®

MICRO
I:IFEII:IJS

Diagnostics

Version 950, Released May 2018

Java Agent Guide

Published May 2018

Legal Notices

Disclaimer

Certain versions of software and/or documents (“Material”) accessible here may contain branding from Hewlett-
Packard Company (now HP Inc.) and Hewlett Packard Enterprise Company. As of September 1, 2017, the Material
is now offered by Micro Focus, a separately owned and operated company. Any reference to the HP and Hewlett
Packard Enterprise/HPE marks is historical in nature, and the HP and Hewlett Packard Enterprise/HPE marks are
the property of their respective owners.

Warranty

The only warranties for products and services of Micro Focus and its affiliates and licensors (“Micro Focus”) are set
forth in the express warranty statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. Micro Focus shall not be liable for technical or editorial errors or
omissions contained herein. The information contained herein is subject to change without notice.

Restricted Rights Legend

Contains Confidential Information. Except as specifically indicated otherwise, a valid license is required for
possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer
Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

Copyright Notice
© Copyright 2005 - 2018 Micro Focus or one of its affiliates

Trademark Notices

Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.
UNIX® is a registered trademark of The Open Group.

Java is a registered trademark of Oracle and/or its affiliates.

Oracle® is a registered trademark of Oracle and/or its affiliates.

Acknowledgements
This productincludes software developed by the Apache Software Foundation (http://www.apache.org/).
This product includes software developed by the Spice Group (http://spice.codehaus.org).

For information about open source and third-party license agreements, see the Open Source and Third-Party
Software License Agreements document.

Micro Focus Diagnostics (9.50) Page 2 of 267

Contents

Welcome to This Guide 8
How This Guide Is Organized 8
Diagnostics Documentation 8

Part 1: IntrodUCtioN .. 10
Chapter 1: Diagnostics Java Agent OVerview i 11

About the Diagnostics Java Agent 11
Introducing the Diagnostics Profilerfordava 11
Features and Benefits of the Diagnostics ProfilerforJdava 12

Part 2: Installation and Configuration of the Java Agent 13

Chapter 2: Preparing to Install the Diagnostics Java Agent 14
Java Agent Installation Overview 15
System Requirements for the Diagnostics Java Agent 15

Chapter 3: Installing Java Agents L 16
Pre-installation Checklist forthe Java Agent 16
Installing and Configuring Java Agents i e 17
Silent Installation of the Java Agent 28
Setting File PermissioNs ... L 28
Determining the Version of the Java Agent 28
Configuring for Firewalls, HTTPS, and Proxies 28
Uninstalling the Java Agent 29

Chapter 4: Preparing Application Servers for Monitoring with the JavaAgent_. 30
About Preparing Application Servers for Monitoring L 30
Examples for Configuring Application Servers iiiiiiiiil... 33

Example 1: Configuring GlassFish Application Server for Monitoring __.......................... 34
Example 2: Configuring JBoss Application Server and JBoss EAP for Monitoring 36
Configuring a JBoss EAP Application 38
Example 3: Configuring Oracle Application Server for Monitoring_. 39
Using the Diagnostics JRE Instrumenterin Manual Mode 41
Example 4: Configuring SAP NetWeaver Application Server for Monitoring ..__................. 43
Example 5: Configuring TIBCO ActiveMatrix BusinessWorks and Service Bus for Monitoring 45
Example 6: Configuring Tomcat Application Server for Monitoring 47
Example 7: Configuring WebLogic Application Server for Monitoring_....................._. 48
Example 8: Configuring webMethods Server for Monitoring 50
Example 9: Configuring WebSphere Application Server for Monitoring ..__....................__. 53
Example 10: Configuration for WebSphere Application Server Liberty_. 57
Verify the Application Serveris Running the Java Agent 58

Micro Focus Diagnostics (9.50) Page 3 of 267

Java Agent Guide

About the JRE Instrumenter and Different Options toInvoke 59
Other Configuration Options i . 66
Probe Registration Auto-Assigment ... 67
Configure Monitoring of Multiple Java Processes on an Application Server ____.................. 67
Adjusting the Heap Size for the Java Agent in the ApplicationServer 70
Configuring the SOAP Message Handler 71
Configuring the Discovery of a New J2EE Server for Cl Population 73
Special Considerations for Applications Based on the OSGi Framework 74
Chapter 5: Configuring for Azul or Cloud Environments 75
Java Agents ONn AzUl .. e 75
Java Agents in Cloud Environments .. 76
Chapter 6: Preparing Application Servers for Client Monitoring with the JavaAgent 79
About Client MonitOrNgl 79
Enabling Client MONitOriNg ... 80
Configuring and Disabling Client Monitoring i 81
Manually Instrumenting HTML/JSP Pages for Client Monitoring 82
Chapter 7: Upgrading the Diagnostics Java Agent ... 83
Upgrade Java Agents 83
Upgrade Notes and Limitations 85
Part 3: Advanced Java Agent Configuration and Instrumentation 86
Chapter 8: Monitoring Profiles L 87
About Monitoring Profiles 88
Understanding Types of Diagnostics Deployments 88
The Predefined Monitoring Profiles 90
Custom Monitoring Profiles 90
Applying a Specific Monitoring ProfiletoaProbe 91
Overriding Settings in the Monitoring Profiles 92
Mapping Instrumentation Points to a Monitoring Profile 93
Mapping Metrics to a Monitoring Profile 93
Mapping Property Values to a Monitoring Profile 93
Chapter 9: Automatically Assigning a Probe to an Application 95
About Automatic Probe Assignment ... 95
Configuring a Probe to Automatically Assign Applications 95
Configuring an Agent to Automatically Assign Applications ... 95
General Configuration .. 96
Chapter 10: Custom Instrumentation for Java Applications 97
About Instrumentation and Capture Points Files 97
Using Regular Expressions in Points Files 98
Coding Points in the Capture Points File s 99
Defining Points With Code Snippetso . 104
Controlling Class Map Capture 115

Micro Focus Diagnostics (9.50) Page 4 of 267

Java Agent Guide

Instrumentation EXamples ... L 115
Understanding the Overhead of Custom Instrumentation 127
Instrumentation Control on a Per Layer Basis i, 127
Instrumented Location Throughput Throttling o .. 128
Advanced Instrumentation Examples 129
Capturing HTTP Server Requests Based on Query Parameters 131
Configuring Cross VM Correlations for New or CustomTechnologies 138
Tutorial for Configuring Cross VM Correlation for Custom Technologies 142
Maintaining Instrumentation from the Java Profiler Ul 148
Default Layers Defined for Typical Java Classes and Methods 158
Chapter 11: Advanced Java Agent and Application Server Configuration 160
Advanced Configuration OVervieW .. 160
About Dynamic Configuration ... 161
Disabling the Java Diagnostics Profiler e 162
Controlling Probe Logging ool 162
Setting the Probe’s Host Machine Name 163
Specifying a Different Probe |P AdAress 164
Setting the Active Products Mode 164
Controlling Automatic Method Trimming onthe Agent 166
Configuring URI and Parameter Capture L 166
Capturing Non-Sequential Server Requests 169
Configuring an Agent for a Proxy Server 169
Time Synchronization for Probes RunningonVMware 170
Limiting Exception Tree Data 170
Diagnostics Probe Administration Page 172
Authentication and Authorization for Diagnostics Java Profilers 174
Configuring Collection of CPU Time MetriCs ... o . 176
Configuring Consumer DS . 177
AValueinthe SOAP Body 182
Configuring SOAP Fault Payload Data 184
Configuring REST ServiCes ... o o L 185
Customizing Grouping JMS Temporary QUeue/TOPICS oo iiiiim . 185
Configuring SQL QUEry Parsing L 185
Capturing SQL Parameters ... il 186
Configuring Display of Application Name for ServerRequests 187
Maintaining Probe Settings from the Java Profiler Ul 188
Generating Performance Reports for JUnit Tests 191
Chapter 12: Java Agent Metrics ColleCtors 194
About Metrics Capture ... L 194
What Metrics are Being Collected by the Java Agent 195
Understanding Metric Collector Entries e 195

Micro Focus Diagnostics (9.50) Page 5 of 267

Java Agent Guide

About Collecting Additional Probe Metrics o .. 197
Modifying Probe Metrics Already Being Captured 197
Stopping Capture of a MetriC 197
Using Customized metrics.config Files for Multiple JVM Applications ona System __.._.......... 197
Chapter 13: Java Agent - System Metrics Capture 199
AboUt System MetriCs ..o L 199
System Metrics Captured by Default 199
Configuring the System Metrics Collector 200
Capturing Additional Custom System Metrics 201
Capturing Custom System Metrics on Windows Hosts 201
Capturing Custom System Metrics on Solaris Hosts 203
Capturing Custom System Metrics on Linux Hosts 204
Chapter 14: Java Agent - JIMX Metrics Capture 206
About JMX MetriCs . 206
About Configuring JMX Metric Collectors 207
Additional Custom JMX Metrics . .. 207
Getting a List of Available JMX or WebSphere PMI Metrics 207
Creating New JMX or WebSphere PMI Metrics Entries 209
Part 4: Using the Diagnostics ProfilerforJdava 213
Chapter 15: Diagnostics Profiler forJdava 214
About the Java Diagnostics Profiler ... 214
How the Java Agent Provides Data forthe Java Profiler 215
Java Diagnostics Profiler Ul Navigation and Display Controls 217
Analyzing Performance Using the Call Profile Window 219
Thread Call Stack Trace Sampling o L 223
Comparison of Collection Leak Pinpointingand LWMD 226
Object Lifecycle MONItONNG 227
Heap Walker Memory Analysis EXecution Steps 229
Heap Walker Performance Characteristicso . 231
How to Access the Java Diagnostics Profiler 232
How to Enable LWMD for Collections Displays 232
How to Enable Allocation Capture L 233
How to Enable Object Lifecycle Monitoring 234
How to Analyze Object Allocation ..l 234
How to Enable Memory ANalysis oo 235
Summary Tab DesCriptioN .. e 236
Hotspots Tab DescCription 238
Metrics Tab DeSCriPtiON . 240
Threads Tab DesCriptioN 242
All Methods Tab DescCription 246
All SQL Tab DesCriptioN . .. L 248

Micro Focus Diagnostics (9.50) Page 6 of 267

Java Agent Guide

Collection Leaks Tab DesCription e 249
Collections Tab DeSCriptioN L 251
Exceptions Tab DescCription 254
Server Requests Tab Description ... L 256
Web Services Tab DesCription o L 258
Allocation/LifeCycle Analysis Tab Description 260
Memory Analysis Tab Description 262
Configuration Tab Description 264
Send Documentation Feedback 267

Micro Focus Diagnostics (9.50) Page 7 of 267

Welcome to This Guide

Welcome to the Diagnostics Java Agent Guide. This guide describes how to install, configure and use the
Diagnostics Java Agent and the Diagnostics Profiler for Java.

The Diagnostics Java Agent captures events such as method invocations, collection sites, and the beginning
and end of business and server transactions.

The Diagnostics Java Agent works with other Software products such as LoadRunner, Application
Performance Management, and Performance Center, and is an integrated part of Software's application
lifecycle solution which includes load testing, production monitoring, and trouble diagnosis.

The Diagnostics Profiler for Java is installed as part of the Diagnostics Java Agent. The Diagnostics Profiler
for Java provides a way for Java development teams to monitor the performance and diagnose issues with
applications in the development environment. Software makes this tool available at no cost, through an easy-
to-install trial software download.

How This Guide Is Organized

This guide contains the following parts:

« Part 1: "Introduction" on page 10

Provides a high level overview of the features, components, architecture, and outputs of the Diagnostics
Java Agent and the Diagnostics Profiler for Java.

« Part 2: "Installation and Configuration of the Java Agent" on page 13

Describes how to install and configure the Diagnostics Java Agent.
« Part 3: "Advanced Java Agent Configuration and Instrumentation " on page 86

Describes advanced configuration and instrumentation of the Java Agent and application server.
« Part 4: "Using the Diagnostics Profiler for Java" on page 213

Describes the Ul of the Diagnostics Java Profiler, and how to use it.

Diagnostics Documentation

Diagnostics includes the following documentation. Unless specified otherwise, the guides are in PDF format
only and are available from the Software Support web site (https://softwaresupport.softwaregrp.com/) .

« Diagnostics User Guide and Online Help: Explains how to choose and interpret the Diagnostics views
in the Diagnostics Enterprise Ul to analyze your monitored applications. To access the online help for
Diagnostics, choose Help > Help in the Diagnostics Enterprise Ul. If Diagnostics is integrated with
another Micro Focus Software product the online help is also available through that product's Help menu.
The User Guide is a PDF version of the online help and their content is identical. The User Guide is
available from the Diagnostics online help Home page, from the Windows Start menu (open User Guide),
or from the Diagnostics Server installation directory.

« Diagnostics Server Installation and Administration Guide: Explains how to plan a Diagnostics

Micro Focus Diagnostics (9.50) Page 8 of 267

https://softwaresupport.softwaregrp.com/

Java Agent Guide
Diagnostics Documentation

deployment, and how to install and maintain a Diagnostics Server.
The following Agent guides contain content that supports agent installation, setup and configuration.

» Diagnostics Java Agent Guide: Describes how to install, configure, and use the Diagnostics Java
Agent and the Diagnostics Profiler for Java.

- Diagnostics .NET Agent Guide: Describes how to install, configure, and use the Diagnostics .NET
Agent and Diagnostics Profiler for NET.

. Diagnostics Collector Guide: Explains how to install and configure a Diagnostics Collector.

« Diagnostics System Requirements and Support Matrixes Guide: Describes the system requirements
for the various Diagnostics components.

« Release Notes: Provides last-minute new information and known issues about each version of
Diagnostics. The PDF file is also located in the Diagnostics installation disk root directory.

. Diagnostics Data Model and Query API: Describes the Diagnostics data model and the query API you
can use to access the data. The guide is also available from the Diagnostics online help Home page.

. Diagnostics Frequently Asked Questions (FAQ): Gives answers to frequently asked questions. The
FAQ s also available from the Diagnostics online help Home page.

Micro Focus Diagnostics (9.50) Page 9 of 267

Part 1: Introduction

Micro Focus Diagnostics (9.50) Page 10 of 267

Chapter 1: Diagnostics Java Agent Overview

This chapter introduces the Diagnostics Java Agent and the Diagnostics Java Profiler by providing a high-
level overview of features and components.

This chapter includes:

« "About the Diagnostics Java Agent" below
« "Introducing the Diagnostics Profiler for Java" below

« "Features and Benefits of the Diagnostics Profiler for Java" on the next page

About the Diagnostics Java Agent

The Diagnostics Java Agent is installed on the machine that hosts the application that you want to monitor.

The agent captures events such as method invocations, collection sites, and the beginning and end of
business and server transactions.

The Java Agent works with many of Software’s Diagnostics products such as BSM/APM, LoadRunner, and
Performance Center.

The Java Agent and the application environment must be configured to enable monitoring of your application.
Instructions for configuring the Java Agent and the application environment can be found in:

« "Preparing Application Servers for Monitoring with the Java Agent" on page 30
« "Preparing Application Servers for Client Monitoring with the Java Agent" on page 79
« "Custom Instrumentation for Java Applications" on page 97

« "Advanced Java Agent and Application Server Configuration" on page 160

Introducing the Diagnostics Profiler for Java

The Diagnostics Java Profiler is installed as part of the Java Agent.

The Diagnostics Profiler for Java provides a way for JAVA and SAP development teams to monitor and
diagnose issues with the performance of applications in the development environment. Software makes this
tool available at no cost, through an easy-to-install trial software download.

The Diagnostics Profiler for Java provides a strong foundation for collaborative diagnostics because it has
been built using the same Diagnostics probe technology that is used in Software’s load testing and production
monitoring products. When you use the Diagnostics Java Profiler in the development environment to profile
applications and solve problems, you get a glimpse of the features that are included in the Diagnostics
Lifecycle Solution that enable you to solve the toughest performance problems throughout the application’s
lifecycle.

Micro Focus Diagnostics (9.50) Page 11 of 267

Java Agent Guide
Chapter 1: Diagnostics Java Agent Overview

Features and Benefits of the Diagnostics Profiler for

Java

The following table describes some of the features and benefits of the Diagnostics Java Agent and the

Diagnostics Profiler for Java:

Feature Description
Summary and Hotspots
Server Request Breakdown
Layer Breakdown

Slowest Roots

Top 3 Slowest Instances
VM Heap Usage

Collection Memory Leak
Diagnostics

Heap Breakdown including
Class and Size Information

SQL Diagnostics
(Slowest SQL)

Synchronization Diagnostics

Exception Diagnostics
(including exception traces
and counts)

Layered view of Portal
Transaction data

Transaction breakdown of
portal server requests and
methods

Cross Tier Transaction
Breakdown

Micro Focus Diagnostics (9.50)

Enables you to

Identify the top performance hotspots in your applications.
Identify where time is spent in an application.

Identify the slowest J2EE layer.

Identify the slowest server request or application entry points for non-Web-
fronted applications.

Identify outliers to help diagnose intermittent problems.
Identify memory problems and garbage collection issues.

Identify the fastest growing and largest size JAVA collections, including the
caller, and the exact line number where collection was allocated.

Identify leaking objects, object growth trends, object instance counts, and
the byte size for objects.

Identify the slowest SQL query and report query information.

Identify locks including hold times.

Identify exception counts and trace information (which often go undetected)

Identify the layer in the J2EE stack that consumes the most time for Portal
transactions, along with the business context for the transaction, so that
end-user impact can be assessed. The monitored layers include iVews,
portal server requests, WebDynPro and JSP DynPro applications.

Identify the worst performing server requests or methods, and the
applications and services that are being impacted

Detect problems originating from NetWeaver or ABAP platforms.

Page 12 of 267

Part 2: Installation and Configuration of
the Java Agent

Micro Focus Diagnostics (9.50) Page 13 of 267

Chapter 2: Preparing to Install the Diagnostics
Java Agent

This chapter presents the information that you need as you prepare for the installation and configuration of the
Diagnostics Java Agent.

Note: The procedures in this chapter do not apply when installing the Java Agent in an AppPulse
environment. For information about AppPulse agent installation, see the Java Agent Quick Start guides.
These guides are available on the Diagnostics Agent Download and Setup page in AppPulse.

This chapter includes:

« "Java Agent Installation Overview" on the next page
« "System Requirements for the Diagnostics Java Agent" on the next page

Micro Focus Diagnostics (9.50) Page 14 of 267

Java Agent Guide
Chapter 2: Preparing to Install the Diagnostics Java Agent

Java Agent Installation Overview

The following is an overview of the steps involved in installing and configuring the Java Agent. Understanding
this workflow will help you plan your Java Agent installation.

Agents can optionally be auto-deployed. In that case some steps are performed automatically for you as
described below.

1.

Prepare the host where the Java Agent is to be installed.

The host must contain the application server installation for the application to be monitored. The host also
must meet the system requirements listed in the next section.

2. Obtain the Java Agent installation package and install (unpack) the Java Agent.

Run the Java Agent Setup program.

When running the setup, you can choose to auto-deploy an agent.

For more information, see "Installing and Configuring Java Agents" on page 17.
Instrument the JRE used by the application server.

Diagnostics’ JRE instrumentation does not modify the installed JRE, but rather places copies of
instrumented classes under the Java Agent installation directory. Then with the proper JVM parameters
these instrumented classes will be loaded into the JVM that runs the application server.

If you chose to auto-deploy an agent, this step is performed automatically.

This procedure varies for each type of application server. For more information, see "Preparing
Application Servers for Monitoring with the Java Agent" on page 30.

Configure the application server startup script.

Configure your application server JVM parameters to invoke the agent and use the instrumented
JRE when the application starts.

If you chose to auto-deploy an agent, this step is performed automatically.

This procedure varies for each type of application server. For more information, see "Preparing
Application Servers for Monitoring with the Java Agent" on page 30.

Restart the application server to pick up the changes to the startup script.

7. Validate the agent installation and configuration.

For more information, see "Verify the Application Server is Running the Java Agent" on page 58.

System Requirements for the Diagnostics Java Agent

For details on the system configurations that are recommended for hosting the Diagnostics Java Agent, refer
to the relevant version of the Diagnostics System Requirements and Support Matrices Guide on the
Software Support site (https://softwaresupport.softwaregrp.com/group/softwaresupport/).

Micro Focus Diagnostics (9.50) Page 15 of 267

https://softwaresupport.softwaregrp.com/group/softwaresupport/

Chapter 3: Installing Java Agents

This chapter describes how to install a Java Agent and give you information about the setup and configuration
of the Java Agent

Note: The procedures in this chapter do not apply when installing the Java Agent in an AppPulse
environment. For information about AppPulse agent installation, see the Java Agent Quick Start guides
on the Diagnostics Agent Download and Setup page in AppPulse.

This chapter includes:

« "Pre-installation Checklist for the Java Agent" below

« "Installing and Configuring Java Agents" on the next page

« "Silent Installation of the Java Agent" on page 28

« "Setting File Permissions" on page 28

« "Determining the Version of the Java Agent" on page 28

« "Configuring for Firewalls, HTTPS, and Proxies" on page 28
« "Uninstalling the Java Agent" on page 29

Pre-installation Checklist for the Java Agent

The following list is provided to help you gather the information that you will need during the installation of the
Java Agent.

« Determine which mode the agent needs to operate in—it can only operate in one mode at a time. The
deployment scenario of your Diagnostics installation determines the mode that you specify. The mode
affects the licensing impact of the agent as well as the default configuration of the agent. The modes are
as follows:

« Diagnostics Profiler mode. Provides access to raw metric data on the agent host directly, without it
being processed. The agent instance does not connect to a Diagnostics Server.

« Diagnostics Mode for LoadRunner/Performance Center. The agent is used with a Diagnostics
Serverin aload testing (or pre-production) environment where probes are used only in LoadRunner or
Performance Center runs.

» Enterprise Mode. Agent sends collected metrics to an on-premise Diagnostics Server and/or an
Software-as-a-Service (SaaS) Diagnostics Server.

You can rerun the Agent setup to change the mode of an existing agent installation.

« Forall modes, the agent must be installed on the machine hosting the application that you want to monitor.
The Agent cannot monitor an application remotely.

« Forall modes, determine the location of the application server startup script.

« Forall modes, make sure the host meets the recommended system requirements. For details, refer to the
relevant version of the Diagnostics System Requirements and Support Matrices Guide on the
Software Support site (https://softwaresupport.softwaregrp.com/group/softwaresupport/).

Micro Focus Diagnostics (9.50) Page 16 of 267

https://softwaresupport.softwaregrp.com/group/softwaresupport/

Java Agent Guide
Chapter 3: Installing Java Agents

« Foragents installed in Enterprise Mode, you need the server connection details. For Diagnostics Servers,
this is the fully-qualified host name (FQDN) or IP address of the host of the mediator server to which the
probe sends the collected data. Your deployment may require that multiple probes send data to the same
mediator. Your deployment may have no mediator servers in which case the collected data is sent to the
commander server. If the server is configured to use a port other than the default port, you need the port
number.

You can obtain the server host FQDN and port from the Diagnostics System Administrator.

For Software-as-a-Service (SaaS)-hosted servers, obtain the server connection details from your SaaS
administrator.

« Foragents installed in Enterprise Mode or Diagnostics Mode for Load Runner/Performance Center, you
need an agent naming strategy. Each agent instance in the deployment environment is represented in the
same, shared Diagnostics Enterprise Ul. Agent names must be unique and clear so that users can
distinguish between the different applications and types of probes among all in the deployment
environment.

« Foragents installed in Enterprise Mode or Diagnostics Mode for Load Runner/Performance Center,
determine which agents belong in which agent groups. Probe groups are optional, logical groupings of
probes.

« Forall modes, if there is a pre-existing installation of the Java Agent on the host machine and you want to
retain its configuration, follow the procedure in "Upgrading the Diagnostics Java Agent" on page 83.

Installing and Configuring Java Agents

The installation and configuration of the Java Agent includes the following steps:
"Step 1: Obtain the Installation Package" below

"Step 2: Start the Agent Setup" on the next page

"Step 3: Specify the Agent Mode" on page 19

"Step 4: Specify Agent Name, Group, and Auto-deployment" on page 20

"Step 5: Specify Diagnostics Server Information" on page 23

"Step 6: Specify RUM Integration Settings" on page 24

"Step 7: Review Post Setup Summary" on page 26

"Step 8: Verify Connectivity from the Agent to the Diagnostics Server" on page 27

Step 1: Obtain the Installation Package

1. Copy the Java Agent installation package to the target host. You typically obtain the package from one of
the following locations:

« The Diagnostics release media.
« The Software Support site.

« The Downloads page in BSM/APM; select Admin > Platform Administration > Setup and
Maintenance > Category > Diagnostics.

Micro Focus Diagnostics (9.50) Page 17 of 267

Java Agent Guide
Chapter 3: Installing Java Agents

The package name indicates the platform on which it can be run:

On this platform: Use this package:

Windows DiagJavaAgent_<release number>.zip
All other platforms, including AlX, DiagJavaAgent_<release number>.zip
Linux, or Solaris or

DiagJavaAgent_<release number>.tgz

2. Extract all contents of the installation package to a directory on the target host.

If you are extracting the .tgz package for Linux/Unix systems, use the following command to extract the
files with their permissions: tar -pxvzf DiagJavaAgent_ <release number>.tgz.

Note: On AlX systems, you must use the GNU version of tar, or install from the zip version of the
package.

Caution: Do not extract the zip contents to a temp directory.

Within the extracted files you see the JavaAgent/DiagnosticsAgent/ directory. This location is
hereafter referred to as <agent_install_directory>.

Step 2: Start the Agent Setup

Running the Agent Setup does not require root or administrative privileges.

If you plan to auto-deploy the agent, the user running the Agent Setup must have permission to modify the
application server startup script and permission to write files in the application server bin directory.

On AlIX, Linux, or Solaris, the user that installs the Java Agent ideally is the same user that installed the
application server. The reason is that write access to the <agent_install_directory>/log directory is required by
application server. See "Setting File Permissions" on page 28.

Run the setup command appropriate for your platform. You can run the Agent Setup in graphical or console
mode.

Graphical mode on Windows:
<agent_install_directory>\setup.cmd
Graphical mode on AlX, Linux, or Solaris:

export DISPLAY=<hostname>:0.0
<agent_install directory>/setup.sh

The "xhost +" command must have been executed on the host where the installation is to be displayed (the
<hostname> used in the export command).

Console mode on Windows:

<agent_install_directory>\setup.cmd -console

Micro Focus Diagnostics (9.50) Page 18 of 267

Java Agent Guide
Chapter 3: Installing Java Agents

Console mode on AlX, Linux, or Solaris:

<agent_install directory>/setup.sh -console

Step 3: Specify the Agent Mode
---------- | Micro Focus Diagnostics Agent == -

Select the Agent Configuration Options

(_ Diagnostics Profiler Mode

i Diagnostics Mode for Load Runner/Performance Center (AD License)

@ Enterprise Mode (AM License)
Diagnostics
[] Diagnostics with SaaS-hosted mediator {installed on Micro Focus premise)

[] Diagnostics with RUM Client Monitor

Motes:
The Agent canfigured as the Diagnostics profilerwarks as a standalone diagnaostics tool. The Agent configured to
woth with & server canwaork along with other agents and other Micra Focus Software products to provide

performance diagnastics throughaout wour application environment.

Select the mode appropriate for the agent:

« Diagnostics Profiler Mode: Configure the agent as a Diagnostics Java Profiler. The Diagnostics Java
Profiler does not connect to a Diagnostics server and is accessed through its own user interface.
Diagnostics Profiler mode is typically used when installing the Diagnostics Java Profiler trial software prior
to purchasing the Diagnostics product.

When you select Diagnostics Profiler Mode there are no other configuration options. Select Finish to
complete the configuration and skip to "Step 7: Review Post Setup Summary" on page 26.

« Diagnostics Mode for LoadRunner/Performance Center (AD License): Configure the agent for use

with a Diagnostics Server in aload testing (or pre-production) environment where probes are used only in

Micro Focus Diagnostics (9.50) Page 19 of 267

Java Agent Guide
Chapter 3: Installing Java Agents

LoadRunner or Performance Center runs.

The agent will be configured in AD license mode which means the agent will only be counted against your
Diagnostics AD license capacity when the agent is in a LoadRunner or Performance Center testing run.
See "Licensing Diagnostics" in Diagnostics Server Installation and Administration Guide for more
information on AD license capacity.

« Enterprise Mode (AM License): Configure the agent to send collected data to one of the following:

« Diagnostics. The agent will connect to a Diagnostics Server that is installed locally, in your
deployment environment.

« Diagnostics with SaaS-hosted mediator. The agent will connect to a Diagnostics Server that is
hosted on an SaaS system on-premise at Micro Focus.

« Diagnostics with RUM Client Monitor. The agent will connect to a Diagnostics Server according to
the selected mode (Diagnostics or Diagnostics with SaaS-hosted mediator) and enables the
integration between Diagnostics and Real User Monitor (RUM). For details on the integration, refer to
the RUM Client Monitor-Diagnostics Integration Guide located on the Software Support web site
(https://softwaresupport.softwaregrp.com/).

Note: This option is only available when installing the Java Agent on Windows, using setup.cmd in
the graphical mode.

For those agents with Enterprise mode set, the agent will be counted against your Diagnostics AM license
capacity.

In AD mode the agent will ONLY capture data during a LoadRunner or Performance Center run and the results
will be stored in a specific Diagnostics database for that run, for example, Default Client:21. When the agent
is in AD mode it will NOT send any data to the server unless the probe is part of a LoadRunner/Performance
Center run.

The advantage of running a probe in AD mode is that probes in AD mode are only counted against license
capacity if they are in a LoadRunner or Performance Center test run. For example if 20 probes are installed in
LoadRunner/Performance Center AD mode but only have 5 are in a run at any one time then you would only
need an AD license capacity of 5 probes.

In console mode enter an X to select the mode for installation.

Click Next (in console mode Enter) to continue to the next step.

Step 4: Specify Agent Name, Group, and Auto-deployment

This step is skipped if the agent configuration specified in the previous step is Diagnostics Profiler Mode.

Assign a name to the Java Agent and specify the group to which it belongs. For agents that will monitor
Tomcat, JBoss, or WebSphere application servers, you can optionally choose to auto-deploy the agent.

Micro Focus Diagnostics (9.50) Page 20 of 267

https://softwaresupport.softwaregrp.com/

Java Agent Guide
Chapter 3: Installing Java Agents

L]

e | Micro Focus Diagnostics Agent I;li-

Identify the Agent
Identify the Agent
Agent Name: .ja\.fa_fl.l'l'r"D-'l."l'l.l'lE|553'5
Agent Group: Default

Identify the Application Server to Monitor
Application Server Home Directory (Tomcat, JBoss and WehSphere onhy)

Motes:

The Agent Mame is used to uniquely identify each Agent. The Agent Group is a logical collection of agents reparing
to a Diagnostics Server. The Agent Group name is case sensitive.

ITthe Application Server Home Directory |5 specified, the Setup program will modify the application server startup
scriptto enable the Diagnostics Java Agent. This faatura is supported an Tomcat, JBoss and WebSphere servers
ohly.

| Back || Hext | inish Cancel

Agent Nam:e Enter a name that uniquely identifies the agent within the Diagnostics Enterprise User
Interface. You can use -, _ and all alphanumeric characters in the name. The agent name is assigned as
the default probe entity name. When assigning a name to an agent, choose a name that will help you
recognize the application being monitored and the system the agent is installed on (for example if installing
on the system ovrserver130 with a WebLogic application server you could use the agent name WL10_
MedRec_ovrserver130).

Diagnostics does not support localization of agent names.

If you have a single agent installed on a system and plan to monitor multiple application servers you
specify unique probe names and parameters in the application server startup script. See "Configure
Monitoring of Multiple Java Processes on an Application Server" on page 67.

Agent Group: Enter a name for an existing group or a new group to be created. The agent group name is
case-sensitive. The agent group name is used as the probe group name.

Probe groups are logical groupings of probes. The performance metrics for a probe group are aggregated
and can be displayed on many of the Diagnostics views. For example, you can assign all of the probes for
a particular enterprise application to a probe group so that you can monitor both the performance at the
group level and the performance based on individual probe entities.

Micro Focus Diagnostics (9.50) Page 21 of 267

Java Agent Guide
Chapter 3: Installing Java Agents

« Application Server Home Directory: Enter or browse to select the home directory for the Tomcat,
JBoss, or WebSphere application server to be monitored. For example, C:\JBossAll\jboss-as-web-
7.0.2.Final for JBoss, or <C:\Program Files\IBM\WebSphere\AppServer> for WebSphere.

Note:

« Forapplication servers that are not Tomcat, JBoss, or WebSphere, leave this field empty and refer
to "Examples for Configuring Application Servers " on page 33.

« You can auto-deploy the agent for Tomcat application servers that have a startup script (that is,
applications that run as a process) as well as for Tomcat applications that run as a Windows
service. For Tomcat applications that run as a Windows service, note:

o The startup script is also changed.

o Only those services whose catalina.home property points to the location of the relevant startup
script are changed.

o Auto-deploying Tomcat as a Windows service causes the JRE Instrumenter to runin
Automatic Explicit Mode. For details, see "Using the JRE Instrumenter in Automatic Explicit
Mode" on page 61.

o For details on how to manually configure a Tomcat application as a Windows service, refer to
"To configure a Tomcat server without a startup script" in "Example 6: Configuring Tomcat
Application Server for Monitoring" on page 47.

The Setup program modifies the startup script (for Tomcat and JBoss), or the xml file (for WebSphere), for
the application server so that the application server runs enabled for monitoring by the Java agent the next
time it is started. The original, initial version of the modified file is saved as a backup in the same location.
The file is named as follows: HPEbackup_year_month_day_originalFileName. For example,
HPEbackup_2018_05_15_domain.bat.

File Modified by the Setup Backup File

For Tomcat: <TOMCAT_HOME>/bin//[HPEbackup__
<TOMCAT_HOME>/bin/catalina. [bat|sh] <date>_catalinacatalina. [bat|sh]

For JBoss Version 7.x, Wildfly 8: <JBOSS_HOME>\bin\HPEbackup_<date>__
<JBOSS_HOME>/bin/domain.[bat|sh] domain. [bat|sh]

For JBoss Version 7.x, Wildfly 8: <JBOSS HOME>\bin\HPEbackup_<date>
<JBOSS_ HOME>/bin/standalone.[bat|sh] standalone.[bat|sh]

For JBoss Version 6.x: <JBOSS_HOME>/bin/[HPEbackup_<date>
<JBOSS_HOME>/bin/run.[bat|sh] run. bat

For WebSphere: <WAS_HOME>/profiles/<profile_
<WAS_HOME>/profiles/<profile_ name>/config/cells/<cell_

name>/nodes/<node_name>/servers/<server

name>/config/cells/<cell_name>/nodes/<node__
name>/HPEbackup_<date>_ server.xml

name>/servers/<server_name>/server.xml

The Post Setup Summary dialog indicates whether the startup script has been modified successfully.

Select Next (in console mode Enter) to continue with the next step.

Micro Focus Diagnostics (9.50) Page 22 of 267

Java Agent Guide
Chapter 3: Installing Java Agents

Step 5: Specify Diagnostics Server Information

Enter the configuration information for the Diagnostics Server and additional options.

a Micro Focus Diagnostics Agent [=T=]

Configure the Diagnostics Agent

Diagnostics Server Connectivity

Diagnostics Server: ||Dta|h031

Diagnostics Server Port: |E'DUE

Additional Options
| Tune Diagnostics Java Agent for use in an SAP NetWeaver Application Server
|| Enahile gzip compression (Recommended for Micro Focus SaaS deployments)

|| Enahle SSL

|| Use Proxy Server to connect to Diagnostics Server

Proxy Server Options

Proxy Server Name:
Proxy Server Port:
Proxy Server Username {optional):

Proxy Server Password {optional):

Local Profiler Password

Password: [rem—

Hotes:

The default server port is 2006 %Wwhen S5L is enabled, the default server port or 8443 When S5L is enahled AND
the mediatoris Saas hosted, the default server portis 443,

Back Hext Finigh ' Cancel

« Diagnostics Server: Enter the host name or IP address of the host of the Diagnostics Server to which
this agent will connect. Specify the fully qualified host name rather than just the simple host name. In a
mixed OS environment, where UNIX is one of the systems, this is essential for proper network routing.

Typically this is the Diagnostics mediator server. In environments with no Diagnostics mediator servers,
specify the Diagnostics Commander Server details here.

If this agent is being deployed for Software-as-a-Service (SaaS) then an Micro Focus SaaS administrator
will provide you with the information on the host name and port to use. Also note that for an Micro Focus
SaaS environment the Enable gzip option will be checked automatically for you and you will not see the
Enable SSL option because it is configured on the Diagnostics Commander/Mediator on premises.

« Diagnostics Server Port: Enter the port number of the Diagnostics Server.

Micro Focus Diagnostics (9.50) Page 23 of 267

Java Agent Guide
Chapter 3: Installing Java Agents

The default port for the Diagnostics Server is 2006. For SSL communications with the server the port is
typically set to 8443 for a locally installed server. If the port was changed since the Diagnostics Server
was installed, specify the new port number here instead of the default.

The default port if you are installing the agent for a SaaS environment is 443 (the SaaS administrator will
provide you with details).

« Tune Diagnostics Java Agent for use in an SAP NetWeaver Application Server: Set to allow this
agent to support a SAP NetWeaver Application Server.

« Enable gzip compression: Set to compress the data between the Java Agent and the mediator. This is a
tradeoff between bandwidth and probe performance overhead.

If you are using Software-as-a-Service (SaaS) you typically enable gzip compression. See your SaaS
administrator for more information.

« Enable SSL: Check to instruct the agent to connect to the Diagnostics Server in SSL mode and to
attempt to download the required certificate chain from the server. As a result the server.properties
trusted certificate will then include the certificate. For more information on secure communications see
“Enabling HTTPS Between Components” in the Diagnostics Server Installation and Administration Guide.

If you are using Software-as-a-Service (SaaS) this option is required.

« Use Proxy Server to connect to Diagnostics Server: Set if a proxy server is used to communicate with
the Diagnostics Mediator Server. Enter the appropriate options.

If you are using Software-as-a-Service (SaaS), specify this option if your company requires a proxy to
communicate to outside servers.

Proxy Server Options:
o Proxy Server Name: Host name of the proxy server.

« Proxy Server Port: Port of the proxy server.
« Proxy Server Username (optional): The user used to authenticate the proxy server.
« Proxy Server Password (optional): The password used to authenticate the proxy server.

These options can be set or modified after the setup is run by modifying the dispatcher.properties file on
the agent system. For more information on proxy configuration see "Configuring Diagnostics Servers and
Agents for HTTP Proxy" in the Diagnostics Server Installation and Administration Guide.

« Local Profiler Password: This password is used to authenticate logins (usemame: admin) to the local

Diagnostics Profiler, which is installed along with the agent. Enter a password and provide it to the users
that will run the Diagnostics Profiler.

In console mode interface for each option enter an X for Yes and O for No.

Select Next (in console mode Enter) to continue with the next step.

Step 6: Specify RUM Integration Settings

This step is skipped if the Diagnostics with RUM Client Monitor check box is not selected in "Step 3:
Specify the Agent Mode" on page 19

Enter the configuration information for the RUM Client Monitor (Browser Probe) JavaScript snippet.

Micro Focus Diagnostics (9.50) Page 24 of 267

Java Agent Guide
Chapter 3: Installing Java Agents

X
Configure RUM Client Monitor J§ Snippet
RUM Client Monitor Snippet Parameters
RUM Client Monitor JavaScript file URL: | |
RUM Client Monitor Probe HTTP URL: |http: #ARUM CM probe URLI: sogosclientmonsdata |
RUM Client Monitor Probe HTTPS URL: |https:.—'.—'[RUI'u1 CM probe URL): 2021/clientmonsdata |
Notes:
Copy the RUM Client Monitor JavaScript file from the RUM installation package and make it accessible to your
application. Configure the URL to the JavaScript file, as well as the HTTP and HTTPS URLs for accessing the RUM
Client Monitor Probe. The updated JavaScript snippet is added to the html.cm.inst property in the
etcydynamic.properties file.
|Thu Now 17 13:11:28 NZDT 2018: This is the last dialog..please click the Finish button to save and exit

« RUM Client Monitor JavaScript file URL: Enter the full URL path to the source file containing the
RUM Client Monitor JavaScript. The default file name is clientmon.js.

Note: Copy the RUM JavaScript (clientmon.js) from the RUM installation package. Save it on the
Web server, in the webApps directory and in the same domain as the application server. The
following is an example of the path for an application called cyclos:

C:\tomcat7\webapps\cyclos\clientmon.js

RUM Client Monitor Probe HTTP URL: Enterthe URL of the RUM Browser Probe to which the
monitored client data is sent. The format for the URL is: <protocol>://<host>:<port>/clientmon/data
« RUM Client Monitor Probe HTTPS URL: Enter the URL of the RUM Browser Probe to which the
monitored client data is sent, if using https. The format for the URL is:
<protocol>://<host>:<port>/clientmon/data

Micro Focus Diagnostics (9.50) Page 25 of 267

Java Agent Guide
Chapter 3: Installing Java Agents

Select Next or Finish. Only one of these options is enabled, depending on the selections made in "Step 3:
Specify the Agent Mode" on page 19

Note: For details on the RUM Client Monitor-Diagnostics integration, including how to configure these
settings manually, refer to the RUM Client Monitor-Diagnostics Integration Guide located on the Micro
Focus Software Support web site (https://softwaresupport.softwaregrp.com/).

Setup Process Begins

The Java Agent Setup process begins. In graphical mode a progress bar indicates how the configuration is
proceeding.

If applicable, the connectivity to the Diagnostics Server is tested. If any connectivity problems are
encountered, the Set Up Program displays the results of the connectivity check.

Continue with he next step

Step 7: Review Post Setup Summary

Review the Post Setup Summary.

=< | Micro Focus Diagnostics Post Setup Summary ===

Setup Validation Assessment

Enterpnise Mode (AN License) selecied
Success (hitp fmyd-vm 10420 hpeswlab net: 20067 Diagnostics Server connectivity salidation
The Java Agent configuration passed consistency waldation test

What to Do Next?
The application server starfup script must be modified to ron the JRE instrumenter and imoke the agpent.

Thise steps are application-server dependent. See the iagnostics Java Agent Guide for guidelines and examples Tor your application senver.

Client Monitoring
Remeamber to deploy DiagnosticsCM.war to your application server to activate Client Monitoring.
See the Diagnostics Java Agent Guide for more details.

OK

Micro Focus Diagnostics (9.50) Page 26 of 267

https://softwaresupport.softwaregrp.com/

Java Agent Guide
Chapter 3: Installing Java Agents

If you chose to auto-deploy the agent, the summary includes the name of the modified application server
startup script:

If no errors are reported, the agent has been configured successfully. If errors are reported, check the
following:

« Whether the specified Diagnostics Server host name and port are correct. If a proxy server was specified,
verify that the proxy host name and port are correct

« Whether the Diagnostics Server is started. See "Starting and Stopping Diagnostics Servers" in the
Diagnostics Server Installation and Administration Guide.

« Whether network problems are affecting the general connectivity between the server host and the agent
host, or between the proxy host and the agent host. For example, use the ping utility.

« If errors are related to the auto-deployment of the agent on JBoss, Tomcat, or WebSphere, make sure the
user running the Agent Setup has permission to modify the application startup script or xml file and write
files in that directory. Also check the following log file: <agent_install_directory>/bin/setupModule.log.

« If errors are related to monitoring profiles, check the relevant file or property and correct as necessary.

Note: You can run the monitoring profile checking tool manually at any time from a command line,
using the command : <agent_install_directory>\bin\validator.cmd all for Windows, or
<agent_install directory>/bin/validator.sh all forLinux and Unix.

Click OK.

Step 8: Verify Connectivity from the Agent to the Diagnostics
Server

Optionally, to verify the Java Agent configuration and connectivity with the Diagnostics Server, you can run
the following test scrip at any time:

« <agent_install_dir>\bin\runTestProbe.cmd on Windows
« <agent_install_dir>/bin/runTestProbe.sh on UNIX and Linux

This script runs a test probe that attempts to connect to the Diagnostics Server. The script displays log
messages that indicate success or why the test probe is failing to connect. The failure messages can help
you identify why the probe for your monitored application is not connecting to the Diagnostics Server.

Press CTRL-C to stop the test script.

The next step is to instrument the JRE and configure the application startup script to run the agent with the
application server to be monitored. The way that you do this depends on whether the agent is being auto-
deployed, as follows:

« If you specified the auto-deployment of the agent on JBoss, Tomcat, or WebSphere, the startup scripts or
xml file have been modified as described in "Step 4: Specify Agent Name, Group, and Auto-deployment”
on page 20. Simply restart the application server to pick up the changes.

« Otherwise, you need to instrument the JRE and modify the application server startup scripts to configure
the application server to run with the agent. Follow the instructions in "Preparing Application Servers for
Monitoring with the Java Agent" on page 30.

For more information on client monitoring see "Preparing Application Servers for Client Monitoring with the
Java Agent" on page 79.

Micro Focus Diagnostics (9.50) Page 27 of 267

Java Agent Guide
Chapter 3: Installing Java Agents

Silent Installation of the Java Agent

This section describes how to install the Java Agent in multiple locations using the same configuration files.
To install multiple Java Agents using a single set of configuration files:

1. Install the Java Agent temporarily, as described in "Installing and Configuring Java Agents" on page 17.
2. Foreach location in which you want to install the Java Agent:

a. Extract all contents of the Java Agent installation package to a directory on the target host. For
details, see "Step 1: Obtain the Installation Package" on page 17.

b. Overwrite the contents of the Java Agent etc folder with the contents of the etc folder of the
temporary installation created in step 1 above.

Update the id property in the etc\probe.properties file with the id of Java probe you are configuring.

Instrument the JRE and configure the application startup script to run the agent with the application
server to be monitored as described in "Step 8: Verify Connectivity from the Agent to the Diagnostics
Server" on the previous page.

Setting File Permissions

This procedure is relevant for AlX, Linux, or Solaris installations only.

After installing the Java Agent, make the agent’s 'group’ the same as the application server’s 'group’. Then
assign the following permissions to files in the <probe install directory> for the group:

« Read access to the <agent_install_directory> directory and files.
« Execute access to the <agent_install_directory>/bin directory.
« Read/Write access to the <agent_install_directory>/log directory.

Determining the Version of the Java Agent

When you request support, it is useful to know the version of the Diagnostics component you have a question
about.

You can find the version of the Java Agent in one of the following ways:

« Inthefile <agent_install_directory>\version.txt. The file contains the version number, as well as the
build number.

« Inthe probe log file <agent_install_directory>/log/<probe_id>/probe.log.
« Foragents in Enterprise mode, in the System Health view of the Diagnostics Ul.

Configuring for Firewalls, HTTPS, and Proxies

The Java Agent requires additional configuration if it is being deployed into an Enterprise Diagnostics
environment that includes firewalls, SSL-enabled communications, and proxies. This configuration is
described in the Diagnostics Server Installation and Administration Guide. See the following sections in that
guide:

Micro Focus Diagnostics (9.50) Page 28 of 267

Java Agent Guide
Chapter 3: Installing Java Agents

« “Configuring Diagnostics Servers and Agents for HTTP Proxy”
« "Configuring Diagnostics to Work in a Firewall Environment"
« "Enabling HTTPS Between Components"

Uninstalling the Java Agent

To uninstall the Java Agent:

1. Stop the application server that is being monitored by the Java probe.

2. Restore the original application server startup script or remove any modifications that were made to the
script to enable monitoring, for example on JBoss you would remove the following:

Configuring Diagnostics Java Agent
AGENT_HOME=<agent_install dir>
PROBE_ID=<probe_id>

PROBE_OPTS="$PROBE_OPTS -
Djboss.modules.system.pkgs=org.jboss.byteman,com.mercury.opal”
JAVA_OPTS="$JAVA OPTS $PROBE_OPTS"

If the agent was auto-deployed, restore the backup copy of the script. See "Step 4: Specify Agent Name,

Group, and Auto-deployment" on page 20.
3. Delete the entire <agent_install_directory> directory.

Micro Focus Diagnostics (9.50) Page 29 of 267

Chapter 4: Preparing Application Servers for
Monitoring with the Java Agent

This chapter describes how to prepare your application servers to allow the Diagnostics Java Agent to monitor
your applications.

This chapter includes:

« "About Preparing Application Servers for Monitoring" below

« "Examples for Configuring Application Servers " on page 33

« "Verify the Application Serveris Running the Java Agent" on page 58

« "About the JRE Instrumenter and Different Options to Invoke" on page 59

« "Other Configuration Options" on page 66

About Preparing Application Servers for Monitoring

After the Diagnostics Java Agent is installed and configured, the application server must be prepared
(instrumented) to allow the Java Agent to monitor the applications. This preparation usually involves
instrumenting the JRE used by the application servers and configuring the application server JVM
parameters to invoke the Java Agent.

Diagnostics’ JRE instrumentation does not modify the installed JRE, but rather places copies of instrumented
classes under the Java Agent installation directory. Then with the proper JVM parameters these instrumented
classes will be loaded into the JVM that runs your application server. The instrumentation is done using the
Diagnostics JRE Instrumenter utility which can be invoked automatically using various options or manually.

There are two-levels of instrumentation:

« Basic instrumentation.

By adding the Java Agent to your application server start up, your application server will be instrumented
and monitored. This is done by adding the -javaagent option to your application server JVM parameters.

« Recommended instrumentation.

In addition to the basic instrumentation, we recommend that you also instrument the JRE (Java Runtime
Environment) used by your application server using the JRE Instrumenter utility provided by the Java
Agent. This extra instrumentation will enable the Java Agent to provide advanced features such as the
patent-pending Collection Leak Pinpointing (CLP). CLP automatically detects leaking collections and
provides a stack trace of where the leak occurs. This helps identify issues early, while there is time to
mitigate the issue (such as an eventual out of memory error/server crash), as well as saves developers
time by avoiding the tedious task of analyzing heap dumps (see "Configuring Collection Leak Pinpointing"
on page 124). And this extra instrumentation also has performance benefits on certain application servers
such as WebSphere 6.1.

Note: If you chose to auto-deploy the application server during agent setup, you do not need to perform
this procedure. Restart the application server to pick up the changes.

For general instructions on using the different JRE instrumentation modes see "About the JRE Instrumenter
and Different Options to Invoke" on page 59.

Micro Focus Diagnostics (9.50) Page 30 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

To continue, find your application server in the next section and follow the instructions for instrumenting and
configuring.

Specifying Probe Properties as Java System
Properties

The configuration of the Java Agent is managed by property settings in several property and configuration
files. You can view and modify these files in <agent_install_directory>/etc/. Property settings can also be
specified as Java system properties on the startup command line for the application server, where they
configure only that instance of the probe. These system properties can be specified in the following ways:

« "Specified individually on the command line" below
« "Grouped in afile that is specified on the command line" on the next page
« "Macros for probe and host naming" on page 33

Specified individually on the command line

Except for those defined in the dynamic.properties property file, all probe properties can be specified as
Java System properties on the startup command line for the application server.

When the application starts, properties specified in the startup command line override properties with the
same name in the corresponding property file. If you make a change to the dynamic property settings while an
application is running, these changes will override the command-line specification.

Specifying probe properties on the application startup command line is useful when there is more than one
JVM being monitored by a single agent installation. Each probe can specify its own configuration as a delta to
the shared agent configuration and property files.

To specify a property as a Java System property, add -D to the first part of the module name or properties file
name, for example -Dprobe or -Ddispatcher. See the following examples.

« Forthe property webserver.jetty.port, from the startup command, add -D before the module name
(probewebserver) as follows:

-Dprobewebserver. jetty.port=SomePortNumber

Note: The webserver property is different from other properties as you need to use the module name
(probewebserver), not the property file name.

« Toset the id property in probe.properties from the startup command, add -D before probe in the property
file name, and add the name of the property you are specifying (id) as follows:

-Dprobe.id=SomeId

« Toset the active.products property in probe.properties from the startup command, add -D before probe
in the property file name, and add the name of the property you are specifying (active.products), as
follows:

-Dprobe.active.products=Enterprise

Micro Focus Diagnostics (9.50) Page 31 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

« Toset the registrar.url property in dispatcher.properties from the startup command, add -D before
dispatcher in the property file name, and add the name of the property you are specifying (registrar.url),
as follows:

-Ddispatcher.registrar.url=http:/host.company.com:2006/registrar

« Toset the minimum.sql.latency property in dispatcher.properties from the startup command, specify a
value as follows:

-Ddispatcher.minimum.sql.latency=3s

Because this property is dynamic, you can override the above specification by modify the setting in the
following file:
<agent_install_directory>/etc/dispatcher.properties

Example

If an SQL statement takes less than this amount of time, it will
not be trended, until it does exceed this time.

(This property can be dynamically changed)

minimum.sql.latency = 1s

In this case, the setting is restored to its default value of 1 second.

Grouped in a file that is specified on the command line

As an alternative to specifying individual probe properties on the startup command line for the application
server, you can group several property settings together in a file and specify the file as a Java System
property on the startup command line for the application server.

Just as with the command-line specification, any properties specified in the file override those of the same
names in the corresponding property files when the application starts. However when using the file method,
you can include properties from the dynamic.properties property file. However, unlike when specifying
individual probe properties on the command line, all properties are overridden unconditionally. Any changes to
dynamic settings that occur once the application is running do not override their specification in the file.

Using afile to specify a number of probe properties is helpful when you have many properties to specify, or the
property settings require unusual syntax which is easier to maintain in afile.

To specify afile that contains property settings on the application server startup command line, specify
-Ddiag.config.override=<my_prop_settings>

where <my_property_settings> specifies the file with your settings that you have created and placed in
<agent_install_ directory>/etc/overrides. The file must contain the .settings suffix.

For example:

-Ddiag.config.override=WebSphereProbe24
This directs the probe to read the file: <agent_install_directory>/etc/overrides/

WebSphereProbe24.settings file. This file contains any settings that you want to override at startup, for
example:

Micro Focus Diagnostics (9.50) Page 32 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

probe.id=Someld

probe.active.products=Enterprise
dispatcher.registrar.url=http:/host.company.com:2006/registrar
dispatcher.minimum.sqgl.latency=3s

dynamic.stack.trace.sampling.rate=30ms

Macros for probe and host naming

Probe name, host name and IP address can be specified by using macros. The macros pull values from
system properties or environment variables and use the values to build the name or IP address at runtime.

Macros for probe and host naming are useful in cloud environments.

Where macros can Macros can be specified for any of the following properties:

be specified . probe.id

« dispatcher.probe.host.ip_address.override
« dispatcher.probe.host.name.override

Macro format You specify a macro in either of the following formats:
${key}
or
${key:subkey}
where:

key is a system property or environment variable. The value of the system property
or the environment variable is used as the macro value.

subkey is specific field of the key value. The key value must be ina JSON map
form.

Examples For example, assume <agent_install_directorydir>etc/probe.properties contains the
following entry:

id = ${PARAMETERS:username}-${PARAMETERS:port}_ foo

If the PARAMETERS environment variable has a value of:
"username":"joe","user_id":1003,"port":3003}

Then the id property a evaluates to:

id = joe-3003_foo

Examples for Configuring Application Servers

This section provides examples of how to configure various commonly used application servers for
monitoring. See the section "About the JRE Instrumenter and Different Options to Invoke" on page 59 for a

Micro Focus Diagnostics (9.50) Page 33 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

description of the different ways you can invoke the JRE Instrumenter.

Note:

« Make sure that you understand the structure of the startup scripts, how the property values are set,
and the use of environment variables before you make any application server configuration changes.
Always create a backup copy of any file that you plan to update before making the changes.

« ForJBoss, Tomcat, and WebSphere application servers, we recommend that you use the auto-

deploy option. For details, see "Step 4: Specify Agent Name, Group, and Auto-deployment" on page
20.

"Example 1: Configuring GlassFish Application Server for Monitoring" below

"Example 2: Configuring JBoss Application Server and JBoss EAP for Monitoring" on page 36

"Example 3: Configuring Oracle Application Server for Monitoring" on page 39

"Example 4: Configuring SAP NetWeaver Application Server for Monitoring" on page 43

"Example 5: Configuring TIBCO ActiveMatrix BusinessWorks and Service Bus for Monitoring" on page 45

"Example 6: Configuring Tomcat Application Server for Monitoring" on page 47

"Example 7: Configuring WebLogic Application Server for Monitoring" on page 48

"Example 8: Configuring webMethods Server for Monitoring" on page 50

"Example 9: Configuring WebSphere Application Server for Monitoring" on page 53

"Example 10: Configuration for WebSphere Application Server Liberty " on page 57

The long lines in the script examples shown in this chapter do not have line breaks, which makes them hard to
read. However this allows you to copy and paste the text directly from the manual (when viewing online) and
into your editor without extraneous formatting characters.

Use quotes if there are spaces in the files paths that you specify.

Example 1: Configuring GlassFish Application Server for
Monitoring

The following are the instructions for a generic GlassFish 3.x or 4.x application server implementation. Your
site administrator should be able to use these instructions to guide you in making the changes that are
appropriate to your specific environment.

Note: 1.GlassFish requires additional, special settings to work properly with the agent.

Locate the property org.osgi.framework.bootdelegation in the GlassFish configuration files and
append the text ",com.mercury.opal.capture.proxy" to the end of the property value (do not include the
quotes).

In GlassFish 3.1.2 and later, this property is located in <GlassFish_install_
dir>/glassfish/config/osgi.properties.

Locate the property extra-system-packages and append the text
,com.mercury.opal.capture.proxy;version=<Java probe version>. An example version nhumbers is
9.50.1.153

In an earlier versions of GlassFish, these properties may reside in the following two files:

Micro Focus Diagnostics (9.50) Page 34 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

< GlassFish_install_dir >/osgi/equinox/configuration/config.ini
< GlassFish_install_dir >/osgi/felix/conf/config.properties

You may also need to disable the Monitoring Service on GlassFish to avoid a conflict with the
Diagnostics monitoring. Go to Configurations > {config_name} > Monitoring and deselect the
Enabled check box of the Monitoring Service option.

1. Locate the GlassFish JVM configuration settings by logging in to the GlassFish Administration Console
and navigating to the JVM Options page.

For GlassFish 3.1.2 and later, in the left-hand tree go to Configurations > {config_name} > JVM
Settings, where {config_name} is the name of your server configuration (such as, server-config).

If you are working with an earlier version of GlassFish, click Application Server in the left-hand tree and
then select the JVM Settings tab at the top.

Then select the JVM Options tab. See the screenshot below as a reference.

User: admin Domain: domain! Server: localhost

= General Path Settings |@ Gpﬂ®| Profiler
JVM Options

Common Tasks

& Comain)

" Manage JWM options for the server. “alues containing one or more spaces must
B server (Admin Server) be enclosed in double quotes ("valve sting™)
g8 Clusters

[Standalone Instances Configuration Name: serer-config

Iz HTTP Load Balancers

¥ Nodes | opons@y _________________________________m

[7] Applications Bv |8) Delete
% Lifecycle Modules ——
[Monitoring Data -4 — Value -
* [Resources ™ | -javaagent: C:/Alavasgent/lib/probeagent. jar
@] Performance Tuner ™ | -bootclasspathip: C:/JavaAgent/classes/auta/MyServerfinstr jre
¥ B¢ Configurations ™ | -Dprobe.id=MyServer
* By default-config r --D_ia'u-a.awt headless=true
[' i server.config] r -Djava. secunty. policy=%com.sun. aas.instanceRoot Yconfig/server. policy
2, JWM Settings Dl flo : —
@ Togger Settngs -Oifelix fileinstall. disableConfigSave=false
M Web Container _|:| ™ |-Dosgi.shell telnet. maxconn=1 _|;|
4| | ol |4l | v

2. Using the Add JVM Option button, add the following JVM parameters, one at a time. For <agent_
install_dir> use the full path to where you installed the agent. On Windows, use forward slashes (/)
instead of backward slashes (\). For <probe_id> use a name you’'ve chosen for the probe, such as
MyServer.

-javaagent:<agent_install_dir>/1ib/probeagent.jar
-Xbootclasspath/p:<agent_install_dir>/classes/auto/<probe_id>/instr.jre
-Dprobe.id=<probe_id>

Micro Focus Diagnostics (9.50) Page 35 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Note: In case of cluster setup, suffix the <probe_id> with a %0. For example: -
Dprobe.id=MyServer_ %0

The "%0" string will be replaced with a unique ID so that you can differentiate different probe
instances.

3. Restart the GlassFish application server.

If the GlassFish application server does not start, you can check and change the JVM parameters in the
<GlassFish_install_dir>/glassfish/domains/<domain_name>/config/domain.xml file to resolve the
issue, where <domain_name> is the name of your domain (such as, domain1).

See "Verify the Application Server is Running the Java Agent" on page 58 for more information.

Note: If you update the JRE used by your application server in the future, you must delete the <agent_
install_dir>/classes/auto/<probe_id> directory so that the new JRE will be instrumented. Otherwise,
your application server may not start. . For general information on the instrumentation mode used see
"Using the JRE Instrumenter in Automatic Implicit Mode" on page 62.

Example 2: Configuring JBoss Application Server and JBoss
EAP for Monitoring

The following sections provide instructions with specific examples for the JBoss Application Server and
JBoss EAP (Enterprise Application Platform) for a generic implementation. Your site administrator should be
able to use these instructions to guide you to make these changes in your customized environment.

Note: For JBoss 6.x, add the following JVM parameter:
-Djava.util.logging.manager=org.jboss.logmanager.LogManager

For JBoss Application Server, if you chose to auto-deploy the application server during agent setup, you do
not need to perform this procedure. Restart the application server to pick up the changes.

To configure a JBoss application server:

1. Locate the startup script that is used to start JBoss for the application and locate a convenient point in
the file after all options are set but before the java command line (or code block) that starts the application
server is executed.

« On JBoss versions earlier than 7.0:
The startup script file is typically located in a path similar to the following:
<JBOSS_HOME>\bin\run.[bat|sh]

where <JBOSS_HOME?> is the path to your JBoss installation directory, such as C:\ jboss-4.2.3.GA
or C:\jboss-6.0.0.Final.

o OnJBoss 7.0 or higher:
The startup script file is typically located in a path similar to one of the following:
<JBOSS_HOME>\bin\domain.[bat|sh]
<JBOSS_HOME>\bin\standalone.[bat|sh]

where <JBOSS_HOME?> is the path to your JBoss installation directory, such as C:\jboss-as-
7.1.0.Final.

Micro Focus Diagnostics (9.50) Page 36 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

2. Insert additional configuration lines as illustrated by the examples. In the example you should replace
<agent_install_dir> and <probe_id> with values for your environment.

