

Introduction ... 2
Merge strategies .. 2
Three-way merging ... 2

How to use KDiff3 ... 3
What is KDiff3? ... 3
Merge verification .. 11

Procedure for merging format records .. 11

Special Considerations for using 3-way-merge .. 14
Considerations when using KDiff3 .. 14
Considerations when using the 2-way merge in Service Manager .. 17

For more information .. 18

Using automatic merge tools in conflict resolution
How to use KDiff3 for automatically merging records that were marked as

conflicts during the application upgrade

2

Introduction

An integral part of a successful upgrade is conflict resolution. While conflict resolution can be very

time consuming, estimating that 1 person can solve around 100 conflicts per week, the success of the

upgrade hinges on making the correct decisions for the system to work properly after the upgrade.

This document introduces how to use the new 3-way merge functionality that was first introduced with

upgrade patch 3 of Service Manager 9.30 for more educated decisions and easier merging of

functionality between the customer version of a record and the out-of-box counterpart. Use this

document in conjunction with other Service Manager Upgrade documentation. Detailed steps on how

to perform an application upgrade, are documented the Service Manager Upgrade Guide.

Merge strategies

First, there are 2 basic strategies when going through a customer upgrade:

1. Use as much out-of-box functionality as possible (recommended by HP)

2. Stay as close to the customer version as possible

An additional third option is to merge in new out-of-box functionality while keeping the customer look

and feel

The following are some pros and cons for each strategy:

Based on this basic strategy, there are 3 different merge strategies when you merge single objects:

 Use the customer version without changes

 Use the new OOB version without changes

 Merge functionality of OOB and customer

In this paper, we will concentrate on how to most efficiently merge OOB functionality with customer

tailoring using the KDiff3 tool and the 2-way-merge function in the Service Manager upgrade results

record.

Three-way merging

When a conflict occurs on an object, it involves three versions of that object:

 The out-of-box version that was originally released

 The current version of your system that was tailored

 The upgrade version that the Upgrade Utility tries to apply to your system

To make an educated decision during conflict resolution, you must compare both your tailored version

and the upgrade version with the original out-of-box version to determine what has changed. For each

Strategy Pros Cons

Close to Customer • No requirement for End User Training • New functionality of new version is not

available, or only partially available

• Increased amount of conflicts next time

Close to OOB • Next upgrade will be less conflicts

• All new functionality is available

• Large requirement for End User Training

Merged functionality • Some end user training required for new

features, but look and feel stay the same

 • Fewer conflicts on next upgrade

 • All new functionality is available

• During conflict resolution, the decision maker

needs to know both the customer tailoring and

the new functionality to make the right decision

3

object marked as "Renamed" in the Upgrade Results list, the Upgrade Utility automatically generates

XML files for the three versions of the object.

Version Location Description

base <Upgrade>\3waymerge\work\base An XML representation of every object that has been

signatured in the pre-upgrade out-of-box version.

customer <Upgrade>\3waymerge\work\customer An XML representation of all objects that were

tailored in the customer version and resulted in a

conflict during the upgrade.

upgrade <Upgrade>\3waymerge\work\upgrade An XML representation of the object provided by the

upgrade package of all objects that resulted in a

conflict.

Note: <Upgrade> represents the Upgrade path specified when applying an upgrade.

Each of the three folders described above contains a subfolder for each signatured table. You can

find the XML representations of the objects within the table within these subfolders. You may visually

compare the three versions of each object using a three-way compare and merge tool outside Service

Manager, and then load the merged version using Service Manager’s 2-way merge utility from the

Upgrade Results record.

How to use KDiff3

What is KDiff3?

KDiff3 can compare and automatically merge two or three text files or directories. It shows the delta

between the input files both line by line and character by character. Visit the KDiff3 Web site

(http://kdiff3.sourceforge.net) to obtain the KDiff3 software and related information.

KDiff3 is available for Windows and Gnu Linux. For Service Manager running on any other Unix

flavors, we recommend that you run KDiff3 on Windows and transfer the files from your Unix server to

your Windows client.

