

Post RAD Expressions

$L.terminated parent. name

Fourth RAD routine call:

The fourth RAD routine call closes the current phase of the change where the Terminate option was
selected. As with the third RAD routine call, the fourth RAD routine call executes only when the

$terminate.ok variable is set to True.

s evaluated before RAD call

RAD Application: . close

Condition:

3]

| frerminate. ok=true

Parameter Mames

| Parameter Values

record
second. file

boolean1

prompt
Post RAD Expressions

L.File
$L.object
$Libg
$L.exit

cleanup($terminate.ok)

Final Expressions:

These expressions are evaluated after the RAD calls are finished, every time this Process is called.
The final expressions set exit variables and reset the phase pointer to a NULL value.

< Initial Expressions | < Initial Javascript | & RAD | < Final Expressions

& Final Javascript

& MNext Process

if {$L.exit="normal" and $terminate. release=true) then ($L.exit="closestate™)
if ($L.exit="bg") then ($L.exit="exit"}

if {$L.bg and $L.exit="exit"y then ($L.exit="normal")

if {$L.exit="exit") then ($L.exit.when. done=true;if (filename$L file)="cm3r") then ($phasepntr=MULLY; (filename($L.file)="cm3t") then ($tphasepntr=MULL))

Detail Format Control

After the execution of the Process record, control is returned to the Document Engine and the standard
processing. The statement highlighted below always executes during the Close process and checks
whether the $terminate.release variable is set to true. If so, then the phase pointer is set to the last
phase number, and the current.phase column in the current record is set fo the name of the last phase

— in this case Verification.

Format Control Maintenance - Calculations
Marne: cm3r release Wigw: sh
add | u... | delete | display | initial | calculation
true true true $ip.arrav=nullsub{$ip.array, {});$d.assignment=nullsub{$d.assignment, {+);$loc. arrav=nullsub{$loc. arraw, {1
null{a... true ip.array={h$d. assignment={};$loc. array={}
true true true $do.train=Ffalse
true true true if {initial.impact in $file<"3") then {$do.train=true}
true if {$phasepntr=3 and approval. status in $file~="denied" and initial.impact in $file>2) then ($L.skip. training=try
true if {$phasepntr=3 and approval. status in $file="denied") then ($L.plan. again=true)
true if {$phasepntr=5 and $release.backout=Falze) then ($L.skip. backout=true)
true if {$L.cur.pnkr=6) then ($L.plan. again=true)
true if {($phasepntr=7 and approval. status in $file="denied") then ($L.plan, again=trus)
true if {miscZ in $file="Fail" and $L.cur. phase="Build and Test") then {$L.plan. again=true)
$L.plan.again=true $phasepntr=1;current.phase in $file=$L.cur.phase
$L.skip.training=true $phasepntr=4;current.phase in $file=$L.cur.phase
$L. skip.backouk=true $phasepntr=6;current.phase in $file=$L.cur.phase
true true $show.rlm.testing=false
true true if {$L.cur.pnbr >=3) then {$show.rim. testing=trus)
true if {$terminate release=true) then {$phasepntr=7;current. phase in $file="verification") |

Implementing Backout Phase and Terminate processing in
other change categories

The maijority of the components used for the implementation of the Backout and Terminate processing
can be reused in the other Change Management categories. The Detail Format Control is the only
section that is specific to the category you want to implement.

What is a phase pointer?

The phase pointer ($phasepntr) is used in the Change Management module to transition a change
between the defined phases. In the out-ofthe-box workflow for the change category of Hardware, the
phase pointer starts with number 1 and increments through the phases to a final pointer value of 7.

For example:

. Q Change i_‘ Prepare E Evaluatian :
Eﬂ_r E Chanoe I_’ E Change I_’ Assessment far Eli' Change E Change P & Ug
Logging Review: & Change Approval Implementation Change
Planning Approwal Closure

$phasepntr=1 is Change Logging

$phasepntr=2 is Change Review

$phasepntr=3 is Change Assessment & Planning
$phasepntr=4 is Prepare for Change Approval
$phasepntr=5 is Change Approval
$phasepntr=6 is Change Implementation
$phasepntr=7 is Evaluation & Change Closure

Implementing Backout in other categories

DisplayOptions

First, modify the Backout displayoption in the cm.view.display displayscreen to be effective for other
categories of changes. To do this you set a user.condition in the displayoption. Out-of-box, the
condition for the Backout button is:

eval uat e($L. t abl eAccess. cl ose) and open in $L.file=true and
nul | sub($G ess, false)=fal se and ($phasepntr=5 and category in
$L.fil e="Rel ease Managenent")

This means that the Backout button is available to you if the following conditions are met:

e You have the right to close a change.
e The change is open at the time.

e You are not an ESS user.

e The current phase is phase # 5.

e You are in the Release Management change category.