Below is an example showing the modified .bat file for JBoss 6.x:

rem Setup JBoss specific properties
rem Setup the java endorsed dirs
set JBOSS_ENDORSED_DIRS=%JBOSS_HOME%\lib\endorsed

rem Configuring Diagnostics Java Agent

set AGENT_HOME=<agent_install dir>

set PROBE_ID=<probe_id>

"%JAVA%" -jar %AGENT_HOME%\1lib\jreinstrumenter.jar -f %PROBE_ID%

set PROBE_OPTS=-Xbootclasspath/p:%AGENT_HOME%\classes\%PROBE_ID%\instr.jre
set PROBE_OPTS=%PROBE_OPTS% -javaagent:%AGENT_HOME%\1lib\probeagent.jar
set PROBE_OPTS=%PROBE_OPTS% -Dprobe.id=%PROBE_ID%

rem Use the line below ONLY for JBoss 6

set PROBE_OPTS=%PROBE_OPTS% -
Djava.util.logging.manager=org.jboss.logmanager.LogManager

rem Use the line below ONLY for JBoss 7

rem set PROBE_OPTS=%PROBE_OPTS% -
Djboss.modules.system.pkgs=org.jboss.byteman,com.mercury.opal

set JAVA_OPTS=%JAVA_OPTS% %PROBE_OPTS%

Below is an example showing the modified .sh file for JBoss 7.x, 8.x (Wildfly):

if $cygwin; then
JBOSS_HOME="cygpath --path --windows "$JBOSS_HOME""
JAVA LOC="cygpath --path --windows "$JAVA_LOC""
JBOSS_CLASSPATH="cygpath --path --windows "$JBOSS_CLASSPATH""
JBOSS_ENDORSED_DIRS="cygpath --path --windows "$JB0SS_ENDORSED DIRS"®
fi

Configuring Diagnostics Java Agent
AGENT_HOME=<agent_install dir>

PROBE_ID=<probe_id>

"$JAVA" -jar $AGENT_HOME/lib/jreinstrumenter.jar -f $PROBE_ID
PROBE_OPTS="-Xbootclasspath/p:$AGENT_HOME/classes/$PROBE_ID/instr.jre"
PROBE_OPTS="$PROBE_OPTS -javaagent:$AGENT_HOME/lib/probeagent.jar"
PROBE_OPTS="$PROBE_OPTS -Dprobe.id=$PROBE_ID"

Use the line below ONLY for JBoss 6

PROBE_OPTS="$PROBE_OPTS -
Djava.util.logging.manager=org.jboss.logmanager.LogManager"

Use the line below ONLY for JBoss 7

PROBE_OPTS="$PROBE_OPTS -
Djboss.modules.system.pkgs=org.jboss.byteman,com.mercury.opal®
JAVA _OPTS="$JAVA OPTS $PROBE_OPTS"

Display our environment

Micro Focus Diagnostics (9.50) Page 37 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

o ————————
echo
echo
echo
echo " JBOSS_HOME: $JBOSS_HOME"

JBoss Bootstrap Environment"

Note: If your java command line does not use the JAVA_OPTS variable to define the JVM
parameters, you need to change the variable name JAVA_OPTS shown in these examples to the
correct name.

3. Save the changes to the startup script and restart the application server using the modified script.
See "Verify the Application Server is Running the Java Agent" on page 58 for more information.

Configuring a JBoss EAP Application

Following is an example for JBoss EAP (Enterprise Application Platform) for a generic implementation.
To Configure a JBoss EAP Application:

1. Locate and edit domain.xml for the domain.
By default, this is located in the following folder:
$JBOSS_HOME/domain/configuration/.

2. Inthe system-properties element, add a property named jboss.modules.system.pkgs with a value of
com.mercury.opal to the existing system properties.

Example:

<system-properties>
<property name="jboss.modules.system.pkgs"
value="org.jboss.byteman,com.mercury.opal®/>
</system-properties>

This property tells the JBoss class loader to load the Diagnostics packages. This is required for the
Java Agent to run.

3. Under the server group name where you want to enable the Java Agents, add the JVM options using the
required values for the agent location, JBoss application name, and tier name.

Example:

<server-group name="main-server-group" profile="full-ha">
<jvm name="default">
<jvm-options>
<option value="-Xbootclasspath/p:/home/x001059a/JavaAgent/DiagnosticsAgent
/classes/Oracle/1.7.0_40/instr.jre"/>
<option value="-javaagent:/home/x001059a/JavaAgent/DiagnosticsAgent
/1lib/probeagent.jar"/>
<option value="-Djava.util.logging.manager=org.jboss.logmanager.
LogManager"/>
<option value="-Dprobe.id=CARSCA_STGM_AppSrv"/>
</jvm-options>

Micro Focus Diagnostics (9.50) Page 38 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

</jvm>
</server-group>

4. If you are using JBoss EAP 6.x, set mercury.enable.jboss6eap=true for
detials.conditional.properties in inst.properties.

5. Restart the JBoss application server after the changes.

Example 3: Configuring Oracle Application Server for
Monitoring

This section provides instructions for configuring an Oracle 10g application server.

Note: Some of the Web Services deployed on Oracle OC4J application server, due to their non-
compliance to the JAX-WS standard, may not be recognized by Diagnostics agent. To work around this
issue you can try setting annotation.inheritance.allow=true in etc/inst.properties on the agent
system.

To configure an Oracle 10g application server:

1. Locate the Oracle Application Server JVM configuration settings by opening Oracle's Application
Server Control Console, select home (or MyOC4J) System Component, and then Administration.

Enterprise Manager 10g
sniral

Application Server: 102_w2k3 ros59631tst.ovrtest adapps.com

Homa JLEE Applicabons Pods lafrastrciune EackupPeconmry
‘ane Refreshed g 7, 2007 9:37:42 AM P
General CPU Usage Memory Usage
9 Stop Al) (_Bestard Al

Status Up

Host ro=S9631tst ovtesl adapps hp com l) '
“ersion 101202
Irstallation . -

JZEE and Web Cache

O::F:t . Applicaticn Sengr (0% . Application Sarver (13% 2E2WE)
Hu:nz CuraHome_1 O 1ot graey (D Free (5% 1,161M5)
Ofner (1%) Other (9% B0IME)

System Components
EnableDisable Components | | Configune Componin? | | Creats OC4) Inslante |

Sgnt Siog Restan | | Delete OC4J Instance

Satect Al | Seleet Nong

Select Name Status Start Time CPU Usage (%) Memory Usage (BH)
r m £ Aug 2, 2007 10:41:38 AM 015 51.19
T HIOP Serr & Agg 2, 2007 BO755 AM oom 0%

{+ Aug 2, 2007 810817 AM i1i 1] 15996

Related Links

¢ Prpcess Managament « All Melrics
Home JoEE Applicyions Pods lofastnciws BackupBecovery

005 | __; polpgy | Preferences | Help

Copryright 1998, 2005, Cracly. AN rights rabervnd

Micro Focus Diagnostics (9.50) Page 39 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

On the Administration page, select Server Properties. You'll input in JVM parameters under Command
Line Options.

Enterprise Mana ger 10y

Application Server Contral Lods Topolpoy Preferences Help

o ——
lication Sener 102 wIkdr kst 1 SL0m >

0OC4J: home

Home Applicalions | Administration ._

Fage Refreshed Aug 7. 2007 34238 AM |F3
OC4) Inheritance

QC4J applications have a hierarchical pareni-child relationship o

facilitate administration throwgh inhesitance. A child apphcation

ul L inherils ceain attributes friom s parent application such as

JSP Containgr Propedies principats and JNOI objects including data sources, JMS providers

w_ﬁ and EJB=, When an OC4.) application is deployed, you specify the
fig g0 Fropei s paren! application. The Default Application is the top of the parent

hierarchy.

Application Dafaults
ata Sour

Seeyrnly

IME Providors
It Wiak tladul

Related Links

DF SIndE s Companan
Homs Aoplicalons Administration
095 | Topology | Prifiences | Halp

Copyright € 1536, 2005, Oracle. Al righls ressrved.
i il i i1

2. Runthe Diagnostics JRE Instrumenter to instrument the JRE used by your Oracle application server.

See "Using the JRE Instrumenter in Manual Mode" below.

Copy the JVM parameters provided by this tool and paste them in the Command Line Options "Java
Options" text field found in the previous step and shown in the following figure.

Note: It is required to add a (*) prior to the /p switch or Oracle will change the (/) switch option to a

(\).

Micro Focus Diagnostics (9.50) Page 40 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Enterprise Manager 10g
Application Server Control Logs Topoloeyy Prefererces Halp

fpplication Servar 103wkl rosH963 st oviest adapps com > QC4) home >

Server Properties
Fage Refreshed Aug 7, 2007 8:22:45 AR |F‘-

General
Hame home
Server Root CAhOraHome_14jZeethome\config
Configuration File CADraHome_1Yj2ee‘thome\config'server.xml
Dafault Application Name default
Defaull Application Path application.xml

Default Web Module Properties |gluhal-'weh-appllcatiun.xm[

Apphication Directory |..|fap|:llll:atiun5

Deployment Diraclory |..fappl:cation—deplnymants

Multiple VM Configuration

@ TIP If OC4) is running, newly added OC4) Clusters and associated processes will be aulomatically staned

Clusters{QC4.1)
Cluster{DiC4.)) Hame Humber of Processes Related Wirual Machine

[i Mgirics
|default_-sland 1 Links Meirics
Add Another Row |
Ports
@ TIP Be sure that the port ranges specified below are large enough to accommodate the total number of processes in the Clusiers
(OC4) table
BMI Ports [12401-12500
JMS Ports [12601-12700
AJP Ports [12501-12600
RMI-BOP Ports

IlOP Ports |
IOP SSL (Server only) |
IOP SSL (Server and Client) |

Command Line Options
Java Executable [
QC4J Options | Related Links Tracing Properies

| Java Oplions |the -*bootclasspatheip C-/Diagnostics/lAVAPobeltlasse

3. Apply the changes and restart the Oracle server.
See "Verify the Application Server is Running the Java Agent" on page 58 for more information.

Note: If you update the JRE used by your application server in the future (such as applying an application
server patch), you must run the JRE Instrumenter again to instrument the new JRE and change the JVM
parameters accordingly. Otherwise, your application server may not start.

Using the Diagnostics JRE Instrumenter in Manual Mode

Manually invoke the JRE Instrumenter and copy the provided JVM parameters into your application server
startup settings.

Micro Focus Diagnostics (9.50) Page 41 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Note: If you update the JRE used by your application server in the future (such as applying an application
server patch), you must run the JRE Instrumenter again to instrument the new JRE and change the JVM
parameters accordingly. Otherwise, your application server may not start.

By default, the JRE Instrumenter uses a graphical user interface (Ul Mode). Directions to run the JRE
Instrumenter from a console window (Console Mode) follow below.

Running the JRE Instrumenter Utility in Ul Mode
1. Start the JRE Instumenter utility.

On Windows run the <agent_install_dir>\bin\jreinstrumenter.cmd command.
On UNIX or Linux run the <agent_install_dir>/bin/jreinstrumenter.sh command.

2. Click the Add JRE(s) button, navigate to a parent directory where the JRE used by your application is
stored and click Search from here. The JRE Instrumenter lists the JREs found in the Available JREs
list.

3. Select the JRE that is used by your application and then click Instrument. The JRE Instrumenter
instruments some of the classes for the selected JRE and places the instrumented classes in a folder
under the <agent_install_dir>/classes directory.

4. Click Copy Parameter to copy the JVM parameters in the box below the Available JREs list, to the
clipboard.

| £| Diagnostics JRE Instrumenter {9.25.44,1399) [=R é]

Available JREs

M Sun 1.5.0_22 (C:\Program Files\Java'jdk1.5.0_22%re)
M Sun 1.6.0_35 (C:\Program Files\Java'jdk1.6.0_35%re)
M Orade 1.7.0_07 {C:\Program Files\Javaljdk1. 7.0_07Yre)
M Crade 1.7.0_09 {C:\Program Files\Javaljdk1. 7.0_09%re)
M 5un 1.6.0_37 (C:\Program Files\Java'jres)

M Orade 1.7.0_09 {C:\Program FilesVavaljre?)

Lize the folowing JWM parameter(s) fo schivale the Diagnostics Ageni:

-Xbootclasspath/p:C:\JavaAgent\classes\Sun\1.6.0_37\instr.jre
-javaagent:C: \JavaAgent\lib\probeagent.jar

Add JRE(s) Instrument

: Copy Parameter |[Uninstrument]

5. Click Exitto close the JRE Instrumenter window and continue with configuring your application server
JVM parameters.

Micro Focus Diagnostics (9.50) Page 42 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Example 4: Configuring SAP NetWeaver Application Server
for Monitoring

The following are the instructions for a generic NetWeaver application server implementation. Your site
administrator should be able to use these instructions to guide you in making the changes that are appropriate
to your specific environment.

Note: SAP NetWeaver requires additional, special settings to work properly with the agent.

Edit the <agent_install_dir>\etc\capture.properties file and assign the following values to these
properties:

event_buffer.size = 10000

event_buffer.flush.level = 1000

To configure a SAP NetWeaver application server:

1.

Locate the NetWeaver JVM configuration settings by running the NetWeaver J2EE Engine configuration
tool. The script to run this tool is called configtool.bat and is located in the
usr\sap\CR2\JC00\j2ee\configtool directory, where CR2 is an example of the name of your SAP
system.

In the configuration tool Ul, in the left-hand tree, select the server that you want to monitor. For example
in the screenshot below, select cluster-data > instance_ID39260 > server_ID3926050. Then, at the
right-hand side select the General tab where you'll find the Java parameters text window.

Add the following JVM options to the Java parameters text window. In the example you should replace
<agent_install_dir> and <probe_id> with values for your environment.

-javaagent:<agent_install _dir>\1lib\probeagent.jar
-Xbootclasspath/p:<agent_install_dir>\classes\auto\<probe_id>\instr.jre
-Dprobe.id=<probe_id>

Note: In a clustered environment where a single startup script is used to start multiple probed
application server instances you need to add a suffix (%0) to the parameter -
Dprobe.id=<probeName>%0. This will generate a custom probe identifier for each probe. On
Windows, use %%0 (the first % is used to escape the second %).

Micro Focus Diagnostics (9.50) Page 43 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

The following is an example screen for SAP NetWeaver versions 7.1 or earlier with the JVM parameters
highlighted.

4" AP JZEE Engine - Config Taol

e <
CECHCTEACYENES

= & clyster-data ;
= Global dispalcher configuralion| -

® O managers H
£ e semices : i Execute (v Show Consale
= # Global server configuration :
E managers || Java settings
ey semices 3
= o instance_|D38260 : Jana Home: | =]
B digpalcher ID2A2E000 |
T cener IDII2E0ST—> |'|| Mhax heap size-n MBK: | 1024 2]
4 B§ managers 3
= g sarices j {dava parameters:) e agent © DragroslicsUavakgennDiasnoshc sAgenlitiprobea ganljar =
B0 secune store E: Hnooiclasspaltlp CADiagroslic s avaigen iDiagnastic shgentilas sestaulchserer_|D3BE05Min sl jre -
G UNE LD#F data 2 Dprobe [d=5AP_NetVeaver6d_EntemriseParal_Gover
: Dprobe. groups S4°_Groun
; Dija @ity palicy= Mz, policy
H Dijava securily ega=Saidedurandom
Dorg.omy. CORBA.ORBCIass=Cc0m. 280 . anding.systam. OREProey
Dora.oma. CORES. ORBSNg etonClass=com.sap.engine.srstem. ORESingletonF o -
: Classpath: |Ib|m'hnoh'hu0li:u JhEubigabiaas jar, hintspsteribdecode jar,
Parameders:
:
:

Edit elamant properties

The following is an example screen for SAP NetWeaver verison 7.3. You enter the JVM parameters in
the Custom parameters box and you must enter each parameter separately (sjavaagent, -Xbootclasspath
and -Dprobe.id).

#YAS Java - Config Tool
File Wieww Tools Help

o0 g |
5 @ cluster-daia | servers | v Emdronment | VIA Parameters | Instance Profile
ternplate - Usage_Type_All_ ¢

- B8 log configuration | AL

- 8 annlications | mhertted vame 1
i B managers :

-ﬂﬁ‘_“"‘”“i | customvalue | Set
- instance - IDSS040 (ealis!

B seeure store | [mortory | systorn | Adaionat

I

Calculated Paramelers.
Farameter Hame | Walue _ Enabled |

-Dgrobe d=MW_7_x_callsho_mudi_yn_L8 2KB% %0

-W+DisableExplicd&E

- +DumpDetailedClass Stalisticon Ol OfMamony

= +Heap Durmp Onculcme ernarE o s

SGCHPANMGCDetalls

SO PamGCTimeStamps

-+l se ConcMarkSwas paic

-HE-BlingintamTablainPermGan

SRC-TraceClassUInloading

SOCHeapDUPpFRatn | QoM hiprof

- axErrortiuzuelenath 00

oL SofARafLRLIFolicyMSParhiE il

S SuntvarR atio 8

-GCTametSurhorRatio |20

-bootelazspathip:Ch DisgnosticslavasgentiDisgnosticsdnenticlasses1SAR ..

-javaanantC ADiagnosticslavasgeniDiagno sticsAgentlib\nrabeagent jar

-“verboge e

2 e T e e e | e e

5I5IEIE\‘

3. Save your changes and exit the configuration tool and restart the application server.
See "Verify the Application Server is Running the Java Agent" on page 58 for more information.

Micro Focus Diagnostics (9.50) Page 44 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Note: If you update the JRE used by your application server in the future (such as applying an application
server patch), you must delete the <agent_install_dir>/classes/auto/<probe_id> directory so that the
new JRE will be instrumented. Otherwise, your application server may not start For general information
on the instrumentation mode used see "Using the JRE Instrumenter in Automatic Implicit Mode" on page
62.

Example 5: Configuring TIBCO ActiveMatrix BusinessWorks
and Service Bus for Monitoring

The following sections describe the steps to configure TIBCO ActiveMatrix BusinessWorks and Service Bus
so that the applications can be monitored.

To configure TIBCO ActiveMatrix BusinessWorks:

Configuring a TIBCO BusinessWorks application server involves modifying its configuration files to add JVM
parameters. Below are the instructions for a generic server implementation. Your site administrator should be
able to use these instructions to guide you in making the changes that are appropritate to your specific
environment.

1. Locate the TIBCO BusinessWorks .tra configuration files. These files are typically located in:

<tibco_home>\tra\domain\<Domain_Name>\application\<Application_Name>\<Application_
Name>.tra

2. Insert additional configuration lines as illustrated by this example. In the example you should replace
<agent_install_dir> and <probe_id> with values for your environment.

#

Other arguments to application, JVM etc.
#

tibco.env.APP_ARGS=
tibco.env.HEAP_SIZE=256M

Configuring Diagnostics Java Agent
tibco.env.AGENT_HOME=<agent_install_dir>

tibco.env.PROBE_ID=<probe_id>

JmxEnabled=true
tibco.env.PROBE_OPTIONS=-Xbootclasspath/p:%AGENT_HOME%/classes/auto/%PROBE_
ID%/instr.jre

tibco.env.PROBE_OPTIONS=%PROBE_OPTIONS% -javaagent:%AGENT_
HOME%/1ib/probeagent.jar

tibco.env.PROBE_OPTIONS=%PROBE_OPTIONS% -Dprobe.id=%PROBE_ID%
java.extended.properties=%PROBE_OPTIONS%

Note: If java.extended.properties already exists in the file, be sure to append the %PROBE _
OPTIONS% to the existing definition. Also do not use backslashes (\) for any values. Instead
replace them with forward slashes (/).

3. Save the changes to the startup script and restart the application using the modified script.

See "Verify the Application Server is Running the Java Agent" on page 58 for more information.

Micro Focus Diagnostics (9.50) Page 45 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

To configure TIBCO ActiveMatrix Service Bus:

Note: TIBCO ActiveMatrix Service Bus (AMSB) 3.1.2 requires additional, special settings to work
properly with the agent.

Locate the TIBCO ActiveMatrix Service Bus 3.1.2 machine.xmi file. This file is typically located in a path
such as:

<tibco_amx_configuration_dir>\data\tibcohost\<EnterpriseName_
ServerName>\tools\machinemodel\machine.xmi

Update the runtimes section of the file for each node you want to monitor. For example:
<runtimes xsi:type="machinemodel:0SGiRuntime" name="Node1"

In the runtimes section for each node locate the frameworkProperties key
org.osgi.framework.bootdelegation and append com.mercury.* to the value of the property.

For example:

<frameworkProperties key="org.osgi.framework.bootdelegation" value="com.ibm.*,
..,sun.*,com.mercury.*"/>

1. Locate the TIBCO ActiveMatrix Service Bus .tra configuration files.
On TIBCO ActiveMatrix Service Bus (AMSB) 2.0 and 2.3 these files are typically located in:
<tibco_home>\amx\data\<Node>\<Application\bin
On TIBCO ActiveMatrix Service Bus 3.1.2 these files are typically located in:

<tibco_amx_configuration_dir>\tibcohost\<EnterpriseName_
ServerName>\nodes\<NodeName>\bin\tibamx_<NodeName>.tra

2. Insert additional configuration lines as illustrated by this example. In the example you should replace
<agent_install_dir> and <probe_id> with values for your environment.

NOTE:

There must be only one java.extended.properties in the .tra file. Append remote
debugging extended properties here to use remote debugging for this process.
#

Configuring Diagnostics Java Agent

tibco.env.AGENT_HOME=<agent_install dir>

tibco.env.PROBE_ID=<probe_id>
tibco.env.PROBE_OPTIONS=-Xbootclasspath/p:%AGENT_HOME%/classes/auto/%PROBE_
ID%/instr.jre

tibco.env.PROBE_OPTIONS=%PROBE_OPTIONS% -javaagent:%AGENT_
HOME%/1ib/probeagent.jar

tibco.env.PROBE_OPTIONS=%PROBE_OPTIONS% -Dprobe.id=%PROBE_ID%
java.extended.properties=%PROBE_OPTIONS%

Note: If java.extended.properties already exists in the file, be sure to append the %PROBE _
OPTIONS% to the existing definition. Also do not use backslashes (\) for any values. Instead
replace them with forward slashes (/).

3. Save the changes to the startup script and restart the application using the modified script.
See "Verify the Application Server is Running the Java Agent" on page 58 for more information.

Micro Focus Diagnostics (9.50) Page 46 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Note: If you update the JRE used by your application server in the future (such as applying an application
server patch), you must delete the <agent_install_dir>/classes/auto/<probe_id> directory so that the
new JRE will be instrumented. Otherwise, your application server may not start. For general information
on the instrumentation mode used see "Using the JRE Instrumenter in Automatic Implicit Mode" on page
62.

Example 6: Configuring Tomcat Application Server for
Monitoring

Apache Tomcat is frequently embedded into other applications or servers. As a result, the way to instrument it
may vary. The following sections provide instructions on how to configure a Tomcat server in simple
scenarios, but it is generic enough to guide you in your particular situation.

If you chose to auto-deploy the application server during agent setup, you do not need to perform this
procedure. Restart the application server to pick up the changes.

If your Tomcat server is started by script, follow the instructions in "To configure a Tomcat server with a
startup script:" below.

If Tomcat is installed as a Windows service or has no scripts, follow the instructions in "To configure a
Tomcat server without a startup script:" on the next page.

To configure a Tomcat server with a startup script:

1. Locate the startup script that is used to start Tomcat for the application and locate a convenient point in
the file after all options are set but before the java command line (or code block) that starts the application
server is executed.

In some scenarios, the startup script will end up calling the following script to start Tomcat:
<Tomcat_install_dir>/bin/catalina.[bat|sh]

where <Tomcat_install_dir> is the path to your Tomcat installation directory, such as C:\apache-
tomcat-7.0.8.

2. Insert additional configuration lines as illustrated by the examples below In both examples you should
replace <agent_install_dir> and <probe_id> with values for your environment.

The following is an example showing a modified catalina.bat file:

:doStart

rem Configuring Diagnostics Java Agent

set AGENT_HOME=<agent_install dir>

set PROBE_ID=<probe_id>

%_RUNJAVA% -jar %AGENT_HOME%\lib\jreinstrumenter.jar -f %PROBE_ID%

set PROBE_OPTS=-Xbootclasspath/p:%AGENT_HOME%\classes\%PROBE_ID%\instr.jre
set PROBE_OPTS=%PROBE_OPTS% -javaagent:%AGENT_HOME%\1lib\probeagent.jar

set PROBE_OPTS=%PROBE_OPTS% -Dprobe.id=%PROBE_ID%

set CATALINA_OPTS=%CATALINA_OPTS% %PROBE_OPTS%

The following is an example showing a modified catalina.sh file:

Micro Focus Diagnostics (9.50) Page 47 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Configuring Diagnostics Java Agent

AGENT_HOME=<agent_install dir>

PROBE_ID=<probe_id>

"$ RUNJAVA" -jar $AGENT_HOME/lib/jreinstrumenter.jar -f $PROBE_ID
PROBE_OPTS="-Xbootclasspath/p:$AGENT_HOME/classes/$PROBE_ID/instr.jre"
PROBE_OPTS="$PROBE_OPTS -javaagent:$AGENT_HOME/lib/probeagent.jar"
PROBE_OPTS="$PROBE_OPTS -Dprobe.id=$PROBE_ID"
CATALINA_OPTS="$CATALINA OPTS $PROBE_OPTS"

3. Save the changes to the startup script and restart the application server using the modified script.
See "Verify the Application Server is Running the Java Agent" on page 58 for more information.
To configure a Tomcat server without a startup script:
Locate the Tomcat JVM configuration settings by right-clicking on the Apache Tomcat service icon from the
Windows Task bar and then selecting Configure. Alternatively, you can navigate from the Start menu. For
example, Programs > Apache Tomcat 7.0 > Configure Tomcat.
In the Apache Tomcat Properties dialog box, select the Java tab and find the Java Options box.

2. Inthe Java Options box, add the following JVM parameters, each on its own line, replacing <agent_
install_dir> and <probe_id> with the actual values.

-javaagent:<agent_install dir>\1lib\probeagent.jar
-Xbootclasspath/p:<agent_install _dir>\classes\auto\<probe_id>\instr.jre
-Dprobe.id=<probe_id>

3. Restart the Tomcat service.
See "Verify the Application Server is Running the Java Agent" on page 58 for more information.

Note: If you update the JRE used by your application server in the future (such as applying an application
server patch), you must delete the <agent_install_dir>/classes/auto/<probe_id> directory so that the
new JRE will be instrumented. Otherwise, your application server may not start. For general information
on the instrumentation mode used see "Using the JRE Instrumenter in Automatic Implicit Mode" on page
62.

Example 7: Configuring WebLogic Application Server for
Monitoring

The following section provides general instructions with specific examples for the WebLogic application
server for a generic implementation. Your site administrator should be able to use these instructions to show
you how to make these changes in your customized environment.

To configure a WebLogic application server:

1. Locate the startup script used to start WebLogic for your domain and locate a convenient point in the file
after all options are set but before the java command line (or code block) that starts the application server
is executed.

The startup script file is typically located in a path similar to the following:

Micro Focus Diagnostics (9.50) Page 48 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

<DOMAIN_HOME>\bin\startWebLogic.[cmd|sh]

where <DOMAIN_HOME?> is the path to your domain directory, such as C:\bealuser_
projects\domains\<Domain_Name>; or C:\bea\wlserver_10.0\samples\domains\<Domain_Name>
where <Domain_Name> is the name of your domain.

For example, if your domain name is MedRec, the path would look like the following:
C:\beal\wlserver_10.0\samples\domains\medrec\bin\startWebLogic.cmd

2. Insert additional configuration lines as illustrated by the examples. In both examples you should replace
<agent_install_dir> and <probe_id> with values for your environment.

Below is an example showing the added lines in a .cmd file:

echo starting weblogic with Java version:
%JAVA_HOME%\bin\java %JAVA_VM% -version

set AGENT_HOME=<agent_install dir>

set PROBE_ID=<probe_id>

%JAVA_HOME%\bin\java -jar %AGENT_HOME%\1lib\jreinstrumenter.jar -f %PROBE_ID%
set PROBE_OPTS=-Xbootclasspath/p:%AGENT_HOME%\classes\%PROBE_ID%\instr.jre
set PROBE_OPTS=%PROBE_OPTS% -javaagent:%AGENT_HOME%\1lib\probeagent.jar

set PROBE_OPTS=%PROBE_OPTS% -Dprobe.id=%PROBE_ID%

set JAVA_OPTIONS=%JAVA OPTIONS% %PROBE_OPTS%

if "%WLS REDIRECT LOG%"=="" (

echo Starting WLS with line:

echo %JAVA_HOME%\bin\java %JAVA_VM% %MEM_ARGS% %JAVA_OPTIONS?% ..%JAVA_
HOME%\bin\java %JAVA_VM% %MEM_ARGS% %JAVA_OPTIONS% ..

) else (

echo Redirecting output from WLS window to %WLS_REDIRECT_LOG%
%JAVA_HOME%\bin\java %JAVA VM% %MEM_ARGS% %JAVA OPTIONS% ..

)

Below is an example showing the added lines in a .sh file:

echo "starting weblogic with Java version:"
${JAVA_HOME}/bin/java ${JAVA_VM} -version

Configuring Diagnostics Java Agent

AGENT_HOME=<agent_install dir>

PROBE_ID=<probe_id>

${JAVA _HOME}/bin/java -jar $AGENT_HOME/lib/jreinstrumenter.jar -f $PROBE_ID
PROBE_OPTS="-Xbootclasspath/p:$AGENT_HOME/classes/$PROBE_ID/instr.jre"
PROBE_OPTS="$PROBE_OPTS -javaagent:$AGENT_HOME/lib/probeagent.jar"
PROBE_OPTS="$PROBE_OPTS -Dprobe.id=$PROBE_ID"

JAVA OPTIONS="$JAVA OPTIONS $PROBE_OPTS"

if ["${WLS_REDIRECT_LOG}" = ""] ; then

Micro Focus Diagnostics (9.50) Page 49 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

echo "Starting WLS with line:"

echo "${JAVA HOME}/bin/java ${JAVA VM} ${MEM_ARGS} ${JAVA OPTIONS} ..
${JAVA_HOME}/bin/java ${JAVA VM} ${MEM_ARGS} ${JAVA_ OPTIONS} ..

else

echo "Redirecting output from WLS window to ${WLS_REDIRECT_LOG}"
${JAVA_HOME}/bin/java ${JAVA VM} ${MEM_ARGS} ${JAVA_OPTIONS} ..

fi

Note: If your java command line does not use the JAVA_OPTIONS variable to define the JVM
parameters, you need to change the variable name JAVA_OPTIONS shown in these examples to
the correct name.

3. Save the changes to the startup script and restart the application server using the modified script.
See "Verify the Application Server is Running the Java Agent" on page 58 for more information.

Example 8: Configuring webMethods Server for Monitoring

There are two types of webMethods servers discussed in this example:

« webMethods Integration Server
« My webMethods Server

The following sections provide general instructions with specific examples for webMethods Integration Server
and My webMethods Server. Your site administrator should be able to use these instructions to show you how
to make these changes in your customized environment.

« "To configure a webMethods Integration Server started without the configuration wrapper:" below
« "To configure a webMethods Integration Server started with the configuration wrapper:" on the next page
« "To configure the My webMethods Server started without the configuration wrapper:" on page 52
« "To configure the My webMethods Server started with the configuration wrapper:" on page 52
To configure a webMethods Integration Server started without the configuration wrapper:

1. Locate the startup script used to start the webMethods Integration Server and locate a convenient point
in the file after all options are set but before the java command line (or code block) that starts the
application serveris executed. There are two possible scripts based on how the server is started:

<software_ag_home>\IntegrationServer\bin\server.bat
<software_ag_home>\profiles\IS\bin\runtime.bat

2. Insert additional configuration lines as illustrated by these examples. In both examples you should
replace <agent_install_dir> and <probe_id> with values for your environment.

Below is an example showing the modified server.bat file:

if exist "%JAVA DIR%\bin\jre.exe" (

set JAVA_EXEC="%JAVA DIR%\bin\jre.exe"

set JAVA_CP="%JAVA DIR%\lib\classes.zip;%JAVA DIR%\1ib\il8n.jar"
) else (

set JAVA_EXEC="%JAVA_DIR%\bin\java.exe"

Micro Focus Diagnostics (9.50) Page 50 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

set JAVA CP="%JAVA DIR%\1lib\rt.jar;%JAVA DIR%\1ib\i18n.jar"
)

rem Configuring Diagnostics Java Agent

set AGENT_HOME=<agent_install_dir>

set PROBE_ID=<probe_id>

"%JAVA_EXEC%" -jar %AGENT_HOME%\1lib\jreinstrumenter.jar -f %PROBE_ID%

set PROBE_OPTS=-Xbootclasspath/p:%AGENT_HOME%\classes\%PROBE_ID%\instr.jre
set PROBE_OPTS=%PROBE_OPTS% -javaagent:%AGENT_HOME%\1lib\probeagent.jar

set PROBE_OPTS=%PROBE_OPTS% -Dprobe.id=%PROBE_ID%

set JAVA_OPTS=%JAVA _OPTS% %PROBE_OPTS%

Below is an example showing the modified runtime.bat file:

rem Configuring Diagnostics Java Agent

set AGENT_HOME=<agent_install dir>

set PROBE_ID=<probe_id>

"%JAVA_RUN%" -jar %AGENT_HOME%\1lib\jreinstrumenter.jar -f %PROBE_ID%

set PROBE_OPTS=-Xbootclasspath/p:%AGENT_HOME%\classes\%PROBE_ID%\instr.jre
set PROBE_OPTS=%PROBE_OPTS% -javaagent:%AGENT_HOME%\lib\probeagent.jar

set PROBE_OPTS=%PROBE_OPTS% -Dprobe.id=%PROBE_ID%

set JAVA_OPTS=%JAVA_OPTS% %PROBE_OPTS%

%JAVA_RUN% -Xbootclasspath/a:"%0SGI_CLASSPATH%" %JAVA_OPTS% ..

3. Save the changes to the startup script and restart the application server using the modified script.

See "Verify the Application Server is Running the Java Agent" on page 58 for more information.

To configure a webMethods Integration Server started with the configuration wrapper:

Use this method if the application server is started as a service using <software_ag_
home>\profiles\IS\bin\service.bat.

1.

Locate the webMethods Integration Server custom_wrapper.conf file. This file is typically located in:
<software_ag_home>\profiles\IS\configuration\custom_wrapper.conf.

Insert additional configuration lines as illustrated by this example. In the example you should replace
<agent_install_dir> and <probe_id> with values for your environment.

Add the wrapper.java.additional entry near the other wrapper.java.additional parameters, changing

number 777 as needed for your configuration.

Below is an example showing the modified custom_wrapper.conf file:

Put here your custom properties.

Configuring Diagnostics Java Agent

set.AGENT_HOME=<agent_install_dir>

set.PROBE_ID=<probe_id>
set.PROBE_OPTS=-Xbootclasspath/p:%AGENT_HOME%\classes\auto\%PROBE_ID%\instr.jre

Micro Focus Diagnostics (9.50) Page 51 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

set.PROBE_OPTS=%PROBE_OPTS% -javaagent:%AGENT_HOME%\1lib\probeagent.jar
set.PROBE_OPTS=%PROBE_OPTS% -Dprobe.id=%PROBE_ID%
wrapper.java.additional.777=%PROBE_OPTS%

3. Save the changes to the configuration wrapper and restart the application server using the modified
wrapper.

See "Verify the Application Server is Running the Java Agent" on page 58 for more information.

Note: If you update the JRE used by your application server when started with the configuration wrapper
in the future (such as applying an application server patch), you must delete the <agent_install_
dir>/classes/auto/<probe_id> directory so that the new JRE will be instrumented. Otherwise, your
application server may not start. For general information on the instrumentation mode used see "Using
the JRE Instrumenter in Automatic Implicit Mode" on page 62.

To configure the My webMethods Server started without the configuration wrapper:
Use this method if you start the application server by using the run command.

1. Locate the startup script used to start the My webMethods Server and locate a convenient point in the file
after all options are set but before the java command line (or code block) that starts the application server
is executed.

The script file is: <ag_software_home>\MWS\bin\mws.bat.

2. Insert additional configuration lines as illustrated by this example. In the example you should replace
<agent_install_dir> and <probe_id> with values for your environment.

The following is an example of the modified mws.bat file:

rem Configuring Diagnostics Java Agent

set AGENT_HOME=<agent_install_dir>

set PROBE_ID=<probe_id>

"%JAVA%" -jar %AGENT_HOME%\1lib\jreinstrumenter.jar -f %PROBE_ID%

set PROBE_OPTS=-Xbootclasspath/p:%AGENT_HOME%\classes\%PROBE_ID%\instr.jre
set PROBE_OPTS=%PROBE_OPTS% -javaagent:%AGENT_HOME%\1lib\probeagent.jar

set PROBE_OPTS=%PROBE_OPTS% -Dprobe.id=%PROBE_ID%

set JAVA_OPTIONS=%JAVA OPTIONS% %PROBE_OPTS%

set JAVA_OPTIONS=%JAVA OPTIONS% -Dserver.name=%SERVER_NAME% ...
set PARAMS=

set MAIN_CLASS=com.webmethods.portal.system.PortalSystem

set RUN_CMD=%JAVA% -cp %CLASSPATH% %JAVA_ARGS% %JAVA_OPTIONS% ...

3. Save the changes to the startup script and restart the application server using the modified script.
See "Verify the Application Server is Running the Java Agent" on page 58 for more information.

To configure the My webMethods Server started with the configuration wrapper:

Use this method if you start the application server as a service or by using the start command.

Note: This method requires customizations to the wrapper.conf file, which which may be overridden
when the application server is upgraded or patched.

Micro Focus Diagnostics (9.50) Page 52 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

1. Locate the My webMethods Server wrapper.conf file. This file is typically located in:
<ag_software_home>\MWS\server\<server_name>\config\wrapper.conf.

2. Insert additional configuration lines as illustrated by this example. In the example you should replace
<agent_install_dir> and <probe_id> with values for your environment.

Add the wrapper.java.additional entry near the other wrapper.java.additional parameters, changing
number 777 as needed for your configuration.

Below is an example showing the modified wrapper.conf file:

Java Additional Parameters

Configuring Diagnostics Java Agent

set.AGENT_HOME= <agent_install dir>

set.PROBE_ID=<probe_id>
set.PROBE_OPTS=-Xbootclasspath/p:%AGENT_HOME%\classes\auto\%PROBE_ID%\instr.jre
set.PROBE_OPTS=%PROBE_OPTS% -javaagent:%AGENT_HOME%\1lib\probeagent.jar
set.PROBE_OPTS=%PROBE_OPTS% -Dprobe.id=%PROBE_ID%
wrapper.java.additional.777=%PROBE_OPTS%

#NOTE: wrapper.java.additional.300 to 310 is reserved for debug configuration !

3. Save the changes to the configuration wrapper and restart the application server using the modified
wrapper.

See "Verify the Application Server is Running the Java Agent" on page 58 for more information.

Note: If you update the JRE used by your application server when started with the configuration wrapper
in the future (such as applying an application server patch), you must delete the <agent_install_
dir>/classes/auto/<probe_id> directory so that the new JRE will be instrumented. Otherwise, your
application server may not start. For general information on the instrumentation mode used see "Using
the JRE Instrumenter in Automatic Implicit Mode" on page 62.

Example 9: Configuring WebSphere Application Server for
Monitoring

Note: If you have auto-deployed the application server during the Java agent setup, further configuration
is unnecessary.

The following section provides general instructions with specific examples for the WebSphere application
server for a generic implementation. Your site administrator should be able to use these instructions to show
you how to make these changes in your customized environment.

Procedures are provided for WebSphere 7.0 or higher.

Note: Extra steps are required to enable metric collections in WebSphere. See "Configuring WWebSphere
for JMX Metric Collection" on page 56.

To configure WebSphere 7.0 or higher

1. Locate the application JVM configuration settings by logging in to the WebSphere Application Server
Administrative Console. For example:

Micro Focus Diagnostics (9.50) Page 53 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

http://<App_Server_Host>:9060/ibm/console

Replace <App_Server_Host> with the machine name for the application server host and 9060 with the

correct administrative port number (such as 9060, 9061, and so on).
Navigate to the Java Virtual Machine page. For example:
Navigate to: Servers > Server Types > WebSphere Application servers

Then click the application server instance name (such as server1).

Welcome Help Logout i

Integrated Solutions Console

| View: | All tasks

welcome
Guided Activities Application servers
Bl servers

Bl Server Types

status of a specific application server.
(webSphere application ser‘aers]

Use this page to view a list of the application servers in your envirenment and
the status of each of these servers. You can alsc use this page to change the

Close page

Applicationservers ____________________?_QHelb |

Field help

For field help informatic
select a field label or liz
marker when the help
cursor is displayed.

Preferences
WebSphere MQ) servers = Page help
Web servers | [More information about
* this page
Bl Applications Name 2 Node It Host Name Version I Command Assistance

Services You can administer the following resources:

serverl

Total 1

[H Resources bsavm57Nodell | bsavm57.ovrtest.adapps.hp.com | Base

Security

Environment

System administration
Users and Groups
Maonitering and Tuning
[Troubleshooting
Service integration

uoDI

View administrative

scripting command for |
action

7.0.0.15

Then, under Server Infrastructure > Java and Process Management, click Process Definition.

Welcome Help Logout

Integrated Solutions Console

| View: | All tasks

Welcome
Guided Activities
B servers
B server Types
WebSphere application servers
WebSphere MG zervers
Web servers
Applications
Services
Resources
Security

Environment

Micro Focus Diagnostics (9.50)

Server Infrastructure

inbound tranzports

=

SIB service

B Java and Process
Managernent

Class loader

Process
de on

Process

execution

Adrninistration
Communications

Ports

Meszsaging

Page 54 of 267

Java Agent Guide

Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Then, under Additional Properties, click Java Virtual Machine.

Integrated Solutions Console

| View: | All tasks

Welcome
Guided Activities
B servers
E seruer Typas
WebSphere application servers
WebSphere MG servers
Web servers
Applications
Services
Resources
Security
Environment
System administration
Users and Groups

Monitoring and Tuning

Welcome

Help

Application servers

Application servers > serverl > Process definition

Use this page to configure a process definition, A process definition defines the cornmand line

information necessary to start or initialize a process,

Configuration

General Properties

Logout

Clase page [|

wE

Executable name

Executable arguments

Additional Properties

Jawa Virtual
Machine

Environrnent

Start command

Entries

=
&

Process execution
Process Logs

Logging and
tracing

2. Onthe Java Virtual Machine page, in the Generic JVM Arguments box, enter the JVM parameters.

o For WebSphere running on IBM JRE 1.6 (WebSphere 7.0 or 8.0/ 8.5 default) enter the following JVM
parameters. In the example replace <agent_install_dir> and <probe_id> with values for your

environment.

-Xbootclasspath/p:<agent_install dir>\classes\auto\<probe_id>\instr.jre

Micro Focus Diagnostics (9.50)

-javaagent:<agent_install dir>\lib\probeagent.jar
-Xshareclasses:none
-Dprobe.id=<probe_id>

For WebSphere running on IBM JRE 1.7 (configurable on WebSphere 8.0 or higher), you must run the
Diagnostics JRE Instrumenter manually and then insert the JVM parameters returned by the JRE
instrumenter. See "Using the JRE Instrumenter in Manual Mode " on page 63.

In addition to specifying the JVM parameters returned by JRE Instrumenter, include -
Dprobe.id=<probe_id>.

If you have enabled SSL communication for the probe, also add the following line:
-Djava.security.properties=<agent_install_dir>/etc/ibm.default.java.security

Caution: Using the wrong JVM parameters for your version of WebSphere can cause extreme
performance degradation of the monitored application. There are two categories of WebSphere
application servers listed above, each with its own method of required instrumentation.

Page 55 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

3. Apply and save your changes, and restart the application server.

Integrated Solutions Console ~ Welcome Help | Logout [§

Guided Activities 1024 ME

B servers

[run Heref

B server Types
HProf Argurnents

WebSphere application zer
WebSphere MG servers

Web servers [pebug Made

Applications Debug argurnents

Services

FlEsmIiEas Feneric WM argurnents
|-Xb00tc|asspath.l"p:C:\Diagnostics\JauaAgent\DiagnosticsAgent\cIasses\IBM

Security

Executable JAR file name
Environment I

System administration

[pisable 1T
Users and Groups

Cperating spstern name
|wind0ws

Monitoring and Tuning

Troubleshooting

Service integration Apply I OkK| | Reset Cancel

uoot <] |7|

See "Verify the Application Server is Running the Java Agent" on page 58 for more information.

Configuring WebSphere for JMX Metric Collection

You might need to configure the Performance Monitoring Infrastructure (PMI) service on the WebSphere
server to start receiving JMX metrics.

Note: If Diagnostics is not able to identify your application server as a WebSphere server, you must
enable PMI and add the Jar files to the server.policy file.

To configure WebSphere server for JMX metrics collection:

1. Open the WebSphere Administrative Console.

Micro Focus Diagnostics (9.50)

In the Console navigation tree, select Servers > Application Servers. The console displays a table of
the application servers.

Click the name of the application server you want to configure from the Application Servers Table. The
console displays the Runtime and the Configuration tabs for the selected application server.

Click the Configuration tab.
In the Configuration tab:
« Under the Performance heading, click Performance Monitoring Infrastructure (PMI).

« Under the General Properties heading, select the Enable Performance Monitoring Infrastructure
(PMI) check box.

« Under the Currently monitored statistic set heading select Extended.

Click Apply or OK.

If Java 2 Security is enabled on the application server, open the server policy file <WebSphere
Installation Directory>/profiles/<your_profile_name>/properties/server.policy) and add the
following security permissions to enable JMX collection. Replace <agent_install_dir> with the value for
your environment.

Page 56 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

grant codeBase "file:/<agent_install dir>/lib/probe-jmx.jar"

{ permission java.security.AllPermission; }

grant codeBase "file:/<agent_install dir>/lib/probe-jmx-was6.jar" {
permission java.security.AllPermission;

%

8. Restart the application server.

Example 10: Configuration for WebSphere Application Server
Liberty

If your application is based on the Liberty Profile of WebSphere Application Server, you need to configure
Diagnostic Java Agent on Linux or AlX, using one of the following methods:

« Automatic Implicit Mode

« Automatic Explicit Mode

We recommend Automatic Explicit Mode if you encounter any stability issues with the JVM running the
Liberty Application Server.

Note: You cannot use both methods simultaneously. For example, if you are using Explicit Mode, you
cannot include a jvm.options file configured for Implicit Mode.

To Configure Diagnostics Java Agent in Automatic Implicit Mode on Linux or AlX:

1.

In the directory <application_server>/usr/servers/<server_name> (for example, WebSphere
8.5/Liberty/usr/servers/defaultServer) create a text file named jvm.options with the following content:

-javaagent:<agent_install dir>/lib/probeagent.jar
-Xbootclasspath/p:<agent_install _dir>/classes/auto/<probe_id>/instr.jre
-Dprobe.id=<probe_id>

-Xshareclasses:none

where <agent_install_dir> is the absolute path to the installation directory and <probe_id> is the value
of the probe ID.

If you have enabled SSL communication for the probe, also add the following line:
-Djava.security.properties=<agent_install_dir>/etc/ibm.default.java.security
In the same directory create another text file named bootstrap.properties with the following content:

org.osgi.framework.bootdelegation=com.mercury.opal.capture.*

Note: If either of the above files already exist, add the content above to the existing file.

Micro Focus Diagnostics (9.50) Page 57 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

To Configure Diagnostics Java Agent in Automatic Explicit Mode on Linux or AIX:

1. Open the file <application_server>/bin/server and locate the following lines:

##
serverEnvAndJVMOptions: Read server.env files and set environment variables.
Read jvm.options file into ${JVM_OPTIONS_QUOTED}
serverknvAndJVMOptions()

{

serverEnv

Avoids HeadlessException on all platforms and Liberty JVMs appearing as
applications and stealing focus on Mac.
JVM_OPTIONS_QUOTED=-Djava.awt.headless=true
SERVER_JVM_OPTIONS_QUOTED=${JVM_OPTIONS_QUOTED}

Add -XX:MaxPermSize unless WLP_SKIP_MAXPERMSIZE is set.
if [-z "${WLP_SKIP_MAXPERMSIZE}"]; then
SERVER_JVM_OPTIONS_QUOTED="${SERVER_JVM_OPTIONS_QUOTED} -XX:MaxPermSize=256m"

2. Add the following lines below the lines listed above:

Configuring Micro Focus Diagnostics Java Agent
AGENT_HOME=<agent_install dir>

PROBE_ID=<probe_id>

$JAVA _HOME -jar $AGENT_HOME/lib/jreinstrumenter.jar -f $PROBE_ID
PROBE_OPTS="-Xbootclasspath/p:$AGENT_HOME/classes/$PROBE_ID/instr.jre"
PROBE_OPTS="$PROBE_OPTS -javaagent:$AGENT_HOME/lib/probeagent.jar"
PROBE_OPTS="¢$PROBE_OPTS -Dprobe.id=$PROBE_ID"

PROBE_OPTS="¢$PROBE_OPTS -Xshareclasses:none"
SERVER_JVM_OPTIONS_QUOTED="${SERVER_JVM_OPTIONS_QUOTED} ${PROBE_OPTIONS}"

3. Inthe directory <application_server>/usr/servers/<server_name> create a text file named
bootstrap.properties with the following content:

org.osgi.framework.bootdelegation=com.mercury.opal.capture.*

4. |f the directory <application_server>/usr/servers/<server_name> contains a file jym.options, make
sure that the file does not contain the Diagnostics specific entries as described in the Automatic Implicit
Mode section above.

Verify the Application Server is Running the Java
Agent

You verify the agent is monitoring the application server after you restart the application server to pick up the
changes to the startup script.

For an agent in Diagnostics Profiler Mode:

Start the Profiler Ul and view the probe. See "How to Access the Java Diagnostics Profiler" on page 232.

For an agent reporting to an on-premise Diagnostics Server:

Micro Focus Diagnostics (9.50) Page 58 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

1. Inyourbrowser, navigate to http://<diagnostics_server_host>:2006, or open Administration from
the computer's Start menu.

Port number 2006 is the default port for the Diagnostics Commander Server. If the Diagnostics Server
was installed and configured to use an alternate port, specify that port number in the URL.

2. Login. Obtain the login credentials from the Diagnostics Administrator. The default user/password of
admin/admin may work.

3. Inthe navigation pane of the Diagnostics Applications window, double-click Entire Enterprise. The
Diagnostics views open.

4. Open the Application Servers view group, and select Java Probes.
You can also check the System Health view to find information about the Java agent deployments and the
machines that host them. See "System Views" in the Diagnostics User Guide.
For an agent reporting to a Saas-hosted Diagnostics Server:
Contact your SaaS system administrator.
Troubleshooting:

« You can also check for entries in the <agent_install_directory>\log\<probe_id>\probe.log file. If there
are no entries in the file, you did not instrument the JRE or did not enter the Java parameter such as
Xbootclasspath correctly. In the probe.log file look for errors and look for an entry that says
"Successfully downloaded first command" which indicates that the communication between the probe and
the server has been established.

« To verify that the Java Agent is connected to the Diagnostics Server, direct your browser to the host
running the application, using port 35000. For example:

http://agentsystem.mycompany.com: 35000
A page showing the probe status at the bottom is displayed:

About the JRE Instrumenter and Different Options to
Invoke

The JRE Instrumenter is a utility to instrument a JRE so that the Java Agent can provide advanced features
such as the patent-pending Collection Leak Pinpointing (CLP). It does not modify the installed JRE in any
way, but rather places copies of instrumented classes somewhere under the <JavaAgent_install_
dir>/DiagnosticsAgent/classes directory. You can use the JRE Instrumenter to instrument multiple JREs if
they are installed on your system.

The JRE Instrumenter instruments some standard Java classes used by the application server JVM and
applications running on it. It also provides you with the JVM parameters that must be used when the
application server is started so that the application server uses the instrumented classes.

With different command-line options, the JRE Instrumenter can be invoked and used in three different ways,
each of which has its own advantages and limitations. You will use one of these methods according to the
characteristics of your application servers (see "Examples for Configuring Application Servers " on page 33
for examples).

« Automatic Explicit Mode. If your application serveris or can be started by a script, it is recommended
that you use this mode. To use this mode, you add a line to your application server startup script to

Micro Focus Diagnostics (9.50) Page 59 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

explicitly and non-interactively run the JRE Instrumenter to instrument the JRE. Your script will continue
to start the application server JVM (with additional parameters) using the freshly instrumented JRE. See
"Using the JRE Instrumenter in Automatic Explicit Mode" on the next page.

« Automatic Implicit Mode. With this mode, you do not need to explicitly run the JRE Instrumenter — you
only need to modify your application server JVM parameters to invoke the Java Agent and ask it to run the
JRE Instrumenter as needed. When the Java Agent is used for the first time, it implicitly runs the JRE
Instrumenter to instrument the JRE. However, the first time this instrumented JRE will not be used; your
application server will be using an uninstrumented JRE. The next time your application server is started, it
will use the instrumented JRE. Therefore, if you want to use the full monitoring features of the Java Agent,
you need to restart your application server twice after you enable the Java Agent. See "Using the JRE
Instrumenter in Automatic Implicit Mode" on page 62.

« Manual Mode. With this mode, you need to manually and interactively run the JRE Instrumenter, either at
the end of the Java Agent installation or at a later time, to instrument the JRE. You then modify your
application server JVM parameters according to the parameters provided by the JRE Instrumenter. This
method is how the JRE Instrumenter works in earlier versions of Diagnostics. See "Using the JRE
Instrumenter in Manual Mode " on page 63.

If your JRE is updated (such as, applying an application server patch) or if you update the Java Agent, you
may need to instrument the JRE again. This issue will be discussed in each mode.

Below is a table that summarizes the requirements of each of the four different methods of doing
instrumentation:

Recommended Instrumentation (Using the
JRE Instrumenter)

Basic In Automatic
Instrumen- In Automatic Implicit In Manual
tation Explicit Mode Mode Mode
Minimum required JRE version 1.6 1.6 1.6 1.6
Requires the application server being No Yes No No
started by a script
Requires knowing where the JRE is No No No Yes
installed
Requires manually running the JRE No No No Yes
Instrumenter
Requires knowing where the JVM Yes* Yes* Yes* Yes*
parameters can be configured
Requires restarting the application Yes, once Yes, once or Yes, twice Yes, once
server after enabling Java Agent twice
Requires maintenance after JRE No No Yes Yes

upgrade/patch

*If you cannot find where the JRE invocation parameters can be defined, you may still have the option of
using an environment variable such as JAVA_OPTIONS to do that.

Micro Focus Diagnostics (9.50) Page 60 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Using the JRE Instrumenter in Automatic Explicit Mode

Using the JRE Instrumenter in the Automatic Explicit Mode is recommended when an application server is
started by a script, such as WeblLogic and JBoss application servers. It is also recommended for WebSphere
application servers if they are, or can be, started by a script - this is the case for most platforms. It is also
recommended for Tomcat if it is not installed as a Windows service (when Tomcat as a Windows service has
been auto-deployed, the JRE Instrumenter runs in Automatic Explicit Mode by default).

To use Automatic Explicit mode, you need to accomplish two tasks:

« Modify your application server startup script to run the JRE Instrumenter using the same JRE used by
your application server. The output from the JRE Instrumenter will give you the JVM parameters you will
need in the next task.

« Configure your application server JVM parameters found in the output from the JRE Instrumenter.

Note: Make sure you understand the structure of the startup script, how the property values are set, and
how to use environment variables before you make any configuration changes. Always create a backup
copy of any file you plan to modify before making the changes.

In modifying the application server startup script, you first need to identify the line (or lines) in which the JRE
is invoked to start the application server JVM. Then, right above this line, you add a line like the following to
invoke the JRE Instrumenter using the same JRE used by your application server:

<java_command> -jar <agent_install_directory>/lib/jreinstrumenter.jar -f <pathname>

The <java_command> must be exactly the same java command that is used to start your application server
JVM, since it is the JRE that is instrumented by the JRE Instrumenter. You can usually get this java
command by copying the beginning portion of the line that starts your application server JVM.

Below is a table showing the java command used by the original startup script of some commonly used
application servers. (Note that this table is provided as helpful tips only; your application server startup script
may use a different java command.)

Windows Command Scripts (.bat or

Application Server Shell Scripts (.sh) .cmd)

JBoss "$JAVA" "%JAVAY%"

Tomcat ${ RUNJAVA} %_RUNJAVA%.
WeblLogic ${JAVA_HOME}/bin/java %JAVA_HOME%!\bin\java
WebSphere ${UAVA_EXE} %JAVA_EXE%

The <agent_install_directory> indicates the directory where the Java Agent is installed.

The <pathname> must be relative. The JRE Instrumenter will put the instrumented classes in the <agent_
install_directory>/classes/<pathname>/instr.jre directory. If you run multiple application servers with
Diagnostics, you should give each application server a unique <pathname> (such as the probe name) so that
the multiple instances of the JRE Instrumenter do not interfere each other. See also "Configure Monitoring of
Multiple Java Processes on an Application Server" on page 67 for details.

After you add the line as described above to the startup script, every time you start your application server
using the startup script, the JRE Instrumenter is invoked and instruments the current JRE. It also prints out

Micro Focus Diagnostics (9.50) Page 61 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

the JVM parameters that you should use in the next task. You can usually find the output of the JRE
Instrumenter among the output from running the startup script.

Below is an example output from the JRE Instrumenter that instruments a typical JRE:

-Xbootclasspath/p:<agent_install directory>/classes/<pathname>/instr.jre

-javaagent:<agent_install_directory>/1lib/probeagent.jar

The second task for using the Automatic Explicit JRE instrumentation is to modify your application server
JVM parameters according to the output of the JRE Instrumenter. In many cases, you just need to modify the
java command-line options in the startup script to include the JVM parameters provided by the JRE
Instrumenter. However, in some scenarios (such as for WebSphere application servers), you may need to
modify a configuration file or use an administration console to add these JVM parameters.

Note: To get the output from the JRE Instrumenter, you need to modify the startup script as described in the
first task and restart the application server. Then, after you make changes to the application server JVM
parameters, you need to restart the application server again (causing you to restart the application server
twice). However, for most of the JREs, the actual JVM parameters provided by the JRE Instrumenter will be
the same as or will include what is provided in the examples above. Therefore, you can safely add these
"default" JVM parameters even before you run the modified script. This approach is used in the instructions for
specific application servers. Refer to the example for your application server (JBoss, WebLogic, WebSphere,
Tomcat) to see detailed instructions for how to configure using automatic explicit mode.

Alternatively, you can redirect (or pipe) the output from the JRE Instrumenter to the java command-line
options, or get the JVM parameters from a difference source to avoid restarting twice.

Using the JRE Instrumenter in Automatic Implicit Mode

Using the JRE Instrumenter in the Automatic Implicit Mode is recommended when an application server
cannot be started by a script, such as GlassFish, NetWeaver, Tomcat installed as a Windows service (and
not auto-deployed during setup), and TIBCO ActiveMatrix and BusinessWorks.

To use this mode, you do not need to explicitly invoke the JRE Instrumenter; it is implicitly invoked by the
Java Agent. You just configure your application server JVM parameters to invoke the Java Agent and, when
the Java Agent sees that the JVM boot class path contains a path pointing to a location matching the following
pattern, it enters the automatic instrumentation mode to create the instrumented classes and populates the
specified directories with copies of the instrumented classes:

<agent_install directory>/classes/auto/<name>/instr.jre

For example if you add the following JVM parameters

-Xbootclasspath/p:<JavaAgent_install
dir>/DiagnosticsAgent/classes/auto/ServerOne/instr.jre
-javaagent: <agent_install directory>/lib/probeagent.jar

Then during the first execution of the application server, the directory <agent_install_
directory>/classes/auto/ServerOne/instr.jre may not even exist. The Java Agent will create and populate
the specified directory with the instrumented classes. And it will use the exact (uninstrumented) JRE that it
runs on.

Micro Focus Diagnostics (9.50) Page 62 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

The first execution of the application server will not benefit from the instrumented JRE, but all subsequent
executions will use the instrumented classes prepared in the first run.

Note: If you update the JRE used by your application server (such as applying an application server
patch) or if you update the Java Agent, before you start the application server again you must delete the
<agent_install_directory>/classes/auto/ServerOne directory (use your directory name for ServerOne)
so that the new JRE will be instrumented. Otherwise, your application server may not start. You can also
manually delete this directory when you want the Java Agent to instrument the JRE again.

Using the JRE Instrumenter in Manual Mode

You can manually run the JRE Instrumenter and copy the provided JVM parameters into your application
server startup settings. Using the JRE Instrumenter in the Manual Mode is recommended for Oracle
application servers.

The JRE Instrumenter performs the following functions:

« ldentifies JREs that are available to be instrumented.

« Searches for additional JREs in directories you specify.

« Instruments the JREs you specify and provides the parameter you must add to the startup script for the
JRE to point to the location of the instrumented classes.

« When the Instrumenter is run using the graphical interface or console mode in a Windows or UNIX
environment, the Instrumenter places the instrumented classes in a folder under the <agent_install_
directory>/classes/<JRE_vendor>/<JRE_version> directory.

Note: If you update the JRE used by your application server (such as applying an application server
patch) or if you update the Java Agent, you must run the JRE Instrumenter again to instrument the new
JRE and change the JVM parameters accordingly. Otherwise, your application server may not start.

Running the JRE Instrumenter Utility in Ul Mode

When the JRE Instrumenter is run without any options the Instrumenter displays the dialogs of its graphical
user interface.

To start the JRE Instrumenter utility on a Windows system run the <agent_install_
directory>\bin\jreinstrumenter.cmd command.

To start the JRE Instrumenter utility on UNIX or Linux run the <agent_install_
directory>\bin\jreinstrumenter.sh command.

The Instrumenter lists the JVMs that were discovered by the Instrumenter and are available for
instrumentation. The JVMs that were instrumented are listed with a green square preceding the name of the
JVM.

If the JRE Directory is not listed on the dialog, click the Add JRE(s) button to browse to the JRE. Navigate
to the directory location where you want to begin searching for JVMs and then select the file where you want
to begin the search and click Search from here. The Instrumenter searches and then lists the JVMs found in
the Available JREs list.

Select the JRE to be instrumented and then click Instrument.

Micro Focus Diagnostics (9.50) Page 63 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

The JRE Instrumenter instruments some of the classes for the selected JVM and places the instrumented
classes in a folder under the <agent_install_directory>/classes directory. It also displays the JVM
parameter that must be used when the application server is started in the box below the Available JREs list.

When the JRE Instrumenter instruments a JRE, it also creates the JVM parameters you must include in the
startup script for the application server to cause your application to use the instrumented classes. When you
select an instrumented JRE from the Available JREs list, the JVM parameters are displayed in the box below
the list.

Click Copy Parameter to place the corresponding parameter on the clipboard. The JVM parameter is copied
to the clipboard so that you can use the JVM parameters in configuring your application server to activate
monitoring by the Java Agent.

Note: You will use the clipboard contents later in configuring you application server, so be careful to not
overwrite the clipboard contents.

Click Exit to close the JRE Instrumenter window and continue with configuring your application server JVM
parameters.

For general instructions for how to insert the JVM parameter into application server startup scripts see
"Specifying Probe Properties as Java System Properties" on page 31. For specific examples of how to insert
the JVM parameter into startup scripts for different application servers such as JBoss, WebLogic and Tomcat
see "Examples for Configuring Application Servers " on page 33.

Running the JRE Instrumenter in Console Mode

Open <agent_install_directory>\bin to locate the JRE Instrumenter executable. Run the following
command:

./jreinstrumenter.sh -console

When the Instrumenter runs, it displays a list of the processing options that are available. The following table
directs you to the documentation for each of the processing options:

Instrumenter Function Description

jreinstrumenter -| Display a list of the JVMs that are known to the JRE Instrumenter.
Displays the JVM vendor, JRE version, and the location where
the JRE is located.

jreinstrumenter -i <jre_directory> Select a JRE in a specific directory for instrumentation. Replace
<jre_directory> with the path to the folder where the JRE you
selected from the Available JVM list is found.

