
Best Practices for Promoting Service Manager® Tailoring

Changes from Development to Production Environments

Introduction... 2

Requirements... 2

How to use this document ... 2

Service Manager tools for applying customizations to the production environment....................................... 2

Development Auditing utility .. 2

Revision control.. 4

Unload Script utility .. 5

Differential Upgrade utility .. 7

Patch records ... 7

Signature records ... 8

Manual Processing... 9

Best Practice recommendations.. 9

Process ... 9

Comparison of the tools to use for promoting customizations... 11

HP best practice recommendation .. 11

For more information.. 13

2

Introduction

A complete Service Manager environment consists of at least three different instances of Service

Manager:

 A development instance, which is used to customize Service Manager to the exact needs of the

customer;

 A test instance, which is used to test these changes in a copy of the production system before

promoting the customizations into production; and

 The production instance itself.

Service Manager offers the system developer different tools to make the transitions from development

to test, and from test to production, easier. This document introduces all the available tools, and

discusses which tool is best in which environment.

Requirements

This document assumes that the reader is familiar with Service Manager and its tailoring tools. The

system developer is responsible for documenting all tailoring changes for later reference, such as

during a subsequent upgrade.

How to use this document

This document is divided into two sections:

 The first section describes the different tools and their use.

 The second section suggests best practices for promoting tailoring changes from development into

production.

Service Manager tools for applying customizations to the

production environment

Development Auditing utility

The Auditing utility (devaudit) tracks changes to certain records during the development phase of the

implementation. Whether you make a few changes or extensively customize your system, it is critical

to keep a record of your changes to ensure that you load the correct version when you move to

production. Though the Auditing tool helps you find modified records, HP strongly recommends that

you record each change more extensively either using tools outside of Service Manager or using the

Revision control feature.

The Auditing utility tracks changes to the following files:

 screlconfig

 displayevent

 displayoption

 displayscreen

 joindefs

 eventfilter

 eventmap

 eventregister

3

 formatctrl

 Object

 Process

 States

 application

 code

 datadict

 enclapplication

 format

 link

 menu

 querystored

 scmessage

 scripts

 triggers

 validity

 wizard

To access the Auditing utility, click on Menu Navigation – Tailoring - Audit. Then click Turn

Auditing On/Off to toggle Auditing on and off.

Auditing should always be disabled on a production or test system. Auditing should be enabled on

development systems when it is being used to promote from development to production. The correct

Auditing settings for a development system are:

To view changes that Auditing has recorded, click View Audit History in the Audit Menu. A

search screen is displayed. Run a true query to show a list of all the changes made to the files listed

above. The records have the following structure:

To view all changes since a specific date, or changes made by a specific operator, either enter the

date in the Date field, prefixed with a greater-than operator (>) or a lesser-than operator (<) (for

example, enter >01/01/01); or enter the name in the Operator field. Then run the search. If one

of the resulting records should not be added to the Auditing delta unload, you can either change the

search criteria of these records (such as changing the date to an earlier date), or delete the record

4

altogether if it does not need to be documented as changed. Be aware that the same record may be

included in the devaudit file several times, since each change to a record is noted in devaudit.

Important: Before unloading a change you made during the development phase, check the audit

files for the correct date of this delta. You need the date shown in the Audit History form to enter into

the Unload form.

Enter the delta date, the unload filename, and log filename into the Unload an Audit Delta

screen. Click Proceed to unload all modified records into the unload file.

This unload can then be loaded into the test system, and eventually into the production system.

After the development phase is completed and all related changes have been transferred into the

production system, you can purge the development audit data. You are prompted to specify the start

date for records to be purged. After the data is purged, it cannot be restored (unless an unload of the

devaudit file was performed beforehand).

Revision control

Revision control provides developers and administrators a tool for reverting to a previous version of a

file or form. The Service Manager Revision Tracking utility allows a developer to

 Create a snapshot of a record,

 Add detailed information and comments to the snapshot, and

 Replace the current version of the record with a working version of the record at any time if you find

an error while creating or modifying forms.

Note: Every revision uses as much disk space as the original record, plus a few bytes for comments.

Revision control does not replace the Auditing utility, but is used in conjunction with it to track, record,

and save changes to your system. The Auditing utility provides a record of changes to ensure that

you load the correct version when you move to production. Revision control documents these changes

and enables you to create working snapshots.

Service Manager handles revisions as part of the Document Engine. Revisions are available in all

utilities that use the Document Engine as base code, including Database Manager, Format Control,

Link Editor, Forms Designer, and the RAD Editor.