To compare and merge objects:

1. Start KDiff3, and specify the paths as follows

A(Base): <Upgrade>\3waymerge\work\base

B: <Upgrade>\3waymerge\work\customer

C: <Upgrade>\3waymerge\work\upgrade

2. Navigate to the XML file for the object that you want to merge.

3. In the merge view, you can see the differences between the three versions to determine which

changes between the customized version and the new out-of-box version were customer

introduced:

http://kdiff3.sourceforge.net/

4

4. Click the Merge button to run an automatic merge.

5. A prompt will inform you whether the merge was successful or requires manual intervention:

6. In the example of the incidents formatctrl record, 6 conflicts could not be auto-merged.

7. To manually merge differences that cannot be automatically merged, search for both “merge

conflicts” and “no src” lines that indicate conflicts that have to be resolved

5

When right-clicking on the <Merge Conflict> line, a selection of which XML line to use is

presented:

6

The compare windows above the merge window show the originating lines:

In this case, the customer added a FormatControl query, and the new out-of-box record added

another query line. To successfully merge both the customizations and the new out-of-box

functionality, both lines from B and the lines from C need to be included. To do so, choose Select

Line(s) from B and Select line(s) from C.

Note: The resulting XML from this type of merge is most likely missing tags and needs to be verified.

8. Continue with all other Merge Conflicts by deciding which line(s) to include in the final XML.

9. Once all merge conflicts are resolved select all lines of the merge result in the output pane and

copy them.

The XML in this example prior to verification is as follows (due to the size of the XML, we will only

show the queries part of the record):

<model name="formatctrl">

<keys>

<name sctype="string">incidents</name>

</keys>

<instance recordid="incidents" uniquequery="name="incidents"">

<name type="string">incidents</name>

<database.access type="boolean">true</database.access>

<queries sctype="array">

<queries sctype="structure">

<file type="string">assignment</file>

<query type="operator">name=toupper(xx.handled.by.group in $file) and xx.active=true</query>

<required type="boolean">true</required>

<message type="string">Please provide a valid handled by group</message>

<add type="operator">not $G.ess</add>

<update type="operator">not $G.ess and not same(toupper(xx.handled.by.group in $file),

toupper(xx.handled.by.group in $file0))</update>

7

<field.name type="string">xx.handled.by.group</field.name>

</queries>

<queries sctype="structure">

<file type="string">operator</file>

<query type="operator">not null(owner.name in $file) and contact.name=toupper(owner.name in

$file) or null(owner.name in $file) and name=operator()</query>

<required type="operator">not null(owner.name in $file) and (owner.name in

$file)~#"linker"</required>

<message type="string">Please provide a valid handled by person.</message>

<add type="operator">not null(owner.name in $file)</add>

<update type="operator">not null(owner.name in $file) and not same(toupper(owner.name in $file),

toupper(owner.name in $file0))</update>

<query.init type="operator">not $G.ess and null(owner.name in $file) or null(xx.handled.by.group in

$file)</query.init>

</queries>

<queries sctype="structure">

<file type="string">contacts</file>

<query type="operator">contact.name=toupper(callback.contact in $file) and active=true</query>

<required type="boolean">true</required>

<message type="string">Please provide a valid Caller.</message>

<add type="boolean">true</add>

<update type="operator">not same(toupper(callback.contact in $file), toupper(callback.contact in

$file0))</update>

<field.name type="string">callback.contact</field.name>

</queries>

<queries sctype="structure">

<file type="string">contacts</file>

<query type="operator">contact.name=toupper(contact.name in $file) and active=true</query>

<required type="operator">not same(toupper(callback.contact in $file), toupper(contact.name in

$file))</required>

<message type="string">Please provide a valid Customer.</message>

<add type="operator">not same(toupper(callback.contact in $file), toupper(contact.name in

$file))</add>

<update type="operator">not same(toupper(callback.contact in $file), toupper(contact.name in $file))

and not same(toupper(contact.name in $file), toupper(contact.name in $file0))</update>

<field.name type="string">contact.name</field.name>

</queries>

<queries sctype="structure">

<file type="string">contacts</file>

<query type="operator">contact.name=toupper(alternate.contact in $file) and active=true</query>