This command instructs the JRE Instrumenter to instrument the
classes for the selected JVM and to place the instrumented
classes in a folder under the <agent_install_
directory>/classes/<JVM_vendor>/<JRE_version> directory.

Micro Focus Diagnostics (9.50) Page 64 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Instrumenter Function Description

jreinstrumenter -a <directory> Search for JVMs within a specific directory and add any JVMs
that are found to the list of the JVMs known to the JRE
Instrumenter. Replace <directory> with the path to the location
where you would like the Instrumenter to begin searching.

The Instrumenter searches the directories from the location
specified including the directories and subdirectories. When it
completes its search, it displays the updated list of Available
JVMs.

Copy the JVM parameter from the output of the JRE Instrumenter so that you can paste it into the location
that allows it to be picked up when your application server starts in order to activate monitoring by the Java
Agent.

Exit the JRE Instrumenter and continue with configuring your application server JVM parameters.

For General instructions for how to insert the JVM parameter into application server startup scripts see
"Specifying Probe Properties as Java System Properties" on page 31. For specific examples of how to insert
the JVM parameter into startup scripts for different application servers such as JBoss, WebLogic and Tomcat
see "Examples for Configuring Application Servers " on page 33.

Including the JVM Parameter in the Application Server’s Startup Script

When the JRE Instrumenter instruments a JVM, it also creates the JVM parameter you must include in the
startup script for the application server in order to cause your application to use the instrumented classes.
When the Instrumenter finishes instrumenting the JVM, it displays the JVM parameter.

Copy the JVM parameter to the clipboard and paste it into the location that allows it to be picked up when your
application server starts. General instructions are provided below.

See "Examples for Configuring Application Servers " on page 33 for specific examples of how to insert the
JVM parameter for application servers such as WebLogic, WebSphere, JBoss and others.

Micro Focus Diagnostics (9.50) Page 65 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

To update the application server configuration:

Locate the application server startup script or the file where the JVM parameters are set.

Create a backup copy of the application server startup script before you make any changes to the script.
Use an editor or the application server console to open the startup script.

Mo Dd =

Add the Java parameter from the JRE Instrumenter to the java command line that starts the application
server, for example:

-Xbootclasspath/p:<agent_install_dir>\classes\Sun\1.5.0\instr.jre;
<agent_install directory>\classes\boot

In this instance, <agent_install_directory> is the path to the directory where the Java Agent was
installed.

This connects the probe to the application.

The following is an example of a WebLogic java command line in a startup script before adding the Java
parameter:

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m -classpath "%CLASSPATH%"
-Dweblogic.Domain=petstore -Dweblogic.Name=petstoreServer -Dbea.home="C:\\bea"
-Dweblogic.management.password=%WLS_PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE?%
-Dcloudscape.system.home=./samples/eval/cloudscape/data
-Djava.security.policy="C:\bea\wlserver6.1/1ib/weblogic.policy" weblogic.Server

The following is an example of a WebLogic java command line in a startup script after adding the Java
parameter:

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m
-Xbootclasspath/p:<agent_install_directory>\classes\Sun\1.5.0_17\instr.jre;
-javaagent:<agent_install_directory>\lib\probeagent.jar

-classpath "%CLASSPATH%"

-Dweblogic.Domain=petstore -Dweblogic.Name=petstoreServer

-Dbea.home="C:\\bea" -Dweblogic.management.password=%WLS PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE?%
-Dcloudscape.system.home=./samples/eval/cloudscape/data
-Djava.security.policy="C:\bea\wlserver6.1/1ib/weblogic.policy"” weblogic.Server

Save the changes to the startup script.
Restart the application server under test.

7. To verify that the probe was configured correctly, check for entries in the <agent_install_
directory>\log\<probe_id>\probe.log file. If there are no entries in the file, you did not instrument the
JRE used by the application server or did not configure your application server JVM parameters to invoke
the Java Agent (see the instructions in this chapter for your application server).

Other Configuration Options

The following sections give you other configuration options:

« "Probe Registration Auto-Assigment" on the next page

« "Configure Monitoring of Multiple Java Processes on an Application Server" on the next page

Micro Focus Diagnostics (9.50) Page 66 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

« "Adjusting the Heap Size for the Java Agent in the Application Server" on page 70

« "Configuring the SOAP Message Handler" on page 71

« "Configuring the Discovery of a New J2EE Server for Cl Population" on page 73

« "Special Considerations for Applications Based on the OSGi Framework" on page 74

Probe Registration Auto-Assigment

A typical use of probe registration auto-assignment is when you have multiple agents sharing a single
installation. Probe auto-assignment is configured using the following properties in the <Agent host
machine>/etc/dispatcher.properties file:

« commander.registrar.url - The Commander Registrar URL for Probe to Mediator Auto-Assignment.

« registrar.url - This property should be set to blank initially, and should not be manually modified if you
want to use auto-assignment.

« always.use.commander.registrar.url - By default, the auto-assigned mediator will be recorded within
this file by overwriting the registrar.url property.

« force.auto.assign — If this property is set to True, if the probe has a previously assigned mediator and the
load on the mediator is over the maximum load limit, the commander will not assign that mediator, but
instead will return a new, mostly-filled mediator.

If this property is set to False, the system does not check whether the mediator is over the load limit. The
default value is False.

For further details on these properties and how they relate to auto-assignment, see "Probe Registration Auto-
Assigment for Large Deployments" in the Diagnostics Server Installation and Administration Guide.

For details on how to configure a single Java Agent to be shared by multiple JVMs, see "Configure Monitoring
of Multiple Java Processes on an Application Server" below.

Configure Monitoring of Multiple Java Processes on an
Application Server

When you want to collect performance data for multiple Java processes on a host, you have two options:

« You can configure a separate Java Agent installation for each process (JVM) on a host.
« You can configure a single Java Agent to be shared by all of the processes (JVMs).
This section describes how to configure a single Java Agent installation to be shared by multiple JVMs.

To configure a separate Java Agent installation for each process, simply ensure that each <agent_install_
directory> is uniquely named.

Configure a Single Java Agent to be Shared by Multiple JVMs

To allow multiple JVMs to share a single Java Agent installation, you must configure a separate probe for
each JVM as described below. This ensures a unique name and port for each probe. Optionally each probe
can have its own points file and mediator assignment.

To configure a single Java Agent installation to be shared by multiple JVMs:

1. Determine how the JRE will be instrumented for all the Java applications that you plan to monitor. See
"Preparing Application Servers for Monitoring with the Java Agent" on page 30.

Micro Focus Diagnostics (9.50) Page 67 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Multiple JREs may exist. Each can have their own instrumentation method.

2. Specify the range of ports from which the probe can automatically select. The Java Agent communicates
using the Java Agent listening port. A separate port is assigned for communications for each JVM that a
probe is monitoring. By default, the port number range (Min/Max) is set to 35000—-35100. You must
increase the port number range when the probe is working with more than 100 JVMs.

If a firewall separates the probe from the other Diagnostics components, configure the firewall to allow
communications using the ports in the range you specify. For more information, see the chapter
“Configuring Diagnostics to Work in a Firewall Environment" in the Diagnostics Server Installation and
Administration Guide.

If you configure the firewall to allow probe communications on a range of ports that is different than the
default, update the port range values as follows.

a. Locate the webserver.properties file in the folder <agent_install_directory>/etc.
b. Set the following properties to adjust the range of ports available for probe communications.
The minimum port in the port number range uses the following property:

jetty.port=35000
The maximum port in the port number range uses the following property:

jetty.max.port.offset=100

3. Assign a unique probe name using one of the following methods.

By default, the probe id is set to the value specified during the Java Agent Setup. This is set in
probe.properties as the id property. The probe id needs to be unique for each probe on the same host
instead of sharing the id set in probe.properties.

The command line properties must be entered on one line, without any line breaks. The probe ids defined

on the Java command line override the probe names defined in the probe.properties file using the

probe’s id property.

a. Assign a probe Id to the probe for each JVM, using the Java command line or by editing the
application startup script.

-Dprobe.id=<Unique_Probe_ Name>
The following example shows a WebLogic startup script before reconfigured to run with Diagnostics:

"%JAVA _HOME%\bin\java" -hotspot -ms64m -mx64m -classpath "%CLASSPATH%"
-Dweblogic.Domain=petstore -Dweblogic.Name=petstoreServer -Dbea.home="C:\\bea"
-Dweblogic.management.password=%WLS_PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Dcloudscape.system.home=./samples/eval/cloudscape/data
-Djava.security.policy=="C:\bea\wlserver6.1/1lib/weblogic.policy"
weblogic.Server

Micro Focus Diagnostics (9.50) Page 68 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

The following example shows a WebLogic startup script after adding the probe.id parameter:

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m"
-Xbootclasspath/p:C:\MercuryDiagnostics\JAVAProbe\classes\Sun\1.6.0
24\instr.jre;C:\MercuryDiagnostics\JAVAProbe\classes\boot"
-classpath "%CLASSPATH%"

-Dprobe.id=<Unique_Probe_Name> -Dweblogic.Domain=petstore
-Dweblogic.Name=petstoreServer

-Dbea.home="C:\\bea" -Dweblogic.management.password=%WLS PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Dcloudscape.system.home=./samples/eval/cloudscape/data
-Djava.security.policy=="C:\bea\wlserver6.1/1lib/weblogic.policy"
weblogic.Server

b. When a single Java parameter is specified but multiple probes are started using the same script, use
the %0 string to generate a custom probe identifier for each probe—for example, in a clustered
environment where a single startup script is used to start multiple probed application server instances.

On Linux:

-Dprobe.id=<probeName>%0

On Windows:

-Dprobe.id=<probeName>%%0

Use the first % to escape the second %.

The %0 is replaced dynamically with a number to create a unique probe name for each probe; for
example, <probeName>0, <probeName>1, and so on.

4. (Optional) Specify the points file each probe will use. By default, the points file name is auto_
detect.points. You can specify that a custom points file be used when you must use more than one
custom instrumentation plan, or where you have several JRE versions on the same machine using a
single agent installation, and one or more of the JREs needs specific methods and classes included in a
layer to support custom instrumentation.

-Dprobe.points.file.name="<Custom_AutoDetect Points File>"

where <Custom_AutoDetect_Points_File> is the name of your custom points file such as MyProbe1_
private.points.

5. (Optional). Specify the mediator to which each probe will send its collected data. You can designate a
specific mediator or enable auto-assignment to mediators. By default, the mediator that was specified at
installation time is used. You can override that setting for any probe.

» Todesignate a specific mediator assignment for the probe, add the following to the application server
startup script or command line;

-Ddispatcher.registrar.url=http://<mediator_host>:2006/registrar/

where <mediator_host> is the host name or IP of the mediator server host to which the probe sends
its metrics.

Micro Focus Diagnostics (9.50) Page 69 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

« Todesignate that a mediator be automatically assigned to the probe, perform the following:

i. Enable auto-registration on each mediator server that you want to make available to the probe as
an assignment option. Set the commander.max.load.count.5s,
commander.max.load.count.20s, mediator.max.load.count.5s, and
mediator.max.load.count.20s properties in server.properties file. For example:

commander.max.load.count.5s = ©
commander.max.load.count.20s = @

mediator.max.load.count.5s = 450000
mediator.max.load.count.20s = 450000

In this case, the mediator can hold up to 450000 active nodes.

When commander.max.load.count.5sand commander.max.load.count.20s are set to zero,
the server will not participate in auto-assignment. That is, the Commander Server will not get
auto-assigned to act as a mediator. This is recommended in a multi-server environment--only
use the mediators to process incoming agent data.

ii. Onthe agent host, set the following properties in etc/dispatcher.properties to allow the
commander to auto-assign mediators to the probes:disable start page

commander.registrar.url = http://<commander_host>:2006/registrar/
always.use.commander.registrar.url = true

The commander.registrar.url property specifies the Commander Server in the deployment.
This is the Commander Server to which the mediators available for auto-assignment report.

The always.use.commander.registrar.url property set to "true" enables auto-registration for
this probe. Note that when auto-registration is enabled, the registrar.url setting in
dispatcher.properties is ignored.

For details, see the comments for these properties in the etc/dispatcher.properties file.

Adjusting the Heap Size for the Java Agent in the Application
Server

The size of the heap can impact the performance of the Java Agent and the application server. The default
value for the heap size is 64 MB, but an application server usually increases it to a larger amount. When you
add the Java Agent to an application server, you may need to increase the heap size to accommodate the
memory used by the Java Agent. For details, see "Requirements for the Diagnostics Java Agent Host in the
relevant version of the Diagnostics System Requirements and Support Matrices Guide on the Software
Support site (https://softwaresupport.softwaregrp.com/group/softwaresupport/).

The heap size is set in the application server JVM configuration using the following JVM argument:
-Xmx<size>

You can increase the heap size by updating the value specified in the -Xmx<size> option. See your JVM
documentation for help on setting this parameter.

Micro Focus Diagnostics (9.50) Page 70 of 267

https://softwaresupport.softwaregrp.com/group/softwaresupport/
https://softwaresupport.softwaregrp.com/group/softwaresupport/

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

Configuring the SOAP Message Handler

The Diagnostics SOAP message handler is required for Java probes to support the following features:

« Collect payload for SOAP faults.
« Determine SOA consumer ID from SOAP header, body, or envelope.

For most application servers, the instrumentation points and code snippets are written to automatically
configure the Diagnostics handlers for web services being monitored.

Note: For some application servers, special instrumentation is provided in Diagnostics to automatically
load the Diagnostics SOAP message handler.

However, some manual configuration is required for WebSphere 5.1 JAX-RPC and Oracle 10g JAX-
RPC. See "Loading the Diagnostics SOAP Message Handler " below.

In addition, the Diagnostics SOAP message handler is not available for all application servers, noris
custom instrumentation available to capture SOAP faults or consumer IDs from SOAP payloads.
Therefore, this feature is not available on all versions of all application servers. For the most recent
information on Diagnostics SOAP message handler support, see the Diagnostics Support Matrix at
Diagnostics_System_Requirements Guide.

This section includes the following:

« "Disabling the SOAP Message Handler" below
« "Loading the Diagnostics SOAP Message Handler " below
Disabling the SOAP Message Handler

By default, the SOAP message handler is enabled. You can disable the handler as follows:

In the <agent_install_dir>/etc/inst.properties file edit the details.conditional.properties property to
include mercury.enable.autoLoadSOAPHandler = false.

If the SOAP message handler is disabled, you must manually configure where in the chain the handler gets
installed.

Loading the Diagnostics SOAP Message Handler

The SOAP message handler is loaded automatically on most application servers but requires manual
configuration on these application servers:

WebSphere 5.1 JAX-RPC
To configure the SOAP message handler on WebSphere 5.1 JAX-RPC, follow these steps:

Note: For WebSphere 6.1 JAX-WS web services, Diagnostics handlers are not supported. You must
recompile the application with the Diagnostics SOAP handler classes.

1. Locate the Web service deployment descriptor (webservices.xml) for the application. The directory path
should look similar to the following:

<install

Micro Focus Diagnostics (9.50) Page 71 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

root>\config\cell\<Server>\applications\<WebServiceEAR>\deployments\<WebServiceNa
me>\<WebServiceJAR|WARName>\WEB-INF

Here is an example:

C:\Program
Files\WebSphere\AppServer\config\cells\MyServerl\application\WebServicesSamples.ear\d
eployments\WebServicesSamplea\AddressBookJ2WB.war\WEB-INF

2. Edit the webservices.xml and add the Diagnostics handler for each <port-component>:

<port-component>

<handler>

<handler-name>Diagnostics RPC Handler</handler-name>
<handler-class>
com.mercury.opal.javaprobe.handler.soap.ProbeRPCHandler
</handler-class>

</handler>

</port-component>

3. Copy the Diagnostics handler jar (<agent_install_dir>\lib\probeSOAPHandler.jar) to the WebSphere
lib directory.

Here is an example:

cp C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\ lib\probeSOAPHandler.jar
C:\Program Files\WebSphere\AppServer\lib

These steps were developed with IBM WebSphere 5.1.0 Application Server on Windows.
Oracle 10g JAX-RPC

To configure the SOAP message handler on Oracle 10g JAX-RPC, follow these steps.

1. Locate the Web service deployment descriptor (webservices.xml) for the application. The directory path
should look similar to the following:

<0C4]_install_root>\j2ee\home\applications\<app name>\ <deployment name>\WEB-
INF\webservices.xml

2. Edit the webservices.xml and add the Diagnostics handler for each <port-component>:

<port-component>
<handler>
<handler-name>Diagnostics RPC Handler</handler-name>

<handler-class>
com.mercury.opal.javaprobe.handler.soap.ProbeRPCHandler

Micro Focus Diagnostics (9.50) Page 72 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

</handler-class>
</handler>

</port-component>

3. Copy the Diagnostics handler jar (<agent_install_dir>\lib\probeSOAPHandler.jar) to the <OC4J_
install_root>\j2ee\home\applib directory.

These steps were developed with Oracle Containers for J2EE (OC4J) 10g Release 3 (10.1.3.3) on Windows.

Configuring the Discovery of a New J2EE Server for Cl
Population

The agent provides data to populate the J2EE Application Server and J2EE Application Domain Cls in
BSM/APM.

The probe automatically populates Cls for well known J2EE servers such as JBoss and WebLogic.

You can also configure application server discovery to populate Cls for other J2EE servers. Application server
name can be directly specified or configured to be discovered by JMX or be discovered by a point/code
snippet.

You configure application server discovery in the probe etc/metrics.config file as described below.

The class AppServerDiscoveryCollector is located in the <agent_install_dir>/lib/probe-jmx.jar file and you
can write you own collector class to do both application server discovery and metrics collection.

The following is the configuration for application server discovery for a generic application server. Note the
collector name is case sensitive and should be different from any collector name in the metrics.config file.

<user-defined-collector-name>.class.name =
com.mercury.diagnostics.capture.metrics.jmx.AppServerDiscoveryCollector
<user-defined-collector-name>.class.path = probe-jmx.jar
<user-defined-collector-name>.app_server.configure.discovery = true
<user-defined-collector-name>.app_server.type = <user-defined-type>
<user-defined-collector-name>.app_server.server_name =
<user-defined-server-name>
<user-defined-collector-name>.app_server.domain_name =
<user-defined-domain-name>

And then you should add the following Java system property definition in the app-server/javaprobe startup
script or java command line.

-Dapp_server.discovery.collector=<user-defined-collector-name>

Every 15 minutes the probe refreshes the collectors (including the AppServerDiscoveryCollector) and makes
the discovery based on any new configuration.

For the advanced user who knows how to use JMX to discover the new application server name and J2EE
domain name, you may add the following configuration in the probe etc/metrics.config file.

Micro Focus Diagnostics (9.50) Page 73 of 267

Java Agent Guide
Chapter 4: Preparing Application Servers for Monitoring with the Java Agent

<user-defined-jmx-collector-name>.class.name =
com.mercury.diagnostics.capture.metrics.jmx.JIMXCollector
<user-defined-jmx-collector-name>.class.path = probe-jmx.jar
<user-defined-jmx-collector-name>.depends.on.class =
javax.management.MBeanServer
<user-defined-jmx-collector-name>.app_server.configure.discovery = true
<user-defined-jmx-collector-name>.app_server.type = <user-defined-type>
<user-defined-jmx-collector-name>.app_server.server_name =
<user-defined-server-name>
<user-defined-jmx-collector-name>.app_server.server_name.discovery.by.jmx
<jmx-ObjectName>.<jmx-AttributeName>
<user-defined-jmx-collector-name>.app_server.domain_name =
<user-defined-domain-name>
<user-defined-jmx-collector-name>.app_server.domain_name.discovery.by.jmx =
<jmx-ObjectName-1>.<jmx-AttributeName-1>@<jmx-ObjectName-2>.<jmx-AttributeNa
me-2>

Special Considerations for Applications Based on the OSGi
Framework

If your application is based on the OSGi framework, you may need to set some additional properties. If not
already the default value, set the osgi.java.profile.bootdelegation property to the default value "ignore".
Then append com.mercury.* to the end of the org.osgi.framework.bootdelegation property in your
osgi.java.profile. For example:

org.osgi.framework.bootdelegation= <existing packages>,com.mercury.*

Micro Focus Diagnostics (9.50) Page 74 of 267

Chapter 5: Configuring for Azul or Cloud
Environments

This chapter includes:

« "Java Agents on Azul" below

« "Java Agents in Cloud Environments" on the next page

Java Agents on Azul

Azul provides two highly scalable and highly performing solutions for enterprise Java users: Vega and Zing.
Vega is a special hardware appliance which connects to the user local network. Zing is a virtual equivalent of
Vega, provided in a form of a guest image for VMware or KVM. A major advantage of the Azul appliances is its
innovative pauseless garbage collector, which runs continuously and can handle heaps up to tens of
gigabytes. Both appliances are supported by Diagnostics equally, although we tested only Zing in the lab.

The Java SDK or JRE provided by Azul installs on a traditional system, such as Linux or Solaris, but when it
is invoked, it delegates the execution of any Java code to the appliance. Thus, although the Java application
seems to be running where it was invoked, it actually runs on a different system. This is done seamlessly, so
the application interacts with its environment just as if it was running on a local system. If the application
makes a JNI call, it is made across the network to be executed on the originating host.

This execution model creates a number of issues for Diagnostics users. The JNI calls made by the probe are
costly, but what is more important, they do not provide the results the user might expect.

« The CPU timestamps do not work correctly. They measure the CPU time used on the originating server,
and therefore are useless.

« Process metrics are useless, too, because they measure the front-end process.

« Inmost cases, all system metrics are useless as well. They measure the originating system and are
irrelevant to the application running on the appliance.

« Garbage collection metrics are confusing. Since Azul uses continuous garbage collector, seeing garbage
collection percentages over 100% is normal.

« Heap Breakdown and Heap Walker do not work.

« VMware special timers do not work (even if using virtual appliance on VMware)\
Configuring Diagnostics for Azul VM

Invoking Azul java command requires adding parameters that properly identify the appliance to be used for
running the application. This creates a difficulty for JREinstrumenter (unless run in Automatic Implicit mode),

which needs to run the JRE to be instrumented in order to determine its version and vendor, but is not capable
of adding the required parameters.

The solution is to edit the file azul.properties found in the Azul JRE installation and define the required
parameters. The settings are needed while the JREinstrumenter runs and can be removed for running the
application with Diagnostics.

To eliminate possible confusion and pointless overhead, we recommend to use the following settings while
using Diagnostics Agent:

Micro Focus Diagnostics (9.50) Page 75 of 267

Java Agent Guide
Chapter 5: Configuring for Azul or Cloud Environments

« Inmetrics.config, comment out all metrics for "system" and "ProcessMetrics" collectors, and Garbage
Collection metrics for the "Java Platform" collector.

« In capture.properties set use.cpu.timestamps=false.

Java Agents in Cloud Environments

The Java Agent provides out-of-box support for monitoring Java applications in a cloud environment, such as
ActiveState's Stackato or aPaaS. However, monitoring Java applications in these environments requires a
slightly different Java Agent configuration and deployment procedure.

Cloud environments use dynamic application server instances that are scaled in and out as needed. Agents
use a naming strategy in this environment that provide a consistent name for the application server instance in
the Diagnostics Enterprise Ul. A probe deployed on Stackato will have an assigned name that consists of the
application name as defined by Stackato, and a suffix of its instance identifier. For example, an application
named "OnlineBanking" with 3 instances would have the following probe names:

OnlineBanking_1
OnlineBanking_2
OnlineBanking_3

In general, the steps to configure and deploy the Java Agent in a cloud environment are as follows:

1. Add the Java Agent installed files to the directory structure that contains the application to be monitored,
so that the agent is included when the application is pushed up to the cloud.

Copy the <agent_install_directory>/JavaAgent/Diagnostics directory to your application workspace,
and ensure that it is bundled with your resulting application assembly. Whether this is a .war file, .ear file,
or directory structure, the Java Agent bits need to be included when the application gets pushed up to
Stackato.

2. Configure the Java Agent as needed.
Run the Java Agent Setup program as described in "Installing Java Agents" on page 16.
« When prompted for the Agent Configuration, specify either "Enterprise Mode (AM License)" with
"Diagnostics" or "Diagnostics Mode for Load Runner/Performance Center (AD License)".

« When prompted to provide the Agent Name, enter any string. This placeholder value will be
overwritten in the next step.

3. Configure the Stackato stackato.yml to deploy and enable the Java Agent. For details, see one of the
sections below:

« "Deploying a Java Agent on a Stackato-provided Application Server Container" below

« "Deploying a Java Agent on a Stackato Stand-alone Application" on page 78

Deploying a Java Agent on a Stackato-provided Application
Server Container

The steps assume the Stackato system is installed, configured correctly, and accessible to you. The
examples show the steps needed to modify your application and stackato.yml in order to enable the Java
Agent.

The below auto-deployment steps work with either the Tomcat or JBoss containers that Stackato uses.

Micro Focus Diagnostics (9.50) Page 76 of 267

Java Agent Guide
Chapter 5: Configuring for Azul or Cloud Environments

1. Edit the stackato.yml configuration file in the Stackato workplace to add the Java Agent configuration
commands to execute upon deployment on Stackato.

The commands that you add depend on whether the application package that you deploy ends up
extracted on deploying, as they refer to the Java Agent files within this directory structure.

« Application package is automatically exploded on deploying:
This is the most common case, for example the Stackato Tomcat application server automatically
explodes the .war file upon deploying.
If your application is pushed up as a directory or as a .war file, add the following to the stackato.ymil:

hooks:
post-staging:

- mv JavaAgent $STACKATO_ APP_ROOT/

- java -jar $STACKATO_APP_
ROOT/JavaAgent/DiagnosticsAgent/lib/setupModule. jar

where
$STACKATO_APP_ROOQT is defined by Stackato.

The JavaAgent directory (which in this example contains the Java Agent bits) is moved up to the
$STACKATO_APP_ROOT and a command is launched to deploy it to the startup script of the
application server.

« Application package is not automatically exploded on deploying:

If the .ear file does not end up extracted when the application is pushed to Stackato, for example
deploying an .ear file on JBoss, additional commands are required to temporarily extract the Java
Agent bits from the .ear file and copy them up so that they can be deployed on the container.

Add the following to the stackato.yml

hooks :
post-staging:
- mkdir tmpdir
- unzip -q jboss-as-kitchensink-ear.ear -d tmpdir
- mv tmpdir/JavaAgent $STACKATO_APP_ROOT/
- rm -r tmpdir
- java -jar $STACKATO_APP_
ROOT/JavaAgent/DiagnosticsAgent/lib/setupModule.jar

where
$STACKATO_APP_ROOT is defined by Stackato.
The JavaAgent directory is included as part of the .ear file.

2. Deploy the repackaged application to Stackato. For example, run the following command in the top
directory of your workplace:

stackato push -n

After staging the application, Stackato executes the post-staging steps that you specified in the stackato.yml
configuration file. The first step moves the Agent bits to a fixed location, and the second step invokes the

Micro Focus Diagnostics (9.50) Page 77 of 267

Java Agent Guide
Chapter 5: Configuring for Azul or Cloud Environments

Agent command to automatically deploy itself within the application server (either Tomcat or JBoss) that
Stackato uses as a container for your application.

Note: The automatic deployment tool expects to find the Java Agent at STACKATO_APP_
ROOT/JavaAgent/DiagnosticsAgent. This directory where the agent is moved to cannot be changed
elsewhere in stackato.yml.

Deploying a Java Agent on a Stackato Stand-alone
Application

When deploying the Java Agent on a Tomcat or JBoss application server, the agents can auto-deploy to those
application servers. If your application is instantiated by a script that you provide to Stackato, then you need
to manually specify the parameters to enable the Java Agent.

To do this, add the following commands to your application startup script:

« -Ddiag.config.override=stackato
« -javaagent:${HOME}/<agent dir in your app>/lib/probeagent.jar

For example, assume a stackato.yml file as follows:

name: onlinebank

mem: 512M

framework:

type: generic

processes:

web: /app/app/myStartupScript.sh

You need to edit the myStartupScript.sh to add the following to the command that is invoking Java:

-Ddiag.config.override=stackato -javaagent:${HOME}/agent/lib/probeagent.jar

The -Ddiag.config.override argument directs the probe to read the file: <agent_install_
directory>/etc/overrides/stackato.settings when the application starts. The stackato.settings file contains
the necessary property settings for probes in Stackato—overriding their specified value (if any) in the standard
property and configuration files for the agent. This file contains the rules for determining the probe and host
names according to the Stackato environment. The out-of-box settings should be appropriate for most
scenarios, but if you want to customize the names created for the probes or their hosts, you can change the
settings in this file.

You can add additional property settings to the stackato.settings file or create a custom version of this file as
needed and rename it. The custom settings file must be located in the <agent_install_
directory>/etc/overrides directory and have the ".settings" suffix.

Note that any overrides in the stackato.settings file to dynamic properties are overridden unconditionally.
Changes to any dynamic properties that occur after the application starts are ignored.

Just like for non-cloud agent deployment, the jreinstrumentor must be run in order to enable collection leak
pinpointing. See "Examples for Configuring Application Servers " on page 33 for details.

Micro Focus Diagnostics (9.50) Page 78 of 267

Chapter 6: Preparing Application Servers for
Client Monitoring with the Java Agent

This chapter includes:

« "About Client Monitoring" below

« "Enabling Client Monitoring" on the next page

« "Configuring and Disabling Client Monitoring" on page 81

o "Manually Instrumenting HTML/JSP Pages for Client Monitoring" on page 82

About Client Monitoring

Client Monitoring measures web page performance as seen by the user's browser and correlates these
measurements with the back end server request.

Three important metrics are measured:

« The back-end time is the amount of time it takes from when a web page request is sent until the first byte
of the response is received.

« The front-end time is the amount of time it takes from when the first byte of the response is received until
the page is loaded.

« The total-time is the sum of the front and back end times.

Client Monitoring aggregates these measures and presents them by URL, Location, and Browser-OS
combination.

By monitoring web page performance, application owners can quickly identify performance issues,
characterizing them by tier (front or back-end), location, and browser.

When the issue is on the back-end, client monitoring correlates the URL to the associated server request and
its call-profile.

Note: Client Monitoring is not supported in Diagnostics Profiler mode.

Micro Focus Diagnostics (9.50) Page 79 of 267

Java Agent Guide
Chapter 6: Preparing Application Servers for Client Monitoring with the Java Agent

An example showing client monitoring is shown below:

EEE‘UH &r_ﬂ.ﬁir

Start Time _-‘-“'-“-R_,_‘__ I URL

[
[
I o a 5
HTTF Reques! | . Diagnostics Poin
u\- | _,_.-'-"'""-FFF’F
I . ‘_‘_'_,_a-"'d-

URL Back-end Time

Time

First Byte ~____ HTTPRegly#1____—— |

-\-h-\-"""--_,_‘___

]
|
]
I
I
: Servar Requaest
|
]
|
1
I

HTTP Reply fin___—— |

URL Frentend Time ‘__,__———/—)

nLoad done \

Enabling Client Monitoring

Enabling client monitoring requires you to deploy a .war file on the application server and in some cases to
configure the web server. Client Monitoring views are available in the Diagnostics Enterprise Ul.

For the list of browsers that can be monitored by the Client Monitoring feature, refer to the relevant version of
the Diagnostics System Requirements and Support Matrices Guide on the Software Support site
(https://softwaresupport.softwaregrp.com/group/softwaresupport/).

To enable Client Monitoring:

When client monitoring is enabled, most JSP pages served via JBoss, Tomcat, WebSphere and WebLogic
will be automatically modified to include additional Java Script calls near the <head> tag. You can see which
pages are instrumented by opening the page in your browser and selecting view source.

Other application servers may require manual page instrumentation for client monitoring. See "Manually
Instrumenting HTML/JSP Pages for Client Monitoring" on page 82.

Client monitoring, including automatic JSP instrumentation, will remain disabled until this .war file is
deployed.
1. Deploy DiagnosticsCM.war file.

Use the application server's Administrative Console to deploy the <agent_install_
dir>\contrib\DiagnosticsCM.war as an application.

Client monitoring will remain disabled until this .war file is deployed.

For WebSphere application servers, be sure to set the context root to /DiagnosticsCM instead of the
default (/).

Micro Focus Diagnostics (9.50) Page 80 of 267

https://softwaresupport.softwaregrp.com/group/softwaresupport/

Java Agent Guide
Chapter 6: Preparing Application Servers for Client Monitoring with the Java Agent

2. If you have configured a web server as the front-end of your application, then you also need to add the
following context root to your Web Server's configuration:
/DiagnosticsCM/*

Tip: You can verify the web server is correctly configured if your browser can access this link: (it will
return a blank page)
http://hostname:port/DiagnosticsCM/B/.

Example - Setting up an Apache HTTP Server Reverse Proxy for Client Monitoring

Note: These are very basic instructions. These configuration files are highly customized in each
customer's environment. Please consult the Apache HTTP Server documentation for more details.

In order for client monitoring JavaScript file to be successfully downloaded by browsers and for client-side
metrics to be received by the probe, it is necessary to configure the web server to correctly forward those
requests to the application server. This is typically achieved by setting up a reverse proxy or gateway.

1. Update the conf\httpd.conf file by adding the following lines, replacing <HostName> and <HostPort>
with the host name and port of the application server, and restart the web server.

ProxyPass /DiagnosticsCM http://<HostName>:<HostPort>/DiagnosticsCM
ProxyPassReverse /DiagnosticsCM http://<HostName>:<HostPort>/DiagnosticsCM

2. Check if your changes are successful by driving traffic to your web application via the web server and
checking the web server's log messages in the log/access.log file. Error messages will have an http
response code in the 400-500 range such as "GET /DiagnosticsCM/boomerang-min.js HTTP/1.1" 404.
When successful, you should see log messages such as "GET /Diagnostics CM/boomerang-min.js
HTTP/1.1" 200.

If you don't see either of these messages, then client monitoring is not correctly set up in your
environment.

Configuring and Disabling Client Monitoring

If desired, Client Monitoring can be dynamically controlled by updating several properties in <agent_install_
directory>\etc\dynamic.properties.

The client.monitoring.enable property provides a master switch to dynamically enable and disable the client
monitoring feature. When set to false, all client monitoring data events received are dropped, JSP page auto-
instrumentation will be disabled, and client.monitoring.sampling.percent is set to 0.0 (to disable manually
instrumented JSP pages’ client monitoring Java Script code).

You can reduce the client monitoring load on your server by adjusting the
client.monitoring.sampling.percent property in dynamic.propertes.

You can also specify that you want a strict check on the referrer by setting client.monitoring.strict.referrer
to true. This will help ensure that only events that originate from a web page instrumented with client
monitoring are used. The default value is false but the recommended value is true if this setting works in your
environment.

You can also stop or uninstall/undeploy the DiagnosticsCM.war using your application server management
console.

Micro Focus Diagnostics (9.50) Page 81 of 267

Java Agent Guide
Chapter 6: Preparing Application Servers for Client Monitoring with the Java Agent

Manually Instrumenting HTML/JSP Pages for Client
Monitoring

Add the following code to your HTML/JSP pages immediately after the <head> tag:

<!-- Client Monitoring -->
<script>
if (window.t_firstbyte === undefined) {
var t_firstbyte = Number(new Date());
}
</script>
<script type='text/javascript' src='/DiagnosticsCM/boomerang-min.js'>
</script>
<script>

BOOMR.init({beacon_url:"/DiagnosticsCM/B",
RT:{cookie:"X-HP-CM-RT", cookie_exp:600,expandFrames:true,hashURLs:true},
HP:{cookie:"X-HP-CM-GUID"}});

</script>

If you prefer to manually instrument HTML/JSP pages you can permanently disable auto-instrumentation by
setting the following properties in inst.properties to false. These changes require a restart of the application
server.

in <agent_install_dir>\etc\inst.properties:

details.conditional.properties= \
mercury.enable.clientmonitoring.JspWriterImpl.autoinstrumentation=false,\
mercury.enable.clientmonitoring.CoyoteWriter.autoinstrumentation=false,\
mercury.enable.clientmonitoring.BodyContentImpl.autoinstrumentation=false,\

Micro Focus Diagnostics (9.50) Page 82 of 267

Chapter 7: Upgrading the Diagnostics Java
Agent

This chapter presents the information that you need to upgrade the Diagnostics Java Agent.
This chapter includes:

« "Upgrade Java Agents" below

« "Upgrade Notes and Limitations" on page 85

Upgrade Java Agents

Note: As of Diagnostics 9.23, the format and process for the Java Agent installation package have
changed. For detailed instructions on installing the Java Agent, see "Installing Java Agents" on page 16.

Consider the following when planning the Diagnostics Agent upgrade:

« You must upgrade the Diagnostics Server before upgrading the agents that are connected to it because
Diagnostics Servers are not forward compatible.

« With each new release of Diagnostics you should re-record the Java agent silent install response files prior
to performing silent installation on multiple machines.

Note: The new agent installation will not begin monitoring your applications until you have updated the
startup scripts to start the new agent and restarted the applications as described in these instructions.

To upgrade a Java Agent:

1. Install the Diagnostics Agent for Java into a different directory than the current agent’s installation
directory.

During the installation, be sure to do the following. This ensures that the persisted data for your
application will match up with the metrics captured by the new agent.

« Configure the Java Agent to work with a Diagnostics Server or as a standalone Diagnostics Profiler.
« Forthe agent name, use the same probe name as used by the previous agent.

« Forthe agent group name, use the same group name as used by the previous agent.

« Forthe mediator server name and port, use the same information as used by the previous agent.

See "Installing Java Agents" on page 16 for additional information you need for installing a Java Agent.

2. Compare the new agent’s \etc directory and the previous agent’s \etc directory so that you can determine
the differences between the two.

We recommend that you execute the Property Scanner utility provided with the Java Agent which will
indicate the differences (properties and points) between two different Java Agent installations. To
execute the Property Scanner utility, change the current directory to <agent_install_

Micro Focus Diagnostics (9.50) Page 83 of 267

Java Agent Guide
Chapter 7: Upgrading the Diagnostics Java Agent

dir>/contrib/JASMUtilities/Snapins and execute the runPropertyScanner.cmd —console (.sh for
Unix) command as follows:

runPropertyScanner -console -diffOnly yes -Sourcel ..\..\..\etc -Source2 OtherEtc

Sample Input:

C:\MercuryDiagnostics\JavaAgent8\DiagnosticsAgent\contrib\JASMUtilities\Sna
pins>runPropertyScanner -console -diffOnly yes -Sourcel
C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\etc -Source2
C:\MercuryDiagnostics\JavaAgent8\DiagnosticsAgent\etc

Sample Output:

PropertyFile=dispatcher.properties
Property=stack.trace.method.calls.max
Sourcel=

Source2=1000

Apply any differences that were caused by the customizations that you made to the previous agent’s \etc
directory to the new agent’s \etc directory so that they will not be lost. You should look for the following

changes:

Configuration Properties to Be Copied to the New

Property File Diagnostics Server

auto_detect.points Copy custom points that you have created and points that you
have modified from the auto_detect.points file in the old etc
directory to the new etc directory. Be sure to check the points for
RMI, LWMD, args_by_class when looking for points you may
have modified.

capture.properties Depth and latency trimming.

dispatcher.properties minimum.sql.latency
sqgl.parsing.mode

dynamic.properties cpu.timestamp.collection.method

metrics.config Verify that any metric that you uncommented in the previous
version is also uncommented in the new version so that you can
continue to use the metrics that you are used to.

security.properties If the system is set up for SSL mode, set all properties and copy

the certificates from the old property file to the property file.

3. Prepare your application servers to be monitored using the JRE instrumentation methods described in
the "Examples for Configuring Application Servers " on page 33. In particular you need to update the
application’s startup script or JVM parameters to point to the upgraded agent installation.

4. At an approved time, shut down the applications that were being monitored by the old agent.
5. Restart the applications to allow the new version of the agent to begin monitoring your applications.

Micro Focus Diagnostics (9.50) Page 84 of 267

Java Agent Guide
Chapter 7: Upgrading the Diagnostics Java Agent

6. Clear your browser's cache and the Java plug-in cache. Restart the browser before you attempt to
access the Diagnostics Profiler for Java user interface. Failure to do this may result in a size mismatch
error message.

7. You can verify that the upgraded Diagnostics Agent is running by checking the version in the System
Health view in the Diagnostics Ul. The version should be the latest version if the upgrade was
successful. To access the System Health view you must open the Diagnostics Ul as the System
customer from
http://<Diagnostics_Commanding_Server_Name>:2006/query/. Then in the Views pane you can
select the System Views view group.

8. When all your applications have been migrated over to be the latest version and everything is working
properly, you can delete the old directory. Don't try to uninstall the old version because this will actually
uninstall the new version.

Upgrade Notes and Limitations

As of Diagnostics version 9.24, by default HTTP methods (such as PUT, GET, and POST) are used as an
identifying component for each HTTP/S Server Request and a separate HTTP Server Request is generated
for each HTTP method to the same URL. In earlier versions of Diagnostics, the first instrumented Java
method executed by the Server Request is used for identification and one HTTP Server Request is generated
for all HTTP methods to the same URL.

We recommend using the new method of server request identification, even though this is not backward
compatible and breaks trend lines. If you must maintain continuity of trend lines, in the dispatcher.properties
file, change the value of the fragment.use.http.method setting to false.

Micro Focus Diagnostics (9.50) Page 85 of 267

Part 3: Advanced Java Agent
Configuration and Instrumentation

Micro Focus Diagnostics (9.50) Page 86 of 267

Chapter 8: Monitoring Profiles

This chapter describes monitoring profiles.

This chapter includes:

"About Monitoring Profiles" on the next page

"Understanding Types of Diagnostics Deployments" on the next page
"The Predefined Monitoring Profiles" on page 90

"Custom Monitoring Profiles" on page 90

"Applying a Specific Monitoring Profile to a Probe" on page 91
"Overriding Settings in the Monitoring Profiles" on page 92

"Mapping Instrumentation Points to a Monitoring Profile" on page 93
"Mapping Metrics to a Monitoring Profile" on page 93

"Mapping Property Values to a Monitoring Profile" on page 93

Micro Focus Diagnostics (9.50)

Page 87 of 267

Java Agent Guide
Chapter 8: Monitoring Profiles

About Monitoring Profiles

A monitoring profile is a collection of predefined settings that control the amount of collected data for a
particular Java Agent instance (a probe).

Java Agents are highly configurable. Monitoring profiles are a safe and easy way to manage the impact of the
probe on the monitored system and still obtain the needed performance data.

Understanding Types of Diagnostics Deployments

Each probe has the ability to capture many events such as method invocations, server requests, and system
usage metrics from the Java application it is monitoring. In general, the more collected data, then the more
information is readily available to identify performance issues. However, the more collected data, then the
more overhead on the monitored system. Overhead can affect the monitored application's ability to provide its
services as well as the probe's ability to report the data in the Diagnostics Enterprise Ul or Profiler Ul. The
type of deployment determines how much overhead is acceptable.

Diagnostics operates in different environments, ranging from development desktops to systems deployed in
production. The following tables describes the three main categories of Diagnostics deployments.

Micro Focus Diagnostics (9.50) Page 88 of 267

Java Agent Guide

Chapter 8: Monitoring Profiles

Diagnostics
Deployment

Enterprise—Java
Agent sends data to
a Diagnostics
Server.

Optionally integrated
with BSM/APM.

Users: Operations

Performance
Center/Load Runner
Integration

Users: QA

Diagnostics Profiler

Users: Development

Data Persistence

Diagnostics collects and
stores data from
hundreds or thousands of
probes and keeps the
data for up to 5 years.

Configurable, but the
expectation is that
Diagnostics collects and
stores data from dozens
of probes and keeps the
data for as long as the
testing cycle—typically
several months.

Diagnostics does not
persist any data.

Micro Focus Diagnostics (9.50)

Goals of This Deployment

Designed for Production

Alert users to
performance or
availability issues, and
diagnose memory leaks.

Maximize availability of
business critical
applications

Reduce MTTR of
business critical
problems

Produce actionable data
for development

Designed for load testing

Diagnose distributed
application issues, help
users tune the
application for better
performance and
scalability.

Reduce MTTR of
performance issues

Provide actionable root
cause data to
development

Designed for
development
environment

Diagnose slow methods,
exceptions, and coding
issues

Ready applications for
load testing

Collected
Data/Overhead

Lower amounts of
collected data

Lower overhead

=~

Higher amounts of
collected data

Higher overhead

Page 89 of 267

Java Agent Guide
Chapter 8: Monitoring Profiles

The Predefined Monitoring Profiles

Diagnostics provides three predefined monitoring profiles—one for each type of Diagnostics deployment
above.

By default, a probe uses one of the predefined monitoring profiles on startup. The Agent Mode of the probe
determines which predefined monitoring profile is used, as follows:

Agent Mode (Specified During Agent Collected

Predefined Monitoring Profile = Setup) Data/Overhead

Application monitoring in Enterprise Mode (AM License) and Lower amounts of

production environment Diagnostics collected data
Lower overhead

Application monitoring in pre- « Diagnostics Mode for

production environment or LoadRunner/Performance Center (AD

extended monitoring in production License)

environment « Enterprise Mode (AM License)

Application profiling in developer Diagnostics Profiler Mode

: Higher amounts of
environment

collected data

Higher overhead

Settings specified by the predefined monitoring profiles are overridden if the setting is specified elsewhere.
See "Overriding Settings in the Monitoring Profiles" on page 92.

Custom Monitoring Profiles

You can use a custom monitoring profile instead of the predefined monitoring profiles. To create and use a
custom monitoring profile, follow these steps:

1. Choose a numerical value to represent the profile.

Use a positive integer that is not already in use for a monitoring profile in this installation. The predefined
monitoring profiles use the following numbers:

120 Application monitoring in production environment

140 Application monitoring in pre-production environment or extended monitoring in
production environment

170 Application profiling in developer environment

To help you manage multiple profiles, follow these naming guidelines:

« All data collected by a numerically lower profile is also collected by the numerically higher profile.

« The higher the number, the more data is collected, with a higher overhead.

Micro Focus Diagnostics (9.50) Page 90 of 267

Java Agent Guide
Chapter 8: Monitoring Profiles

For example, if a particular production environment puts unusually strict restrictions on tool overhead,
you could define a new profile named 115 with the modified settings.

2. Customize the settings.
a. Use one of the predefined .settings files in <agent_install_directory>/etc/defaults as a starting
point; copy and rename it to the same location. For example <agent_install_
directory>/etc/defaults/115.settings.

Modify the settings to limit the amount of collected data, for example:

#
Settings for my '115' monitoring profile

#

dispatcher.minimum.fragment.latency = 100ms

For information about the format of the .settings file, see "Mapping Property Values to a Monitoring
Profile" on page 93.

b. Modify the capture points file to map any instrumentation points to the new custom monitoring
profile. See "Mapping Instrumentation Points to a Monitoring Profile" on page 93.

Note: For best practices, ensure that all .settings files in your deployment contain the exact
same set of properties. Because when a property is specified in one .settings file, it means that
the property definition in the original property file is commented out. Therefore each .settings file

must define the property.

c. Moadify the metrics.config file to map any metrics to the new custom monitoring profile. See
"Mapping Metrics to a Monitoring Profile" on page 93.

3. Run the probe with the new custom monitoring profile. For details on how to do this, see "Applying a
Specific Monitoring Profile to a Probe" below.

Applying a Specific Monitoring Profile to a Probe

To apply a monitoring profile to a probe, use one of the following methods:

« By setting the probe property monitoring.profile in <agent_install_
directory>/etc/probe.properties. For example:

monitoring.profile = 115

Changes to this setting are picked up dynamically—they take effect shortly after the changes are
saved to the file.

« As asystem property on the application server start up command line. For example:

-Dprobe.monitoring.profile=115

Micro Focus Diagnostics (9.50) Page 91 of 267

Java Agent Guide
Chapter 8: Monitoring Profiles

If the specified monitoring profile does not exist (there is no settings file in the <agent_install_
directory>/etc/defaults directory that corresponds to the number), the probe substitutes an existing
.settings file corresponding to the value closest to the specified profile but not over the value.

« Inthe Profiler Ul, select Configuration tab > Probe Setting pane > General section >
Monitoring Profile and select the required monitoring profile from the list. Click Apply Changes.

Note: In the General section, you can also choose to disable monitoring data collection without
stopping the Java Agent.

Changes to this setting are picked up dynamically—they take effect shortly after the changes are
saved to the file.

Settings specified by the custom monitoring profiles are overridden if the setting is specified elsewhere.
See "Overriding Settings in the Monitoring Profiles" below.

Overriding Settings in the Monitoring Profiles

Settings specified by the predefined or custom monitoring profiles are overridden (ignored) as follows:

« Settings in <agent_install_directory>/etc/*.properties files override the settings in the monitoring profile.

By default, a setting managed by the predefined monitoring profiles is disabled in the associated property
file. For example, in capture.properties:

Latency trimming

The default value is defined by the current monitoring profile
#
#minimum.method.latency = 5ms

To override the minimum.method.latency setting from the monitoring profile, simple uncomment it here
and set the value.

Latency trimming

The default value is defined by the current monitoring profile
#
minimum.method.latency = 7ms

You can use this capability to easily customize settings that are specific to a deployment environment
without changing the monitoring profile. For example, using specific JMX/PMI metrics or instrumentation
points.

« Property settings specified as Java system properties on the application server startup command line
override the settings in the monitoring profile

For more information about specifying properties in this way, see "Specifying Probe Properties as Java
System Properties" on page 31.

« Dynamic properties, if generally accepted by the probe, override the settings in the monitoring profile.
For more information about dynamic properties, see "About Dynamic Configuration" on page 161.

Micro Focus Diagnostics (9.50) Page 92 of 267

Java Agent Guide
Chapter 8: Monitoring Profiles

Mapping Instrumentation Points to a Monitoring
Profile

The profile keyword for the instrumentation point details maps the point to a monitoring profile. The keyword
is specified in the form of profile:<number>. The number indicates that the point is enabled for all profiles at
the value of number or higher. The point is disabled for all monitoring profiles lower than the specified value.

For example:
[Servlet-all]
§ ============= extends HttpServlet ---------------------

; (See HttpCorrelation point for ignore documentation)
; In addition, ignore class we know we are not interested in

deep_mode

= soft
layer = Web Tier/Servlet
detail = profile:140

The instrumentation point is enabled on the predefined profiles 140 and 170, and all custom profiles 141 or
higher. The point is disabled on the predefined profile 120, and on all custom profiles 139 or lower.

By default, the capture points file is located at <agent_install_dir>\etc\auto_detect.points. Your agent
installation may be using a custom capture points file in a different location.

Instrumentation points can still be enabled and disabled dynamically, regardless of the selected monitoring
profile. See "Adding a Disabled Point and Enabling it at Runtime" on page 125.

Mapping Metrics to a Monitoring Profile

The P<number>? notation in the metrics.config file maps the metric to a monitoring profile. Just as for
instrumentation points, the number indicates that the metric is enabled for all profiles at the value of number or
higher. The metric is disabled for all monitoring profiles smaller than the specified value.

For example, in <agent_install_dir>\etc\metrics.config:

P135?system/PageOutsPerSec = PageOutsPerSec|count|System

The metric is collected for a custom profile 135 and for any higher custom profiles. The metric is also collected
for the predefined profiles 140 and 170 since they are higher than 135. The metric is not collected for any
custom or predefined profiles less than 135.

Mapping Property Values to a Monitoring Profile

The monitoring profile property settings files map property settings to a monitoring profile.

Micro Focus Diagnostics (9.50) Page 93 of 267

Java Agent Guide
Chapter 8: Monitoring Profiles

The monitoring profile property settings files are in <agent_install_dir>\etc\defaults. Each predefined
monitoring profile has its own property settings file, for example 120.settings. Custom monitoring profiles will
also each have a settings file here—you need to create those files.

Each property files contains the property definitions for the respective monitoring profile. For example, the
120.settings contains:

#

Default settings for the '120' monitoring profile

#

title = Application monitoring in production environment

capture.minimum.method.latency = 51ms
capture.maximum.method.calls = 1000

dispatcher.minimum.fragment.latency = 51ms
dispatcher.minimum.sql.latency = 1s

In the file, property names are constructed by using the module name (which is generally the same as the
property file root name) as the prefix for the property, and separating it from the property name with a dot.

For example, the capture.maximum.method.calls property above is for maximum.method.calls property
from capture.properties. The maximum.method.calls property definition in capture.properties is commented
out as follows.

Never capture more than this number of methods per instance tree.
This is regardless of latency and depth trimming.

Note that this applies all methods, including outbound calls.

The default value depends on the monitoring profile.
#maximum.method.calls=

All monitoring profile property files should contain the same property definitions—with potentially different
values, of course. At the same time, the property definition in the original property file should be commented
out.

When the probe resolves the properties, it checks <agent_install_dir>/etc/defaults last. That is, the probe
only uses the property definition from the monitoring profile properties file when there is no definition found in
the primary properties file.

This allows you to override some of the properties for all profiles with a single line change, simply by
uncommenting the property in the primary property file and providing the universal, monitoring profile
independent value. Also, for those properties that can be dynamically changed, this allows you to change the
property by modifying the module specific property file, without even knowing which monitoring profile is or
will be selected.

Micro Focus Diagnostics (9.50) Page 94 of 267

Chapter 9: Automatically Assigning a Probe to
an Application

This chapter describes how to automatically assign a probe to an application.
This chapter includes:

« "About Automatic Probe Assignment" below
« "Configuring a Probe to Automatically Assign Applications" below
« "Configuring an Agent to Automatically Assign Applications" below

« "General Configuration" on the next page

About Automatic Probe Assignment

You can assign a probe to an application so that in the Diagnostics Commander Ul, you can view the probe
data within the context of that application. You can assign a probe to an application by the following methods:

« Configure the Java Probe or Agent to automatically create applications in the Diagnostics Commander
and associate monitored data with the application. For details, see below.

« Manually create an application in the Diagnostics Commander and select the entities associated with it.
For details, see "Working with Applications" in the Diagnostics User Guide.

« Use scripts with Composite Application Discovery (CAM). For details, see "Automating Composite
Application Discovery in Diagnostics" in the Diagnostics Server Installation and Administration Guide.

Configuring a Probe to Automatically Assign
Applications

To automatically create an application (if it does not already exist) and assign an individual probe toit, you set
the probe property setting -Dprobe.belongsto.application as a Java system variable. For example, setting -
Dprobe.belongsto.application=MyGroupName/MyAppName creates a group called MyGroupName and
within it, an application called MyAppName, to which the probe is assigned. For details on setting a probe
property as a Java system variable, see "Specifying Probe Properties as Java System Properties" on page
31.

Note: Use a single slash (/) as a separator. For example, MyGroupName/MyAppName.

Configuring an Agent to Automatically Assign
Applications

To automatically create an application (if it does not already exist) and assign an agent to it, you configure the
belongsto.application parameter in the <agent_install_directorydir>etc/probe.properties file. For
example:

Micro Focus Diagnostics (9.50) Page 95 of 267

Java Agent Guide
Chapter 9: Automatically Assigning a Probe to an Application

Setting belongsto.application=MyGroupName/MyAppName creates a group called MyGroupName and
within it, an application called MyAppName, to which all probes on the agent are assigned.

Setting belongsto.application=${MyAppGroup}/MyString/${PROBE_ID}, creates a group with the name
of the value in the MyAppGroup variable, within it a sub-group called MyString, and within that, an
application with the name of the value in the PROBE_ID variable. Since the application name is specific to
one probe, only that probe is assigned to it as each probe on the agent creates and application with a different
name.

Note:

o Useaslash (/) as a separator. For example, MyGroupName/MyAppName.

« All the probes of an agent are assigned to the configured group, unless you use variables that create
different groups or applications to which specific probes can be assigned.

« Changing the belongsto.application parameter in the <agent_install_directorydir>etc/probe.properties
file requires you to restart the application the probe is monitoring.

« The Belongs to Application field in the Diagnostics Commander Ul is only populated when there is
at least one reported server request.

General Configuration

By default, automatically assigning a probe to an application is enabled and a task is run every 5 minutes to
check for new group and application names to be created. You can disable this feature and change the
frequency of the task, by editing the following parameters in the <diag_server_install_
dir>/etc/server.properties file on the Diagnostics server:

belongsto.application.rules.disable. By default, this feature is enabled (set to false).
belongsto.application.frequency. By default, this is set to 5 minutes, which is the minimum you can set.
probe.topology.discovery. Adds connected probes to the application. By default, this feature is enabled (set

to true).

Note: These parameters are dynamic and changing them does not require a system restart.

Micro Focus Diagnostics (9.50) Page 96 of 267

Chapter 10: Custom Instrumentation for Java
Applications

This chapter explains how to control the instrumentation that Diagnostics applies to the classes and methods
of the applications to enable the Java Agent to gather the performance metrics.

This chapter includes:

« "About Instrumentation and Capture Points Files" below

« "Using Regular Expressions in Points Files" on the next page

« "Coding Points in the Capture Points File" on page 99

« "Defining Points With Code Snippets" on page 104

« "Controlling Class Map Capture" on page 115

« "Instrumentation Examples" on page 115

« "Understanding the Overhead of Custom Instrumentation" on page 127

« "Instrumentation Control on a Per Layer Basis" on page 127

« "Instrumented Location Throughput Throttling" on page 128

« "Advanced Instrumentation Examples" on page 129

« "Configuring Cross VM Correlations for New or CustomTechnologies" on page 138
« "Tutorial for Configuring Cross VM Correlation for Custom Technologies" on page 142
« "Maintaining Instrumentation from the Java Profiler UI" on page 148

« "Default Layers Defined for Typical Java Classes and Methods" on page 158

About Instrumentation and Capture Points Files

Instrumentation refers to bytecode that the probe inserts into the class files of the application as they are
loaded by the class loader of your virtual machine. Instrumentation enables a probe to measure execution
time, count invocations, retrieve arguments, catch exceptions, and correlate method calls and threads.

Instrumentation is controlled by instrumentation points. The points define which methods to instrument, how
they should be instrumented, and which instrumentation should be installed. Instrumentation points for each
probe instance are specified in a capture points file.

The points in the capture points file are grouped into layers. Layers organize the performance metrics into
meaningful tiers of information that can be compared as part of a triage process. They control the collection
behavior of the instrumentation. You can customize the default layers and create new layers. For description
of the default layers see "Default Layers Defined for Typical Java Classes and Methods" on page 158.

When you install the Java Agent, a predefined capture points file is installed with a set of points for the
platform you are using. This default capture points file is located at <agent_install_directory>\etc\auto_
detect.points.

You can customize the points in the capture points files to include methods, classes, packages, and
namespaces for areas of the application that do not fall within the default points. A common situation that
might require custom points is when a J2EE application contains business logic that is not derived from the

Micro Focus Diagnostics (9.50) Page 97 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

javax.ejb.SessionBean interface. Another situation for custom points is when you want to override a default
point to alter its layer or to track it from a specific caller method.

To add custom instrumentation, you can do one of the following:

« Modify the <agent_install_directory>\etc\auto_detect.points file with your instrumentation
customizations. All probes on the same host use this instrumentation. You will need to back up this file
and merge back your changes when upgrading the Java agent.

« Copy and rename the <agent_install_directory>\etc\auto_detect.points file and then add your
instrumentation customizations. Specify the name and location of the new points file in the <agent_
install_directory>\etc\probe.properties file. For example:

Name of the instrumentation points file to be used when reporting
to AM/BAC or AD/LoadRunner/PC. The default value is "auto_detect"
which points to probelInstall/etc/auto_detect.points file.

#

points.file.name=auto_detect
points.file.name=my_custom_points

The file name must have the ".points" suffix although the file name that you specify in <agent_install_
directory>\etc\probe.properties does not have the suffix. The file location that you specify is relative to
the <agent_install_directory>\etc directory.

All probes on the same host use this instrumentation. Using a copy of the file prevents you from needing to
back up and restore it when upgrading the Java agent.

« Copy and rename the <agent_install_directory>\etc\auto_detect.points file following the naming
guideline note below. Then add the instrumentation customizations that are needed for an individual probe.

Note: A custom capture points file name must be different than the probe name. Custom capture
points file names that match the probe name are reserved for internal use. To help you recognize the
probe associated with a custom capture points file, use the probe name with a suffix of prefix. For
example, for a probe named “MyProbe” you can specify a custom capture points file name of
“MyProbe_custom”.

Specify the name and location of the new points file as the "-Dprobe.points.file.name"JVM parameter
when you start the application server. How you start the application server depends on the type of
application server. For example on GlassFish the JVM parameters would be:

-javaagent:<agent_install directory>/lib/probeagent.jar
-Xbootclasspath/p:<agent_install directory>/classes/auto/<probe_id>/instr.jre
-Dprobe.id=<probe_id>
-Dprobe.points.file.name=WL10_MedRec_ovrserverl30_custom

Only this application server instance (JVM) uses the custom points file. The instrumentation in the auto_
detect.points or other custom instrumentation file on the host is ignored.

Using Regular Expressions in Points Files

Points can include regular expressions that "wildcard" the instructions so that they apply to more than one
method, class, and package or namespace specification. For more information about using regular

Micro Focus Diagnostics (9.50) Page 98 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

expressions, see “Using Regular Expressions” in the Diagnostics Server Installation and Administration

Guide.

Coding Points in the Capture Points File

The following arguments can be used to define a point in the capture points file:

[Point-Name]

class

method
signature
ignore_cl
ignore_method
ignore_tree
method_access_filter
deep_mode
scope
ignoreScope
detail

layer
layerType
rootRenameTo
keyword
priority
active

<unique name for the point>

<class name or regular expression>

<method name or regular expression>

<method signature or regular expressions>
<list of class names or regular expressions>
<list of method names or regular expressions>
<list of class names or regular expressions>
<list of class names or regular expressions>
<soft or hard mode>

<list of methods or regular expressions>
<list of methods or regular expressions>
<list of specifiers>

<layer name>

<layer type>

<string>

<keyword>

<integer number>

<true, false>

The following sections describe the arguments.

"Mandatory Point Arguments" below

"Optional Point Entries" on the next page

Mandatory Point Arguments

Every point, except for the points for CLP, LWMD, RMI and SAP RFC, HttpCorrelation, and JDBC SQL,
must contain the following arguments:

Argument
Point-Name

class

method

signature

Micro Focus Diagnostics (9.50)

Description
A unique name for the point.

Specifies the name of the class or interface to be instrumented. The name
should include the full package/namespace name using periods between the
package levels. Any valid regular expression can be used.

Specifies the name of the method to be instrumented. To be successful, the
method name must match a method defined in the class or interface
specified by the class argument. Any valid regular expression can be used.

Specifies the signature (parameter and result types) of the method using
javap symbolic encoding for method signatures (<jdk_install>/bin.javap -s).

Page 99 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Argument Description

layer Specifies alayer, sublayer, or tier under which the data from this point is
grouped. Layers are a part of the instrumentation collection control.

Layers in a point can be specified with nested layers or sublayers by
separating the layer names with a/ (slash). The layer specified following the
slash is a sublayer of the layer specified before the slash. A sublayer can
have its own sublayers by coding another slash and layer name following a
sublayer name.

In the Ul, the sublayers for a layer are displayed under their parent layer. For
example, the sublayers JSP and Struts would be displayed under the web
layer and a drilldown would exist from Web to JSP and Struts.