The system stores revisions in a separate file whose name is specified in either the Object record for

the file or in the datadict record. The system creates this revision file via an option on the Data Policy

screen or the Object screen. Administrators specify the maximum number of revisions to store for

each record in a file. If you do not specify a number, an unlimited number is stored.

Purge scripts help administrators with revision maintenance. The sc.revision.purge.hanging

script purges all revisions that no longer have a parent record because it was deleted or renamed.

The sc.revision.purge script purges all revisions from the system. To access these scripts, click

5

System Administration – Base System Administration - Miscellaneous, and then click

either Purge Hanging Revisions or Purge All Revision Records.

Administrators need to determine in advance the files in which revisions are tracked, and then

perform a few setup steps. They also need to purge revisions prior to migrating to a production

system.

Unload Script utility

The Unload Script utility enables system administrators to create Service Manager unload files

automatically. Unload scripts enhance the standard unload creation process in many ways. You use

the Purge / Archive utility to unload and purge records from one file; and, if you use datamaps, you

can use Purge / Archive to unload and purge related records as well.

With unload scripts you can save records from multiple non-related tables into a single unload file,

and specify a query for each source table that filters the records added to the unload file. You can

purge records during the unload process, and specify which formats to protect during a purge

process. If records related to a source file should be archived or purged as well, you can add related

records from the data map file to the unload file. As with the Purge / Archive utility, you can

schedule the unload script to run as a background process.

The Unload Script utility is available in the Tailoring section. By default, Service Manager includes a

collection of unload scripts that you can use for common unload tasks. You can also use the default

unload scripts as templates to create your own customized unload scripts.

To create and use unload scripts effectively, you must be familiar with the Service Manager Database

Manager. You can create a query on any field in the file, but querying keyed fields improves system

performance and response time.

For example, the unload script that unloads all records necessary to move the Unload Script utility to

another system would look as follows:

The following fields can be used in the Unload Script utility:

Field Description

Unload Script A name or label that identifies your unload script. This name can include spaces.

Unload? Creates an external unload file from the records queried by this script.

Purge? Deletes the records queried by this script.

Show Unload

Records

Displays the Filename, Query, and Data Map fields, which enable you to specify the

tables and queries to unload or purge records.

Filename The name of the table used to unload or purge records. Visible only if you selected

6

Field Description

Show Unload Records.

Query The SQL query that selects records for unloading or purging. You can use Service

Manager operators and variables in this field. Visible only if you selected Show Unload

Records.

Datamap Boolean field that specifies whether Service Manager uses the data map file to unload

or purge associated records. You must have previously defined a data map for the

listed file in order to use this feature. By default, Service Manager reads a blank entry

in this field as False. Visible only if you have selected the Show Unload Records option.

Show Protected

Formats

Displays the Protected Formats field. Specify the forms to protect from purging.

Protected Formats The names of the forms not to unload or purge when running this script.

To execute an unload script, click Proceed.

Note: The Unload Script utility unloads tables using the binary unload file format.

The following information can be entered in this dialog window. Click Proceed to unload all

records that meet the query criteria into the unload file.

Field Description

External File Name The name of the unload file that you want to create. This name can include

path information, but must use characters that are valid for the target operating

system. By default, Service Manager saves the unload file in RUN folder of the

server. If users have enabled client-side unloading, then the Service Manager

saves the unload file on their Windows® desktop.

Append to File? Select this option to add records to an existing unload file.

When loading records into

an existing database

dictionary — Use existing

database dictionary

Select this option to use the table and field definitions stored in the database

dictionary of the target system.

When loading records into

an existing database

dictionary — Use database

dictionary of loaded record

Select this option to use the table and field definitions stored in the unload file.

This option will overwrite the existing database dictionary, if any, for the

loaded file and records.

When loading records — Select this option to update existing records in the target system with records

7

Field Description

Add new records and

update existing records

from the unload file.

When loading records —

Add new records only

Select this option to ignore existing records and add only new records from the

unload file.

Differential Upgrade utility

The Service Manager Differential Upgrade utility enables you to compare the specified files of two

Service Manager systems to create a single unload file. The resulting unload file contains all the

necessary records to make the files identical between the two systems.

The Differential Upgrade utility simplifies the way you move changes from a development environment

into a test or production environment. You can also use this utility to move files between any two

systems, such as between development and test, or between unit testing and acceptance testing.

