
Application Performance
Management

Software Version: 9.50

APM Extensibility Guide

Document Release Date: May 2018

Software Release Date: May 2018

Legal notices

Warranty
The only warranties for products and services of Micro Focus and its affiliates and licensors (“Micro Focus”)
are set forth in the express warranty statements accompanying such products and services. Nothing herein
should be construed as constituting an additional warranty. Micro Focus shall not be liable for technical or
editorial errors or omissions contained herein. The information contained herein is subject to change without
notice.

Restricted rights legend
Confidential computer software. Except as specifically indicated otherwise, a valid license from Micro Focus
is required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer
Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the
U.S. Government under vendor's standard commercial license.

Copyright notice
© Copyright 2001-2018 Micro Focus or one of its affiliates

Trademark notices
Adobe® and Acrobat® are trademarks of Adobe Systems Incorporated.
AMD, the AMD Arrow symbol and ATI are trademarks of Advanced Micro Devices, Inc.
Citrix® and XenDesktop® are registered trademarks of Citrix Systems, Inc. and/or one more of its
subsidiaries, and may be registered in the United States Patent and Trademark Office and in other countries.
Google™ and Google Maps™ are trademarks of Google Inc.
Intel®, Itanium®, Pentium®, and Intel® Xeon® are trademarks of Intel Corporation in the U.S. and other
countries.
iPad® and iPhone® are trademarks of Apple Inc.
Java is a registered trademark of Oracle and/or its affiliates.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
Microsoft®, Windows®, Lync®, Windows NT®, Windows® XP, Windows Vista® and Windows Server® are
either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries.
NVIDIA® is a trademark and/or registered trademark of NVIDIA Corporation in the U.S. and other countries.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates.
Red Hat® is a registered trademark of Red Hat, Inc. in the United States and other countries.
SAP® is the trademark or registered trademark of SAP SE in Germany and in several other countries.
UNIX® is a registered trademark of The Open Group.

APM Extensibility Guide

Application PerformanceManagement (9.50) Page 2 of 125

Documentation updates
The title page of this document contains the following identifying information:
l Software Version number, which indicates the software version.
l Document Release Date, which changes each time the document is updated.
l Software Release Date, which indicates the release date of this version of the software.
To verify you are using the most recent edition of a document, go to
https://softwaresupport.softwaregrp.com/group/softwaresupport/search-result?doctype=manuals?keyword=.
To check for recent software patches, go to
https://softwaresupport.softwaregrp.com/group/softwaresupport/search-result?doctype=patches?keyword=.
This site requires that you register for a Passport and sign in. To register for a Passport ID, go to
https://cf.passport.softwaregrp.com/hppcf/login.do.
Or click the Register link at the top of the Micro Focus Software Support page.
You will also receive updated or new editions if you subscribe to the appropriate product support service.
Contact your Micro Focus sales representative for details.
The title page of this document contains the following identifying information:
l Software Version number, which indicates the software version.
l Document Release Date, which changes each time the document is updated.
l Software Release Date, which indicates the release date of this version of the software.
To verify you are using the most recent edition of a document, go to
https://softwaresupport.softwaregrp.com/group/softwaresupport/search-result?doctype=online help.
This site requires that you register for a Passport and sign in. To register for a Passport ID, go to
https://cf.passport.softwaregrp.com/hppcf/login.do.
You will also receive updated or new editions if you subscribe to the appropriate product support service.
Contact your Micro Focus sales representative for details.
For information and details about the products, services, and support that Micro Focus offers, contact your
Client Director.

APM Extensibility Guide

Application PerformanceManagement (9.50) Page 3 of 125

https://softwaresupport.softwaregrp.com/group/softwaresupport/search-result?doctype=manuals?keyword=
https://softwaresupport.softwaregrp.com/group/softwaresupport/search-result?doctype=patches?keyword=
https://cf.passport.softwaregrp.com/hppcf/login.do
https://softwaresupport.softwaregrp.com/group/softwaresupport/search-result?doctype=online help
https://cf.passport.softwaregrp.com/hppcf/login.do

Support
Visit the Micro Focus Software Support Online web site at https://softwaresupport.softwaregrp.com/.
This web site provides contact information and details about the products, services, and support that Micro
Focus offers.
Micro Focus online support provides customer self-solve capabilities. It provides a fast and efficient way to
access interactive technical support tools needed to manage your business. As a valued support customer,
you can benefit by using the support web site to:
l Search for knowledge documents of interest
l Submit and track support cases and enhancement requests
l Manage software licenses
l Download new versions of software or software patches
l Access product documentation
l Manage support contracts
l Look up Micro Focus support contacts
l Review information about available services
l Enter into discussions with other software customers
l Research and register for software training
Most of the support areas require you to register as a Passport user and sign in. Many also require a support
contract.
To register for a Passport ID, go to https://cf.passport.softwaregrp.com/hppcf/login.do.
Visit the Micro Focus Software Support Online web site at https://softwaresupport.softwaregrp.com/.
This web site provides contact information and details about the products, services, and support that Micro
Focus offers.
Micro Focus online support provides customer self-solve capabilities. It provides a fast and efficient way to
access interactive technical support tools needed to manage your business. As a valued support customer,
you can benefit by using the support web site to:
l Search for knowledge documents of interest
l Submit and track support cases and enhancement requests
l Manage software licenses
l Download software
l Access product documentation
l Manage support contracts
l Look up Micro Focus support contacts
l Review information about available services
l Enter into discussions with other software customers
l Research and register for software training
Most of the support areas require you to register as a Passport user and sign in. Many also require a support
contract.
To register for a Passport ID, go to https://softwaresupport.softwaregrp.com/.
To check for recent updates or to verify that you are using the most recent edition of a document, contact
your Client Director.

APM Extensibility Guide

Application PerformanceManagement (9.50) Page 4 of 125

https://softwaresupport.softwaregrp.com/
https://cf.passport.softwaregrp.com/hppcf/login.do
https://softwaresupport.softwaregrp.com/
https://softwaresupport.softwaregrp.com/

Contents
Extensibility Guide Overview 9

Part 1: Service Health 10
Chapter 1: Service Health Rules API 11

API Group and Sibling Rule 12
API Sample Rule 14
API Duration-Based Sample Rule 15
Creating Rules with the Rules API 16
How to Define an API Rule in the CI Indicators Tab 16
How to Create a Text File-Based API Rule 17
How to Define an API Rule in the Rule Repository 21
How toWork with Tooltip Entries 21
How toWrite to Log Files From the Rules API Code 22
How to Include a CI Property in Rules API Calculations 23
Examples - API Sample Rule 24

Example - Average Availability Rule 24
Example - Average Performance Rule 25
Example - Average Performance Rule Using a Rule Parameter Filter 25

Examples - API Group and Sibling Rule 27
Example -Worst Child Rule 27
Example -Worst Sibling Status Rule 28
Example - Specific Child CI Group Rule 29
Example - Sibling Rule Based on Availability and Performance KPIs 30
Example - Group Average Value by CI Type 31
Example -Worst Health Indicator Rule 31
Example - Using Groovy Closure 32

Chapter 2: Service Health External APIs 34
Retrieve Indicator Data API 34

API Syntax 34
Return Codes 36
API Syntax 36
Return Codes 37
API Syntax 38
Return Codes 39

Reset Health Indicator State API 39
Service Health DatabaseQuery API 40

Part 2: Service Level Management 43
Chapter 3: SLM External API 44

Get SLA Configuration Data 44

APM Extensibility Guide

Application PerformanceManagement (9.50) Page 5 of 125

API Syntax 44
Return Codes 46

Get SLA Calculation Results 46
API Syntax 46
Return Codes 48

Get Calendars 48
API Syntax 48
Return Codes 49

Get Tracking Periods 50
API Syntax 50
Return Codes 51

Get KPIs 51
API Syntax 51
Return Codes 52

Get Indicator Statuses 52
API Syntax 52
Return Codes 53

Chapter 4: SLM Rules API 54
API Simplified Average Rules 55
API Group and Sibling Rule 56

Accessing a Specific Child KPI in the KPI Definition Page 57
Sample Rule CalculationMechanism - Overview 58
Sample Rules: Calculating the KPI Based on Samples 58
Sample Rules: Calculating the KPI's Aggregated Results 59
When to Use Sample or Duration-Based Sample Rules 60

Example of Average Response TimeCalculation 60
API Sample Rule 60
API Duration-Based Sample Rule 62
Duration-Based Sample Continuity 63
Filtering with the Duration-Based Sample Rule 64
API Outage by Samples Rule 65
Creating Rules with the Rules API 66
How to Define an API Rule for a Specific KPI or Outage 67
How to Create a Text File-Based API Rule 68
How to Define an API RuleWithin the Rule Repository 70
How toWork with Tooltip Entries 71
How toWrite to Log Files From the Rules API Code 72
How to Include a CI Property in Rules API Calculations 73
Examples - API Group and Sibling Rule 74
Examples - API Sample Rule 74

Example - Sample-Based Average Response TimeRule 74
Calculation - Sample-Based Average Response TimeRule 76

Example - Sample-Based Average Response TimeRule with Filter 77
Calculation - Sample-Based Average Response TimeRule with Filter 77

Example - Sample-BasedMaximum Response TimeRule 78
Calculation - Sample-BasedMaximum Response TimeRule 79

APM Extensibility Guide

Application PerformanceManagement (9.50) Page 6 of 125

Examples - API Duration-Based Sample Rule 79
Example - Duration-Based Average Response TimeRule 79

Calculation - Duration-Based Average Response TimeRule 81
Example - Duration-Based Average Response TimeRule with isSampleValid Method
Filter 82

Calculation - Duration-Based Average Response TimeRule with isSampleValid
Method Filter 82

Example - Duration-Based Average Response TimeRule with
isSampleAndDurationValid Method Filter 83

Calculation - Duration-Based Average Response TimeRule with
isSampleAndDurationValid Method Filter 83

Example - Duration-Based Average Response TimeRule with
isSampleAndDurationValid and isSampleValid Method Filters 84

Examples - API Outage by Samples Rule 85
Example - Outage by Samples Rule and Calculation with Default Rule Parameters 85
Example - Outage by Sample Calculation with Minimum Duration of 900 Seconds 87
Example - Outage by Sample Calculation with Maximum Duration of One Hour 87
Example - Outage by Sample Calculation with a Sample Representing Two Failures 88

Chapter 5: SLMWeb Services API 89
Using the SLMWeb Services 89
SLMWeb Services' Operations 90

Part 3: User Management 94
Chapter 6: User Admin External API 95

Get All Groups/Users 95
API Syntax 95
Return Codes 96

Post New User 97
API Syntax 97
Return Codes 99

Get Specific User 99
API Syntax 99
Return Codes 100

Get Specific Group 101
API Syntax 101
Return Codes 102

Delete User from Group 102
API Syntax 102
Return Codes 103

Post Existing User to a Group 103
API Syntax 103
Return Codes 103

Part 4: End User Management 105
Chapter 7: EUM Admin Open API 106

APM Extensibility Guide

Application PerformanceManagement (9.50) Page 7 of 125

Part 5: SiteScope 107
Chapter 8: SiteScope Public API 108

Part 6: Downtime 109
Chapter 9: Downtime REST Service 110

Downtime Schedule Examples 112
Example of a Downtime Schedule with OneOccurrence 113
Example of aWeekly Downtime Schedule 113
Example of aMonthly Downtime Schedule 113

Downtime REST Examples using Java Code 113
Downtime REST Example Using Groovy 114

Part 7: Reporting in APM 116
Chapter 10: Generic Reporting Engine API 117

Data Returned 118
Querying with a Browser 118
Using theWeb Service 119
Supported SQL Syntax 119
Supported Functions 120
Query Limitations 121
Date-Time Values 122
byTime Function 122
Query Examples 123

Send documentation feedback 125

APM Extensibility Guide

Application PerformanceManagement (9.50) Page 8 of 125

Extensibility Guide Overview
This guide describes how to customize Application PerformanceManagement applications, extend
their functionality, and use APIs to perform operations. The guide is intended for administrators and
integrators who need to establish advanced configurations and extensions. If you are an administrator
and need to set up APM, first refer to the APM Application Administration Guide.

This guide provides instructions for working with the following:

l Service Health. For details, see Service Health Rules API, on page 11 and Service Health External
APIs, on page 34.

l Service Level Management. For details, see SLM External API , on page 44, SLM Rules API, on
page 54, and SLMWeb Services API, on page 89.

l End User Management. For details, see EUM Admin Open API, on page 106.
l SiteScope. For details, see SiteScope Public API, on page 108.
l Downtime. For details, see Downtime REST Service, on page 110
l Reports. For details, seeGeneric Reporting Engine API, on page 117.

APM Extensibility Guide
Extensibility Guide Overview

Application PerformanceManagement (9.50) Page 9 of 125

Part 1: Service Health

APM Extensibility Guide
Part 1: Service Health

Application PerformanceManagement (9.50) Page 10 of 125

Chapter 1: Service Health Rules API
NOTE:
In APM versions 9.00 and later, the rules that calculate indicator statuses and values based on
samples (API Sample Rule, on page 14 and API Duration-Based Sample Rule, on page 15) are
used to calculate metric-based health indicators (HIs).

Throughout the Rules API documentation, you will see references to various methods used to
calculate KPIs. In APM versions 9.00 and later, when calculating sample-based values,
these methods are used to calculate metric-based HIs.

This chapter describes how to use the Rules API to create new business rules. Business rules are
used to calculate Key Performance Indicators (KPIs). A KPI must have an associated business rule
that defines how the KPI is calculated. The default Service Health rules appear in the section
Understanding the Service Health Calculation Rules in the APM Application Administration Guide.

It is recommended to create rules with the Rules API. The Rules API enables you to create rules using
the Groovy scripting language with Groovy runtime environment. Users of the Rules API should be
familiar with Groovy and Java, and with APM administration and applications.

The Rules API classes are documented in Javadoc format in theRules API Reference. These files are
located in the following folder:
\\< Gateway Server root directory>
\AppServer\webapps\site.war\amdocs\eng\doc_lib\API_docs\Rules_API\index.html.

Service Health API Rules
These are the types of Service Health API rules:

l Group and Sibling Rule. This rule calculates KPIs based on data received from other KPIs,
rather than from original sample data. For details, see API Group and Sibling Rule, on the next
page.

l Sample Rule. This rule calculates KPIs based on original data taken from sample fields; the
number of samples included in the calculation is limited by amaximum number of samples rule
parameter. For details, see API Sample Rule, on page 14.

l Duration-Based Sample Rule. This rule calculates KPIs based on original data taken from
sample fields; a duration parameter defines which samples are included in the calculation. For
details, see API Duration-Based Sample Rule, on page 15.

Creating API Rules
Rules can be created using the Rules API in these ways:

l Using the CI Indicators tab to create a rule for a specific KPI.
l Using a text file to create a new rule for multiple KPIs.
l Using a clone of an API rule in the Rule Repository to create a new rule.
These ways are described in Creating Rules with the Rules API, on page 16.

Tooltips and Log Files
To display KPI information in tooltips when working with the Rules API, see How toWork with

Application PerformanceManagement (9.50) Page 11 of 125

Tooltip Entries, on page 21.

You can write to log files from the Rules API code, as described in How toWrite to Log Files From
the Rules API Code, on page 22.

API Group and Sibling Rule
An API Group and Sibling Rule calculates KPIs based on data received from other indicators, rather
than from original sample data. The received data can come from the KPIs of child CIs, or from other
KPIs or HIs associated with the sameCI.

NOTE:
If you are creating a sibling rule, make sure that the KPI is calculated after its sibling KPIs, as
defined by the KPI's Calculation Order field. For details, see KPIs Repository page in the APM
Application Administration Guide.

Group and Sibling Rule Methods and Fields
TheGroup and Sibling rule implements the Rules API InterfaceGroupAndSiblingCalculator,
using the following guidelines:

l In this interface, the only method is calculateKPI. Themethod signature is:
public void calculateKPI(CI ci, KPI kpi)

l The calculateKPImethod includes the parameters ci and kpi, which represent the current CI,
and the KPI whose value the API rule calculates.
o The ci parameter type is CI, and is used as an accessor to KPIs of child CIs or sibling KPIs, or

HIs on the CI.
o The kpi parameter type is KPI, and is used to set calculation results.

In the following illustration, the Calculated KPI is calculated based on the sibling or child KPIs, and
it is represented by the kpi parameter.

The CI to which the Calculated KPI is assigned, is represented by the ci parameter, and it is an
accessor to the other KPIs or HIs.

APM Extensibility Guide
Chapter 1: Service Health Rules API

Application PerformanceManagement (9.50) Page 12 of 125

The Rules API classes are documented in Javadoc format in theRules API Reference. These files
are located in the following folder:
\\<Gateway Server root directory>\
AppServer\webapps\site.war\amdocs\eng\doc_lib\API_docs\Rules_API\index.html.

For detailed examples of Group and Sibling rules, see Examples - API Group and Sibling Rule, on
page 27.

API rules can be defined within the Service Health CI Indicators tab or Rule Repository, or using a
text file template, as described in Creating Rules with the Rules API, on page 16.

Defining a Group and Sibling Rule in the CI Indicators tab or Rule Repository
To define aGroup and Sibling rule using the CI Indicators tab or within the Rule Repository, enter
the calculateKPI method implementation in theKPI Calculation Script area.

The parameters ci and kpi of the calculateKPImethod are available for use in this script.

For detailed instructions, see How to Define an API Rule in the CI Indicators Tab, on page 16 or
How to Define an API Rule in the Rule Repository, on page 21.

Accessing a Specific Child KPI in the CI Indicators Tab
When creating aGroup rule for a specific KPI in the CI Indicators tab, to access a specific child
KPI, the API includes amechanism to simplify the code. When defining your KPI Calculation
Script, you can enter the format "<CI name>"."<KPI name>".

For an example of this, see Example - Specific Child CI Group Rule, on page 29 in Examples - API
Group and Sibling Rule, on page 27.

Defining a Group and Sibling Rule Using a Text File
To define aGroup and Sibling rule using a text file, use the
DashboardGroupAndSiblingTemplate.groovy template as described in How to Create a Text
File-Based API Rule, on page 17.

APM Extensibility Guide
Chapter 1: Service Health Rules API

Application PerformanceManagement (9.50) Page 13 of 125

Within the text file, enter the calculateKPI method body.

API Sample Rule
A Sample rule calculates KPIs based on original data taken from sample fields; the number of samples
included in the calculation is limited by amaximum number of samples parameter.

Sample Rule Methods and Fields
The Sample rule implements the Rules API Interface LeafCalculator, using the following
guidelines:

l In this interface, the only method is calculateKPI. Themethod signature is:
public void calculateKPI(CI ci, KPI kpi, List<Sample> samples)

l The calculateKPImethod includes the parameters ci, kpi, and samples. These represent the
current CI, the KPI whose value the rule calculates, and the samples to be used in the rule
calculation based on theMaximum number of samples parameter. (If this parameter value is
1, list one sample in this field.)
o The kpi parameter type is KPI, and is used to set calculation results.
o The samples parameter is a List of Sample objects, which hold sample field values.

l The rule must also set the sampleFields field to define which sample fields are held by the
Sample object. These values are the values used by the rule.

For detailed examples of Sample rules, see Examples - API Sample Rule, on page 24.

API rules can be defined within the Service Health CI Indicators tab or the Rule Repository, or using
a text file template, as described in Creating Rules with the Rules API, on page 16.

The Rules API classes are documented in Javadoc format in theRules API Reference. These files
are located in the following folder:
\\<Gateway Server root directory>\
AppServer\webapps\site.war\amdocs\eng\doc_lib\API_docs\Rules_API\index.html.

Defining a Sample Rule in the CI Indicators tab or Rule Repository
To define a Sample rule using the CI Indicators tab or within the Rule Repository, fill in the fields as
follows:

l Sample Fields. List the sample fields which are held by theSample object; separate between
the sample names with a comma (for example: "u_iStatus", "dResponseTime").

l KPI Calculation Script. Enter the calculateKPI method implementation; do not enter the
method signature. The parameters ci, kpi, and samples of the calculateKPImethod are
available for use in this script.

l Maximum number of samples. By default only themost recent sample is included (default=1).
You can use this field to change this setting.

For detailed instructions, see How to Define an API Rule in the CI Indicators Tab, on page 16 or
How to Define an API Rule in the Rule Repository, on page 21.

Defining a Sample Rule Using a Text File
To define a Sample rule using a text file template, use the
DashboardSampleRuleTemplate.groovy template file as described in How to Create a Text File-

APM Extensibility Guide
Chapter 1: Service Health Rules API

Application PerformanceManagement (9.50) Page 14 of 125

Based API Rule, on page 17.

Within the text file, enter the calculateKPI method body, and define the sampleFields field.

API Duration-Based Sample Rule
A Duration-Based Sample rule calculates KPIs based on original data taken from sample fields; the
duration rule parameter defines which samples are included in the calculation. For example, if duration
is defined as fifteenminutes, all samples collected during the last fifteenminutes are included in the
calculation.

Duration-Based Sample Rule Methods and Fields
The Duration-Based Sample rule implements the Rules API Interface LeafCalculator, using the
following guidelines:

l In this interface, the only method is calculateKPI. Themethod signature is:
public void calculateKPI(CI ci, KPI kpi, List<Sample> samples)

l The calculateKPImethod includes the parameters ci, kpi, and samples. These represent the
current CI, the KPI whose value the rule calculates, and the list of samples to be used in the rule
calculation.
o The kpi parameter type is KPI, and is used to set calculation results.
o The samples parameter is a List of Sample objects, which hold sample field values.

l The rule must also set the sampleFields field to define which sample fields are held by the
Sample object. These values are the values used by the rule.

For detailed examples of this rule, see Examples - API Sample Rule, on page 24.

API rules can be defined using the Service Health CI Indicators tab, using a text file, or within the
Rule Repository, as described in Creating Rules with the Rules API, on the next page.

The Rules API classes are documented in Javadoc format in theRules API Reference. These files
are located in the following folder:
\\<Gateway Server root directory>\
AppServer\webapps\site.war\amdocs\eng\doc_lib\API_docs\Rules_API\index.html.

Defining a Duration-Based Sample Rule in the CI Indicators tab or Rule Repository
To define a Duration-Based Sample rule using the CI Indicators tab or within the Rule Repository,
fill in the fields as follows:

l Sample Fields. List the sample fields which are held by theSample object; separate between
the sample names with a comma (for example: "u_iStatus", "dResponseTime").

l KPI Calculation Script. Enter themethod implementation; do not enter themethod signature.
The parameters ci, kpi, and samples of the calculateKPImethod are available for use in this
script.

l No data timeout and duration. (Optional) You can define the timeout period and duration
parameters, as described in List of Rule Parameters.

For detailed instructions, see How to Define an API Rule in the CI Indicators Tab, on the next page
or How to Define an API Rule in the Rule Repository, on page 21.

APM Extensibility Guide
Chapter 1: Service Health Rules API

Application PerformanceManagement (9.50) Page 15 of 125

Defining a Duration-Based Sample Rule Using a Text File
To define a Duration-Based Sample rule using a text file template, use the
DashboardDurationBasedSampleRuleTemplate.groovy template file as described in How to
Create a Text File-Based API Rule, on the next page.

Within the text file, enter the calculateKPI method body, and define the sampleFields field.

Creating Rules with the Rules API
There are a number of ways to create rules using the Rules API, as described in the following section.

Define a rule for a specific KPI using the CI Indicators tab
Each Service Health KPI has these applicable API rules: API Group and Sibling Rule, API Sample
Rule, or API Duration-Based Sample Rule. From the CI Indicators tab, you can assign one of the
API rules to a KPI, and enter a calculation script (and other rule details) to define rule logic for that
KPI.

You can then edit the rule details in the CI Indicators tab at any time to change the rule logic for the
KPI.

For details, see How to Define an API Rule in the CI Indicators Tab, below.

Create a rule using a text file
For each of the API rules (Group and Sibling Rule, Sample Rule, or Duration-Based Sample Rule)
there is a corresponding template file, located in the <Data Processing server root
directory>\BLE\rules\groovy\templates directory. You can use one of the template files to create
a text file defining a new rule. You then add this rule to the Rule Repository, and it can be applied
like any out-of-the-box rule.