The following is an example of a custom point that contains the mandatory arguments:

[MyCustomEntry 1]

; comments here...

class = myPackage.myClass.MyFoo
method = myMethod

signature = I.*

layer = myCustomStuff[MyCustomEntry 1]

Note: Regular expressions can be used for most of the arguments in a point. They must be prefaced with
an exclamation point. For more information about using regular expressions, see “Using Regular
Expressions” in the Diagnostics Server Installation and Administration Guide.

Optional Point Entries
Point definitions can contain one or more of the following arguments:

Argument Description

keyword The keyword indicates an instrumentation point handled by a special instrumentation
class. The value of the keyword is looked up as a property in inst.properties, and the
value of the found property is the instrumentation class name. The special instrumentation
points can use implementation-specific arguments not documented here, refer to the
comments in the inst.properties file.

ignore_cl Specifies a comma-separated list of class names or regular expressions to ignore. Any
class matching one of the classes specified with ignore_cl is not instrumented.

ignore_method | Specifies a comma-separated list of methods to ignore. Any method matching one of the
methods specified with ignore_method is not instrumented.

Ignore_tree A list of classes or regular expressions. Any subclass of a class matching one of the list
items is excluded from the instrumentation.

method A list of method specifiers, separated by commas. The available specifiers are static,
access_filter private, protected, package, and public. Any method matching this point is not
instrumented if its access specifier matches any of the listed values.

Micro Focus Diagnostics (9.50) Page 100 of 267

Java Agent Guide

Chapter 10: Custom Instrumentation for Java Applications

Argument

deep_mode

scope

ignoreScope

Description

Specifies how subclasses are handled. This argument accepts three values:

« none — A value of “none” is similar to not specifying a deep_mode argument. The

instrumentation point applies only to the specified class and has no effect on how
subclasses are handled.

soft — A value of “soft” requests that for every class or interface matching the class,
method, and signature entries, any subclasses or subinterfaces at any depth that also
implement the matching method and signature should also be instrumented.

hard — A value of "hard" means that the instrumentation point applies (in addition to the
specified class) to all methods from all classes extending (or implementing) the
specified class, wherever the method matches the instrumentation point specification
(both method name and signature). Hard mode is typically used for points for
interfaces. Caution: Hard mode can lead to extensive instrumentation and very high
probe overhead.

Note: Since deep_mode looks at the class hierarchy, it cannot be used for instrumentation
points based on annotations.

Constrains the context in which instrumentation is performed. If specified, the inserted
bytecode will be caller side. Any valid regular expression can be used for the value of this
argument. Scope values are a comma-separated list of package, class, and method
names in standard Java notation.

Lists method names or regular expressions and excludes certain packages, classes, and
methods from those included in the scope specified in the scope argument.

Micro Focus Diagnostics (9.50) Page 101 of 267

Java Agent Guide

Chapter 10: Custom Instrumentation for Java Applications

Argument Description

detail Specifies more specific capture instructions. It is a comma-separated list of the following:

caller —causes caller side instrumentation to be performed. If this keyword is not
specified, the default instrumentation, callee side instrumentation, is performed.

args:n — calls the toString() method of the n-th argument. The string that is returned is
displayed in the method's argument field in the Diagnostics console. The captured
string can be used as the aggregation parameter in the layer argument. The value forn
can be 1 through 256.

args:0 — calls the toString() on the current class instance or callee object. Static
methods return the class name of the callee object.

before:code:<code-key> —inserts the code-snippet specified in the key at the start for
the bytecode for methods that comply with the point. The final string value on the stack
when the code-snippet runs is displayed in the method's argument field in the
Diagnostics console and can also be used as the aggregation parameter in the layer
argument. The code-key argument specifies the secure code key you generated for the
code snippet you created for the point. See "Defining Points With Code Snippets" on
page 104 for information about code snippets and "Securing Code Snippets" on page
113 for information on code keys.

after:code:<code-key> — inserts the code-snippet specified by the key at every exit
point from the bytecode of methods that comply with the point. The after code-snippets
should not leave any values on the stack after they run.

disabled — prevents the instrumentation inserted into the bytecode from reporting data.
A disabled point can be dynamically enabled using the Instrumentation control web
page so that it will begin reporting data. This web page can be accessed using the
Profiler URL

http://<agent_install_directory>:<probe_port>/inst/layer.

outbound —flags the method so it is listed on the Outbound Calls screen. Also causes
the Diagnostics argument for this instrumentation entry to be parsed to determine if
additional information about the outbound request can be displayed in the Diagnostics
dashboards.

no-correlation — used with those “outbound” points that do not use correlation
supporting technologies.

method-no-trim —indicates that no latency-based trimming should take place when a
method instrumented by this point is executed.

method-trim —indicates that every invocation of the method instrumented by this point
should be “trimmed”, that is, not reported. However, side-effects of the corresponding
code-snippets, if any, take place normally.

lifecycle —identifies the instrumentation point as relevant for object lifecycle
monitoring.

no-layer-recurse — prohibits recording of any methods called from the method
instrumented by this point, unless the callee belongs to a different layer.

is-statement — marks calls into the java.sql.Statement class.
is-prepare-statement — marks calls returning java.sql.Statement objects to capture.

method-cpu-time — causes the CPU inclusive time to be collected for this method in
addition to latency, unless CPU collection is completely turned off

Micro Focus Diagnostics (9.50) Page 102 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Argument Description

(cpu.timestamp.collection.method = 0).

« condition — prohibits instrumentation by this point unless the specified condition is
met. The conditions are static and are defined by the details.conditional.properties
property in inst.properties (or on the command line).

« when-root-rename — instructs the probe to rename the server request whenever the
method instrumented by this point is the first one executed.

« add-field:<access>:<type>:<name> — causes adding the specified field to the
instrumented class.

« gen-instrument-trace — causes printing of the thread stack trace onto stdout whenever
this point is used for instrumentation.

« gen-runtime-trace — causes printing of the thread stack trace onto stdout whenever
the methods instrumented by this point are executed.

« trace — causes printing of verbose instrumentation information into probe.log on each
enter or exit from each method instrumented by this point.

« sub-point:<key> — specifies additional processing during instrumentation; the key
must be present in inst.properties and must identify a class name used for the
processing.

« store-thread — causes all special fields used in the corresponding code-snippet to be
stored in a thread-local data structure.

« store-fragment — causes all special fields used in the corresponding code-snippet to
be stored as attributes of the current server request.

« store-method — causes all special fields used in the corresponding code-snippet to be
stored as attributes of the invocation of the method instrumented by this point.

« Wws-operation — specifies that the instrumentation entry is for an inbound web services
call. Also causes the Diagnostics argument for this instrumentation entry to be parsed
to determine if additional information about the web service request can be displayed in
the Diagnostics dashboards.

rootRenameTo | Identifies server requests whenever the when-root-rename detail is in effect.

layerType Specifies special handling for some instrumented methods and accepts the following
values:

« method — no special handling (default).
« trended_method —identifies methods to be displayed in the Trended Methods view.

« Portlet —identifies portlet lifecycle methods that are used for the Portal Components
views. These are set by Diagnostics and should not be modified.

« sqgl —identifies methods that are used to capture SQL for the SQL views. These are set
by Diagnostics and should not be modified.

priority Whenever there is more than one instrumentation point that can be applied to a given
method, and the Diagnostics Agent cannot resolve the conflict on its own, the point’s
priority determines which point to use. Higher priority wins. The default is zero.

active Activates or deactivates a point. When set to true, the point is activated. When set to
false, the point is inactive and is ignored by the probe.

Micro Focus Diagnostics (9.50) Page 103 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Defining Points With Code Snippets

Custom code arguments specify a snippet of code that is to be inserted into the bytecode for a point. Code
snippets in a point are used when the value returned by calling an object’s toString() method, as specified in
the args:n argument, is not going to provide useful information for the Diagnostics console or when there is a
requirement to display more than one argument for an instrumented method.

A code snippet in a point is declared using the keyword before:code:<code-key> or after:code:<code-key>
in the detail argument of the point. The before and after is used to execute the code snippet before or after the
instrumented method. The code snippet is typically secured using a code-key argument to prevent
unauthorized modifications of the code snippet. The values for the code-key arguments can be generated
using any running probe's code-key generator page and are valid on any Java Agent installation. For more
information on the code-key see "Securing Code Snippets" on page 113.

The actual code snippets for a point are entered into the <agent_install_directory>/etc/code/custom_
code.properties file. These snippets are then associated with the point in the capture points file using the
value of the code-key. Code snippets are created using pseudo Java code that uses syntax similar to OGNL.
Using code snippets, calls can be made from the instrumented bytecode to methods that can be accessed by
the instrumented method. Objects returned by code snippets can be cast and can have their methods
executed as well. Code snippets must end with a string or an object where toString() can be left on the stack
of statements being parsed into bytecode. This final string of the code snippet is used for the returned
argument value displayed in the Diagnostics console.

Code snippets can also be used to store values for a particular fragment directly or that could be used in a later
code snippet. These features can be used through special fields and key word details like store-fragment and
store-thread.

Note: Code snippets are a very powerful tool that should be used carefully because of the potential
impact to the overhead incurred by the probe. For this reason, Diagnostics requires that a code-key be
specified along with the code snippet before the probe will use the code snippet during instrumentation.

This section includes:

« "Using Code Snippets" below

« "Code Snippet Grammar" on the next page
« "Code Snippet Helper" on page 108

« "Securing Code Snippets" on page 113

Using Code Snippets

To use code snippets when specifying a point in <agent_install_directory>/etc/auto_detect.points, the
following detail:

class = javax.jms.TopicPublisher
method = publish

signature = !\(Ljavax/jms/Topic.*
deep_mode = soft

layer = Messaging/JMS/Producer

Micro Focus Diagnostics (9.50) Page 104 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

detail = outbound,no-correlation,before:code:6d0f3088

The before:code entry in the detail argument indicates that a code snippet was entered for the point. The code-
key value secures the code in the code snippet and ties the point with the actual code snippet.

The code snippet associated with the point must be entered in <agent_install_directory>/etc/code/custom_
code.properties as shown in the following example:

Used by [IMS-TopicPublisher2]

6d0f3088 = #topic =

@ProbeCodeSnippetHelper@.checkForTempName (#argl.getTopicName()); \
"DIAG_ARG:type=jms&name=topic:"+ #topic + "&target=topic://" + #topic;

The code snippet is associated with the point in the capture points file using the value of the code-key.

Code Snippet Grammar

The following describes the syntax that must be used to create the code snippets.
Literals

Only the following literal types are supported in code snippets.

Literal Type Syntax Example
string "a string"

boolean true, false
integer 42

null constant null

a no-type, no-value constant void

String concatenation

Basic string concatenation is supported in code snippets.

Concatenation Type Syntax Example
Two strings "a string" + "another string"
A string and a literal "astring" + 42

Local members

Default local members provide a way for code snippets to reference the current instance or objects that were
passed to the instrumented method. These local members call methods or retrieve values from those
references.

Micro Focus Diagnostics (9.50) Page 105 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Variable Use

#callee References the callee object for an instance method. Equivalent to
the java “this” reference. Must not be used when referencing a static
method.

#arg1, #arg2, ..., #argN References the arguments for the callee method call.

#return References the return value of the method end for after code
shippets.

#classloader Reserved for Software internal use.

Note: Some instrumentation points support special variable references. For example, the
CLApplicationDiscoveryPoint supports a #classloader variable.

DIAG_ARG strings

Code snippets allow concatenation of a series of values building up a single DIAG_ARG value. This value
allows for instrumentation of some common types of support data like Web Services and JMS by returning all
the data for a particular type in one DIAG_ ARG formatted string.

Type Field (Required) Definition
ws &ws_name Web Service name
&ws_op Web Service Operation name
&ws_ns Web Service namespace
&ws_port (inbound only) Web Service Port Name
&target (outbound only) Outbound Web Service Target
jms &name Queue or Topic name
&target Target Queue or Topic name

The format of the DIAG_ARG string includes the type fields and values (local variables) concatenated into
one string as follows:

"DIAG_ARG:type=ws&ws_name="+ #servicename +"&ws_op="+ #operation +\ "&ws_ns="+ #ns +"&ws_
port="+ #port;

The DIAG_ARG string must not be used in combination with the store-fragment special fields for web service
inbound data (special fields starting with #WS_inbound_*). Use ONLY one for collecting web service
inbound data.

Special fields (store-fragment)

Default special fields provide an easy way for code snippets to pass fragment-related data for common
events. This mechanism supplements the existing events, but is not expected to replace them. Fragment
Local Storage has higher overhead cost than custom events. The following variables must be used with the
store-fragment detail setting.

Micro Focus Diagnostics (9.50) Page 106 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Variable Use

#WS_consumer _id Stores the consumer Id for a particular fragment.
##WS_SOAP_fault_code Stores the SOAP fault code.
#WS_SOAP_fault_reason Stores the SOAP fault reason.

#HWS _SOAP_fault_detail Stores the SOAP fault detail.
#WS_inbound_service_name Stores the inbound web service name.

#WS _inbound operation_name Stores the inbound web service operation name.
#WS _inbound_target namespace Stores the inbound web service target namespace.
#WS_inbound port_name Stores the inbound web service port name.

Special fields (store-thread)

Additionally special fields provide an easy way for code snippets to store related data for the life of the thread.
Use these thread local storage variables with caution because they have overhead associated with them. Use
them only with the store-thread detail setting.

These variables can be retrieved in later code snippets by making a call to the probe’s ThreadContextProxy
class reference with either the getThreadContextValue(“string value”) or getAndRemoveThreadContextValue
(“string value”) methods, with “string value” being the name of the variable without the leading ## signs. The
last retrieval of the value should always call getAndRemoveThreadContextValue(“string value”) to clear the
value from memory and to remove the value for the next thread.

Variable Use
#SOAPHandler_wsname Stores the web service name for later use by the SOAP Handler.
##<any_string> Stores any value for later retrieval in a following code snippet.

Class references and static members

Static members/methods can be accessed by pre-pending the class withan @ symbol to identify it as a
Static, and marking the method being accessed with an @ symbol as in the examples below:

@java.lang.System@.out ("Hello World");

@com.mercury.diagnostics.capture.metrics.countingCollector@.incrementCounter();

The arguments in the code snippets support Java class syntax when the Java class is surrounded with a
marker that the parser can get hold of. The following examples show how to use the @ symbol as a marker:

@java.lang.System@

@java.lang.System@out (Static field)

Micro Focus Diagnostics (9.50) Page 107 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Code Snippet Helper

Some functionality is very hard, or even impossible, to code using the limited syntax available within the code-
snippets. Therefore, the code-snippet environment offers two helper classes:

« ProbeCodeSnippetHelper
« ProbeCodeSnippetHelperV5.
The following shows ProbeCodeSnippetHelper functionality.

/*

* (c) Copyright 2008 Hewlett-Packard Development Company, L.P.
*/

package com.mercury.opal.capture.proxy;

[**

* Used to help out Code Snippets

*/

public class ProbeCodeSnippetHelper {

/**

* When a Special Field holds a reference to the string below,
* it will not be stored in the Fragment Local Storage,

* or Invocation Local Storage

*/

public static final String DO_NOT_STORE = .

[**

* Helper to convert an int to an Integer

* @param i

* @return a new Integer object having the value of i

*/

public static Object intToInteger(int i) {

}

/*

* Mark the current thread, if not marked yet

* @return true, if and only if the thread had been already marked
*/

public static boolean testAndSetRecursiveFlag() {

}
/*
* Unmark the current thread
=

public static void clearRecursiveFlag() {

}

/**

* Helper method to call ResourceBundle.getString() and catch any exceptions that
* might be thrown

* @param theBundle the ResourceBundle on which to call getString

Micro Focus Diagnostics (9.50) Page 108 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

* @param key the key to pass getString
* @return the value returned from getString, or null if an exception occurred

*/

public static String getStringFromResourceBundle(ResourceBundle theBundle, String
key) {

/*

* Helper methods to allow our cross-vm coloring to piggyback ride across

* the custom outbound calls in which the application passes [only] a String.
* The actual transport technology is irrelevant.

* Instead of sending the original message, a composite message ("envelope")
* will be passed. The composite message includes both the original message

* and Diagnostics Probe ENCODED cross-vm coloring.

* On the receiving end, the composite message will be received, but only

* the original message will be passed to the application, and the coloring

* will be retained by the probe.

*/

/**

* Create a composite message, given the coloring and the original message.

* @param coloring - the correlation String obtained via the ENCODED coloring,

* may be null

* @param originalMessage - the original messsage sent by the application

* @return - the composite message, null if and only if the originalMessage is null
*/

public static String createDiagEnvelope(String coloring, String originalMessage) {

}

/**

* Extract the coloring from the composite message (envelope).

* @param envelope - the composite message or the original message

* @return the coloring as created on the sender side, or null if not present
*/

public static String extractColoringFromDiagEnvelope(String envelope) {

}

/**

* Extract the original message from the composite message (envelope).

* Works properly, even if the sender side has not been instrumented, and
* there's no envelope.

* @param envelope - the composite message or the original message

* @return the original message (before coloring)

*/

public static String extractOriginalMessageFromDiagEnvelope(String envelope) {

-

The following shows ProbeCodeSnippetHelperV5 functionality.

Micro Focus Diagnostics (9.50) Page 109 of 267

Java Agent Guid

e

Chapter 10: Custom Instrumentation for Java Applications

/*

* (c) Copyright 2008 Hewlett-Packard Development Company, L.P.

*/
package c
/**

* Used to help out Code Snippets using Java 5 or later

*/
public cl

/**

om.mercury.opal.capture.jdkl5.agent;

ass ProbeCodeSnippetHelperV5 {

* Get the annotation of the specified type from the class or its superclass,

or its

@param

*
*
*
* @return

*/

implemented interfaces

@param theClass The class to get the annotation for

annClass The annotation class to look for

public static Object getEndpointClassAnnotation(Class theClass, Class annClass) {

*
*

or its
@param
@param
@param
@param
@param
@return

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ O\

*/

Get the method annotation of the specified type from the class

superclass, or its implemented interfaces
theClass the class

methodName the method name

argCount the argument count

annClass the class annotation type
methodAnnClass the method annotation type

public static Object getEndpointMethodAnnotation(Class theClass, String methodName,

String argCount, Class annClass, Class methodAnnClass) {

}

/**

* Helper method to get an annotation element value. If the annotation

* does no
* @param
* @param
* @param
*

@return The element value for the annotation instance, or null

*/

t have the element, return null.
annClass The class of the annotation
instance The annotation instance object
elementName The element name

public static String getAnnotationElementValue(Class annClass, Object instance,

String el

}
/**

* This helper method is used to serialize a DOM document.
* This method uses APIs available in DOM Level 3 or newer, which are

* availab
* @param

ementName) {

le with a 1.5 or later JVM.
document

Micro Focus Diagnostics (9.50)

Page 110 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

* @return The serialized form (XML) of the input DOM document
*/

public static String serializeDOMToString(Document document) {

}
}
Spanning multiple lines with the stack of method calls

The stack of method calls in a code snippet can span multiple lines. The parser that builds the bytecode
requires a “\” (backslash) before each carriage return when it must continue parsing the stack of statements.
The final line of the Code Snippet stack of statements should not contain a backslash and should simply end
with carriage return.

@java.lang.System@.out ("Hello World");\
"Callee Name="+#callee.getName().toString();
Casting

When calling a method that returns an object, casting is typically required to call members on the returned
object. Casting is supported on object references. To cast an object to another type, place the casting
reference between the symbols “<* and “>” following the reference to that object. The following are examples
of casting.

#targl<com.myCompany.myFoo>.myMethod();

This is equivalent to the Java statement:

((com.myCompany.myFoo)argl).myMethod();

@some.class.Foo@foo<com.myCompany.myFoo>.myMethod();
Would be equivalent to the java statement:

((com.MyCompany.myFoo)some.class.Foo.foo).doSomething();

#foo = #argl<bar>.b(); #foo.toString();
Creates the following java equivalent:

String foo = ((Bar)argl).b(); ((Object)foo).toString();

Note: Casting is not supported for special types such as #classloader.

Method calls

Method calls can be included in snippet arguments. The support of method calls includes calls with or without
arguments and method chaining. The following are examples of method calls that are included in code snippet
arguments:

#targl.toString()

Micro Focus Diagnostics (9.50) Page 111 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

#targ2.getSomething().getSomethingElse()
#tcallee.getSomething("foo", #argl).somethingElse()

@some.Class@.staticMethod()

The dot still needs to appear after the static reference for the method call to be parsed properly.

@java.lang.System@out.println("Here I am!")

To speed up the generation of bytecode at runtime (by avoiding reflection), you can specify the type that is
returned from a method as shown in the following example:

#targl.getSomething()<some.class.Here>
This will not help if the method takes arguments, or if a static field is used.
Multiple statements

Code snippets can include multiple statements in a single code snippet. This is necessary for
instrumentation, such as CLApplicationDiscoveryPoint, that expect multiple objects to be left on the stack.
It can be handy in other situations as well.

@java.lang.System@out.println("Look out!");

#targ2.getSomething();

Local Member assignment

In addition to the default local member variables, you can create your own local members to hold object
references returned by called methods.

To create a new local member, enter the "#"' symbol before the name of the local member. The parser will
create the local member. Once a local member is assigned a value it cannot be overwritten; simply create a
new variable if you need to re-assign to a local member.

#myBar = #arg2.getName();\
#tmyUpperBar = #myBar.toUpper();\
"Target Name=http://"+myUpperBar+"/services";

Special Field assignment (store-fragment)

You can use a pre-defined special field to store the object references returned by called methods. Enter the
"##" symbols before the name of the special field along with the store-fragment detail keyword on the
instrumentation point.

##WS_SOAP_fault_code = #arg2;\
##WS_SOAP_fault_reason = #arg3;\
##WS_SOAP_fault_detail = (#argd4 == null ? null : #argd.toString());"";

Special Field assignment (store-thread)

You can use a special field to store the object references retured by called methods. Enter the "##" symbols
before the name of the special field along with the store-thread detail keyword on the instrumentation point.

Micro Focus Diagnostics (9.50) Page 112 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Used by [SOA Broker_Payload_Handler]
##SOA_Manager_Inbound Payload=t#ticallee.getRequestDocument();"";

In a later code snippet you can retrieve the value stored by calling getThreadContextValue with the special
field value above without the leading ## symbols.

#temp_soam_
payload=@com.mercury.opal.capture.proxy.ThreadContextProxy@.getThreadContextValue("SOA_
Manager_Inbound_Payload");

In a later code snippet you can retrieve and remove the special field value stored by calling
getAndRemoveThreadContextValue method with the value same above without the leading ## symbols. It is
very important that you call getAndRemoveThreadContextValue to free memory and clear the way for the
next occurrence.

#temp_soam_payload=@com.mercury.opal.capture.proxy.ThreadContextProxy@.
getAndRemoveThreadContextValue(("SOA_Manager_Inbound_Payload");

Conditional Logic

Code snippet syntax allows for limited conditional logic that is equivalent to the Java if-else statement. This
syntax enables you to compare object references of the same type or integer or boolean primitives using both
the == and ! = operators. Literal value and other primitive comparisons are not valid using this syntax.

The following is an example of how to compare references:

(valuel == value2 ? <if True_codeSnippet>:<if_False_codeSnippet>)

The following is an example of how to verify that an object is not null before calling a method:
(#argl == null ? "Unknown" : #argl.getSomething())

This would be equivalent to the following Java statement:
if (argl==null) return "Unknown" else return argl.getSomething();

Exception Handling

A limited form of exception handling is provided by the following syntax:
1{<code-snippet-code>}!

The specified code is executed and the value of the above expression is the thrown exception, or null if no
exception was thrown during the execution of the code.

Securing Code Snippets

By default, you must specify a valid code-key along with the code snippet before the probe will use the code
snippet during instrumentation. Requiring the code-key prevents accidently introducing instrumentation that
could significantly increase the overhead of the probe.

Micro Focus Diagnostics (9.50) Page 113 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

When you generate the code-key, Diagnostics checks the syntax of the code snippet to make sure it is valid

before it generates the key. When Diagnostics instruments an application, it checks the value entered for the
code-key argument to make sure it matches the code-key it calculates for the code snippet for the point. If the
code-keys do not match, Diagnostics ignores the code snippet and does not create the instrumentation point.

Generating the Code Snippet Code-Key
The Java Agent is installed with a tool that generates the code-key from the code snippet you input.
To generate a code-key:

1. Open the page at the following URL in your browser:
http://<probe-host>:<probe-port>/inst/code-key

Diagnostics displays the page where you can validate the code snippet syntax and generate the code-
key as shown in the following example:

Diagnostics

This page provides you with the ability to validate a snippet of code for use in the probe's points
file, as well as generate the required secure code-key.

If a point's code does not match its key, the probe will refuse to use that code during
instrumentation.

Input your code snippet:

Submit

Resulting point section:

[Diagnaostics J2EE Probe "Weblogicl0_myd-vm330", version 9.30.6.269, pid 5380, profile 120

2. Enter the code snippet you specified in the code argument in the auto_detect.points file into the Input
your code shippet text box and click Submit.

The code snippet must include all of the text following the code =argument name.

3. Diagnostics presents the results of the code snippet validation and the code-key generation in the
Resulting point section text box.

If the code snippet is valid, Diagnostics displays the value of both the code-key and code arguments.
Enter these values into the capture points file.

If the code snippet is not valid, Diagnostics displays an error message that indicates the problem that
was detected. Correct the problem and click Submit again to validate the corrected code.

Disabling the Code-Key Security Check
By default, Diagnostics verifies that the value of the code-key argument matches the value it generates when
it is instrumenting the application. It is possible to disable this security check by inserting the

require.code.security.key property into the <agent_install_directory>/etc/code/custom_code.properties
file, under the [Default] section, with a value of false.

Micro Focus Diagnostics (9.50) Page 114 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Note: Be very careful when using this property. If you disable this check, you could experience
unexpected processing overhead and unpredictable performance monitoring results.

Controlling Class Map Capture

The class map allows Diagnostics to provide more details about the classes and methods that are invoked by
a server request. This information can help you to narrow your search for the source of a performance issue
and help you instrument the application code properly. The cost for using class map comes from the additional
overhead that creating the map places upon the agent’s host system.

By default the property use.class.map=false is set in the probe.properties file. Changing this to true
provides a class map.

Instrumentation Examples

The examples in this section illustrate how you can customize the instrumentation of an application by
creating and modifying the points in the capture points file.

This section includes the following examples:

L]

"Custom Layer and Sublayer" on the next page

"Wildcard Method" on the next page

"Ignore Specified Methods" on the next page

"Capture Methods for the Trended Methods View" on page 117
"Capture Only a Specific Method In a Class" on page 117

"Capture a Specific Method That Returns a String" on page 118
"Capture with a Controlled Scope" on page 118

"Hard and Soft deep_mode" on page 119

"Argument Capture" on page 120

"Inbound and Outbound Web Services" on page 120

"Renaming Root Methods" on page 121

"Adding a Field to a Class" on page 122

"Passing Attributes to Instance Trees" on page 122

"Filtering Out Methods by Their Access Flag" on page 122

"Not Recording Direct Recursion" on page 122

"Performing Caller Side Instrumentation" on page 123

"Configuring Allocation Analysis" on page 123

"Configuring Lightweight Memory Diagnostics (LWMD)" on page 124
"Configuring Collection Leak Pinpointing" on page 124

"Enabling Object Lifecycle Monitoring for JDBC Result Set" on page 124
"Adding a Disabled Point and Enabling it at Runtime" on page 125
"Specifying that a Method Should Never be Trimmed" on page 126
"Specifying that a Method Should Always be Trimmed" on page 126

Micro Focus Diagnostics (9.50) Page 115 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

« "Enabling Collection of CPU Time for a Method" on page 126
« "Changing SAP RFC Instrumentation Based on SAP JCO Library Version" on page 126

« "Printing Instrumentation and Runtime Information for a Point (Debugging Only)" on page 126

Custom Layer and Sublayer

The following point creates a custom sublayer called “BAR” within the layer called “FOO” for the method
myMethod in myCompany.myFoo class:

[myCompany.myFoo_customLayer]
class = myCompany.myFoo
method = myMethod

signature = I.*

layer = FOO/BAR

Wildcard Method

The following point captures all methods in the MyCompany.MyFoo class:

[myCompany.myFoo_AllMethods]
class = myCompany.myFoo
method = !.*

signature = I.*

layer = FOO/BAR

Ignore Specified Methods

The following point captures all methods in the MyCompany.MyFoo class except for the methods
setHomelnterface and getHomelnterface:

[myCompany.myFoo_AllMethodsExcept]
class = myCompany.myFoo

method = !.*
ignoreMethod = !setHomeInterface.*, !getHomeInterface.*
signature = !.*

layer = FOO/BAR

The following point captures all methods in the MyCompany package/namespace except for those contained
in the MyCompany.logging class:

[myCompany_All Methods_except_from_MyCompany_ Logging]

class = !myCompany\..*

method = !.*

ignore_cl = MyCompany.logging
signature = !.*

Micro Focus Diagnostics (9.50) Page 116 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

layer = FOO/BAR

Capture Methods for the Trended Methods View

The following point captures the required data to populate the Trended Methods View for the myMethod
method:

[myCompany.myFoo_customLayer]
class = myCompany.myFoo
method = myMethod

signature = I.*

layer = FOO/BAR

layertype = trended_method

Capture Only a Specific Method In a Class

The following point captures all methods in the constructor for the MyCompany.MyFoo class:

[myCompany.myFoo_Constructor]
class = myCompany.myFoo
method = <init>

signature = I.*

layer = FOO/BAR

The following point captures all methods in the singleton constructor for the MyCompany.MyFoo class:

[myCompany.myFoo_Singleton]
class = myCompany.myFoo
method = <clinit>
signature = !.*

layer = FOO/BAR

The following point captures the setFoo method in the MyCompany.MyFoo class:

[myCompany.myFoo_setFoo]
class = myCompany.myFoo
method = setFoo
signature = I.*
layer = FOO/BAR

The following point captures all "set" methods in the MyCompany.MyFoo class:

[myCompany.myFoo_AllSets]
class = myCompany.myFoo
method = !set.*

Micro Focus Diagnostics (9.50) Page 117 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

signature = I.*
layer = FOO/BAR

The following point captures all methods in the MyCompany package/namespace:

[myCompany_All Methods]

class = !myCompany\..*
method = !.*
signature = I.*

layer = FOO/BAR

Capture a Specific Method That Returns a String

The following point captures the getFoo method with no arguments that returns a java.lang.String in the
MyCompany.MyFoo class:

[myCompany.myFoo_GetFoo_String]
class = myCompany.myFoo

method = getFoo

signature = ()Ljaval\lang\String
layer = FOO/BAR

Capture with a Controlled Scope

The following point captures all methods in the MyCompany package/namespace that are called from the
MyCompany.logging class. For more details see "Using Caller Side Instrumentation" on page 129.

[myCompany_All Methods_from_MyCompany_Logging]

class = !myCompany\..*
method = !.*
signature = !.*

scope = MyCompany.logging
layer = FOO/BAR

The ignoreScope argument is used to exclude certain packages, classes, and methods from those included in
the scope specified in scope argument. The following point captures all methods in the MyCompany
package/namespace that are called from the MyCompany.logging class except for those called from the

myMethod method. For more details see "Using Caller Side Instrumentation” on page 129.

[myCompany All Methods_except_from_MyCompany_Logging]

class = !myCompany\..*
method = !.*
signature = I.*

scope = MyCompany.logging
ignoreScope = MyCompany.logging\myMethod

Micro Focus Diagnostics (9.50) Page 118 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

layer = FOO/BAR

Hard and Soft deep_mode

The following interface definition is used for both soft and hard deep_mode examples:

public interface Interfacel {

public void callerMethod();

The following class is used for both soft and hard deep_mode examples:

public class Classl implements Interfacel {
public void callerMethod(){
calleeMethod();
calleeMethod2();
b
public void calleeMethod(){
System.out.println("hello world");
//more code lines here..
b
public void calleeMethod2(){
System.out.println("hello world 2");

}
}

The following point captures the "callerMethod" in the Class1 class:

[Training-1]

class = Interfacel
method = !.*
signature = !.*
deep_mode = soft
layer = Training

The following point captures all methods in Class 1 (for example, "callerMethod", "calleeMethod1" and

"calleeMethod?2):

[Training-1]

class = Interfacel
method = !.*
signature =
deep_mode = hard
layer = Training

1, *

Micro Focus Diagnostics (9.50)

Page 119 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Argument Capture

The argument displayed in Diagnostics is the final string left on the stack by the code snippet. Code snippets
must end with a string or an object where toString() can be left on the stack of statements to be parsed to the
bytecode.

Caution: Extreme caution has to be exercised when using argument capture. Unless the set of all
possible values of the captured argument is finite, the agent will run out of Java heap space.

Suppose that you instrument a method called myCompany.myFoo.myMethod(), and myFoo has another
method called getComponentName() that returns a String. The following example shows the result of
getComponentName() as the argument in Diagnostics (#callee refers to the callee object for an instance
method, in this case).

[myCompany_componentName_as_argument]
class = myCompany.myFoo

method = myMethod

signature = I.*

detail = before:code: 8d2509eb

layer = FOO/BAR

The code snippet in the custom_code.properties file is entered as follows:

8d2509eb = #callee.getComponentName()

The following point captures the first argument to myMethod and shows it as the captured argument in
Diagnostics. It also uses it as the sublayer name. This is achieved by including ${ARG} in the layer. In this
example, if the captured argument—in this case, the first argument of myMethod—has the value myArg, the
layeris FOO/myArg.

[myCompany_capture_firstArg_and_also_show_as_layer]
class = myCompany.myFoo

method = myMethod

signature = I.*

detail = before:code: 358f05d6

layer = FOO/${ARG}

The code snippet in the custom_code.properties file is entered as follows. If you use #arg2, you would
capture the second argument instead.

358f05d6 = #argl.toString()

Inbound and Outbound Web Services

When the detail argument in a point contains the "outbound" or "ws-operation" keyword, Diagnostics attempts
to parse the final string on the Code Snippet stack for additional information to display about the method call.

Micro Focus Diagnostics (9.50) Page 120 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

For inbound Web Services (“ws-operation” detail must be used), the string looks like the following:

"DIAG_ARG:type=ws&ws_name="+<WebServiceName>+"&ws_op=""+
<OperationName>+”&ws_ns="+<TargetNameSpace>+’&wsOport="+<wsPort>

For outbound Web Services (“outbound” detail must be used), the string looks like the following:

"DIAG_ARG:type=ws&ws_name="+<WebServiceName>+"&ws_op=""+
<OperationName>+’&target="+<TargetName>

Here is an example:

class = weblogic.wsee.ws.WsStub

method = invoke

signature = (Ljava/lang/String;Ljava/lang/String;Ljava/util/Map;Ljava/util/Map;)
Ljava/

lang/Object;

layer = Web Services

detail = outbound,before:code:edd75e36

The code snippet in the custom_code.properties file is entered as follows:

edd75e36 = #service = #callee.getService().getWsdlService();\

#tgname = #service.getName();\

"DIAG_ARG:type=ws&ws_name="+ #tgname.getlLocalPart() +"&ws_op="+ \
#tcallee.getMethod(#argl).getOperationName().getLocalPart() +"&target="+ \
#tcallee.getProperty("javax.xml.rpc.service.endpoint.address");

Renaming Root Methods

Consider the following point:

class = Statement

method = execute

layer = Database/JDBC/Execute
detail = when-root-rename
rootRenameTo = mySuffix

If such a method ends up being the root method, the name of such a server request is Background-mySuffix,
and the type of the server request is RootRename.

Consider the following point instead:

class = Statement

method = execute

layer = Database/JDBC/Execute
detail = when-root-rename

Micro Focus Diagnostics (9.50) Page 121 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Notice that the rootRenameTo property is skipped. The name of such a server request is Background—
Database (because Database is the first sublayer) and the server request type is RootRename again.

Adding a Field to a Class

Consider the following point:

class = com.corp.Foo
method = bar
detail = add-field:protected:0Object:serviceName

The detail causes the following one field and two public setter/getter methods to be added to the class
com.corp.Foo:

protected transient Object serviceName
public void _diag set_serviceName(Object arg)
public Object _diag get serviceName()

Passing Attributes to Instance Trees

The following example attaches my_attribute name to every captured instance of com.corp.Foo.bar().

The name prefixed with display_ and its corresponding value is shown in the call profile.

class = com.corp.Foo
method = bar
detail add-field:protected:0Object:serviceName

Code snippet:

f59f0@c5c = ##my attribute="value-of-my-attribute";"";

Filtering Out Methods by Their Access Flag

The following example instruments all methods in class com.corp.Foo (but not static methods).

class = com.corp.Foo

method = !.*

signature = !.*
method_access_filter = static

Not Recording Direct Recursion

In the following example, if method com.corp.Foo.bar calls itself (or anything in the same layer), the second
call is not recorded. This is caused by the detail = no-layer-recurse.

Micro Focus Diagnostics (9.50) Page 122 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

This, however, is only for direct recursion. If com.corp.Foo.bar calls an instrumented method from another
layer that calls this method again, all methods are recorded.

class = com.corp.Foo
method = bar

layer = Example/MyBar
detail = no-layer-recurse

Performing Caller Side Instrumentation

The following point causes caller side instrumentation to be performed (as opposed to the default callee
instrumentation). This is caused by the detail = caller.

Another way to do caller side instrumentation is to use the “scope” property as described in "Using Caller Side
Instrumentation" on page 129.

class = com.corp.Foo
method = bar
detail = caller

Configuring Allocation Analysis

Both of the following examples track allocations of java.lang.Integer in the package
com.mycompany.mycomponent. There are, however, two differences:

« Inthefirst example (detail = leak), tracking is managed. It starts when the user clicks start in the profiler
and stops when the user clicks stop. In the second example (detail = deallocation), tracking starts with
application startup.

« Inthe first example, the point is disabled when it comes to regular instrumentation. This means you will not
see “new Integer’ show up on an instance tree. In the second example, you will.

Example 1 — Managed. Tracking starts when the user clicks start and stops when the user clicks stop in the
profiler:

[Leak]

scope = lcom\.mycompany\.mycomponent\..*
class = java.lang.Integer

keyword = allocation

detail = leak

active = true

Example 2 — Unmanaged. Tracking starts with application startup:

[Leak]

scope = !com\.mycompany\.mycomponent\..*
class = java.lang.Integer

keyword = allocation

detail = deallocation

Micro Focus Diagnostics (9.50) Page 123 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

active = true

Neither of these points captures reflected allocation. To enable reflected allocation capture, simply append the
detail “reflection” to the point (detail = leak,reflection).

Configuring Lightweight Memory Diagnostics (LWMD)

The following example turns on collection diagnostics for collections that happened inside of the
com.mercury.mycomponent package. You can find this example in the auto_detect.points file. It is set to
active = false by default.

[Light-Weight Memory Diagnostics]

scope = !com\.mycompany\.mycomponent\..*
class = java.lang.Integer

keyword = lwmd

active = true

You also need to set the property lIwm.diagnostics.capture=true in the dynamic.properties file. For more
information, see the Diagnostics User Guide chapter on the "Collections and Resources View."

Configuring Collection Leak Pinpointing

Regardless of JRE version, you must run the JRE Instrumenter using the appropriate mode for your
application server if you want to use the collection leak pinpointing (CLP) feature in the Java Agent. "Preparing
Application Servers for Monitoring with the Java Agent" on page 30 for details on instrumenting the JRE.

In the dynamic.properties file you can set the following properties to configure collection leak reporting.
These same values can also be set in the Java Profiler Configuration tab Ul (see "Enabling and Configuring
Collection Leak Reporting" on page 191).

clp.diagnostics.reporting=true

Enable reporting in the Diagnostics Ul. You can disable reporting in the Ul for this feature by unchecking the
checkbox.

clp.diagnostics.growth.time.threshold.flag = 60m

The threshold of time duration in which the collection has size growth. If a collection's size growth period
exceeds this threshold, it will be flagged as a memory leak by the probe. To avoid false positives, this value
should be larger than the time required by your application to fully initialize all its caches.

clp.diagnostics.nongrowth.time.threshold.unflag = 60m

For an already flagged leaking collection, if its size stops growing continually for this threshold time period, the
probe will unflag it as a leak.

Enabling Object Lifecycle Monitoring for JDBC Result Set

A few preconfigured instrumentation points allow object lifecycle monitoring but are disabled by default. Two
of them are shown in the following example.

Micro Focus Diagnostics (9.50) Page 124 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

The example shows how to enable object lifecycle monitoring for JDBC Result Sets. For a more detailed
discussion on object lifecycle monitoring, see "Object Lifecycle Monitoring" in the Diagnostics User Guide.

For this example, two actions are required:

1. Gotoinst.properties and find details.conditional.properties. Set
mercury.enable.resourcemonitor.jdbcResultSet=true

2. Specify the scope in the corresponding open instrumentation points (shown below).

In the following, the probe performs object lifecycle monitoring for JDBC Result Sets inside package
com.mycompany.mycomponent.

[Lifecycle-IDBC-ResultSet-0Open]

scope = !com\.mycompany\.mycomponent\..*

class = java.sqgl.Statement

method = !(getResultSet.*)|(executeQuery.*)

signature = !.*\)Ljava/sql/.*ResultSet;

detail = condition:mercury.enable.resourcemonitor.jdbcResultSet,lifecycle,caller

[Lifecycle-JIDBC-ResultSet-Close]

class =

I (java\.sql\.ResultSet) | (weblogic\.jdbc\.wrapper\.ResultSet) |
(com\.ibm\.ws\.rsadapter\.jd

bc\.WSJdbcResultSet)

method = !(close)|(closeWrapper)

signature = !.*

deep_mode = soft

detail =
condition:mercury.enable.resourcemonitor.jdbcResultSet,before:code:513a2b36,metho
d-trim

Adding a Disabled Point and Enabling it at Runtime

In the following example, the point is disabled. This does not mean that instrumentation does not happen.
Instrumentation happened but did collect any data. This significantly lowers the runtime overhead of such a
point.

To enable data collection while the application is running, go to the Layer page in the (http://<probe-
host>:<probe-port>/inst/layer or from the Profiler select the Configuration tab and then select View
instrumentation), look for layer myLayer, and click Enable.

[My Example]
class = Example
method = !.*
layer = myLayer
detail = disabled

If you do not want instrumentation to happen at all, use active=false. However, such a point cannot be
enabled at runtime.

Micro Focus Diagnostics (9.50) Page 125 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Specifying that a Method Should Never be Trimmed

In the following example, latency trimming does not apply to Example.myMethod().

My Example]

class = Example

method = myMethod
detail = method-no-trim

Specifying that a Method Should Always be Trimmed

In the following example, the method Example.myMethod() is not reported. However, any code snippets
associated with the point will always be executed.

[My Example]

class = Example

method myMethod

detail method-trim, before:code:...

Enabling Collection of CPU Time for a Method

In the following example, the detail “method-cpu-time” causes the CPU time to be collected for method
Example.myMethod().

[My Example]

class = Example

method myMethod

detail = method-cpu-time

Changing SAP RFC Instrumentation Based on SAP JCO
Library Version

In the <agent_install_directory>/etc/inst.properties file there are two points defined depending on the
version of SAP JCO used. Comment out the version you are not using. Starting with version 2.1.10 or later
use com.mercury.opal.capture.inst.SapRfcinstrumentationPoint2_1_10. Otherwise the default setting will
work for version 2.1.9 and earlier.

Printing Instrumentation and Runtime Information for a Point
(Debugging Only)
The following example prints several pieces of debug information in standard out and probe.log.

« The gen-instrument-trace detail causes printing to stdout the thread stack trace whenever this point is
used to instrument a method.

Micro Focus Diagnostics (9.50) Page 126 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

« The gen-runtime-trace causes printing to stdout the thread stack trace whenever Example.myMethod() is
run.

« The trace detail causes printing in the probe.log verbose instrumentation information whenever
Example.myMethod() is run.

[My Example]

class = Example

method = myMethod

detail = gen-instrument-trace, gen-runtime-trace, trace

Understanding the Overhead of Custom
Instrumentation

When you are creating custom instrumentation, beware of over-instrumenting the application because it can
introduce excessive latency into the probed application. Excessive latency arises from an increase in the
classloader latency as more and more classes are instrumented. The custom instrumentation does not have
the same impact on the method latency or the CPU overhead because the overhead of instrumentation is
nearly fixed for every method because the amount of bytecode is almost always the same. This means that
the physical percentages of the CPU and latency overhead will vary in direct proportion to the length of time
the method takes to run.

For example, if a method takes 100ms, and instrumentation makes it run in 101ms, overhead is 1%. If a
method takes 10ms and instrumentation changes its response to 11ms, overhead is 10%. If this method is not
called very often, its overall latency effect on the application is minimal. However, the overall latency effect of
an instrumented method that is called more frequently can affect the latency of the application’s response
even though its overhead percentage is much smaller.

Unlike a traditional profiler, Diagnostics uses bytecode instrumentation. This allows the default
instrumentation to be selective to minimize the overhead caused by instrumentation to an average of 3-5%.
Methods with higher latency overhead introduced by instrumentation are only instrumented when they are
called infrequently in relation to other components in the application and when the instrumentation provides
specific information needed for triage activities (for example, JNDI lookups).

You should also consider Diagnostics data overhead when you are customizing the instrumentation for an
application. The more methods you instrument, the more data the probe must serialize and pass over the
network to the Diagnostics Server. You can tune the Java probe’s default configuration so that it can adjust
the volume of Diagnostics data to avoid any unnecessary effect on the performance of the system being
monitored. Improper tuning of a probe can cause CPU, Memory and Network overhead on the physical
machine where the Java Agent is installed. For more information about managing Latency, CPU, Memory and
Network overhead, see "Advanced Java Agent and Application Server Configuration" on page 160

Instrumentation Control on a Per Layer Basis

By default, the layers defined in the capture points file are enabled. If you include the details=disabled
argument in a point, the layer is disabled when the probe is started.

The classmap provides the capability to dynamically instrument methods and classes using the JVMTI
interface without restarting the JVM instance. All other virtual machines require that the JVM instance be
restarted to apply changes you make to the capture points files.

Micro Focus Diagnostics (9.50) Page 127 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Once instrumentation is placed within a method, its data collection and running CPU and method latency
overhead can be controlled on a per layer basis (see the Instrumented Layers page below).

You can access the Instrumented Layers page from the URL:

http://<probe-host>:<probe-port>/inst/layer.

Diagnostics A
Instrumented layers (no particular sorting)
Layer Hits Active Locations Actions
{Other) 78 B/8 Disable] [Clear # Hits
(keeywaord) ejb30 a o0/ 228 [Enable] [Clear # Hits
(kaywaord) hitp &1 13 /13 Disable] [Clear £ Hits
(keyword) remote-http 4 44 [44 Disable] [Clear £ Hits
Business Tier/EJB/Session Bean [u] 0/11 [Enable] [Clear # Hits
ClientSideMonitor/Instrumentation a o/f2 [Enable] [Clear # Hits
Database/IDBC a 0/ 40 [Enable] [Clear # Hits
Database/IDBC/Connection 21575 36 /92 [Enable] [Disable] [Clear # Hits]
Database/IDBC/Execute 31579 47 [47 Disable] [Clear £ Hits
Directory Service/INDI a o/s [Enable] [Clear # Hits
HitpStatus 50 16/ 16 Disable] [Clear # Hits
Jawa Server Faces/Lifecycle/Execute [u] ofz2 [Enable] [Clear # Hits
Jawa Server Faces/Lifecycle/Render a o/f2 [Enable] [Clear # Hits
Legacy/ICA/CCI [u] oj2 [Enable] [Clear # Hits
Legacy/ICA/Connection [u] 0/f1 [Enable] [Clear # Hits (V)

To disable a layer from the Instrumented Layers page, click the Disable link associated with the layer on the
page. The layeris disabled and the link toggles to Enabled so that you can enable the layer again when

necessary.

Instrumented Location Throughput Throttling

In some cases, an instrumentation point instruments a method which is executed very frequently. This may
significantly increase the probe overhead for the application thread and can also overload the probe by

generating large amounts of data to process.

You can limit the number of events (instrumented method calls) per second that the probe monitors. The
threshold, in events per second, is configurable, but when set applies to all instrumented points. The event

counters are shared by all threads.

Forinstrumented points that reach the configured threshold, the probe attempts to provide the real throughput,
in events/second, by recording this number in the probe.log. In the Diagnostics Enterprise or Profiler Ul, the
displayed metrics are for the number of method calls up to, but no higher than, the configured threshold.

To set the threshold:

1. Configure the required number (which must be a non-negative value) in the
location.maximum.throughput parameter in the <agent_install_directory>/etc/capture.properties

Micro Focus Diagnostics (9.50)

Page 128 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

file.

2. Ensure that the settings.override.authorization parameter in the <agent_install_
directory>/etc/probe.properties file is set to true.

For example, if the location.maximum.throughput parameter is set at 1000, when an instrumented method
has been called 1000 times in a second, the probe stops collecting metrics for this method, although it does
keep counting the number of method calls in that second. The Ul displays metrics for the first 1000 calls only
and an entry may be written to the probe.log with the actual number of the method calls for that second.

Advanced Instrumentation Examples

This section includes:
« "Using Caller Side Instrumentation" below
« "Capturing HTTP Server Requests Based on Query Parameters" on page 131
« "CORBA Cross VM Instrumentation" on page 132
« "Using RMI Instrumentation" on page 132
« "Using Thread Local Storage to Store the SOAP Payload" on page 132
« "Performing Correlation Across Multiple Threads" on page 133
« "Using Fragment Local Storage to Store Web Service Field" on page 135

« "Using Annotations for Custom Instrumentation" on page 137

Using Caller Side Instrumentation

By default, all instrumentation in Diagnostics is called side instrumentation where the bytecode is placed
within the method call. Caller side instrumentation refers to the process of placing the bytecode for
measurement around the call to the method to be instrumented instead of within.

Caller side instrumentation allows finer control of instrumentation placement, but can increase application
classloader time because each class specified in the scope must be checked for references to the
class/method specified in the points.

A common use for caller side instrumentation is to instrument calls to methods in rt.jar. Classes loaded into
the virtual machine using the bootclassloader and not from a conventional class loader cannot be directly
instrumented. To instrument calls to these methods, you must use caller side instrumentation.

In the following example, the parse methods for the javax.xml.parsers.SAXParser and
javax.xml.parsers.DocumentBuilder are instrumented by placing bytecode around the calls to parse in any
(.*) method from any class. Caller side instrumentation is required because both the
javax.xml.parsers.SAXParser and javax.xml.parsers.DocumentBuilder classes are contained in the rt.jar
and loaded into the virtual machine by the bootclassloader.

[XML-DOM-JDK14]

jmmmmmmm - Interface --------------

Class = !javax\.xml\.parsers\.(SAXParser|DocumentBuilder)
method = parse

signature = !.*

scope = !.*

Micro Focus Diagnostics (9.50) Page 129 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

layer = XML

In the following example, instruments calls to javax.naming.Context's "lookup" method that are called from
the com.myCompany.myFoo classes and places them in the JNDI sublayer in the FOO layer.

[INDI-lookup-FOO]

R Server side JINDI hook --------------
class = javax.naming.Context

method = lookup

signature = (Ljava/lang/String;)Ljava/lang/Object;
scope = !com\.myCompany\.myFoo\..*

deep_mode = soft

layer = FOO/JNDI

Note: To verify that the point has caused the bytecode to be properly placed, check the <agent_Install_
dir>/log/<probeName>/detailReport.txt file for the entries Unique Header Name (that is, [JNDI-lookup-
FOQ)).

During final triage steps for a performance issue, it can be impractical to use the classmap and individual
build points for every method called by a suspect area of the application. It is very common to use one or
more levels of caller side instrumentation to identify the time spent within an individual method or
methods that have a suspected bottleneck. This is a useful way to fill in the next level to a Call Profile in
Diagnostics.

The following example instruments any call to a method that is performed within the
com.myCompany.myFoo class by the "myMethod" method:

[MethodsCalledByFoo.myMethod]

class = |.*

method = !.*

scope = !com\.myCompany\.myFoo\.myMethod.*
layer = FOO/other

The following example also captures the arguments to any "set" method called in com.myCompany.myFoo
class by the "myMethod" method:

[SetMethodsCalledByFoo.myMethod]

class = |.*

method = !set.*

scope = !com\.myCompany\.myFoo\.myMethod.*
detail = args:1

layer = FOO/other

Micro Focus Diagnostics (9.50) Page 130 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Capturing HTTP Server Requests Based on Query
Parameters

Applications typically use the same URL to access different workflow. If the application uses a URI argument
(for example, http://<myserver>/myApplication/Browse?Genre=metal) to differentiate between the
workflow, Diagnostics can be configured to parse and treat the different URIs as different server requests.

URI aggregation is controlled from the [HttpCorrelation] point. A valid regular expression entry for args_by_
class should be created for each URI pattern.

For example, setting args_by class as follows:

[HttpCorrelation]
args_by class=!.*&Genre

results in the following ServerRequests appearing uniquely in the Diagnostics console:

http://<myserver>/myApplication/Browse?Genre=Metal
http://<myserver>/myApplication/Browse?Genre=Pop
http://<myserver>/myApplication/Browse?Genre=Reggae
http://<myserver>/myApplication/Browse?Genre=Rock

Table] & O [
- Laten...
Status | Chart Server Request Frobe Over Latency | CPU (A... | Throu... | Excep... Infa
@ |:| WMV C3MMusic Storef ZROO .. 107 2ms 1092me 12 /hr a -
@ |:| MY C3Music Storefboccount/Log On? ReturnUrl=/MVC3/Music StorelS .. 2RO0 ... 308 ms M20ms 127hr [u]
@ |:| MMV C3MMusic StorefShopping Cart/add To Cart/241 2ZR0O0... 13s 13=s 124hr 0
(] [/mvCaimusicStore/Stare/Browse 2R0O0... 645 msz 507 ms 192/ hr 0
@ [/MVC3MusicStore/Store/Browse? Genre=Metal 2R00... G24ms 624ms 12/hr 0
@ (] MV C3MMusic StorelStore/Browse? Genre=Fop 2ZR0O0... 525ms 468ms 24 /hr 0
@] MMV C3MMusic Storel/Storel/Browse? Genre=Reggas 2R0O0... 61 mz 41.6ms 3I6Shr 0
@2 [] ive3musicStore/Store/Browse? Genre=PRock 2R0O0... 722ms 468ms 24 /bhr a
@ |:| WMV C3MMuszic StorelStorelfDetails 241 ZROO.. 4265 ms 4066ms 12 /hr a hd

You can configure more than one URI parameter to be used for URI parsing in the args_by_class setting. For
example:

args_by class=!.*&Genre&Category

Note: Avoid using a session parameter or highly unique URI value because of the impact to overhead
and data storage.

In a WebLogic environment, set the use.weblogic.get.parameter=true in <agent_install_

directory>/etc/inst.properties when using URI aggregation to prevent URI aggregation from consuming the
ServletRequest's inputstream.

Micro Focus Diagnostics (9.50) Page 131 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

CORBA Cross VM Instrumentation

The Common Object Requesting Broker Architecture (CORBA) standard enables components written in
different computer languages and running on different systems to work together.

Instrumentation for correlating CORBA cross VM instance trees is provided in the <agent_install_
directory>\etc\auto_detect.points file.

Follow these steps in to enable cross-VM instance trees for CORBA:

1. Uncomment the Corba cross-VM points in the auto_detect.points file.
2. Specify the following JVM argument at Application Server startup:

Dorg.omg.PortableInterceptor.0ORBInitializerClass=com.mercury.opal.javaprobe.handl
er.corba.CorbaORBInitializer

3. Put the following jar file in the classpath:

<java-agent-install-dir>/lib/probeCorbalnterceptors.jar

Using RMI Instrumentation

The RMI (Cross-VM) point in the capture points file is inactive by default. You must activate this point to
capture the cross-vm processing in the application. If you have Java probes with this point activated on both
sides of an RMI call, Diagnostics can correlate the call tree data from both virtual machines.

[RMI]

keyword = rmi
layer = CrossVM
active = false

RMI Instrumentation In a Clustered Environment

The weblogic.t3.rmi property in the <agent_install_directory>/etc/inst.properties file controls how the
RMI instrumentation captures Cross-VM RMI performance metrics. By default, weblogic.t3.rmi is set to
false, which causes the performance metrics to be gathered using the generic RMI instrumentation. In a
clustered environment, all servers in a cluster must have RMI instrumentation turned on to avoid application
failure when weblogic.t3.rmi is set to false.

When weblogic.t3.rmi is set to true, the generic RMI instrumentation is disabled, and the RMI Cross VM is
captured using only WebLogic’s T3 protocol. This allows the Java probe to function with only some of the
servers in a cluster probed with RMI instrumentation enabled.

Using Thread Local Storage to Store the SOAP Payload

The following example demonstrates usage of thread local storage. In particular, it shows how to store (and
clean) the SOAP payload from thread local storage. SOAP payload is captured by default only for certain

Micro Focus Diagnostics (9.50) Page 132 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

application servers. For more information on the support matrix, see "Configuring SOAP Fault Payload Data"
on page 184.

The following example is applicable only for application servers where Diagnostics does not capture payload
out of the box.

First, it is necessary to identify where to access the payload from. Assume that the payload is the second
argument of a method called DispatchController.dispatch().

The keyword store-thread causes the Java probe to store the special fields in the corresponding code snippet
(in this case, My_Inbound_Payload) into thread local storage. This can be referenced from a different code
snippet provided both points are hit on the same thread. Looking up the payload is demonstrated in the next
example ("Using Fragment Local Storage to Store Web Service Field" on page 135).

[MyAppServer-SoapPayload-Capture]

class = com.myCompany.DispatchController

method = dispatch

signature = !\(Ljava/lang/Object;Ljava/lang/Object;\).*
layer = Web Services

detail = before:code: ae7f0a58,store-thread

Used by [MyAppServer-SoapPayload-Capture]
ae7f0@a58 = ##My Inbound_Payload=#arg2;"";

Performing Correlation Across Multiple Threads

Asynchronous Server Requests are server requests that switch threads between server request start and end
events. In the most simple case, one thread receives the request, partially processes it, and then hands it off
to another thread to complete processing and to send the response back to the requesting party.

Diagnostics offers two operations, available through code snippets, to allow the Java agent to perform
correlation across multiple threads:

« parkFragment(Object anchor)

This operation is executed to indicate that the current thread will no longer run the current server request.
All method invocations, as recorded by the Java Agent, are artificially terminated at this point. This is to
indicate that even though some of these methods will continue execution, their activity will have nothing to
do with the current server request. Furthermore, even if the current thread will invoke some instrumented
methods after calling parkFragment, these calls will not be reported. The server request is no longer
considered running, and the specified object (anchor) is used by the application as a unique identification
of the server request to be resumed later (presumably, by another thread).

« resumeFragment(Object anchor)

This operation is executed to indicate that the current thread resumes execution of previously parked
server request. The argument (anchor) is used to identify the server request. All active method invocations
will have their start time artificially reset to the current time. This is to indicate that even though some time
may have elapsed while these method were executing, their execution had nothing to do with the server
request being resumed. If the current thread was already running a server request, it will be ignored
(dropped).

When using these operations, it is essential that the correct anchor object, as well as the correct thread
switching points are identified by the application specialist.

Micro Focus Diagnostics (9.50) Page 133 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Beware of race conditions: if the fragment is reported "parked" too late, after the corresponding resume
operation is performed, the fragment will get lost (and a warning will appear in probe.log). Two useful
techniques to avoid the race condition are: first, calling parkFragment slightly before the current thread really
abandons the server request, and second, try to piggyback the application built-in synchronization which is
often used to hand off an object from one thread to another.

A "parked" fragment can be seen using the pending-fragment servlet, as "PARKED SERVER REQUEST"
displayed in place of the currently running method.

The feature usually requires you to identify the thread switching points in the monitored application, and to
provide the corresponding instrumentation points with code snippets. Out of the box support is provided for
BEA Aqualogic.

Examples of two instrumentation points with the corresponding code snippets are presented below. They are
a part of the Aqualogic support.

The first point presented below is executed whenever Aqualogic sends a sub-request to another server. The
instrumented method, PipelineContextlmpl.dispatch(...) returns true if the sub-request was successfully sent.
The thread sending the sub-request does not wait for a response, but proceeds to pick up the next server
request from a pipeline.

Therefore, the code snippet examines the return value, and if it is true, signals to the probe that the current
server request will be suspended. The server request is identified by a MessageContext object, which
Aqualogic creates for every incoming server request.

[BEA_ALSB_AsyncDispatch]

; instrumentation point for Aqualogic Service Bus asynchronous dispatch
class = com.bea.wli.sb.pipeline.PipelineContextImpl

method = dispatch

signature = !\(Lcom/bea/wli/sb/context/MessageContext;.*

detail = after:code:549b1b59

layer = Service Bus/Aqualogic

Used by [BEA_ALSB_AsyncDispatch]

Asynchronously dispatches a subrequest for a service, the response will be
processed on another thread

549b1b59 = (#return == true ?

@ThreadContextProxy@.parkFragment (#location,#argl) : void);

Upon receiving a response from the sub-request, AqualLogic executes RouterCallback.onReceiveResponse
(...), possibly on another thread. The processing of the original server request resumes, and this is signaled to
the probe by the code snippet.

In this case, the MessageContext object representing the server request is not available as an argument of
the instrumented method and needs to be extracted from the RouterCallback object.

[BEA_ALSB_ProxyService_Callback_Response]

; instrumentation point for Aqualogic Service Bus callback function
class = com.bea.wli.sb.pipeline.RouterCallback

method = !(onError)|(onReceiveResponse)

signature = I.*

layer = Service Bus/Aqualogic

Micro Focus Diagnostics (9.50) Page 134 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

detail = before:code:dba72078

Used by [BEA_ALSB_ProxyService_Callback_Response]
Resume processing of a server request when the reply for a subservice comes back
(or when the server request was moved to the response pipeline internally)

dba72078 =
@ThreadContextProxy@.resumeFragment(#location,#callee. context.getMessageCon
text());"";

Using Fragment Local Storage to Store Web Service Field

The following example demonstrates several features of points and code snippets:

« How to use fragment local storage to store web service-specific fields (ws_name, ws_op, and so on). This
is an alternative to specifying the “DIAG_ARG” string.

« How to retrieve (and remove) the stored payload from thread local storage (which was stored in the
previous example).

« How to extract the consumer ID out of the SOAP payload.
« How to use fragment local storage to store the consumer ID.

Because web services are treated in a special way, several fields must be captured. These fields are
described in "Code Snippet Grammar" on page 105.

The first step is to find the instrumentation points that will give access to the required fields (Web Service
name, operation, namespace, port name). Suppose that there is a single class in the instrumented application
that has access to all these fields. Assume that this class is called com.myCompany.MyWSContext. We
need to access an instance of this class when all the above fields are set. There can be many options.
Suppose that one such option is when MyWSContext is passed as the first argument of a method
MyWSFactory.create(). This is the method we want to instrument.

Here is our instrumentation point (each line is explained below):

class = com.myCompany.MyWSFactory

method = create

signature = !\ (Lcom/myCompany/MyWSContext; .*

layer = Web Services

detail = ws-operation, before:code: f334f@b4,store-fragment

The first three lines of the point shown above cause the probe to instrument anything that matches
com.myCompany.MyWSFactory.create(MyWSContext, *).