<message type="string">Please provide a valid Alternate Contact.</message>

<add type="operator">not same(toupper(callback.contact in $file), toupper(alternate.contact in

$file))</add>

<update type="operator">not same(toupper(callback.contact in $file), toupper(alternate.contact in

$file)) and not same(toupper(alternate.contact in $file), toupper(alternate.contact in $file0))</update>

<field.name type="string">alternate.contact</field.name>

</queries>

<queries sctype="structure">

<file type="string">device</file>

<query type="operator">logical.name=toupper(affected.item in $file) and device.type="bizservice"

and xx.active=true</query>

<required type="boolean">true</required>

<message type="string">Please provide a valid Service.</message>

<add type="boolean">true</add>

8

<update type="operator">not same(toupper(affected.item in $file), toupper(affected.item in

$file0))</update>

<field.name type="string">affected.item</field.name>

</queries>

<queries sctype="structure">

<file type="string">device</file>

<query type="operator">logical.name=toupper(logical.name in $file) and device.type~="bizservice"

and xx.active=true</query>

<required type="boolean">true</required>

<message type="string">Please provide a valid Affected CI.</message>

<add type="operator">not null(logical.name in $file)</add>

<update type="operator">not null(logical.name in $file) and not same(toupper(logical.name in $file),

toupper(logical.name in $file0))</update>

<field.name type="string">logical.name</field.name>

</queries>

<queries sctype="structure">

<file type="string">category</file>

<query type="operator">name=category in $file and active=true</query>

<required type="boolean">true</required>

<message type="string">Please provide a valid Category</message>

<add type="boolean">true</add>

<update type="boolean">true</update>

<field.name type="string">category</field.name>

</queries>

<queries sctype="structure">

<file type="string">subcategory</file>

<query type="operator">category=category in $file and subcategory=subcategory in $file and

active=true</query>

<file type="string">device</file>

<query type="operator">logical.name=logical.name in $file</query>

<add type="boolean">true</add>

<update type="boolean">true</update>

</queries>

<queries sctype="structure">

<file type="string">device</file>

<query type="operator">logical.name=logical.name in $file and contact.name=contact.name in

$file</query>

<add type="boolean">true</add>

<update type="boolean">true</update>

</queries>

<required type="operator">not null(category in $file)</required>

<message type="string">Please provide a valid Subcategory.</message>

<add type="operator">not null(category in $file)</add>

<update type="operator">not null(category in $file)</update>

<field.name type="string">subcategory</field.name>

</queries>

<queries sctype="structure">

<file type="string">product.type</file>

<query type="operator">category=category in $file and subcategory=subcategory in $file and

product.type=product.type in $file and active=true</query>

<required type="operator">not null(category in $file) and not null(subcategory in $file) and not

null(subcategory in $file)</required>

<message type="string">Please provide a valid Type.</message>

9

<add type="operator">not null(category in $file) and not null(subcategory in $file) and not

null(subcategory in $file)</add>

<update type="operator">not null(category in $file) and not null(subcategory in $file) and not

null(subcategory in $file)</update>

<field.name type="string">product.type</field.name>

</queries>

<queries sctype="structure">

<file type="string">location</file>

<query type="operator">location=location in $file</query>

<required type="boolean">false</required>

<message type="string">Please provide a valid Location.</message>

<add type="operator">not null(location in $file)</add>

<update type="operator">not $G.ess and not same(toupper(location in $file), toupper(location in

$file0))</update>

<field.name type="string">location</field.name>

</queries>

<queries sctype="structure">

<file type="string">xximrecovery</file>

<query type="operator">record.id=incident.id in $file and recovered=true</query>

<add type="operator">open in $file="Closed"</add>

<update type="operator">open in $file="Closed"</update>

</queries>

</queries>

</instance>

</model>

10. Verify that the XML syntax is correct by using an XML-typing editor. All tags have to have an end

tag, and the nesting of the tags has to be verified.