As an example, one possible user condition modification could be:
If you want the Backout option available in any phase of any change, where

e The user has the right to execute a close, and
e The change is still open, and

e The user is not an ESS user,

then the user condition for the displayoption needs to be modified as follows:

eval uat e($L. t abl eAccess. cl ose) and open in $L.fil e=true and
nul | sub($G ess, fal se)=fal se

Another possible user condition modification could be implemented as follows:
If you want the Backout option available where

e The user has the right to execute a close, and
e The change is still open, and
e The user is not an ESS user, and

e The Release Management change is in phase 5 or the Hardware change is in phase 6,then the user
condition would be:

eval uat e($L. t abl eAccess. cl ose) and open in $L.file=true and
nul | sub($G ess, false)=fal se and ($phasepntr=5 and category in
$L.fil e="Rel ease Managenment" or $phasepntr=6 and category in
$L. fil e="Har dware")

In summary, the user condition can be modified to contain any expression that, when evaluated,
allows the Backout option to be made available.

Once the user condition is set to make the Backout option available, the Backout action triggers the
backout.release Process as soon as you click the Backout button. If you want the Process to remain as
it is in the out-of-box system, then no changes are necessary in the Process record or the
backout.release script. The detail Format Control record must be adjusted to allow the back out to
return to the desired phase.

10

Our example will be done using the Hardware change category. The Backout button should close the
Hardware Implementation phase and return the user to the Approval phase. To do so, set the user
condition of the Backout displayoption to the following:

eval uat e($L. t abl eAccess. cl ose) and open in $L.file=true and
nul | sub($G ess, false)=fal se and ($phasepntr=5 and category in
$L.fil e="Rel ease Managenment" or $phasepntr=6 and category in
$L. fil e="Hardware")

Phase Definition

To create the Backout Hardware phase, follow these steps:

Go to Change Management ~> Change Phases.

Select the Backout phase.

Change the Change Phase field to Backout Hardware and click Add.

Change the Description to Hardware back out.

Click the Scripts / Views tab and change the Default and Close Views to em3r.hrdw

N =

Change Phase: Backout Hardware
Description: Hardware badk out
OperlD (true) or false [Jrequire a Start/End Date?

Full Name (false):

< Definition | ¢ Alerts/Open & Close Behavior | <» Approval/Review | ¢ Model/Tasks | ¢ Auto Open Tasks | < Scripts/Views | <» Reports

Risk History

Maximum: 5—| Pages: True

Calculation: false Audit Records: true
Controls

Update: true

Approval: false

Close: true

Message: true

Category Definition

Now the Backout Hardware phase must be added to the Hardware category. To do so, follow these
steps:

1. Go to Change Management -> Change Categories.

2. Select the Hardware category.

3. Add the Backout Hardware phase between the Change Implementation and Evaluation &
Change Closure phases.

4. Save the record and exit.

11

Category Name: Hardware
Category Description: Hardware
Availability: true ‘
Default Template:

Assign Mumber?

| Change Phases
Change Logging

Change Review

Change Assessment & Planning

Prepare for Change Approval

| Change Approval
Change Implementation
Backout Hardware

Evaluation & Change Closure

Format Control

‘i‘%;mange : \:;g.a;epare. S ———) T A o i_ﬁE\;aluairon
Azzessmert far % Change E Chands g ::L'c:ware &
& Change Approval Implementation : Change
oo i out
Planring Approval Closure

1. Go to Utilities -> Tools -> Format Control.

2. Select the record em3r.hardware

3. In the calculations, make the following changes. First set the execute conditions for add, update,
delete, display, and initial in the following expression to a value of true for the following line that

needs to be added:

$L. cur. phase=current.phase in $file; $L.cur.pntr=$phasepntr

4. Set the execute condition for delete in the following expression that needs to be added to a value

of true.

if ($L.cur.