The fourth line specifies the layer for this point.
The fifth line provides the probe with additional information about this point (details):

« The first detail (ws-operation) is important because it causes the probe to treat this as an inbound Web
Service.

« The second detail (before:code: f334f0b4) causes the probe to insert the corresponding code snippet at the
start of the methods that comply with this point. The actual code snippet is shown below. The number
f334f0b4 was generated by going to

http://<probe-host>:<probe-port>/inst/code-key and pasting the code snippet in the text box.

Micro Focus Diagnostics (9.50) Page 135 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

« The third detail (store-fragment) causes the probe to store all special fields (##) found in the corresponding
code snippet as attributes of the server request.

Here is the corresponding code snippet (each line of the below code snippet is explained below).

£334f0b4 = #wsContext=#argl;\

##WS_inbound_service name=#wsContext.getServiceName();\
##WS_inbound_operation_name=#wsContext.getOperationName();\
##WS_inbound_target_namespace=#twsContext.getNamespaceURI();\
##WS_inbound_port_name=#wsContext.getEndpoint();\

#soap_payload =
@com.mercury.opal.capture.proxy.ThreadContextProxy@.getThreadContextValue("My
_Inbound_Payload");\

t#tconsumer_id = (#soap_payload == null ? null :
@com.mercury.opal.capture.proxy.ProbeCodeSnippetHelper@.getConsumerIdFromDo
cument (##WS_inbound_service_name<java.lang.String>,#soap_payload<org.w3c.do
m.Document>));\

##WS_consumer_id = (#consumer_id == null ?
@ProbeCodeSnippetHelper@DO_NOT_STORE : #consumer_id);"";

First line: f334fob4 = #wsContext=#argl;\

As mentioned previously, the number £334f0b4 was generated by going to http://<probe-host>:<probe-
port>/inst/code-key and pasting the code snippet in the text box. The actual code snippet starts after
f334f0b4 =. The first expression is #wsContext=#argl. It simply assigns the first argument of the
method—in this case, a MyWSContext object—to a local variable (wsContext).

Second line: ##WS_inbound_service_name=#wsContext.getServiceName();\

This expression uses fragment local storage to store the service name. It is important to use the exact
variable name (WS_inbound_service_name). These variable names are documented in the “Special Fields”
section of "Code Snippet Grammar" on page 105.

Third line: ###WS_inbound_operation_name=#wsContext.getOperationName();/

This expression uses fragment local storage to store the ws operation. It is important to use the exact variable
name (WS_inbound_operation_name). These variable names are documented in the “Special Fields” section
of "Code Snippet Grammar" on page 105.

Fourth line: ##WS_inbound_target_namespace=#wsContext.getNamespaceURI();\

This expression uses fragment local storage to store the ws namespace. It is important to use the exact
variable name (WS_inbound_target_namespace). These variable names are documented in the “Special
Fields” section of "Code Snippet Grammar" on page 105.

Fifth line: ##WS_inbound_port_name=#wsContext.getEndpoint();\

This expression uses fragment local storage to store the ws port name. It is important to use the exact
variable name (WS_inbound_port_name). These variable names are documented in the “Special Fields”
section of "Code Snippet Grammar" on page 105.

The above first five lines are sufficient to successfully capture the inbound Web Service. The remaining of the
code snippet deals with capturing the consumer ID out of the SOAP payload. This is optional and only if the
instrumented application server is not one of the application servers supported for capturing SOAP payload
out of the box. See the previous example for details. In the followings example, we refer to the SOAP payload
that was captured in the previous example.

Micro Focus Diagnostics (9.50) Page 136 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Sixth line: #soap_payload =
@com.mercury.opal.capture.proxy.ThreadContextProxy@.getAndRemoveThreadContextValue("My
Inbound_Payload");\

This expression retrieves and removes the stored payload from thread local storage (see the previous
example on how this was stored) and stores it on a local variable (soap_payload).

Seventh line: #consumer_id = (#soap_payload == null ? null :
@com.mercury.opal.capture.proxy.ProbeCodeSnippetHelper@.getConsumerIdFromDocument (##WS_
inbound_service name<java.lang.String>,#soap_payload<org.w3c.dom.Document>));\

This expression sets a consumer _id local variable. If the payload is null, the consumer _id is set to null.
Otherwise, we use the service name to perform consumer ID matching based on the consumer.properties
entries. For more information on consumer ID matching, see "Configuring Consumer IDs" on page 177.

Eighth line: ##WS_consumer_id = (#consumer_id == null ? @ProbeCodeSnippetHelper@O_NOT_
STORE : #consumer_id);"";

In this final line, this consumer ID local variable becomes the consumer id for this server request. It is
important to use the exact variable name (WS_consumer _id). These variable names are documented in the
“Special Fields” section of "Code Snippet Grammar" on page 105.

Using Annotations for Custom Instrumentation

Applications can “force” the instrumentation of methods by simply using a custom annotation
(InstrumentationPoint) that is contained in the annotation.jar file in the Diagnostics Java Agent lib directory.
Put a copy of this file in your classpath when compiling your classes using the InstrumentationPoint
annotation. The annotation is defined as follows (InstrumentationPoint.java):

/*
* (c) Copyright 2008 Hewlett-Packard Development Company, L.P.

*/

@Retention(value = RetentionPolicy.RUNTIME)
@Target(value = ElementType.METHOD)

public @interface InstrumentationPoint {
String layer();

String keyword() default “”;

String layerType() default “method”;

String detail() default “”;

String code() default “”;

Boolean active() default true;

}

This feature requires that the look.for.annotations property in inst.properties is set to true (default).
Development

1. Add the path to the annotation.jar (or copy the jar into your application) file found in the Diagnostics Java
Agent lib directory to your application build classpath.
2. Import the classes for any methods that need to be monitored:

import com.mercury.diagnostics.common.api.InstrumentationPoint;

Micro Focus Diagnostics (9.50) Page 137 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

3. Identify methods to be monitored and add the annotation:

@InstrumentationPoint (ARGS)

public void launchTest4()

In this instance, ARGS includes the following (refer to points file documentation for more information about
what these arguments mean):

« layer="layer name"

« keyword="keyword"

« layerType="type"

« detail="details"

«» active="true/false"

Example

The following example shows code that uses the InstrumentationPoint annotation.

/*
* (c) Copyright 2008 Hewlett-Packard Development Company, L.P.
*/

import com.mercury.diagnostics.common.api.InstrumentationPoint;

@InstrumentationPoint(layer="my_app”,detail="diag,method-no-trim,method-cpu-tim
e)))
public void myMethodl(Object x, String y) {

In the example, myMethod1 will get instrumented and be visible as a node in all instance trees. It will not get
trimmed, even if its latency goes below the minimum method latency threshold (51 ms by default). The
inclusive (including children) CPU consumption by this method will be measured and reported.

Configuring Cross VM Correlations for New or
Custom
Technologies

Diagnostics can show call profiles that span multiple Java virtual machines (JVM). These Cross VM call
profiles and topologies are very useful when a performance issue involves a client and a server. You want to
know which application is the source of the problem but looking at the call profile for the client or server
individually may not help with intermittent issues since they would not be correlated. The Cross VM call profile
will show the client and the server correlated together in a single call tree.

Out-of-the-box the Java Agent provides support for this feature for many different technologies: for example,
JMS, HTTP/S (Web Services only), RMI, SAP, TIBCO and Corba. With the latest version of Diagnostics,
additional support was added to help you configure cross VM correlation for new or custom technologies.

Micro Focus Diagnostics (9.50) Page 138 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

The Cross VM correlation technique is exposed in code snippets, allowing you to prepare instrumentation
points and code shippets to correlate almost any inter-process communication, including home-grown and
legacy communication techniques. The only requirement for the communication technique is that its
messages be able to carry an additional string, which is referred to as coloring.

The coloring string is created on the client side by the Java Agent, and attached to the outgoing message by a
user-written code snippet. After the message is received, a user-written code snippet on the server side
extracts the coloring from the message and passes it to the server side agent for parsing and processing.

Thus, your responsibility related to the cross-vm communication technique is primarily limited to embedding
the coloring into the outgoing messages, and extracting the coloring from the received messages. This, of
course, includes identifying the code locations (instrumentation points) for the client side (the outbound point),
and for the server side (the inbound point). Refer to "Tutorial for Configuring Cross VM Correlation for Custom
Technologies" on page 142 for a detailed example. And refer to "APIs Used to Facilitate Custom Transport
Cross-VM Correlations" on page 141 for information on the three APIs provided to help you configure custom
cross-vm correlation.

Client Side

For the outbound calls (the client side), use the new outbound:<coloring-type> detail.
The available coloring types are:

« default
. sap
« none
« snippet
For all coloring types except none, there should be an associated code snippet, which will provide a special
argument containing the technology type, the call target name and identification.
The argument has the following form:
DIAG_ARG:type=<type>&name=<name>&target=<target>

where <type> is the technology type used for the remote call, and <name> and <target> are technology
dependent values. The technology type should be the same as the one used for the inbound instrumentation
point (see "Server Side" on the next page).

For all coloring types except snippet, the probe will generate the appropriate coloring and it will report the
coloring to the Diagnostics Server for future correlation. However, the outgoing message remains unmarked
at this time.

For all coloring types except none, a code snippet for another instrumentation point (which is hit after the
outbound point, preferably during the outbound method execution) must attach the generated coloring to the
outgoing message.

The most recently generated coloring can be obtained by calling ICorrelationColor
RemoteCaptureProxy.getCurrentColor(#location).

In developing support for your own cross-vm communication, you may use snippet, which means that the
coloring will be explicitly created by a direct call from a code snippet. For the snippet coloring the above order
is reversed, which means the coloring is generated (and, most often, immediately attached to the message)
before the outbound point is hit. Please note that this includes a case where the before code snippet for the
outbound point creates the coloring, because the code snippet will be executed before the agent is called.

Micro Focus Diagnostics (9.50) Page 139 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

To create the coloring from code snippets:

1.

Make a call to
ICorrelationColor RemoteCaptureProxy.createColoring(#location, <type>, <diag-arg>)

For type, use
o RemoteCaptureProxy.ENCODED_COLORING for default

o RemoteCaptureProxy.SAP_R3 COLORING for sap

If in doubt which type to use, use the default.

Make a call to grabCorrelationString() on the object returned in step 1, and insert the returned string into
the outgoing message (using a technology-dependent technique). This is where you can use your
creativity.

Tip: If using String messages, use the following helper API to accomplish this step:

ProbeCodeSnippetHelper.createDiagEnvelope(String coloring, String
originalMessage)

Hit an instrumented point with the outbound:snippet detail. This will automatically use the most
recently created coloring instead of creating a new one. Executing the outbound point informs the probe
that the coloring was actually used, and identifies the method which will be considered the connection
point for cross-vm call profiles. For synchronous cross-vm communication it is recommended to use
outbound detail for a method that is used to both send the message and receive an acknowledgment, so
the latency of the outbound call can be properly captured.

Server Side

For the inbound calls (the server side), use the inbound:<technology-type> detail. Use your own technology
type names when supporting new cross-vm technologies. Check to avoid conflicts with existing technology
names (server request types). Examples of server request types include: ADO, CICS, Corba, HTTP, JDBC,
JMS, MSMQ, RMI, Remoting (.NET), SAP ABAP types, Web Services. In addition, you may see server
request types named Pseudo and RootRename.

The before code snippet has to perform the following steps:

1.

Extract the correlation string from the incoming message, using the technology-dependent technique,
corresponding to the one used for the outbound calls.

Tip: If the ProbeCodeSnippetHelper.createDiagEnvelope() was used previously, use
ProbeCodeSnippetHelper.extractColoringFromDiagEnvelope(String envelope) to get the correlation
string.

And use ProbeCodeSnippetHelper.extractOriginalMessageFromDiagEnvelope(String envelope) to get
the original message.

Leave TWO Strings on the stack: the capture argument (as any before code snippet should), and the
extracted correlation string.

Micro Focus Diagnostics (9.50) Page 140 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

APIs Used to Facilitate Custom Transport Cross-VM
Correlations

Three helper APls were added to facilitate custom transport cross-VM correlations (see the tips in the
sections above and see "Code Snippet Helper" on page 108 for information on their use. There is also a
"Tutorial for Configuring Cross VM Correlation for Custom Technologies" on the next page to walk you
through an example.

« ProbeCodeSnippetHelper.createDiagEnvelope(String coloring, String originalMessage)
« ProbeCodeSnippetHelper.extractColoringFromDiagEnvelope(String envelope)

o ProbeCodeSnippetHelper.extractOriginalMessageFromDiagEnvelope(String envelope)

HTTP/S Support

The support for the server side HTTP/S is built in and is enabled by default. The Java Agent automatically
recognizes standard J2EE implementation of HttpServlet, as well as Jetty and Apache Catalina
implementations. No user action is required on the server side, if one of these technologies is used.

For the client side, the Java Agent automatically instruments the openConnection method from the
java.net.URL class, to embed the most recently generated coloring (if it exists) into the outgoing HTTP
request. One of the HTTP request headers is used to carry the coloring. The header will be recognized by the
server side agent.

Therefore, HTTP support on the client side is an exception to the above rules. You still have to provide the
outbound point and the corresponding DIAG_ARG, but you do not have to worry about embedding the coloring
into the outgoing messages.

For example, Diagnostics mediators use the following point:

[RemoteHttpComponent-Outbound-1]

class = com.mercury.diagnostics.common.net.registrar.RemoteHttpComponent
method = getConnection

signature = (Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Ljava/lang/
String;Ljava/lang/String;)Ljava/net/HttpURLConnection;

priority = 1

detail = method-no-trim,outbound:default,before:code:7b1125e2

layer = Network.RemoteHttpComponent

The first argument for the getConnection method is a String representing the connection URL. The referred
code snippet extracts from it the hostname and port and uses them for the target identification. A special utility
method is provided by RemoteCaptureProxy to facilitate this conversion in a way consistent with the built-in
part of the HTTP/S support.

7b1125e2 = #target=@RemoteCaptureProxy@.getTargetFromUri(#argl); \
"DIAG_ARG:type=http&name="+#target+"&target="+#target;

Micro Focus Diagnostics (9.50) Page 141 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Tutorial for Configuring Cross VM Correlation for
Custom Technologies

This tutorial takes a simplified client-server application that uses a shared blocking queue as its custom
transport solution. The client sends a "String" message by adding it to the queue. The server receives a
"String" message by removing it from the queue.

Although this example runs in a single JVM (to keep it simple), it uses two threads to simulate an application
running in two JVMs. (If your intention is to correlate threads running in a single JVM, there is a simpler
solution that will help you do this. See"Performing Correlation Across Multiple Threads" on page 133 for more
details).

The sample code is shown below:

public class SimulatedCrossVM {

private static int INTERVAL = 5 * 1000; // 5 seconds
private static BlockingQueue<String> queue = new LinkedBlockingQueue<String>();
private static class ReceiverSide extends Thread {

public ReceiverSide() {
super("Receiver");
}
public void execute(String receivedString) throws InterruptedException {
System.out.println("Executing message: " + receivedString);
sleep(2 * INTERVAL);
¥
private void receiveAndHandleMessage() throws InterruptedException {
String message = null;
message = queue.take();
// Handle it
execute(message);

}

public void run() {
try {
while (true) {
receiveAndHandleMessage();
}
}
catch (Throwable t) {
// oops
t.printStackTrace();
}
}
}

private static class SenderSide extends Thread {

Micro Focus Diagnostics (9.50) Page 142 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

// For simulated TCP connection

private String destHost;

private int destPort;

public SenderSide(String host, int port) {

super(host + ":" + port);
destHost = host;

destPort = port;

¥

public void sendMessage(String origMessage) throws InterruptedException {

queue.put(origMessage);

}

private String generateMessage() {

String message = "T" + System.currentTimeMillis();

return message;

}

private void generateAndSendMessage() throws InterruptedException {

sleep(2 * INTERVAL);
// generate message

String message = generateMessage();System.out.println("Sender's original message:

+ message);
// And send it (outbound call)
sendMessage(message);
sleep(INTERVAL);

}

public void run() {
try {
while (true) {
generateAndSendMessage();
}
}
catch (Throwable t) {
// oops
t.printStackTrace();
}
}
}

public static void main(String[] args) {

SenderSide sender = new SenderSide("fake-host", 12345);
ReceiverSide receiver = new ReceiverSide();

sender.start();
receiver.start();

}
}

Micro Focus Diagnostics (9.50)

Page 143 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Executing this code will have the following output:

Sender's original message: T1313785958127
Executing message: T1313785958127

Step 1: Instrument Your Methods

By instrumenting your methods, you let Diagnostics know which methods are important. Since these
methods are custom, the out-of-the-box instrumentation points won't do anything. Edit the
etc/autodetect.points file by adding the following instrumentation points. See "Maintaining Instrumentation
from the Java Profiler UI" on page 148 for guidance on defining instrumentation points.

[SimCrossVM-Sender]

class = SimulatedCrossVM$SenderSide
method = generateAndSendMessage
signature = I.*

layer = Sending

[SimCrossVM-Outbound]

class = SimulatedCrossVM$SenderSide
method = sendMessage

signature = I.*

layer = Sending

[SimCrossVM-Receiver]

class = SimulatedCrossVM$ReceiverSide
method = receiveAndHandleMessage
signature = I.*

layer = Receiving

[SimCrossVM-Inbound]

class = SimulatedCrossVM$ReceiverSide
method = execute

signature = !.*

layer = Receiving

Result: Running this instrumented test program, you see the following Server Requests:

Micro Focus Diagnostics (9.50) Page 144 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

1508
1505+

15035+

145054

1503

105930 110000 1100:30 11:01:00 110130 110200 110230 110300 110330 11,0400
FAOBMSMT FROSIGMT FADSMSMT FIOSMSM1 FROBMSMT FROSMQM1 FAORMSM1 FiOSHSM1 FROBMSM1 FrOSamM1
2 [Catancy (hvg) <showing thiasholdz]
Table [
status | Cotor | Chant? | Servei Requeit | Probe Latency | Thioughput | CPU [Avg)
CIL Simulsed CrossVIMEReceiver Side receiv.,. Simulate CrossVN 1503 228 v 0.0 ps
@ mm v SmulstedCrossVMESanderSide general. . Simulate CrossVM 1508 240 /e 0.0 ps

Here are the call profiles shown for the sender and receiver.

0 23 4s 6s Bs 10s 128 14s 158

SimulatedCrossVM$SenderSide.generateAndSendMessage()
Thread.sleep()

SimulatedCrossVM$ReceiverSide.receiveAndHandleMessage()

BlockingQueug SimulatedCrossVM$ReceiverSide.execute()

Thread.sleep()

ckSupport.pari

Step 2: Add “Coloring” to the Sender Logic

In this step, we add "coloring" to the messages sent by the client. When the instrumented server receives this
colored message, Diagnostics will correlate them. You add code snippets for a point in the <agent_install_
directory>/etc/code/custom_code.properties file, This part is trickier, if you're not familiar with the code
snippet syntax, it is described in "Defining Points With Code Snippets" on page 104.

First, we mark the method as an outbound point that uses a code snippet (outbound:snippet), and identify the
code snippet to execute before invoking the method (before:code:5ea4753f). Since we're going to use the first
argument, it's a good idea to provide a more specific signature (\(Ljava/lang/String;.*).

[SimCrossVM-Outbound]

Micro Focus Diagnostics (9.50) Page 145 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

class = SimulatedCrossVM$SenderSide

method = sendMessage

signature = !\(Ljava/lang/String;.*

layer = Sending

detail = outbound:snippet,before:code:eb2d751f

The corresponding code snippet is shown below. Line 1 creates a string (#target) that includes the hostname
and destination port of the server. Line 2 defines a new string (#diagArg) that follows a special syntax (DIAG_
ARG:type=<type>&name=<name>&target=<target>). The "type" is the technology type and can be any
name you choose; it will be used in the next step. The "name" and "target" are technology dependent values
that will be shown in the Ul; they can also be anything you choose. Line 3 defines a third string (#color) which
will be used to identify this specific invocation of the method call from any other. Line 4 updates the method's
1st argument with the colored String, which will cause sendMessage to send a modified String. Finally, line 5,
places the coloring on the stack for usage by Diagnostics.

1. eb2d751f = #target=#callee.destHost+":"+#callee.destPort; \
2. #diagArg

"DIAG_ARG:type=CB-TCP&name=Senders.sendMessage&target="+#target; \

3. #color = (null == #argl ? null : @RemoteCaptureProxy@.createAndGrabColor(#location,
@RemoteCaptureProxy@ENCODED_COLORING, #diagArg.toString())); \

4. #argl = @ProbeCodeSnippetHelper@.createDiagEnvelope(#color, #argl);\
5. #diagArg;

Running the example updates the output as follows. Notice the receiving side did not get the same string
message that was sent. This is a result of the code snippet's Line 4. In many cases, the receiving side may
not handle this well. It's a good idea to note the receiver's behavior as this can happen "accidentally” if the
client and server are not both using the same instrumentation, and in particular, not both instrumented.

Sender's original message: T1313786970403

Executing message: MF_DIAG1_!Dhf/

ABAABKrh3Qfocy7yal sAAAAAAASMYWt1LWhvc3Q6MTIzZNDUAYTEZMTM30DY5N
jAzODgmMU21tdwWxhdGVDcm9zc1ZNI1NpbXVsYXR1ZENYb3NzVkokU2VuzZGVyU21k

ZS52b21kIGd1bmVyYXR1QW5kU2VuZE11c3NhZ2UoKSZcMCZcMCZcMCY=:T131378
6970403

At this point, the only change you'll see in the Ul is some "Outbound Calls". Notice the values in the columns

"Outbound Call" and "Remote Target", these are the values you provided in the code snippet "name" and
"target".

000 4

B lel= s -

000 s

000 s

T T T T T T
1ISTOD 134T0 1340 00 134030 13:40 00 13430 135000 LS00 135100 135130
Fri DR Fil R FuoaMRY FuOaMRA FrggHAM e Fri AR Fil Qe Fis GBARA1 FigarnM e i Gar1RM 1

= 0|

Litsacy ® =1
] Latenty Thisughpat nts:

4 W Zenders sendessage Teke-host 1 2345 SimubstedCross YWE Sender Side generaledndSendMessagel SimulsbeCrossVi 1455 s BEARr

Sarten | Caloa | Cham? Dutsoend Call Pamose Taget ariginatieg Seme Ragaeit Crigenating Frcas

Micro Focus Diagnostics (9.50) Page 146 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Micro Focus Diagnostics (9.50)

Step 3: Remove Coloring from the Receiver Side

The last step is to remove the coloring on the receive side so that the receiver can get the original "uncolored"
message from the sender. First we mark the point as an inbound point with the technology type used in the
code snippet defined in step 2, and assign a code snippet to run before this method is called. Again, we also
specify a more specify signature since that argument will be used in the code snippet.

[SimCrossVM-Inbound]

class = SimulatedCrossVM$ReceiverSide

method = execute

signature = !\(Ljava/lang/String;.*

detail = before:code:d2c83d3c,inbound:CB-TCP
layer = Receiving

The corresponding code snippet is shown below. Line 1 extracts the coloring from the incoming message.
Line 2 updates the method's 1st argument, restoring it to the original message sent by the client. Line 3 puts
the coloring on the stack (and an empty String) for use by Diagnostics.

1. d2c83d3c = #coloring=@ ProbeCodeSnippetHelper@.extractColoringFromDiagEnvelope(#arg1); \
2. #arg1=@ProbeCodeSnippetHelper@.extractOriginalMessageFromDiagEnvelope(#arg1); \
3. "";#coloring;

The program's output is now restored to the original:

Sender's original message: T1313789287234
Executing message: T1313789287234

The Server Request view now shows a Cross-VM call profile is available for the Sender's
"generateAndSendMessage". Open this call profile and observe the client and server call profiles are now
stitched together! They're not doing much in this sample application, but in a real application, you would be
able to see if performance issues occur in the client, server, or both.

nart =
B lml= B
Z20s 7
20035
18.0 5 4
6.0 5
03— &
=
140
1202+
00 s T T T T T T T T T T
12500 1492520 1492000 142020 1427 00 1432730 faZa00 ERE 142000 142030
Fri Gl 4 Fri CuEre 4 Fri Qg4 Foi DEFH T Foi OEF0A 1 Foi O QA1 Fei O Q044 Fri Clfaedd Fra OBAEM 1 Fri s q

= Latency (Awg) trhawing thresholds

= |

Lafeney % =1

Status | Calor Chart? Saret Requeit Pioks
bt | Over Thresh...

Latamcy Thesughput CPU [(Rvg)

O EEE |V SrustecCrossVMEREcaiverSkiereceveAndHINoMEEIagED SMUIBLECIOZEVM | 1608 6010y 00 s
O =EE ¥ [SimuistedCrossViSSender Side genersteindSendMessagel) | SimulsieCrossyid 1608 S 00 ps
@ # SimulstedCrossVieE Recelver Skle execuie]) SimulateCroes Vil 100 B0 he 00 ps

Page 147 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

L] 4] 43 65 Bs s i2s 14s 158

hread.steep() | W read. slee |

This call profile looks a bit strange but is typical for asynchronous applications. The client does not wait for a
response, but does continue to do some processing (err sleeping for 5 seconds). During that time the server is
processing the request and completes a few seconds afterwards. You will see the time durations for the
methods in the tree as shown below. Notice also the diamonds with the number 2 inside, which represent the
JVM depth. If your server made yet another outbound call, you could have 3 or more! In those cases, cross
VM correlation because especially useful. Imagine trying to find the source of a performance issue across that
many JVMs!

=] Simulated Crosz VTS Sander Skle generatefndSendMessage(168
663 Thraad sieep() 99z

El % 0% Oubound Cal to Senders sendMessags on probe Sinulste CrossVM on rasssind americas hpaoerp.net 0.8 me
=2 BAEM SimulsledCrossVIME Receiver Side axecubal) 10s

@ E59% Thaadsieep() 9as

32% Thead skeep() 185

Maintaining Instrumentation from the Java Profiler Ul

You can use the Configuration tab in the Java Diagnostics Profiler to maintain the instrumentation points and
edit the probe configuration without having to manually edit the Java Agent capture points file or property files.
You can access the Configuration tab from the Java Diagnostics Profiler whether profiling has been started or
not.

The Instrumentation section of the Java Diagnostics Profiler gives you access to view and update the
instrumentation for the application the probe is monitoring. The edit dialogs enable you to view and edit the
instrumentation points as defined in the capture points file that Diagnostics uses to instrument your
applications.

Probe Settings Instrumentation
a =l =tm _
Vigw Currently Used Instrumentation
= Trimming | i
Server Reguest Minimum . | 51ms Change Probe Instrumentation Plan
Method Minimum Latency 51ms Shared Instrumentation: “
SQL Statement Minimum L... | 1s
URI Replacement Pattern sH()T TS 5% M (s]csslipg.. Instance Instrumentation: i . i

[Stack Tracing
Thread Stack Trace Samp... | Auto
Sampling Interval 150ms
Tardy Method Latency Th... | 100ms
Maximum Stack Trace De... | 60

When you click Edit... for Shared Instrumentation, you are editing and changing the capture points files
shared among all probes on the hosts. By default this is <agent_install_directory>\etc\auto_detect.points,
however the probe may be using a custom capture points file. In that case you are editing the shared custom
capture points file. For more information about custom capture points files, see "About Instrumentation and
Capture Points Files" on page 97.

When you click Edit... for Instance Instrumentation, you are editing and changing the capture points file for
this session of the profiler on this probe only.

Micro Focus Diagnostics (9.50) Page 148 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Reviewing the Current Instrumentation

Toreview the layers, classes, and methods that were instrumented as a result of the points in the current
capture points file, click View Currently Used Instrumentation in the Instrumentation section of the
Configuration tab. The Profiler displays the Instrumented Layers page:

Diagnostics A
Instrumented layers (no particular sorting)
Layer Hits Active Locations Actions
(Cther) 78 g8/8 Disable] [Clear £ Hits
(keyword) ejb30 [u] 0/ 328 Enable] [Clear # Hits
(keyword) hitp &1 13 /13 Disable] [Clear # Hits
(keyword) rameote-http 4 44 [44 Disable] [Clear # Hits
Business Tier/EIB/Session Bean a o/fi1 Enable] [Clear # Hits
ClientSideMonitor/Instrumentation [u] 0/3 Enable] [Clear # Hits
Database/IDBC a o/ 40 Enable] [Clear # Hits
Database/IDBC/Connection 31575 36,92 [Enable] [Disable] [Clear # Hits]
Database/IDBC/Execute 31579 47 [47 Disable] [Clear # Hits
Directory Service/INDI [u] o/fs Enable] [Clear £ Hits
HttpStatus 50 16/ 16 Disable] [Clear £ Hits
Java Server Faces/Lifecycle/Execute [i] o/f2 Enable] [Clear # Hits
Java Server Faces/Lifecycle/Rendar 0 ofz Enable] [Clear # Hits
Legacy/ICA/CCI a o/f2 Enable] [Clear # Hits
Legacy/ICA/Connection [u] 0/1 Enable] [Clear # Hits (V)

The Instrumented Layers page lists the layers that were instrumented, the number of times the
instrumentation points in the layer were triggered, and the number of points currently active in the layer. The

following columns are provided:

Column

Layer

Hits

Active Points

Micro Focus Diagnostics (9.50)

Description

Lists the layers that were instrumented. The layer names in this
column are links to a page that provides details about the processing
in the layer that was monitored by the probe. Note: Only the layers
defined in points that were actually instrumented are listed.

Contains a count of the number of times that the classes and
methods that are monitored by the points in the listed layer were
invoked. You can reset the count using the Clear # of Hits link in the
Actions column.

Contains the count of the number of points that are currently active
as well as the total number of points that were defined for the
particular layer.

Page 149 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Column Description

Actions Contains links that enable you to manipulate the information for the
listed layers. The available action are:
Disable: Disables all of the points in the selected layer so that they
no longer capture data. The instrumentation stays in place and can
be enabled again. Enabling or disabling points here is effective only
until the next restart of your application. To change the default
enabled state for a point, see "Coding Points in the Capture Points
File" on page 99.

Clear # Hits: Resets the hit count displayed in the # Hits column for
the selected layer.

Micro Focus Diagnostics (9.50) Page 150 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Maintaining the Instrumentation Points

To maintain the points that provide the instrumentation instructions that tell the probe what to monitor in your
application, navigate to the Configuration tab in the Java Diagnostics Profiler and click Edit... for either the
Shared Instrumentation or the Instance Instrumentation. The Instrumentation Points dialog opens:

-

_ Instrumentation Points: etc/auto_detect. points

w

Instrumentation Points] Source

Wiew as: | Layers Tree |V|

T8 Application -

)
)
[w!
@
o
[=
o
(%]
[41]
1]

7 .
) Logging Select a point from the tree on the left.

8 SOA Broker
4 SOAPHandler

T Web Services

T Web Tier

ch'j WebAppServietCortext_Calls

10¢ BElB-Messagelriven-all -
1} 3

You can edit the instrumentation in two ways: visually, using a list or tree of points on the Instrumentation

Points tab; or via the source of the capture points file on the Source tab.

Selecting and Viewing an Existing Point

The navigation bar in the Instrumentation Points dialog helps locate the points in the capture points file that
you would like to maintain. By making a selection from the View as dropdown, you can choose the format in

which the points are listed.

Micro Focus Diagnostics (9.50)

Page 151 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

When you select Layers Tree from the dropdown, you see a list of the points in the capture points file in a tree
structure according to the layers and sublayers you assigned to the point:

Instrumentation Points] Source

Wiew as: | Layers Tree |V|
1 Axis2 {|
1 BEA .
i Business Tier
i CrossVM
] Database
E-% JoBC

[l]—ﬁﬁ Connection
—i:.} lJDE!E-Eunnectiun-create
—i:.} JOBC-Connection-prepare
—i:.} JOBC-Connection-prepare-v-—
—i:.} JOBC-Connection-prepare-y
—i:.} JDBC-DataSource-getConne
i JDBC-¥ADataSource-getCol
—i:.} JOBC-Driver-connect
—i:.} JOBC-DriverManager-getCor
10 Execute
EEI—TEJ Directory Service
100 Felix
BT GX
-1 Hibernate
100 HitpStatus
-1 Legacy
[
[
[
[
[

+-1{ Load Balanced Request

+-19 Logging

+-1{J Messaging

+-10) PeopleSoft

+-1 Portal v:|
4

(=] il ,

g

Micro Focus Diagnostics (9.50) Page 152 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

When you select Points List from the dropdown, you see a list of the points in the capture points file in
ascending alphabetical order:

Instrumentation Points | Source |

Viewas: | Points List ||
-]
s wasInputz

{8 waASInput3

{68 WASOutputt =
68 WASOutput2

e waASOutput3

a8 WASOutputs

@ JavaServerFaces-Sendet

@ JavaServerFaces-Lifecycle-execute
@ JavaServerFaces-Lifecycle-render
@ Apache-Catalina-\ahe

@ Spring-Yiew

@ Spring-ViewResohwer

@ Spring-Controlier

@ Spring-Senice

@ Spring-Repositony

@ Spring-Component

8 sSpring-SenvetMethod

@ Spring-publishEvent

@ Spring-onEvent

@ Spring-refresh

@ Spring-EndpointAdapter

{68 Spring-MethodEndpoints)
=

When you locate the point you want to view or maintain, select the point in the navigation bar. Then you see
the details of the selected point in the view/edit panel where you can maintain the point.

Updating an Existing Point

When you select a layer or sublayer from the navigation bar, the view/edit panel contains only a prompt to
remind you to select a point.

Micro Focus Diagnostics (9.50) Page 153 of 267

Java Agent Guide

Chapter 10: Custom Instrumentation for Java Applications

To update an existing point, select the point from the navigation bar so that the Profiler displays the details for
the point in the Instrumentation Points tab of the view/edit panel:

_,,? Instrumentation Points: etc/auto_detect.points

Instrumentation Points] Source

| JDBC-Connection-create |
| DatabasesDBC/Connection |
Inttially Enabled Mode:

Also match overriding metho... Vl

Subclasses of: | |

| javal.sglh Connection)|{oraclel jdbch driveri PhysicalConnection) |

| createStatement)]{commit) |

L |

| oracle.jdbc.OracleCnnnectionU\l‘rapper,nracle.jdbc.driver.Logice‘

Wiew as: | Layers Tree |V|
1 Axis2 {| Mame:
:‘[? BEA Layer:
@ oo ¥ acive
1 Database i
B JDBC 5
ELJ—TEJ Connection Class:
4.4 JDBC-Connection-create Method;
454 JOBC-Connection-prepare Signature:
404 JDBC-Connection-prepare-V
—45# JDBC-Connection-prepare-V Exclude:
454 JOBC-DataSource-getConne Classes:
454 JOBC-XADataSource-getCol
—45¢ JOBC-Driver-connect E LLUELLE
r&:;} JDBC-DriverManager-getCor
a [_]_Tc[j Exeche Scope:
+—1 Directory Service
]—"r[:;’.l Felix
o ox Comment

[+

E

[+

1 Hibernate
[]_1'{?] HitpStatus | T
T Legacy

T3 Load Balanced Request

#—17 Logging

F-1(0 Messaging

L 7L

Advanced Attributes

The arguments that are commonly used when defining a point in the capture points file are displayed as
separate data fields to make it easier for you to make any necessary updates. More advanced arguments are
displayed in the Advanced Attributes tab at the bottom of the display. Comments for the point are displayed
in the Comment tab. After making changes click OK. And remember to apply all of the changes made using

the Configuration tab by clicking Apply Changes.

The arguments that can be used to define a point in the capture points file are documented in "Coding Points in

the Capture Points File" on page 99.

Micro Focus Diagnostics (9.50)

Page 154 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

The following is an example of the Source tab:

4 X
Instrumentation Points || Source
|

[EJE-Seszion-all]

H Seee—ae— e extends SessionBean -----------—-———-———-

; tv:edjb tags this as an ejb method for the TV Plugin module

; Bytecode wverification fails for instrumented MediationFlowEean (2} g]
class = javax.esjb.SeszionEean

method SR

signature = !.%*

igmore_cl = javax.ejb.SessionBean , !'.*_Tmpl, com.bega.wlw.runtime.core.bean.SyncDispatcher

ignore _method = ejbCreate ()V,ejbdctivate ()V,ejbPassivate ()V,ejbEemove ()V,setlessionlont
igmore_tree = com.ibm.ejs.container.EJSHome

deep_mode = hard

layer = Business Tier/EJBE/Session Bean
detail = diag,tv:ejb

priority = -1

HEE Server side JNDI hook ---—----—----—-

class = javax.naming.Context

method = lookup

gignature = (Ljava/lang/5tring;)Liavaslang/Object:

igmore_cl = org.apache.naming.resources. FileDirContext, org. apache. naming. resources. ProxyDi

deep _mode = soft

layer = Directory 3ervice/JNDI

detail = before:code: Saf0ledf, store-nethod, when-root-rename , no-layer-recurse
[IJDBC-Connection-create] .]
4 1l 3

Deleting an Existing Point or Layer
You could delete a point or layer listed in the navigation bar.
To delete a point or layer:

1. Select the point or layer from the Navigation bar on the Instrumentation Points tab.

2. Click Delete Point (|£|). The Profiler deletes the selected entity from the list in the navigation bar.

The selected entity is not actually deleted from the capture points file until you apply all of your
instrumentation points updates from the Configuration tab in the Profiler.

3. Close the Instrumentation Points dialog by clicking OK.
4. Apply all of the changes made using the Configuration tab by clicking Apply Changes.
Adding a New Point

You could add a point to the instrumentation.

Micro Focus Diagnostics (9.50) Page 155 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications
To add a point:

1. Click New Point (L). The Profiler displays the Select New Point Type dialog box:

Select instrumentation point type:

Method Instrumentation | - |

2. Select the appropriate point type from the dropdown and click OK.

The Profiler displays the Instrumentation Points tab with the view/edit section initialized for creating a
new point for the selected point type.

3. Enter the arguments and comments for the new point into the appropriate locations on the tab.

When you enter the Layer information, the entry for the new point in the navigation bar is updated to show
the point in the correct existing layer or, if the layer that you specified does not already exist, with a brand
new layer.

The new point is not actually added to the capture points file until you apply all of your instrumentation
points updates from the Configuration tab in the Profiler.

4. Close the Instrumentation Points dialog by clicking OK.
5. Apply all of the changes made using the Configuration tab by clicking Apply Changes.
Activating OVTA-like Points
Points are included in the Java probe instrumentation for Servlet Filters and EJB local home methods. These

instrumentation points provide additional functionality similar to the OVTA (OpenView Transaction Analyzer)
Java Monitor.

The ServletFilter point requires that the HttpCorrelation2 point also be activated for server filters to be
monitored correctly. This is because servlet filters sometimes are the first time Diagnostics sees an HTTP
server request.

The EJBLocalHome, ServletFilter, and related HttpCorrelation2 instrumentation points are not active by
default. Inactive points are indicated by a red symbol on the icon next to the instrumentation point, as shown
below. To use these points, set active=true in the auto_detect.points file through the Ul or by directly editing
the file.

Micro Focus Diagnostics (9.50) Page 156 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Locate these points in the Profiler Ul as described in "Selecting and Viewing an Existing Point" on page 151
and navigate to the Business Tier>EJB>LocalHome>EJBLocalHome point or the Web
Tier>Servlet>ServletFilter point and HttpCorrelation2 point.

4 i
el il

Instrumentation Points] Source

Wiew as: | Layers Tree |V|
U0 Axis2 = Mame: |EJEILOcaIHu:ume |
'{'I:j BEA. _ Layer: | Business TierEJBLocal Home |
T Tj ?Ejmgsfsaﬂer [active Initially Enabled Mode: | Alzo match over... Vl
1) EJB |
1{'3 Entity Bean =
'{fj Local Home Class: | javax gjb EJBLocalHome |
q|—~_a'. Methad: * |
11 Messagelriven Bean Signature: |+ |

1] Session Bean

ch'j Stateful Session Bean Exclude:

Tfj Stateless Session Bean |

B3 Oracle

E-1{) SAPR3 |

T CrossyM Subclasses of: | |
|

Classes: |

Methadls: |

F—1{ Datab
v ARAsE Scope: |

[

=

E]—7€j Directory Service
E]—'Tl{qj Felix
BT GX
BT Hibernate
=

£

[

[

[

Advanced Attributes
EJBE Home
Can be enabled to be similar to OWTA monitoring

Mote, adding the EJBLocalHome combined with minimum latency = 0is
VEry noisy

tv:ejb tags this as an ejb method for the TV Plugin module

Comment

A1 HitpStatus

-1 Legacy

F—1{1 Load Balanced Request
f—1 Logging

H—1] Messaging

To set these points to active:

1. Select the point from the Instrumentation Points navigation bar so that the Profiler displays the details for
the point. Check the active check box.

Close the Instrumentation Points dialog by clicking OK.

3. Apply all the changes made using the Configuration tab by clicking Apply Changes. Restart your
application server (which restarts the probe) for the newly activated points to take effect.

Restoring Default Points

When you finish diagnosing a problem using the Profiler or Diagnostics Enterprise User Interface, you can
restore the default instrumentation to avoid incurring the overhead from a more robust instrumentation.

To restore the default settings to the instrumentation:

1. Click Restore Defaults.

The instrumentation points are not actually added to the capture points file until you apply all of your
instrumentation points updates from the Configuration tab in the Profiler.

Close the Instrumentation Points dialog by clicking OK.
3. Apply all of the changes made using the Configuration tab by clicking Apply Changes.

Micro Focus Diagnostics (9.50) Page 157 of 267

Java Agent Guide
Chapter 10: Custom Instrumentation for Java Applications

Default Layers Defined for Typical Java Classes and
Methods

Diagnostics Enterprise User Interface groups the performance metrics for classes and methods into /ayers
and sublayers according to the instructions provided in the capture points file. The default layers were defined
so that the performance metrics for processing in the application that used similar system resources could be
reported together. The layers make it easier for you to isolate and identify the areas of the system that could
be contributing to performance issues.

The following table lists the default layers and sublayers that are defined for typical Java classes and
methods.

Platform-specific layers are also defined in the capture points file. These layers are, for the most part,
sublayers of the top-level parent layers defined in the following tables. You can see performance data for
layers in the Load View in the Diagnostics Ul.

Java EE Layers

Layer sublayers Parent Layer
Web Tier JSP
Servlets
Struts
Session
Spring
Struts2
Business Tier EJB
Corba
Web Services
EJB Entity Bean Business Tier
Session Bean
Local Home
Stateless Session Bean
Stateful Session Bean

MessageDriven Bean

Directory Service JNDI

Database JDBC

JDBC Execute Database
Connection

Micro Focus Diagnostics (9.50) Page 158 of 267

Java Agent Guide

Chapter 10: Custom Instrumentation for Java Applications

Layer

Messaging

JMS

Spring
Hibernate

Portal Layers

sublayers
JMS
Spring
Producer
Listener
Consumer
Producer

Consumer

Parent Layer

Messaging

Messaging

Diagnostics groups the performance metrics for the classes and method calls associated with processing for
portals into Portal Component layers. Each Portal Component layer is broken down into layers for the portal

lifecycle methods. For more information about portal layers, see the Diagnostics User Guide.

Micro Focus Diagnostics (9.50)

Page 159 of 267

Chapter 11: Advanced Java Agent and
Application Server Configuration

This chapter discusses advanced configuration of the Diagnostics Java Agent and the application server
environment. Advanced configuration is for experienced users with in-depth knowledge of this product. Use
caution when modifying any of the component properties.

This chapter includes:

« "Advanced Configuration Overview" below

« "About Dynamic Configuration" on the next page

« "Disabling the Java Diagnostics Profiler" on page 162

« "Controlling Probe Logging" on page 162

« "Setting the Probe’s Host Machine Name" on page 163

« "Specifying a Different Probe IP Address" on page 164

« "Setting the Active Products Mode" on page 164

« "Controlling Automatic Method Trimming on the Agent" on page 166
« "Configuring URI and Parameter Capture" on page 166

« "Capturing Non-Sequential Server Requests" on page 169

« "Configuring an Agent for a Proxy Server" on page 169

« "Time Synchronization for Probes Running on VMware" on page 170
« "Limiting Exception Tree Data" on page 170

« "Diagnostics Probe Administration Page" on page 172

« "Authentication and Authorization for Diagnostics Java Profilers" on page 174
« "Configuring Collection of CPU Time Metrics" on page 176

« "Configuring Consumer IDs" on page 177

« "Configuring SOAP Fault Payload Data" on page 184

« "Configuring REST Services" on page 185

« "Customizing Grouping JMS Temporary Queue/Topics" on page 185
« "Configuring SQL Query Parsing" on page 185

« "Configuring Display of Application Name for Server Requests" on page 187
« "Maintaining Probe Settings from the Java Profiler UI" on page 188

« "Generating Performance Reports for JUnit Tests" on page 191

Advanced Configuration Overview

The following bullet points list the probe configuration sources of information to consult to configure your
environment.

« If you have a probe that you want to prevent others from using in Profiler mode, see "Disabling the Java
Diagnostics Profiler" on page 162.

Micro Focus Diagnostics (9.50) Page 160 of 267

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

« Tohave log messages posted to the probe logs for lower level messages, adjust the log level as described
in "Controlling Probe Logging" on the next page.

« If you have more than one agent installed on the same host, make sure the log messages for each agent
are stored in a different file, as explained in "Changing the Log Directory for a Probe" on the next page.

« Toexamine the performance of processing that would normally be trimmed from the metrics reported in
Diagnostics, you can reduce the level of timming or turn off trimming completely as described in
"Controlling Automatic Method Trimming on the Agent" on page 166.

« Ifthereis a proxy between the agent and the Diagnostics Server Commander, you must set the correct
property to tell the agent the URL of the Diagnostics Server Commander, see "Configuring an Agent for a
Proxy Server" on page 169.

« Ifyouinstalled a Java Agent in an Software as a Service (SaaS) environment, disable the reverse http
(rhttp) communication between the agent and the Diagnostics Server Mediator, see "Time
Synchronization for Probes Running on VMware" on page 170.

« If you are running in a virtual environment, see "Time Synchronization for Probes Running on VMware" on
page 170.

« If you need to limit the amount of exception data, see "Limiting Exception Tree Data" on page 170.

« If youwant to use some of the collection options that require property file changes, see the other topics in
this section such as "Configuring Consumer IDs" on page 177.

About Dynamic Configuration

The advanced configuration of the Java Agent is managed by property settings in several property and
configuration files. You can view and modify these files in <agent_install_directory>/etc/.

Some property settings are picked up dynamically—they take effect a few minutes after the changes are saved
to the file. The dynamic properties are as follows:

« Any property in the dynamic.properties file.
« Any property (or metric definition) in the metrics.config file.

« Any property in another property or configuration file that has a comment indicating its changes are picked
up dynamically. For example, in <agent_install_directory>/etc/dispatcher.properties:

20 # Zerver configuration

21

2z ## The URL of the server

23 # Commander in single server environment or distributed server in multi-

24 # enviromment. If it ends with "/commander/registrar/"™, the mediator wi

25 # registration and keepalive regquests to the commander. If it ends with

26 # "Sregistrar/", then the mediator will send keepalive events to the sen

27 # all probes at once at a well-defined interwval. If this property is en

28 # set to its default wvalue, then the commwander.registrar.url property wi
i Gy 1 - 012

I0 # (This property can he dynamically changed)

[RLRS PR M el I B ey ¥ R P ¥ E M ¥ ey ,-'I ,rlj_u.:-uJ.a.Hl_,-uluJ_uJ. FRL= R o) o gy e £ i P hp Loom: 200 E,a"cn:lmmander

e)

Any property that is not in the categories above is non-dynamic. Changes to non-dynamic properties require
an application server restart for the new settings to take effect. For example, all of the settings in <agent_
install_directory>/etc/auto_detect.points are non-dynamic.

Micro Focus Diagnostics (9.50) Page 161 of 267

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Disabling the Java Diagnostics Profiler

You can disable the Diagnostics Profiler for Java on a Java Agent so that it cannot be accessed accidently.
When the Java Diagnostics Profiler is disabled, the user interface cannot be accessed from the Java
Diagnostics Profiler URL: http://<probe_host>:<probeport>/profiler.

To disable the Java Diagnostics Profiler, set the disable.profiler property in <agent_install_
directory>/etc/probe.properties to true.

The default value for disable.profiler is false. To enable the Java Diagnostics Profiler once it is disabled,
change the value of the disable.profiler property from true to false.

Controlling Probe Logging

You can control the level of the messages the probe logs and change the location where the log messages are
posted using the probe properties.

Controlling the Log Message Level

The level of messages from the probe that are logged to the standard output is controlled by the lowest_
printing_level property in the property file <agent_install_directory>/etc/logging.properties. The default
setting for this property is OFF. This prevents almost all agent messages from being logged to the console.

You can adjust the logging level dynamically by changing the value assigned to the lowest_printing_level
property. The level of messages logged changes as soon as you save the property file.

The valid values for the lowest_printing_level property are:

Property Value Description

OFF No messages are logged.

DEBUG All messages are logged.

INFO Info, Severe, and Warning messages are logged.
WARN Warning and Severe messages are logged.
SEVERE Severe messages are logged.

Changing the Log Directory for a Probe

The default location for the log directory for a probe is <agent_install_directory>/log. When you have more
than one probe on the same host, you can change the location of the log directory for each probe using the
log.dir property. This property can be set in two ways:

« The value of the log.dir property can be set in the property file <agent_install_
directory>/etc/probe.property.

« The value of the log.dir property can be specified on the startup command line for the application server

Micro Focus Diagnostics (9.50) Page 162 of 267

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

as a JAVA system property as in the following example:
-Dprobe.log.dir=/path/to/log

For more information on specifying the log.dir property on the startup command line, see "Configuring an
Agent for a Proxy Server" on page 169.

Setting the Probe’s Host Machine Name

The probe’s host name registers the probe with the Diagnostics commander server. The Diagnostics
commander server uses the probe’s host name to communicate with the probe and displays it along with the
system metrics for the server that the probe is monitoring in the Diagnostics views.

The probe normally can detect the host name of the machine that is its host. In some situations, the server
configuration is faulty and the probe cannot detect the correct host name. In situations where a firewall or NAT
is in place or where your agent host machine was configured as a multi-homed device, it might not be possible
for the agent to properly detect its host.

If the probe cannot detect its host name, you can instruct the probe to get the host name via a reverse DNS
lookup based on the socket connection, or you can specify the host name using a probe property.

Instructing the Probe to Use Reverse DNS Lookup

If the configuration of the probe’s host prevents the probe from detecting the host name, you can instruct the
probe to detect the host name using a reverse-DNS lookup by setting the server.host.name.lookup
property. This property is located in the <agent_install_directory>/etc/dispatcher.properties file.

The default value for the server.host.name.lookup property is 'false'. This tells the probe to do the lookup
without using reverse-DNS. Set this property to 'true' instruct the probe to use reverse-DNS lookup.

Manually Specifying the Probe Host Name

The probe.host.name.override property enables you to manually set a host machine name for the probe and
stop the probe from doing the automatic lookup.

To set a default host machine name for a probe, set the probe.host.name.override property (located in the
property file <agent_install_directory>/etc/dispatcher.properties) to a machine name or IP address.

When you set the probe.host.name.override property, automatic lookup of the host name is disabled.

Note: Setting the probe.host.name.override property because of a NAT or firewall is only an issue for a
test environment where you are using LoadRunner, Performance Center, or Diagnostics Standalone.

When you set the probe.host.name.override in a production environment where you are using

BSM/APM or Diagnostics Standalone, the name you specify is shown as the host name in System
Health.

Micro Focus Diagnostics (9.50) Page 163 of 267

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Specifying a Different Probe IP Address

The probe.host.ip.address.override property (located in the property file <agent_install_
directory>/etc/dispatcher.properties) enables you to override the Probe’s IP address. You can use this
property when you want the probe to provide the server with a different IP address, for example, a Virtual IP
that would allow the server to communicate to the probe through a tunnel.

Setting the Active Products Mode

The Java Agent mode is typically set for you based on the options you enter in the setup program. But you can
set the mode manually as described in this section.

The Java Agent can be set in different modes to do the following:

« Monitor applications from development through pre-production testing and into production

« Work with other Software products

« Beused as a standalone Diagnostics Java Profiler not reporting to a server or to other Software products
The mode the Java Agent works in is determined by the modes value of the active.products property located
in the property file <agent_install_directory>/etc/probe.properties.

The modes value in the active.products property is also used in determining usage against the license
capacity (see the chapteron Licensing in the Diagnostics Server Installation and Administration Guide). For
Diagnostics there are two types of LTUs (License to use):

« AM -When using of the product in an enterprise mode, typically in a production environment.

« AD - When using the product in a pre-production load testing environment with probes in LoadRunner or
Performance Center runs.

The value of the active.products property is initially set at the time you install the Java Agent.

« If you select Diagnostics Profiler Mode the value of the active.products property in the
etc/probe.properties file is set to PRO mode at the time you install the Java Agent.

« With the Application Management/Enterprise Mode (AM License) option, the value of the active.products
property in the etc/probe.properties file is set to Enterprise mode if you select the Diagnostics Server.

« If you select this AD License option, the value of the active.products property in the
etc/probe.properties file is set to AD mode at the time you install the Java Agent.

To change the value of the active.products property you can edit the property file and restart the application
server. Or you can re-run the Java Agent Setup and use the Change option to set the mode to Diagnostics
Profiler Mode (PRO), Application Management/Enterprise Mode for Diagnostics (Enterprise) or Diagnostics
Mode for LoadRunner/Performance Center (AD).

Note: To use the standalone Diagnostics Profiler for Java trial copy in enterprise mode or integrated with
other Software products, contact Software Customer Support to purchase Diagnostics.

To see Diagnostics data in the user interface of the interfacing Software products, you must perform
additional configuration steps. See the APM-Diagnostics Integration Guide or LoadRunner/Peformance
Center-Diagnostics Integration Guide for details.

The sections that follow provide instructions for configuring each product mode of the active.products
property.

Micro Focus Diagnostics (9.50) Page 164 of 267

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

PRO Product Mode - Diagnostics Profiler for Java

When PRO mode is set, the agent gathers performance metrics and presents them in the standalone
Diagnostics Java Profiler user interface which is made available through a URL on the agent host.

If you are running the Java Agent as part of the Java Diagnostics Profiler trial copy, restrictions are placed on
the agent to limit the load it can handle.

If you are running the Java Agent as part of the full Diagnostics enterprise product, or along with another
Software product, the Profiler is enabled without the load restrictions.

PRO mode is not used in determine usage against license capacity.

Enterprise Product Mode

When configured in Enterprise mode, the agent works with Software products such as BSM/APM,
LoadRunner, Performance Center, and as the full Diagnostics enterprise product. Although you must also do
additional configure to enable these integrations (see theAPM-Diagnostics Integration Guide or
LoadRunner/Peformance Center-Diagnostics Integration Guide for details).

In Enterprise mode data will also be sent to the Diagnostics Java Profiler.

Enterprise mode is the default for Java Agents (if you don’t specify AD or AM mode). In Enterprise mode the
agents are counted against the AM license capacity.

AM Product Mode

In AM mode the Java agent will capture all instrumentation data. You can set AM mode to protect an agent in
a production BSM/APM deployment from accidentally being included in a LoadRunner or Performance Center
run. In AM mode, the agent is not listed as an available agent in LoadRunner or Performance Center.

Agents in AM mode will always be counted against the AM license capacity.

AM mode supersedes all other modes except for AD.

AD Product Mode

In AD mode the Java agent will only capture data during a LoadRunner or Performance Center run and the
results will be stored in a specific Diagnostics database for that run, for example, Default Client:21.

When the agent is in AD mode it will not use resources or send any data to the server unless the probe is part
of a LoadRunner/Performance Center run.

Use this mode to prevent an agent in a QA environment from using additional resources and continually report
data to the Diagnostics server when a load test is not running.

Another advantage of running a probe in AD mode is that probes in AD mode are only counted against the AD
license capacity when in a LoadRunner or Performance Center run. For example if you have 20 probes
installed in LoadRunner/Performance Center AD mode but only 5 are in a run, then only 5 are counted against
AD license capacity.

See the LoadRunner/Peformance Center-Diagnostics Integration Guide for more information.

Micro Focus Diagnostics (9.50) Page 165 of 267

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Controlling Automatic Method Trimming on the Agent

Default configuration for the agent includes settings that control the trimming of methods. Trimming can be
controlled according to how long the method takes to execute, which is known as latency, and by the stack
depth of the method call. The default configuration instructs the probe to trim both by latency and depth.

You could reduce the level of trimming, or turn off timming completely. You can control timming using the
minimum.method.latency and maximum.stack.depth properties in <agent_install_
directory>/etc/capture.properties.

Controlling Latency Trimming

Methods that complete with latency greater than or equal to the value of the minimum.method.latency
property are captured, and those that complete with latency less than this limit are trimmed to avoid incurring
the overhead for less interesting methods.

Note: In the following situations, latency is not timmed when its latency is less than the trimming
property:
« Methods that are the root for a call tree.

« Methods that threw an exception.
If the information for all methods must be captured, lower the value of the minimum.method.latency
property or set it to zero.
Consider the following when setting the minimum.method.latency property:

« The lower the value of the minimum.method.latency property, the greater the chance that the
performance of your application will be adversely impacted.

« Depending on your platform, and whether native timestamps are being used (use.native.timestamps =
false), it might not be useful to specify this value in increments of less than 10 ms.

Controlling Depth Trimming

Methods that are called at a stack depth less than or equal to the value of the maximum.stack.depth
property are captured. Those called at a stack depth greater than this limit are trimmed to avoid incurring
overhead for less interesting methods.

Here is an example:

If maximum.stack.depth is 3 and /login.do calls a() calls b() calls c() then only /login.do,
a, and b are captured.

Note that setting a low maximum.stack.depth can significantly reduce the overhead of capture.

Configuring URI and Parameter Capture

Any HTTP/S server request URI, or HTTP parameter, can be transformed before being reported by the probe.
Some of the transformations are based on regular expression matching and replacement and are controlled by
properties in the <agent_install_directory>\etc\dynamic.properties file. The values of the properties

Micro Focus Diagnostics (9.50) Page 166 of 267

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

controlling such replacement must use the s/pattern/replace/ syntax. To perform multiple operations, use a
comma-separated list. The operations are performed in order.

The URI or HTTP parameter transformations can be used when you are seeing too many server requests and
you want to replace many server request URIs with one simplified server request URI that aggregates them.

For example, the following URIs may be accepted by a particular banking application:

/banking/account/00283117/status
/banking/account/02089003/check_balance

/banking/account/00082453/transfer/amount/250000/to/account/02089003

If the server requests are identified by the URIs as shown above, the number of different server requests can
be very large. This can create storage problems on the Diagnostics server, but more importantly, it can make
reported data very poorly suited for performance analysis. The reported server requests must be mapped to a
manageable set, using the options below.

URI Truncation and Mapping

The regular expression matching and replacement for any HTTP/S server request URI is controlled by the
uri.pattern.replace property in the dynamic.properties file.

In the banking application example shown above, you may want to eliminate the numbers following the
"account/" and "amount/" parts in the URI. To do this, you set the uri.pattern.replace value as follows:

uri.pattern.replace=s'account/\\d*"'account/*',s"amount/\\d*'amount/\\$"

This results in the server requests being reported as follows:

/banking/account/*/status
/banking/account/*/check_balance

/banking/account/*/transfer/amount/$/to/account/*

Caution: Overuse of this feature can impact performance.

You can see details and more examples as comments in the dynamic.properties file under URI Truncation
and Mapping.

Automatic Detection and Trimming of REST-ful Server Requests

By default, the probe attempts to automatically detect the URI path elements that demonstrate high
variability, as shown in the banking application example above. This behavior is controlled by the
automatic.uri.collapsing property in the <agent_install_directory>/etc/capture.properties file. The value
of the property is an expression indicating the maximum number of path segments allowed for each segment
position, provided all the preceding path segments are the same. Whenever the number of the different values

Micro Focus Diagnostics (9.50) Page 167 of 267

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

for the path segment exceeds the configured threshold, this path segment (in the given context) is replaced by
an asterisk (*). For example, in the banking application example shown above, after seeing a sufficiently large
number of different account numbers and transfer amounts (equal to or greater than the value configured in the
automatic.uri.collapsing property), the probe reports the server requests as:

/banking/account/*/status
/banking/account/*/check_balance

/banking/account/*/transfer/amount/*/to/account/*

Automatic detection makes manual configuration as described in the previous section unnecessary, but it
may require a relatively large set of different URIs to be seen by the probe before it is activated.

Tip: The probe stores its internal data related to this feature in the log/<probe-id>/<probe-id>_
sr.templates text file. You can "train" the Diagnostics probe in a test environment to determine the
correct set of server requests to report, and then copy this file to a production environment before starting
the production probe.

URI Trimming

If you have too many server requests, you can also use the maximum.uri.pathsegments property in the
capture.properties file to trim server requests to a configured number of path segments.

The default for this setting is -1, which disables the property. For probes reporting in a SaaS environment
(SaaS selected in the Java Agent setup) maximum.uri.pathsegments is automatically set to 2 to ensure the
volume of server request data sent to Micro Focushosted servers is not too large.

For example, a setting of 2 results in no more than two path segments, so the URI
/banking/account/00082453/transfer/amount/250000/to/account/02089003 is trimmed to
/banking/account.

The probe applies the URI transformations in the following order:
1. URI mapping (configured by the uri.pattern.replace property).
2. Static content replacement (configured by the uri.static_content.suffixes property).
3. URI trimming (configured by the maximum.uri.pathsegments property).
4. Automatic URI transformation (configured by the automatic.uri.collapsing property).

Caution: While each of the above transformation steps can be disabled, we do not recommend disabling
all of them.

HTTP Parameter Truncation and Mapping

You can transform any captured HTTP parameter. This can be useful when a parameter value is too complex
to be used in server request classification without causing symbol table explosion.

The regular expression matching and replacement works in the same manner as for URI Truncation and
Mapping explained above, and it is controlled by the parameter.pattern.replace.<property-key> property in
the dynamic.properties file, where <property-key> is the HTTP parameter name (key).

Micro Focus Diagnostics (9.50) Page 168 of 267

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

You must enable HTTP parameter capture in the [HttpCorrelation] point in the auto_detect.points file using
the args_by_class keyword. Also, if your HTTP requests use the POST method, you must specify
ignore.post.parameters=false in the inst.properties file.

For example, if you want to capture the HTTP parameter eventSource, which takes values like
FNOLVehicleIncidentPopup:FNOLVehicleIncidentScreen:VIPS:VehicleDamageDescription

and you only want to keep the part up to the first colon (:), you can add the following line to the
[HttpCorrelation] point definition in the auto_detect.points file:

args_by class = !.*&eventSource

and add the following line to the dynamic.properties file:

parameter.pattern.replace.eventSource=s':.*

Caution: Overuse of this feature can impact performance.

You can see details and more examples as comments in the dynamic.properties file under HTTP Parameter
Truncation and Mapping.

Capturing Non-Sequential Server Requests

Some non-J2EE applications split the work to be performed by a single server request into components that
are executed by multiple threads. Server requests such as these are termed as non-sequential because the
components can be run concurrently. There are a number of frameworks that applications can use to organize
concurrent execution of the code. Some of the frameworks are limited to concurrent 1/O, while others, like the
standard J2SE package java.util.concurrent, can be used for almost any purpose.