When looking at the queries section in an XML typing editor, the following query line fails the syntax

check. The correction is entered below in red:

<queries sctype="structure">

<file type="string">subcategory</file>

<query type="operator">category=category in $file and subcategory=subcategory in $file and

active=true</query>

<file type="string">device</file>

<query type="operator">logical.name=logical.name in $file</query>

<add type="boolean">true</add>

<update type="boolean">true</update>

</queries>

<queries sctype="structure">

<file type="string">device</file>

<query type="operator">logical.name=logical.name in $file and contact.name=contact.name in

$file</query>

<add type="boolean">true</add>

<update type="boolean">true</update>

</queries>

<required type="operator">not null(category in $file)</required>

<message type="string">Please provide a valid Subcategory.</message>

<add type="operator">not null(category in $file)</add>

<update type="operator">not null(category in $file)</update>

<field.name type="string">subcategory</field.name>

</queries>

10

<queries sctype="structure">

<file type="string">device</file>

<query type="operator">logical.name=logical.name in $file</query>

<add type="boolean">true</add>

<update type="boolean">true</update>

</queries>

<queries sctype="structure">

<file type="string">device</file>

<query type="operator">logical.name=logical.name in $file and contact.name=contact.name in

$file</query>

<add type="boolean">true</add>

<update type="boolean">true</update>

</queries>

<queries sctype="structure">

<file type="string">subcategory</file>

<query type="operator">category=category in $file and subcategory=subcategory in $file and

active=true</query>

<required type="operator">not null(category in $file)</required>

<message type="string">Please provide a valid Subcategory.</message>

<add type="operator">not null(category in $file)</add>

<update type="operator">not null(category in $file)</update>

<field.name type="string">subcategory</field.name>

</queries>

11. Search for and select the record in the Upgrade Results list that corresponds to the object that you

are merging, then click Merge from the More Actions menu to start the Merge tool embedded in

the Upgrade Utility.

12. You will be shown the out-of-box and customer version of the record you are reconciling:

11

On the right hand side, right mouse-click and choose Select all. Then select Paste to insert the

merged XML. Click Save to save your changes to the XML representation of the record.

13. Verify that the merge worked successfully by going into the Service Manager tool used to edit this

record (for example, fc for format control, link for link records), selecting the record and ensure

that all lines within the record appear correct and complete. If they are not correct and complete,

use the Revert option in the Upgrade Results to return to the customer tailored version of the

record prior to re-resolving the conflict appropriately.

Merge verification

KDiff3 as a three-way merge tool can assist in comparing and merging objects during conflict

resolution. It is important to note that KDiff3 is a text based comparison tool, and it is not aware of the

XML syntax and tagging. The KDiff3 three-way merge utility compares XML objects as text line by line

and does not compare based on the XML tags. Therefore, it may try to add a line that already exists

further down, or not add a beginning tag or ending tag during the merge.

When using KDiff3 to automatically merge different versions of a Service Manager record, the user is

responsible to ensure syntactical and contextual integrity of the merged XML file. We recommend

using an XML editor to verify start and end tags as well as the XML structure prior to using the merged

XML to update the Service Manager record. After applying the merged XML, also verify that the

merged record is syntactically correct and complete using the native Service Manager tools and

perform sufficient testing to make sure the modified objects are working correctly.

Procedure for merging format records

Format records are not suitable to be merged using a text-based tool, particularly when merging large

format records. You can use KDiff3 to assist in identifying the differences, though, and then apply the

necessary changes manually using Forms Designer.

The following procedure uses the advFind.search.quote format as an example:

14. Start KDiff3, and specify the paths as follows

A(Base): <Upgrade>\3waymerge\work\base

B: <Upgrade>\3waymerge\work\customer

C: <Upgrade>\3waymerge\work\upgrade

15. Within A, B, and C navigate to the format folder and open the advFind.search.quote.xml

file.

16. It is possible to hide a version of the record, to perform a side-by-side comparison that involves

only two versions. To do this, clear the check mark for the version that you want to hide from the

Window menu.

12

17. To determine which format version has the least manual changes necessary to merge the two

records, compare the B and C versions of the record, and scroll through to see which side has the

most additions or changes.

18. Alternatively, you can compare both formats by going into the upgrade results record and clicking

on More Actions > Compare (Note: The merge option is not available for format records) to

compare the customer version and the NEW version of the format record. Below an example

showing information that was added on the customer (right) version of the format:

19. In this example, the customer tailored version has fewer changes than the upgrade version.

Therefore, we will apply the customer’s tailoring changes to the upgrade version, such as

changing the type of the status field from a text field to a combo box.