Mame:

add

pntr=7) then $phasepntr=1;current.phase in $fil e=$L. cur. phase

update

true

Format Control Maintenance - Calculations

cm3r.hardware Wiew:
delete display initial calculation

true true true &L.cur phase=current,phase in Sfile; 5L.cur, pnir=Sphasepntr

true if (SL.cur.pntr=7) then {Sphasepnir=1};current.phase in sfile=5L.cur.phase

12

Entering Phase - Phase Definition

If you want the change to immediately move to the Backout phase rather than first prompting for the
closure of the Hardware Evaluation & Change Closure phase, go to the Hardware Evaluation &
Change Closure phase Alerts / Open & Close Behavior tab. In the Close Behavior frame
check the Close - open next phase or exit on last phase (no cancel) as seen below:

Change Phase: Evaluation & Change Closure
Description: Evaluation & Change Closure
OperlID {true) or true [require & Start/End Date?

Full Mame (falze):

& Definition | 4 Alerts/Open & Close Behavior | 4 ApprovalReview | < Model/Tasks | ¢ Auto OpenTasks | & ScriptsfViews | 4 Reports

Alert Controls

Alerts
Reset: false

Recalc.: true

Open Behavior (when not first phase)
() Prompt for Open {allow deferral)
() Open - prompt for update (o deferral)
(%) Open phase and exit {no deferral)

Close Behavior
(O prompt for Close (allow cancel)

(®) Close - open next phase or exit on last phase (no cancel)

Implementing Terminate in other categories

DisplayOptions

First, modify the Terminate displayoption in the cm.view.display displayscreen to be effective for other
categories of changes. This is done by setting a user.condition in the displayoption.

Out-of-box, the condition for the Terminate button is:

eval uat e($L. t abl eAccess. cl ose) and open in $L.file=true and
nul | sub($G ess, false)=false and category in $L.fil e="Rel ease Managenent"
and ($phasepntr=3 or $phasepntr=2 or $phasepntr=1)

This means that if

e You have the right to close a change, and

e The change is open at the time, and

e You are not an ESS user, and

e The current phase is a phase that is defined to occur before the Distribution phase, and

e The category of the change you are in is Release Management,

then the Terminate button is available.
To activate the button for Hardware and Release Management changes, this condition must be
changed to:

eval uat e($L. t abl eAccess. cl ose) and open in $L.file=true and

nul | sub($G ess, false)=false and (category in $L.fil e="Rel ease
Managenent " and ($phasepntr=3 or $phasepntr=2 or $phasepntr=1)) or
(category in $L.file="Hardware" and ($phasepntr=5 or $phasepntr=4 or
$phasepntr=3 or $phasepntr=2 or $phasepntr=1))

This means that if

¢ You have the right to close a change, and

13

e The change is open at the time, and
¢ You are not an ESS user, and
e The current phase is defined to occur before the Distribution or Implementation phase, and

e The category of the change is “Release Management”, or the category of the change is
“Hardware”,

then the Terminate button is available.

Note: As a best practice, the Terminate button should be available only in the phases before the
Change is implemented or distributed across the system. Since the change is implemented in phase
6, the Terminate button is available in phases 5, 4, 3, 2 and 1. Once implementation has started, the
change should be backed out, not terminated.

Format Control

Next, the cm3r.hardware format control must be adjusted. Set the phase pointer to the last phase of
the category (with the Backout phase in place, this is number 8 here); and set the current.phase to the
name of that last phase.

Calculations:
Set the condition in the Delete column to true and enter the following calculation for that line:

if ($term nate.rel ease=true) then ($phasepntr=8;current.phase in
$fi |l e="Eval uati on & Change C osure")

Format Control Maintenance - Calculations

Mame: em3r.hardware View: short
add update delete display initial calculation
true true true true true &L.cur.phase=current.phase in §file; SL.cur.pntr =phasepnir
true if ($L.cur.pntr=7) then {$phasepntr=1);current.phase in $file=$L.cur.phase
true if (Sterminate.release =true) then ($phasepntr =8;current.phase in Sfle="Evaluation & Change Closure™)

Format Control Maintenance - Validations

Name: cm3r.hardware View: long

Use Pop-up messages: |

Validations
Validation not null{zssigned. to in &file)
Message The Assigned To field is required.
Comments
Add
Update
Delete status in $file~="terminated"
Display
Initial
Set Focus to assigned. to
Message ID 870

Entering Phase - Phase Definition

For the terminate functionality to work correctly, click the Alerts / Open & Close Behavior tab
and check Close - open next phase or exit on last phase (no cancel) in the Close Behavior
area for each of the phases that will have the Terminate button.