The API code cannot be seen or changed within Service Health, but only within the text file. If you
make changes to the code within the text file, these changes are applied to all instances where the
rule has been assigned, after you reload Service Health rules.

For details, see How to Create a Text File-Based API Rule, on the next page.

Define a rule within the Rule Repository
The Rule Repository contains three API rules: API Group and Sibling Rule, API Sample Rule, or
API Duration-Based Sample Rule. You can use the Rule Repository to clone an API rule and enter
a calculation script (and other rule details) to define the rule logic.

After the rule is applied to a KPI, you can edit rule details within the CI Indicators tab at any time to
change the rule logic for a specific KPI.

For details, see How to Define an API Rule in the Rule Repository, on page 21.

How to Define an API Rule in the CI Indicators Tab
Each KPI has three applicable API rules. Within the CI Indicators tab, assign one of the API rules to a
KPI, and enter the calculation script (and other rule details) to define the rule logic for that KPI.

APM Extensibility Guide
Chapter 1: Service Health Rules API

Application PerformanceManagement (9.50) Page 16 of 125

1. Assign an API rule to a KPI
To assign an API rule for a specific KPI assigned to a CI, select Admin > Service Health >
CI Indicators. Select New KPI to assign a new KPI to the CI, orEdit KPI to modify an
existing KPI. For details on this process, see Adding KPIs to CIs, or Modifying KPI Settings -
KPIs Tab in the APM Application Administration Guide.
From the list of applicable business rules, select one of the API rules: API Group and Sibling
Rule, API Sample Rule, or API Duration-Based Sample Rule. For a description of the rule
types see Service Health Rules API, on page 11.

2. Define the KPI's rule logic
Depending on the type of rule you are creating, define the rule methods and fields as described
in:
l API Group and Sibling Rule, on page 12
l API Sample Rule, on page 14
l API Duration-Based Sample Rule, on page 15

How to Create a Text File-Based API Rule
There are three rule template files corresponding to the three API rules; each template implements the
rule's interface.

Create a text file defining a new rule using one of the templates, and then add the new rule to the
Business Rule Repository. The rule can then be applied like any out-of-the-box rule.

The API code cannot be seen or changed within Service Health, but only within the text file. If you
make changes to the code within the text file, these changes are applied to all instances where the rule
has been assigned, after you reload Service Health rules.

1. Create a text file for a rule
Based on the type of rule you want to create, copy and rename one of the template files located
in the <Data Processing server root directory>\BLE\rules\groovy\templates directory.
Within your copy of the template, define the rule methods and fields as described in:
l API Group and Sibling Rule, on page 12
l API Sample Rule, on page 14
l API Duration-Based Sample Rule, on page 15
Save the file to the <Data Processing server root directory>\BLE\rules\groovy\rules
directory.
Youmust now add a rule in the Rule Repository that uses the rule logic in the text file.

2. Add a rule in the rule repository
a. Select Admin> Service Health > Repositories > Business Rules > New Rule. For

details on adding rules, see Customizing KPI and HI Calculation Rules in the APM
Application Administration Guide.

b. In theName field, type the name of the rule you want to create (mandatory).
c. In theClass Name field, type groovy: <file name>. Note that the file namemust be

APM Extensibility Guide
Chapter 1: Service Health Rules API

Application PerformanceManagement (9.50) Page 17 of 125

identical (case sensitive) to the file name in the <Data Processing server root
directory>\BLE\rules\groovy\rules directory.

d. Create Rule parameters depending on your API rule type, as follows:
l In theRule parameters area, click New.
l For API Sample rules:
In theName field typeMaximum number of samples. In the Type field, select
Integer. In theDefault Value field, type 1.
Click OK to Save.

l For API Duration-Based Sample rules:
In theName field type duration. In the Type field, select Long. In theDefault Value
field, type 990.
Click OK to Save.

Repeat these steps to add theNo Data Timeout rule parameter (Type: Long; Default
Value = 990).

e. Create Threshold parameters: critical, major, minor, warning, informational, and operator.
(Skip this step if you are defining aGroup and Sibling rule that does not have Thresholds,
where status is calculated by the rule code.)
l In the Threshold parameters area, click New.
l In theName field, type critical. In the Type field, select Float.
When defining the operator parameter, select String in the Type field.

l Click OK to save.
Repeat the above steps for each of the other Threshold parameters (major, minor,
warning, informational, and operator).
The following image shows a Sample rule after the rule parameter has been added:

APM Extensibility Guide
Chapter 1: Service Health Rules API

Application PerformanceManagement (9.50) Page 18 of 125

The following image shows a Duration-Based Sample rule after the rule parameters have
been added:

APM Extensibility Guide
Chapter 1: Service Health Rules API

Application PerformanceManagement (9.50) Page 19 of 125

3. Add the rule to the KPI's applicable rules list
Add the new rule to the list of applicable rules already attached to the relevant KPI. For details,
see theMain Settings Area > Applicable Rules parameter in New KPI/Edit KPI Dialog Box in
the APM Application Administration Guide.

4. Add tooltip parameters to the new tooltip
When a rule is created using this procedure, a corresponding tooltip is with no tooltip
parameters. For instructions on adding tooltip parameters to the new tooltip, see How toWork
with Tooltip Entries, on the next page.

5. Reload rules after editing the text file
If youmake changes to the text file at any time after the rule is created, perform the following
steps to apply the changes.
a. In the browser, access JMX port <29810 + workerID> (for example, 29811 for worker _1).
b. WithinBSM-Platform, select the service calledMarbleWorker and invoke the

reloadRulesmethod. This method is applied to all the customers served by this worker.

APM Extensibility Guide
Chapter 1: Service Health Rules API

Application PerformanceManagement (9.50) Page 20 of 125

How to Define an API Rule in the Rule Repository
Within the Business Rule Repository, create an API rule that can be applied tomultiple KPIs. This is
done by cloning one of the three API rules, and setting default rule values for specific rule parameters.
After the rule is applied to a KPI, you can edit its script within the CI Indicators tab at any time to
change the rule logic for the specific KPI.

1. Clone an API rule
Select Admin> Service Health > Repositories > Business Rules. In the Business Rule
Repository page, clone one of the following rules: API Group and Sibling Rule, API Sample
Rule, or API Duration-Based Sample Rule.
For details on cloning a rule, see Customizing KPI and HI Calculation Rules in the APM
Application Administration Guide.

2. Edit rule details
a. Open the new rule for editing.
b. In theName field, rename the cloned rule.
c. Edit theKPI Calculation Script rule parameter. In theDefault Value field, enter the rule

calculation script. The code that you enter is the default code for this rule, and appears in
the CI Indicators tab for all KPIs assigned this rule. (Do not change any other fields.)

d. If you are creating a Sample rule or Duration-Based Sample rule, edit theSample Fields
rule parameter. The sample fields that you enter are the default sample fields for this rule,
and appear in the CI Indicators tab for all KPIs assigned this rule. (Do not change any other
fields.)
For details on these rule parameters, see the following sections (depending on the type of
rule you are creating):
l API Group and Sibling Rule, on page 12
l API Sample Rule, on page 14
l API Duration-Based Sample Rule, on page 15
The Rules API classes are documented in Javadoc format in theRules API Reference.
These files are located in the following folder:
\\<Gateway Server root directory>\
AppServer\webapps\site.war\amdocs\eng\doc_lib\API_docs\Rules_API\index.html.

3. Add the rule to the KPI's applicable rules list
Add the new rule to the list of applicable rules already attached to the relevant KPI. For details,
see the Applicable Rules parameter in New KPI/Edit KPI Dialog Box in the APM Application
Administration Guide.

How to Work with Tooltip Entries
The following section describes how to work with tooltip entries to display information calculated by the
Rules API.

APM Extensibility Guide
Chapter 1: Service Health Rules API

Application PerformanceManagement (9.50) Page 21 of 125

1. Select Admin > Service Health > Repositories > Business Rules. In the Rule Repository
page, add any required tooltip entries for the new rule. The following table lists common tooltip
entries and their corresponding value sources and formattingmethods:

Tooltip Parameter Value Source Formatting Method

Business Rule NODE.DIM.RULE.ID_CUST ruleIDtoString

CI name NODE.PROPS.BamNodeNameKey toLowerCase

Last Status Change NODE.DIM.RESULT.LastStatusChange returnDateAsString

Status NODE.DIM.RESULT.Status getStatusString

Value NODE.DIM.RESULT.Value returnNumOfDigitAfterPoint

For details, see Customizing Tooltips in the APM Application Administration Guide.
2. If you have used the kpi.setTooltipmethod, youmust set a corresponding tooltip entry in the Rule

Repository as described above. In theValue Source field, type the name of the tooltip entry
exactly as used in the code, and leave the Formatting Method field empty.
For example, if your code contains themethod invocation kpi.setTooltip("total_sales", value),
typeNODE.DIM.RESULT.total_sales in theValue Source field.

How to Write to Log Files From the Rules API Code
Within your API rules, you can write to log files from rulemethods using a logger object. There are five
log levels: debug, info, warn, error and fatal. Each of these uses a specific logger method.

By default, only logmethod invocations of error and fatal severity are written to the log files. You can
modify this within the log configuration files.

To write to log files using the Rules API:
1. Within the rule method, implement one of the followingmethods (listed in ascending order of

severity):
l logger.debug("<API rule name> : log message");
l logger.info("<API rule name> : log message");
l logger.warn("<API rule name> : log message");

APM Extensibility Guide
Chapter 1: Service Health Rules API

Application PerformanceManagement (9.50) Page 22 of 125

l logger.error("<API rule name> : log message");
l logger.fatal("<API rule name> : log message");
Type the name of your API rule inside the logmessage to identify each logmessage with its
source rule.

2. The Rules API log files are found in the <Data Processing server root
directory>\HPBSM\log\marble_worker_<worker#>\RulesAPI directory.
Open one of the following files to view the logmessages (depending on your rule type):

l groupAndSiblingRule.log (for API Group and Sibling rules)
l sampleRule.log (for API Sample rules)
l durationBasedSampleRule.log (for API Duration-Based sample rules)

To modify the severity level written to a log file:
1. By default, only logmethod invocations of error and fatal severity are written to log files. To

modify this setting, open the log configuration file located in <Data Processing server root
directory>HPBSM\conf\core\Tools\log4j\marble_worker\dashboard_rules.properties.

2. In the line corresponding with your rule type, replace the string ${loglevel}with the severity
level you want logged (either DEBUG, INFO, WARN, ERROR, or FATAL). Edit one of the
following lines, depending on your rule type:
l Group and Sibling rules:
log4j.category.com.mercury.am.rules.dashboard.blDashboardRules.
simplifiedRule.groupAndSiblingRule.DashboardGroupAndSiblingRule = ${loglevel},
bam.app.rules.api.group.appender

l Sample rules: log4j.category.com.mercury.am.rules.dashboard.blDashboardRules.
simplifiedRule.leaf.DashboardSimplifiedSampleBasedRule = ${loglevel},
bam.app.rules.api.leafsample.appender

l Duration-Based Sample rules:
log4j.category.com.mercury.am.rules.dashboard.blDashboardRules.
simplifiedRule.leaf.DashboardSimplifiedTimeBasedRule = ${loglevel},
bam.app.rules.api.leafduration.appender

How to Include a CI Property in Rules API
Calculations
Within your API rules, you can include CI properties using the CI class getPropertyValuemethod, and
the KPI class getCiPropertymethod. Only CI properties with one of the following qualifiers can be
accessed with this method:

l BLE_ATTRIBUTE - SLM and Service Health
l BLE_ONLINE_ATTRIBUTE - Service Health only
To add this attribute to a CI class youmust export the class, edit the class definition, and import it back
to the server. When you open the exported class for editing, add the following xml to the required
attribute:

<Attribute name="<attribute-name>" type="double" display-name="<attribute-display-name>">

APM Extensibility Guide
Chapter 1: Service Health Rules API

Application PerformanceManagement (9.50) Page 23 of 125

 <Attribute-Qualifiers>

 <Attribute-Qualifier name="BLE_ATTRIBUTE"/>

 </Attribute-Qualifiers>

</Attribute>

To retrieve the CI property value of a CI using the API Group and Sibling Rule, youmust restart
marble_dashboard_tql. Access the RTSM JMX Console – <APM Data Processing>:21212/jmx-
console/HtmlAdaptor?action=inspectMBean&name=UCMDB:service=TQL%20Services, and invoke
retrieveTqlNames(). Search formarble_dashboard_tql, and restart the TQL.

Examples - API Sample Rule
This section provides examples of API Sample Rules. The following examples are described:

l Example - Average Availability Rule, below
l Example - Average Performance Rule, on the next page
l Example - Average Performance Rule Using a Rule Parameter Filter, on the next page

Example - Average Availability Rule
The following rule calculates average availability of samples, based on the u_iStatus sample field.

The rule logic is (available samples / total samples) * 100.

// This rule uses the u_iStatus sample field.
def sampleFields = ["u_iStatus"];
public void calculateKPI(CI ci, KPI kpi, List<Sample> samples) {
 // Keep total number of samples for this calculation cycle.
 def totalSamples = samples.size();
 // Create a variable to count available samples.
 def availableSamples = 0;
 /**
 * Go over the given samples. If a sample's u_iStatus is equal to 0,
 * the sample is considered available.
 */
 samples.each {Sample currentSample->
 if (currentSample.u_iStatus == 0) {
 // Increase the count of available samples.
 availableSamples++;
 }
 }
 if (totalSamples > 0) {
 // Set KPI value, converted to percentage.
 kpi.setValue ((availableSamples/totalSamples)*100.0);
 }
}

APM Extensibility Guide
Chapter 1: Service Health Rules API

Application PerformanceManagement (9.50) Page 24 of 125

Example - Average Performance Rule
The following rule calculates average performance in seconds, based on the dResponseTime and u_
iStatus sample fields.

Only samples with a u_iStatus value of 0 (available samples) are used in the calculation. The rule logic
is: sum(dResponseTime) / available samples.

// This rule uses the u_iStatus and dResponseTime sample field.
def sampleFields = ["u_iStatus", "dResponseTime"];
public void calculateKPI(CI ci, KPI kpi, List<Sample> samples) {
 // Create a variable to count available samples.
 def availableSamples = 0;
 // Create a variable to sum response times of available samples.
 def totalResponseTime = 0;
 /**

* Go over the given samples. If a sample's u_iStatus is equal to 0,
* the sample is considered available.
*/

 samples.each {Sample currentSample ->
 if (currentSample.u_iStatus == 0) {
 // Increase the count of available samples.
 availableSamples++;
 // Add the current sample's dResponseTime value to
totalResponseTime.
 totalResponseTime += currentSample.dResponseTime
 }
 }
 if (availableSamples > 0) {
 // Set KPI value, converted to percentage.
 kpi.setValue((totalResponseTime / availableSamples))
 }
}

Example - Average Performance Rule Using a Rule
Parameter Filter
The following rule calculates average performance in seconds, based on the dResponseTime and u_
iStatus sample fields.

Only samples with a u_iStatus value of 0 (available samples) are used in the calculation.

The rule uses an optional rule parameter: Response time limit. If this rule parameter value has been set
in the Service Health Admin, samples with a dResponseTime value greater then the rule parameter
value are not used in the calculation.

NOTE:
A rule parameter with the same namemust be set for the rule in the Rule Repository. For details,

APM Extensibility Guide
Chapter 1: Service Health Rules API

Application PerformanceManagement (9.50) Page 25 of 125

see Customizing Rule Parameters and Thresholds in the APM Application Administration Guide.

The rule logic is: sum(dResponseTime) / available samples.

/ This rule use the u_iStatus and dResponseTime sample fields.
def sampleFields = ["u_iStatus", "dResponseTime"];
public void calculateKPI(CI ci, KPI kpi, List<Sample> samples) {
 // Create a variable to count available samples.
 def availableSamples = 0;
 // Create a variable to sum response times of available samples.
 def totalResponseTime = 0;
 /**

* Get the value of the rule parameter named "Response time limit"
* from the KPI, as defined for the KPI in Service Health Admin.
* This rule parameter is optional, so responseTimeLimit can be null.
*/

 Long responseTimeLimit = kpi.getRuleParameter("Response time limit")

 /**
* Go over the given samples. If a sample's u_iStatus is equal to 0,
* the sample is considered available.
*/

 samples.each {Sample currentSample ->
 if (currentSample.u_iStatus == 0) {
 /**
 * Check the value of the rule parameter.
 * If it is not null (meaning the user has set a value),
 * and the sample's dResponseTime is greater than the
 * rule parameter value, the value is not valid.
 */
 boolean isSampleValid = true;
 if (responseTimeLimit != null) {
 // Check if ResponseTime exceeds the rule parameter value.
 if (currentSample.dResponseTime > responseTimeLimit) {
 // The sample is not valid.
 isSampleValid = false;
 }
 }
 if (isSampleValid) {
 // Increase the count of available samples.
 availableSamples++;
 // Add the sample's dResponseTime value to totalResponseTime.
 totalResponseTime += currentSample.dResponseTime
 }
 }
 }
 if (availableSamples > 0) {
 // Set KPI value, converted to percentage.
 kpi.setValue((totalResponseTime / availableSamples))

APM Extensibility Guide
Chapter 1: Service Health Rules API

Application PerformanceManagement (9.50) Page 26 of 125

 }
}

Examples - API Group and Sibling Rule
This section provides examples of API Group and Sibling Rules. The following examples are
described:

l Example -Worst Child Rule, below
l Example -Worst Sibling Status Rule, on the next page
l Example - Specific Child CI Group Rule, on page 29
l Example - Sibling Rule Based on Availability and Performance KPIs, on page 30
l Example - Group Average Value by CI Type, on page 31
l Example -Worst Health Indicator Rule, on page 31
l Example - Using Groovy Closure, on page 32

Example - Worst Child Rule
The following rule finds the worst status from all of the KPIs of the calculated CI's child CIs, which are
of the same type as the calculated KPI, based on active statuses only. Active statuses areCritical,
Major,Minor,Warning, andOK.

public void calculateKPI(CI ci, KPI kpi) {
 // Get the calculated KPI's type ID (as defined in the Service Health KPI
Repository).
 int kpiId = kpi.getType();
 // Get a list of all of the KPIs of the calculated CI's child CIs, which are
of the same
 // type as the calculated KPI.
 List<KPI> childKpiList = ci.getChildrenKPIsByID(kpiId);
 // Create a variable to set the status of the calculated KPI,
 // only if an active status is found.
 boolean isActiveStatusFound = false;
 // Set the current worst status to OK; if a worse status is found this will
be updated.
 Status worstStatus = Status.OK;
 // Go over the list of child KPIs.
 childKpiList.each{KPI childKPI->
 // Get the child KPI's status.
 Status childKpiStatus = childKPI.status;
 // Check if the child KPI's status is an active status.
 if(childKpiStatus.isActive()){
 // Mark that an active status was found.

APM Extensibility Guide
Chapter 1: Service Health Rules API

Application PerformanceManagement (9.50) Page 27 of 125

 isActiveStatusFound = true;
 // Check if the child KPI's status is worse than the current worst
status.
 if(childKpiStatus.isWorse(worstStatus)){
 // Update the worst status.
 worstStatus = childKpiStatus;
 }
 }
 }
 // Check if an active status was found in the child KPI.
 if(isActiveStatusFound){
 // Set the calculated KPI status.
 kpi.setStatus(worstStatus);
 }
}

Example - Worst Sibling Status Rule
The following rule finds the worst status from sibling KPIs, based on active statuses only. Active
statuses areCritical,Major,Minor,Warning, andOK.

public void calculateKPI(CI ci, KPI kpi) {
 // Get a list of all the KPIs for the CI.
 List<KPI> ciKpiList = ci.getAllKPIs();
 /**

* Create a variable to set the status of the calculated KPI,
* only if an active status is found.
*/

 boolean isActiveStatusFound = false;
 // Set the current worst status to OK; if a worse status is found this will
be updated.
 Status worstStatus = Status.OK;
 // Go over the list of the CI's KPIs.
 ciKpiList.each {KPI ciKPI ->
 /**
 * Check that the CI's KPI is not the calculated KPI.
 * This is needed because getAllKPIs method returns all the KPIs for the
CI.
 */
 if (ciKPI != kpi) {
 /**

* The ciKPI represents a sibling KPI of the calculated KPI.
* Get the sibling KPI's status.
*/

 Status siblingKpiStatus = ciKPI.status;
 // Update worstStatus if necessary.

APM Extensibility Guide
Chapter 1: Service Health Rules API

Application PerformanceManagement (9.50) Page 28 of 125

 if (siblingKpiStatus.isActive()) {
 isActiveStatusFound = true;
 if (siblingKpiStatus.isWorse(worstStatus)) {
 worstStatus = siblingKpiStatus;

 }
 }
 }
 }
 // Check if an active status was found in the sibling KPI.
 if (isActiveStatusFound) {

// Set the calculated KPI's status.
kpi.setStatus(worstStatus);

 }
}

Example - Specific Child CI Group Rule
The following rule calculates KPI status based on the Availability KPI of a specific child CI (RTSM ID =
"96c2df2b544683c7f79bb382d1d7b3a9").

If the child CI's Availability KPI value is 100, the calculated KPI's status is set to OK. All other values
set the KPI's status toCritical.

Status is set only if the child CI exists, has the Availability KPI, and its Availability KPI has value.

public void calculateKPI(CI ci, KPI kpi) {
 /**
 * Get the Availability KPI for the child CI "tx_10 from virtual_host_3".
 * The RTSM ID of "tx_10 from virtual_host_3" is
"96c2df2b544683c7f79bb382d1d7b3a9".
 *
 * Note: Within the UI, the following line can be written as
 * KPI childKPI = "tx_10 from virtual_host_3"."Availability"
 */
 KPI childKPI = ci.getChildKpiByChildId(KpiType.Availability,
"96c2df2b544683c7f79bb382d1d7b3a9");

 // Check if childKPI is not null. It is null if no child CI with this RTSM
ID exists, or if this CI does not have the Availability KPI.
 if (childKPI != null) {

 // Check if the child KPI has a value.
 if (childKPI.valueExist) {
 if (childKPI.value == 100.0) {
 kpi.status = Status.OK
 }
 else {

APM Extensibility Guide
Chapter 1: Service Health Rules API

Application PerformanceManagement (9.50) Page 29 of 125

 kpi.status = Status.CRITICAL
 }
 }
 }
}

Example - Sibling Rule Based on Availability and
Performance KPIs
The following rule calculates KPI status based on the status of sibling Availability and Performance
KPIs.

If these KPIs do not exist or do not have active status, no status is set.

If these sibling KPIs exist and are both OK, the calculated KPI status is set to OK. Otherwise, its
status is set toCritical. (Active statuses areCritical,Major,Minor,Warning, andOK.)

public void calculateKPI(CI ci, KPI kpi) {
 /**

* Get the sibling KPI of type Availability.
* If Availability KPI does not exist, null will be returned.
*/

 KPI availabilityKPI = ci.getKPI(KpiType.Availability);
 // Get the sibling KPI of type Performance.
 KPI performanceKPI = ci.getKPI(KpiType.Performance);
 if (availabilityKPI != null && performanceKPI != null) {
 // Both KPIs exist for this CI. Check if the KPIs status is active.
 if (availabilityKPI.status.isActive() && performanceKPI.status.isActive
()) {
 // Check the KPI's status.
 if (availabilityKPI.status == Status.OK &&
 performanceKPI.status == Status.OK) {
 /**

* Both statuses are active and both are OK. Set this KPI's
status to OK.

*/
 kpi.status = Status.OK
 }
 else {
 /**

* Both statuses are active, and not both are OK.
* Set this KPI's status to CRITICAL
*/

 kpi.status = Status.CRITICAL
 }
 }
 }

APM Extensibility Guide
Chapter 1: Service Health Rules API

Application PerformanceManagement (9.50) Page 30 of 125

}

Example - Group Average Value by CI Type
The following rule calculates the average status of the KPIs of child CIs, which are of the sameCI type
as the calculated KPI.