20. To do the manual merge of features on the advFind.search.quote format, log on to Service

Manager as an administrator, click on Tailoring > Forms Designer, and type

=advFind.search.quote in the Name field. Click Search to retrieve the record.

21. Since the lesser amount of manual changes required in this case is on the customer tailored version

with the name of advFind.search.quote, no rename of the form is necessary. Were it the other way

around with less changes necessary against the NEW930 version of the format you would rename

the customer version to CUSTadvFind.search.quote and rename the

NEW930advFind.search.quote to advFind.search.quote prior to continuing with the manual

merge. When renaming the formats, ensure to NOT perform the action on format control or link

when prompted.

22. Go into design mode on the advFind.search.quote format by clicking on Design.

13

23. Remove the text box next to Status.

24. To most efficiently add the drop down box from the NEW930advFind.search.quote format, open

another instance of Forms Designer, select the NEW930advFind.search.quote format, and

go into Design mode by clicking the Design button.

25. In Design mode, click on the combo box next to the Status label and click Ctrl + C to copy the

Object.

26. In the Designer session on the advFind.search.quote format, add the Object copied from the

advFind.search.quote format by clicking Ctrl + V and then position it correctly next to the Status

label.

27. Verify that the Status field has been changed correctly.

28. Keeping both Forms Designer sessions open, continue to copy and paste all other required

changes from the NEW900advFind.search.quote format into the advFind.search.quote format.

14

29. Click Save twice on the advFind.search.quote format to save the changes, and close the

forms designer session on the NEW930advFind.search.quote record without saving changes.

30. In the upgrade results record for the advFind.search.quote format, mark the record as Reconciled

by selecting Mark as Reconciled from the More Actions menu.

31. Go to Request Management > Quotes > Search Quotes and test the modified fields to

verify that this form is functioning correctly.

Special Considerations for using 3-way-merge

To begin, please always use the latest version of the upgrade utility. Since Service Manager 9.30, we

release regular patches of the upgrade utility via the SSO patches site. New versions of the utility will

include new functionality as well as fixes for any issues encountered in earlier versions.

Considerations when using KDiff3

KDiff3 is a text based tool that does a line by line comparison. It is not aware of XML tags, and thus

will not ensure that each start tag has a proper end tag. In my testing, it often happened that it

included an XML tree within another XML tree that should have been parallel. After merging XML

documents using KDiff3, it is very important to use an XML editor to verify the XML structure and to fix

the XML structure prior to loading the merged XML into Service Manager’s 2-way merge utility in the

upgrade results.

Additionally, the view in KDiff3 can be confusing when the customer replaced a function for example

in the ScriptLibrary record. The merge will most likely try to combine the original function and the

replacing function, rather than during the merge create two separate functions that are independent of

each other. Again, this is due to the fact that KDiff3 is a pure text based tool with no ability to make

“smart” decisions based on the type of record it is comparing and merging.

A hint on “no src line” merge issues – this line often indicates that the XML structure in the resulting

XML will have an issue, since it is trying to merge two areas that do not match. The no source line

indicator shows that either the customer or the new out-of-box version is missing a line or contains a

line that does not match anything in the compared version. Take extra caution when encountering this

message in the merged text.

And a final tip / trick: If the comparison in KDiff3 is too complicated and does not seem to make

sense, use the Service Manager tailoring utility for this type of record to look at the differences. For

example, if the comparison of the ScriptLibrary record does not make sense through KDiff3, look at it

with the Service Manager ScriptLibrary editor to determine what has changed, as in the example for

the BSGFunctions ScriptLibrary record shown below:

15

16

In the excerpt from the JavaScript code below, you can see how the KDiff3 merge tool handled the

merge of the functions on the left and the manually merged (correct) functions on the right.

function

getMembers(ciName,firstLevelOnly,maxLevel,exclud

eCItoCI) {

 if (firstLevelOnly) {

 maxLevel = 1;

 nodeMembers =

getMemberOneLevel(levelOne);

 if (nodeMembers.length ==0)