14

Change Phase: Evaluation & Change Closure

Description: Evaluation & Change Closure

OperID (true) or true [require a Start/End Date?

Ful Mame {false):

& Definition | $ Alerts/Open & Close Behavior | ¢ ApprovalReview | @ Model/Tasks | ¢ Auto OpenTasks | & Scripts/Views | ¢ Reports

Alert Contrals

Alerts
Resel: false

Recale.: true

Open Behavior {when not first phase)
() Prompt for Open (allow deferral)
() Open - prompt for update {no deferral)
(¥) Open phase and exit {no deferral)

Close Behavior
() Prompt for Close (allow cancel)

(8) Close - open next phase or exit on last phase {no cancel)

Implementing conditional phases in Change Management

Conditional workflow visualization

Release Management has two conditional phase successions implemented:

o Gereral | 4 Trenng | o dssocaied Ol | & Belesme iformation | G Bachout Method | & Bporovaln | o Todm | @ dEachres | o Selied Becoecs | 9 Worklow

e

If the impact is a 2 or higher, then a training phase will be entered.

@ General | @ Training - @ Associated CIs | @ Release Information | @ BackoutMethod | @ Approvals - @ Tasks . @ Attachments | @ Related Records | @ Workflow

If the test fails during the test phase, the change will return to the build phase.

Format Control
The implementation of these conditional phases is done in a Format Control (cm3r.release).

The areas circled in green are used for enabling or disabling the training phase. The areas circled in
red are used for returning to the plan and design phase if the test was marked as failed:

15

Format Control Maintenance - Calculations

Mame: 3. release Wiew: shart
add | ... | delete display | initial | calculation
true brue brue true true #$L.cur.phase=current. phase in $file
true brue true true true $L.cur.pntr=$phasepntr
true true true &ip arrav=nullsubi$ip. array, {});$d.assignment=nullsubi$d, assignment, {+1$oc, arrav=nullsubi$loc, array, {5
nullia... true $ip.arrav={};$d.assignment={};$loc. array={+
true true true $do.train=false
true true true if (initialimpact in $file <"3") then ($do.train=true)
true if {$phasepntr=3 and approval.skatus in $file~="denied" and initial.impact in $file =2} then ($L.skip.training=true)
true if {$phasepntr=3 and approval.status in $file="denied") then ($L.plan. again=true)
true if {#phasepntr=5 and $release, backout=False) then (3L.skip.backout=true)
true if {$L.cur.pntr=5) then ($L.plan.again=true}
true if {$phasepntr=7 and approval status in $file="denied") then ($L.plan. again=true)
trug if {miscz in $file="fal" and $L.cur. phase="6uild and Test") then ($L.plan, again=trus)
$L.plan.ag... $phasepntr=1;current.phase in $file=$L.cur.phase
$L.skip.tra... $phasepntr=4;current.phase in $file=3$L.cur.phase
$L.skip.ba... $phasepntr=a;current. phase in $file=3$L.cur.phase
true true $show.rim.besting=Ffalse
true true iF (L. cur, pntr ==3) then ($show.rim.testing=trus)
true if {terminate, release=true) then {$phasepntr=7;current. phase in $file="verification)

16

For more information

Please visit the HP Management Software support Web site at:

http://www.hp.com/managementsoftware/support

This web site provides contact information and details about the products, services, and support that
HP Management Software offers.

HP Management Software online software support provides customer self-solve capabilities. It
provides a fast and efficient way to access interactive technical support tools needed to manage your
business. As a valued support customer, you can benefit by being able to:

Search for knowledge documents of interest

Submit and track progress on support cases

Submit enhancement requests online

Download software patches

Manage a support contract

Look up HP support contacts

Review information about available services

Enter discussions with other software customers

Research and register for software training

Note: Most of the support areas require that you register as an HP Passport user and sign in. Many
also require an active support contract.

To find more information about support access levels, go to the following URL:

http://www.hp.com/managementsoftware/access level

To register for an HP Passport ID, go to the following URL:

http://www.managementsoftware.hp.com/passport-registration. html

© 2008 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
The only warranties for HP products and services are set forth in the express warranty statements accompanying such
products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for
technical or editorial errors or omissions contained herein.

HP and Service Manager are registered trademarks of Hewlett-Packard Development Company, L.P. Verity is a registered
trademark of Autonomy Corporation plc and its affiliates. JavaScript is a registered trademark of Sun Microsystems, Inc. in
the United States and other countries.

o)

invent

http://www.hp.com/managementsoftware/support