Only child CIs of type "bpm_tx_from_location" are used in the calculation. If there are no child CIs of
this type, or no child CI KPIs have value, no value is set for the KPI.

public void calculateKPI(CI ci, KPI kpi) {
 // Get the calculated KPI's type ID (as defined in the Service Health KPI
Repository).
 int kpiId = kpi.getType();
 // Get a list of the KPIs of the child CIs, which are of the same CI type as
the calculated
 // KPI, whose CI type is "bpm_tx_from_location".
 List<KPI> bpmTxFromLocationChildKpiList = ci.getChildrenKPIsByIDAndCiType
(kpiId, "bpm_tx_from_location")
 // Create a variable to sum the total values from child KPIs.
 // If no child exists or no child has value the variable will remain null.
 Double totalChildValue = null;
 // Write information to the log file.
 logger.debug("DashboardGroupAvgValueByCiTypeRule : number of child CIs with
type bpm_tx_from_location: " + bpmTxFromLocationChildKpiList.size())
 // Go over the list of child KPIs.
 bpmTxFromLocationChildKpiList.each {KPI childKPI ->
 // Sum values of the child KPIs using the Utils class, which handles
null values.
 totalChildValue = Utils.sum(totalChildValue, childKPI.value);
 }
 // Set the calculated KPI's value to the average value, using the Utils
class.
 // If totalChildValue is null, null value will be set.
 kpi.value = Utils.divide(totalChildValue, bpmTxFromLocationChildKpiList.size
());
}

Example - Worst Health Indicator Rule
The following rule finds the worst status from all of the health indicators (HIs) of the calculated CI,
based on active statuses only. Active statuses areCritical,Major,Minor,Warning, andOK.

public void calculateKPI(CI ci, KPI kpi) {

APM Extensibility Guide
Chapter 1: Service Health Rules API

Application PerformanceManagement (9.50) Page 31 of 125

 // Get all health indicators.
 List<HI> his = ci.getHIs();
 // Create a variable to set the status of the calculated KPI,
 // only if an active status is found.
 boolean isActiveStatusFound = false;
 // Set the current worst status to OK;
 // if a worse status is found this will be updated.
 Status worstHiStatus = Status.OK;
 his.each {HI hi ->
 Status hiStatus = hi.getStatus();
 // Check if the current HI status is an active status.
 if (hiStatus.isActive()) {
 // Mark that an active status was found.
 isActiveStatusFound = true;
 // Check if the child KPI's status is worse than the current worst
status.
 if (hiStatus.isWorse(worstHiStatus)) {
 // Update the worst status.
 worstHiStatus = hiStatus;
 }
 }
 }
 // Check if an active status was found in the child KPI.
 if (isActiveStatusFound) {
 // Set the calculated KPI status.
 kpi.setStatus(worstHiStatus);
 }
}

Example - Using Groovy Closure
The following rule sets the calculated KPI's status to Critical, if at least one Availability KPI with Major
status exists for the calculated CI's child CIs.

This rule illustrates Groovy Closure. Refer to http://groovy.codehaus.org/Closures for more
information.

public void calculateKPI(CI ci, KPI kpi) {
 /**

* Use Groovy Closure with the CI class getChildrenKPIs method,
* to get List of KPIs from the CI`s child CIs, where
* 1. KPI type is Availability
* 2. Status is MAJOR

Closure description:
{ KPI childKPI ->

APM Extensibility Guide
Chapter 1: Service Health Rules API

Application PerformanceManagement (9.50) Page 32 of 125

http://groovy.codehaus.org/Closures

 childKPI.type == KpiType.Availability.getID("DASHBOARD") &&
childKPI.status == Status.MAJOR

}
The Closure defines one parameter named childKPI of type KPI.
Each KPI from the CI`s child CIs will be passed to the Closure by the

getChildrenKPIs method.
The Closure body returns a boolean value based on the logical expression

result.
Each KPI that the Closure body will return true for, will be part of the

returned List
The expression KpiType.Availability.getID("DASHBOARD") returns an int

representing the Availability KPI ID from the Service Health KPI Repository.
*/

 List<KPI> kpiList = ci.getChildrenKPIs {KPI childKPI ->
 childKPI.type == KpiType.Availability.getID("DASHBOARD") &&
childKPI.status == Status.MAJOR
 }
 // Check if such a KPI exists.
 if (kpiList.isEmpty()) {

 // No such KPI exists.
 // Write to a log file at debug level.
 logger.debug "Closure Rule: no Availability KPI with MAJOR status
exist"
 }
 else {
 // At least one Availability KPI with MAJOR status exists.
 logger.debug("Closure Rule: At least one Availability KPI with MAJOR
status exist")
 // Set calculated KPI status to CRITICAL.
 kpi.status = Status.CRITICAL;
 }
}

APM Extensibility Guide
Chapter 1: Service Health Rules API

Application PerformanceManagement (9.50) Page 33 of 125

Chapter 2: Service Health External APIs
This section includes:

l Retrieve Indicator Data API, below. You can use this API to access KPI over time statuses, KPI
definitions, and indicator statuses.

l Reset Health Indicator State API, on page 39. In certain event flows, youmight have an HI showing
that a problem has occurred but no event has closed the problem, even though the problem was
fixed. After dealing with the problem, you can use this API to reset the HI's state toNormal.

l Service Health DatabaseQuery API, on page 40. You can use this API to query the database and
return a list of views in XML format.

Retrieve Indicator Data API
The following external API can be used to access KPI over time statuses, KPI definitions, and indicator
statuses.

This section includes the following topics:

l Get KPI Over Time Statuses, below
l Get KPI Definitions, on page 36
l Get Indicator Statuses, on page 37
The service log file is located under: <Gateway server root
directory>\log\EJBContainer\serviceHealthExternalAPI.log.

Return values are supported in XML and JSON formats.

Authentication should be done using basic access authenticationmethod. For details and examples
refer to http://en.wikipedia.org/wiki/Basic_access_authentication.

Get KPI Over Time Statuses
You can use the following to get KPI over time statuses.

API Syntax
http://<Gateway Server>/topaz/servicehealth/customers/<Customer Id>/
kpiOverTime?ciIds=<CI ID>&startDate=<Start Date>&endDate=<End Date>

The API uses the following parameters:

l customerId. Customer ID (use 1 for non-HPE SaaS deployment).
l ciId. Mandatory; use comma-separated CI IDs.
l startDate. Mandatory; start time for the KPI status (value representing the date in seconds since
January 1 1970).

l endDate. Mandatory; end time for the KPI status (value representing the date in seconds since
January 1 1970).

l view. Optional; retrieve the results in the context of a local impact view (default is global view).

Application PerformanceManagement (9.50) Page 34 of 125

http://en.wikipedia.org/wiki/Basic_access_authentication

For details, see Local Impact Views in the APMUser Guide.
l kpiId. Optional; use comma separated KPI internal IDs as in the repository UI (default is empty
for all KPIs). For details, see List of Service Health KPIs in the APM Application Administration
Guide.

The following is an example of the API and its output:

http://host.devlab.ad/topaz/servicehealth/customers/1/kpiOverTime?
ciIds=0b656ce308022a6739e3e726497fda6a&startDate=1296499370
&endDate=1296501466

<kpiStatuses>
 <kpiStatus>
 <ciId>0b656ce308022a6739e3e726497fda6a</entityId>
 <ciDisplayLabel>ATM 1610</ciDisplayLabel>
 <kpiType>6</kpiType>
 <kpiDisplayName>Application Performance</kpiDisplayName>
 <timeStamp>1296499370</timeStamp>
 <status>20</status>
 <statusDisplayName>OK</statusDisplayName>
 <duration>311</duration>
 </kpiStatus>
 <kpiStatus>
 <ciId>0b656ce308022a6739e3e726497fda6a</entityId>
 <ciDisplayLabel>ATM 1610</ciDisplayLabel>
 <kpiType>6</kpiType>
 <kpiDisplayName>Application Performance</kpiDisplayName>
 <timeStamp>1296499681</timeStamp>
 <status>-2</status>
 <statusDisplayName>No Data</statusDisplayName>
 <duration>1785</duration>
 </kpiStatus>
 <kpiStatus>
 <ciId>0b656ce308022a6739e3e726497fda6a</entityId>
 <ciDisplayLabel>ATM 1610</ciDisplayLabel>
 <kpiType>6</kpiType>
 <kpiDisplayName>Application Performance</kpiDisplayName>
 <timeStamp>1296501466</timeStamp>
 <status>20</status>
 <statusDisplayName>OK</statusDisplayName>
 <duration>13334</duration>
 </kpiStatus>
 <kpiStatus>
 <ciId>0b656ce308022a6739e3e726497fda6a</entityId>
 <ciDisplayLabel>ATM 1610</ciDisplayLabel>
 <kpiType>7</kpiType>
 <kpiDisplayName>Application Availability</kpiDisplayName>
 <timeStamp>1296428400</timeStamp>
 <status>0</status>

APM Extensibility Guide
Chapter 2: Service Health External APIs

Application PerformanceManagement (9.50) Page 35 of 125

 <statusDisplayName>Critical</statusDisplayName>
 <duration>69663</duration>
 </kpiStatus>
</kpiStatuses>

The output fields are as follows:

Field Description

ciId CI ID

ciDisplayLabel CI display label

kpiType KPI ID (seeGet KPI Definitions, below below)

kpiDisplayName KPI display name

timeStamp Start time for the KPI status; value representing the date in seconds since
January 1 1970

status KPI status (seeGet Indicator Statuses below)

statusDisplayName KPI status display name

duration Duration of the KPI's status in seconds.

Return Codes
The API returns the following return codes:

Name Error Code Description

BAD_REQUEST 400 l Start date is after the end date
l Start date is in the future
l startDate, endDate or ciIDs aremissing

UNAUTHORIZED 401 User has no permission for the selected view

INTERNAL_
SERVER_ERROR

500 l Result size has exceeded themaximum quota
l General failure

Get KPI Definitions
You can use the following to retrieve the KPIs defined in the system.

API Syntax
http://<Gateway Server>/topaz/servicehealth/customers/<CustomerId>/
repositories/indicators/kpis/<kpiId>

The API uses the following parameters:

APM Extensibility Guide
Chapter 2: Service Health External APIs

Application PerformanceManagement (9.50) Page 36 of 125

l customerId. Customer ID (use 1 for non-HPE SaaS deployment).
l kpiIds. Optional; leave empty for all KPIs (default), or enter a KPI internal ID as in the repository
UI, to select a specific KPI. For details, see List of Service Health KPIs in the APM Application
Administration Guide.

The following is an example of the API and its output:

http://host.devlab.ad/topaz/servicehealth/customers/1/repositories/
indicators/kpis/

<kpis>
 <kpi>
 <id>1</id>
 <name>Legacy System</name>
 </kpi>
 <kpi>
 <id>1311</id>
 <name>Value</name>
 </kpi>
 <kpi>
 <id>1310</id>
 <name>Exceptions</name>
 </kpi>
</kpis>

The output fields are as follows:

Field Description

id KPI internal ID as in the repository UI; for details see List of Service Health KPIs in the
APM Application Administration Guide.

name KPI name

Return Codes
The API returns the following return codes:

Name Error Code Description

NOT_FOUND 404 KPI not found

INTERNAL_
SERVER_ERROR

500 General failure

Get Indicator Statuses
You can use the following to retrieve indicator statuses.

APM Extensibility Guide
Chapter 2: Service Health External APIs

Application PerformanceManagement (9.50) Page 37 of 125

API Syntax
http://<Gateway Server>/topaz/servicehealth/customers/<CustomerId>/
repositories/indicators/statuses

The API uses the following parameter:

customerId. Customer ID (use 1 for non-HPE SaaS deployment).

The following is an example of the API and its output:

http://host.devlab.ad/topaz/servicehealth/customers/1/repositories/
indicators/statuses

<targets>
 <target>
 <id>20</id>
 <name>OK</name>
 </target>
 <target>
 <id>15</id>
 <name>Warning</name>
 </target>
 <target>
 <id>10</id>
 <name>Minor</name>
 </target>
 <target>
 <id>5</id>
 <name>Major</name>
 </target>
 <target>
 <id>0</id>
 <name>Critical</name>
 </target>
 <target>
 <id>-1</id>
 <name>Info</name>
 </target>
 <target>
 <id>-2</id>
 <name>No Data</name>
 </target>
 <target>
 <id>-4</id>
 <name>Downtime</name>
 </target>
</targets>

The output fields are as follows:

APM Extensibility Guide
Chapter 2: Service Health External APIs

Application PerformanceManagement (9.50) Page 38 of 125

Field Description

id KPI status internal ID

name KPI status name

Return Codes
The API returns the following return codes:

Name Error Code Description

INTERNAL_
SERVER_ERROR

500 General failure

Reset Health Indicator State API
In certain event flows, youmight have an HI showing that a problem has occurred but no event has
closed the problem, even though the problem was fixed. After dealing with the problem, youmight want
to reset the HI's state toNormal (default). For details on resetting HI state within Service Health, see
Health Indicator Component in the APMUser Guide.

The Reset HI State API enables users outside of the APM user interface to reset event-based HIs to
their default state, using the HTTP-based REST protocol.

You can reset all HIs on a specific CI, or reset a specific HI.

This REST API is case-sensitive, and uses thePUTmethod.

NOTE:
This API can impact the overall performance of your system; consult with Professional Services
before using the API.

API Syntax
l To reset all HIs related to a CI:

http://<Gateway Server>/topaz/servicehealth/customers/<CustomerId>/cis/<CI
ID>/his/reset

l To reset a specific HI:

http://<Gateway Server>/topaz/servicehealth/customers/<CustomerId>/cis/<CI
ID>/his/<HI name>/reset

l To reset a specific subcomponent of an HI:

http://<Gateway Server>/topaz/servicehealth/customers/<CustomerId>/cis/<CI
ID>/his/<HI name>/reset?subcomponent=<subcomponent name>

HI name refers to the name of the HI as defined in the indicator repository, and not to the HI's
display label.

APM Extensibility Guide
Chapter 2: Service Health External APIs

Application PerformanceManagement (9.50) Page 39 of 125

Return Codes and Log File
The API returns the following return codes:

Name Error Code Description

OK 200 Success

UNAUTHORIZED 401 The user is not authorized for the customer

NOT_FOUND 404 l CI not found
l HI not found
l Bad request (syntax error)

INTERNAL_
SERVER_ERROR

500 l RTSM error
l Repositories error
l Online engine error

The service log file is located under: <Gateway server root
directory>\log\EJBContainer\serviceHealthExternalAPI.log.
In addition, the service writes to the Audit log on each HI reset.

Service Health Database Query API
You can use the Service Health API to query the database and return a list of views in XML format.

TIP:
You can use XSLT to convert the XML output into any other format (commonly text or HTML).
For example, using basic XSLT transformations, you can produce HTML reports that are
formatted to fit onmobile devices. These reports can be served via amobile portal to display
critical Application PerformanceManagement views on users' mobile phones.

Query Syntax
The basic syntax of the query is as follows:

http://<Gateway Server>/topaz/bam/BAMOpenApi?customerId=<customer
ID>&userName=<user name>&password=<password>&command=<command parameter>

Depending on the command parameter defined, additional parameters may also be included.

Supported Parameters Used in the Query
The following table lists the parameters that must be defined in the query.

Parameter Description

customerID APM customers should specify 1. Software-as-a-Service customers
should specify their unique customer ID.

userName Specify a user name defined in APM. The query does not encrypt the
login credentials.

APM Extensibility Guide
Chapter 2: Service Health External APIs

Application PerformanceManagement (9.50) Page 40 of 125

Parameter Description

password Specify the password for the user name provided. The query does not
encrypt the login credentials.

command Specify one of the following values:

getViews – Specify to retrieve all views from the Run-time Service
Model (RTSM). No other parameters are required.

getNodes – Specify to retrieve all child nodes of a specified view (you
must also specify the view for which to retrieve child nodes in the
viewName parameter); if using this command parameter you can also
set the following parameters: showTooltip, depth, layout, xsltURL,
responseContentType

viewName If the getNodes command parameter is defined, include this parameter
in the query and specify the view to retrieve. You can set the value to
ticker_all_views to retrieve all views and their nodes.

showTooltip If the getNodes command parameter is defined, you can include this
parameter in the query to specify whether to display Service Health's
KPI tooltip data, either true to display data or false to not. The default
value is false.

depth If the getNodes command parameter is defined, you can include this
parameter in the query to specify the number of levels in the view to
display. The default value is 1.

layout If the getNodes command parameter is defined, you can include this
parameter in the query to specify the layout for the query results, either
hierarchical or flat. In flat mode all nodes are retrieved in a flat list, and
in hierarchical mode nodes are retrieved in the same hierarchy as in the
view. The default value is flat.

xsltURL If the getNodes command parameter is defined, you can include this
parameter in the query to specify a URL to an .xslt file that transforms
the .xml-format result of the query.

responseContentType If the getNodes command parameter is defined, and the xsltURL
parameter is included in the query, you can include this parameter in the
query to specify the responseMIME type.

Query Examples
Below are examples of queries and the data they return.

The following query returns a flat list of all views in the Run-time ServiceModel (RTSM):

http://myserver/topaz/bam/BAMOpenApi?customerId=1
&userName=admin&password=admin&command=getViews

The following query returns a hierarchical tree showing KPI status and tooltip information for the

APM Extensibility Guide
Chapter 2: Service Health External APIs

Application PerformanceManagement (9.50) Page 41 of 125

ServiceMeasurements view, to a depth of three child nodes:

http://myserver/topaz/bam/BAMOpenApi?customerId=1&userName=
admin&password=admin&command=getNodes&viewName=Service%20
Measurements&showTooltip=true&depth=3&layout=hierarchical

APM Extensibility Guide
Chapter 2: Service Health External APIs

Application PerformanceManagement (9.50) Page 42 of 125

Part 2: Service Level Management

APM Extensibility Guide

Application PerformanceManagement (9.50) Page 43 of 125

Chapter 3: SLMExternal API
You can use the SLM external API to retrieve SLA configuration properties and SLA calculation results,
in order to consume this data in external applications.

The API enables you to access and process SLM data from outside APM. For details, see:

l Get SLA Configuration Data, below
l Get SLA Calculation Results, on page 46
l Get Calendars, on page 48
l Get Tracking Periods, on page 50
l Get KPIs, on page 51
l Get Indicator Statuses, on page 52
The service log file is located under: <Gateway server root
directory>\log\EJBContainer\slmExternalAPI.log.

Return values are supported in XML and JSON formats.

Authentication should be done using basic access authenticationmethod. For details and examples
refer to http://en.wikipedia.org/wiki/Basic_access_authentication.

Get SLA Configuration Data
You can use the following to get SLA configuration data.

API Syntax
http://<Gateway Server>/topaz/slm/customers/<CustomerId>/sla/<slaId>

The API uses the following parameters:

l customerId. Customer ID (use 1 for non-SaaS deployment).
l slaId. SLA RTSM ID (non-mandatory parameter; leave empty to get all SLAs in the system).
The following is an example of the API output:

<sla>
 <id>c808d3ddce3d849c1cc0d667bec7f6cc</id>
 <name>TestSLA3</name>
 <description></description>
 <details></details>
 <timezone>Central Standard Time</timezone>
 <type>SLA</type>
 <creator>administrator</creator>
 <url></url>
 <classification>Formal</classification>
 <customer>

Application PerformanceManagement (9.50) Page 44 of 125

http://en.wikipedia.org/wiki/Basic_access_authentication

 <customerId>e35cded4b3a628a8da4b9cf352007467</customerId>
 <customerName>IT Department</customerName>
 </customer>
 <provider>
 <providerId>ae9ea545c5f99adb52d7edd641bbf8ef</providerId>
 <providerName>Customers</providerName>
 </provider>
 <state>Running</state>
 <startDate>1290938400</startDate>
 <endDate>1608631200</endDate>
 <targets>
 <target>0</target>
 <target>5</target>
 <target>20</target>
 <target>10</target>
 <target>15</target>
 </targets>
 <trackingPeriods>
 <trackingPeriod>3ef2dfe04fa07c349e72ca9e7b04e2af</trackingPeriod>
 <trackingPeriod>bffe0ea9334ff7f309e969eec3c9c266</trackingPeriod>
 <trackingPeriod>a562b09777271425835abadb12f32e73</trackingPeriod>
 <trackingPeriod>f9f77b20f986fbb2eb064b0a30ece93d</trackingPeriod>
 <trackingPeriod>4ecf36e0eb88816745a8849db029c73f</trackingPeriod>
 </trackingPeriods>
 <calendars>
 <calendar>ecf840eef788851986195301aba206fd</calendar>
 </calendars>
</sla>

The output fields are as follows:

Field Description

slaId SLA ID

name SLA name

description SLA description

details SLA details

type OLA, SLA, or UC

creator Username of the user which created the SLA

timezone SLA time zone

url Link to the contract details from an external source.

classification Formal or informal

APM Extensibility Guide
Chapter 3: SLM External API

Application PerformanceManagement (9.50) Page 45 of 125

Field Description

customer CI ID and name of the organization specified as the customer of the SLA.

provider CI ID and name of the organization specified as the provider of the SLA.

state Preliminary, Running, or Terminated

startDate SLA start date, long value representing the date in milliseconds since January 1,
1970. 00:00:00 GMT.

endDate SLA end date, long value representing the date in milliseconds since January 1,
1970.

targets IDs of the SLA targets

trackingPeriods IDs of the tracking periods

calenders IDs of the SLA calendars

Return Codes
The API returns the following return codes:

Name Error Code Description

UNAUTHORIZED 401 User has no view permission for selected SLA

NOT_FOUND 404 SLA not found

INTERNAL_
SERVER_ERROR

500 General failure

Get SLA Calculation Results
You can use the following to retrieve the SLA calculation results; this API supports filtering by CI, KPI,
tracking periods, and calendars.

API Syntax
http://<Gateway Server>/topaz/slm/customers/
<customerId>/ciSummary/<view>/sla/ <slaId>?
calendar=<calendarId>&startDate=<startDate>&endDate=<endDate>&ciIds=<ciIds>&kpiId=<
kpiId>/&isModified=true

The API uses the following parameters:

l customerId. Customer ID (use 1 for non-SaaS deployment).
l view.Mandatory; report view. Use one of the following: hour, day, week, month, quarter, year,
weekToDate, monthToDate, quarterToDate, yearToDate or slaToDate.

l slaId. SLA ID (use "all" for all SLAs).

APM Extensibility Guide
Chapter 3: SLM External API

Application PerformanceManagement (9.50) Page 46 of 125

l calendar. Optional, SLA calendar ID (leave empty for all SLA defined calendars, seeGet Calendars,
on the next page).

l startDate.Mandatory for closed periods only, in seconds.
l endDate.Mandatory for closed periods only, in seconds.
l ciIds. Optional. Comma separated CI IDs; leave empty for all SLA CIs (or SLA nodes when slaId is
"all").

l kpiId. Optional. KPI internal ID (as it appears in the KPI repository UI); leave empty for all KPIs.
This API does not support Outage KPI.

l isModifiedOptional. Set the parameter to true to get the list of SLAs modified between the provided
start date and end date.

The following is an example of the API output:

<slaStatus>
 <slaId>2c4d69f2784021a6a94b7a40100ba31f</slaId>
 <ciId>b8ae7539b0cb338f3bce84b4866647eb</id>
 <startDate>1293832800</startDate>
 <endDate>1294225200</endDate>
 <ciName>someName</ciName>
 <trackingPeriod>a562b09777271425835abadb12f32e73</trackingPeriod>
 <calendar>dd9ef8826c553d3e217fa0b3bf03f0a0</calendar>
 <kpiType>220</kpiType>
 <kpiDisplayName>SLM Status</kpiDisplayName>
 <kpiStatus>0</kpiStatus>
 <statusDisplayName>Failed</statusDisplayName>
 <kpiValue>0</kpiValue>

<modifiedTime>1533169812</modifiedTime>
</slaStatus>

The output fields are as follows:

Field Description

slaId SLA ID

ciId CI ID

startDate Period start time, long value representing the date in seconds since January 1
1970

endDate Period end time, long value representing the date in seconds since January 1
1970

ciName If youmake a request for a single SLA, the CI name is displayed along with
the CI ID. If SLA ID and CI ID are same, it displays the SLA name.

trackingPeriod Tracking period of the sample: hour, day, week, month, quarter, year, SLA
period (seeGet Tracking Periods, on page 50).

calendar Calendar of the sample (seeGet Calendars, on the next page).