By default, support for non-sequential server requests is disabled. To enable non-sequential server requests,
set the parameter mercury.enable.non_sequential.fragments = true forthe property
details.conditional.propertiesinetc/inst.properties. Support for non-sequential server requests
causes slight increase in the probe overhead. Therefore, it is recommended to leave it disabled for
applications that do not need it.

Similar to the traditional frameworks, Java Agent offers out-of-box support for a limited number of concurrent
frameworks. Additional support can be added by enhancing the Java Agent configuration in
auto_detect.points.

Configuring an Agent for a Proxy Server

Note: This section only applies if you are using the Java Agent with a Diagnostics Server.

Micro Focus Diagnostics (9.50) Page 169 of 267

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Two properties are used to specify for the Java Agent, the URL of the Diagnostics Commander Server. The
property you set depends on whether or not there is a proxy.

« registrar.url in dispatcher.properties

The registrar.url property in <agent_install_directory>\etc\dispatcher.properties is set when you
install the agent. When there is a direct connection between the agent and the URL of the Diagnostics
Commander Server, the agent uses the value of this property.

« registrar.url in webserver.properties

In the presence of a proxy, you must set the registrar.url property in the <agent_install_
directory>\etc\webserver.properties file to indicate the URL of the Diagnostics Commander Server.

Time Synchronization for Probes Running on
VMware

For probes running in a VMware guest, time must be synchronized between the VMware guest and the
underlying VMware host. If time is not synchronized properly, the Diagnostics Ul could display inaccurate
metrics or no metrics at all from a probe running in a VMware guest.

Time should be synchronized according to the recommendations given in the VMware whitepaper on
timekeeping

(http://www.vmware.com/pdf/vmware_timekeeping.pdf) in a section on "Synchronizing Hosts and Virtual
Machines with Real Time." VMware Tools must be installed in each VMware guest operating system that
hosts a Diagnostics probe. The time synchronization option in VMWare Tools must be turned on.

This option in VMware Tools works only if the guest operating system time is initially set earlier than that of
the VMware host. For instructions on how to install VMware Tools, see the "Basic System Administration”
document for VMware ESX Server. If any non-VMware time synchronization software (such as Network Time
Protocol) is used, it should be run in the VMware ESX server service console.

If you encounter negative latency issues when running the probe on VMware guest with the probe property
attempt.vmware.timestamp.adjustments set to true, you should set the following property in the probe
etc/capture.properties file:

use.vmware.timestamp.workaround=true

When use.vmware.timestamp.workaround is set to true, the probe will use the alterative call to get the
VMware host timestamps, so as to workaround the negative latency issue.

Limiting Exception Tree Data

The agent collects exception information and uses it to build exception instance trees. Exception instance
trees provide the data for the exception information that appears in the Diagnostics Ul such as a stack trace.

By default, every exception that occurs in the monitored application is a candidate for the exception instance
trees. Collecting all exception information is usually undesirable, however, because exceptions that are not of
interest overload the display as well as the data collection and transfer operations. You can, therefore, limit
the exception types for which data is collected. For example, filtering application server-based errors such as
javax.naming.AuthenticationException allow the exception trees to contain more application-specific
errors.

Micro Focus Diagnostics (9.50) Page 170 of 267

http://www.vmware.com/pdf/vmware_timekeeping.pdf

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

The exception tree data collected is controlled by limiting specific exception types or limiting the number of
exception types.

Limit Specific Exception Types

You can control which specific exception types are excluded and included from collection by setting the
exception.types.to.exclude and exception.types.to.include properties in the <agent_install_
directory>\etc\dispatcher.properties file as follows:

« exception.types.to.exclude

Set this property to ignore exceptions of one or more specified types. All subtypes of each specified type
are also ignored unless the subtype is specified by the exception.types.to.include property.

« exception.types.to.include

Set this property to specify which, if any, of the specified excluded exceptions (or their subtypes) are to be
included. Subtypes of any exception type specified to be included are also included.

Both properties take lists of fully-qualified exception type names, separated by commas. Changes to the
dispatcher.properties file take effect immediately. It is not necessary to restart the application.

Limit the Number of Exception Types

You can limit the exception tree data collected by specifying the number of different types of exceptions by
setting the exception.instance.tree.count property in server.properties. By default, this property is set to 4,
which indicates that only the first four exceptions types encountered during the probe’s data collection cycle
are used in building the exception trees. You can raise or lower this setting.

Examples

The following example causes exceptions of type ClassNotFoundException and all its subtypes to be
ignored.
exception.types.to.exclude=javax.naming.AuthenticationException
The following example causes some subtypes of the java.lang.|OException class to be excluded, as
indicated by the diagram that follows:
exception.types.to.exclude=java.io.IOException,java.io.InvalidClassException

exception.types.to.include=java.io.ObjectStreamException

The following diagram shows the excluded and included exception types on the java.io class hierarchy:

Micro Focus Diagnostics (9.50) Page 171 of 267

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

> javalang Throwahble
> javalang Error
o javeio JOError
> javalang Exception
o javeie.]JOException
5 javaio CharConversionException
7 java.io. EOFExcepiion Excluded
1 java io FilleNotFoundException
7 javaio InterruptedIQException

Included by default

javaio OptionalDataException
javaio StreamCorruptedException

5 javaio WnteAbortedException)
java.io Svncl ailedException

java.io UnsupportedEncodinsEzception Excluded
javaio UTFDataFormatException

> java io ObjectStreamException Included
> javaio ImvalidClassException Excluded
> javaio InvalidObjectException |
2 javaio NotActiveException
5 javaio MNotSerializableException
. tincluded

L= [

[l

Diagnostics Probe Administration Page

You can use the Diagnostics Probe Administration page to configure Java Agent and Profiler settings. Access
the Diagnostics Probe Administration page directly from your browser.

Accessing the Diagnostics Probe Administration Page

Open the Diagnostics Probe Administration page inside your browser.
To access the Diagnostics Probe Administration page:

1. Inyour browser, navigate to http://<probe_host>:<probeport>.
A probe is assigned to the first available port, beginning at 35000.
The Administration page opens.
2. Select the menu option for the activity you want to perform.
« Open Diagnostics Profiler: Opens the Java Diagnostics Profiler.

« Advanced Options: Opens the Components pages. For more information, see "Diagnostics Probe
Components Page" on the next page.

o If your probe is configured to work with a Diagnostics Server, the probe (Profiler) authorization and
authentication settings are managed from the Diagnostics Commander Server to which this probe
is connected. When you click this option, you are redirected to that Diagnostics Commander
Server. For more information, see “User Authentication and Authorization” in the Diagnostics
Server Installation and Administration Guide

o If your probe is configured to work as a Profiler only and is not connected to any Diagnostics
Server, this option opens the User Administration page, where you can create, edit and delete

Micro Focus Diagnostics (9.50) Page 172 of 267

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

users and change their privileges. For more information, see"Authentication and Authorization for
Diagnostics Java Profilers" on the next page.

Diagnostics Probe Components Page

From the Components page you can open the Java Diagnostics Profiler, and access the User Administration
page.

To access the Components page:

1. Open the Diagnostics Probe Administration page as described in "Accessing the Diagnostics Probe
Administration Page" on the previous page.
Click Advanced Options.
If prompted, enter your user name and password.
The Components page opens.

Diagnostics

Components

Component Name Component Description
query Query API - allows you to download diagnostics data in HTML, XML or as Java objects
inst Instrumentation Control

security Built-In User Management

scheduler See and control regularly scheduled background tasks

infrequentlogger See the current status of entries in the infrequent logging table

files Installation directery browser - upload and downlead property files, log files, etc

Diagnostics J2EE Probe "WeblLogic10_myd-vm230", version 9.30.6.269, pid 5380, profile 120

4. Click one of the following options:

« query. Forinteral use by developers.

« inst. Includes various instrumentation options. For more information about probe instrumentation, see
"Custom Instrumentation for Java Applications" on page 97.

« security. Depending on how your probe is configured, you access a different page from this option.

o If your probe is configured to work with a Diagnostics Server, the probe (Profiler) authorization and
authentication settings are managed from the Diagnostics commander server to which this probe
is connected. When you click this option, you are redirected to that Diagnostics commander
server . For more information, see “User Authentication and Authorization” in the Diagnostics
Server Installation and Administration Guide.

o If your probe is configured to work as a Profiler only and is not connected to any Diagnostics
Server, this option opens the User Administration page, where you can create, edit, and delete

Micro Focus Diagnostics (9.50) Page 173 of 267

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

users and change their privileges. For more information, see "Authentication and Authorization for
Diagnostics Java Profilers" below.

« scheduler. Enables you to see and control regularly scheduled background tasks. For the
ServerCommunication scheduler or the sharedinfrequentEventScheduler, you can see the state and
the number of tasks inside each. For each task, you can select an action such as RUN NOW or
DELETE.

« infrequentLogger. See the current status of entries in the infrequent logging table.

« files. Installation directory browser — upload and download property files, log files, etc.

Note: By default, the upload button on this page is disabled. To enable it, in the <agent_install_
directory>/etc/common.properties file, change the value of the enable.file.uploadFromUI
parameter to true (enable.file.uploadFromUI=true).

Caution: Enabling this feature may lead to security issues.

Authentication and Authorization for Diagnostics Java
Profilers

When you install the Java Agent as a Profiler only (not connected to any Diagnostics Server), you can
manage the authentication and authorization of users of the Profiler from the Diagnostics Probe User
Administration page.

Note: If the Java Agent is configured to work with a Diagnostics Server, the probe (Profiler) authorization
and authentication settings are managed from the Diagnostics Commander Server to which this probe is
connected. For more information, see “User Authentication and Authorization” on page 787 in the
Diagnostics Server Installation and Administration Guide.

To manage authentication and authorization for users of the standalone Java Diagnostics Profiler:

1. Access the Diagnostics Probe Administration page

In your browser, navigate to http://<probe_host>:<probeport>. A probe is assigned to the first available
port, beginning at 35000.

The Diagnostics Probe administration page opens.

Micro Focus Diagnostics (9.50) Page 174 of 267

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

2. Select Advanced Options > Security to open the User Administration page.

Diagnostics A

Permissions for ‘Default Client’
Enterprise Diagnostics Permissions
User Administration Allows you to create, edit and delete Diagnostics users

Edit Enterprise Permissions I Allows you to grant a user permissions across the entire Diagnostics deployment.

Control over probes connected to "server-btpvm0527':

Edit Permissions Template J Edits user permissions used on probes in probe groups not yet listed below

Edit Default Edits user permissions on probes in the Default probe group
Control over probes connected to "server-btpvm0535':
Edit Permissions Template ‘ Edits user permissions used on probes in probe groups not yet listed below
Edit Default Edits user permissions on probes in the Default probe group
Control over probes connected to "server-myd-vm08972":
Edit Permissions Template J Edits user permissions used on probes in probe groups not yet listed below v}

On the User Administration page, you can create new users, assign privileges to users, change
passwords of existing users, and delete users.

To create a new user:

1.

Click Create User, enter a user name in the New User Name box, and click OK. The new user appears
in the list of user names.

In the row representing the new user, type a password in the Password box and confirm it by retyping it
in the Confirm Password box.

Type the password of the user currently logged on, in the Password for <current user> box and click
Save Changes.

To assign privileges to a user:

1.

Go to the row representing the relevant user and select the appropriate check boxes representing the
different privileges.

The following privilege levels can be assigned to Java Diagnostics Profiler users:

Privilege Description

View The user can view Profiler data from the Ul.

Execute The user can perform garbage collection and clear the performance data held by
the Profiler.

Change The user can run potentially risky operations, such as taking a heap-dump or

changing instrumentation.

The privilege levels, rhttpout and system are for internal purposes only.

Each privilege level stands alone. There is no inheritance of privileges from one level to the next. You
must grant a user all of the privilege levels that are necessary to perform the functions they need to
perform.

a. Type the password of the user currently logged on, in the Password for <current user> box and
click Save Changes.

Micro Focus Diagnostics (9.50) Page 175 of 267

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Note: If login fails, the user profiler is checked for authentication in the Command Server
etc/.htaccess authentication

If login is successful, the user profiler is checked for authentication in the Local etc/.htaccess
authentication

enable.local.htaccess.authentication=false

Reference Path: <java_agent_home>/etc/probe.properties file

To change the password of an existing user:

1. Go to the row representing the relevant user, type a password in the Password box, and confirm it by
retyping it in the Confirm Password box.

2. Type the password of the user currently logged on, in the Password for <current user> box and click
Save Changes.

To delete a user:

1. Type the password of the user currently logged on, in the Password for <current user> box.

2. Click Delete user (R) corresponding to the user you want to delete.
A message box opens asking if you want to delete the selected user.
3. Click OK to delete the user.

Configuring Collection of CPU Time Metrics

The CPU Time metrics appear in the Details pane for the Transaction view, the Probes view, the Call Profile
view, and the Portal Components view. You can enable, disable, and configure the collection of CPU time

metrics. The CPU time metrics are CPU (Avg) and CPU (Total). If collection of CPU time metrics is disabled

or not configured for methods, you will see N/A for these metrics.

The CPU Time metrics rely on CPU timestamping which is generally supported on the following platforms:
Windows, Solaris, AlX, and Linux kernels 2.6.10 or later (for example RedHat 5.x, SUSE 10.x).

Note: Support for CPU timestamping can vary, however, not only by operating system, but also by
platform architecture (for example SPARC versus x86).

For the most recent information on support for CPU Time on specific platform versions and architecture,
see the Diagnostics Support Matrix at Diagnostics_System_Requirements Guide.

Note: In VMware, the CPU time metric is from the perspective of the guest operating system and is
affected by the VMware virtual timer. See the VMware whitepaper on timekeeping at
http://www.vmware.com/pdf/vmware_timekeeping.pdf and "Time Synchronization for Probes Running
on VMware" on page 170.

By default, collection of CPU time metrics is enabled for server requests. You can disable CPU time metric
collection and configure collection of CPU time metrics in property files or using the Java Diagnostics Profiler
Ul. You can configure collection of the following CPU Time metrics:

« Server Requests only

« Server Requests and Portlet Methods

« Server Requests and All Methods
Fora Java Agent, the collection of CPU Time metrics is controlled by two properties:

Micro Focus Diagnostics (9.50) Page 176 of 267

http://www.vmware.com/pdf/vmware_timekeeping.pdf

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

« use.cpu.timestamps property in <agent_install_directory>\etc\capture.properties.

This property is set to true by default, which enables collection of CPU time metrics. Collection of any
CPU timestamps is controlled by a second property listed below. If you set the use.cpu.timestamps
property to false, the CPU time metrics are not collected for any server request or method reported by the
probe

« cpu.timestamp.collection.method property in <agent_install_directory>\etc\dynamic.properties.
Caution: Use caution when configuring the collection of CPU timestamps because of the increase in

Diagnostics overhead. The increased overhead is caused by an additional call for each method that is
needed to collect the timestamp.

Cpu.timestamp.collection.method can be set to one of the following:

« 0 - No CPU timestamping.
« 1-CPU timestamps collected only for server requests.

The default value is 1, which means CPU times can be reported at the server request level but not the
transaction level. However, if the setting is removed or commented out of the properties file, the default is
0.

« 2-CPU timestamps collected for All server requests and ALL methods.

« 3-CPU timestamps collected for ALL server requests and the lifecycle methods instrumented for Portal
Components.

Another way to set the cpu.timestamp.collection.method property is using the Configuration tab in the Java
Diagnostics Profiler as follows:

1. Inthe Profiler Ul, select the Configuration tab. The profiler does not need to be started to make this
probe configuration change.

2. Inthe Configuration screen, select a Collect CPU Timestamps option from the dropdown list.

CPU Timestamp Collection

Method Description
None No CPU Timestamps.
For Server Requests Only CPU timestamps are only collected for server requests.

For Server Requests and Portlet CPU timestamps are collected for ALL server requests and the

Methods lifecycle methods instrumented for portal components.
For Server Requests and All CPU timestamps are collected for ALL server requests and ALL
Methods methods.

3. When you complete your changes, click Apply Changes.

Note: Your changes take effect immediately. You do not need to restart the application (or probe).

Configuring Consumer IDs

Web service metrics can be grouped by particular consumers of the Web service. The metrics are then
aggregated for that consumer and displayed in SOA Services views such Services by Consumer ID or
Operations by Consumer ID. There are several ways of defining the consumer ID:

Micro Focus Diagnostics (9.50) Page 177 of 267

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

« "AValueina SOAP Header"
« "AValueina SOAP Envelope"
« "AValue in the SOAP Body"
o "AValueinan HTTP Header"
o "A JMS Queue Name" (or topic name) for SOAP over JMS web services
« "A JMS Message Property" for SOAP over JMS web services
« "A JMS Message Header" for SOAP over JMS web services
« "A specific IP Address "
« "A Range of IP Addresses"
Note: Defining consumer ID based on SOAP header, envelope, or body requires the Diagnostics SOAP

message handler for Java probes. For some application servers, special instrumentation is provided in
Diagnostics to automatically load the Diagnostics SOAP message handler.

However, some manual configuration is required for WebSphere 5.1 JAX-RPC and Oracle 10g JAX-
RPC, see "Loading the Diagnostics SOAP Message Handler " on page 71 for details.

The Diagnostics SOAP message handler is not available for all application servers. Custom
instrumentation is not available to capture SOAP faults or consumer IDs from SOAP payloads.
Therefore, this feature is not available on all versions of all application servers. For the most recent
information on Diagnostics SOAP message handler support, see the Diagnostics Support Matrix at
Diagnostics_System_ Requirements Guide.

Aggregating the data by consumer ID is useful if you want to determine who is using a particular service and
how frequently they are using it. Consumer IDs are also useful for BSM/APM. BSM/APM users can look at
the performance of the same application based on consumers to compare their performance characteristics.

Configuring Consumer IDs is optional. By default, IP address is used as consumer ID for SOAP over HTTP/S
web services and inbound queue name (or topic name) is used by default as consumer ID for SOAP over JMS
web services.

This section includes:

« "Basic Procedure for Consumer ID Configuration" below
« "About Consumer ID Rules" on the next page

« "Consumer ID Rules Syntax and Examples for Java Agents" on page 180

Basic Procedure for Consumer ID Configuration

The basic procedure to configure consumer IDs is as follows:

1. (Optional). Specify *dump-payload in the consumer.properties file to print the entire SOAP payload
out to the consumer.log file. Use this output to plan how to create the specific rules to configure
consumer IDs for SOAP payload capture.

Before you configure consumer IDs, familiarize yourself with the SOAP payload data to determine how
best to create the specific rules Diagnostics will use to find the value for consumer IDs.

The dump-payload option should only be used when help is required to locate the element that contains
the Consumer Id.

Micro Focus Diagnostics (9.50) Page 178 of 267

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

This option should be the only value on the right side of the equal(=)sign when used: DumpTest ;HTTP_
WS; TraderService = *dump-payload

Note: Do not try to use the same service name to extract a value AND dump the payload at the
same time.

For example, to use this feature, enter:

SoapTestl;HTTP_WS;TraderService = *dump-payload

This results in printing the SOAP Payload for a rule that matches TraderService. The content of the
consumer.logfile is:

2009-01-15 14:42:13,653 INFO consumer [[ACTIVE] ExecuteThread: '@' for queue:
'weblogic.kernel.Default (self-tuning)'] [PAYLOAD:] <?xml version="1.0"
encoding="UTF-8"
standalone="yes"?><soapenv:Envelope xmlns:xsi="http://www.w3.0rg/2001/
XMLSchema-instance" xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:trad="http://
www.bea.com/examples/Trader" xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/">
<soapenv:Header>
<CallerA>customerA</CallerA>
</soapenv:Header>
<soapenv:Body>
<trad:buy soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<string xsi:type="xsd:string">hpqg</string>
<intVal xsi:type="xsd:int">11</intVal>
</trad:buy>
</soapenv:Body>
</soapenv:Envelope>

2. Foreach Java Agent you want metrics grouped by consumer, update the consumer.properties file as
described in "Consumer ID Rules Syntax and Examples for Java Agents" on the next page.

3. Totrack more than five consumer types, update the max.tracked.ids.per.probe setting in the
dispatcher.properties file.

4. Review the <probe_name>_id.properties file located in the probe/files/log directory. The <probe_
name>_id.properties file might need to be completely deleted or modified to match the
consumer.properties changes made in the previous steps. The file goes together with the
max.tracked.ids.per.probe (dispatcher.properties) setting, once the limit is reached, per probe, all other
consumers are classified as "Other".

About Consumer ID Rules

The assignment of consumer IDs is controlled by consumer ID rules in a configuration file,
consumer.properties.

Each category of consumer IDs has its own rules: SOAP rules, HTTP header rules, JMS web service rules,
and IP rules. The rules are not applied according to how the rules are defined. The SOAP header rules are

Micro Focus Diagnostics (9.50) Page 179 of 267

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

applied first; the HTTP headers rules are applied next; then the JMS rules are applied; and lastly the IP rules
are applied.

Note: ALL configuration items in the rules are case sensitive. For example, if you enter a <pattern-name>
of TraderService, the Web service name must have a capital T and a capital S for the pattern to match.

All rule types do not need to be used. There might be SOAP rules, no HTTP rules, and IP rules. If there is no
match on any of these rules, the original IP address or queue name for JMS is used as the consumer ID.

The SOAP rules allow for the consumer ID to be obtained from an XML element in the SOAP header, SOAP
envelope, or body as well. The rule specifies a regular expression that is used to match against the web
service name being called by the consumer.

If there is a match, the probe attempts to find the text element also specified in the rule. If the text element is
not found in the SOAP header, this rule is skipped and the probe goes on to the next rule that is defined.

The HTTP header rules allow for the consumer ID to be obtained from a header in the collection of HTTP
headers ina HTTP request.

The JMS web service rules allow for the consumer ID to be JMS queue/topic name, and JMS Message
properties or Message Header (JMSReplyTo only).

The IP rules allow for the consumer ID to be obtained from the mapping of IP addresses to a consumer ID.
The rule is used to define an IP address, or a range of addresses, to be assigned to a consumer ID.

Consumer ID Rules Syntax and Examples for Java Agents

The assignment of consumer IDs is controlled by specifying rules in the consumer.properties file.

Note: ALL configuration items are case sensitive. For example, if you enter a <pattern-name> of
TraderService, the Web service name must have a capital T and a capital S for the pattern to match.

A Value in a SOAP Header

To assign a consumer ID based on a value in a SOAP header, use the following format:
<rule-name>;HTTP_WS;<pattern-name> = soap-header;<element-value>

Where:

<rule-name> is a String that identifies the rule. The name must be unique to the consumer.properties file.

<pattern-name> is a regular expression to match on the Web service name or you can use the exact Web
service name.

<element-value> the element in the SOAP envelope whose value you want to use as the Consumer ID.

For example, the following rule matches on a Web service with service name TraderService and uses the
CallerA element’s value as the consumer IDs:

SoapRulel;HTTP_WS;TraderService = soap-header;CallerA

Micro Focus Diagnostics (9.50) Page 180 of 267

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

When the callers of the TraderService Web service have a value defined for CallerA, the metrics are grouped
by the different values for CallerA. The following excerpt from the soap header maps to a consumer ID of
"Customer2" for this caller of the TraderService:

SoapTestl;WS<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/
envelope/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<env:Header>
<CallerA>Customer2</CallerA> <---- The consumer id returned would be
"Customer2"
</env:Header>
<env:Body env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<m:sell xmlns:m="http://www.bea.com/examples/Trader">
<string xsi:type="xsd:string">sample string</string>
<intVal xsi:type="xsd:int">100</intVal>
</m:sell>
</env:Body>
</env:Envelope>

By default, Diagnostics looks for CallerA in the first-level element (the element directly under the SOAP
env:Header). You can configure Diagnostics to look into a deeper-level xml element for consumer ID. The
dynamic property max.search.level.depth in the consumer.properties file controls the depth at which to
search for consumer ID (default value is 1 level deep). For example, max.search.level.depth = 2 would find
consumer ID:

<env:Header>
<test:id>
<test:CallerA>consumerA</test:CallerA>
</test:id>
</env:Header>

A Value in a SOAP Envelope

To assign a consumer ID based on a value in a SOAP envelope, use the following format:
<rule-name>;HTTP_WS;<pattern-name> = soap-envelope;<element-value>

Where:

<rule-name> is a String that identifies the rule. The name must be unique to the consumer.properties file.

<pattern-name> is a regular expression to match on the Web service name or you can use the exact Web
service name.

<element-value> the element in the SOAP envelope whose value you want to use as the Consumer ID.

Micro Focus Diagnostics (9.50) Page 181 of 267

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

A Value in the SOAP Body

To assign a consumer ID based on a value in the SOAP body, use the following format:
<rule-name>;HTTP_WS;<pattern-name> = soap-body;<element-value>

Where:

<rule-name> is a String that identifies the rule. The name must be unique to the consumer.properties file.

<pattern-name> is a regular expression to match in the Web service name or you can use the exact Web
service name.

<element-value> the element in the SOAP body whose value you want to use as the Consumer ID.

A Value in an HTTP Header

To assign a consumer ID based on a value in an HTTP header, use the following format:
<rule-name>;HTTP_WS;<pattern-name> = attribute;<header-value>

Where:

<rule-name> is a String that identifies the rule. The name must be unique to the consumer.properties file.
<pattern-name> is a regular expression to match on, in the URI.

<header-value> is the HTTP header whose value you want to use as the Consumer ID.

For example, the following rule matches on a web service with a URI of "/webservice/.*" and uses the "User-
Agent" header’s value as the consumer ID:

WsRulel;HTTP_WS; /webservice/.* = attribute;User-Agent

When the callers of the Web service have a value defined for User-Agent, the metrics are grouped by the
different values for User-Agent. The following excerpt from the HTTP header maps to a consumer ID in the
heading:

GET /service/call HTTP/1.1

Accept: */*

Accept-Language: en-us

User-Agent: Mozilla/4.0 (compatible; MSIE 5.0; Windows 2000)
Host: ovrnttl

Caller: ovrnttl

Connection: Keep-Alive

A JMS Queue Name

To assign a consumer ID based on the matching the JMS queue/topic name, use the following format:

<rule-name>;JIMS_WS;<queue-name>=<consumerID-string>
Where:

<rule-name> is a String that identifies the rule. The name must be unique to the consumer.properties file.

Micro Focus Diagnostics (9.50) Page 182 of 267

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

<queue-name> is a regular expression to match on, in the JMS queue/topic name.
<consumerlD-string> is a literal string to use as the Consumer ID.

For example, the following rule matches on a JMS queue name that starts with queue://sca_soapjms.* and
uses the string "myJMSConsumer" as the consumer ID:

IMSTest3;JIMS_WS;queue\://sca_soapjms.*=myJMSConsumer

You must use a backslash "\:" to escape the ":" after queue or topic.

The priority used in matching is determined by the order specified in the consumer.properties file. JMS_WS
queue matching takes priority over IP matching; JMS_WS property matching takes priority over JIMS_WS
Header matching; and JMS_WS Header matching takes priority over JMS_WS queue name matching.

A JMS Message Property

To assign a consumer ID based on matching a JMS queue/topic name and use the value from the JMS
message property as the consumer ID, use the following format:

<rule-name>;IMS_WS;<queue-name>=jms-property;<property-value>

Where:

<rule-name> is a String that identifies the rule. The name must be unique to the consumer.properties file.
<queue-name> is a regular expression to match on in the JMS queue/topic name.

<property-value> is the JMS property whose value you want to use as the Consumer ID.

For example, the following rule matches on a JMS queue name that starts with queue://MedRec.* and uses
the value from the JMSXDeliveryCount property as the consumer ID:

IMSTest1;IMS_WS;queue\://MedRec.*=jms-property;IMSXDeliveryCount

You must use a backslash "\:" to escape the ":" after queue or topic.

A JMS Message Header

To assign a consumer ID based on matching the JMS queue/topic name and JMS message header, use the
following format:

<rule-name>;JIMS_WS;<queue-name>=jms-header;<header-value>

Where:

<rule-name> is a String that identifies the rule. The name must be unique to the consumer.properties file.
<queue-name> is a regular expression to match in the JMS queue/topic name.

<header-value> must be JMSReplyTo.

For example, the following rule matches on a JMS queue name that starts with queue://MedRec.* and uses
the value from the JMSReplyTo header as the consumer ID:

IMSTest1;JIMS_WS;queue\://MedRec.*=jms-header;JMSReplyTo

Micro Focus Diagnostics (9.50) Page 183 of 267

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

You must use a backslash "\:" to escape the ":" after queue or topic.

A specific IP Address

To assign a consumer ID based on an IP Address, use the following format:
<rule-name>; IP; <IP-address> = <consumerID-string>

For example, the following rule matches on IP address 123.456.567.8 and uses the name "CustomerA_IP" as
the consumer ID:

IPRulel;IP;123.456.567.8 = CustomerA_IP

A Range of IP Addresses

To assign a consumer ID based on a range of IP addresses, use the following format:
<rule-name>; IP; <IP address range> = <consumerID-string>

where <IP address range> can be defined with integers, wildcards specified with *, integer range specified
with -,

For example, the following rule matches all IP addresses whose first octet is 15 and uses the name
"mySuperCluster" as the consumer ID:

IPRule2;IP;15.*.*%,* = mySuperCluster

The following rule matches all IP addresses whose first octet is 15 and whose second octet is between 200
and 300; it uses the name "Customer_IP" as the consumer ID:

IPRule3;IP;15.200-300.*.* = Customer_IP

Configuring SOAP Fault Payload Data

If a SOAP fault is detected, the SOAP payload can be included with the SOAP fault data. SOAP payload is
only captured when there is a SOAP fault.

In the Diagnostics Ul, you can view the payload information as part of the instance tree. Both JAX-WS and
JAX-RPC web services are supported.

Because payloads can contain sensitive information such as credit card numbers, payload capture on SOAP
faults is disabled by default.

To enable payload capture on SOAP fault set max.soap.payload.bytes to a value greater than zero , 5000 is
recommended, in the dispatcher.properties file on the Java agent. This is the number of bytes captured, so if
the payload you see in the Ul indicates it is too small you can increase this number. By default the value is set
to zero to disable payload capture.

Capturing SOAP payload requires the Diagnostics SOAP message handler for Java probes. For some
application servers, special instrumentation is provided in Diagnostics to automatically load the Diagnostics
SOAP message handler. Manual configuration is required for WebSphere 5.1 JAX-RPC and Oracle 10g JAX-
RPC. See "Loading the Diagnostics SOAP Message Handler " on page 71 for details.

Micro Focus Diagnostics (9.50) Page 184 of 267

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

The Diagnostics SOAP message handler is not available for all application servers, nor is custom
instrumentation available to capture SOAP faults or consumer IDs from SOAP payloads. Therefore, this
feature is not available on all versions of all application servers. For the most recent information on
Diagnostics SOAP message handler support, see the Diagnostics Support Matrix at Diagnostics_System_
Requirements Guide.

For a Java Agent, define the limit for the payload size by modifying the <agent_install_
directory>\etc\dispatcher.properties file. Payloads larger than the specified size are truncated.

For example, the following entry increases the SOAP payload length to 10000 from its default of 5000:

max.soap.payload.bytes = 10000

Set this property to 0 to disable this feature.

Configuring REST Services

You can configure REST style Web services to show up as regular Web Services in the Diagnostics Ul. See
the comments in the following file for configuration details: <agent_install_directory>\etc\rest.properties.

Currently, only HTTP is supported (no JMS).

Customizing Grouping JMS Temporary
Queue/Topics

For reporting in Diagnostics, SOAP over JMS temporary queues are grouped into a single node. Diagnostics
matches the queue/topic name to a list of regular expressions to find the temporary queue/topic names. The
ones that match are replaced with either queue:<probe-id>\TEMPORARY or topic:<probe-
id>\TEMPORARY according to the type.

The list of regular expressions used for this matching is in the <agent_install_
directory>/etc/capture.properties file. You can customize the list of regular expressions under the property
grouped.temporary.jms.names.

Configuring SQL Query Parsing

If there are a large number of SQL queries using literals it can overwhelm the server symbol table. In these
situations you can configure the sql.parsing.mode property in the dispatcher.properties file on the Java
Agent. The possible mode settings are as follows:

1 - just methods, no SQL queries.
2 - main categories for SQL queries (select/update/insert/delete/...).

3 - (default) a measurement per whole SQL query aggregating similar statements into a single measurement
(ignore literals, keyword case...).

4 - ameasurement per whole SQL query aggregating only identical statements.

sql.parsing.mode = 3

Micro Focus Diagnostics (9.50) Page 185 of 267

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Another property in the dispatcher.properties file can be used to limit the number of different SQL
statements collected in case of temporary database tables, allowing you to fold down the table names using
an SQL statement regular expression substitution. The property is sql.pattern.replace (see the comments in
the dispatcher.properties file for more information).

Capturing SQL Parameters

For increased efficiency, applications use prepared statements when repeatedly issuing the same query to a
database. Such prepared statements can contain parameters, the value of which are set by the application
before the query is actually executed. By default, for the predefined monitoring profile 120, these parameter
values are not captured and cannot be viewed by Diagnostics.

You can change the default setting so that parameter values in an SQL query are captured and displayed in
the Call Profile view. To change the default setting, edit the /etc/capture.properties file and set the value of
the sql.parameters.capture.enabled property to true. Note that this is a dynamic property that you can
change at any time.

Note:

« By default, this property is set to false for the predefined monitoring profile 120 and true for other
predefined monitoring profiles.

« You can also enable SQL parameter capturing in the Ul. To do this:
a. Click View Probe Configuration in New Window.
b. Select the Enable SQL Parameter Capture check box.
c. Click Apply Changes.

When captured, you can view the parameter values in the Call Profile view. The parameters values are
displayed in the SQL Parameters row (part of the Method Data section in the Details pane). For example:

Micro Focus Diagnostics (9.50) Page 186 of 267

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Call Profile [Maximum Instance on MedRecServer-quattro of PatientFacadeService: findApprovedPatientBySsn ending at 10/28/14 3:50:15 PM for Default]

PatientFacadeService:findApprovedPatientBySsn

JaxWsPatientFacadeBroker.findApprovedPatientBySsn()

nvocationVisitorlmg
MethodInvocation.p

0 Bms 66 ms 99ms 132 ms 165 ms 198 ms 231 ms 264 ms 297 ms 3329 ms B

-

-

Troubleshooting

« Only the first 32 parameters for each prepared statement are captured,

« If setting sql.parameters.capture.enabled to true does not capture or display parameter values, check
that:

« the prepared statement uses parameters.

» SQL parameter capture has not been disabled (by setting the mercury.enable.prepared_
statement.parameter.capture setting in the etc/inst.properties file to false).

« the current monitoring profile for the probe is at least 120.

« the type of the argument has a natural String representation (binary data cannot be captured).

Configuring Display of Application Name for Server
Requests

The Deployed Into value displayed in the Diagnostics Ul in the Server Requests details pane can show the
application name of the server request for most application servers. Prior to Diagnostics 9.0 this information
was only available for WebLogic application servers so only a WebLogic probe could fill in the application
name identifier on a server request.

To ensure backward compatibility with the server request trend lines, by default the application name is not
filled in for the server request, except in WeblLogic server requests.

Micro Focus Diagnostics (9.50)

call e L] | = Method Data
= 100% PatientFacadeService: findApprovedPatientyisn w o | Arguments IM patients 10 WHERE (10.55n = 7 AND 10 status = 7)
[= 99.4% JaxWsPatientFacadeBroker findApprovedPatientBys.. .. Class com pointbase net, net)DECPreparedStatem ent
[l 0.1% JdbcConnectionHandle. prepareStatem ent(- Default Mame Java sgl.ResultSet com polntbase.net.net)DBCPrepare
0.1% neyDBECConnection, prepareStatem ent() s Layer Database/JDBC /Execute
0.1% net)DECPreparecStatement.execute) P Type JoBC
= 0.1% jdbcConnectionHandle prepareStatem entd s Name net|DBCPreparedStatement executeQuery(
0.1% net)DECConnection. prepareStatem ent) e Package com.paintbase.net
net)DBCPreparedStatement. executeQuery Return Type javasal.ResultSet
E 90.5% MethodinvocationVisitorimpl.visit) - [TsaL param eters [71=123456709, 72=APPROVED] |
=l 50.5% ReflectiveMethodinvocation proceed(- Call Argument SELECT t0.id, tO.version, t0.email, 10 password, t0.us
[5 9058 Delegatingintroductioninterceptor.invoke v| [= Latency

[+]

Page 187 of 267

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

This is configurable using the fragment.use.application.name property in the capture.properties file and
you can set the following values for this property:

« none. The discovered application name is never used for identification purposes.
« default. Only WebLogic application server probes use the discovered application name.
« all. All application server probes use the discovered application name.

Note: Regardless of the value of this property, if a server request's J2EE application name is discovered,
it will be used to populate the non-identifying property Topology Information.

Maintaining Probe Settings from the Java Profiler Ul

You can use the Configuration tab in the Java Diagnostics Profiler to maintain the instrumentation points and
edit the probe configuration without having to manually edit the Java Agent capture points file or property files.
You can access the Configuration tab from the Java Diagnostics Profiler whether profiling has been started or
not. For details, see "Configuration Tab Description" on page 264.

The Probe Settings section of the Java Diagnostics Profiler Configuration tab enables you to configure probe
settings for thread stack trace sampling, collection of CPU time metrics (using timestamping) and reporting
collection leaks.

When you click Apply Changes on the Java Diagnostics Profiler Configuration tab, all the updates you made
in the Probe Settings sections of the Configuration tab are applied to the capture points file and the property
files.

Note: Your changes take effect immediately. There is no need to restart the application (or probe).

The following sections describe each of the Probe Settings sections:
"Configuring Thread Stack Trace Sampling" below

"Controlling CPU Timestamp Collection" on page 191

"Enabling and Configuring Collection Leak Reporting" on page 191

Configuring Thread Stack Trace Sampling

When asynchronous thread sampling is enabled, you can see, in the Call Profile view, which methods were
executed during long running fragments even if no instrumented methods were hit during this time. See the
Diagnostics User Guide chapter on Call Profiles for a screen shot showing the additional nodes added based
on thread sampling.

Several properties enable and configure thread stack trace sampling.
The following properties are in dynamic.properties:

« enable.stack.trace.sampling — enables asynchronous thread stack trace sampling; possible values are
false, auto (the default), and true.

When the dynamic property enable.stack.trace.sampling is set to auto, stack trace sampling is enabled IF
the probe is running on selected (certified) platforms and JVMs. For other JVMs, the setting must be set to
true explicitly. Use caution because the JVM could generate errors or abort. See the Diagnostics Release
Notes.

« tardy.method.latency.threshold — the minimum time that an instrumented method must run without

Micro Focus Diagnostics (9.50) Page 188 of 267

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

hitting any instrumentation points before stack trace sampling is attempted for this method. The purpose of
this property is mainly to control the overhead of sampling by limiting the stack trace collection to only the
most interesting cases.

« stack.trace.sampling.rate — the time that must elapse before the next consecutive sampling attempt is
made.

Small values for stack.trace.sampling.rate cause frequent sampling and provide rich data but at the cost
of increased overhead.

The overhead caused by frequent sampling affects primarily the latency of server requests. The overall
CPU usage by the probe can go up as well, but this effect is not as profound as the latency increase. For
systems with many CPUs, the process CPU consumption can actually go down (not a good thing).

« stack.trace.depth.max — the limit for the depth of stack traces obtained from the JVM. You will most likely
not need to adjust this value.

The following properties are in dispatcher.properties:

« enable.stack.trace.aggregation — a boolean property allowing the correlation thread to merge together
nodes observed on more than one consecutive stack trace collected, unless there is proof that the nodes
must not represent a single method invocation. When set to true, it could decrease the number of
additional call tree nodes created, but could create a false impression that the number of calls to the
additional nodes is known and is small. When set to false, it creates a node for each method and each
stack trace it was visible on, creating a false impression that the number of calls to the nodes is known
and is large. In fact, stack trace sampling cannot reveal the number of calls at all.

« aggregated.stack.trace.validity.threshold — if the enable.stack.trace.aggregation property is set to true,
only the call tree nodes that stem from more than the aggregated.stack.trace.validity.threshold number
of individual stack traces are reported. This setting controls noise elimination and memory footprint,
especially on the server side.

All of the properties can be dynamically changed so no restart of the application is required.

You can change the first four properties (from dynamic.properties) remotely, using the Configuration tab in
the Diagnostics Java Profiler. After making changes remember to apply all of the changes made using the
Configuration tab by clicking Apply Changes. For details, see "Configuration Tab Description" on page
264.

Example Thread Sampling Configurations

Use Case 1: A particular method has average latency of about 170 milliseconds, but from time to time it takes
1.4 seconds for this method to complete. Most of the methods visible in Call Profiles for any fragment execute
in 550 milliseconds or less. Because the method in question makes multiple calls to its callees, you do not
want to instrument them.

Instead you enable stack trace sampling to find out what the cause for long execution times. To minimize
overhead, set tardy.method.latency.threshold to 600 milliseconds. This ensures that most of the methods will
not get sampled at all because they are likely to complete before this time elapses. However, any method
running longer than this value, including our long running method, will get sampled, once the method runs for
600 milliseconds (or longer) without making any calls to any of the instrumented methods.

If you also set the value of stack.trace.sampling.rate to 100 milliseconds, this should theoretically give up to
eight samples for each method invocation that lasts 1.4 seconds ((1400-600) / 100). Because you know that
the method makes many calls to its callees, you could also set aggregated.stack.trace.validity.threshold to
zero. This ensures that even if each collected stack trace is completely different, they will all be reported.

If you examine the Call Profile for long running instances of the server request, you would see additional
nodes revealed by stack trace sampling.

Micro Focus Diagnostics (9.50) Page 189 of 267

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Use Case 2: You prepare a custom application for deployment and see that the default instrumentation
provided with the Diagnostics agent does not work very well because many Call Profiles contain very few
methods, which does not give any insight about the application specific behavior. You are reluctant to add
additional instrumentation for all classes and methods belonging to the custom application because of the
performance and memory consumption concerns.

You enable stack trace sampling. Assuming that a typical server request that does not have sufficiently
detailed call tree information runs in about 2 seconds, you select a stack.trace.sampling.rate of 200
milliseconds. This can give up to 10 stack traces per typical server request. However, you do not want all the
stack traces to be reported because some of the methods visible in the stack traces can be very fast, and
they do not substantially contribute to the server request’s overall latency. Therefore, you set
aggregated.stack.trace.validity.threshold to 2. This ensures that only methods visible in three or more
consecutive stack traces, or methods with estimated latency of 600 milliseconds or more, will be reported.

After viewing the Call Profiles with the additional nodes obtained from sampling, you can make informed
decision about adding additional instrumentation points to the probe configuration in deployment.

Troubleshooting Stack Trace Thread Sampling

Why do | not see any new nodes in my Call Profile after | enabled stack trace sampling?
See if any of the following applies to your case:

« Was the last method visible in the Call Profile an outbound call? Methods marked as outbound do not get
sampled. (To reliably check if a method is marked as outbound, find this method in detailReport.txt file and
check its corresponding instrumentation point detail for the “outbound” keyword).

« Was the last method visible in the Call Profile marked as no-layer-recurse Such methods do not get
sampled. (Use the same procedure as in the previous point to check if a method is no-layer-recurse.)

« Did you try reducing tardy.method.latency.threshold or minimum.method.latency? It is possible that the
last method visible in Call Profile makes calls that get trimmed, but they prohibit the sampling to kick in
because there is never an inactive period of tardy.method.latency.threshold for the caller.

« Did you try reducing aggregated.stack.trace.validity.threshold or check if there are warnings in the
probe.log file about the stack depth being too shallow? Possibly, the observed stack traces changed too
quickly to get reported.

« Did you try reducing the stack.trace.sampling.rate? Perhaps your methods simply miss the opportunities
to get sampled.

« Did you verify that the latency of the last visible method in Call Profile is not caused by having run garbage
collector? Java code, including the stack trace sampling code, does not run during garbage collection.

What is the minimum value of stack.trace.sampling.rate that can be used?

You can use any positive value, but remember that each platform will refuse to sample more frequently that it
possibly can. The three determining factors are the minimum granularity of sleep() available, the timer
resolution, and the time it actually takes to collect one set of samples.

What is the maximum value of stack.trace.sampling.rate that can be used?

There is no limit. The usefulness of a high setting depends entirely on the latency of the server requests for the
application. To get any results, plan for at least a few samples for each server request you are concermned with.
Even that could require tuning other sampling parameters as well.

Micro Focus Diagnostics (9.50) Page 190 of 267

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

Controlling CPU Timestamp Collection

The CPU timestamps calculate the amount of exclusive CPU time that a method uses. You can view this
information on the Hotspots tab in the Java Diagnostics Profiler.

Note: In VMware, the CPU time metric is from the perspective of the guest operating system and is
affected by the VMware virtual timer. See the VMware whitepaper on timekeeping at
http://www.vmware.com/pdf/vmware_timekeeping.pdf and "Time Synchronization for Probes Running
on VMware" on page 170.

By default, collection of CPU time metrics is enabled for server requests.

Collection of CPU time metrics can be configured in property files (see "Configuring Collection of CPU Time
Metrics" on page 176) or using the Java Diagnostics Profiler Ul (see "Configuration Tab Description" on page
264).

Enabling and Configuring Collection Leak Reporting

Note: You must run the JRE Instrumenter using the appropriate mode for your application server if you
want to use the collection leaks pinpointing (CLP) feature in the Java Agent.

You can set the following configuration items for collection leak reporting using the Collection Leaks sectionin
the Java Profiler Configuration tab (for details, see "Configuration Tab Description" on page 264).

These same values can also be set in the dynamic.properties file for the probe: clp.diagnostics.reporting,
clp.diagnostics.growth.time and clp.diagnostics.nongrowth.time.

Generating Performance Reports for JUnit Tests

When you run JUnit tests, you can enable and configure the Java Agent so that it generates a performance
report for all of your unit tests. This is useful for finding out if the performance (latency/CPU) of a particular
test has changed over time.

When the unit test finishes, the Java Agent creates a CSV file for each test method (represented as a server
request). This CSV file contains a complete listing of all test methods that were executed in each JVM
instance, usually per test class. The CSYV file can be opened in a spreadsheet program to analyze and
visualize performance characteristics (the Filter function in Excel is very helpful for selecting specific
methods).

Following is an example of a CSV file:

Date,Server Request,Avg Latency,Count,Min Latency,Max Latency,Cpu

Time, Exceptions

Fri Sep 23 12:55:22 PDT
2011,UT_SiSXmlDataReader.testDataSample(),1068.81,1,1068.81,1068.81,374.403,0
Fri Sep 23 12:55:40 PDT
2011,UT_SiSXmlDataReader.testDataSample(),1064.845,1,1064.845,1064.845,405.60
2,0

Fri Sep 23 12:55:57 PDT

Micro Focus Diagnostics (9.50) Page 191 of 267

http://www.vmware.com/pdf/vmware_timekeeping.pdf

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

2011,UT_SiSXmlDataReader.testDataSample(),1141.689,1,1141.689,1141.689,358.80
2,0

Fri Sep 23 12:56:27 PDT
2011,UT_SiSXmlDataReader.testDataSample(),1474.81,1,1474.81,1474.81,468.003,0

The latency times are in milliseconds (ms).

By default the data for each test execution is appended to the CSV files. This is especially useful when tests
are run as part of a Continuous Integration cycle which allows you to capture results over time.

To use this functionality, enable the Java Agent in the JUnit test execution by specifying the following JVM

parameters:
JVM Parameter Description
-javaagent:<Java_Agent_ Enables the agent by specifying the path to the agent
Home>/DiagnosticsAgent/lib/probeagent.jar JAR file.
(UNIX)
or

-javaagent:<Java_Agent_
Home>\DiagnosticsAgent\lib\probeagent.jar

(Windows)

-Ddispatcher.ac.autostart=true Tells the agent to start profiling immediately.

-Dcapture.exit_report=dir=perftest:append Instructs the agent to produce a performance report to
the specified directory and to append the results. (To
override the file, replace append with override.)

-Ddispatcher.minimum.fragment.latency=1ms Collects only server requests (such as execution of

JUnit test methods) that have latency above 1ms.

The following example shows an integration into ANT:

<junit dir="${build}" fork="yes" forkmode="perTest" printsummary="yes"
jvm="${env.JAVA_HOME}/bin/java">

<jvmarg value="-javaagent:C:/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/1lib/
probeagent.jar"/>

<jvmarg value="-Ddispatcher.ac.autostart=true"/>

<jvmarg value="-Dcapture.exit_report=dir=<dir_name>:append"/>

<jvmarg value="-Ddispatcher.minimum.fragment.latency=1ms"/>

</junit>

In addition to the above settings, the JUnit point needs to be activated (set active=true) in <Java_Agent_
Home>/DiagnosticsAgent/etc/auto_detect.points:

[Junit]
class = junit.framework.TestCase

Micro Focus Diagnostics (9.50) Page 192 of 267

Java Agent Guide
Chapter 11: Advanced Java Agent and Application Server Configuration

method = !test.*
signature = I.*
deep_mode = hard
layer = JUnit
active = true

Note: If you use JUnit 4.x and your unit test classes are not a subclass of junit.framework.TestCase,
you need to change the class definition in the above JUnit point to match your unit test classes.

Micro Focus Diagnostics (9.50) Page 193 of 267

Chapter 12: Java Agent Metrics Collectors

This chapter describes Java Agent metrics capture and how to configure the metric collectors.
This chapter includes:

« "About Metrics Capture" below

« "What Metrics are Being Collected by the Java Agent" on the next page

« "Understanding Metric Collector Entries" on the next page

« "About Collecting Additional Probe Metrics" on page 197

« "Modifying Probe Metrics Already Being Captured" on page 197

« "Stopping Capture of a Metric" on page 197

« "Using Customized metrics.config Files for Multiple JVM Applications on a System" on page 197

About Metrics Capture

With the Java Agent you can configure metrics collectors by modifying the entries in the metrics configuration
file, <agent_install_directory>/etc/metrics.config.

Note: There is a different metrics.config file included with the .NET Agent .
The system and JMX metric collectors for your agent installation are defined in the metrics configuration file.
The properties and entries in the metrics configuration file, <agent_install_directory>/etc/metrics.config,

enable you to control the metric collectors.

Note: If you update the metrics configuration file, the metric collectors automatically restarts so that your
changes can take effect.

Micro Focus Diagnostics (9.50) Page 194 of 267

Java Agent Guide
Chapter 12: Java Agent Metrics Collectors

What Metrics are Being Collected by the Java Agent

In the metrics.config file you can see what metrics are being collected by the Java Agent.

‘4 metrics.config - Notepad

File Edit Format Wiew Help

HARAARRRRA AR R RS R AR RS R R R AHRS
##% Collector configuration ###
HARAARHRHRA AR AR RS R R RS RRRAHRS

FEFARERFHRERFFRERS SRR R SRS

Basic IvM collector

JVMvamHeapUsed HeapUsed|bytes |Probe
JvM/JvmHeapFree HeapFree|bytes |Probe
JwM/JvmHeapTotal = HeapTotal |bytes|Probe

M/ Jvmheapusedpct = HeapUsedPct|percent|Probe
HARFAFRRRRRRHRERR R AR RRRAHRS

Process Metrics Collector
ProcessMetrics/processCpultil=ProcessCpultil|percent|Frobe
ProcessMetrics/processCpultilabs = ProcessCpultilabs|percent|Probe

HAERFRFRRRRRRHRR AR AR RRRAHRS
##%#% System metric collector

system/CPU = CPU|percent|System

system/MemorylUsage = MemoryUsage |percent|system
system/VirtualMemorylUsage = VirtualMemoryUsage |percent|System
system/ContextswitchesPersec = ContextsSwitchesPersec|count|System
system/DiskBytesPersec = DiskBytesPerSec|bytes|Disk
system/DiskI0OPersec = DiskIOFersSec|count|Disk
system/NetworkBytesPersec = NetworkBytesPerSec|bytes|Network
system/NetworkIoPerSec = NetworkIOPerSec|count |Network
system/PageInsPersec = PageInsPersec|count|system

syzEen/Pageoutshersec = PageOutsPerSec|Countisystem . ..\ a o

Listing Available Metrics

The Java Agent metrics.config file has a feature to write a list of all the available metrics for each JMX
collector into a file. When the default.dump.available.metrics property in the metrics.config file is set to
true, the probe will write this list of available metrics to text files in the probe log directory. The files are named
as follows: <agent_install_directory>/log/<probe-id>/jmx_metrics_<collector-name>.txt. See "Getting a
List of Available JMX or WebSphere PMI Metrics" on page 207 for details and examples of how to use this
information as a template for configuring additional metrics capture.

Understanding Metric Collector Entries

Metric Collector entries instruct the Java Agent metric collectors to gather specific metrics. The parameters
on the left hand side of the entry control how the probe gathers the metric from the host or the JVM, and the
parameters on the right hand side of the entry define how the collected metrics are processed in Diagnostics
and displayed in the user interface.

The entries can have one of the following layouts:

<collector_name>/<metric_config>=<metric_id>|<metric_units>|<category id>

Micro Focus Diagnostics (9.50) Page 195 of 267

Java Agent Guide
Chapter 12: Java Agent Metrics Collectors

or

<collector_name>/<metric_config>=
RATE<rate multiplier>(<metric_id>|<metric_units>|<category id>)

where:

« <collector_name> indicates the name of the Diagnostics metric collector. The collectors are defined in
metrics.config.

For system metrics the value of this parameter is system. For JMX metrics the value of this parameter is
usually defined as the name of the application server type and the version, such as WebSphere5s.

The collector-name along with metric names can also be found on the Advanced Query page in the
Diagnostics Ul (http://<diagnostics_sever>:2006/query).

« <metric_config> identifies the metric that is to be monitored on the host system or on the JVM for the
application server. The format of this parameter varies depending on whether you are creating an entry for
a system metric or a JMX metric. For information on formatting the metric_config property for the system
metric collector, see "Capturing Additional Custom System Metrics" on page 201. For information on
formatting the metric_config property for JMX metrics, see "Creating New JMX or WebSphere PMI
Metrics Entries" on page 209.

« RATE(...) indicates that metric values are converted to a rate (units per second) during sampling.

For example, when the Rate parameter is used with the metric total servlet requests since startup, the
value of the collected metric is converted from a count of serviet requests to the number of serviet
requests per second.

When Rate is not used, omit the parenthesis as shown in the first example above.

Note: This parameter should only be used for metrics with non-decreasing values.

« <rate_multiplier> is an optional parameter that indicates that the rate is to be adjusted by multiplying it by
the <rate_multiplier>.

For example, when the Rate parameter and the rate_multiplier are used with the metric total gc time (in
ms), the value of the metric collected is converted from the total time for gc to the percent time spent in gc.

« <metric_id> indicates the name that represents the metric in the Ul. The metric_id must be unique in the
metrics.config file. If the value of the metric_id is the same as one of the default metrics, Diagnostics
replaces the metric_id in the entry with a standard name to be used to reference the metric in the Ul. If the
value of the metric_id is not the same as one of the default metrics, the metric_id is used as the name of
the metric in the Ul exactly as shown in the entry.

« <metric_units> indicates the units of measure in which the metric is reported. This is a required
parameter and it must contain one of the following units of measure:

« Mmicroseconds, milliseconds, seconds, minutes, hours, days
« bytes, kilobytes, megabytes, gigabytes

percent, fraction_percent

count
« load
« <category_id> groups a set of metrics together under the same heading in the tree in the side bar of the

Metrics tab in the Java Diagnostics Profiler. This parameter has no impact on the data displayed in the
Details pane in the Diagnostics Ul views.

Micro Focus Diagnostics (9.50) Page 196 of 267

Java Agent Guide
Chapter 12: Java Agent Metrics Collectors

Note: After you create the metric collector entry, add the escape character "\" before each occurrence of
aback-slash'\', space'’, or colon':'. This is a requirement for Java properties loaded from afile.

About Collecting Additional Probe Metrics

To gather information for an additional metric, add an entry for the metric to the appropriate metric collector in
the metrics.config file using the syntax described in "Understanding Metric Collector Entries" on page 195.

See "Capturing Additional Custom System Metrics" on page 201 for details on capturing additional system
metrics.

See "Additional Custom JMX Metrics" on page 207 for details on capture addition JMX metrics.

Modifying Probe Metrics Already Being Captured

You can update both the default and the custom metric entries in the metric collectors in the metrics.config
file.

Stopping Capture of a Metric

To stop a metric collector from collecting a metric listed in metrics.config, you can either delete the metric
entry or make the metric entry a comment line by adding a '# to the beginning.

Using Customized metrics.config Files for Multiple
JVM Applications on a System

There may be times when you only need to collect certain metrics, or customize the metric collector
properties for select JVM applications running on a system with multiple JVMs, and such changes would
negatively impact the other instrumented JVMs running on the system. In these cases, you can create and
customize different metrics.config configuration files and configure those JVM applications to use the
customized settings by following these steps:

Note: You only need to configure the JVM applications that need customized metrics.config files. The
other JVM applications can use the out-of-the-box metrics.config configuration.

1. Copy the etc/metrics.config file for each JVM application requiring special customization and name the
file, such as metrics_<app_name>.config. This file must be in the same <agent_install_
directory>/etc folder as the original metrics.config file. Customize this file as needed.

2. Create a copy of the lib/modules.properties file for each metrics_<app_name>.config file created,
and name the file, such as modules_<app_name>.properties. This file must be in the same <agent_
install_directory>/lib folder as the original modules.properties file.

Change the metrics.properties property of this new file to point to the new metrics_<app_
name>.config file as shown in the following example:

S e e

Micro Focus Diagnostics (9.50) Page 197 of 267

Java Agent Guide
Chapter 12: Java Agent Metrics Collectors

Metrics capture module

AR e A A A A et A e A A e A S A A
metrics.class.name=com.mercury.diagnostics.capture.metrics.MetricsModule
metrics.class.loader=probelLoader
metrics.properties=metrics_<app_name>.config

3. Update each JVM start script that needs customized metrics collection to use the new corresponding
lib/modules_<app_name>.properties file by adding the following to the JVM property definition:

-Dmodules.properties.file=module_<app_name>.properties

Micro Focus Diagnostics (9.50) Page 198 of 267

Chapter 13: Java Agent - System Metrics
Capture

Information is provided on the process for capturing system metrics and how to configure the Java Agent
system metric collector to capture them.

This chapter includes:

o "About System Metrics" below

« "System Metrics Captured by Default" below

« "Configuring the System Metrics Collector" on the next page
« "Capturing Additional Custom System Metrics" on page 201

About System Metrics

The system metric collector is installed with the Java Agent. The system metric collector gathers system
level metrics, such as CPU usage and memory usage, from the agent’s host. The system metric collector is
configurable so you can control which system metrics are collected.

Only one instance of the system metric collector is run on a given host, no matter how many instances of the
probe were started on the host. When an instance of the probe is started, it attempts to connect to the UDP
port specified in the metrics properties. If a connection is established, the system metric collector instance is
started. If a connection cannot be made, a system metric collector instance has already been started on the
host by another instance of the probe and a new instance cannot be started.

Each probe periodically attempts to connect to the port to make sure that a system metric collector is always
running. If the probe that started the systems metric collector is stopped, one of the other instances of the
probe will start a new instance of the systems metric collector when it finds that the port is available.

System Metrics Captured by Default

The following are the system metrics that the metric collector collects by default for all supported platforms:

. CPU

« MemoryUsage

« VirtualMemoryUsage

« ContextSwitchesPerSec
« DiskBytesPerSec

« DisklOPerSec

« NetworkBytesPerSec

« NetworklOPerSec

« PagelnsPerSec

« PageOutsPerSec

Micro Focus Diagnostics (9.50) Page 199 of 267

Java Agent Guide
Chapter 13: Java Agent - System Metrics Capture

You can control which of the default system metrics the system metric collector gathers and you can add
other platform specific metrics so that the collector gathers the information for them as well. See "Configuring
the System Metrics Collector" below for more information. For certain platforms, such as Windows, Solaris,
and Linux, you can create custom system metrics that can be gathered by the system metric collector. For
details, see "Capturing Additional Custom System Metrics" on the next page.

Configuring the System Metrics Collector

You can configure the system metrics capture process to run in your environment, and to collect and report
the system metrics that are of interest to you, by modifying the entries in the metrics configuration file,
<agent_install_directory>/etc/metrics.config. See "Java Agent Metrics Collectors" on page 194 for general
information on the metrics collector and see "Understanding Metric Collector Entries" on page 195 for an
explanation of the metrics collector entries and syntax.

Note: If you update the metrics configuration file, the systems metric collector automatically restarts so
that your changes can take effect.

Example System Metrics Collector Entry

The following example shows how to create the metric collector entry for a system metric. To create an entry
for a system metric called CPU on a host platform, you would enter the following:

system/CPU = CPU|percent

where:

« system indicates that the metric is to be collected by the system metric collector
« thefirst CPU indicates that the metric known as CPU on the platform, is being monitored
« the second CPU is the name that is to be used in the Ul to label the metric

« percentindicates the units in which the metric is measured on the host, and reported in the Ul

Modifying the Default Port

The default port for the metric collector is 35000. This value can be modified using the system.udp.port
property if the configuration for your agent host requires that another port be used.

To modify the default port:

1. Locate the system.udp.port property in metrics.config.

2. Change the value of the system.udp.port property to the number of the port that you want to be used by
the system metric collector. The default port is 35000.

Note: The port assigned to the system metric collector is not related to the port for the agent's Web
server.

Micro Focus Diagnostics (9.50) Page 200 of 267

Java Agent Guide
Chapter 13: Java Agent - System Metrics Capture

Disabling System Metrics Collection

To disable the collection of system metrics so that they will not be collected or displayed in the Ul, set the
value of the system.udp.port property to -1.

Capturing Additional Custom System Metrics
You can capture custom system metrics on Windows, Solaris, and Linux platforms using the Java Agent
system metric collector.

The following sections provide instructions for capturing the metrics and updating the entries in the system
metric collector so that the custom metrics can be monitored.

This section includes:
"Capturing Custom System Metrics on Windows Hosts" below
"Capturing Custom System Metrics on Solaris Hosts" on page 203

"Capturing Custom System Metrics on Linux Hosts" on page 204

Capturing Custom System Metrics on Windows Hosts

Using the features of Windows System Monitor, you can add counters to represent the performance of
specific aspects of a system or service. The counters are tracked and reported in the Windows System
Monitor, and can be monitored by the Java Agent system metric collector.

To add counters using the Windows System Monitor:

1. Start the Windows Performance Monitor:
a. Execute Run from the Start menu.
b. Inthe Open box on the Run dialog box type perfmon.

The Performance dialog box opens showing the System Monitor graph with a table of the current
counters beneath the graph.

2. Display the Add Counters dialog box:
Right-click the System Monitor graph and select Add Counters... from the pop-up menu.
Windows displays the Add Counters dialog box:

Micro Focus Diagnostics (9.50) Page 201 of 267

Java Agent Guide
Chapter 13: Java Agent - System Metrics Capture

Add Counters

]
ol

WIS SADLAH -
Frocessor =]

L]

o O
C2 Time Total
C3 Tirme
DPC Time

|dle Time
[nterrupt Time
Privileged Time

Make sure that the host computer is selected from Select counters from computer list.
In the Performance object list, select the object that the counter belongs to.
Choose Select counters from list, and select a counter from the list of counters that follows.

o ok~ w

Choose Select instances from list, and select an instance from the list of instances that follows.
7. Click Add.