Applying a Differential Upgrade from a development system to a production system requires the

following steps:

1. Create a Patch record.

2. Create signatures for the production (target) system.

3. Move signatures to the development (source) system.

4. Create the Differential Upgrade from the development (source) system.

5. Load the Differential Upgrade onto the production (target) system.

The Differential Upgrade utility, just like the upgrade utility that upgrades applications from one

version to another, relies on patch records and signatures. For more information on how to use the

Differential Upgrade utility, please refer to the Service Manager online help topics under “Application

Development - Differential Upgrade utility.”

Patch records

A patch record specifies which files the Differential Upgrade utility should compare, and creates a

query that limits the comparison to certain records within files. It is very important to include all files

that were modified during customizations that you promote to production.

It is also important that a query limit the number of records to upgrade, because the more files in the

patch record, the longer the Differential Upgrade process takes. Even though Service Manager has

default patch records, you may prefer to create customized patch records before you start the

Differential Upgrade process. One method of limiting the number of records included in the patch

record is to use the sysmodtime field that many dbdicts contain. If the file does not contain a

sysmodtime field, you can either add it before starting the customization work on the development

system (this field is filled automatically by the binaries with each update of the record); or use another

limiting field such as update.time.

In a Differential Upgrade comparison, you must have one patch record for each system to be

compared. Moreover, the patch record must point to identical files in each target system and

generate the same queries.

In the patch record dialog, you can specify that the Differential Upgrade should perform Add Only

processing on a specific file. If you choose this option, Service Manager adds only new records to

the Differential Upgrade unload file and ignores changes to existing records in the development

system.

There must be a patch record for each system in the comparison. Each patch record must point to the

same files and records. You can either create it once on each system; or create it on one system,

unload it, and load it into the other system.

8

An example patch record for moving a Service Management implementation from development to

production could include the following:

Signature records

A signature for a Service Manager record is a numerical representation of the record. Any change to

the contents of the record causes the signature of that record to change, based on the definitions in

the signaturemake file

Important: Never change a record in the signaturemake file. You must create Signature records

for any record that you compare in the Differential Upgrade process.

A sample Signature record would look like the following:

9

To move Signature records to the development system, first ensure that the signatures file on the

development system is empty. Then load the signatures file that was created on the production

system into the development system using the standard Service Manager Import/Load utility.

Manual Processing

Manual processing involves writing down each change as it is being made, and then unloading

records one-by-one manually via the Service Manager Database Manager. HP strongly recommends

that you document each change made when you tailor the system, regardless of how the promotion

will be done. Manually unloading each record takes a lot of time and is more prone to errors.

Best Practice recommendations

Process

It is very important that you have a well defined and documented process for proceeding from

development through test into production. A well defined process will promote user satisfaction and

prevent delays in the development cycle. A process workflow may look like the following:

All changes are made in the development system. Making changes in the test system or directly to the

production system will cause the systems to become out-of-sync and more difficult to maintain.

Applying changes to a system that is out of sync with the system on which the changes were based

will most likely result in broken functionality. After the customizations are completed on the

development system, a single unload will be created to apply to the test system.

Important: If you create and apply multiple unloads, you increase the possibility that records can

be overwritten or lost.

The test system is used to apply the previously created unloads and test their functionality. If problems

are found during these tests, they can be fixed in the development system, where a new unload will

be created. This cycle continues until the test is successful.

10

The tested unload can then be applied to the production system. Some companies require training

before an unload is released to production. The tested unload can be applied to a training system

first, and then to production. The benefit of having a single tested unload is that it can be applied to

as many systems as necessary.

Part of the development process should include documenting all changes. Changes can be

documented in an audit log that is stored outside of Service Manager, such as in an Excel®

spreadsheet. Below is a short example of a possible audit log:

Change Number 1

Request Description Add company-specific fields to

Incident Management.

Task Number 1 2

Task Description Add company-specific fields to

the dbdict.

Add company-specific fields to

the formats.

Change Requestor Max Manager Max Manager

Change Owner Jennifer Falcon Jennifer Falcon

Record modified probsummary dbdict IM.company.fields,

IM.template.open,

IM.template.update,

IM.template.close, apm.quick

Date Modified 3/19/2006 3/19/2006

Change Description Added company.name,

company.location,

company.contact, character

fields and company.products

character array to probsummary

dbdict.

Added subformat

IM.company.fields to all IM

formats.

Unload Name IM.company_dbdict.unl IM.company.unl

Patch Name IM_implementation.unl IM_implementation.unl

Test plan Enter company-specific

information into all 4 formats and

save.

Enter company-specific

information into all 4 formats and

save.

Another possibility is to use Service Manager Change Management for keeping track of all changes

done during the development process.

Important: It is very important to keep track of every change done to the development system, so

that no change is lost when creating the patch unload.