APM Extensibility Guide
Chapter 3: SLM External API

Application PerformanceManagement (9.50) Page 47 of 125

Field Description

kpiType KPI ID (seeGet KPIs, on page 51).

kpiDisplayName KPI display name

kpiStatus KPI status ID (seeGet Indicator Statuses, on page 52).

statusDisplayName KPI status display name

kpiValue KPI numeric value

modifiedTime SLA results updated time

Return Codes
The API returns the following return codes:

Name Error Code Description

BAD_REQUEST 400 l Unsupported view
l Start date is after the end date
l startDate, endDate aremissing for closed view (closed
period)

UNAUTHORIZED 401 User has no view permission for selected SLA

INTERNAL_
SERVER_ERROR

500 l Result size has exceeded themaximum quota
l General failure

Get Calendars
You can use the following to retrieve the calendars defined in the system.

API Syntax
http://<Gateway Server>/topaz/slm/customers/
<CustomerId>/repositories/calendars/<calendarId>

The API uses the following parameters:

l customerId. Customer ID (use 1 for non-SaaS deployment).
l calendarId. Calendar ID (leave empty for all calendars in the system).
The following is an example of the API output:

<calendars>
 <calendar>
 <id>5c6c09ec3d61db775333bb5beb5ea863</id>
 <name>testcalc</name>

APM Extensibility Guide
Chapter 3: SLM External API

Application PerformanceManagement (9.50) Page 48 of 125

 <description></description>
 <scheduleDescription>Friday 3:00 AM - 3:30 AM, Wednesday 2:30 PM - 3:00
 PM, Thursday 5:30 PM - 6:00 PM, Wednesday 3:30 AM - 4:30 AM, Tuesday
11:00 AM - 11:30 AM, Friday 10:00 AM - 10:30 AM, Monday 2:00 AM - 2:30 AM,
Wednesday 7:00 AM - 7:30 AM, Thursday 10:30 AM - 11:00 AM, Sunday, Monday 6:30
AM - 7:00 AM, Friday 2:00 PM - 2:30 PM, Monday 8:00 PM - 8:30 PM, Thursday 9:00
PM - 9:30 PM
 </scheduleDescription>
 </calendar>
 <calendar>
 <id>ecf840eef788851986195301aba206fd</id>
 <name>24x7</name>
 <description>24 hours, 7 days a week</description>
 <scheduleDescription>Sunday, Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday 12:00 AM - 12:00 AM
 </scheduleDescription>
 </calendar>
 <calendar>
 <id>86594b724cb03e2647b2a86b08103a28</id>
 <name>Business Hours</name>
 <description>8:00-17:00, Monday-Friday</description>
 <scheduleDescription>Monday, Tuesday, Wednesday, Thursday, Friday 8:00
AM - 5:00 PM
 </scheduleDescription>
 </calendar>
</calendars>

The output fields are as follows:

Field Description

id Calendar ID

name Calendar display name

description Calendar description

scheduleDescription A string representing the calendar scheduling configuration.

Return Codes
The API returns the following return codes:

Name Error Code Description

NOT_FOUND 404 Calendar not found

INTERNAL_
SERVER_ERROR

500 General failure

APM Extensibility Guide
Chapter 3: SLM External API

Application PerformanceManagement (9.50) Page 49 of 125

Get Tracking Periods
You can use the following to retrieve the tracking periods defined in the system.

API Syntax
http://<Gateway Server>/topaz/slm/customers/
<CustomerId>/trackingPeriods/<trackingPeriodId>

The API uses the following parameters:

l customerId. Customer ID (use 1 for non-SaaS deployment).
l trackingPeriodId. Tracking period ID (leave empty for all tracking periods in the system).
The following is an example of the API output:

<trackingPeriods>
 <trackingPeriod>
 <id>a562b09777271425835abadb12f32e73</id>
 <name>Month</name>
 </trackingPeriod>
 <trackingPeriod>
 <id>dd613d616284c14ec848a4fa5d939655</id>
 <name>Hour</name>
 </trackingPeriod>
 <trackingPeriod>
 <id>2e57ee4d9c4f6b50a1d01385a861aa4b</id>
 <name>Day</name>
 </trackingPeriod>
 <trackingPeriod>
 <id>4ecf36e0eb88816745a8849db029c73f</id>
 <name>Week</name>
 </trackingPeriod>
 <trackingPeriod>
 <id>3ef2dfe04fa07c349e72ca9e7b04e2af</id>
 <name>Quarter</name>
 </trackingPeriod>
 <trackingPeriod>
 <id>f9f77b20f986fbb2eb064b0a30ece93d</id>
 <name>Year</name>
 </trackingPeriod>
 <trackingPeriod>
 <id>bffe0ea9334ff7f309e969eec3c9c266</id>
 <name>SLA period</name>
 </trackingPeriod>
</trackingPeriods>

The output fields are as follows:

APM Extensibility Guide
Chapter 3: SLM External API

Application PerformanceManagement (9.50) Page 50 of 125

Field Description

id Tracking period ID

name Tracking period display name

Return Codes
The API returns the following return codes:

Name Error Code Description

INTERNAL_
SERVER_ERROR

500 General failure

Get KPIs
You can use the following to retrieve the KPIs defined in the system.

API Syntax
http://<Gateway Server>/topaz/slm/customers/
<CustomerId>/repositories/indicators/kpis/<kpiId>

The API uses the following parameters:

l customerId. Customer ID (use 1 for non-SaaS deployment).
l kpiId. KPI ID (leave empty for all KPIs in the system).
The following is an example of the API output:

<kpis>
 <kpi>
 <id>1</id>
 <name>Legacy System</name>
 </kpi>
 <kpi>
 <id>1311</id>
 <name>Value</name>
 </kpi>
 <kpi>
 <id>1310</id>
 <name>Exceptions</name>
 </kpi>
 <kpi>
 <id>615</id>
 <name>Operational Status</name>
 </kpi>
 <kpi>

APM Extensibility Guide
Chapter 3: SLM External API

Application PerformanceManagement (9.50) Page 51 of 125

 <id>6</id>
 <name>Application Performance</name>
 </kpi>
 <kpi>
 <id>7</id>
 <name>Application Availability</name>
 </kpi>
 <kpi>
 <id>1500</id>
 <name>Generic</name>
 </kpi>
</kpis>

The output fields are as follows:

Field Description

id KPI ID

name KPI display name

Return Codes
The API returns the following return codes:

Name Error Code Description

NOT_FOUND 404 KPI not found

INTERNAL_
SERVER_ERROR

500 General failure

Get Indicator Statuses
You can use the following to retrieve indicator statuses.

API Syntax
http://<Gateway Server>/topaz/slm/customers/
<CustomerId>/repositories/indicators/targets

The API uses the following parameter:

customerId. Customer ID (use 1 for non-SaaS deployment).

The following is an example of the API output:

<targets>
 <target>

APM Extensibility Guide
Chapter 3: SLM External API

Application PerformanceManagement (9.50) Page 52 of 125

 <id>20</id>
 <name>Exceeded</name>
 </target>
 <target>
 <id>15</id>
 <name>Met</name>
 </target>
 <target>
 <id>10</id>
 <name>Minor Breached</name>
 </target>
 <target>
 <id>5</id>
 <name>Breached</name>
 </target>
 <target>
 <id>0</id>
 <name>Failed</name>
 </target>
 <target>
 <id>-4</id>
 <name>Downtime</name>
 </target>
 <target>
 <id>-2</id>
 <name>No Data</name>
 </target>
</targets>

The output fields are as follows:

Field Description

id Target/Status ID (as it appears in the calculation results)

name Target/Status display name

Return Codes
The API returns the following return codes:

Name Error Code Description

INTERNAL_
SERVER_ERROR

500 General failure

APM Extensibility Guide
Chapter 3: SLM External API

Application PerformanceManagement (9.50) Page 53 of 125

Chapter 4: SLMRules API
NOTE:
In APM versions 9.00 and later, the rules that calculate indicator statuses and values based on
samples (API Sample Rule, on page 60 and API Duration-Based Sample Rule, on page 62) are
used to calculate metric-based health indicators (HIs).

Throughout the Rules API documentation, you will see references to various methods used to
calculate KPIs. In APM versions 9.00 and later, when calculating sample-based values,
these methods are used to calculate metric-based HIs.

This chapter describes how to use the Rules API to create business rules to calculate Key
Performance Indicators (KPIs). The default Service Level Management rules appear in the section List
of Service Level Management Business Rules in the APM Application Administration Guide.

The recommended way to create new rules is with the Rules API. The Rules API enables you to create
rules using the Groovy dynamic scripting language with Groovy runtime environment 1.7.3 and earlier.
Users of this API should be familiar with Groovy and Java syntax, and with APM administration and
applications.

The Rules API classes are documented in Javadoc format in theRules API Reference. These files are
located in the following folder:
\\<Gateway Server root directory>\
AppServer\webapps\site.war\amdocs\eng\doc_lib\API_docs\Rules_API\index.html.

NOTE:
Extensive use of rules which use the Rules API will affect the performance of SLA calculation.

Types of API Rules
The following are the API rules in Service Level Management:

l Simplified Average Rule and Simplified Duration-Based Average Rule. These rules
calculate health indicator average values based on data taken from sample fields, and enables
you tomanipulate these values. These rules are simpler to define than other API rules, and only
require you to enter the sample field you want used in the calculation. For details, see API
Simplified Average Rules, on the next page.

l Group and Sibling Rule. This rule calculates KPIs based on aggregated values received from
other KPIs, rather than from original sample data. The received data can come from the KPIs of
child CIs (group), or from another KPI associated with the sameCI (sibling). For details, see API
Group and Sibling Rule, on page 56.

l Sample Rule. This rule calculates KPIs based on data taken from sample fields. For details,
see API Sample Rule, on page 60.

l Duration-Based Sample Rule. This rule calculates KPIs based on data taken from sample
fields, and uses both the sample's value and its duration within the rule calculation (for example,
availability over time or backlog over time). For details, see API Duration-Based Sample Rule, on
page 62.

l Outage by Samples Rule. This rule calculates outages based on data received from samples.
For details, see API Outage by Samples Rule, on page 65.

Application PerformanceManagement (9.50) Page 54 of 125

For details on how sample rules are calculated, see Sample Rule CalculationMechanism -
Overview, on page 58.

Creating API Rules
Rules can be created using the Rules API in three ways:

l Using the KPI Definition page to create a rule for a specific KPI.
l Using a text file to create a new rule for multiple KPIs.
l Using a clone of an API rule template in the rule repositories.
Thesemethods are described in Creating Rules with the Rules API, on page 66.

Tooltips and Log Files
To display KPI information in tooltips when working with the Rules API, see How toWork with
Tooltip Entries, on page 71.

You can write to log files from the Rules API code, as described in How toWrite to Log Files From
the Rules API Code, on page 72.

API Simplified Average Rules
The API Simplified Average Rule and API Simplified Duration-Based Average Rule calculate health
indicator average values based on data taken from sample fields, and enable you to easily manipulate
these calculations.

API Simplified Average Rule
The Simplified Average Rule calculates an average of sample field values, uses the rule
parameters: Enumerator and Denomination.

l In theEnumerator area, enter the name of the sample field you want to use in the calculation in
the following format: sample.<field name>.
To calculate the average value of the sample field dValue, type sample.dValue in the
Enumerator. The rule takes the values of this field from the samples that come in during the
calculation cycle, and calculates their average. This average becomes the value of the health
indicator for the cycle.
You can also usemathematical expressions tomanipulate these calculations. For example,
suppose you have an EMS integration sending samples with two values: attr1 representing sent
text messages, and attr2 representing failed text messages. To calculate the average number of
successful messages (attr1-attr2), type sample.attr1-sample.attr2 in the Enumerator.

l You can use theDenomination area to perform actions on the above value; the number or value
you enter in this area is used to divide the Enumerator result.
For example, if you enter sample.dValue in the Enumerator, and 2 in the Denomination, the
average of the dValue fields on the samples is divided by two, and the health indicator value is
half the average of the sample fields.

API Simplified Duration-Based Average Rule
The Simplified Duration-Based Average Rule calculates an average of sample field values, taking
the duration values from the samples themselves.

APM Extensibility Guide
Chapter 4: SLM Rules API

Application PerformanceManagement (9.50) Page 55 of 125

In theEnumerator field, enter the name of the sample field you want to use in the calculation in the
following format: Sample.<field name>.

The rule takes the durations from the samples and calculates the average of sample field value,
divided by their durations.

For example, if the value of the specified field was 10 for 40minutes and 5 for 20minutes, the rule
calculates (10x40) + (5x2) / 60 = 8.33. The health indicator's average value for this hour will be 8.33.

API Group and Sibling Rule
An API Group and Sibling Rule calculates KPIs based on data received from other KPIs, rather than
from original sample data. The received data can come from the KPIs of child CIs, or from other KPIs or
HIs associated with the sameCI.

NOTE:
If you are creating a sibling rule, make sure that the KPI is calculated after its sibling KPIs, as
defined by the KPI's Calculation Order field. For details, see New KPI/Edit KPI Dialog Box in the
APM Application Administration Guide.

The KPI is calculated based on the aggregated values of the group or sibling KPIs or HIs. The
calculated KPI results represent the aggregated results.

Group and Sibling Rule Methods and Fields
TheGroup and Sibling rule implements the Rules API InterfaceGroupAndSiblingCalculator,
using the following guidelines:

l In this interface, the only method is calculateKPI. Themethod signature is:
public void calculateKPI(CI ci, KPI kpi)

l The calculateKPImethod includes the parameters ci and kpi, which represent the current CI,
and the KPI or HI whose value the API rule calculates.

l The ci parameter type is CI, and is used as an accessor to KPIs of child CIs or sibling KPIs, or
HIs on the CI. TheKPI objects returned by CI are used to get the aggregated values of these
KPIs or HIs.

l The kpi parameter type is KPI, and is used to set calculation results.
In the following illustration, the Calculated KPI is calculated based on the sibling or child KPIs, and
it is represented by the kpi parameter.

The CI to which the Calculated KPI is assigned, is represented by the ci parameter, and it is an
accessor to the other KPIs and HIs.

APM Extensibility Guide
Chapter 4: SLM Rules API

Application PerformanceManagement (9.50) Page 56 of 125

The Rules API classes are documented in Javadoc format in theRules API Reference. These files
are located in the following folder:
\\<Gateway Server root directory>\
AppServer\webapps\site.war\amdocs\eng\doc_lib\API_docs\Rules_API\index.html.

For examples of Group and Sibling rules, see Examples - API Group and Sibling Rule, on page 74.

API rules can be defined within the KPI Definition page or Rule Repository, or using a text file
template, as described in Creating Rules with the Rules API, on page 66.

Defining a Group and Sibling Rule in the KPI Definition Page or Rule Repository
To define aGroup and Sibling rule using the KPI Definition page or within the Rule Repository, enter
the calculateKPI method implementation in theKPI Calculation Script area.

The parameters ci and kpi of the calculateKPImethod are available for use in this script.

For detailed instructions, see How to Define an API Rule for a Specific KPI or Outage, on page 67
or How to Define an API RuleWithin the Rule Repository, on page 70.

Accessing a Specific Child KPI in the KPI Definition Page
When creating aGroup rule for a specific KPI in the KPI Definition page, to access a specific child
KPI, the API includes amechanism to simplify the code. When defining your KPI Calculation
Script, you can enter the format "<CI name>"."<KPI name>".

For an example of this, see Examples - API Group and Sibling Rule, on page 74.

Defining a Group and Sibling Rule Using a Text File
To define aGroup and Sibling rule using a text file, use the
SlmGroupAndSiblingTemplate.groovy template as described in How to Create a Text File-
Based API Rule, on page 68.

Within the text file, enter the calculateKPI method body.

APM Extensibility Guide
Chapter 4: SLM Rules API

Application PerformanceManagement (9.50) Page 57 of 125

Sample Rule Calculation Mechanism - Overview
The API Sample rule and Duration-Based Sample rule calculate KPIs based on sample values, for
each combination of calendar and tracking period. This calculation process in divided into calculation
cycles.

Each calculation cycle, the following steps occur:

1. The samples that are in the Profile database for the calculation cycle time are retrieved. For
example, if a KPI is calculated for 10:00-11:00 and the cycle duration is 5minutes, the samples
that are in the database with the timestamp 10:00-10:05 are used in the first cycle's calculation.

2. The samples go through a filteringmechanism which determines which samples are included in
the calculation.

3. The KPI is calculated for the cycle based on the samples that passed through the filtering
mechanism. For details, see Sample Rules: Calculating the KPI Based on Samples, below.

4. Aggregated KPI results are calculated based on the results for the cycle, and the previous
aggregated results for the full calculation period. These aggregated KPI results are displayed in the
Service Level Management reports. For details, see Sample Rules: Calculating the KPI's
Aggregated Results, on the next page.

Sample Rules: Calculating the KPI Based on
Samples
KPI results are calculated for each calculation cycle by the calculateKPImethod, based on the
samples parameter. The samples parameter is a List of Sample objects, which hold sample field
values.

The Rules API classes are documented in Javadoc format in theRules API Reference. These files are
located in the following folder:
\\<Gateway Server root directory>\
AppServer\webapps\site.war\amdocs\eng\doc_lib\API_docs\Rules_API\index.html.

The calculateKPImethod can be used to set KPI value, keys, and tooltips.

The value, keys, and tooltips set by the calculateKPImethod are available to the
calculateAggregatedKPI method, as described in Sample Rules: Calculating the KPI's Aggregated
Results, on the next page.

Setting KPI Value
KPI value should be used when calculating KPI value directly from the sample fields. For details on
setting the value, refer to the setValuemethod documentation.

For an example which uses KPI value, see Example - Sample-BasedMaximum Response Time
Rule, on page 78.

Setting KPI Calculation Keys
Each KPI can hold keys which are used as helpers to calculate value or tooltips. For example, when
calculating average response time (total response time / total number of samples), the setKey
method is used to set two keys for the current cycle: total response time, and total number of

APM Extensibility Guide
Chapter 4: SLM Rules API

Application PerformanceManagement (9.50) Page 58 of 125

samples. These keys are aggregated and used to calculate the aggregated value of the KPI.

For an example which uses KPI calculation keys, see Example - Sample-Based Average
Response TimeRule, on page 74.

Setting KPI Tooltips
KPI tooltips should be used when calculating KPI tooltips directly from the sample fields. For details
on setting the tooltips, refer to the setTooltipmethod documentation.

Sample Rules: Calculating the KPI's Aggregated
Results
Using the values, tooltips, and keys set by the calculateKPImethod, the calculateAggregatedKPI
method calculates aggregated values, keys, and tooltips.

The aggregated results are based on the KPI calculation results for the cycle, and the aggregated
calculation results from the previous cycles.

The Rules API classes are documented in Javadoc format in theRules API Reference. These files are
located in the following folder:
\\<Gateway Server root directory>\
AppServer\webapps\site.war\amdocs\eng\doc_lib\API_docs\Rules_API\index.html.

The calculateAggregatedKPI method can be used to set KPI aggregated value, keys, and tooltips.

Setting KPI Aggregated Value
The KPI aggregated value can be calculated based on KPI value (for example, minimum
calculation), or based on aggregated keys (for example, average response time). The KPI
aggregated value is displayed in the Service Level Management report. For details on setting the
aggregated value, refer to the setAggregatedValuemethod documentation.

For an example which calculates KPI aggregated value based on KPI value, see Example -
Sample-BasedMaximum Response TimeRule, on page 78.

For an example which calculates KPI aggregated value based on KPI aggregated keys, see
Example - Sample-Based Average Response TimeRule, on page 74.

Setting KPI Aggregated Calculation Keys
The aggregated keys are used as helpers to calculate aggregated value or aggregated tooltips. The
aggregated keys are calculated based on aggregated keys and keys from the current cycle.

For example, when calculating average response time (total response time / total number of
samples), the setAggregatedKeymethod is used to set two aggregated keys: total response time,
and total number of samples. These value are then used to calculate the aggregated KPI value.

For details on setting the aggregated keys, refer to the setAggregatedKeymethod documentation.

For an example which uses KPI aggregated calculation keys, see Example - Sample-Based
Average Response TimeRule, on page 74.

Setting KPI Status
If your rule sets KPI status, use the setStatusmethod within the calculateAggregatedKPI

APM Extensibility Guide
Chapter 4: SLM Rules API

Application PerformanceManagement (9.50) Page 59 of 125

method.

Setting KPI Aggregated Tooltips
The KPI aggregated tooltips can be calculated based on KPI tooltips, or aggregated keys. The KPI
aggregated tooltips are displayed in the Service Level Management report.

For details on setting the aggregated tooltips, refer to the setAggregatedTooltipmethod
documentation.

When to Use Sample or Duration-Based Sample
Rules
Use a Sample rule to calculate KPIs based on sample values and number of samples (when needed),
without using sample duration in the calculation.

Use a Duration-based Sample rule to calculate KPIs based on sample values and sample duration,
without using the number of samples in the calculation.

Example of Average Response Time Calculation
Average response time can be calculated using a Sample rule or a Duration-Based Sample rule.

At 10:00 a sample is received with 100 seconds as response time, and at 10:55 a sample is
received with 50 seconds as response time. The rule calculation is for 10:00-11:00.

The API Sample rule calculates average response time (total response time / number of samples) =
75 seconds.

The API Duration-Based Sample rule calculates weighted response time based on the value of the
samples, and on their durations. The duration of the first sample is 55minutes and the duration of
the second sample is 5minutes. The weighted average response time for the period is (55x100 +
5x50) / 60 = 95.83 seconds.

API Sample Rule
A Sample rule calculates KPIs based on aggregated data taken from sample fields. For details on when
to use the Sample rule, seeWhen to Use Sample or Duration-Based Sample Rules, above.

For details on how the rule is calculated, see Sample Rule CalculationMechanism - Overview, on page
58.

Sample Rule Methods and Fields
The Sample rule implements the Rules API InterfaceSlmSamplesAggregatedCalculator, which
contains the followingmethods:

public void calculateKPI(CI ci, SlmKPI kpi, List<Sample> samples)

public void calculateAggregatedKPI(CI ci, SlmKPI kpi)

public boolean isSampleValid(CI ci, SlmKPI kpi, Sample sample)

APM Extensibility Guide
Chapter 4: SLM Rules API

Application PerformanceManagement (9.50) Page 60 of 125

l The calculateKPImethod calculates the KPI for each calculation cycle. This method includes
the parameters ci, kpi, and samples. These represent the current CI, the KPI whose value the
rule calculates, and the samples to be used in the rule calculation.

l The kpi parameter type is SlmKPI, and is used to set calculation results.
l The samples parameter is a List of Sample objects, which hold sample field values.
l The calculateAggregatedKPI method calculates the aggregated KPI. This method includes the
parameters ci and kpi.

l The isSampleValidmethod is used to filter samples. If a sample is not valid, is not included in
the calculation. Samples that are valid are included in the samples parameter of the
calculateKPImethod.

l The rule must also set the sampleFields field to define which sample fields are held by the
Sample object. These values are the values used by the rule.

The Rules API classes are documented in Javadoc format in theRules API Reference. These files
are located in the following folder:
\\<Gateway Server root directory>\
AppServer\webapps\site.war\amdocs\eng\doc_lib\API_docs\Rules_API\index.html.

For detailed examples of Sample rules, see Examples - API Sample Rule, on page 74.

API rules can be defined within the KPI Definition page or the Rule Repository, or using a text file
template, as described in Creating Rules with the Rules API, on page 66.

Defining a Sample Rule in the KPI Definition Page or Rule Repository
To define a Sample rule using the KPI Definition page or within the Rule Repository, fill in the fields
as follows:

l Sample Fields. List the sample fields whose values can be included in the calculation; separate
between the sample names with a comma (for example: "u_iStatus", "dResponseTime").

l KPI Calculation Script. Enter the calculateKPI method implementation; do not enter the
method signature. The parameters ci, kpi, and samples of the calculateKPImethod are
available for use in this script.

l Aggregated Calculation Script. Enter the calculateAggregatedKPI method implementation;
do not enter themethod signature. The parameters ci and kpi of the calculateAggregatedKPI
method are available for use in this script.

l Sample Filter Script. This field contains the default implementation of the isSampleValid
method (by default, all samples are included in the calculation). You can edit this field to exclude
samples from the calculation.

For detailed instructions, see How to Define an API Rule for a Specific KPI or Outage, on page 67
or How to Define an API RuleWithin the Rule Repository, on page 70.