Once a counter has been added to the Systems Monitor, the system metric collector can be configured to
gather the metrics for the counter. The following instructions will guide you through the steps to create an
entry for the metrics.config based on the following template:

<collector_name>/<metric_config>= <metric_id>|<metric_units>

This template is described in "Understanding Metric Collector Entries" on page 195.
To collect metrics for a Windows System Monitor Counter:

1. Open <agent_install_directory>/etc/metrics.config.
2. Create the <metric_config> part of the entry using the following template, type the entry for the counter:

\<performance_object>(<instance>)\<counter>

In the example shown in the preceding screen image:
« the selected Performance Object is %Processor

« the selected Instanceis _Total
« the selected Counteris Processor Time

The <metric_config> portion of the entry that would be created for this example would be:

Micro Focus Diagnostics (9.50) Page 202 of 267

Java Agent Guide
Chapter 13: Java Agent - System Metrics Capture

3.

\Processor(_Total)\% Processor Time

Fill in the rest of the system metric entry template as shown in the following example:
system/\Processor(_Total)\% Processor Time = ProcessorTime|percent

Format the initial entry by prepending a back-slash '\' before each occurrence of back-slash'\', space'",
or colon " in the initial entry.

Following this step, the initial entry in the previous step becomes:

system/\\Processor(_Total)\\%\ Processor\ Time = ProcessorTime|percent

This is the correctly formatted entry for metrics.config to enable the system metric collector to gather
the metrics for a Windows System Monitor counter.

system/\\\\RemoteMachine\\Processor(_TOTAL)\\%\ Processor\ Time=
Processor\ Time(Remote Machine) |percent

Note: Assuming perfmon is setup properly on a remote machine, you can use it to get metrics from
remote machines by adding \\MachineName before the Performance object name as shown in the
following example:

system/\\\\RemoteMachine\\Processor(_TOTAL)\\%\ Processor\ Time=Processor\ Time
(Remote Machine) |percent

Capturing Custom System Metrics on Solaris Hosts

The Solaris system metrics that can be monitored by the system metric collector are found using the kstat
command. Only a subset of the metrics found using the kstat command can be monitored by the system
metric collector.

To collect metrics for a Solaris system metric:

1.

Execute the kstat command and identify the metric that you want to monitor.

A Solaris system metric has the following format:
module:instance:name:statistic

Here is an example:

vmem:35:ptms_minor:free

To cause the metric collector to gather the metrics for an additional system metric, add an entry for the
metric to the system metric collector in the metrics.config file using the following template:

<collector_name>/<metric_config>= <metric_id>|<metric_units>

This template is described in "Understanding Metric Collector Entries" on page 195.
Using this template, the example from the previous step would initially appear as follows:

system/vmem:35:ptms_minor:free = Virtual Memory (35) Free | count

3. Format the initial entry by prepending a back-slash '\' before every back-slash'\', space'’, or colon';'.

Micro Focus Diagnostics (9.50) Page 203 of 267

Java Agent Guide
Chapter 13: Java Agent - System Metrics Capture

Following this step the initial entry in the previous step becomes:
system/vmem\:35\:ptms_minor\:free = Virtual\ Memory\ (35)\ Free | count

This is the correctly formatted entry for metrics.config to enable the system metric collector to gather
the metrics for a Solaris systems metric.

Capturing Custom System Metrics on Linux Hosts

The Linux system metrics that can be monitored by the system metric collector are found in the /proc file
system. To configure the system metric collector to gather custom Linux metrics, scan the/proc file system
to locate the desired metric, and then create the system metric collector entry for the metric in metrics.config
according to the location of the metric information.

To collect metrics for a Linux system metric:

1.

Scan the /proc file system to locate the metric that you would like the Diagnostics system metric
collector to monitor.

To create the system metrics configuration entry in metrics.config for the Linux metric, you must
explicitly specify where the value for the system metric is located. The location is specified using the
following values:

« File name. The name of the file where the metric information is located, including the path from the
Iproc directory.

« Line offset. A count of the number of lines in the file to the line where the system metric is located.
The first line is counted as line 0.

o Word offset. A count of the number of words that the metric value is offset into the line in the file. The
first word in the line is counted as line 0. The value at the specified offset must be an unsigned integer.

For example, if you wanted the system metric collector to monitor the SwapFree system metric so that
you can see it displayed in the Diagnostics views, you would scan the /proc directory to locate the
metric, and you would discover that the metric is located in the meminfo file. The layout of this file is as
follows:

MemTotal: 515548 kB
MemFree: 1552 kB
Buffers: 41616 kB
Cached: 152084 kB
SwapCached: 46064 kB
Active: 402720 kB
Inactive: 75328 kB
HighTotal: @ kB
HighFree: © kB
LowTotal: 515548 kB
LowFree: 1552 kB
SwapTotal: 1048568 kB
SwapFree: 779192 kB
Dirty: 4544 kB
Writeback: @ kB
Mapped: 300056 kB
Slab: 28764 kB
Committed_AS: 801364 kB

Micro Focus Diagnostics (9.50) Page 204 of 267

Java Agent Guide
Chapter 13: Java Agent - System Metrics Capture

PageTables: 3184 kB
VmallocTotal: 499704 kB
VmallocUsed: 2184 kB
VmallocChunk: 497324 kB
HugePages_Total: ©
HugePages_Free: 0
Hugepagesize: 4096 kB

The location of the SwapFree metric in this file would lead to the following values:
« File name: meminfo

o Line offset: 12

« Word offset: 1

2. To gather the metrics for an additional system metric, add an entry for the metric to the system metric
collector in the metrics.config file using the following template:

<collector_name>/<line>:<word>:<file>= <metric_id>|<metric_units>

This template is a version of the template described in "Understanding Metric Collector Entries" on page
195. The <metric_config> property has been replaced with the properties <line>:<word>:<file>.

Using this template, the example from the previous step would initially appear as follows:
system/12:1:meminfo = Swap Free | kilobytes

3. Format the initial entry by prepending a back-slash '\' before every back-slash'\', space'’, orcolon':".
Following this step the initial entry in the previous step becomes:

system/12\:1\:meminfo = Swap\ Free | kilobytes

This is the correctly formatted entry for metrics.config to enable the system metric collector to gather
the metrics for a Solaris systems metric.

Micro Focus Diagnostics (9.50) Page 205 of 267

Chapter 14: Java Agent - JMX Metrics Capture

Information is provided on the process for capturing JMX metrics and how to configure Java Agent metric
collectors to capture them.

This chapter includes:

« "About JMX Metrics" below

« "About Configuring JMX Metric Collectors" on the next page

« "Additional Custom JMX Metrics" on the next page

« "Getting a List of Available JMX or WebSphere PMI Metrics" on the next page
« "Creating New JMX or WebSphere PMI Metrics Entries" on page 209

About JMX Metrics

The Java Agent comes with pre-defined JMX metric collectors that access the JMX metrics from the
following application servers:

« IBM WebSphere
« BEA WebLogic
« SAP NetWeaver
« Oracle AS
« Apache Tomcat
« JBoss J2EE Server
« TIBCO Business Works
The Java Agent can also collect JMX data from any J2EE server that supports the JMX standard.

The Java Agent runs the JMX metric collectors periodically to collect the metrics from the application server.
The collected metrics are displayed on the user interfaces in both Diagnostics Enterprise User Interface and
the Diagnostics Java Profiler.

Configuring WebSphere for JMX Metric Collection

For WebSphere JMX metric collection, you might need to configure the Performance Monitoring Infrastructure
(PMI) service on the WebSphere server to start receiving JMX metrics.

See "Configuring WebSphere for JMX Metric Collection" on page 56 for information on how to configure
WebSphere 5.x, 6.x and 7.0 servers for JMX metrics collection.

Configuring TIBCO for JMX Metric Collection

For TIBCO JMX metric collection you need to enable JMX metric collection; see "Example 5: Configuring
TIBCO ActiveMatrix BusinessWorks and Service Bus for Monitoring" on page 45 for instructions.

Micro Focus Diagnostics (9.50) Page 206 of 267

Java Agent Guide
Chapter 14: Java Agent - JMX Metrics Capture

About Configuring JMX Metric Collectors

The JMX metric collectors are configurable so that you can control which JMX metrics are collected. The JMX
metric collectors are defined in the <agent_install_directory>/etc/metrics.config file.

Typically a separate collector is defined for each major version of each application server.

See "Java Agent Metrics Collectors" on page 194 for general information on the metrics collector and see
"Understanding Metric Collector Entries" on page 195 for an explanation of the metrics collector entries and
syntax.

Additional Custom JMX Metrics

The Java Agent is installed with a number of predefined JMX metric collectors for the application servers
listed in "About JMX Metrics" on the previous page. You configure these collectors by defining entries in the
metrics.config file, see "Understanding Metric Collector Entries" on page 195. You could also create entries in
the existing metric collectors and even create new collectors if there are additional JMX metrics that you
would like Diagnostics to monitor.

In order to create new entries in the JMX metric collectors you can get a list of the available JMX metrics and
WebSphere Performance Monitoring Infrastructure (PMI) metrics. Then you can create new metrics entries in
the metrics.config file. The following sections provide instructions for creating new entries in the JMX metric
collectors so that additional JMX metrics and PMI metrics can be monitored.

Getting a List of Available JMX or WebSphere PMI
Metrics

The metric collectors installed with the Java Agent include entries for many of the JMX metrics that are
available for each application server. However, there could be other JMX metrics or WebSphere PMI metrics
that you could monitor, or new metrics could be exposed by the application server vendor.

In order to make it easier to configure new/additional JMX/PMI metrics for collection the metrics.config file
has a feature to write a list of all the available metrics for each JMX collector into a file. When the
default.dump.available.metrics property in the metrics.config file is set to true, the probe will write this list
of available metrics to text files in the probe log directory. The files are named as follows: <agent_install_
directory>/log/<probe-id>/jmx_metrics_<collector-name>.txt.

The default.dump.available.metrics property in the probe metrics.config file can be changed at runtime. It
is recommended that the property is only set to true temporarily to write the list of available JMX/PMI metrics.
After the metrics list is written to the file, the property should be set back to false (or commented out) to avoid
the overhead of the probe periodically writing the metrics list tofile.

Some examples of the metrics list file are shown below. You can use this type of information to configure
additional JMX or PMI metrics in the probes’ etc/metrics.config file.

The following example shows the available MBean ObjectNames and their collectable attributes:

Micro Focus Diagnostics (9.50) Page 207 of 267

Java Agent Guide
Chapter 14: Java Agent - JMX Metrics Capture

MBean ObjectName:

WebSphere:J2EEServer=serverl, JDBCProvider=Derby JDBC

Provider, JDBCResource=Derby JIDBC
Provider,Server=serverl,cell=yl1i87Node@1Cell,diagnosticProvider=true, j2eeType=IDB
CDataSource,mbe
anIdentifier=cells/yl1i87Node@1Cell/nodes/yl1i87Node@l/servers/serverl/
resources.xml#DataSource_ 12442

31364323 ,name=WST_PriceGen,node=yli87Node®@l,platform=dynamicproxy,process=
serverl,spec=1.0,

type=DataSource,version=6.1.0.0

Available Attributes:

name: loginTimeout, type: int

name: statementCacheSize, type: int

name: testConnectionInterval, type: java.lang.Integer

........................

The following example shows the available MBean ObjectNames and their collectable attributes and fields:

======= MBean ObjectNames and Available Attributes and Fields =======
MBean ObjectName:

java.lang:name=PS 0ld Gen,type=MemoryPool

Available Metrics:

Attribute: CollectionUsage type: javax.management.openmbean.CompositeData
Field: committed, type: java.lang.Long

Field: init, type: java.lang.long

Field: max, type: java.lang.lLong

Field: used, type: java.lang.lLong

The following example shows the available MBean ObjectNames and their collectable operations and fields:

======= MBean ObjectNames and Available Operations and Fields =======
MBean ObjectName:
com.tibco.bw:key=engine,name="MortgageBroker-BrokerService"
Available Metrics:

Operation: java.lang.Integer GetActiveProcessCount()

Operation: javax.management.openmbean.CompositeData GetExecInfo()
Field: Threads, type: java.lang.Integer

Field: Uptime, type: java.lang.Long

Operation: javax.management.openmbean.CompositeData GetMemoryUsage()
Field: FreeBytes, type: java.lang.Long

Field: PercentUsed, type: java.lang.Long

Field: TotalBytes, type: java.lang.Long

Field: UsedBytes, type: java.lang.Long

For WebSphere JMX collectors, besides the generic MBean JMX metrics, the available WebSphere specific
PMI metrics are also dumped to the WebSphere collector's dump file. This includes the PMI tree instance
paths and their available statistics, and the PMI module configuration information as shown in the example
below:

Micro Focus Diagnostics (9.50) Page 208 of 267

Java Agent Guide
Chapter 14: Java Agent - JMX Metrics Capture

======= PMI Tree and Available PMI Statistics =======

connectionPoolModule

Available Statistics:

CreateCount, CloseCount, AllocateCount, ReturnCount, PoolSize, FreePoolSize,
WaitingThreadCount, FaultCount, PercentUsed, PercentMaxed, UseTime, WaitTime,
ManagedConnectionCount, ConnectionHandleCount, PrepStmtCacheDiscardCount,
JDBCTime

connectionPoolModule->Derby JIDBC Provider

Available Statistics:

CreateCount, CloseCount, AllocateCount, ReturnCount, PoolSize, FreePoolSize,
WaitingThreadCount, FaultCount, PercentUsed, PercentMaxed, UseTime, WaitTime,
ManagedConnectionCount, ConnectionHandleCount, PrepStmtCacheDiscardCount,
JDBCTime

connectionPoolModule->Derby JDBC Provider->jdbc/ALBUM

Available Statistics:

CreateCount, CloseCount, AllocateCount, ReturnCount, PoolSize, FreePoolSize,
WaitingThreadCount, FaultCount, PercentUsed, PercentMaxed, UseTime, WaitTime,
ManagedConnectionCount, ConnectionHandleCount, PrepStmtCacheDiscardCount,
JDBCTime

Creating New JMX or WebSphere PMI Metrics
Entries

The following instructions guide you through the process of creating the JMX or PMI metric entries according
to the following template:

<collector_name>/<metric_config>= <metric_id>|<metric_units>
This template is described in "Understanding Metric Collector Entries" on page 195.
To capture JMX or WebSphere PMI metrics:

1. Open <agent_install_directory>/etc/metrics.config. and locate the JMX metric collector that is
appropriate for the application that is being monitored by the Java Agent.

2. The <collector_name> parameter is the same as the rest of the entries in the collector. If you were
creating an entry for WebLogic, the value of this parameter would be WebLogic.

3. Create the <metric_config> parameter.

a. For JMX metrics the <metric_config> parameter is a pattern that the collector uses to find a
matching MBean. The pattern consists of two components, separated by the '.' character. See
syntax below.

MBean object and attributes:

<MBean object name pattern>.<attribute name>

MBean Object, attribute and fields:

<MBean object name pattern>.<attribute name>#<field name>

MBean object and operations:

Micro Focus Diagnostics (9.50) Page 209 of 267

Java Agent Guide
Chapter 14: Java Agent - JMX Metrics Capture

<MBean object name pattern>.(<operationname>())
MBean object, operations and fields:
<MBean object name pattern>.(<operationname>()#<field name>)

Where

<MBean object name pattern> is the string representation of the object name of an MBean. For an
explanation of metric patterns see "Understanding Metric Patterns” on the next page. For an
explanation of how to group JMX metrics see "JMX GROUPBY and EXPAND_PMI Modifiers" on
page 212.

<attribute name> is the name of the MBean attribute that represents the metric. If <attribute name>
has any '." init, it should be surrounded by parenthesis: <MBean object name pattern>.
(<attribute name>)

As an example, for a WebLogic application server, the <metric_config> parameter for the throughput
of all Execute Queues is configured as:

*:Type=ExecuteQueueRuntime, *.ServicedRequestTotalCount

See "Getting a List of Available JMX or WebSphere PMI Metrics" on page 207 for an example of a
metrics dump showing available attributes.

<attribute name>#<field name> JMX Attributes that return Composite Data can have their numeric
fields used as metrics. Simply append the symbol # followed by the name of the field after the
MBean name.

For example:

Java\ Platform/java.lang\:type\=MemoryPool,name\=Perm\ Gen.Usage#used

will track the <used> field of the <Perm Gen> MBean's <Usage> composite data attribute.

(<operationname>()) where the operation name is followed by open and close parentheses. And the
entire operation name is enclosed in parentheses.|f the operation returns a composite attribute, suffix
the composite attribute field after the () as for attributes.

For example:

Tibco/com.tibco.bw\:key\=engine,name\=*. (GetActiveProcessCount()) = Active
Process Count|count|Tibco

Note that only operations that don’t take arguments are supported.

(<operation name>()#<field name>) JMX Operations that return Composite Data can have their
numeric fields used as metrics. Simply append the symbol # followed by the name of the field after
the MBean name.

For example:

Tibco/com.tibco.bw\:key\=engine,name\=*. (getStatus()#Total\ Errors) = Total
Errors|count|Tibco

will track the "Total Errors" field of the Composite data object returned by the getStatus() operation.
b. For WebSphere PMI metrics, the <metric_config> parameter is a pattern that the collector uses to

Micro Focus Diagnostics (9.50) Page 210 of 267

Java Agent Guide
Chapter 14: Java Agent - JMX Metrics Capture

find the matching PMI statistics. The pattern consists of two components separated by the .
character.

<PMI StatDescriptor>.<statistics name>

Where

<PMI StatDescriptor> is used to locate and access particular Stats in the WebSphere PMI tree. It
can be either a PMI module name (for example, webAppModule), or a PMI module branch (for
example, [webAppModule][AccountManagement#AccountManagementiar.war]

<statistics name> is the name of the PMI statistics that represent the metric. If statistics name has
any "."init, it should be surrounded by parenthesis: [webAppModule]
[AccountManagementi#AccountManagementiar.war]. (webAppModule.numLoadedServlets)

See "Getting a List of Available JMX or WebSphere PMI Metrics" on page 207 for an example of the PMI
module and PMI module branches and their available statistics names.

See "JMX GROUPBY and EXPAND_PMI Modifiers" on the next page for an example of how to group
PMI metrics.

4. Fill in the rest of the JMX metric entry template as shown in the following example:

WebLogic/*:Type=ExecuteQueueRuntime, *.ServicedRequestTotalCount = RATE(Execute
Queues Requests / sec|count|Execute Queues)

5. Format the initial entry by prepending a back-slash '\' before every back-slash'\', space'’, equals (=), or
colon':".

Following this step the initial entry in the previous step becomes:

WebLogic/*\:Type\=ExecuteQueueRuntime, *.ServicedRequestTotalCount = RATE(Execute
Queues Requests / sec|count|Execute Queues)

This is the correctly formatted entry for a JMX metric collector to enable the collector to gather WebLogic
JMX metrics.

Understanding Metric Patterns

For JMX metrics the <metric_config> parameter is a pattem that the collector uses to find a matching MBean;
for example:

*:Type=ExecuteQueueRuntime, *.ServicedRequestTotalCount

In the example above, the object name is *:Type=ExecuteQueueRuntime,*, which could actually resolves to
many MBeans whose names have the Type component equal to ExecuteQueueRuntime.
ServicedRequestTotalCount is an attribute name for which metric values will be collected by the JMX
metric collector.

Note: Current implementation of the JMX collector only supports attributes that are numeric in type (for
example, long, integer, etc.).

The JMX metric collector first uses MBeanServer's query mechanism to find the matching MBeans for each
object name provided in the configuration. For JMX metrics the object names are a pattern that the collector

Micro Focus Diagnostics (9.50) Page 211 of 267

Java Agent Guide
Chapter 14: Java Agent - JMX Metrics Capture

uses to find a matching MBean. For more details around the object names, see
http://docs.oracle.com/javase/7/docs/api/javax/management/ObjectName.html.

Since MBean object names are patterns that can resolve into multiple MBeans, the JMX collector will validate
all of the attribute names in the entry against all MBeans that match the pattern, and will aggregate the
attribute values over the set of those matching MBeans. Of course, it is not always the case that the object
name resolves into multiple MBeans. For example, the following object name resolves to a single MBean (on
a WebLogic application server):

*\ :Name\=weblogic.kernel.Default, Type\=ExecuteQueueRuntime,
*.ServicedRequestTotalCount

JMX GROUPBY and EXPAND_PMI Modifiers

You can use the optional GROUPBY moaodifier to create a separate metric for each matched group of MBean
ObjectNames with the same value of the key specified by GROUPBY. In the probe's etc/metrics.config file,
for JMX metrics that describe an MBean object name pattern there is an optional modifier GROUPBY that can
be added, which tells a JMX-based collector to treat the metric_config as multi-instance expression:

collector_name/GROUPBY[oname_key]/metric_config = ..
The collector will find all MBeans matching the metric_config and create a corresponding metric for each of
them using the object name key oname_key to provide unique naming by appending it to category_id.

WebSphere6/GROUPBY [name] /WebSphere\ : type\=DataSource, *.statementCacheSize = JIDBC
Statement Cache Size|bytes|JDBC DataSource

For example:

WebSphere6/connectionPoolModule.CreateCount = JDBC Connection Creates|count|JDBC
ConnectionPools

WebSphere6/[connectionPoolModule] [Derby\ JIDBC\ Provider][jdbc/ALBUM].AllocateCount =
JDBCConnection Allocates|count|JDBC ConnectionPools
Or, you may use the optional EXPAND_PMI modifier to group PMI metrics similar to how you group JMX
metrics.

For PMI, the EXPAND_PMI modifier is specified to expand the PMI tree from the given module or
StatDescriptor branch by the specified level. The expansion level "n" canbe 1, 2, ..., or *, with the default level
of 1 and * means expand all:

collector_name/EXPAND PMI[n]/metric_config = ...
For example:

WebSphere6/EXPAND_PMI[*]/connectionPoolModule.AllocateCount = JDBC Connection
Allocates|count|JIDBC ConnectionPools

creates "JDBC Connection Allocates" metric for each JDBC connection pool provider and for each
DataSource of the provider.

Micro Focus Diagnostics (9.50) Page 212 of 267

http://docs.oracle.com/javase/7/docs/api/javax/management/ObjectName.html

Part 4. Using the Diagnostics Profiler for
Java

Micro Focus Diagnostics (9.50) Page 213 of 267

Chapter 15: Diagnostics Profiler for Java

This chapter describes how to use the Diagnostics Profiler for Java:

« "About the Java Diagnostics Profiler" below
« "How the Java Agent Provides Data for the Java Profiler" on the next page
« "Java Diagnostics Profiler Ul Navigation and Display Controls" on page 217
« "Analyzing Performance Using the Call Profile Window" on page 219
« "Thread Call Stack Trace Sampling" on page 223
« "Comparison of Collection Leak Pinpointing and LWMD" on page 226
« "Object Lifecycle Monitoring" on page 227
« "Heap Walker Memory Analysis Execution Steps" on page 229
« "Heap Walker Performance Characteristics" on page 231
« "How to Access the Java Diagnostics Profiler" on page 232
« "How to Enable LWMD for Collections Displays" on page 232
« "How to Enable Allocation Capture" on page 233
« "How to Enable Object Lifecycle Monitoring" on page 234
« "How to Analyze Object Allocation" on page 234
« "How to Enable Memory Analysis" on page 235
Diagnostics Profiler for Java Ul Description:

o "Summary Tab Description" on page 236

« "Hotspots Tab Description" on page 238

« "Metrics Tab Description" on page 240

« "Threads Tab Description" on page 242

« "All Methods Tab Description" on page 246

« "All SQL Tab Description" on page 248

« "Collection Leaks Tab Description" on page 249
« "Collections Tab Description" on page 251

« "Exceptions Tab Description" on page 254

« "Server Requests Tab Description" on page 256
« "Web Services Tab Description" on page 258

« "Allocation/LifeCycle Analysis Tab Description" on page 260
« "Memory Analysis Tab Description" on page 262

« "Configuration Tab Description" on page 264

About the Java Diagnostics Profiler

The Diagnostics Profiler for Java is installed with the Java Agent. The Profiler runs in a separate Ul and
provides near real-time data, enabling you to pinpoint application performance bottlenecks.

Micro Focus Diagnostics (9.50) Page 214 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

You can use the different tabs in the Java Profiler to analyze method latency for the selected application. And
you can analyze memory problems for the selected application using the memory diagnostics metrics
displayed in the Java Profiler.

Special Features Available in the Profiler

Some of the information presented in the Java Profiler is also available in the Diagnostics enterprise Ul.
However the following features are only available in the Java Profiler. Many of these features are real time and
so are enabled and viewed only in the Java Profiler.

« Dynamic instrumentation of a sampled method from the Java Profiler Call Profile (accessible from the
Server Requests tab)

« Threads tab
« Allocation/Lifecycle Analysis tab
« Heap Breakdown tab (including the heap walker)

« Probe Configuration tab

How the Java Agent Provides Data for the Java
Profiler

This section describes the way in which the Java Agent runs probes to monitor your application and how this
data is displayed in the Java Diagnostics Profiler.

Monitoring Method Latency and Call Stacks

The Diagnostics Agent for Java (Java Agent) runs probes to monitor your application and keep track of the
metrics for all of the instrumented methods that your application calls. As probes are monitoring, they capture
the call stack for the three slowest instances of each server request. The probe also captures a call stack
representing all call instances for a type of service request and calculates the aggregated latency

When a server request instance is encountered that is slower than one of the captured instances for the server
request, the slower instance replaces one of the previously captured instances.

The Java Diagnostics Profiler displays metrics for all of the instrumented methods. You can drill down to the
method instances that are included in the captured call stacks.

While you are analyzing the information displayed on the various tabs of the Java Diagnostics Profiler, you are
working with the methods and call stacks captured from the time that the user interface was started. In the
meantime, to minimize performance impacts, the probe continues to monitor your application, capture method
metrics, and capture call stacks.

Monitoring Application Memory Use
The Java Diagnostics Profiler allows you to monitor your application's memory usage using one of the
following methods:

« Collection Leak Pinpointing

« Lightweight Memory Diagnostics

« Heap Breakdown/Heapwalker

Collection Leak Pinpointing allows you to pinpoint Java collection related memory leak locations in Java
applications. The data collection for this feature has very low overhead and so it can be used in a production
environment.

Micro Focus Diagnostics (9.50) Page 215 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Lightweight Memory Diagnostics allows you to monitor the collections that your application has created, and
to identify the largest collections and the fastest growing collections.

With Heap Breakdown you can monitor the heap generation breakdown and the objects that are stored in
heap. This helps you to identify objects that may be leaking. By default, Lightweight Memory Diagnostics and
Heap Breakdown are disabled.

For more information see "Comparison of Collection Leak Pinpointing and LWMD" on page 226. Also see
"How to Enable LWMD for Collections Displays" on page 232.

For more information on Heap Breakdown/Heapwalker, see "How to Enable Memory Analysis" on page 235.

Micro Focus Diagnostics (9.50) Page 216 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Java Diagnostics Profiler Ul Navigation and Display

Controls

This section describes the features and controls that are common within the different tabs of the Java

Diagnostics Profiler:

[-1
/I Diagnostics - Diagnostics Profiler
|
Profiling Since: Mon &pr 30 11:20:13 &AM PDT 2012
2 summary | =] Hotspots | [l Metrics | [7] A1 Methods | [15aL | g Collection Leaks | @y Colections | ¢ 4 b &
512 MB i ; ; ;
448 MB
) ::: :: This chart shows the amourt of
E' ane e memaory inuse and reserved by
- a2 s your application.
128 MB L
Copy You can also drill into the corterts
a4 MEB
o Save as... of the heap
11:24:30 11:2] 11:24:40 11:24:485
Print...
B Used memary © Total memory Sample every =
Zoom In k| Both Axes
Zoom Out M Domain Axis
futo Range M| Range Axis
: : i ; ; : Thiz chart shows a breakdown of
11— S R ——— Sm——— mm—— s S B the Ioed for esch leyer of g
= : : : : : application.
[=]
-
Howver the mouse over a layer to
zee ts name.
P S S S e cmoaeee I A —
11:23:10 11:23:20 11:23:30 11:23:40 11:23:60 11:24:00 11:2410 11:24:20 a gend
WLConsumermpl.receive()
1] : ;
W fexamplesWeb8ppflarghccts This chart shows the requests
] _WebSewice.jsp ' {| (the top level of instrumentation,
§ ' ; | often the web tier) that are taking
fexamplesWebAppival JWS_ : : i| the longest time to complete.
w WebService.jsp ! ! H
5 fexamplesifebAppics_JWS_ Click = bar to examine a call
o WebService. jsp 5 5 i profile, or view all server requests.
0 55 105 1855 205 255
Mean Latency
Last refresh: Mon Apr3011:24:06 POT 2012 9 Probe [0: WLS92_aqualogic_owrntt1 27_W2k3

Graph Menu Options (right-click in a graph to access menu)

Right click in a graph to access the graph menu and select an option:

Copy. From a graph, right-click and select Copy to copy the graph and paste it into a document. You can
paste into any type of file that allows you to paste an image, such as a Microsoft Word file.

Micro Focus Diagnostics (9.50)

Page 217 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

« Save as. From a graph, right-click and select Save as... to save the graph as an image (.png file type).
Enter a file name in the dialog box displayed. By default the file is saved in My Documents but you can
browse to the directory where you want to save the file.

« Print. From a graph, right-click and select Print to print the graph.

« Zoom In. From a graph, right-click and select Zoom In to zoom in for a closer look. Each time you select
zoom in, it uses a multiplier of .5 to give you a magnified view of the data. Note that additional data is not
retrieved and the resolution of the data is not changed.

You can also select portion of the graph for zooming in. Using the mouse, click the graph where you want
to begin the zoom and hold the left mouse button. Then drag the mouse to the right to select the zoom
range. When you release the mouse the selected portion of the graph is zoomed.

When zooming in you can select the following:

Domain Axis - Select this option to zoom in and magnify the domain axis. Typically the domain axis is the
time or X-axis.

Range Axis - Select this option to zoom in and magnify the range axis. Typically the range axis is the axis
with the data values or the Y-axis. For horizontal bar charts you only have the Range Axis selection and
this zooms the axis with the data values, which in this case is the X-axis.

Both Areas - Select this option to zoom in on both axes of the graph.

« Zoom Out. From a graph, right-click and select Zoom Out to zoom out for a less magnified view. Each
time you select zoom out, it uses a multiplier of 2 to give you a less magnified view of the data. Note that
the resolution of the data is not changed. The same menu options are available as for Zoom In (described
above).

« Auto Range. From a graph, right-click and select Auto Range to go back to the original display after
zooming in or out. You can select to restore the Domain Axis, Range Axis or Both Axes to the original
magnification.

Refresh Metrics

When you are ready to view more current performance metrics, click Refresh on the top right corner of the
screen to refresh the information displayed. The Profiler is refreshed with the latest metrics and call stacks.
The system does not refresh itself automatically.

Reset Metrics

= You can force the Java Diagnostics Profiler to use new baselines for the calculation of instance counts,
average latency, and slowest latency, and to force-drop all captured call stacks, by clicking Reset the Count
and Time Information.

Note: You may want to reset metrics after your system has warmed up so that the metrics represent
processing that takes place when your application is running in a more steady state.

Garbage Collection

E When you want to deallocate used memory, you can forcibly perform garbage collection inside the JVM of
the probed application by clicking Force Garbage Collection on the top right corner of the screen.

Export to PDF

E When you want to export the page displayed, you can click the Export this view to PDF (Acrobat) icon
on the top right corner of the screen. See "Exporting Data" in the Diagnostics Server Installation and
Administration Guide for details.

Micro Focus Diagnostics (9.50) Page 218 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Diagnostics Home Page

The Diagnostics Home Page link displays the Diagnostics web site with information on products, solutions,
demos, webinars and contact information for Micro Focus.

Accessing Help

When you click Help, on the top right hand corner of the screen, you access the Diagnostics Java Agent
Guide.

Analyzing Performance Using the Call Profile
Window

The Call Profile window (accessed from the Server Requests tab) displays a graphical representation of the
method call stack for a selected server request. The depicted server request can be an aggregation of all of
the calls made to the selected server request or a single instance of the server request depending on the
server request on which you drilled down to open the call profile window. The metrics depicted in the graphical
representation of the call stack are also depicted in the Call Tree Table on the same tab.

There are two types of call profile windows that are displayed depending on the how you navigated to the tab:

« The Instance Call Profile window displays the method calls that were made during the processing of
the server request on which you drilled down.

« The Aggregate Profile window displays an aggregation of all of the method calls that were made during
the processing of all of the server requests that were the same as the one on which you drilled down.

The Call Profile Window is made up of three areas:
« Call Profile Graph
« Call Tree Table
« Details Pane

Micro Focus Diagnostics (9.50) Page 219 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

An example of the Call Profile view showing all three of these areas:

lestoreicontrollproductdetails

MainServiet.doGet()
JspBase.service()

JspBase.service()
InventoryEJB.elbFindByP rimaryK ey()

OracleStatement.executeQuery()

E: A & ¥
=4 | = =l
100% festore/control/produc 53 1 [/estore/control/productdet...
EH00% MainServlet, doGet) 593.4 1 Application Mame
99.4% JspBase.servicel 590.0 1 Arguments
E92.4% lspBase.servic 548.6 1 Name festorsfco...
; B Signature
50.4% I borvE:” 149.7 z
= . JLsresa Root Method
+F30.4% Oraclests 90,3 z Tvpe
LRI Jestarefco...
Excerfions i

When you click a call box in the Call Profile graph, the corresponding row is selected in the Call Tree table and
the metrics for the selected call are displayed in the Details pane. When you click a row in the Call Tree table
the corresponding call box in the Call Profile graph is selected and the metrics for the selected call are
displayed in the Details pane.

Note: There are differences in the layout and the metrics that are displayed in the Call Profile Window
depending on the type of call profile that Diagnostics is displaying. These differences will be noted as
each of the areas of the window are described.

Call Profile Graph
The horizontal axis of the Call Profile represents elapsed time, where time progresses from left to right.
For aggregated call profiles, the scale across the top of the profile denotes the total time.

Forinstance call profiles, the calls are distributed across the horizontal axis based upon the actual time when
they occurred and so their positions help to show the sequence of each call relative to each other. The scale
across the top of the instance call profile denotes the elapsed time since the server request was started.

The vertical axis of the call profile depicts the call stack depth or nesting level. Calls that are made at the
higher levels of the call stack are shown at the top of the call profile and those made at deeper levels of the call
stack are shown at the lower levels of the profile.

Each call box or node in the instance call profile represents a method call. The left edge of the box is the start
time of the method call and the right edge is the return time from the call. The duration of the call is therefore

Micro Focus Diagnostics (9.50) Page 220 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

represented by the length of the box. The position of the call box along the horizontal axis indicates the actual
time when the call started and ended. The call boxes that appear directly beneath a call box are the child calls
that are invoked by the parent call above them.

The gaps between the call boxes on a layer of the instance profile indicate one of the following processing
conditions:

« The processing that took place during the gap occurred in code that is local to the parent at the previous
higher level in the call profile and not in child calls in a lower layer.
« The call was waiting to acquire a lock or mutex.

« The processing that took place during the gap occurred in a child call that was not instrumented or included
in a capture plan for the run.

The call boxes are colored to emphasize the different path calls.

« The calls that are part of a path through the profile that has the highest latency are colored red.
« Call path components that are not part of a critical high-latency path are colored grey.

« Fora call profile showing a cross-VM call tree, each "hop" will be colored differently to help visually
distinguish the calls that occurred on each tier.

« When asynchronous thread sampling is enabled you can see additional nodes added into the call profile
view by sampling. These nodes are distinguished by their different (fuzzy) shading to emphasize lack of
data about the represented method start and end times. The sampling nodes are transparent so you can
see the instrumented methods, if any, behind the sampling nodes.

« Yellow dotted lines around a box indicates an exception was thrown.

If the duration of a call is very short or if the call appears further down in the call stack, the size of the call box
can cause the name of the method that the call box represents to become too small to read. You can view the
name of the method along with other details for a selected method by holding your pointer over the call box to
cause the tooltip to be displayed. You can also see the details for a method selected from the call profile in the
Details pane.

The call profile graph may have tabs across the top if data for exception instances and SOAP faults or payload
was captured.

The tooltip contains the following details for the selected call box:

Method Window
Detail Description Type
Method Name of the method represented by the call box. Aggregate
Name

Instance
Layer Name The name of the Diagnostics layer where the call occurred. Aggregate

Instance
Total The percentage contribution to the total latency of the server request that the Aggregate

Contribution = methods processing contributed.
Instance

Call Count = The total number of times that the method was called during the execution of the = Aggregate
aggregated server requests instances.

Micro Focus Diagnostics (9.50) Page 221 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Method Window
Detail Description Type
Total The cumulative latency attributed to the processing of the method. Aggregate
Latency

Instance
Average The average latency that can be attributed to each of the method executions for = Aggregate
Latency the aggregated server request instances.

Call Tree Table

The Call Tree table appears directly below the Call Profile. This table shows the same information that is
represented in the Call Profile.

The first row in the table contains the root of the call stack, which is the server request you selected when you
requested that the Call Profile view be displayed. The rest of the rows in the tree are the method calls that
were made at successive levels of depth in the call tree. You can use the expand/collapse controls in front of
method calls so that you can display depth levels in the call tree as required.

In the call tree table the X icon indicates the cross VM outbound call. The number inside the X icon specifies
the depth in the call tree. The diamond icon indicates the next depth level (for example 2 for second level).

Selecting an outbound call row in the table brings to the front, in the call profile graph, all boxes at the next VM
depth level. Selecting any row in the table brings to the front, in the call profile graph, all boxes up to root.

When you select a row call in the table, the corresponding box is selected in the Call Profile graph, and the
metrics for the selected call are displayed in the Details pane.

The Call Tree Table contains the following columns:

Column Window
Label Description Type
Call The name of the Server Request or Method Name. The percentage contribution of ~ Aggregate

the method call to the total latency of the service request precedes the name. The

. . » Instance
percentage is colored red for those calls which are on the call tree's critical path.

Average The average latency that can be attributed to each of the method executions forthe = Aggregate
Latency | aggregated server request instances.

Count The total number of times that the method was called during the execution of the Aggregate
aggregated server requests instances.

Total The cumulative latency attributed to the processing of the method. Instance
Latency
Total The total amount of CPU time used by the processing for the selected method or Aggregate
CPU server request.

Instance
Average The average amount of CPU time used by each of the aggregated method calls Aggregate
CPU included in the selected method or server request.

The Total Latency for a parent call includes not only the sum of the latency of each of its children but also the
latency for the processing that the method did on its own.

Micro Focus Diagnostics (9.50) Page 222 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Call Profile Details Pane

The Details pane lists the metrics related to the server request or method selected in the Call Profile Graph or
inthe Call Tree Table.

To view the details of a particular call in the Details pane, select the call from the Call Tree Table orin the Call
Profile Graph.

The metrics that are included in a metric category can be hidden or displayed by expanding or collapsing the
list of metrics using the plus sign (+) and minus sign (-) next to the category name. Alternatively, you can
double-click the category name to expand or collapse the list of metrics.

Thread Call Stack Trace Sampling

When asynchronous thread sampling is enabled you can see additional boxes added into the call profile graph
by sampling. These boxes are distinguished by their different (fuzzy) shading to emphasize lack of data about
the represented method start and end times. See "Configuration Tab Description" on page 264 for how to
configure this sampling using the Java Diagnostics Profiler Configuration Tab.

See "Configuring Thread Stack Trace Sampling" on page 188 for configuration and troubleshooting information
if you don't see any sampling nodes after enabling stack trace sampling.

Instrumenting a Sampled Method Dynamically

Sampling methods displayed in the Call Profile when Thread Stack Trace Sampling is enabled give you an
insight into the call hierarchy and latencies of these methods. But you may want to identify one of these
sampling methods to actually instrument in order to get additional detail information.

Dynamic instrumentation is Java bytecode instrumentation performed during the application execution after
the respective class has been first loaded by the Java Virtual Machine. Instrumentation is temporary, for the
current Java process. If you want to permanently instrument this method you must add the point you created
to the instrumentation points file.

Note: Dynamic instrumentation (the Instrument menu item) is ONLY available when you access the
Call Profile from the Diagnostics Profiler for Java. It is NOT available when accessing the Call Profile
from an instance tree icon in the main Diagnostics Ul.

From the Diagnostics Java Profiler Ul, select the Server Requests tab and open the Call Profile window.
Select the sampling (fuzzy) node in the Call Profile window and right-click to select Instrument.

Micro Focus Diagnostics (9.50) Page 223 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Diagnostics - Diagnostics Profiler
Diagnostics -

ofiling Since: Tue Jan 25 03:53:53 PM PST 2011
| Threads || &l methods || a1 5oL || % Colection Leaks || %y Collections || & Exceptions || % Server Requests || %3 wieb 5=

itter by Server Request Type

Server Request | Tatal time(...
raceejbizervietiTradeServiet 2 560 545 .4
3
o q q .
,|T-'¢.g HP Diagnostics - ftradeejb/serviet/TradeServiet - IO |
:-||k2al| Profile for the Instance of the Server Reqguest Aradeejb/servietTradeServiet ending at 1/26M1 7:57.08 AM

g 0 is G5 L) 12s 155 185 s M5 s s
[tradeejb/serviet/TradeServiet

3 TradeServiet.doPost()

TradeSessionBean.processTrade()

r TradeSessionBean.getOrderResult()
I .
. JMSMessageConsumerHandle.receive()
MQMessageConsumer.receive()
sageConsumer.receivelnte
- MQQueue.getMisan -
: -ge A Instrument .. :
QQueue.getMsg2int
SESSIONClient. MQG
] ICommunication ICommunication:
call L...|T.. | EMethod Data
r = . U *:l Arguments
1I E 0% MoCususSession.createReceiver() ——— R e

Micro Focus Diagnostics (9.50) Page 224 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

The Dynamic Instrumentation dialog box is displayed with values corresponding to the selected method.

F = = 1

. Dynamic Instrumentation E]@

Define and apply a new instrumentation poirt

Package Mame | weblogic xml jaxp |
Class Name | RegistryDocumentBuilder |
Method Mame | parse |
Method Signature L+ |
Layer Mame | Discovered |

WARNING: Adding new instrumertation poirts may affect application performance

[Hew-Point-1]
netrumented and redefined 1 classies).

1 = 1l ic. 1.7 _Regist
;92:;1 _ w:zr:s:c_rlc ERT - JRER - BEGTERE lease inspect detaiifeport. bdto see the matching methods, ancd

] : robe. fog for any possible errors appearing after the class
signmature = 1_* _—

edefinition.

A L S LenE o make the changes permanent, copy the instrumentation poirt
SRVEE SRR T n the left into the probe awto_detect points file.

4 1 3

You can change the package, class, and method name, and provide a method signature, if known, to narrow
down the scope of the instrumentation. Since sampling does not reveal method signatures, by default all
methods with matching names will be instrumented.

Note: The classes belonging to the Diagnostics Java probe or the Java runtime cannot be instrumented.

Click Apply after making the changes you want and the Java probe automatically creates a new point
definition and tries to apply the instrumentation dynamically. The bottom part of the dialog window contains
the result of this operation: the new instrumentation point definition is placed on the left side, while the result of
instrumentation is located on the right.

Once the instrumentation is successful, you should copy and paste the instrumentation point to save it
because when you refresh the Call Profile, the Dynamic Instrumentation window with the details on the
instrumentation point you created is no longer available.

When you refresh the Call Profile view, the dynamically instrumented method will be displayed as a solid node
because it is now instrumented. Instrumentation is temporary for the current Java process.

If you want to permanently instrument this method you must add the point you created to the instrumentation
points file.

Micro Focus Diagnostics (9.50) Page 225 of 267

Java Agent Guide

Chapter 15: Diagnostics Profiler for Java

Comparison of Collection Leak Pinpointing and

LWMD

Collection Leak Pinpointing (CLP) allows you to pinpoint Java collection related memory leak locations in
Java applications. Enabling the feature in the probe is optional. Once enabled, the probe will automatically
detect and report the leaking Java collection objects and their leak locations (stack traces), without any user
interaction. CLP captures the stack trace when a collection is marked as a leak for the first time. The data
collection for this feature has very low overhead and so it can be used in a production environment. See
"Custom Instrumentation for Java Applications" on page 97 for more information on configuring collection leak

pinpointing.

Lightweight Memory Diagnostics (LWMD) can also be used to help you locate memory leaks. Enabling
LWMD in the probe is optional. User interaction is required to enable LWMD. The data collection overhead for
this feature is relatively high and it is not recommended for use in a production environment.

A comparison of CLP and LWMD is shown in the table below. Both are optional features and are used to help
detect and locate the Java collection related memory leaks.

User
interaction

Data collection
overhead

Out-of-the-box
status

Instrumentation
approach

Instrumented
classes

Common data
collected

Differences in
data collected

CLP

Does not need user interaction at all. The probe will
automatically detect and report the leaking Java
collection objects and their leak locations.

Very low overhead, can be used in production
environment.

Enabled by default

To use this feature, you need to run the JRE
instrumenter to pre-instrument the Java collection
classes in the JRE jar file, and add the instrumented
JRE classpath to the -Xbootclasspath/p java option to
run the probe.

The Java collection classes (in java.util package and
subpackages) in the JRE jar file.

Both collect full classname of the collection and size of
the collection.

Leak location: stack trace when called to add new
elements to the leaking collection

Micro Focus Diagnostics (9.50)

LWMD

Needs user interaction and
manual steps.

Relatively high overhead,
depends on the user specified
scope. Not recommended to
use in production
environment.

Disabled by default.

Once the feature is enabled,
the application classes within
the specified scope will be
instrumented at runtime.

The application classes
within the specified scope
that have Java collection
object allocation.

The collection object
allocation site: class, method,
line number.

Page 226 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Object Lifecycle Monitoring

Every object has a lifespan. The lifespan begins with object construction and ends with its garbage collection.
You can use the Allocation/LifeCycle Analysis tab in the Java Diagnostics Profiler to monitor and analyze

object lifespan (see "How to Analyze Object Allocation" on page 234).

However, some objects follow a lifecycle during their lifespan. For example, the objects representing
database resources (like database connection or cursors) go through such a lifecycle during their lifespan.

See the diagram below:

Dbject lifecycle

Cpen
(active time
begins)

reopened

Closed

Close
(active time
ends)

Freed without close

Object
garbage
collected

These objects are brought into an open state by some resource acquisition operation and then closed after
their usage. They usually acquire their resources before entering an open state and relinquish their resources
after reaching a close state. Some of these objects are designed for re-use (for example, objects based on
connection pool). So these objects might be re-opened and closed multiple times during their lifespan.

Micro Focus Diagnostics (9.50)

Page 227 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

You can enable object lifecycle monitoring in Diagnostics and view lifecycle information for these objects in
the Allocation/Lifecycle Analysis tab.

Two Examples of These Types of Objects

« Database connection: An object of type java.sgl.Connection represents a database connection. The
connection is opened by invoking javax.sql.DataSource.getConnection() method and it is closed by
invoking java.sgl.Connection.close() method.

« Database cursors: An object of type java.sql.ResultSet represents a database cursor. The cursoris
opened by invoking java.sql.Statement.executeQuery() method and is closed by invoking
java.sql.ResultSet.close() method.

Types of Performance Problems with These Objects

Diagnostics allows you to monitor the object's lifecycle between its open and close states to identify the
following types of performance problems.

« Resources are not released: This problem arises when the object is not brought into a close state. This
causes the resources attached to the object to be wasted for the lifetime of the object.

« Resources are not released in a timely manner: This problem arises when the resources are released
after unnecessarily keeping them around for quite long period of time. This can also happen if the object is
not closed but the garbage collector automatically closes it during object finalization.

Viewing Object Lifecycle Information

Object lifecycle information is available in the details pane in the Profiler Allocation/Lifecycle Analysis tab for
objects enabled for monitoring.

Tips for performance analysis:
The metric Objects 'Opened’ (Total) shows the number of objects opened during the application's lifetime.

Please note that, if an object is re-opened at multiple location (a common case for pooling), the 'opened’
metrics shows the number of times the object was opened. However, the location information refers to the
location of the first 'opening’ of the object.

Also an object is re-opened without being 'closed' then it is assumed that the object kept itself in the 'open'
state. The 'opened' counter is not incremented.

The metric Objects 'Closed' (Total) shows the number of objects closed during the application's lifetime. If
an object is re-closed without being 'opened' again, then it is assumed that the object kept itself in the 'close’
state. The 'closed' counter is not incremented.

The metric Objects Deallocated without Close will have a value greater than zero if the resources are not
properly released.

The metric Object Active Lifespan will have a higher average latency if the resources are not released in
timely manner. Note that this metric shows the active lifespan for only those objects that have been closed.

Differences Between Object Lifecycle and Allocation Analysis

Unlike allocation analysis, the object lifecycle feature is not managed. This means that while allocation
analysis can be performed by specifically selecting the Start tracking allocations and Stop tracking
allocations links in the Allocation/Lifecycle Analysis tab. Object lifecycle monitoring, if enabled, will show
data since the application start-up and the data will not be cleared by the Clear allocation information link.

Also, unlike allocation analysis, the object lifecycle feature does not support sampling. This means that all the
method calls are captured for the object's lifecycle monitoring.

Micro Focus Diagnostics (9.50) Page 228 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Heap Walker Memory Analysis Execution Steps

Heap Walker is a memory analysis process accessible from the Memory Analysis tab. You can use it to
troubleshoot Java lingering object problems that are difficult to debug or reproduce. Using object tagging and
heap snapshots, Heap Walker enables you to inspect individual objects suspected of having "leaked," and to
determine why they are kept alive in the Java heap. This feature targets testing (pre-deployment)
environments. You can also use it in production environments.

The steps for using the Heap Walker are described below. The Heap Walker also contains a wizard that
guides you through the process of diagnosing a memory leak.

Step 1 - Establishing a Baseline

A typical large Java application allocates many objects during its initialization and warm-up. Classes are
loaded, thread and database connection pools are populated, and numerous caches in all components are
filled. These objects typically stay alive throughout the application execution. To avoid identifying these
objects as potential leaks (that is, to avoid false positives), you should let the application run under load for
some time to arrive at a stable state.

The application can be placed under memory leak test after initialization has completed, and object allocation
has stabilized. Clicking Start Tracking New Objects initiates the test operation. After that, any objects
allocated by the operation will be tracked as potential leaks.

The assumption here is that the deployed Java application, if allowed to fully initialize, allocates only
temporary objects for all of its operations. All temporary objects should eventually be garbage collected. While
most server applications comply with this design principle, there are known exceptions to this rule. Database
connections, or threads in dynamically sized thread pools, can be created at any time during the application
execution without time constraints on when they should be terminated.

The Heap Walker operations may also leave a footprint on the heap. (For example, some probe classes are
loaded and initialized only when you start using Heap Walker.) Footprints should not be a problem if you are
aware of them. However, if you need a clear picture, it is recommended that you perform the execution of all
Heap Walker steps twice, treating the first pass as a warm-up only. You can ignore results from the first pass.

Step 2 - Exercising the Operation

The details of this step may differ, depending on whether the application is running in a production
environment or in a test environment. In a test environment, the application owner can carefully stage the test
load to contain only the desired operations. For example, testing can focus on newly developed code, or
objects that are suspected of leaking memory based on the analysis of the logs or feedback from the IT center
where the application is deployed.

It is often useful to use such an operation under test in some kind of a context. For example, if the application
requires a user logon, it might be practical to wrap the tested operation by a logon and logout. It is typical for
the application to hold the active session information in the heap. In this case, you can dismiss the session
information only after a logout. Alteratively, you can perform the logon before new object tracking is started.
In any case, you should arrange the tested operation in such a way that it leaves no permanent footprint in
Java memory (adding records to a database is fine). The tested operation can be repeated several times. In
the case of simple leaks, a single execution is usually enough. In a production environment, it is impossible to
control the load, or to time the new object tracking by starting and stopping to catch only the desired portion of
the load. You need to take this into account when analyzing the results.

Heap Walker can display the number and size of the currently tracked objects. These numbers are updated by
taking a heap snapshot. You observe the numbers as they change over time. Measurements increase as the

Micro Focus Diagnostics (9.50) Page 229 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

application allocates new objects. They decrease as the objects are garbage collected. After the tested
operation is complete (or, in the case of a production environment, sufficient time has elapsed), you can click
Stop Tracking New Objects. At this point, the set of tracked objects is closed. It can no longer grow.

It is normal, however, for several tracked objects to still be alive at this point. They can be present in
numerous caches in the application, including the components that you do not own. It is also possible that
some tracked objects require finalization. The finalizers are run periodically by the JVM, typically
asynchronously to the activities controlled by the application. Objects pending finalization are considered
alive, even though the application may hold no references to them.

Step 3 - Flushing Application Caches

Under normal circumstances, if the application remains under load, the caches clear of all the tracked objects
eventually, and the pending finalizers run eventually. The JVM also runs garbage collection periodically. This
garbage collection removes the tracked object from the heap, provided they are not leaks.

You can sometimes speed up this cleaning process by forcing garbage collection. Clicking Run Garbage
Collection makes the JVM not only run the full GC cycle, but also run the pending finalizations.

Taking heap snapshots is especially useful at this point. The observed number and the total size of tracked
objects should go down over time, as the cache flushing process progresses. Ideally, these numbers should
eventually reach zero, meaning that all tracked objects have been garbage collected.

However, if there is a Java memory leak in the tested operation, the numbers stabilize at some non-zero
values, and no longer decrease, despite repeated garbage collections and continuous load on the application.
When you decide that the tracked objects remaining on the heap should be considered a leak, it is time to
capture the object reference graph. This action dumps all references present in the heap to afile, and starts
an additional (external) process, which sorts the file. The file is used in the next steps.

Step 4 - Analyzing Potential Leaks

After you capture the object reference graph, you can retrieve the list of tracked objects. In most cases, you
select just one class of objects to retrieve. This can be accomplished by double-clicking the row with the
selected class. It is also possible to retrieve objects for multiple classes. Simply select multiple rows (by
holding down the Ctrl key), and then right-click to select Inspect Selected Tracked Objects.

For efficiency of operation, there is a limit on the total number of objects that can be retrieved. You can change
the limit, using the selector located on the left side of the window. Retrieving a large number of objects rarely
makes sense, as it is costly, and it does not necessarily increase your capability to solve the leak problem.

Step 5 - Walking the Heap

You can determine why any of the retrieved objects is alive by clicking the table row describing the object.
This action displays an Object Reference Diagram. This diagram shows the selected object with a chain of
references that are keeping the object alive, and indicates which object is a heap root.

For any object already displayed, it is possible to show all objects directly referencing it by double-clicking the
object.

As above, to keep a limit on the overhead, there is a limit selector on the left side of the screen controlling the
maximum number of objects to be retrieved and displayed.

An example of the Object Reference Diagram:

All displayed references (links between objects) are based on the captured object reference graph. Additional
information, such as object type, size, or reference names are retrieved directly from the heap. Under some

Micro Focus Diagnostics (9.50) Page 230 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

circumstances, the additional information cannot be retrieved because some of the objects keeping the
specific object alive can cycle over time and be garbage collected. A continuously growing java.util.Vector
object is a good illustration of this point, as the underlying array is replaced over time.

The objects are color-coded according to their age. There are three distinct object ages:

« Baseline. Objects allocated before new object tracking was started.

« Tracked. Objects allocated between new object tracking start and new object tracking stop, ostensibly by
the tested operation.

« Fresh. Objects allocated after new object tracking was stopped.

The toolbar selections in the Object Reference Diagram are similar to the toolbar in topology views, so for
toolbar details see "Working with Topologies" in the Diagnostics User Guide.

You may elect to capture a new Object Reference Diagram to obtain a fresh view of the object, and repeat
"Step 4 - Analyzing Potential Leaks" on the previous page.

Heap Walker Performance Characteristics

Technically, starting or stopping new object tracking, and capturing the object reference graph, uses the JVM
heap tagging operations. It may require substantial execution time, which can be up to several minutes for
very large heaps. The application is practically paused during this time. Do not use Heap Walker if the nature
of the deployed application cannot tolerate such long pauses. If in doubt, always test Heap Walker first in a
test environment.

The above steps, and in particular starting new object tracking, also make the JVM allocate extra memory
generally proportional to the current heap size. This memory is allocated outside of the Java heap, but within
the JVM process. You need to take special care to ensure that such memory can be allocated. Keep in mind
that the JVM itself, the application code, the JIT-compiled code, and any native libraries used by the
application must fit into this space as well. For 32-bit processes, there is an operating system-dependent limit
on the size of the process address space (for example, 2GB for Windows on Intel x86). If almost half (or more)
of the available address space is already reserved by the Java heap, the tagging operation can crash the JVM.

Heap Walker gives you the total memory usage estimate when the Start New Object Tracking operation is
activated for the first time. The estimate is for total system memory. It is based on additional memory needed
by the JVM and on memory for the object references sorting program. At this point, you have a chance to quit
Heap Walker without affecting the deployed application negatively (no additional memory is allocated).
Obviously, in a production environment (deployed application), it is recommended that you use Heap Walker
only if the system capacity is large enough to handle the additional memory pressure. The decision whether to
continue with tagging depends not only on the total amount of memory available on the system running the
application, but on the impact of a possible JVM crash on the business process as well.

When using Heap Walker in a test environment, it is usually possible to scale down the load and the
maximum heap size to match the system capacity. There is no direct CPU overhead on the Java application,
other than actually running a Heap Walker command (indicated by the progress bar). This also includes the
tracking period. That is, even though tracking start and tracking stop consume large amounts of CPU time,
there is no overhead while actually tracking new objects.

However, the increased memory footprint of the JVM may cause serious sluggishness if the JVM no longer
fits into main memory, and makes excessive use of the swap area. If, after having tagged the heap, you
notice severe application performance degradation while none of the Heap Walker operations are running, you
most likely have a swap file thrashing problem.

Micro Focus Diagnostics (9.50) Page 231 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

How to Access the Java Diagnostics Profiler

Once you have installed the Java Agent, configured a probe to collect performance data and started the
application that is being monitored, you can access the Java Diagnostics Profiler from your browser and view
Diagnostics data. You can also access the Java Diagnostics Profiler by drilling down from the views of the
Diagnostics Enterprise user interface.

To open the Java Diagnostics Profiler directly (standalone):

1. Inyour browser, go to the Java Diagnostics Profiler URL: http://<probe_host>:<probeport>/profiler.
The probes are assigned to the first available port beginning at 35000.

Note: You can find the port that a particular probe is using in the probe's probe.log file located in
<agent_install_directory>/log/<probe_id> directory. In the probe.log file, find the line that begins
with the words webserver listening on, for example: webserver listening on 0.0.0.0:35003
The port is the number after the colon, in this example 35003.

2. Type your username and password.

You are prompted to enter a usernname and password. The default username is admin. The default
password is admin. You may be prompted again to enter a usermame and password. Re-enter the same
details.

For more information about authentication and usernames and passwords when you have the full
Diagnostics product, refer to the Diagnostics Server Installation and Administration Guide section on
Authentication and Authorization.

To drill down to the Diagnostics Java Profiler from the main Diagnostics Ul:

1. From any view in Diagnostics Enterprise Ul that shows probe entities, right-click the probe in the table
and select View Profiler for <probe name> from the menu.

2. If the Profiler fails to open when performing the drill down from the Diagnostics Ul, ensure that you have
set a default browser within your operating system.

How to Enable LWMD for Collections Displays

This task describes how to enable Lightweight Memory Diagnostics (LWMD) for use in analyzing memory
leaks.

By default, LWMD is disabled, so the Java Agent does not impose the additional overhead on its host when
you are not going to use memory diagnostics metrics. When you detect a memory leak using the Memory
Analysis tab, you can enable LWMD. When you have completed your investigation, you can disable LWMD
once more.

Note: LWMD must be enabled in order for you to see any data in the Collections tab of the Java
Diagnostics Profiler.

To enable LWMD:

1. Turmn on the LWMD capture in the dynamic.properties file by setting the lIwm.diagnostics.capture
property equal to true.

lwm.diagnostics.capture=true

Micro Focus Diagnostics (9.50) Page 232 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

2. Activate the LWMD point in the auto_detect.points file by setting active equal to true and indicate the
scope of the LWMD instrumentation:

[Light-Weight Memory Diagnostics]

keyword = lwmd

scope = lonly\.in\.this\.Class\..*,!or\.in\.this\.Class\..*
active=true

It is very important to limit the scope of the LWMD instrumentation to a particular package to reduce
overhead. The syntax for the scope starts with an exclamation point (!) to indicate that a regular expression
follows.

How to Enable Allocation Capture

This task describes how to enable allocation capture for the probe.

The Allocation/Lifecycle Analysis tab cannot display allocation objects or their metrics until allocation capture
has been enabled for the probe. By default, allocation capture is disabled, so the Java Agent does not impose
the additional overhead on its host when you are not going to use memory diagnostics metrics. If you suspect
that you may have a memory issue with the way your application manages its object allocations, you can
enable allocation capture. When you have completed your investigation, you can disable the allocation
capture again.

To enable allocation capture to view data in the Allocation/LifeCycle Analysis Tab:

1. Inthe auto_detect.points file located in <agent_install_directory>\etc, modify the default settings to
match the following:

[Allocation]

keyword = allocation

detail = leak

scope = !com\.mycompany\.mycomponent\..*
active = true

If you want to have reflective allocation tracked, you can add the reflection attribute to the detail
argument in the Allocation point.

[Allocation]

keyword = allocation

detail = leak,reflection

scope = !com\.mycompany\.mycomponent\..*
active = true

This instruments the Class.newlnstance, Constructor.newlnstance, and Object.clone methods. The
reflection instrumentation tracks all classes that are created.

2. Restart the monitored application, so the probe restarts and can apply the updated instrumentation.

Micro Focus Diagnostics (9.50) Page 233 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

How to Enable Object Lifecycle Monitoring

This task describes how to enable the monitoring of certain types of objects.

To enable object lifecycle monitoring to monitor object lifecycle data in the Allocation/LifeCycle
Analysis tab:

1. Object lifecycle monitoring in Diagnostics is not enabled by default. The resource monitoring of certain
types of objects can be individually enabled in the etc/inst.properties file.

For example, to enable the database cursor monitoring set
mercury.enable.resourcemonitor.jdbcResultSet=true for details.conditional.properties property in the
inst.properties file. This enables object lifecycle monitoring for all resources of this type for a single
probe.

2. You will need to restart the probe after making changes to the etc/inst.properties file.

Due to higher overhead of caller side instrumentation and possibly large number of objects (resources) to
be tracked, it is recommended that this feature is only enabled during development stage. It should be
enabled in production environment with great caution and with a very limited 'scope’'.

You specify the scope in the object lifecycle monitoring section in the auto_detect.points file.

How to Analyze Object Allocation

This task describes how to analyze the object allocations your application is performing.

After you have identified a memory problem using the Heap Breakdown tab, you can analyze the object
allocations that your application is performing by examining the allocations while the suspected application
functionality is being executed. The following procedure describes how to run an experiment and study the
resulting application performance.

To analyze object allocations:
1. If you have not already enabled allocation capture for the probe, do so as instructed in "How to Enable
Allocation Capture" on the previous page.
2. Begin tracking allocations by selecting Start Tracking Allocations from the Common Tasks menu.