In summary, the following items are vital in any environment for successful customization of a Service

Manager system:

 The process has to be defined and consistently applied.

 All changes have to be done in one system, the development system, and must be thoroughly

documented.

 A single unload should contain all records that were customized. In some environments, many

developers work on developing customizations. In such environments, a central system should be

used to load the individual changes, using revision tracking. That central system can then be used

to create the unload.

11

 All changes must be tested in a central system, the test system, and issues found there must be

repaired in the development system.

Comparison of the tools to use for promoting customizations

Each method of promoting customizations has advantages and disadvantages. The following table

compares what each method is capable of providing.

Development

Auditing

Unload

Script Utility

Differential

Up-grade

Utility

Manual

Processing

Can monitor all files? No. Hard-coded list
of tailoring files

Yes Yes Yes

Possible to specify a
detailed query?

By date only Yes Yes Yes

Can select and
deselect records to
unload?

Yes, by removing
records from the
devaudit file

No Yes No

Can do dbdict field
merge?

No No Yes on fields, but
not on keys

Yes, by
changing the
dbdict load
option

Are changes to the
record included in
unload?

All Latest Latest Latest

Performance
Ranking, includes
creating and applying
patch

Poor Good Excellent Fair

Ranking by ease of
use

Good Excellent Fair Poor

Ranking by ease to
set up

Excellent Good Fair Poor

HP best practice recommendation

Before you promote customizations from development to production, thoroughly document every

change made in the development system that will need to be part of the patch that is promoted to

production. The information that you collect in this documentation depends on the environment, but

should at a minimum include the following fields, which are mentioned in the log file:

 Change Number

 Request Description

 Task Number

 Task Description

 Change Requestor

 Change Owner

 Record modified

 Date Modified

 Change Description

 Unload Name

 Patch Name

12

 Test plan

You can document changes either inside of Service Manager Change Management or by using an

external program such as Microsoft Excel.

After all changes are documented, tested, and functioning in the development system, the next step is

to create a single unload. HP recommends that you:

1. As a preparatory step, remove the field “keys” from the exclude list in the signaturemake file

for the dbdict table, before you create the signatures on both production and development. That

way, dbdicts whose keys were changed will be unloaded into the file that is loaded into test and

then production, making these changes easier to find.

2. Use the Differential Upgrade utility to create a single unload file containing all changes.

3. Manually modify all keys that were changed in any of the dbdicts contained in the unload

For more information about the Differential Upgrade utility refer to the Service Manager online help

topics under “Application Development – Differential Upgrade utility.”

After the single unload is created, perform the following steps:

1. Apply it to a test system that is a recent copy of the production environment.

2. Test the changes thoroughly.

3. Document any reported issues and fix these in the development system after each test iteration.

4. Provide a repaired patch file (while still using a single unload file) to the testers at the beginning of

each test iteration.

After the unload is thoroughly tested and accepted, the latest unload can be applied to a production

system; or to any other system that needs to be upgraded with the patch, such as a training system.

The patch should not be modified after this point, and new issues found after testing is complete

should be addressed in the next development cycle.

For more information

Please visit the HP Management Software support Web site at:
http://www.hp.com/managementsoftware/support

This web site provides contact information and details about the products, services, and support that

HP Management Software offers.

HP Management Software online software support provides customer self-solve capabilities. It

provides a fast and efficient way to access interactive technical support tools needed to manage your

business. As a valuable support customer, you can benefit by being able to:

 Search for knowledge documents of interest

 Submit and track progress on support cases

 Submit enhancement requests online

 Download software patches

 Manage a support contract

 Look up HP support contacts

 Review information about available services

 Enter discussions with other software customers

 Research and register for software training

Note: Most of the support areas require that you register as an HP Passport user and sign in. Many

also require an active support contract.

To find more information about support access levels, go to the following URL:

http://www.hp.com/managementsoftware/access_level

To register for an HP Passport ID, go to the following URL:

http://www.managementsoftware.hp.com/passport-registration.html

©
h
s
p
a
o

S
C
M
t

0

2008 Hewlett-Packard Development Company, L.P. The information contained
erein is subject to change without notice. The only warranties for HP products and
ervices are set forth in the express warranty statements accompanying such
roducts and services. Nothing herein should be construed as constituting an
dditional warranty. HP shall not be liable for technical or editorial errors or
missions contained herein.

ervice Manager is a registered trademark of Hewlett-Packard Development
ompany, L.P. Windows and Excel are trademarks or registered trademarks of
icrosoft Corporation in the United States, other countries, or both. All other

rademarks are the property of their respective owners.
7/24/2008

http://www.hp.com/managementsoftware/support