Defining a Sample Rule Using a Text File
To define a Sample rule using a text file template, use theSlmSampleRuleTemplate.groovy
template file as described in How to Create a Text File-Based API Rule, on page 68.

Within the text file, define the sampleFields field, the calculateKPI method body, and the
calculateAggregatedKPI method body.

APM Extensibility Guide
Chapter 4: SLM Rules API

Application PerformanceManagement (9.50) Page 61 of 125

The isSampleValidmethod has a default implementation of return true (all samples are included in
the calculation). To override, uncomment themethod and enter your implementation.

API Duration-Based Sample Rule
A Duration-Based Sample rule calculates KPIs based on aggregated data taken from sample fields.
The duration-based rule uses each sample's duration within the rule calculation (for example,
availability over time or backlog over time).

For details on when to use the Duration-Based Sample rule, seeWhen to Use Sample or Duration-
Based Sample Rules, on page 60. For details on how the rule is calculated, see Sample Rule
CalculationMechanism - Overview, on page 58.

Duration-Based Sample Rule Methods and Fields
The Duration-Based Sample rule implements the Rules API Interface
SlmSamplesTimeBasedAggregatedCalculator, which contains the followingmethods:
public void calculateKPI(CI ci, SlmKPI kpi, List<Sample> samples)

public void calculateAggregatedKPI(CI ci, SlmKPI kpi)

public boolean isSampleValid(CI ci, SlmKPI kpi, Sample sample)

public boolean isSampleAndDurationValid(CI ci, SlmKPI kpi, Sample sample)

l The calculateKPImethod calculates the KPI for each calculation cycle. This method includes
the parameters ci, kpi, and samples. These represent the current CI, the KPI whose value the
rule calculates, and the samples to be used in the rule calculation.
o The kpi parameter type is SlmKPI, and is used to set calculation results.
o The samples parameter is a List of Sample objects, which hold sample field values and

sample durations. The samples parameter contains the samples that passed through a filter
mechanism, as described in Filtering with the Duration-Based Sample Rule, on page 64. The
last sample used in the previous calculation cycles can also by included, as described in
Duration-Based Sample Continuity, on the next page.

l A sample's duration is defined as the interval from the sample timestamp to one of the following
(whichever event occurs first):
o The timestamp of the next sample, if the next sample is filtered using the

isSampleAndDurationValid method.
o The timestamp of the next sample within the cycle.
o The end of the cycle.

l The calculateAggregatedKPI method calculates the aggregated KPI. This method includes the
parameters ci and kpi.

l The isSampleValid and isSampleAndDurationValid method are used for filtering, as
described in Filtering with the Duration-Based Sample Rule, on page 64.

The Rules API classes are documented in Javadoc format in theRules API Reference. These files
are located in the following folder:
\\<Gateway Server root directory>\
AppServer\webapps\site.war\amdocs\eng\doc_lib\API_docs\Rules_API\index.html.

APM Extensibility Guide
Chapter 4: SLM Rules API

Application PerformanceManagement (9.50) Page 62 of 125

l The rule must also set the sampleFields field to define which sample fields are held by the
Sample object. These values are the values used by the rule.

For detailed examples of Duration-Based Sample rules, see Examples - API Duration-Based
Sample Rule, on page 79.

API rules can be defined using the KPI Definition page or the Rule Repository, or using a text file
template, as described in Creating Rules with the Rules API, on page 66.

Defining a Duration-Based Sample Rule in the KPI Definition Page or Rule
Repository

To define a Duration-Based Sample rule using the KPI Definition page or within the Rule
Repository, fill in the fields as follows:

l Sample Fields. List the sample fields whose values can be included in the calculation; separate
between the sample names with a comma (for example: "u_iStatus", "dResponseTime").

l KPI Calculation Script. Enter the calculateKPI method implementation; do not enter the
method signature. The parameters ci, kpi, and samples of the calculateKPImethod are
available for use in this script.

l Aggregated Calculation Script. Enter the calculateAggregatedKPI method implementation;
do not enter themethod signature. The parameters ci and kpi of the calculateAggregatedKPI
method are available for use in this script.

l Sample Filter Script and Sample and Duration Filter Script. These fields contain the default
implementation of the isSampleValid and isSampleAndDurationValid methods (by default, all
samples are included in the calculation). You can edit these fields to exclude samples from the
calculation.

For detailed instructions, see How to Define an API Rule for a Specific KPI or Outage, on page 67
or How to Define an API RuleWithin the Rule Repository, on page 70.

Defining a Duration-Based Sample Rule Using a Text File
To define a Duration-Based Sample rule using a text file template, use the
SlmDurationBasedSampleRuleTemplate.groovy template file as described in How to Create a
Text File-Based API Rule, on page 68.

Within the text file, define the sampleFields field, the calculateKPI method body, and the
calculateAggregatedKPI method body.

The isSampleValid and isSampleAndDurationValid methods have a default implementation of
return true (all samples are included in the calculation). To override, uncomment themethod and
enter your implementation.

Duration-Based Sample Continuity
In the Duration-Based Sample rule, the first sample included in the samples parameter (for the
calculateKPImethod), is the last sample from the previous cycle's calculation. This enables a
sample's value to be used over more than one calculation cycle.

For example, for the calculation cycle 10:05-10:10 there is one sample in the database (Sample1) with
the timestamp 10:08. The samples parameter contains two samples: the last sample from the previous
cycle (duration=3minutes), and the sample from the current cycle (duration=2minutes).

APM Extensibility Guide
Chapter 4: SLM Rules API

Application PerformanceManagement (9.50) Page 63 of 125

If there are no samples in the current cycle, the samples parameter contains the last sample from the
previous cycle (duration=5minutes).

The last sample does not continue to the next calculation cycle if one of the following conditions are
true:

l No data timeout. The last sample's timestamp has reached the no data timeout limit. For example,
if the last sample's timestamp is 09:00 and the no data timeout is one hour, the sample is not
included in the 10:00-10:05 calculation cycle, and all subsequent calculation cycles.

l Downtime event. A downtime event has occurred in the time between the last sample's timestamp
and the current calculation cycle. For example, if the last sample's timestamp is 09:00 and a
downtime is configured to 10:00-10:30, the sample is not part of the 10:30-10:35 calculation cycle,
and all subsequent calculation cycles.

Filtering with the Duration-Based Sample Rule
By default, the API Duration-Based Sample rule includes all samples in rule calculations. The
isSampleValid and isSampleAndDurationValidmethods enable filtering of samples when using this
rule.

l When using the isSampleValidmethod, the duration of a filtered sample is added to the duration of
the previous valid sample.

APM Extensibility Guide
Chapter 4: SLM Rules API

Application PerformanceManagement (9.50) Page 64 of 125

In the above example, Sample2 is filtered out using the isSampleValidmethod. The samples
parameter contains Sample1 with 4minutes duration and Sample3 with 1minute duration. The total
duration of all the samples in the cycle is 5minutes.

l When using the isSampleAndDurationValidmethod, the duration of a filtered sample is not added
to the duration of the previous valid sample, and it is therefore not included in the calculation.

In the above example, Sample2 is filtered out using the isSampleAndDurationValidmethod. The
samples parameter contains Sample1 with 3minutes duration and Sample3 with 1minute duration.
The total duration of all the samples in the cycle is 4minutes.

API Outage by Samples Rule
An API Outage by Samples rule calculates outages based on data received from samples. An outage
begins when a specific number of consecutive failures is calculated based on consecutive samples,
and ends when a sample representing no failures is used in calculation.

Rule parameters (minimum number of failures, minimum duration, andmaximum duration) define when
an outage begins and when it ends, as described in List of Service Level Management Business Rule
Parameters in the APM Application Administration Guide. TheOutage by Samples rule parameters are
demonstrated in Examples - API Outage by Samples Rule, on page 85.

Each sample can represent a number of failures (zero or more). Using the API Outage by Samples rule,
you can calculate how many failures a sample represents based on the sample values. The outage is
then calculated using the outage rule parameters.

Outage by Samples Rule Methods and Fields
TheOutage by Samples rule implements the Rules API InterfaceOutageBySamplesCalculator,
which contains the followingmethods:

public void calculateOutage(Outage outage, Sample sample)

public boolean isSampleValid(Sample sample)

l The calculateOutagemethod calculates the number of failures represented by aSample. This
method includes the parameters outage and sample.
o The outage parameter type is Outage, and is used to set the number of failures for the given

sample.
o The sample parameter type is Sample, which holds sample field values.

l The isSampleValidmethod is used to filter samples. If a sample is not valid, it is not included in
the calculateOutagemethod calculation.
The Rules API classes are documented in Javadoc format in theRules API Reference. These
files are located in the following folder:

APM Extensibility Guide
Chapter 4: SLM Rules API

Application PerformanceManagement (9.50) Page 65 of 125

\\<Gateway Server root directory>\
AppServer\webapps\site.war\amdocs\eng\doc_lib\API_docs\Rules_API\index.html.

l The rule must also set the sampleFields field to define which sample fields are held by the
Sample object. These values are the values used by the rule.

For examples of the Outage by Samples rule, see Examples - API Outage by Samples Rule, on
page 85.

API rules can be defined using the KPI Definition page or the Rule Repository, or using a text file
template, as described in Creating Rules with the Rules API, below.

Defining an Outage by Samples Rule in the KPI Definition Page or Rule
Repository

To define anOutage by Samples rule using the KPI Definition page or within the Rule Repository,
fill in the fields as follows:

l Sample Fields. List the sample fields whose values can be included in the calculation; separate
between the sample names with a comma (for example: "u_iStatus").

l Outage Calculation Script. Enter the calculateOutage method implementation; do not enter
themethod signature. The parameters outage and sample of the calculateOutagemethod are
available for use in this script.

l Sample Filter Script. This field contains the default implementation of the isSampleValid
method (by default, all samples are included in the calculation). You can edit this field to exclude
samples from the calculation.

For detailed instructions, see How to Define an API Rule for a Specific KPI or Outage, on the next
page or How to Define an API RuleWithin the Rule Repository, on page 70.

Defining an Outage by Samples Rule Using a Text File
To define anOutage by Samples rule using a text file template, use the
SlmOutageBySampleTemplate.groovy template file as described in How to Create a Text File-
Based API Rule, on page 68.

Within the text file, define the sampleFields field and the calculateOutage method body.

The isSampleValidmethod has a default implementation of return true (all samples are included in
the calculation). To override, uncomment themethod and enter your implementation.

Creating Rules with the Rules API
There are a number of ways to create rules using the Rules API, as described in the following section.

NOTE:
The following three ways are also applicable to defining Outage calculations, using the API
Outage by Samples Rule.

Define a rule for a specific KPI
Service Level Management KPIs can have the following API rules: API Group and Sibling Rule, API
Sample Rule, and API Duration-Based Sample Rule.

APM Extensibility Guide
Chapter 4: SLM Rules API

Application PerformanceManagement (9.50) Page 66 of 125

Using theNew SLA/Edit SLA Wizard > Configure SLA Indicators page, you can assign one of
the API rules to a KPI, and enter rule details to define rule logic for that KPI.

You can then edit the rule details in theConfigure SLA Indicators page at any time to change the
rule logic for the KPI.

For details, see How to Define an API Rule for a Specific KPI or Outage, below.

Create a rule for multiple KPIs using a text file
For each of the API rules there is a corresponding template file, located in the <Data Processing
server root directory>\BLE\rules\groovy\templates directory. You can use one of the template
files to create a text file defining a new rule. You then add this rule to the Rule Repository, and it can
be applied like any out-of-the-box rule.

The API code cannot be seen or changed within Service Level Management, but only within the text
file. If youmake changes to the code within the text file, these changes are applied to all instances
where the rule has been assigned, after you restart the offline engine.

For details, see How to Create a Text File-Based API Rule, on the next page.

Defining a rule within the rule repository
The Rule Repository contains the following API rules: API Group and Sibling Rule, API Sample
Rule, and API Duration-Based Sample Rule. You can use the Rule Repository to clone an API rule
and enter rule details to define the rule logic.

After the rule is applied to a KPI, you can edit rule details within theConfigure SLA Indicators
page at any time to change the rule logic for a specific KPI.

For details, see How to Define an API RuleWithin the Rule Repository, on page 70.

How to Define an API Rule for a Specific KPI or
Outage
Each KPI or Outage has applicable API rules. Using the KPI Definition page, assign one of the API
rules to a KPI or Outage, and enter the rule details to define the rule logic.

1. Assign an API rule to a KPI or outage
l To assign an API rule for a specific KPI assigned to a CI, edit an SLA using the
Agreements Manager >New SLA/Edit SLA Wizard > Configure SLA Indicators page.
Select Add KPI to assign a new KPI to the CI, or modify an existing KPI. For details, see
Add KPI for CI/Edit KPI for CI Dialog Box in the APM Application Administration Guide.
From the list of applicable business rules, select one of the API rules: API Group and
Sibling Rule, API Sample Rule, or API Duration-Based Sample Rule. (API Sample Rule
and API Duration-Based Sample Rule are only applicable for monitor CIs.) For a description
of the rule types see SLM Rules API, on page 54.

l To assign an API Outage rule to a CI's Outage, edit an SLA using theAgreements
Manager > New SLA/Edit SLA Wizard > Configure SLA Indicators page. For details,
see AddOutages KPI/Edit Outages KPI Dialog Box in the APM Application Administration
Guide.

APM Extensibility Guide
Chapter 4: SLM Rules API

Application PerformanceManagement (9.50) Page 67 of 125

Click the Edit button to edit the Outage. From the list of applicable business rules, select
API Outage by Samples Rule. (This rule is only applicable for monitored CIs.)

2. Define the KPI or outage rule logic
Depending on the type of rule you are creating, define the rule methods and fields as described
in:
l API Group and Sibling Rule, on page 56
l API Sample Rule, on page 60
l API Duration-Based Sample Rule, on page 62
l API Outage by Samples Rule, on page 65

How to Create a Text File-Based API Rule
There are rule template files corresponding to the API rules; each template implements the rule's
interface.

Create a text file defining a new rule using one of the templates, and then add the new rule to the
Business Rule Repository. The rule can then be applied like any out-of-the-box rule.

The API code cannot be seen or changed within Service Level Management, but only within the text
file. If youmake changes to the code within the text file, these changes are applied to all instances
where the rule has been assigned, after you restart the offline engine.

1. Create a text file for a rule
Based on the type of rule you want to create, copy and rename one of the template files located
in the <Data Processing server root directory>\BLE\rules\groovy\templates directory.
Within your copy of the template, define the rule methods and fields as described in:
l API Group and Sibling Rule, on page 56
l API Sample Rule, on page 60
l API Duration-Based Sample Rule, on page 62
l API Outage by Samples Rule, on page 65
Save the file to the <Data Processing server root directory>\BLE\rules\groovy\rules
directory.
Youmust now add a rule in the Rule Repository that uses the rule logic in the text file.
l For rules other thanOutage, follow the instructions in Add a rule in the rule repository (for
Group and Sibling, Sample, or Duration-Based Sample rules), below.

l For Outage rules, follow the instructions in Add anOutage rule in the rule repository, on the
next page.

2. Add a rule in the rule repository (for Group and Sibling, Sample, or Duration-
Based Sample rules)

a. Select Admin > Service Level Management > Repositories > Business Rules >
New Rule. For details on adding rules, see Customizing KPI and HI Calculation Rules in
the APM Application Administration Guide.

b. In theName field, type the name of the rule you want to create (mandatory).

APM Extensibility Guide
Chapter 4: SLM Rules API

Application PerformanceManagement (9.50) Page 68 of 125

c. In theClass Name field, type groovy: <file name>. Note that the file namemust be
identical (case sensitive) to the file name in the <Data Processing server root
directory>\BLE\rules\groovy\rules directory.

d. For API Duration-Based Sample rules, create the following rule parameter:
l In theRule parameters area, click New.
l In theName field typeNo Data Timeout. In the Type field, select Long. In theDefault
Value field, type 3600.

e. Click OK to save.
The following image shows a Duration-Based Sample rule after the rule parameter has
been added:

3. Add an Outage rule in the rule repository
a. WithinAdmin> Service Level Management > Repositories > Business Rules, select

theSynthetic WS Outage rule (316) and clone the rule.
b. In theName field, change the name of the rule (mandatory).
c. In theClass Name field, type groovy: <file name>. Note that the file namemust be

identical (case sensitive) to the file name in the <Data Processing server root
directory>\BLE\rules\groovy\rules directory.

d. You can edit theDescription, but do not change any other fields.
e. Click OK to save.

4. Add the rule to the list of applicable rules for a KPI or Outage
Add the new rule to the list of applicable rules already attached to the relevant KPI. The
relevant KPI for Outage rules is theOutagesKPI (200).

APM Extensibility Guide
Chapter 4: SLM Rules API

Application PerformanceManagement (9.50) Page 69 of 125

For details, see theMain Settings Area > Applicable Rules parameter in New KPI/Edit KPI
Dialog Box in the APM Application Administration Guide.

5. Restart the offline engine after editing the text file
If youmake changes to the text file at any time after the rule is created, perform the following
steps to apply the changes.
a. In the browser, enter the following:

http://<Application Performance Management Data Processing server
name>:11021

b. Select Foundations:NannyManager.
c. Invoke showServiceInfoAsHTML, and restart the offline engine.

How to Define an API Rule Within the Rule
Repository
Within the Business Rule Repository, create an API rule that can be applied tomultiple KPIs or
Outages. This is done by cloning one of the four API rules, and setting default rule values for specific
rule parameters. After the rule is applied to a KPI or Outage, you can edit its script within the KPI
Definition page at any time to change the rule logic for the specific KPI or Outage.

1. Clone an API rule
Select Admin > Service Level Management > Repositories > Business Rules.In the
Business Rule Repository page, clone one of the following rules: API Group and Sibling Rule,
API Sample Rule, API Duration-Based Sample Rule, or API Outage by Samples Rule.
For details on cloning a rule, see How to Customize a Business Rule Template in the APM
Application Administration Guide.

2. Edit rule details
a. Open the new rule for editing.
b. In theName field, rename the cloned rule.
c. Within theRule Parameters, set theDefault value for each rule parameter defining your

rule logic, as described in the following sections:
l API Group and Sibling Rule, on page 56
l API Sample Rule, on page 60
l API Duration-Based Sample Rule, on page 62
l API Outage by Samples Rule, on page 65
For example, to define theKPI Calculation Script, edit theKPI Calculation Script rule
parameter. In theDefault Value field, enter the rule calculation script. The code that you
enter becomes the default code for this rule, and appears in the KPI Definition page for all
KPIs assigned this rule. (Do not change any other fields.)

3. Add the rule to the list of applicable rules for a KPI or Outage
Add the new rule to the list of applicable rules already attached to the relevant KPI. The
relevant KPI for Outage rules is theOutagesKPI (200).

APM Extensibility Guide
Chapter 4: SLM Rules API

Application PerformanceManagement (9.50) Page 70 of 125

For details, see the Applicable Rules GUI parameter in New KPI/Edit KPI Dialog Box in the
APM Application Administration Guide.

How to Work with Tooltip Entries
If you have used the kpi.setTooltipmethod, youmust set a corresponding tooltip entry in the
Infrastructure Settings.

1. Select Admin > Platform > Setup and Maintenance > Infrastructure Settings > Service
Level Management.

2. Edit theAdditional Values as follows:
a. Scroll down to the KPI where you want to add the tooltip.
b. After the last entry for the KPI, add a line in the following format:

<Additional-Value calculate="true" id="<id>" name="<name>"/>

In the above format, <id> is one number higher than the current highest ID (if the highest ID is 5,
type 6), and <name> is the name of the tooltip exactly as used in the code.

For example, if your code contains themethod invocation kpi.setTooltip("total_sales",
value), and the KPI is Availability, type the following:

APM Extensibility Guide
Chapter 4: SLM Rules API

Application PerformanceManagement (9.50) Page 71 of 125

c. Click Save.

How to Write to Log Files From the Rules API Code
Within your API rules, you can write to log files from rulemethods using a logger object. There are five
log levels: debug, info, warn, error, and fatal. Each of these uses a specific logger method.

By default, only logmethod invocations of error and fatal severity are written to the log files. You can
modify this within the log configuration files.

To write to log files using the Rules API:
1. Within the rule method, implement one of the followingmethods (listed in ascending order of

severity):

APM Extensibility Guide
Chapter 4: SLM Rules API

Application PerformanceManagement (9.50) Page 72 of 125

l logger.debug("<API rule name> : log message");
l logger.info("<API rule name> : log message");
l logger.warn("<API rule name> : log message");
l logger.error("<API rule name> : log message");
l logger.fatal("<API rule name> : log message");
Type the name of your API rule inside the logmessage to identify each logmessage with its
source rule.

2. The Rules API log files are found in the <Data Processing server root
directory>\HPBSM\log\offline_engine\RulesAPI directory.
Open one of the following files to view the logmessages (depending on your rule type):

l groupAndSiblingRule.log (for API Group and Sibling rules)
l sampleRule.log (for API Sample and API Duration-Based Sample rules)
l OutageRule.log (for API Outage by Samples rules)

To modify the severity level written to a log file:
1. By default, only logmethod invocations of error and fatal severity are written to log files. To

modify this setting, open the log configuration file located in <Data Processing server root
directory>HPBSM\conf\core\Tools\log4j\offline_engine\slm_rules.properties.

2. In the line corresponding with your rule type, replace the string ${loglevel}with the severity
level you want logged (type one of the following: DEBUG, INFO,WARN, ERROR, or
FATAL). Edit one of the following lines, depending on your rule type:
l Group and Sibling rules:
log4j.category.com.mercury.am.bac.slm.rules.group.common.SlmGroupAndSiblingRule =
${loglevel}, slm.rules.api.group.appender

l Sample rules and Duration-Based Sample rules:
log4j.category.com.mercury.am.bac.slm.rules.leaf.simplified.SlmSimplifiedLeafRule =
${loglevel}, slm.rules.api.sample.appender

l Outage by Samples rules:
log4j.category.com.mercury.am.bac.slm.rules.outages.simplified.SimplifiedOutageRule =
${loglevel}, slm.rules.api.outage.appender

How to Include a CI Property in Rules API
Calculations
Within your API rules, you can include CI properties using the CI class getPropertyValuemethod, and
the KPI class getCiPropertymethod. SLM rules can only access CI properties which have with the
qualifierBLE_ATTRIBUTE.

To add this attribute to a CI class youmust export the class, edit the class definition, and import it back
to the server. When you open the exported class for editing, add the following xml to the required
attribute:

<Attribute name="<attribute-name>" type="double" display-name="<attribute-display-name>">

APM Extensibility Guide
Chapter 4: SLM Rules API

Application PerformanceManagement (9.50) Page 73 of 125

 <Attribute-Qualifiers>

 <Attribute-Qualifier name="BLE_ATTRIBUTE"/>

 </Attribute-Qualifiers>

</Attribute>

Examples - API Group and Sibling Rule
Both Service Level Management and Service Health implement the same interface to calculate API
Group and Sibling rules.

For detailed examples showing API Group and Sibling rules, see Examples - API Group and Sibling
Rule, on page 27.

Note that the statuses used in theStatus class are different in Service Level Management and Service
Health. For example, Status.OK in Service Health code is equivalent to Status.EXCEEDED in Service
Level Management code. The following table shows the parallel statuses:

Service Health Status Service Level Management Status

OK EXCEEDED

WARNING MET

MINOR MINOR_BREACHED

MAJOR BREACHED

CRITICAL FAILED

Examples - API Sample Rule
This section provides examples of API Sample Rules. The following examples are described:

l Example - Sample-Based Average Response TimeRule, below
l Example - Sample-Based Average Response TimeRule with Filter, on page 77
l Example - Sample-BasedMaximum Response TimeRule, on page 78

Example - Sample-Based Average Response Time Rule
The following rule calculates average response time, based on the dResponseTime sample field. The
rule result (aggregated value) is the average response time calculated based on all the samples that
exist for the calculation period.

The rule logic is (total response time in seconds / total number of samples).

The rule uses theSlmKPI keys and aggregated keys to aggregate the total response time and the total
number of samples, to calculate the rule result.

// Define the sample fields that will be used in the rule calculation.