The probe starts collecting the metrics for the objects that are being allocated and de-allocated. No
collection metrics are displayed in the tab until you select the Refresh Allocation Information or Stop
Tracking Allocations menu options.

3. Execute the application functions that you suspect may be causing a leak, so any objects that are
allocated while performing the function can be tracked.

4. Select the Stop Tracking Allocations menu option to limit the tracked objects to those that were
captured while the suspect application functions were being performed.

No additional instances are tracked after you stop tracking. The instances of the objects that were
already allocated continue to be tracked as they are de-allocated, so the metrics on the tab can be
refreshed with accurate counts of the objects that are alive or de-allocated, as well as with accurate
object lifespans.

5. Select the Refresh Allocation Information menu option to update the tab with the current metrics for
the allocated objects.

Micro Focus Diagnostics (9.50) Page 234 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Each time you select this menu option, the Profiler updates the metrics for the tracked objects in the
allocations analysis table with the current counts and lifespans. The trend lines for the metrics in the
graph are updated to chart the data points for the metrics at the refresh time.

You should repeat this step as your application continues to run, so you can see what happens to the
allocated objects over time.

6. If you want to run your experiment again, select the Clear Allocation Information menu option to clear
the table and graph of all of the objects and metrics currently displayed, and begin this process again
from the second step.

How to Enable Memory Analysis

This task describes how to enable memory analysis. By default, the Memory Analysis tab is disabled.
To enable advance memory analysis and display the Heap Walker views:

1. Usethe
-agentpath:<agent_install_directory>/lib/<platform_dir>/jvmti.dll parameter in the application
startup script. Replace jvmti.dll with the appropriate library name if you run the probe on a non-Windows
system.

2. Open the Java Diagnostics Profiler for the application, and click the Memory Analysis tab.

Click the icon to take a heap snapshot and open the first Heap Walker view.

¥ou hawe nok yet taken a heap snapshat.

Click. @s ko kake ane now,

Note: You cannot use Heap Walker when running your application with HotSpot 5.0 JVM with CMS
enabled (the -XX:+UseConcMarkSweepGC option). Remove this option from the Java command if
you plan to use Heap Walker.

When both the -server and the -Xgc:parallel options are selected, some versions of JRockit 5.0 JVM
demonstrate instability. In some configurations, both options are selected by default. In such cases, specify
the -client or the -Xgc:gencon option to override the default. This is a known BEA issue (CR334327) and
should be resolved in future of releases of JRockit.

Micro Focus Diagnostics (9.50) Page 235 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Summary Tab Description

The Summary tab consists of graphs that display information about the memory in use and reserved by your
application, the load for each layer of your application and the slowest requests made to your application

server.

The following is an example of the Java Profiler Summary Tab display.

Profiling Since: Wed Nov 03 10:28:13 AMPDT 2010
%% summary || 5 Hotspots || B8 Metrics || 8 Threads || Al methoos | @ ansoL | % collection Lesks | & collections * 7
2861 MB
238 4 MB
& 1907 MB Thiz chart shows the amount of
E 1431 MB memary |r_1-us_e and reserved by
[your application.
= 934 MB
"-—-‘-—* 47.7 MB You can also drill into the contents
0B of the heap
10:29 10:30 10:3
A Used memory © Total memary Sample every :
This chart shows a breakdown of
0.3 the load for each layer of your
= application.
E nz T
: : i O Hover the mouse over a layer to
& o ! ! 4
A . i i zee ite name.
o - - _
1028 1029 10:30 1031
fphysicianimedicalrecord. |
" do
= o This chart shows the requests
E .fphyrsu::lanfsde:rchresurts. (the top level of instrumentation,
E often the weh tier) that are taking
% fphysicianfrecord.do the longest time to complete.
o
g . .
B MedRecWehSarvices:: Click & bar t.c examine a call
N getRecordsSummary profile, or view all server
- requests.
Oms s0ms 100 ms
Mean Latency
To access In the Java Diagnostics Profiler, select the Summary tab.
Important If the message 'Profiling not in progress' is displayed, select the Begin Profiling link in
information the upper left corner.
Relevant tasks "How to Access the Java Diagnostics Profiler" on page 232

Micro Focus Diagnostics (9.50)

Page 236 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

The following user interface elements are included:

Ul Element Description

Memory The Memory graph shows the amount of memory allocated in your application and the
Graph amount of memory (JVM heap size) reserved by your application.

You can see more details about the exact amount of allocated memory or reserved memory
in your application, by holding your pointer over various points on the graph to view the

tooltip.
Load The Load graph shows the breakdown of the load for each layer of your application.
Graph The performance metrics for classes and methods are grouped into layers based upon the
resources that the application invokes to perform the processing. The Java Diagnostics
Profiler displays the layers on one level and does not split them into sublayers.
You can see the name of each layer by holding your pointer over various points on the graph
to view the tooltip.
To view a legend of the graph that displays the names of all the layers, click Show Legend.
Slowest The Slowest Request graph shows the server requests that are taking the longest time to
Requests complete.
Graph

To view the aggregated call profile for a server request in the Slowest Request graph, click
the bar for the server request. For more information about the call profile window, see
"Analyzing Performance Using the Call Profile Window" on page 219.

Information = The information pane at the bottom of the window displays the following information:

Pane « The date and time of the last time you refreshed the Profiler data.

o The probe ID.

Micro Focus Diagnostics (9.50) Page 237 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Hotspots Tab Description

The Hotspots tab displays bar charts of the significant metrics that have been captured during the monitoring

of your application.

The following is an example of the Java Profiler Hotspots Tab display.

Profiing Since: Wed Mov 03 09:14:22 AM PDT 2010

% Summary |[5 Hotspots || BB Metrics || 3 Threads | 5] &l methoos |(@ i sol || % Collection Lesks | % Collections * ~
WsStub invoke() This chart shows the total
w exclusive latency for the methads
'E RecordSessionEJB. whose cummulative latency for all
% getRecords() of the calls to the method is the
: RecordSessionEJB. longest.
toR cWiOA
¢ SRl L Click the bar in the chart for a
% PhysicianSessionEJB. method to see its call profile.
I getMedRec\WebService. .. Select the Al Methods tab to
i o rlns Tm '40 < Im 20s sm review the performance of all
. captured methods.
Total exclusive latency
MedRecW\ebServices:: This chart shows the total
et ey 8t e exclusive CPU time for the
n Iphysicianisearchresults. | methods whose cummulative CPLU
E do time for all of the calls to the
[)
ethod is the | =t
E Iphysicianimedicalrecord. | i
d
E ° Click the bar in the chart for a
(¥ N
i [physicianfogin do | method to zee its call profie.
la Select the All Methods tab to
Oms 0s 40 s 1m 1m 20s review the performance of all
B) captured methods.
Total exclusive CPU time
SELECT WLO.id |, WLO.
date_prescribed | W...
. This chart shows the total
a' rechrIt_jEE;tz“_l?\fﬂl v:t_?d execution time for the SCQL
g - ' L statemerts that took the most time
I SELECT COUMT (*) AS to execute.
E rowvcount FR...
E .
. SELECT COUNT { *) FROM Select the All SCL tab to review
SYSTABLES the performance of all SGL
[H statemerts.
Oms a0 ms 100 ms 130 ms 200 ms
Mean Latency
To access In the Java Diagnostics Profiler, select the Hotspots tab.
Important You can view the details for a graphed metric by holding your pointer over the bar for the
information metric and viewing the tooltip.

Micro Focus Diagnostics (9.50)

Page 238 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Relevant tasks "How to Access the Java Diagnostics Profiler" on page 232

The following user interface elements are included:

ul
Element Description

Slowest = This chart shows the method calls that are taking the most time exclusively in that method. To

Methods view the call profile for a selected method call in the Slowest Methods graph, click the bar for

Graph the method. For more information about the call profile window, see "Analyzing Performance
Using the Call Profile Window" on page 219.

If the method is part of more than one server request, when you double-click the method, the
following dialog box opens and asks you to select the particular server request for which you
want to see the call profile.

Double-click the appropriate server request row to view the call profile.

CPU This chart shows the methods that are using the most CPU.
Hotspots

Graph To view the call profile for a particular method, click the bar for the method. For more

information about the call profile window, see "Analyzing Performance Using the Call Profile
Window" on page 219

Slowest | This chart shows the SQL statements that are taking the most time.
SQL

Graph To view the SQL statement details for a particular statement in the Slowest SQL graph, click

the bar for the SQL statement to select it. For more information about SQL statement details,
see "Analyzing Performance Using the Call Profile Window" on page 219.

Micro Focus Diagnostics (9.50) Page 239 of 267

Java Agent Guide

Chapter 15: Diagnostics Profiler for Java

Metrics Tab Description

The Metrics tab displays information about the Operating System, the JVM and the application server.

The following is an example of the Java Profiler Metrics Tab display.

Profiling Since: Wed Nov 03 11:06:07 AM PDT 2010

To access

Important

fa3 Summary | 5 Hotspots |[EE Metrics Threads ||F=] &l Methods | @ a0 saL | ® colection Leaks | % Collections (4 ¥~
[E-System -
ystem il VM Heap Free
Disk 1526
etwork
Evi 1431
EHProbe
E—HeapFree 1335
in: 28,117 632
;168,870,304 124
Average: 98 552/
[FHeapTotal 114 4
[FHeapUsed
[FHeapUsedPct = 1049
EJava Platform
lagzes 95 4
Threads
C
838
[EHMercury System
nstrumentation
763
apture Agent
ymbolTable 668
orrelation
z::— rocesshetrics
FProbe e
blLogic —
1B 77
wecute Gueues
IS 381
JTA =] 11:06:30 11:07:00 11:07:30
1M | [

In the Java Diagnostics Profiler, select the Metrics tab.

information the probe for which you opened the profiler.

When more than one probe is running on the same host, the System metrics only appear for

If you are using the Profiler without the Diagnostics product, then to preserve memory in the
application server, metrics are only measured from the time you access the graph. However,
if the probe is connected to a Diagnostics Server, the metrics are measured continuously,
regardless of whether you have accessed the graph.

Relevant
tasks

Micro Focus Diagnostics (9.50)

"How to Access the Java Diagnostics Profiler" on page 232

Page 240 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

The following user interface elements are included:

ul

Element Description

Tree Displays the metrics in an expandable tree.
Pane

The top three levels displayed in the tree are:
System. Metrics about the Operating System
JVM. Metrics about the JVM

<application server>. Metrics about the application server. Depending on the environment, the
application servers that will be displayed are WeblLogic, WebSphere, or SAP.

When you expand each of the top levels, the tree displays the associated metrics for each top
level. As you further expand each metric, you arrive at a minimum, a maximum and an average
numerical value for each metric.

Graph Displays a graph of the metrics selected from the tree pane.

Pane When you click a specific metric in the tree, the graph pane displays a graph representing the

selected metric. You can select more than one metric to display in the graph pane using the
Control or Shift keys.

The x-axis in the graph represents time. The y-axis in the graph represents the numerical value
of the metric. Metrics are displayed for the last five minutes unless the probe is working with
another Software product, in which case they are displayed for three hours.

Micro Focus Diagnostics (9.50) Page 241 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Threads Tab Description

The Threads tab displays thread performance metrics for the Java threads that are captured by the probe and
provides a way for you to capture stack traces for the captured threads. There is also a thread state analyzer
that displays approximate thread state distribution percentage for each thread.

This page can be useful for helping to diagnose the following situations:

« Incorrect thread pooling or attempting to do too much in a single thread.

« Performance problems caused by deadlocks or concurrency-related issues.

« Problems that go deep into the interactions with the OS kernel where you need to see the CPU time
broken into user and kernel times.

The following is an example of the Java Profiler Threads Tab display.

To access

Important

In the Java Diagnostics Profiler, select the Threads tab.

The Threads tab is automatically disabled by Diagnostics when it detects that the JRE

information used to run the application has stability issues.

Relevant
tasks

"How to Access the Java Diagnostics Profiler" on page 232

The following user interface elements are included:

Ul
Element

Controls

Description

Used to control how often the thread metrics are updated, maximum stack trace depth for each
thread, and what kind of data is displayed for the thread processing in your application.

When the Threads tab is updated, the information displayed on the tab is refreshed with the
latest thread metrics. You control how often the Profiler updates the thread metrics on the
Threads tab.

Update button. Select the Update button and the Profiler refreshes the information in the graph
and the thread table and captures stack traces.

Automatically, Every (Thread Metric Update Frequency). Check this box to turn automatic
updates on. Select the update interval from the spinner. The Profilerimmediately begins
refreshing the thread metrics displayed in this tab based on the update interval specified.

Whenever the Profiler updates the Threads tab display, stack traces are captured for each of
the threads listed in the thread table. You can control how many stack traces for each thread
are displayed in the stack trace history.

History Length. Select the number of samples to keep and display.

Stack Trace Depth. Select the maximum stack trace depth collected for each sample for each
thread.

Export to PDF. You can export data in the Threads tab using the PDF icon on the Profiler
toolbar in the right corner near the Help link.

Micro Focus Diagnostics (9.50) Page 242 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Ul
Element

Chart
Tab

Thread
Table

Description

Charts the metric for the selected threads. You may chart the metrics for one or more of the
threads listed in the threads table and you can select the metric that is to be charted for each
thread.

Select a thread in the thread table to have it's metric graphed in the chart. Diagnostics removes
the metrics for any previously charted threads from the graph and charts the metric for the
selected thread. The graph legend is updated to indicate the color with which the selected
thread's metrics were charted.

To chart additional threads in the graph along with any that you have already charted, select
additional threads in the thread table.

To select each additional thread one at a time, select each row in the thread table using Ctrl-
Click. To select arange of threads, select the row in the thread table using Shift-Click.
Diagnostics charts the metrics for the selected thread along with the metrics for all of the
threads in the thread table that are between the selected threads and the newly selected thread.
The graph legend is updated to indicate the colors with which the selected threads metrics were
charted.

To remove the metrics from the chart for selected threads, use Ctrl-Click to select the row in
the thread table that contains the thread whose metrics you'd like to remove from the chart.

Chart difference in. To select a metric to be charted for each thread, select the metric from the
drop down menu. Diagnostics updates the graph to chart the indicated metric for each of the
threads selected in the thread table.

The table shown below the chart lists the metrics for each thread.

The following columns are displayed:

Thread Name. The name of the captured thread.

Thread State. The state of the thread at the last thread metric update interval.

Kernel Time (ms). The portion of the CPU time during which the thread was executing in
kernel mode.

User Time (ms). The portion of the CPU time during which the thread was executing in user
mode.

The following data comes from the JVM: Lock Name, Lock Owner Name, Lock Owner Id.

The table can also include columns for Waited Time and Blocked Time metrics if you enable
them. To enable these metrics, set the threads.contention.monitoring.enabled property to
true in the <agent_install_directory>/etc/probe.properties file. This setting may cause
instability for some older JVMs.

Micro Focus Diagnostics (9.50) Page 243 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

ul

Element Description

Stack Stack traces for the threads selected in the threads table are displayed when you have
Traces indicated that you want thread stack traces captured.

Tab

The Stack Traces tab display is divided into two areas:
Captured Stack Traces. List contains a list of the times when stack trace captures occurred.

Stack Trace Details. Displays the stack traces that you indicated based on your selections
from the stack trace capture list, the scope selection drop down, and the thread table.

The Stack Trace Details for drop down allows you to control which thread's stack traces the
Profiler displays in the Stack Trace details area.

When you select All Threads, the stack traces for all threads are displayed in the stack trace
details area. The selections made in the threads table do not impact the stack traces that are
displayed in the stack trace details area when All Threads is selected.

When you select Selected Threads, the stack traces displayed in the stack trace details area
are limited to those for the threads that you select in the threads table in the Chart tab.

Micro Focus Diagnostics (9.50) Page 244 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Ul
Element

State
Analyzer

Description

The State Analyzer displays approximate thread state distribution percentage for each thread,
over the specified time period. Each thread is represented by a single row.

The left panel provides the thread name. The center panel provides the thread state data. The
total height of the colored bar represents 100%. If a thread has been in more than one state
during the observation period, multiple colors are used to display the corresponding states,
proportional to the time spent in those states. For automatic updates, the observation period is
the same as the configured refresh period.

The right panel displays the current method name, with line number, if available. If the stack
traces collected for the thread over the observation period are all the same, the method name is
displayed using a bold font. If different stack traces were observed, the displayed method is the
topmost common method for the collected stack traces, and its display uses a regular font. If
no such common method could be found, nothing is displayed.

The following thread states are presented by the Thread State Analyzer:
Deadlocked. The thread participates in a deadlock cycle.

Blocked. The thread is delayed (suspended) when trying to enter a Java monitor. This can
happen when the thread tries to invoke a synchronized method, enter a synchronized block, or
re-enter the Java monitor after being awaken from the waiting state, while another thread has
not left the Java monitor yet.

Running. The thread is actively consuming CPU time.

1/0. The thread is performing an 1/O operation. It does not use any CPU time. The notion of 1/0
covers not only the traditional operations on files or sockets, but also covers any multimedia or
graphics operations. In general, the thread is waiting for an external (out-of-process) event.

Sleeping. The thread is delayed after invoking the Thread.sleep() method.

Waiting. The thread is delayed, usually having executed Object.wait(). However, threads can
get into this state by other means. In general, the thread is waiting for an interal (in-process)
event.

Starving. The thread is runnable, it is not suspended by any 1/O, wait(), sleep() or Java monitor
operation, but is not running. This can be caused by insufficient number of CPUs available,
Garbage Collection pauses, excessive paging, or by a virtual machine guest OS experiencing a
shortage of resources.

Unknown. The Diagnostics Agent was unable to determine the state of the thread. The threads
that do not run Java code at all (GC, JIT) will always be in this state.

If your application uses native (JNI) methods for some of the I/O operations, you should add
them to the known.native.methods.io property in probe.properties so the Thread State
Analyzer can correctly assign the I/0O state to them. Otherwise the time spent in such methods
will be identified as starvation.

Micro Focus Diagnostics (9.50) Page 245 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

All Methods Tab Description

The All Methods tab lists the method calls that your application makes according to the instrumentation in the
auto_detect points file.

The following is an example of the Java Profiler All Methods Tab display.

To access In the Java Diagnostics Profiler, select the All Methods tab.
Important All CPU times shown are exclusive (not including time spent in profiled children).
information

All of the metrics in the All Methods tab are counted from the time you enter the system or
click the Reset button in the toolbar of the profiler.

Relevant "How to Access the Java Diagnostics Profiler" on page 232
tasks

The following user interface elements are included:

ul
Element Description

Grouping = The Group Method calls by drop down menu allows you to view methods in the table grouped by
their package (as in the example), layer or outbound call type. Or no grouping at all.

Filtering = The quick filter box has many options for filtering the table contents, for example on Method
Name.

Micro Focus Diagnostics (9.50) Page 246 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

ul
Element Description

Table The table displays information about the methods.

The table is highly customizable. Right-click any column to show or hide columns and auto-
resize the columns. You can also drag and drop columns to display them in a different order.

The All Methods tab displays a table that contains the following columns, displayed by default:

Method name. The names of the methods that were called. The Method name has the
following syntax: <package name>.<class name>.<method name>.

Total Time. The aggregate latency for all of the calls to the method. The total latency is shown
in milliseconds.

Avg Time. The average latency for all of the calls to the method. The average latency is shown
in milliseconds.

Count. The number of times that the method was invoked.

Exceptions. The number of times that the method generated an exception.

Total CPU. The total amount of CPU time that all invocations of the listed method used.
Avg CPU. The CPU time that the method used during an average invocation.

If CPU time metrics are not being displayed, CPU Timestamp collection for methods can be
configured. See "Configuring Collection of CPU Time Metrics" on page 176.

Layer. The Layer associated with this method according to the instrumentation in the auto_
detect points file. The layers are displayed on one level and there is no distinction made
between layers and sub-layers.

To view the call profile for a method call, double-click the appropriate row. For more information
about the call profile see "Analyzing Performance Using the Call Profile Window" on page 219.

If the method is part of more than one server request, when you double-click the method, a
dialog box opens for you to select the relevant server request.

To create call profiles from more than one server requests select the first server request with a
single click and select subsequent server request using control click. When you have finished
making your selections, click OK to instruct the Profiler to create the call profiles. The call
profile for each selected server request is displayed in a separate window.

Micro Focus Diagnostics (9.50) Page 247 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

All SQL Tab Description

The All SQL tab displays the SQL statements in a table.
The following is an example of the Java Profiler All SQL Tab display.

To access In the Java Diagnostics Profiler, select the All SQL tab.

Relevant tasks "How to Access the Java Diagnostics Profiler" on page 232
The following user interface elements are included:

ul
Element Description

Table The All SQL tab displays the SQL Statement table, which contains the following columns.
SQL. The name of the SQL statement that was invoked by the application server.
Total Time. The total latency of all invocations of the SQL statement.
Avg Time. The average latency of all invocations of the SQL statement.
Count. The number of times the SQL statement was invoked by the application server.
Exceptions. The number of times that the statement generated an exception.

To view the SQL statement details, double-click the relevant statement. The SQL statement
details dialog box opens, displaying all the information shown in the SQL table for each
statement.

The SQL statement details dialog box enables you to view the full string of the SQL statement
and to copy the text.

Micro Focus Diagnostics (9.50) Page 248 of 267

Java Agent Guide

Chapter 15: Diagnostics Profiler for Java

Collection Leaks Tab Description

The Collection Leaks tab displays information on the probe's currently leaking collection objects in a table and
a chart of collection size or collection size growth.

The following is an example of the Java Profiler Collection Leaks Tab display.

Profiling Since: Mon Moy 05 02:00:52 PM PST 2012

3 summary [=] Hotspots | Bl Metrics | 3 Thresds | [7] A1 Methods | (8 a15aL" § Collection Leaks | & Colecton 4 » B

13,284 —
Show Chart By | Collection Size [=]
13,282
E 12,280 Auto Update Leaks Data
i
5 13,276
8 13.274
13,272
18:22 15:22 15:24 165:25
“&= java.util. Arraylist
Classes Allocation Maximum Size - Size Growth
Collection Stack Trace Maximum 5... Size
Contained Timestamp Timestamp Rate [per ho...
java.utilArr.. | comibmows. . java.util ArrayList add (Array List java:379. 1122111 1MBM2 32 13,284 13,284 172
java.tilArr... comibmwe... java.util Arraylistadd(drray List java: 379, 11212111, 1181232, 13,284 13,284 172
java.utiHa... com.ibi 5 —_—
Collection Leak Info

Double-click a row inth

Last refresh: Maon Nowv O

Collection Class: java.util. HashMap

Contained Class: com.ibmws prmi.zerver.modules J2CModule
Collection Object Allocation Timestamp: Fri Moy 021117058 PDT 2012
Mazimumn Size Timestamp: Mon Mov 05 15:24.05 PST 2012

Collection Maximum Size: 9108

Collection Size: 9109

Collection Size Growth Rate (per hour): 118.0942081681 62489

Leaking Stack Trace:

java.Ltil. HashMap put(HashMap java:562)

com.ibm gjz j2c. Connector Rurtime createPmiData(Connector Funtime java:264)

com.ibm.gjz j2c. ConnectionFactory Builder Server Impl.creste M CFand P M{ConnectionFactory Builder Server Impl java:5668)
com.ibm gjs j2c. ConnectionFactory Builder ServerImpl get Connection Factory (ConnectionFactory Builder Serverimpl java:1422)
carm.ibm.gjz jms JMSManaged Connection.get Connection(JMSManaged Connection java:524)

com.ibm gjz j2c. MCWrapper get Connection (M CWrapper java:1973)

cam.ibm gjs j2c. ConnectionManager allocate Connection{ConnectionManager java:605)

com.ibm gjs jms JM5Queus ConnectionFactory Handle create Queue Connection (JM S Queue ConnectionFactory Handle java:84)
com.bristol tvizion.zamples tradesjb. Lt zendJdms (LRl java:&10)

com briztol tvision samples tradegjb processor. MO B Request Broker onMessage (MO BRequestBroker java 77)

com.ibm .gjs jms listener. MDBEWrapperd Priviedged OnMessage run (MDBEWrapper java:302)

com.ibm ws security util Access Controller doPrivileged(fccess Controller javag3)

com.ibm.gis ims listener MDBWrapper .callOnMessaae (MDBWrapper java:271)

To access | Inthe Java Diagnostics Profiler, select the Collection Leaks tab.

Relevant "How to Access the Java Diagnostics Profiler" on page 232

tasks

Micro Focus Diagnostics (9.50) Page 249 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Important For this feature you need to enable Collection Leak Pinpointing (CLP) instrumentation by

Information = running the JRE instrumenter to pre-instrument the Java Collection classes in the JRE your
application/application server will run with; and copy the java parameter to include them in
your java options.

See also See "Custom Instrumentation for Java Applications" on page 97 and "Advanced Java Agent
and Application Server Configuration" on page 160 for more information on configuring
collection leak pinpointing and for how to enable/disable and configure CLP reporting.

The following user interface elements are included:

ul
Element Description

Collection When you click the row in the collections table, the graph is updated to show a trend line for
Leak the collection leak. The trend line shows either the Collection Size Growth, or the Collection
graph Size, depending on the selection you make from the Show Chart By drop down list.

Collection The collection table lists the probe's currently flagged leak collection objects. The collections
Leaks can be sorted by various columns in the table.

Table Check the Auto Update Leaks Data checkbox to automatically update the data display. Click
the Update Leaks Data button to update the data.

To view the collection leak details, double-click the relevant collection and a dialog box opens
with the collection leak details including stack trace information.

The Collections Table contains the following columns:
Collection. The collection type.

Classes Contained. The type of the objects contained within the collection. If there are
multiple types of objects found within the collections, the value in the table appears as
Unknown.

Stack Trace. Leak location stack trace.
Allocation Timestamp. The time at which the collection was allocated.
Maximum Size Timestamp. The time when the maximum size was captured.

Maximum Size. The maximum size of the collection ever observed by the Java agent (in
number of elements).

Size. The average size of the collection (in number of elements).

Size Growth Rate (per hour). The average growth rate for the collection, measured over the
period of time since the collection creation until now (in number of elements per hour).

Micro Focus Diagnostics (9.50) Page 250 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Collections Tab Description

The Java Diagnostics Profiler monitors your applications' memory usage with Lightweight Memory
Diagnostics (LWMD). LWMD monitors the memory used by your applications by tracking collection objects.

The Collections tab shows the metrics for the collections in your application in a graph and corresponding
table. The table lists the collections, information about the allocation of the collections, and the metrics for
their growth rate and size. The graph contains the metrics charted for the collections that you selected. The
growth rate of the collections are calculated from a baseline. The Profiler updates the baseline periodically. If
you want, you can update it manually.

The following is an example of the Java Profiler Collections Tab display.

Profiling Since: Mon Apr 12 04:086:10 PM POT 2010

@ Threadz || [AllMethods || @ a1sal [& Collection Leaks || % Collections || & Exceptions || B ServerRec 40 7
=0 This screen shows the Top N collections by size ar
by growth since last baseline taken by the probe.
@ The chart to the left shows the history of the size or
T=a 40 growth for the selected collection instances in the
= lower takle. History will only be retained while the
o rofiler is running.
b 30 : £
=
2 Show Top N | By Growth Since Last Baseline |~ |
o
= 20 0 . . i '
v i i i i i i To dynamically adjust the number of top collections
E ; g ; ; ; ; ; tracked by probe, change the property
] 10 : - : : : : : : 'Iwm.d|agn.oatlcs .top.n' inthe probes
2 ! ! i ! | i ! ! etc/dynamic properties file.
& j ! ! ! i i i i
W] Collections which show a continuous size or

growth increase may be a sign of a memory leak.

1E:16:20 161640 161700 16:17:20 1617:40 16:18:00 161520 1611540
@ java Ltil. Treemap

o java.til ArrayList

Growth Since Last Baseline Size

Last Size Increase Timest...

Collection Classes Contained Allocation Point Allocation Timestamp

java.util ArrayList | weblogic work Fai... | weblogic.work.Th... 04M12H10 16:17:56 584 041210 16:18:15 667 45 45

java.util ArrayList | weblogic work Fai... | weblogic.work.Th... 04M2H10 16:18:05.694 04210 16:18:14.940 45 45
java.util ArrayList weblogic werk Fai... weblogic.work.Th... 041210 18:18:14.719 041210 16:18:14.742 45 45
java.util ArrayList | weblogic servietin... weblogic serviet.i... 041210 16:18:00 565 041210 16:18:15.535 20 20]
java.util ArrayList weblogic servietin... weblogic serviet.i... 041210 16:18:03.008 041210 16:18:15.464 20 20
java.util ArrayList | weblogic servietin... weblogic serviet.i... 041210 16:18:04.828 041210 16:18:15.385 20 20
java.util ArrayList | weblogic servletin... weblogic serviet.i... 041210 16:18:05.381 041210 16:18:15.315 20 20 ':|

Micro Focus Diagnostics (9.50)

Growth calculation paint last baselined 041210 18:16:14 (autormatic baselining ewvery 1 h) LUealbe 0=

To access In the Java Diagnostics Profiler, select the Collections tab.
Important LWMD must be enabled to view data in the Collections tab and do Memory Analysis
information using the Heap Breakdown.

Relevant tasks "How to Enable LWMD for Collections Displays" on page 232

Page 251 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

The following user interface elements are included:

Ul Element Description

Collections The collection table lists the collections. The collections are sorted by either the amount of
Table growth since the last baseline, or by the size of the collection, depending on the selection
you make from the Show Top N box to the right of the graph.

Your selection from the Show Top N box controls the metrics that are charted in the
collections graph as well as the sort order of the rows in the collections tables.

When you choose By Size, the collection table is sorted in descending order by collection
size. The size metrics for the selected collections are charted in the collections graph.

When you chose By Growth in Last Baseline, the collection table is sorted in descending
order by the amount of growth in the collection since the last baseline. The growth metrics
for the selected collections are charted in the collections graph.

The Collections Table contains the following columns:
Collection. The collection type.

Classes Contained. Thetype of the objects contained within the collection. If there are
multiple types of objects found within the collections, the value in the table appears as
Unknown.

Allocation Point. The location where the collection is allocated in the code.
Allocation Timestamp. The time at which the collection was allocated.
Last Size Increase Timestamp. The last time that a size increase was captured.

Growth Since Last Baseline. The increase or decrease in the number of objects within the
collection since the last baseline.

Size. The number of objects in the collection.

Collections When you click the row for a collection in the collections table, the collections graph is

Graph updated to chart either the size or the growth of the collection since the last baseline,
depending on the selection you make from the Show Top N box to the right of the graph.
You may chart the metrics for more than one of the collections by selecting subsequent rows
with a CTRL-click.

Micro Focus Diagnostics (9.50) Page 252 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Ul Element Description

Baseline The baseline determines the time from which the growth in the size of the collections is
Information measured. You can view the time that the last baseline was set at the bottom of the
Collections display.

The Profiler automatically sets a new baseline at preset periodic intervals. You can also set
a new baseline manually.

To set a new baseline manually, click Manual Baseline. The Profiler resets the Growth
Since Last Baseline metric for each collection, and refreshes the charted metrics in the
graph.

By default, a new baseline is set automatically every hour. You can change the automatic
baselining interval in the dynamic.properties file.

You do not need to stop the application server when you change the automatic baselining
interval.

You can change the automatic baselining interval in the <agent_install_
directory>\etc\dynamic.properties file. Locate the line:
Iwm.diagnostics.auto.baseline.interval=60m.

Change the time interval according to your needs as explained in the comments of the file.

If you want to stop automatic baselining, enter 0 for the time interval.

Micro Focus Diagnostics (9.50) Page 253 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Exceptions Tab Description

The Exceptions tab displays all the exceptions that were generated in the application server for methods that
have been instrumented.

The following is an example of the Java Profiler Exceptions Tab display.

Profiling Since: Wed Mov 03 11:14:18 AM PDT 2010
Hetspots || B Metrics || b Threads |1 Al Methods | (8 a1 5oL | % Collection Leaks || % Collections |[2 Exceptions 1% 7

Double click on any exception to see the full stack trace.

Stack | Cowurt |

java lang ArithmeticException: / by zero
at com.mercury.ga.calchain.gjb.CSessionBean ExceptionThrowerE(CSessionBean java 497)
at com.mercury .ga.calchain.gjb.CSessionBean.e(CSessionBean java: 319) 1

—
l" rg Fa
Exception detailz

Thrown 1 times

at com.mercury.ga.calchain.ejb CSessionBeaniCaller callMextMethod{CSessionBean java: 172) -
at com.mercury.gqa.callchain.ejb CSessionBean$Caller callMethods(CSessionBean java: 115)

at com.mercury .ga.calchain.ejb CSessionBean callvethods{CSessionBean java: 575)

at com.mercury ga callchain ejb CSessionEJE_pzhcdt_EQImpl callMethods({CSessionEJB_pzhcedt_EOImpl java: 38
at com.mercury .ga.calchain. web CallChainServiet. doGet{CallChainServiet java: 91)

at javax.servlet http HitpServiet service(HttpServiet java: 743)

at javax.serviet http HitpServiet service(HttpServiet java 856)

at weblogic servlet.internal StubSecurityHelper§ServietServiceAction. run{ StubSecurityHelper java: 225)

at weblogic servlet internal StubSecurityHelper invokeServiet{StubSecurityHelper java 127)

at weblogic.serviet.internal ServietStublmpl executeServiet Stublmpl java: 272)

at weblogic.serviet.internal ServietStublmpl executeServiet Stublmpl java: 1635)

at weblogic.serviet.internal Web&ppServietContext$ServietinvocationAction runiWebAppServietContext java 31
at wehblogic security aclinternal AuthenticatedSubject doAs{AuthenticatedSubject java: 321)

at weblogic security .service SecurityManager runds(SecurityManager java121)

at weblogic.serviet.internal Web&ppServietContext . securedExecutel\Web AppServietContext java: 1973)

at weblogic serviet.internal WebA&ppServietContext execute(WebAppServietContext java: 1880)

at weblogic serviet.internal ServietRequestimpl.run ServietRequestimpl java:1310)

at wehlogic work ExecuteThread execute(ExecuteThread java: 207)

at weblogic work ExecuteThread run{ExecuteThread java: 179)

-
4 i [+
Reminder: The exceptions reported are only for those methods which have been instrumented.
If @ non-instrumented method throws an exception which was caught and handled, that exception wil not be reported.
To access In the Java Diagnostics Profiler, select the Exceptions tab.
Important If a non-instrumented method throws an exception which was caught and handled, that
information exception will not be reported.

Relevant tasks "How to Access the Java Diagnostics Profiler" on page 232

The following user interface elements are included:

Micro Focus Diagnostics (9.50) Page 254 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

ul
Element Description

Table The Exceptions tab displays the Exceptions table which contains the following columns:
Stack. Shows the first three lines of the exception stack trace.
Count. The number of times the exception was generated.

To see the full stack trace of the exception, double-click the row containing the exception to
open the Exception dialog box.

Micro Focus Diagnostics (9.50) Page 255 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Server Requests Tab Description

The Server Requests tab displays information about the server requests made to the application server.

The following is an example of the Java Profiler Server Requests Tab display.

Profiling Since: Mon Apr 12 03:16:26 PM PDT 2010
a Al SaL j. Collection Leaks 5 Collections M Exceptions [‘E.;-. Server F‘.equests] ‘Q web kT
Fitter by Server Request Type
Server Request | Total ti me(ms) | Avg time(ms) | Count | Aowg CPU[ms)

Iphysicianimedicalrecord.do 4 2358285 338874 125 208
MedRecWehServices: getRecordsSummary 421881609 337505 125 16,2609
Iphysicianisearchresults.do 35,2402 282.0 125 91.2
Background - Database 14 764 3 3T 3989 0o
MedRecWehServices: findPatiertByLastNameWWild g8,364.0 EE.9 125 16.8
Iphysiciandogin.do 23371 94 248 47
Mws_medrecMedRecWehServices TE3.3 6.1 125 4.8
Iphysicianisearch.do G418 52 124 04
Static Content 621.2 0.6 992 0.3
fws_physiPhysicianWebServices 4298 34 125 28
Background - Directory Service 3557 05 G684 0.0
RmiDataSource getConnection() 33489 05 a4 01
Static Content 2426 0.3 744 0.z
BasicMamingMoce lookup() 183.0 0.3 684 0.0

Select a row to view the worst instances for that Server Reqguest, or Double-click a row to view the Aggregate Call Profile for that Server ...

To access In the Java Diagnostics Profiler, select the Server Requests tab.

Relevant tasks "How to Access the Java Diagnostics Profiler" on page 232

Micro Focus Diagnostics (9.50) Page 256 of 267

Java Agent Guide

Chapter 15: Diagnostics Profiler for Java

The following user interface elements are included:

Ul
Element

Table
(Server
Requests)

Table
(Slowest
Instances)

Description

The server request table at the top of the display lists the aggregated performance information
for all instances of the server requests.

When you select a server request in this table by clicking the row, a table at the bottom of the
tab is populated with the three server request instances that have the worst total time.

When you double-click a server request in this table, the Profiler displays the call profile for the
selected aggregated server request in a new window. For more information about the call
profile window, see "Analyzing Performance Using the Call Profile Window" on page 219.

The aggregated Server Requests table contains the following columns:

Server Request. The URI or the root method for the server request. The URI parameters are
trimmed. To break down server requests according to URI parameters, contact support.

Total Time. The total latency of all invocations of the server request.
Average Time. The Average latency of all invocations of the server request.
Count. The number of times this server request was invoked.

Avg CPU. The CPU time that the method used during an average invocation.

If CPU time metrics are not being displayed, CPU Timestamp collection for methods can be
configured. See "Configuring Collection of CPU Time Metrics" on page 176 for details.

Layer. Displays thelayer for server requests that were invoked by root methods that are not
part of an HTTP request. HTTP server requests do not have a layer.

When you click a server request, the bottom section of the window displays a table containing
the three slowest instances of the server request.

The table contains the following columns:

Server Request. The name of the server request.

Start Timestamp. Point in time when the server request instance was invoked.
End Timestamp. Point in time when the server request ended.

Total Time. Total amount of time the server request took to execute.

Threw Exception. Indicates whether or not an exception was thrown during the processing of
this server request instance.

To view the instance call profile for an instance of a server request, double-click a server
request instance. For more information about the call profile see "Analyzing Performance
Using the Call Profile Window" on page 219.

Micro Focus Diagnostics (9.50) Page 257 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Web Services Tab Description

The Web Services tab contains graphs displaying the slowest Web service operations (inbound Web service
calls) received and processed in your monitored environment and the slowest outbound Web service calls
made from within your monitored environment.

The following is an example of the Java Profiler Web Services Tab display.

Profiling Since: Wed Mov 03 10:28:13 &AM PDT 2010
ons 'Eu Server Reguests Web Services Allocation/LiteCycle Analysis || 3 Memory Snslysis Configuration 1

h
'% MedRecWebServices:

E. getRecordsSummary

3 This chart shows Weh Service

g Medﬁec’u"‘d‘ebSer\rices:: operations that are taking the

E findPatientByLasthameWild longest time to complete.

2 _ _

= MedRecWehServices:: Click a bar to display a call profile,
7 getRecord or view all web service requests.

z . .

% Oms 20 ms 40 ms 60 ms
- Mean Latency

WaStubinvoke()

This chart shows the invocations
of outhoundiconsumer VWeh
Service operations that are taking
WeStub invoke() the most time.

Click a bar to display a call profile
from that outboundiconsumer
Web Service call, or view all
outboundiconsumer Web Service
calls.

WeStub invoke()

Oms 20ms 40 ms G0 ms 30 ms 100 ms
Mean Exclusive Latency

Slowest Outhound/Consumer Web Service Calls

To access In the Java Diagnostics Profiler, select the Web Services tab.
Important Web service operations and calls are displayed in the graphs, in the following
information format:

<Web-service-name>::<operation-name>.
For example, MedRecWebServices::getRecordsSummary.

Relevant tasks "How to Access the Java Diagnostics Profiler" on page 232

Micro Focus Diagnostics (9.50) Page 258 of 267

Java Agent Guide

Chapter 15: Diagnostics Profiler for Java

The following user interface elements are included:

Ul Element

Slowest Web Service
Operations Graph

Slowest
Outbound/Consumer
Web Service Calls
Graph

Description

The Slowest Web Service Operations graph displays the slowest Web service
operations (inbound Web service calls) received and processed in your monitored
environment.

The Java Diagnostics Profiler displays Web service operations as a type of
server request.

You can view the call profile for a Web service operation displayed in the graph,
by clicking the bar representing the relevant Web service operation. For more
information about the call profile window, see "Analyzing Performance Using the
Call Profile Window" on page 219.

You can view a list of all the Web service operations in the Server Requests tab,
by clicking the view all web service requests link to the right of the graph. For
more information about the Server Requests tab, see "Server Requests Tab
Description" on page 256.

The Slowest Outbound/Consumer Web Service Calls graph displays the slowest
outbound/consumer Web service calls made from within your monitored
environment.

The Java Diagnostics Profiler displays outbound Web service calls as remote
calls within a server request.

You can view the call profile for the server request containing a particular
outbound Web service call displayed in the graph. To view the call profile, click
the bar representing the relevant Web service call. For more information about the
call profile window, see "Analyzing Performance Using the Call Profile Window"
on page 219.

If the remote call is part of more than one server request, when you double-click
the method, a dialog box opens and asks you to select the relevant server
request. Double-click the appropriate server request row to view the call profile.

You can view all the outbound Web service calls in the All Methods tab, by
clicking the view all outbound Web service calls link to the right of the graph.
For more information about the All Methods tab, see "All Methods Tab
Description" on page 246.

Micro Focus Diagnostics (9.50) Page 259 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Allocation/LifeCycle Analysis Tab Description

The Allocation/Lifecycle Analysis tab shows the metrics for the objects that have been allocated by your
application in a graph and a corresponding table. The table lists the allocated objects, along with the number of
allocated instances and their lifespan. The graph contains the charted metrics for the selected allocated
objects.

The Allocation/Lifecycle Analysis tab can be used for:

« Allocation Analysis. Use the information displayed to investigate a memory leak that you have observed
in the Heap Breakdown tab by examining the allocation and de-allocation of objects while the leak is
happening.

« Lifecycle Analysis. Use the information displayed to monitor object lifecycles. This feature can be used
for resource monitoring of certain database resources.

To analyze allocations, you must use the controls in the Common Tasks menu to track allocations and refresh
the displayed metrics as you exercise the application functionality that you believe may be experiencing
leaks.

The following is an example of the Java Profiler Allocation/LifeCycle Analysis Tab display.

To access Inthe Java Diagnostics Profiler, select the Allocation/LifeCycle Analysis tab.

Important The Allocation/Lifecycle Analysis tab is similar to the views with a detail layout in the

information Diagnostics views. Instead of appearing in the view title, the view filters appear in view filter
menus, along the side of the graph. The Common Tasks menu controls the tracking of the
allocations as well as the refreshing of the information that is displayed for the entire view.

Relevant Allocation capture must be enabled to view allocation data. See "How to Enable Allocation
tasks Capture" on page 233.

Object lifecycle monitoring must be enabled to view object lifecycle data. See "How to
Enable Object Lifecycle Monitoring" on page 234.

Micro Focus Diagnostics (9.50) Page 260 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

The following user interface elements are included:

ul
Element Description

Object | The object table lists the objects that have been allocated since you started tracking allocations.

Table You can customize this table to adjust the sort order and the columns that appear in the table,
just like the graph-entity tables in other views with the detail layout. By default, the table is
sorted in order by Objects Currently Alive. It displays the following columns:

Chart. Allows you to indicate if the metrics for the allocated object are to be charted in the
graph. You can select objects to be charted by clicking on the box in this column manually. Or
you can let the Profiler select the objects to chart dynamically, using the criteria that you specify
in the Graph filter.

Color. Indicates the color that the Profiler uses to chart the metrics for the allocated object. No
color is shown for metrics that are not charted.

Objects Currently Alive. A count of the total number of allocated objects that have not yet
been garbage collected.

Objects Allocated. A count of the total number of objects that have been allocated whether
they have been garbage collected or not.

Objects Deallocated. A count of the total number of objects that have been garbage collected.

Object Lifespan. The average duration of the life of all de-allocated objects. If no objects have
been de-allocated, this column is blank.

In the Details pane, metrics for Objects Lifecycle and Object Active Lifespan are also
available. See "Object Lifecycle Monitoring" on page 227 for more information.

Graph The graph charts the metrics that you selected from the details table for each of the objects
selected in the allocation/lifecycle analysis table.

Using the controls in the views with a detail layout, you control which metrics are charted and
which entities have their metrics charted.

Micro Focus Diagnostics (9.50) Page 261 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Memory Analysis Tab Description

Data displayed in the Memory Analysis Tab helps you to find memory leaks. The Memory Analysis Tab
includes a wizard that guides you through the process of diagnosing a memory leak. See "Heap Walker
Memory Analysis Execution Steps" on page 229 for details about the heap walker process you can use to
diagnose memory leaks.

The following is an example of the Java Profiler Memory Analysis Tab display.

Profiling Since: Wed Nov 03 01:31:37 PM PDT 2010
ionz || '¥2 Server Requests ‘a Wieh Services E AllocationLifeCycle Analysis [{'L- Memory Anahrsis] Canfigquratian L
Heap Walker
Step 1 - Establishing a baseline j
The Heap Breakdown summarizes 1 3338 MB
the corterts of the Heap 258 1 ME
Snapshots by class and helps you
detect memory leaks. 2384 MB
_ o 1BOTME o
If you observed a reproducible =2
= 143.1 MB =
memory leak you are welcome to o 3
use this wizard to figure out why = 95.4 MB g
the leaking objects are not garbage &y 47 7 MB o
collectec:
o] =]
14:31:30 14:32:00 14:32:30 14:33:00 143330
First, determine an operation (such
as "login, buy book, logout™) that a Used memory © Total memory
you would like to test for memory
leaks.
To avoid false positives, ensure .| Dor't auto-sample | .,|
that the application has completely 1 —
inttialized by exercising this | Class Bytes | 1|+ +}
n - ¥ X K Last | First
CREration onee or twice. String 141..588,.. 7 7 4
? 7=
Once you have this good baseline !::har[] . 2Ll 3o - 1
to test against, press Start java util HashMap$Entry 3,84...160,... ? 7
Tracking New IClbiects. com opal capture inst InstrumentationControliMethodSi. 222 B96.. 7 7
com.opal.capture.inst MethodData 2593610, 7 7
&ny object that the application weblogic store.io file FileStorelOfDeleteRecord 141...588.. ? ?
allocates after this point wil be java util. TreeMapEntry 1,86...584.. i i
tracked as a 'potential leak'. weblogic store io file FileStorelO5Handle 121...80,7... ? 7
Chject[] 444, 3506.. ? G
Available Actions: String(] 151,462 ¥ ¥
a Take another Heap Snapshot ?rrt[] - 14.7..1442.. ? ?
b - . java util Hashtable$Entry 9268,..385.. 7 7
Start Tracking New Objects com.opal capture LWMDCapture AgentSLWIMDData 394..379.. 7 2
ﬁ Run Garbage Collection byte(] 112...342.. 7 il
weblogic store io file StoreHeap$Chunk 107...335.. 7 7
Last Action: com diagnostice .commaon io MNodeldentifier 1,05...328.. 7 7
Heap snapshot taken in 1698ms iava util. HashMap$Entry(] 318...30,7.. 7 7 "]
To access In the Java Diagnostics Profiler, select the Memory Analysis tab.
Important Heap Walker has JVM and memory requirements as described in this topic.

information Also See "Heap Walker Performance Characteristics" on page 231.

Micro Focus Diagnostics (9.50) Page 262 of 267

Java Agent Guide

Chapter 15: Diagnostics Profiler for Java

Relevant
tasks

By default, the Memory Analysis tab is disabled. You must enable memory analysis (see
"How to Enable Memory Analysis" on page 235).

See "Heap Walker Memory Analysis Execution Steps" on page 229 for a description of
how to use the heap walker wizard.

The following user interface elements are included:

Ul Element

Heap
Metrics
Table

Heap
Breakdown
Graph

Heap
Walker

Description

The Heap Metrics table contains the following columns:
Class. The name of the class.

Bytes. Actual amount of memory, in bytes, that has been allocated by objects of this class.
By design the heap dump does not report classes with less than 1000 bytes of total footprint
but this is configurable in dynamic.properties using the heapdump.class.bytes.min
property.

Count. The number of object instances of this class that are allocated in the JVM.
+/-Last. The count change since the most recent time a heap snapshot was taken.

+/-First. The count change since the initial heap snapshot was taken

When you select a class name in the Heap Breakdown table, the Heap Breakdown graph
shows the count over time of objects belonging to that class. You can select more than one
class to display on the graph by selecting subsequent rows with a CTRL-click. The graph
legend will display up to three rows and then a scroll bar will be added so you can scroll to
see additional items.

The Memory Analysis Tab includes a wizard that guides you through the process of
diagnosing a memory leak.

See also "Heap Walker Memory Analysis Execution Steps" on page 229 for how to use the
heap walker wizard.

Heap Walker requires the following:

JVM Requirements: Heap Walker uses the JVM Tool Interface (JVM TI). As aresult, the
profiled application must run on a Java VM that implements JVM TI, including the optional
JVM Tl capability can_tag objects.

Sun HotSpot JVM, version 5.0, for Linux and Windows on Intel x86, are examples of
compatible JVMs.

Memory Requirements. Tagging the heap, and processing the object reference graph,
requires large amounts of memory (total physical memory available for the JVM, not Java
heap memory). The amount of memory required depends on the size of the heap used by the
application. You will see an error message if there isn't enough memory on the system based
on the heap size.

Micro Focus Diagnostics (9.50) Page 263 of 267

Java Agent Guide
Chapter 15: Diagnostics Profiler for Java

Configuration Tab Description

The Configuration tab in the Java Diagnostics Profiler provides a way for you to maintain the instrumentation
points and some of the probe configuration without having to manually edit the capture points file or property
files.

The following is an example of the Java Profiler Configuration Tab display.

To access Inthe Java Diagnostics Profiler, select the Configuration tab. You can use this page whether
profiling has been started for the probe or not.

Important See "Custom Instrumentation for Java Applications" on page 97 and "Advanced Java Agent
information = and Application Server Configuration" on page 160 for more information on the properties
configured in this page.

In VMware, the CPU time metric is from the perspective of the guest operating system and
is affected by the VMware virtual timer. See the VMware whitepaper on timekeeping at
http://www.vmware.com/files/pdf/ Timekeeping-In-VirtualMachines.pdf. and see "Time
Synchronization for Probes Running in VMware in the Diagnostics Server Installation and
Administration Guide.

Relevant "How to Access the Java Diagnostics Profiler" on page 232
tasks

Probe Settings

The following user interface elements are included:

Ul
Element Description
General Enable Monitoring Data Collection. You can enable and disable monitoring data collection

by checking or unchecking this box. By unchecking this box, you can disable monitoring data
collection without stopping the Java Agent.

Monitoring Profile. You can select the monitoring profile by choosing an option from the
drop-down menu. For details on monitoring profiles, see "Monitoring Profiles" on page 87.

Collect CPU Timestamps. You can enable and disable CPU Timestamp collection by
choosing an option from the drop-down menu.

Micro Focus Diagnostics (9.50) Page 264 of 267

http://www.vmware.com/files/pdf/Timekeeping-In-VirtualMachines.pdf

Java Agent Guide

Chapter 15: Diagnostics Profiler for Java

Ul
Element

Trimming

Stack
Tracing

Description

Properties that reduce the amount of data pulled from the probe.

Server Request Minimum Latency. Only server requests that take more than this amount
of time will be captured, unless a threshold has been set on that server request.

Method Minimum Latency. Only regular methods that execute slower than this number of
milliseconds will be captured.

SQL Statement Minimum Latency. If an SQL statement takes less than this amount of
time, it will not be trended, until it does exceed this time.

URI Replacement Pattern. Specifies the URIs substitutions which will be used by the
agent when reporting the HTTP server requests. Pattern applies after all other URI
adjustments.

When asynchronous thread sampling is enabled, you can see, in the Call Profile view, which
methods were executed during long running fragments even if no instrumented methods were
hit during this time.

You can enable and configure the following properties.

Thread Stack Trace Sampling. Enables or disables asynchronous thread stack trace
sampling; possible values are false, auto (the default), and true.

When set to auto, stack trace sampling is enabled IF the probe is running on selected
(certified) platforms and JVMs. For other JVMs, the setting must be set to Enable explicitly.
Use caution because the JVM could generate errors or abort. See Diagnostics Release
Notes for limitations.

Sampling Interval. The time that must elapse before the next consecutive sampling attempt
is made. Small values cause frequent sampling and provide rich data but at the cost of
increased overhead.

The overhead caused by frequent sampling affects primarily the latency of server requests.
The overall CPU usage by the probe can go up as well, but this effect is not as profound as
the latency increase. For systems with many CPUs, the process CPU consumption can
actually go down (not a good thing).

Tardy Method Latency Threshold. The minimum time an instrumented method must run
without hitting any instrumentation points before stack trace sampling is attempted for this
method. The purpose of this property is to control the overhead of sampling by limiting the
stack trace collection to only the most interesting cases.

Maximum Stack Trace Depth. The limit for the depth of stack traces obtained from the
JVM. You will most likely not need to adjust this value.

These properties can also be set in the dynamic.properties file. And additional configuration
can be done in dispatcher.properties for enable.stack.trace.aggregation,
aggregated.stack.trace.validity.threshold.

Micro Focus Diagnostics (9.50) Page 265 of 267

Java Agent Guide

Chapter 15: Diagnostics Profiler for Java

Ul
Element

Collection
Leaks

Client
Monitoring

Description

You must run the JRE instrumenter if you want to use the collection leaks pinpointing (CLP)
feature in the Java Agent.

Report Collection Leaks. You can enable and disable reporting by checking or unchecking
this box.

Collection Leaks Flag Threshold. The threshold of time duration in which the collection
has size growth. If a collection's size growth period exceeds this threshold, it will be flagged
as a memory leak by the probe.

Collection Leaks Unflag Threshold. For an already flagged leaking collection, if its size
stops growing continually for this threshold time period, that probe will unflag it as a leak.

These same values can also be set in the dynamic.properties file for the probe:
clp.diagnostics.reporting, clp.diagnostics.growth.time and
clp.diagnostics.nongrowth.time.

Enable Client Monitoring Instrumentation. You can enable and disable client monitoring
by checking or unchecking this box. Client monitoring is set to false by default.

Client Monitoring Sampling Percentage. The percentage of instances for which Client
Monitoring instrumentation will be in effect, if it is enabled.

Instrumentation

The following user interface elements are included:

Ul Element

Description

View Currently Click the link to view the instrumentation for the application that the probe is monitoring.

Used

Instrumentation

Shared

The instrumentation presented is from the capture points file that Diagnostics uses to
instrument your applications. See "Maintaining Instrumentation from the Java Profiler
UlI" on page 148 for more information.

Click Edit to modify the currently-used shared instrumentation.

Instrumentation

Instance

The instrumentation presented is from the capture points file that Diagnostics uses to
instrument your applications. See "Maintaining Instrumentation from the Java Profiler
UI" on page 148 for more information.

Click Edit to modify the currently-used instance instrumentation.

Instrumentation

Micro Focus Diagnostics (9.50)

The instrumentation presented is from the capture points file that Diagnostics uses to
instrument your applications. See "Maintaining Instrumentation from the Java Profiler
UlI" on page 148 for more information.

Page 266 of 267

Send Documentation Feedback

If you have comments about this document, you can contact the documentation team by email. If an email
client is configured on this system, click the link above and an email window opens with the following

information in the subject line:
Feedback on Java Agent Guide (Diagnostics 9.50)
Just add your feedback to the email and click send.

If no email client is available, copy the information above to a new message in a web mail client, and send
your feedback to docteam@microfocus.com.

We appreciate your feedback!

Micro Focus Diagnostics (9.50) Page 267 of 267

mailto:docteam@microfocus.com?subject=Feedback on Java Agent Guide (Diagnostics 9.50)

	Welcome to This Guide
	How This Guide Is Organized
	Diagnostics Documentation

	Part 1: Introduction
	Chapter 1: Diagnostics Java Agent Overview
	About the Diagnostics Java Agent
	Introducing the Diagnostics Profiler for Java
	Features and Benefits of the Diagnostics Profiler for Java

	Part 2: Installation and Configuration of the Java Agent
	Chapter 2: Preparing to Install the Diagnostics Java Agent
	Java Agent Installation Overview
	System Requirements for the Diagnostics Java Agent

	Chapter 3: Installing Java Agents
	Pre-installation Checklist for the Java Agent
	Installing and Configuring Java Agents
	Silent Installation of the Java Agent
	Setting File Permissions
	Determining the Version of the Java Agent
	Configuring for Firewalls, HTTPS, and Proxies
	Uninstalling the Java Agent

	Chapter 4: Preparing Application Servers for Monitoring with the Java Agent
	About Preparing Application Servers for Monitoring
	Examples for Configuring Application Servers
	Example 1: Configuring GlassFish Application Server for Monitoring
	Example 2: Configuring JBoss Application Server and JBoss EAP for Monitoring
	Configuring a JBoss EAP Application

	Example 3: Configuring Oracle Application Server for Monitoring
	Using the Diagnostics JRE Instrumenter in Manual Mode

	Example 4: Configuring SAP NetWeaver Application Server for Monitoring
	Example 5: Configuring TIBCO ActiveMatrix BusinessWorks and Service Bus for M...
	Example 6: Configuring Tomcat Application Server for Monitoring
	Example 7: Configuring WebLogic Application Server for Monitoring
	Example 8: Configuring webMethods Server for Monitoring
	Example 9: Configuring WebSphere Application Server for Monitoring
	Example 10: Configuration for WebSphere Application Server Liberty

	Verify the Application Server is Running the Java Agent
	About the JRE Instrumenter and Different Options to Invoke
	Other Configuration Options
	Probe Registration Auto-Assigment
	Configure Monitoring of Multiple Java Processes on an Application Server
	Adjusting the Heap Size for the Java Agent in the Application Server
	Configuring the SOAP Message Handler
	Configuring the Discovery of a New J2EE Server for CI Population
	Special Considerations for Applications Based on the OSGi Framework

	Chapter 5: Configuring for Azul or Cloud Environments
	Java Agents on Azul
	Java Agents in Cloud Environments

	Chapter 6: Preparing Application Servers for Client Monitoring with the Java Agent
	About Client Monitoring
	Enabling Client Monitoring
	Configuring and Disabling Client Monitoring
	Manually Instrumenting HTML/JSP Pages for Client Monitoring

	Chapter 7: Upgrading the Diagnostics Java Agent
	Upgrade Java Agents
	Upgrade Notes and Limitations

	Part 3: Advanced Java Agent Configuration and Instrumentation
	Chapter 8: Monitoring Profiles
	About Monitoring Profiles
	Understanding Types of Diagnostics Deployments
	The Predefined Monitoring Profiles
	Custom Monitoring Profiles
	Applying a Specific Monitoring Profile to a Probe
	Overriding Settings in the Monitoring Profiles
	Mapping Instrumentation Points to a Monitoring Profile
	Mapping Metrics to a Monitoring Profile
	Mapping Property Values to a Monitoring Profile

	Chapter 9: Automatically Assigning a Probe to an Application
	About Automatic Probe Assignment
	Configuring a Probe to Automatically Assign Applications
	Configuring an Agent to Automatically Assign Applications
	General Configuration

	Chapter 10: Custom Instrumentation for Java Applications
	About Instrumentation and Capture Points Files
	Using Regular Expressions in Points Files
	Coding Points in the Capture Points File
	Defining Points With Code Snippets
	Controlling Class Map Capture
	Instrumentation Examples
	Understanding the Overhead of Custom Instrumentation
	Instrumentation Control on a Per Layer Basis
	Instrumented Location Throughput Throttling
	Advanced Instrumentation Examples
	Capturing HTTP Server Requests Based on Query Parameters

	Configuring Cross VM Correlations for New or CustomTechnologies
	Tutorial for Configuring Cross VM Correlation for Custom Technologies
	Maintaining Instrumentation from the Java Profiler UI
	Default Layers Defined for Typical Java Classes and Methods

	Chapter 11: Advanced Java Agent and Application Server Configuration
	Advanced Configuration Overview
	About Dynamic Configuration
	Disabling the Java Diagnostics Profiler
	Controlling Probe Logging
	Setting the Probe’s Host Machine Name
	Specifying a Different Probe IP Address
	Setting the Active Products Mode
	Controlling Automatic Method Trimming on the Agent
	Configuring URI and Parameter Capture
	Capturing Non-Sequential Server Requests
	Configuring an Agent for a Proxy Server
	Time Synchronization for Probes Running on VMware
	Limiting Exception Tree Data
	Diagnostics Probe Administration Page
	Authentication and Authorization for Diagnostics Java Profilers
	Configuring Collection of CPU Time Metrics
	Configuring Consumer IDs
	A Value in the SOAP Body

	Configuring SOAP Fault Payload Data
	Configuring REST Services
	Customizing Grouping JMS Temporary Queue/Topics
	Configuring SQL Query Parsing
	Capturing SQL Parameters
	Configuring Display of Application Name for Server Requests
	Maintaining Probe Settings from the Java Profiler UI
	Generating Performance Reports for JUnit Tests

	Chapter 12: Java Agent Metrics Collectors
	About Metrics Capture
	What Metrics are Being Collected by the Java Agent
	Understanding Metric Collector Entries
	About Collecting Additional Probe Metrics
	Modifying Probe Metrics Already Being Captured
	Stopping Capture of a Metric
	Using Customized metrics.config Files for Multiple JVM Applications on a System

	Chapter 13: Java Agent - System Metrics Capture
	About System Metrics
	System Metrics Captured by Default
	Configuring the System Metrics Collector
	Capturing Additional Custom System Metrics
	Capturing Custom System Metrics on Windows Hosts
	Capturing Custom System Metrics on Solaris Hosts
	Capturing Custom System Metrics on Linux Hosts

	Chapter 14: Java Agent - JMX Metrics Capture
	About JMX Metrics
	About Configuring JMX Metric Collectors
	Additional Custom JMX Metrics
	Getting a List of Available JMX or WebSphere PMI Metrics
	Creating New JMX or WebSphere PMI Metrics Entries

	Part 4: Using the Diagnostics Profiler for Java
	Chapter 15: Diagnostics Profiler for Java
	About the Java Diagnostics Profiler
	How the Java Agent Provides Data for the Java Profiler
	Java Diagnostics Profiler UI Navigation and Display Controls
	Analyzing Performance Using the Call Profile Window
	Thread Call Stack Trace Sampling
	Comparison of Collection Leak Pinpointing and LWMD
	Object Lifecycle Monitoring
	Heap Walker Memory Analysis Execution Steps
	Heap Walker Performance Characteristics
	How to Access the Java Diagnostics Profiler
	How to Enable LWMD for Collections Displays
	How to Enable Allocation Capture
	How to Enable Object Lifecycle Monitoring
	How to Analyze Object Allocation
	How to Enable Memory Analysis
	Summary Tab Description
	Hotspots Tab Description
	Metrics Tab Description
	Threads Tab Description
	All Methods Tab Description
	All SQL Tab Description
	Collection Leaks Tab Description
	Collections Tab Description
	Exceptions Tab Description
	Server Requests Tab Description
	Web Services Tab Description
	Allocation/LifeCycle Analysis Tab Description
	Memory Analysis Tab Description
	Configuration Tab Description

	Send Documentation Feedback