APM Extensibility Guide
Chapter 4: SLM Rules API

Application PerformanceManagement (9.50) Page 74 of 125

def sampleFields = ["dResponseTime"];

/*
* Implementation of the SlmSamplesAggregatedCalculator interface method.
* For more information refer to the Rules API documentation.
*/
public void calculateKPI(CI ci, SlmKPI kpi, List<Sample> samples) {
/*
* Sum the field dResponseTime from all given samples. This represents the total
* response time for all the samples in the current calculation cycle.
*/
def totalTime = Utils.sumField(samples, "dResponseTime");
/*
* Keep the total response time, converted to seconds, on a kpi key named
* totalResponseTime. This key is used by the calculateAggregatedKPI method.
 */
kpi.key.totalResponseTime = Utils.divide(totalTime,1000.0);
/*
* Keep the number of samples for the current calculation cycle on a kpi key
named
* totalSamples. This key is used by the calculateAggregatedKPI method.
 */
kpi.key.totalSamples = samples.size();
}

/*
* Implementation of the SlmSamplesAggregatedCalculator interface method.
*/
public void calculateAggregatedKPI(CI ci, SlmKPI kpi) {
/*
* Keep the aggregated response time on a kpi aggregated key named
* totalResponseTime, by adding the current aggregated totalResponseTime from the
* kpi aggregated key, and the current calculation cycle response time taken from
the
* kpi key named totalResponseTime (calculated in the calculateKPI method).
*/
kpi.aggregatedKey.totalResponseTime = Utils.sum(kpi.key.totalResponseTime,
kpi.aggregatedKey.totalResponseTime).
/*
* Keep the aggregated total samples on a kpi aggregated key named totalSamples,
* by adding the current aggregated total samples from the kpi aggregated key,
and
* the current calculation cycle total samples, taken from the kpi key named
* totalSamples (calculated in the calculateKPI method).
*/
kpi.aggregatedKey.totalSamples = Utils.sum(kpi.key.totalSamples,
kpi.aggregatedKey.totalSamples)
/*
* Set the aggregated value of the KPI by dividing the two aggregated values.

APM Extensibility Guide
Chapter 4: SLM Rules API

Application PerformanceManagement (9.50) Page 75 of 125

* This aggregated value will be displayed in the SLA reports.
*/
kpi.aggregatedValue = Utils.divide(kpi.aggregatedKey.totalResponseTime,
kpi.aggregatedKey.totalSamples)
}

Calculation - Sample-Based Average Response Time Rule
The following calculation illustrates the Sample-Based Average Response Time rule. Between 10:00
and 11:00, 9 samples have arrived:

10:00 {Sample Fields: dResponseTime = 60}
10:04 {Sample Fields: dResponseTime = 30}
10:11 {Sample Fields: dResponseTime = 30}
10:25 {Sample Fields: dResponseTime = 25}
10:27 {Sample Fields: dResponseTime = 35}
10:35 {Sample Fields: dResponseTime = 10}
10:36 {Sample Fields: dResponseTime = 20}
10:38 {Sample Fields: dResponseTime = 30}
10:52 {Sample Fields: dResponseTime = 75}

Each calculation cycle is 5minutes long. The rule calculation is as follows:

Cycle Keys set by calculateKPI Aggregated keys and value set by
calculateAggregatedKPI

totalResponseTime totalSamples totalResponseTime totalSamples Aggregated
Value

10:00-
10:05

90 2 90 2 45

10:05-
10:10

Null 0 90 2 45

10:10-
10:15

30 1 120 3 40

10:15-
10:20

Null 0 120 3 40

10:20-
10:25

Null 0 120 3 40

10:25-
10:30

60 2 180 5 36

10:30-
10:35

Null 0 180 5 36

10:35-
10:40

60 3 240 8 30

APM Extensibility Guide
Chapter 4: SLM Rules API

Application PerformanceManagement (9.50) Page 76 of 125

Cycle Keys set by calculateKPI Aggregated keys and value set by
calculateAggregatedKPI

10:40-
10:45

Null 0 240 8 30

10:45-
10:50

Null 0 240 8 30

10:50-
10:55

75 1 315 9 35

10:55-
11:00

null 0 315 9 35

Final result:
35

Example - Sample-Based Average Response Time Rule
with Filter
This rule is the same as the previous rule (Example - Sample-Based Average Response TimeRule, on
page 74), with the addition of a sample filter.

The code for the sample fields is as follows:

// This rule uses the dResponseTime sample field and u_iStatus sample field.
def sampleFields = ["dResponseTime", "u_iStatus"];

This rule uses an additional method, as follows:

/*
* Override the default implementation of the SlmSamplesAggregatedCalculator
* interface method.
*
* Filter samples that hold u_iStatus field value which is not 0 or 2.
*/
public boolean isSampleValid(Sample sample) {

//Get the value of the sample's u_iStatus field.
def avialFieldValueObj = sample.u_iStatus;
return (avialFieldValueObj == 0 || avialFieldValueObj == 2)

}

Calculation - Sample-Based Average Response Time Rule with
Filter
The following calculation illustrates the Sample-Based Average Response Time rule with filter.

For 10:00 - 11:00, 9 samples exist on the Profile Database:

APM Extensibility Guide
Chapter 4: SLM Rules API

Application PerformanceManagement (9.50) Page 77 of 125

10:00 {Sample Fields: dResponseTime = 60, u_iStatus = 0}
10:04 {Sample Fields: dResponseTime = 30, u_iStatus = 1}
10:11 {Sample Fields: dResponseTime = 30, u_iStatus = 2}
10:25 {Sample Fields: dResponseTime = 25, u_iStatus = 1}
10:27 {Sample Fields: dResponseTime = 35, u_iStatus = 0}
10:35 {Sample Fields: dResponseTime = 10, u_iStatus = 1}
10:36 {Sample Fields: dResponseTime = 20, u_iStatus = 0}
10:38 {Sample Fields: dResponseTime = 30, u_iStatus = 2}
10:52 {Sample Fields: dResponseTime = 75, u_iStatus = 1}
The samples in bold do not pass the filter. The following 5 samples are taken into calculation:

10:00 {Sample Fields: dResponseTime = 60, u_iStatus = 0}
10:11 {Sample Fields: dResponseTime = 30, u_iStatus = 2}
10:27 {Sample Fields: dResponseTime = 35, u_iStatus = 0}
10:36 {Sample Fields: dResponseTime = 20, u_iStatus = 0}
10:38 {Sample Fields: dResponseTime = 30, u_iStatus = 2}

The calculation result is = (60+30+35+20+30)/5 = 35

Example - Sample-Based Maximum Response Time Rule
The following rule calculates maximum response time, based on the dResponseTime sample field. The
rule result (aggregated value) is themaximum response time calculated based on all the samples that
exist for the calculation period. The rule uses theSlmKPI value to keep themaximum value for each
calculation cycle.

// Define the sample fields that will be used in the rule calculation.
def sampleFields = ["dResponseTime"];

/*
* Implementation of the SlmSamplesAggregatedCalculator interface method. For
more information refer to the Rules API documentation.
*/
public void calculateKPI(CI ci, SlmKPI kpi, List<Sample> samples) {
 /**
 * Find the maximum value of the dResponseTime field from all given
samples,
 * and set it as the KPI value for the current calculation cycle.
 */
 kpi.value = Utils.getMax(samples, "dResponseTime");
}
 /**
 * Implementation of the SlmSamplesAggregatedCalculator interface method.
 */
 public void calculateAggregatedKPI(CI ci, SlmKPI kpi) {
 /**
 * Keep the aggregated maximum response time on the KPI aggregated value,
 * by replacing the current aggregated value with the maximum between the
KPI

APM Extensibility Guide
Chapter 4: SLM Rules API

Application PerformanceManagement (9.50) Page 78 of 125

 * aggregated value and the KPI value (calculated in the calculateKPI
method).
 * This aggregated value will be displayed in the SLA reports.
 */
 kpi.aggregatedValue = Utils.max(kpi.value, kpi.aggregatedValue)
}

Calculation - Sample-Based Maximum Response Time Rule
The following calculation illustrates the Sample-BasedMaximum Response Time rule.

Between 10:00 and 11:00, 9 samples have arrived:

10:00 {Sample Fields: dResponseTime = 60}
10:04 {Sample Fields: dResponseTime = 30}
10:11 {Sample Fields: dResponseTime = 30}
10:25 {Sample Fields: dResponseTime = 25}
10:27 {Sample Fields: dResponseTime = 35}
10:35 {Sample Fields: dResponseTime = 10}
10:36 {Sample Fields: dResponseTime = 20}
10:38 {Sample Fields: dResponseTime = 30}
10:52 {Sample Fields: dResponseTime = 75}

The result of the rule calculation is 75.

Examples - API Duration-Based Sample Rule
This section provides examples of API Duration-Based Sample Rules. The following examples are
described:

l Example - Duration-Based Average Response TimeRule, below
l Example - Duration-Based Average Response TimeRule with isSampleValid Method Filter, on page
82

l Example - Duration-Based Average Response TimeRule with isSampleAndDurationValid Method
Filter, on page 83

l Example - Duration-Based Average Response TimeRule with isSampleAndDurationValid and
isSampleValid Method Filters, on page 84

Example - Duration-Based Average Response Time Rule
The following rule calculates the weighted average response time based on the dResponseTime
sample field and sample duration, for all the samples that exist for the calculation period.

The rule logic is sum (sample response time * sample duration) / sum (samples duration).

The rule uses SlmKPI keys and aggregated keys to aggregate the total weighted response time and
the total duration of samples, in order to calculate rule results.

APM Extensibility Guide
Chapter 4: SLM Rules API

Application PerformanceManagement (9.50) Page 79 of 125

// Define the sample fields that will be used in the rule calculation.
def sampleFields = ["dResponseTime"];

/*
* Implementation of the SlmSamplesTimeBasedAggregatedCalculator interface
method.
* For more information refer to the Rules API documentation.
*/
public void calculateKPI(CI ci, SlmKPI kpi, List<Sample> samples) {
 /**
 * Set the KPI key totalDuration to sum duration of all given samples.
 * This key is used by the calculateAggregatedKPI method.
 */
 kpi.key.totalDuration = Utils.sumDuration(samples)
 // Iterate over all samples that arrived in the current calculation cycle.
 samples.each {Sample sample ->
 /**
 * Calculate weighted response time for each sample by multiplying
 * sample duration with sample dResponseTime field value.
 */
 def weightedResponseTime = Utils.multiply(sample.duration,
sample.dResponseTime);
 /**
 * Keep the total weighted response time for all given samples
 * on a KPI key named totalResponseTime.
 * This key is used by the calculateAggregatedKPI method.
 */
 kpi.key.totalResponseTime = Utils.sum(kpi.key.totalResponseTime,
weightedResponseTime)
 }
}

/*
* Implementation of the SlmSamplesTimeBasedAggregatedCalculator interface
method.
*/
public void calculateAggregatedKPI(CI ci, SlmKPI kpi) {
 /**

* Keep the aggregated response time on a kpi aggregated key named
* totalResponseTime, by adding the current aggregated totalResponseTime,

and the
* current calculation cycle response time taken from the totalResponseTime

kpi key
* (calculated by the calculateKPI method).
*/

 kpi.aggregatedKey.totalResponseTime = Utils.sum(kpi.key.totalResponseTime,
kpi.aggregatedKey.totalResponseTime)
 /**

* Keep the aggregated total duration on a kpi aggregated key named

APM Extensibility Guide
Chapter 4: SLM Rules API

Application PerformanceManagement (9.50) Page 80 of 125

totalDuration,
* by adding the current aggregated total duration from the kpi aggregated

key,
* and the current calculation cycle total duration.
*/

 kpi.aggregatedKey.totalDuration = Utils.sum(kpi.key.totalDuration,
kpi.aggregatedKey.totalDuration)
 /**

* Set the aggregated value of the KPI by dividing the two aggregated
values.

* This aggregated value will be displayed in the SLA reports.
*/

 kpi.aggregatedValue = Utils.divide(kpi.aggregatedKey.totalResponseTime,
kpi.aggregatedKey.totalDuration)
}

Calculation - Duration-Based Average Response Time Rule
The following calculation illustrates the Duration-Based Average Response Time rule.

For 10:00 - 11:00, 5 samples exist on the Profile Database:

10:00 Sample1 {Sample Fields: dResponseTime = 60}
10:04 Sample2 {Sample Fields: dResponseTime = 30}
10:25 Sample3 {Sample Fields: dResponseTime = 25}
10:38 Sample4 {Sample Fields: dResponseTime = 30}
10:52 Sample5 {Sample Fields: dResponseTime = 75}

Each calculation cycle is 5minutes long. The rule calculation is as follows:

APM Extensibility Guide
Chapter 4: SLM Rules API

Application PerformanceManagement (9.50) Page 81 of 125

Example - Duration-Based Average Response Time Rule
with isSampleValid Method Filter
This rule is the same as Example - Duration-Based Average Response TimeRule, on page 79, with the
addition of the isSampleValidmethod filter.

The code for the sample fields is as follows:

// This rule uses the dResponseTime sample field and u_iStatus sample field.
def sampleFields = ["dResponseTime", "u_iStatus"];

This rule uses an additional method, as follows:

/*
* Override default implementation of the SlmSamplesTimeBasedAggregatedCalculator
* interface method.
*
* Filter samples that hold u_iStatus field with value of 6.
*/
public boolean isSampleValid(Sample sample) {

//Get the value of the sample's u_iStatus field.
def avialFieldValueObj = sample.u_iStatus;
return (avialFieldValueObj != 6)

}

Calculation - Duration-Based Average Response Time Rule with
isSampleValid Method Filter
The following calculation illustrates the Duration-Based Average Response Time rule with
isSampleValidmethod filter.

For 10:00 - 11:00, 5 samples exist on the Profile Database:

10:00 Sample1 {Sample Fields: dResponseTime = 60, u_iStatus = 0}
10:04 Sample2 {Sample Fields: dResponseTime = 30, u_iStatus = 2}
10:25 Sample3 {Sample Fields: dResponseTime = 25, u_iStatus = 6}
10:38 Sample4 {Sample Fields: dResponseTime = 30, u_iStatus = 0}
10:52 Sample5 {Sample Fields: dResponseTime = 75, u_iStatus = 2}

Sample3 did not pass the isSampleValidmethod filter, so the following 4 samples are taken into
calculation:

10:00 Sample1 {Sample Fields: dResponseTime = 60, u_iStatus = 0}
10:04 Sample2 {Sample Fields: dResponseTime = 30, u_iStatus = 2}
10:38 Sample4 {Sample Fields: dResponseTime = 30, u_iStatus = 0}
10:52 Sample5 {Sample Fields: dResponseTime = 75, u_iStatus = 2}

Note that after the filtering, the interval between Sample3 and Sample4 is considered part of the
duration of Sample2.

The rule calculation is as follows:

APM Extensibility Guide
Chapter 4: SLM Rules API

Application PerformanceManagement (9.50) Page 82 of 125

Example - Duration-Based Average Response Time Rule
with isSampleAndDurationValid Method Filter
This rule is the same as Example - Duration-Based Average Response TimeRule, on page 79, but with
the isSampleAndDurationValidmethod filter.

The code for the sample fields is as follows:

// This rule uses the dResponseTime sample field and u_iStatus sample field.
def sampleFields = ["dResponseTime", "u_iStatus"];

This rule uses an additional method, as follows:

/*
* Override default implementation of the SlmSamplesTimeBasedAggregatedCalculator
* interface method.
*
* Filter samples that hold u_iStatus field value which is not 0 or 2.
*/
public boolean isSampleAndDurationValid(CI ci, SlmKPI kpi, Sample sample) {

//Get the value of the sample's u_iStatus field.
def avialFieldValueObj = sample.u_iStatus;
return (avialFieldValueObj == 0 || avialFieldValueObj == 2)

}

Calculation - Duration-Based Average Response Time Rule with
isSampleAndDurationValid Method Filter
The following calculation illustrates the Duration-Based Average Response Time rule with
isSampleAndDurationValidmethod filter.

For 10:00 - 11:00, 5 samples exist on the Profile Database:

APM Extensibility Guide
Chapter 4: SLM Rules API

Application PerformanceManagement (9.50) Page 83 of 125

10:00 Sample1 {Sample Fields: dResponseTime = 60, u_iStatus = 0}
10:04 Sample2 {Sample Fields: dResponseTime = 30, u_iStatus = 2}
10:25 Sample3 {Sample Fields: dResponseTime = 25, u_iStatus = 2}
10:38 Sample4 {Sample Fields: dResponseTime = 30, u_iStatus = 1}
10:52 Sample5 {Sample Fields: dResponseTime = 75, u_iStatus = 2}

Sample4 did not pass the isSampleAndDurationValidmethod filter, so the following 4 samples are
taken into calculation:

10:00 Sample1 {Sample Fields: dResponseTime = 60, u_iStatus = 0}
10:04 Sample2 {Sample Fields: dResponseTime = 30, u_iStatus = 2}
10:25 Sample3 {Sample Fields: dResponseTime = 25, u_iStatus = 2}
10:52 Sample5 {Sample Fields: dResponseTime = 75, u_iStatus = 2}

Note that after the filtering, the interval between Sample4 and Sample5 is not considered part of the
duration of Sample3, so the total duration for the hour is 46minutes.

The rule calculation is as follows:

Example - Duration-Based Average Response Time Rule
with isSampleAndDurationValid and isSampleValid
Method Filters
This rule uses both the isSampleAndDurationValid and the isSampleValidmethod filters. These are
described in the following sections:

l Example - Duration-Based Average Response TimeRule with isSampleValid Method Filter, on page
82

l Example - Duration-Based Average Response TimeRule with isSampleAndDurationValid Method
Filter, on the previous page

For 10:00 - 11:00, 5 samples exist on the Profile Database:

10:00 Sample1 {Sample Fields: dResponseTime = 60, u_iStatus = 0}
10:04 Sample2 {Sample Fields: dResponseTime = 30, u_iStatus = 2}
10:25 Sample3 {Sample Fields: dResponseTime = 25, u_iStatus = 6}
10:38 Sample4 {Sample Fields: dResponseTime = 30, u_iStatus = 1}
10:52 Sample5 {Sample Fields: dResponseTime = 75, u_iStatus = 2}

APM Extensibility Guide
Chapter 4: SLM Rules API

Application PerformanceManagement (9.50) Page 84 of 125

Sample3 did not pass the isSampleValidmethod filter, and Sample4 did not pass the
isSampleAndDurationValidmethod filter. The following 3 samples are taken into calculation:

10:00 Sample1 {Sample Fields: dResponseTime = 60, u_iStatus = 0}
10:04 Sample2 {Sample Fields: dResponseTime = 30, u_iStatus = 2}
10:52 Sample5 {Sample Fields: dResponseTime = 75, u_iStatus = 2}

After the filtering, the interval between Sample3 and Sample4 is considered part of the duration of
Sample2, but the interval between Sample4 and Sample5 is not considered part of the duration of
Sample4 (filtered by isSampleAndDurationValid).

The rule calculation is as follows:

Examples - API Outage by Samples Rule
This section provides examples of Outage by Samples Rules. The following examples are described:

l Example - Outage by Samples Rule and Calculation with Default Rule Parameters, below
l Example - Outage by Sample Calculation with Minimum Duration of 900 Seconds, on page 87
l Example - Outage by Sample Calculation with Maximum Duration of One Hour, on page 87
l Example - Outage by Sample Calculation with a Sample Representing Two Failures, on page 88

Example - Outage by Samples Rule and Calculation with
Default Rule Parameters
The following section illustrates the Outage by Samples rule, based on the default Outage rule
parameters:

Minimum number of failures: 2
Minimum duration: 0
Max duration: undefined

A sample represents one failure if the sample's u_iStatus field value is not 0 or 2. The rule also filters
out samples whose u_iStatus field value is 6.

// Define the sample fields that will be used in the rule calculation.

APM Extensibility Guide
Chapter 4: SLM Rules API

Application PerformanceManagement (9.50) Page 85 of 125

def sampleFields = ["u_iStatus"];

/*
* Implementation of the OutageBySamplesCalculator interface method.
* If the sample's u_iStatus field value is not 0 or 2, the sample represents 1
failure.
* In any other case the sample represents no failures.
*
* For more information refer to the Rules API documentation.
*/
public void calculateOutage(Outage outage, Sample sample) {
 // Take the sample field's u_iStatus value.
 def statusFieldValue = sample.u_iStatus;
 if(statusFieldValue != 0 && statusFieldValue != 2){
 outage.setNumberOfFailures 1;
 }
}

/*
* Override default implementation of the OutageBySamplesCalculator interface
method.
*
* If the sample's u_iStatus field value is not 0 or 2, the sample represents 1
failure.
*/
public boolean isSampleValid(Sample sample) {
 def statusFieldValue = sample.u_iStatus;
 return (statusFieldValue != 6)
}

The following calculation illustrates the aboveOutage by Samples rule.

For 10:00 - 11:00, 6 samples exist on the Profile Database:

10:10 Sample1 {Sample Fields: u_iStatus = 1}
10:20 Sample2 {Sample Fields: u_iStatus = 1}
10:25 Sample3 {Sample Fields: u_iStatus = 6}
10:30 Sample4 {Sample Fields: u_iStatus = 0}
10:35 Sample5 {Sample Fields: u_iStatus = 6}
10:40 Sample6 {Sample Fields: u_iStatus = 2}

Sample3 and Sample5 did not pass the isSampleValidmethod. The following samples are passed to
the calculateOutagemethod:

10:10 Sample1 {Sample Fields: u_iStatus = 1}
10:20 Sample2 {Sample Fields: u_iStatus = 1}
10:30 Sample4 {Sample Fields: u_iStatus = 0}
10:40 Sample6 {Sample Fields: u_iStatus = 2}

For Sample1 and Sample2, the following line is invoked inside the calculateOutagemethod:
outage.setNumberOfFailures 1;
The result of the calculation is the following:

APM Extensibility Guide
Chapter 4: SLM Rules API

Application PerformanceManagement (9.50) Page 86 of 125

An outage is reported with a duration of 20minutes, from 10:10 - 10:30.

Example - Outage by Sample Calculation with Minimum
Duration of 900 Seconds
The following calculation illustrates the Outage by Samples rule, based on the following Outage rule
parameters:

Minimum number of failures: 2
Minimum duration: 900 (seconds)
Max duration: undefined

For 10:00 - 11:00, 6 samples exist on the Profile Database:

l 10:10 - Sample representing 1 failure.
l 10:15 - Sample representing 1 failure.
l 10:20 - Sample representing no failures.
l 10:30 - Sample representing 1 failure.
l 10:40 - Sample representing 1 failure.
l 10:50 - Sample representing no failures.
The result of the calculation is the following:

An outage is reported with a duration of 20minutes, from 10:30 - 10:50. There is no outage between
10:10 - 10:20 because the outage duration did not reach theminimum outage duration parameter.

Example - Outage by Sample Calculation with Maximum
Duration of One Hour
The following calculation illustrates the Outage by Samples rule, based on the following Outage rule
parameters:

Minimum number of failures: 2
Minimum duration: 0 (default)
Max duration: 1 (hour)

For 10:00 - 12:00, 4 samples exist on the Profile Database:

APM Extensibility Guide
Chapter 4: SLM Rules API

Application PerformanceManagement (9.50) Page 87 of 125

l 10:00 - Sample representing 1 failure.
l 10:30 - Sample representing 1 failure.
l 11:00 - Sample representing 1 failure.
l 11:30 - Sample representing 1 failure.
The result of the calculation is the following:

Two outages are reported with a duration of 1 hour; the first outage from 10:00 - 11:00, and the second
outage from 11:00 - 12:00.

Example - Outage by Sample Calculation with a Sample
Representing Two Failures
The following calculation illustrates the Outage by Samples rule, based on the following Outage rule
parameters:

Minimum number of failures: 2
Minimum duration: 0 (default)
Max duration: undefined

For 10:00 - 11:00, two samples exist on the Profile Database:

l 10:00 - Sample representing two failures.
The following line of code is invoked in the outage parameter in calculateOutagemethod:
outage.setNumberOfFailures 2;

l 10:30 - Sample representing no failures.
The result of the calculation is the following:

An outage is reported with a duration of 30minutes, from 10:00 - 10:30.

APM Extensibility Guide
Chapter 4: SLM Rules API

Application PerformanceManagement (9.50) Page 88 of 125

Chapter 5: SLMWeb Services API
The SLMWeb Services API is an integration tool enabling administration of SLAs from an application
either internal or external to APM. The SLMWeb services support the creation andmanagement of
SLAs, also in an Software-as-a-Service (SaaS) deployment.

For details, see the following:

l Using the SLMWeb Services, below
l SLMWeb Services' Operations , on the next page

Prerequisite Knowledge
Users of the API should be familiar with Service Level Management administration and SOAP
concepts.

Permissions
The administrator provides login credentials for connecting with theWeb services. The credentials
must be those of a user with Administrator permissions, or the SLA owner.

For details on setting permissions in the Permissions Manager, see Permissions Overview in the
APM Platform Administration Guide.

Supported Operations
The followingWeb service operations are supported:

l Create SLA (with no CI)
l Start SLA
l Get SLA general properties
l Update SLA general properties
l Delete SLA
l Add Service to SLA
l Delete Service from SLA
l Get Services that are included in the SLA

Using the SLMWeb Services
The SLMWeb Services API enables submitting a service request. The engine returns an error
description if it cannot parse the statement or does not run successfully. If there is no error, the results
of the request are returned.

TheWeb services are described in a SOAPWSDL file, located at:

http://<server>:8080/slm_ws/services/SlmServices?wsdl

The port specification is only necessary for non-standard installations. Consult your system
administrator for the correct port number.

Developers can use a development environment to generate code fromWSDL for calling theWeb
services. TheWSDL describes the interface operations and operation parameters.

Application PerformanceManagement (9.50) Page 89 of 125

SLMWeb Services' Operations
This section describes the operations for the SLMWeb services.

l createSLA, below
l startSLA, below
l updateSLA, on the next page
l deleteSLA, on the next page
l getSLAProperties , on the next page
l addServicesForSLAWithOfferings, on page 92
l deleteServiceFromSLA, on page 92
l getSLAServicesFullPath, on page 93
l getServiceSLAs, on page 93

createSLA
Creates a new SLA with the specified SLA properties.

Operation signature:
String createSLA(String customerId, SlaPropertiesDTO properties)

Operation arguments:

Argument Description

customerId Typically 1 (apart from in an SaaS environment).

properties The properties used for initializing the new SLA, as follows:

name,description,agreementDetails,type(OLA, SLA,UC), classification (internal,
external);

startDate,endDate,timeZoneId,customerId,
providerId,trackingPeriods

Return-value: Returns the ID of the SLA in the RTSM.

Exception: Throws SlmWebServiceException if the user cannot create another SLA; for example,
because the user does not have the necessary permissions to create the SLA, or if the number of
allowed SLAs has been reached.

startSLA
Starts the specified SLA.

Operation signature:
startSLA(String customerId, String SLAId)

Operation arguments:

APM Extensibility Guide
Chapter 5: SLMWeb Services API

Application PerformanceManagement (9.50) Page 90 of 125

Argument Description

customerId Typically 1 (apart from in an SaaS environment).

SLAId The RTSM ID of the SLA you want to start.

Exception: Throws SlmWebServiceException when any type of error occurs.

updateSLA
Updates the SLA with the new properties.

Operation signature:
updateSLA(String customerId, String SLAId, SlaPropertiesDTO properties)

Operation arguments:

Argument Description

customerId Typically 1 (apart from in an SaaS environment).

SLAId The RTSM ID of the SLA to update.

properties The properties to be updated.

Exceptions:
l Throws SlaDoesNotExistsException if an SLA with the given ID does not exist.
l Throws SlmWebServiceException if a system problem occurs that prevents the operation to
execute successfully.

deleteSLA
Deletes the specified SLA.

Operation signature:
deleteSLA(String customerId, String SLAId)

Operation arguments:

Argument Description

customerId Typically 1 (apart from in an SaaS environment).

SLAId The RTSM ID of the SLA you want to delete.

Exception: Throws SlmWebServiceException when any type of error occurs.

getSLAProperties
Retrieves the properties of the specified SLA.

Operation signature:
SlaPropertiesDTO getSLAProperties(String customerId, String SLAId)

Operation arguments:

APM Extensibility Guide
Chapter 5: SLMWeb Services API

Application PerformanceManagement (9.50) Page 91 of 125

Argument Description

customerId Typically 1 (apart from in an SaaS environment).

SLAId The RTSM ID of the SLA with the properties you want to retrieve.

Exception: Throws SlmWebServiceException when any type of error occurs.

addServicesForSLAWithOfferings
Adds the specified services and their impact sub-tree to the SLA. Thematching service offering is
used for each service.

Operation signature:
String[] addServicesForSLAWithOfferings(String customerId, String slaId,
ServiceWithOffering[] servicesWithOffering)

Operation arguments:

Argument Description

customerId Typically 1 (apart from in an SaaS environment).

SLAId The RTSM ID of the SLA to which you want to add services.

servicesWithOffering The services to add to the SLA with matching service offering names.

Each ServiceWithOffering includes: serviceId, serviceName,
offeringName

Note:
l offeringNamemust be provided.
l Youmust provide at least one of serviceId or serviceName. If

serviceId is missing, the server will try to obtain it using the
serviceName.

Return-value: Returns an array of validation error messages (empty array if none).

Exception: Throws SlmWebServiceException if a system problem occurs that prevents the
operation from executing successfully.

deleteServiceFromSLA
Removes the specified services and their paths from the specified SLA.

Operation signature:
deleteServiceFromSLA(String customerId, String SLAId, Service[] services)

Operation arguments:

Argument Description

customerId Typically 1 (apart from in an SaaS environment).

SLAId The RTSM ID of the SLA from which you want to remove the services.

services The services you want to remove from the SLA.

APM Extensibility Guide
Chapter 5: SLMWeb Services API

Application PerformanceManagement (9.50) Page 92 of 125

Argument Description

Each service includes: serviceId, serviceName

If serviceId is missing, the server will try to obtain it using the serviceName.

Exceptions: Throws SlmWebServiceException when any type of error occurs.

getSLAServicesFullPath
Retrieves the services of the specified SLA.

Operation signature:
ServiceFullPath[] getSLAServicesFullPath(String customerId, String SLAId)

Example:Example of SLA with services 4, 5:

{id1, id2, id3, id4}
{id1, id2, id5}

Operation arguments:

Argument Description

customerId Typically 1 (apart from in an SaaS environment).

SLAId The RTSM ID of the SLA

Return-value: Returns the full paths of the services in the SLA.

Exceptions: Throws SlmWebServiceException when any type of error occurs.

getServiceSLAs
Returns the SLAs that include the specified service.

Operation signature:
String[] getServiceSLAs(String customerId, String serviceId)

Operation arguments:

Argument Description

customerId Typically 1 (apart from in an SaaS environment).

serviceId The RTSM ID of the service.

Return-value: Returns an array of SLA IDs that include the specified service.

Exceptions: Throws SlmWebServiceException when any type of error occurs.

APM Extensibility Guide
Chapter 5: SLMWeb Services API

Application PerformanceManagement (9.50) Page 93 of 125

Part 3: User Management

APM Extensibility Guide

Application PerformanceManagement (9.50) Page 94 of 125

Chapter 6: User Admin External API
You can use the User Admin External API to manage users.

The API enables you to get, add, and delete users. For details, see:

l Get All Groups/Users, below
l Post New User, on page 97
l Get Specific User, on page 99
l Get Specific Group, on page 101
l Delete User from Group, on page 102
l Post Existing User to a Group, on page 103
The service log file is located under: <Gateway server root
directory>\log\EJBContainer\acweb.log.

Return values are supported in XML format.

Authentication should be done using basic access authenticationmethod. For details and examples
refer to http://en.wikipedia.org/wiki/Basic_access_authentication.

Get All Groups/Users
You can use the following to retrieve all groups/users.

NOTE:
Youmust be a superuser or administrator to access this API.

API Syntax
GET Request

http://<APM Host>/topaz/acweb/usermanagement/<customerId>/users

The API uses the following parameters:

l customerId. Customer ID (use 1 for non-SaaS deployment).
The following is an example of the response:

<all>
<groups>

<group>
<name>root group</name>
<groups>

<group>
<name>second-level group</name>
<users>

<user>
<name>second-level user</name>

Application PerformanceManagement (9.50) Page 95 of 125

http://en.wikipedia.org/wiki/Basic_access_authentication

<login-name>sl-user</login-name>
</user>

</users>
</group>

</groups>
<users>

<user>
<name>first-level user</name>
<login-name>fl-user</login-name>

</user>
</users>

</group>
<group>

<name>root group2</name>
<users>

<user>
<name>second-level user</name>
<login-name>sl-user</login-name>

</user>
</users>

</group>
</groups>
<users>

<user>
<name>root user</name>
<login-name>r-user</login-name>

</user>
<user>

<name>user administrator</name>
<login-name>uadmin</login-name>

</user>
</users>

</all>

The output fields are as follows:

Field Description

group Group name

user User name and login name

Return Codes
The API returns the following return codes:

Name Error Code Description

OK 200 Success

APM Extensibility Guide
Chapter 6: User Admin External API

Application PerformanceManagement (9.50) Page 96 of 125

Name Error Code Description

INTERNAL_SERVER_ERROR 500 Internal application error

Post New User
You can use the following to add new users. You can select the groups in which to add the new user
and assign roles to the user. However, you cannot assign permissions to the user.

By default, the new user has the same default permissions as a user created using the UI:

l View:Enterprise
l View:Customer
l Add:Custom_Reports
l Add:Trend_Reports

NOTE:
Youmust be a superuser or administrator to access this API.

API Syntax
POST Request

http://<APM Host>/topaz/acweb/usermanagement/<customerId>/users/user

The API uses the following parameters:

l customerId. Customer ID (use 1 for non-SaaS deployment).
The following is an example of the request body:

<user>
<name>rest-user1</name>
<login>ruser1</login>
<password>admin</password>
<roles>

<role>BPM Viewer</role>
</roles>
<parents>

<group>root group</group>
</parents>

</user>

or

<user>
<name>rest-user1</name>
<login>ruser1</login>
<password>admin</password>

</user>

or

APM Extensibility Guide
Chapter 6: User Admin External API

Application PerformanceManagement (9.50) Page 97 of 125

<user>
<name>user</name>
<login>user</login>
<password>user</password>
<roles>

<role>Superuser</role>
</roles>
<parents>

<group>root group</group>
</parents>
<recipient>

<timeZone>Europe/Helsinki</timeZone>
<notifications>

<item>
<notificationTypeID>email</notificationTypeID>
<formatID>SHORT</formatID>
<targetData>user@apm.com</targetData>

</item>
<item>

<notificationTypeID>SMS</notificationTypeID>
<formatID>LONG</formatID>
<targetData>1234567890</targetData>
<provider>10</provider>

</item>
<item>

<notificationTypeID>Pager</notificationTypeID>
<formatID>LONG</formatID>
<targetData>12345678901</targetData>
<provider>10</provider>

</item>
</notifications>

</recipient>
</user>

The output fields are as follows:

Field Description

formatID Optional. If not mentioned, will use default from infra settings

group The group in which to add the user

login Login name (required)

name Name of the user (required)

notificationTypeID Type of notification. Options are: email, SMS, or Pager

password User's password (required)

provider ID of provider. Taken from notification_providers table in management schema.

APM Extensibility Guide
Chapter 6: User Admin External API

Application PerformanceManagement (9.50) Page 98 of 125

Field Description

(ID should exist in table.)

recipient Optional. If not mentioned, user will be created without a recipient.

role User's role

targetData Where notification should be sent. Options are email, SMS or Pager accordingly
to the notification type.

timeZone Optional. If not mentioned, will use server default locale

Return Codes
The API returns the following return codes:

Name Error Code Description

OK 200 Success

INTERNAL_SERVER_ERROR 500 Internal application error

Some required fields are empty

Get Specific User
You can use the following to retrieve a specific user.

NOTE:
Youmust be a superuser or administrator to access this API.

API Syntax
GET Request

http://<APM Host>/topaz/acweb/usermanagement/<customerId>/users/user/<user-name>

The API uses the following parameters:

l customerId. Customer ID (use 1 for non-SaaS deployment).
l user-name. User name
The following is an example of the response:

<user>
<id>5</id>
<name>second-level user</name>
<login-name>sl-user</login-name>
<parents>

<group>
<name>root group2</name>

APM Extensibility Guide
Chapter 6: User Admin External API

Application PerformanceManagement (9.50) Page 99 of 125

</group>
<group>

<name>second-level group</name>
</group>

</parents>
<roles>

<role>BPM_Viewer</role>
<role>RUM_Viewer</role>
<role>DEFAULT</role>

</roles>
<permissions>

<permission actionOn="RUM_Engine" action="VIEW"/>
<permission actionOn="TREND_REPORTS" action="ADD"/>
<permission actionOn="EUM_SR_Folder" action="VIEW"/>
<permission actionOn="VIEW" action="REMOVE"/>
<permission actionOn="CUSTOMER" action="VIEW"/>
<permission actionOn="VIEW" action="VIEW"/>
<permission actionOn="BPM_Agent" action="VIEW"/>
<permission actionOn="VIEW" action="CHANGE"/>
<permission actionOn="EUM_Alert" action="VIEW"/>
<permission actionOn="EUM_SR_Folder_Content" action="VIEW"/>
<permission actionOn="EUM_Application" action="VIEW"/>
<permission actionOn="RUM" action="VIEW"/>
<permission actionOn="ENTERPRISE" action="VIEW"/>
<permission actionOn="CUSTOM_REPORTS" action="ADD"/>
<permission actionOn="VIEW" action="FULLCONTROL"/>
<permission actionOn="BPM" action="VIEW"/>

</permissions>
</user>

The output fields are as follows:

Field Description

id ID of user

name Name of user

login-name Login name of user

group User's group

role User's role

permission User's permissions

Return Codes
The API returns the following return codes:

APM Extensibility Guide
Chapter 6: User Admin External API

Application PerformanceManagement (9.50) Page 100 of 125

Name Error
Code

Description

OK 200 Success

INTERNAL_
SERVER_
ERROR

500 Internal application error

User not found. (In this case, amessage appears in the response
body. For example, user[root-user11] not found.)

Get Specific Group
You can use the following to retrieve a specific group.

NOTE:
Youmust be a superuser or administrator to access this API.

API Syntax
GET (Method) Request

http://<APM Host>/topaz/acweb/usermanagement/<customerId>/groups/group/<group-name>

The API uses the following parameters:

l customerId. Customer ID (use 1 for non-SaaS deployment).
l group-name. Group name
The following is an example of the response:

<group>
<name>root group</name>
<users>

<user>second-level user</user>
</users>
<permissions>

<permission actionOn="ENTERPRISE" action="VIEW"/>
<permission actionOn="CUSTOMER" action="VIEW"/>

</permissions>
</group>

The output fields are as follows:

Field Description

name Group name

user User name

permission Group's permissions

APM Extensibility Guide
Chapter 6: User Admin External API

Application PerformanceManagement (9.50) Page 101 of 125

Return Codes
The API returns the following return codes:

Name Error
Code

Description

OK 200 Success

INTERNAL_
SERVER_
ERROR

500 Internal application error

Group not found. (In this case, amessage appears in the response
body. For example, group[root-grouppp]not found.)

Delete User from Group
You can use the following to remove an existing user from a group.

NOTE:
Youmust be a superuser or administrator to access this API.

API Syntax
DELETE Request

http://<APM Host>/topaz/acweb/usermanagement/<customerId>/groups/user/<user-name>

The API uses the following parameters:

l customerId. Customer ID (use 1 for non-SaaS deployment).
l user-name. user name
The following is an example of the request body:

<groups>
<group>

root group
</group>

</groups>

Or

<groups/>

The output fields are as follows:

Field Description

group Group name

APM Extensibility Guide
Chapter 6: User Admin External API

Application PerformanceManagement (9.50) Page 102 of 125

Return Codes
The API returns the following return codes:

Name Error
Code

Description

OK 200 Success

INTERNAL_
SERVER_
ERROR

500 Internal application error

Group or user not found. (In this case, amessage appears in the
response body. For example, group[root-grouppp]not found.)

Post Existing User to a Group
You can use the following to add an existing user to a group.

NOTE:
Youmust be a superuser or administrator to access this API.

API Syntax
POST Request

http://<APM Host>/topaz/acweb/usermanagement/<customerId>/groups/user/<user-name>

The API uses the following parameters:

l customerId. Customer ID (use 1 for non-SaaS deployment).
l user-name. User name
The following is an example of the request body:

<groups>
<group>

root group
</group>

</groups>

The output fields are as follows:

Field Description

group Group name

Return Codes
The API returns the following return codes:

APM Extensibility Guide
Chapter 6: User Admin External API

Application PerformanceManagement (9.50) Page 103 of 125

Name Error
Code

Description

OK 200 Success

INTERNAL_
SERVER_
ERROR

500 Internal application error

Group or user not found. (In this case, amessage appears in the
response body. For example, group[root-grouppp]not found.)

APM Extensibility Guide
Chapter 6: User Admin External API

Application PerformanceManagement (9.50) Page 104 of 125

Part 4: End User Management

APM Extensibility Guide

Application PerformanceManagement (9.50) Page 105 of 125

Chapter 7: EUMAdmin Open API
The EUM Admin Open API enables you to perform operations on EUM configurations without using the
EUM Administration user interface. The API supports retrieving, updating and creating Business
Process Monitor and Real User Monitor configurations.

The EUM Admin Open API is a RESTful Web service. It contains an integrated server sidemodule that
is compliant to JAX-RS v1.0 standard. In addition, a java client based on the ApacheWink framework
is provided.

The EUM Admin Open API classes are documented in Javadoc format in the APM EUM
Administration API reference APM EUM Administration API Reference. These files are located in the
following folder:

\\< Gateway Server root directory>\AppServer\webapps\site.war\amdocs\eng\doc_lib\API_
docs\EUM_API\EUM_Administration_API_CSH.htm

Application PerformanceManagement (9.50) Page 106 of 125

Part 5: SiteScope

APM Extensibility Guide

Application PerformanceManagement (9.50) Page 107 of 125

Chapter 8: SiteScope Public API
The SiteScope Public API enables you to perform operations on SiteScope configurations without
using the SiteScope or SAM Administration user interface in Business ServiceManagement. The API
supports retrieving, updating and creating SiteScope configurations, data acquisition, custommonitor
scripting and creating the topology script in Jython.

The SiteScope Public API can be invoked by any knownWeb Services invocation framework such as
Axis orWSIF, or by any client application.

For a list of supported configuration and data acquisition APIs included with SiteScope, see SiteScope
APIs in Using SiteScope in the SiteScope Help. Sample scripts for SiteScope configuration and data
acquisition APIs can be found in <SiteScope installation directory>\examples\integrations\api.
For documentation, see the SiteScope Public API ReferenceGuide located in <SiteScope
installation directory>\examples\integrations\api\doc\javadoc.zip.

Sample scripts for all the custommonitors are available in the SiteScope CustomMonitor API
Reference, located in <SiteScope installation
directory>\examples\monitors\custom\doc\javadoc.zip or from the Home page of the SiteScope
Help.

Application PerformanceManagement (9.50) Page 108 of 125

Part 6: Downtime

APM Extensibility Guide

Application PerformanceManagement (9.50) Page 109 of 125

Chapter 9: Downtime REST Service
You can use a RESTful web service running on theGateway Server to retrieve, update/terminate,
create, and delete downtimes. HTTP requests can be entered in your browser, and combinations of
HTTP requests and XML commands in a REST client. Service authentication is based on basic
authentication.

For further information about downtime, see DowntimeManagement Overview in Platform
Administration.

NOTE:

l The permissions required to use downtime REST API are the same as the permissions
configured for the Downtime entity in the User Management for specific users.

l You can use the CI name or CI ID to create or modify a downtime using the REST service.
For example:

<selectedCIs>
 <ci>
 <id>ac700345b47064ed4fbb476f21f95a76</id>
 <viewName>End User Monitors</viewName>
 </ci>
</selectedCIs>

Or

<selectedCIs>
 <ci>
 <viewName>End User Monitors</viewName>
 <ciName>CI name</ciName>
 </ci>
</selectedCIs>

Supported HTTP Requests
The downtime REST service supports the following HTTP requests:

NOTE:
CustomerID is always 1 except in the case of SaaS customers.

Action HTTP Command

Retrieve all downtimes http://<HPBSM server>/topaz/bsmservices/customers/
[customerId]/downtimes

Retrieve a specific
downtime

http://<HPBSM server>/topaz/bsmservices/customers/
[customerId]/downtimes/[downtimeId]

Update/Terminate a
downtime using http

http://<HPBSM server>/topaz/bsmservices/customers/
[customerId]/downtimes/[downtimeId] + XML of the downtime

Application PerformanceManagement (9.50) Page 110 of 125

Action HTTP Command

PUT Note: To terminate a downtime, redefine the end time of the downtime
by adding or modifying the <endDate> tag.

Create downtime using
http POST

http://<HPBSM server>/topaz/bsmservices/customers/
[customerId]/downtimes + XML of the downtime

Note:Successful creation of the downtime causes a return of the
newly created downtime in XML format, including the downtime ID.

Delete downtime using
http DELETE

http://<HPBSM server>/topaz/bsmservices/customers/
[customerId]/downtimes/[downtimeId]

Allowed Downtime Actions
Use the XML commands listed for the following downtime actions:

Action Description XML Command

Take no actions <action name="REMINDER"/>

Suppress alerts and close events <action name="SUPPRESS_NOTIFICATIONS"/>

Enforce downtime on KPI calculations;
suppress alerts and close events
(continuemonitoring)

<action name="ENFORCE_ON_KPI_CALCULATION"/>

Enforce downtime on Reports and KPI
calculations; suppress alerts and close
events (continuemonitoring)

<action name="ENFORCE_ON_REPORTS"/>

Enforce downtime on Reports and KPI
calculations; suppress alerts and close
events (continuemonitoring), including
all SLAs

<action name="ENFORCE_ON_REPORTS">
<propGroup name="SLA" value="ALL"/>
</action>

Enforce downtime on Reports and KPI
calculations; suppress alerts and close
events (continuemonitoring), including
specific SLA

<action name="ENFORCE_ON_REPORTS">
<propGroup name="SLA" value="SELECTED">
<prop>dda3fb0b20c0d83e078035ee1c005201</prop>

</propGroup>
</action>

Stop activemonitoring (BPM and
SiteScope); enforce downtime on
Reports & KPI calculations; suppress
alerts and close events

<action name="STOP_MONITORING"/>

Downtime XML Example
The following fields may not exceed themaximum lengths specified:

l Name: 200 characters
l Description: 2000 characters

APM Extensibility Guide
Chapter 9: Downtime REST Service

Application PerformanceManagement (9.50) Page 111 of 125

l Approved by: 50 characters

NOTE:
In Oracle, if you are using East Asian Languages (Chinese, Japanese, or Korean), the
maximum number of characters may be less than specified above.

NOTE:
For this example, all fields aremandatory.

<downtime userId="1" planned="true" id="8898e5a5dbcdc953e04037104bf5737c">
 <name>The name of the downtime</name>
 <action name="ENFORCE_ON_REPORTS">
 </action>
 <approver>The approver name</approver>
 <category>1</category>
 <notification>
 <recipients>
 <recipient id="24"/>
 <recipient id="22"/>
 <recipient id="21"/>
 </recipients>
 </notification>
 <selectedCIs>
 <ci>
 <id>ac700345b47064ed4fbb476f21f95a76</id>
 <viewName>End User Monitors</viewName>
 </ci>
 </selectedCIs>
 <schedule xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="WeeklyScheduleType">
 <type>WEEKLY</type>
 <startDate>2010-06-10T15:40:00</startDate>
 <timeZone>Europe/Zurich</timeZone>
 <days>
 <selectedDays>WEDNESDAY</selectedDays>
 <selectedDays>THURSDAY</selectedDays>
 <selectedDays>FRIDAY</selectedDays>
 <selectedDays>SATURDAY</selectedDays>
 </days>
 <startTimeInSecs>52800</startTimeInSecs>
 <durationInSecs>300</durationInSecs>
 </schedule>
</downtime>

Downtime Schedule Examples
Keep the following inmind when setting the downtime schedule:

l Retroactive downtime is not supported. You should not:
o Create a downtime that is scheduled in the past.
o Delete a downtime that has started or that occurred in the past.
o Modify a downtime that has started or that occurred in the past.

NOTE:
Although you can create, delete, or modify downtimes retroactively via the REST web
service, it is not recommended.

l The date format of startDate/endDate is: yyyy-MM-dd'T'HH:mm:ssZ

APM Extensibility Guide
Chapter 9: Downtime REST Service

Application PerformanceManagement (9.50) Page 112 of 125

l For weekly andmonthly downtimes, the startDate and endDate can be defined for any time, but we
recommend that it should be defined at midnight. For example:
o <startDate>2010-07-24T00:00:00</startDate>

o <endDate>2010-09-04T00:00:00</endDate>

Example of a Downtime Schedule with One Occurrence
<schedule xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="OnceScheduleType">

<type>ONCE</type>
<startDate>2010-06-08T14:40:00</startDate>
<endDate>2010-06-08T14:45:00</endDate>
<timeZone>Asia/Tokyo</timeZone>

</schedule>

Example of a Weekly Downtime Schedule
<schedule xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="WeeklyScheduleType">

<type>WEEKLY</type>
<startDate>2010-06-10T15:40:00</startDate>
<timeZone>Europe/Zurich</timeZone>
<days>

<selectedDays>WEDNESDAY</selectedDays>
<selectedDays>THURSDAY</selectedDays>
<selectedDays>FRIDAY</selectedDays>
<selectedDays>SATURDAY</selectedDays>

</days>
<startTimeInSecs>52800</startTimeInSecs>
<durationInSecs>300</durationInSecs>

</schedule>

Example of a Monthly Downtime Schedule
<schedule xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="MonthlyScheduleType">

<type>MONTHLY</type>
<startDate>2010-06-10T14:40:00</startDate>
<timeZone>America/Montevideo</timeZone>
<days>

<selectedDays>WEDNESDAY</selectedDays>
<selectedDays>THURSDAY</selectedDays>
<selectedDays>FRIDAY</selectedDays>
<selectedDays>SATURDAY</selectedDays>

</days>
<startTimeInSecs>52800</startTimeInSecs>
<durationInSecs>300</durationInSecs>

</schedule>

Downtime REST Examples using Java Code
The Java code examples below were designed to help use the Downtime REST service API. These
examples use only standard Java components. For each invoked operation, the sever returns HTTP
code which can be used for operation verification on the client side.

The Java Code Downtime REST Examples listed below are available in txt format in the following
directory:

APM Extensibility Guide
Chapter 9: Downtime REST Service

Application PerformanceManagement (9.50) Page 113 of 125

\\< Gateway Server root directory>\AppServer\webapps\site.war\amdocs\eng\doc_lib\
API_docs\DowntimeREST_JavaAPI\

l CreateDowntime.java
This is an example of Java code to create a new Downtime, which uses the HTTP POST request,
(in REST services, POST request is used to create an entity). If the operation runs successfully, the
system returns a newly created Downtime in XML format, including the downtime ID.

l DeleteDowntime.java
This is an example of Java code to delete a specific Downtime, which uses the HTTP DELETE
request (in REST services, DELETE request is used to delete an entity). If the operation runs
successfully, nothing will be returned.

l GetAllDowntimes.java
This is an example of Java code to get all Downtimes, which uses the HTTP GET request,(in REST
services, GET request is used to get an entity). If the operation runs successfully, the system
returns all Downtimes in XML format.

l GetSpecificDowntime.java
This is an example of a Java file to get all of a specific Downtime, which uses the HTTP GET
request, (in REST services, GET request is used to get an entity). If the operation runs successfully,
the system will return a specific Downtime in XML format.

l UpdateDowntime.java
This is an example of Java code to update a Downtime, which uses the HTTP PUT request, (in
REST services, PUT request is used to update an entity). If the operation runs successfully, the
system will not return anything.

Downtime REST Example Using Groovy
If business management solutions (such as SM or third party software) create downtime events when
integrating with APM, youmay need to import downtime information from an external system. To
import this downtime information, create amiddle utility using the REST API to pull the events from the
external source and post them to APM.

When importing definitions from an external source, take into account both the import scope and
mechanism.

Import Scope
Downtime properties may be different in different systems and software platforms. The common set of
downtime properties includes scheduling information and configuration items. In APM downtime, the
mandatory fields are:

l Downtime Name
l CI ID
l Schedule
l Action
Imported events must be translated tomatch APM downtime properties.

Import Mechanism

APM Extensibility Guide
Chapter 9: Downtime REST Service

Application PerformanceManagement (9.50) Page 114 of 125

Importing downtimes into APM is performed by an external utility with access to the formats and
properties of the external source. This utility translates the external properties to correlate to the
required and optional APM downtime properties in XML format.

APM Extensibility Guide
Chapter 9: Downtime REST Service

Application PerformanceManagement (9.50) Page 115 of 125

Part 7: Reporting in APM

APM Extensibility Guide

Application PerformanceManagement (9.50) Page 116 of 125

Chapter 10: Generic Reporting Engine API
The recommendedmethod for creating API-level queries to the profile database is building queries
using the Custom Query Builder. The Custom Query Builder enables the building of queries using a
graphical user interface, and facilitates the generation of reports, extraction of data in different formats,
and generation of query URLs that can be used with third-party or custom tools. For details, see
Building a Custom Query Using Custom Query Builder in the APMUser Guide.

TheGeneric Reporting Engine API also enables manual creation of queries using the following
methods:

l Web browser. The request is sent as an HTML query and the data is returned as HTML or as a CSV
(CommaSeparated Values) file that can be opened with Microsoft Excel or processed with a custom
tool.

l Web Service. The return object contains the data in CSV format.
The remainder of this chapter describes how to create queries manually.

Prerequisite Knowledge
Users of the API should be familiar with SQL syntax and APM administration and applications.
Users of the API through theWeb Service should also be familiar with the SOAP specification and
an object-oriented programming language such as C++ or Java.

Permissions
For a query to access the data using the API query syntax described below, the user and password
parameters passed in the query must be those of a user with either System Viewer or Superuser
permissions. (For details on setting permissions in the Permissions Manager, see Permissions
Overview in the APM Platform Administration Guide.)

NOTE:
If a GDE custom query does not contain a user’s credentials but indicates the type of report
(such as &resultType=csv), you need to enable SSL.

Configuration
To configure the API options, select Admin > Platform > Setup and Maintenance >
Infrastructure Settings:

l Select Foundations.
l Select Generic Data Engine Open API.
l In the Generic Data Engine Open API - Generic Data Engine Open API Settings table, locate:
o Maximum Rows. Change themaximum number of data rows returned.
o Enable User Credentials in URL in Open API. Open API requires basic authentication. If

Enable User Credentials in URL in Open AP is set to true, Open API will also accept user
credentials in the URL.

Getting Metadata on the Samples
When building queries, youmust know the data representation of the sample. For information on

Application PerformanceManagement (9.50) Page 117 of 125

commonly queried samples and descriptions of their fields, see Data Samples in the APM
Application Administration Guide.

Advanced Sample Retrieval
Users with special reporting needs can retrieve a list of all samples and their fields using theMBean
Inspector. Access theMBean Inspector page by entering the following URL in your browser:

http://<server>[:port]/jmx-
console/HtmlAdaptor?action=inspectMBean&name=Topaz%3Aservice%3DMeta-Data+Manager

The default port number is 8080. If this port is incorrect, consult your system administrator for the
correct port number.

Enter your JMX console authentication credentials. If you do not know your authentication
credentials, contact your system administrator.

On theMBean Inspector page, click the Invoke button next to the operation
showMetaDataDBMapping. The bean returns the list of the fields in each sample.

Data Returned
The same data is returned whether the request is made from a browser or with theWeb Service. With a
browser, the data resides in the response body, and for theWeb Service, the data resides in the return
object.

Web Browser Response Body
When the query is submitted from a browser, the response CSV or HTML contains either the data,
or an error code andmessage. If the number of rows to be returned exceeds themaximum, the last
row of the data is Returned X of Y rows, whereX is the number of rows returned andY is the
actual number of rows that fulfil the conditions of the query. If there is an error at the engine level,
the HTTP success code is returned, but the body of the response is <error code>, <error
message>.

Web Service Return Object
TheWeb Service return object contains the following:

l retval. The data or an error message.
l errorCode. The error code (type int). Possible error codes are:
o 0 - Success
o 100 - Authorization error
o 101 - Processing error
o 102 - Open API has been disabled

l origRowCount. The actual number of rows the query should have returned (type int). If the
number of rows to be returned exceeds themaximum, the origRowCount field is set to the
actual number of rows that the query would have returned had themaximum not been exceeded.

Querying with a Browser
When querying with a browser, the getData service is called with the URL:

APM Extensibility Guide
Chapter 10: Generic Reporting Engine API

Application PerformanceManagement (9.50) Page 118 of 125

http://<server>[:port]/topaz/gdeopenapi/GdeOpenApi?method=
getData&user=<username>&password=<password>&query=<query>

The URL can include an optional resultType parameter:

http://<server>[:port]/topaz/gdeopenapi/GdeOpenApi?method=getData&user=
<username>&password=<password>&query=<query>&resultType=csv

The port specification is only necessary for non-standard installations. Consult your system
administrator for the correct port number.

The default return type is HTML. If resultType=csv is specified, a comma separated values file is
returned.

Note: In an SaaS environment, include the following additional parameter
customerID=<customer id> .

Using the Web Service
The API Web Service enables submitting a query consisting of a username, password, and an SQL-
like select statement. The engine returns an error description if it cannot parse the statement or if there
is a problem running the query. If there is no error, the results of the query are returned.

The SOAPWSDL is at:

http://<server>[:port]/topaz/gdeopenapi/services/GdeWsOpenAPI?wsdl

The port specification is only necessary for non-standard installations. Consult your system
administrator for the correct port number.

Supported SQL Syntax
The language supported is a subset of SQL and supports these keywords, modifiers, and operators:

l SELECT
l WHERE
l FROM
l TOP
l HAVING
l Aliasing with the AS keyword
l Logical operators OR , AND , NOT
l DISTINCTmodifier (only supported for select list items)
l IN operator. Inner selects can be used to return the values for the IN operator.
l BETWEEN operator
l IS NULL (IS NOT NULL is not supported)
l LIKE. The wildcard character is the asterisk (*). Do not use the percent sign (%). The asterisk can
not be used by itself (LIKE *). It must be used with other characters.

l Mathematical operators: +, -, *, /, (,)

APM Extensibility Guide
Chapter 10: Generic Reporting Engine API

Application PerformanceManagement (9.50) Page 119 of 125

l Comparators: =, IS, !=, <>, >, >=, <, <=
l ORDER BY and the ASC and DESC modifiers

Supported Functions
The supported functions and their descriptions are as follows:

Function Field Formula Description

MAX MAX(<Data field>) Returns themaximum value of the data
represented in the selected data field.

MIN MIN(<Data field>) Returns theminimum value of the data
represented in the selected data field.

SUM SUM(<Data field>) Returns the summed value of the data
represented in the selected data field.

COUNT COUNT(<Data field>) Returns the number of records in the
data represented in the selected data
field.

Note:COUNT does not count records
in which the value of the selected data
field is NULL.

AVG AVG(<Data field>) Returns the average value of the data
represented in the selected data field.

STDDEV STDDEV(<Data field>) Returns the standard deviation of the
data represented in the selected data
field.

SUMOFSQR SUMOFSQR(<Data field>) Returns the sum of squares of the data
represented in the selected data field.

LOG LOG(<Data field>,?) Returns the logarithm of ? where the
data represented in the selected data
field is the base.

CEIL CEIL(<Data field>) Returns the smallest integer value that
is greater than or equal to the data
represented in the selected data field.

FLOOR FLOOR(<Data field>) Returns the largest integer value that is
equal to or less than the data
represented in the selected data field.

MOD MOD(<Data field>,?) Returns the remainder (modulus) of the
data represented in the selected data
field divided by ?.

APM Extensibility Guide
Chapter 10: Generic Reporting Engine API

Application PerformanceManagement (9.50) Page 120 of 125

Function Field Formula Description

SQRT SQRT(<Data field>) Returns the square root of the data
represented in the selected data field.

REPLACENULL REPLACENULL(<Data field>,?) Replaces null values in the data field
with ?.

Note:REPLACENULL is equivalent to
Oracle's NVL andMicrosoft SQL
Server's ISNULL

IF IF(<Data field>,?,?,?,?) The function formula IF(<Data
field>,a,b,c,d) contains a condition
where a represents the relation
between the <Data field> and b, c
represents the result if the condition is
true, and d represents the result if the
condition is false.

Example:You enter the following field
formula: IF
(dResponseTime,>,5000,pass,fail)
. If the response time is greater than
5000, the result is pass; if the response
time is less than 5000, the result is
fail.

byTime This function is not available for
selection in the Custom Query
Builder page.

For details, see byTime Function, on
the next page.

Query Limitations
The following limitations apply to queries submitted to the service:

l Only onemonitor type can be selected in a single query.
l The asterisk (*) is not supported as a wildcard character except in combination with the LIKE
operator. It is supported as themultiplication operator.

l Inner selects and joins are not supported, with one exception: an inner select can be used to return
the values for an IN clause.

l TheORDER BY clause requires a column number, for example ORDER BY 1. ORDER BY column
name is not supported.

l The engine requires that queries contain a time limitation (that is, a condition for the time_stamp
field) in theWHERE clause.

l TheGROUP BY clause is not supported. It is unnecessary because the engine treats all fields that
do not have an aggregate function as GROUP BY fields.

l Whenmanually defining a filter that consists of strings containing white space or special characters
(for example, where bb_guid IN (a b, c)), youmust enclose the white space or special

APM Extensibility Guide
Chapter 10: Generic Reporting Engine API

Application PerformanceManagement (9.50) Page 121 of 125

character string with quotes (for example, where bb_guid IN (`a b', c)). When you create
filters on the Filter Builder page, APM automatically adds the quotes. Special characters are defined
as any characters other than digits, letters, and the following characters: "_", "$", "#".

l When defining a filter that consists of strings containing one or more single quote characters, you
must add a second single quote character beside each instance. For example, change
szTransactionName = ('Login_to_O'Brien') to szTransactionName = ('Login_to_
O''Brien').

l The columns in the returned data are labeled Column 0, Column 1, and so on. To returnmeaningful
column labels, use the SQL AS operator. For example, Select time_stamp as TimeStamp. With
this use of the AS operator, the column label is TimeStamp.

l The "COUNT (DISTINCT <field>)" syntax is not supported. Instead use the "COUNT DISTINCT
(<field>)" syntax.

Date-Time Values
Time in queries and return data is specified in seconds since January 1, 1970. You can useMicrosoft
Excel to convert between time values in seconds and date- time.

Time is most commonly used for time stamp fields.

To get a GMT time for use in a query:
Enter the date and time in a Date-formatted cell and in another cell, formatted as General, enter the
formula:
=(<date cell> - 25569) * 86400

To correct for a local time zone:
Add the time zone offset times 3600 seconds to the result. For example, for Central Europe (GMT +
2):
=(<date cell> - 25569) * 86400 + (2 * 3600)

To view a time value from a query as a GMT date in Excel:
Use a Date format for the cell and enter the formula:
=<time stamp> / 86400 + 25569

To correct for a local time zone:
Subtract the time zone offset times 3600 seconds from the time stamp. For example, for the
Eastern United States, standard time (GMT - 3):
=(<time stamp> - (-3 * 3600))/ 86400 + 25569

byTime Function
TheGeneric Reporting Engine SQL supports the function byTime, which returns data grouped by time
periods. For example, querying the average response time of a transaction for the past day without the
byTime function returns one value. You can use the byTime function to view the average response time
of the transaction for each hour of the past day. It this case, a value is returned for each hour of the past
24 hours.

The function syntax is:
byTime(<timefield >, <step value>, <number of step>, <offset>)

APM Extensibility Guide
Chapter 10: Generic Reporting Engine API

Application PerformanceManagement (9.50) Page 122 of 125

Argument Description

timefield Usually a timestamp field

step value One of:

10 - Second
20 - Minute
30 - Hour
40 - Day
50 -Week
60 - Month
70 - Quarter
80 - Year

number of
step

The number of the units specified in step value to group.

offset Time zone offset from GMT in hours. Positive numbers indicate time zones East of
GMT. Negative numbers indicate time zones west of GMT.

For example, to return one value for each 3 days, corrected to one hour east of GMT:

byTime(time_stamp, 40, 3, 1)

Query Examples
Below are several examples of query URLs that retrieve different types of data from the database.

Example of ss_t Sample
This example illustrates retrieving the average value for SiteScope samples on a given
measurement andmonitor:

http://myServer/topaz/gdeopenapi/GdeOpenApi?method=getData&user=admin&password=admin
&query=select szMeasurementName, szMonitorName, avg(dValue) from ss_t where u_iStatus=1
and time_stamp > 123456 and szMeasurementName = `myMeasurmentName' and
szMonitorName = `myMonitorName'

Example of trans_t Sample
This example illustrates retrieving the average response time, grouped by minutes and offset to
GMT + 3 for Springfield_infra_ems_login transactions in the Springfield_Location application for a
given period from BPM data:

http://myServer/topaz/gdeopenapi/GdeOpenApi?method=getData&user=admin&password=admin
&query=select byTime(time_stamp, 20, 1, 3.0), application_name as ApplicationName,
szTransactionName as TransactionName, AVG(dResponseTime) from trans_t where time_
stamp>=1126594800.64 and time_stamp<1126596000.64 and application_name='Springfield_
Location' and szTransactionName='Springfield_infra_ems_login'

Example of rum_action_t Sample
This example illustrates retrieving the total server time for each URL as measured by RUM:

APM Extensibility Guide
Chapter 10: Generic Reporting Engine API

Application PerformanceManagement (9.50) Page 123 of 125

http://myServer/topaz/gdeopenapi/GdeOpenApi?method=getData&user=admin&password=admin
&query=select application_name as ApplicationName,action_name as ActionName,action_
descriptor,AVG(tot_server_time) from rum_action_t where time_stamp>=1304197200.64 and time_
stamp<1306702800.64 and application_name='EC2%20jpetstore' and action_name='Sign In'

Example of rum_application_stats_t Sample
This example illustrates retrieving the average server time of the application's actions on each of
the servers serving the application as measured by RUM:

http://MyServer/topaz/gdeopenapi/GdeOpenApi?method=getData&user=admin&password=a
dmin&query=select application_name as ApplicationName,server_host_name as
hostName,Avg(tot_server_time) as serverTime from rum_application_stats_t where
time_stamp>=1304197200.64 and time_stamp<1306702800.64 and application_name='EC2
jpetstore' group by application_name, server_host_name

APM Extensibility Guide
Chapter 10: Generic Reporting Engine API

Application PerformanceManagement (9.50) Page 124 of 125

Send documentation feedback
If you have comments about this document, you can contact the documentation team by email. If an
email client is configured on this system, click the link above and an email window opens with the
following information in the subject line:

Feedback on APM Extensibility Guide (Micro Focus Application Performance
Management 9.50)
Add your feedback to the email and click Send.

If no email client is available, copy the information above to a new message in a webmail client, and
send your feedback to docs.feedback@microfocus.com.

We appreciate your feedback!

APM Extensibility Guide
Send documentation feedback

Application PerformanceManagement (9.50) Page 125 of 125

mailto:docs.feedback@microfocus.com?subject=Feedback on APM Extensibility Guide (Micro Focus Application Performance Management 9.50)

	Extensibility Guide Overview
	Part 1: Service Health
	Chapter 1: Service Health Rules API
	API Group and Sibling Rule
	API Sample Rule
	API Duration-Based Sample Rule
	Creating Rules with the Rules API
	How to Define an API Rule in the CI Indicators Tab
	How to Create a Text File-Based API Rule
	How to Define an API Rule in the Rule Repository
	How to Work with Tooltip Entries
	How to Write to Log Files From the Rules API Code
	How to Include a CI Property in Rules API Calculations
	Examples - API Sample Rule
	Example - Average Availability Rule
	Example - Average Performance Rule
	Example - Average Performance Rule Using a Rule Parameter Filter

	Examples - API Group and Sibling Rule
	Example - Worst Child Rule
	Example - Worst Sibling Status Rule
	Example - Specific Child CI Group Rule
	Example - Sibling Rule Based on Availability and Performance KPIs
	Example - Group Average Value by CI Type
	Example - Worst Health Indicator Rule
	Example - Using Groovy Closure

	Chapter 2: Service Health External APIs
	Retrieve Indicator Data API
	API Syntax
	Return Codes
	API Syntax
	Return Codes
	API Syntax
	Return Codes

	Reset Health Indicator State API
	Service Health Database Query API

	Part 2: Service Level Management
	Chapter 3: SLM External API
	Get SLA Configuration Data
	API Syntax
	Return Codes

	Get SLA Calculation Results
	API Syntax
	Return Codes

	Get Calendars
	API Syntax
	Return Codes

	Get Tracking Periods
	API Syntax
	Return Codes

	Get KPIs
	API Syntax
	Return Codes

	Get Indicator Statuses
	API Syntax
	Return Codes

	Chapter 4: SLM Rules API
	API Simplified Average Rules
	API Group and Sibling Rule
	Accessing a Specific Child KPI in the KPI Definition Page

	Sample Rule Calculation Mechanism - Overview
	Sample Rules: Calculating the KPI Based on Samples
	Sample Rules: Calculating the KPI's Aggregated Results
	When to Use Sample or Duration-Based Sample Rules
	Example of Average Response Time Calculation

	API Sample Rule
	API Duration-Based Sample Rule
	Duration-Based Sample Continuity
	Filtering with the Duration-Based Sample Rule
	API Outage by Samples Rule
	Creating Rules with the Rules API
	How to Define an API Rule for a Specific KPI or Outage
	How to Create a Text File-Based API Rule
	How to Define an API Rule Within the Rule Repository
	How to Work with Tooltip Entries
	How to Write to Log Files From the Rules API Code
	How to Include a CI Property in Rules API Calculations
	Examples - API Group and Sibling Rule
	Examples - API Sample Rule
	Example - Sample-Based Average Response Time Rule
	Calculation - Sample-Based Average Response Time Rule

	Example - Sample-Based Average Response Time Rule with Filter
	Calculation - Sample-Based Average Response Time Rule with Filter

	Example - Sample-Based Maximum Response Time Rule
	Calculation - Sample-Based Maximum Response Time Rule

	Examples - API Duration-Based Sample Rule
	Example - Duration-Based Average Response Time Rule
	Calculation - Duration-Based Average Response Time Rule

	Example - Duration-Based Average Response Time Rule with isSampleValid Method...
	Calculation - Duration-Based Average Response Time Rule with isSampleValid Me...

	Example - Duration-Based Average Response Time Rule with isSampleAndDurationV...
	Calculation - Duration-Based Average Response Time Rule with isSampleAndDurat...

	Example - Duration-Based Average Response Time Rule with isSampleAndDurationV...

	Examples - API Outage by Samples Rule
	Example - Outage by Samples Rule and Calculation with Default Rule Parameters
	Example - Outage by Sample Calculation with Minimum Duration of 900 Seconds
	Example - Outage by Sample Calculation with Maximum Duration of One Hour
	Example - Outage by Sample Calculation with a Sample Representing Two Failures

	Chapter 5: SLM Web Services API
	Using the SLM Web Services
	SLM Web Services' Operations

	Part 3: User Management
	Chapter 6: User Admin External API
	Get All Groups/Users
	API Syntax
	Return Codes

	Post New User
	API Syntax
	Return Codes

	Get Specific User
	API Syntax
	Return Codes

	Get Specific Group
	API Syntax
	Return Codes

	Delete User from Group
	API Syntax
	Return Codes

	Post Existing User to a Group
	API Syntax
	Return Codes

	Part 4: End User Management
	Chapter 7: EUM Admin Open API

	Part 5: SiteScope
	Chapter 8: SiteScope Public API

	Part 6: Downtime
	Chapter 9: Downtime REST Service
	Downtime Schedule Examples
	Example of a Downtime Schedule with One Occurrence
	Example of a Weekly Downtime Schedule
	Example of a Monthly Downtime Schedule

	Downtime REST Examples using Java Code
	Downtime REST Example Using Groovy

	Part 7: Reporting in APM
	Chapter 10: Generic Reporting Engine API
	Data Returned
	Querying with a Browser
	Using the Web Service
	Supported SQL Syntax
	Supported Functions
	Query Limitations
	Date-Time Values
	byTime Function
	Query Examples

	Send documentation feedback