 }

 if (excludeCItoCI == null) {

 try {

 excludeCItoCI = isBusinessService(ciName);

 }

 catch(e) {

 excludeCItoCI = true;

 }

 }

 if (!excludeCItoCI && maxLevel > 1)

{

 maxLevel--;

 }

 return

getAllMembersList([ciName],maxLevel,excludeCItoC

I);

}

function

getMembers(ciName,firstLevelOnly,maxLevel)

{

 //print("getMembers 1 "+ciName+" and

"+firstLevelOnly+" maxLevel "+maxLevel);

 var allMembers = new Array();

 var levelOne = getMemberOneNode(ciName);

 if(firstLevelOnly || maxLevel==1)

 return levelOne;

 //do a breadth first search to navigate the

entire tree

 allMembers = levelOne;

 var count =0;

 if(maxLevel <1)

 maxLevel=10;

 maxLevel = maxLevel - 1;

 do {

 nodeMembers =

getMemberOneLevel(levelOne);

 if (nodeMembers.length ==0)

 break;

 var nextLevel = new Array();

 nextLevel =

appendArray(nextLevel,nodeMembers);

 levelOne = nextLevel;

 allMembers =

appendArray(allMembers,nextLevel);

 ++count;

 //print("level ="+count);

 } while (count<maxLevel)

 return allMembers;

}

Note that the function on the left is missing all the new code from the right and that the syntax with the

open and close {} is incorrect.

Another issue is at the end of the merged JavaScript:

function updateSeenList(seen, array)

//append array to an existing array

function appendArray(appendTo, appendFrom)

{

 for (var i = 0; i < array.length; i++)

 {

 seen[array[i]] = true;

 }

 return seen;

 var appendToLng = appendTo.length;

 for(var i=0;i<appendFrom.length;++i)

 {

 appendTo[appendToLng+i] = appendFrom[i];

 }

 return appendTo;

}

function validListSize(members) {

 return system.library.util.arrayToQueryString(members).length <

MAX_QUERY_STRING();

}

17

It attempted to merge line by line and by doing so put a function within a function. This was not the

result of a merge conflict, but was done by the automatic merge. Compiling the code within the

ScriptLibrary brought the issue to light.

When looking at the conflict resolution for this ScriptLibrary record within the Script Library tool, it

became obvious that the customer replaced one function and added more helper functions, which

could be resolved manually without issues within a few minutes. Thus the hint – it is very important to

look at conflicts not just in KDiff3, but using the appropriate tailoring tool as well.

Considerations when using the 2-way merge in Service Manager

The 2-way merge utility integrated with the upgrade results records in the Service Manager Windows

client can be used to view changes between the customer version of a record and the new out-of-box

version of the record. It can be used in conjunction with the KDiff3 auto-merged results to load the

merged XML into Service Manager.

The XML based record in the 2-way merge utility has to be translated back into a Service Manager

record. On occasion, issues occur during that process. Issues might include sections missing from the

saved XML, eg. the subroutines in FormatControl disappearing, or mis-tranlations of special characters

such as “<” still showing as “<”, which will cause syntax errors when trying to save the record using

the correct tailoring utility.

To verify that the 2-way merge utility saved the record correctly, always check in the proper tailoring

utility immediately after saving the record from the 2-way merge and verify that all data is stored

correctly (e.g. are all calculations, validations, subroutines stored in the FormatControl record and

does the record save without syntax errors). If any issue is found, use the revert functionality in the

upgraderesults table and attempt to fix the issue. If the issue is reproducible, provide customer support

with an unload of the NEWxx as well as the current customer record, as well as a copy of the XML

text that failed to save correctly.

For more information

Please visit the HP Software support Web site at:

www.hp.com/go/hpsoftwaresupport

This Web site provides contact information and details about the products, services, and support that

HP Software offers.

HP Software online software support provides customer self-solve capabilities. It provides a fast and

efficient way to access interactive technical support tools needed to manage your business. As a

valued customer, you can benefit by being able to:

 Search for knowledge documents of interest

 Submit and track progress on support cases

 Submit enhancement requests online

 Download software patches

 Manage a support contract

 Look up HP support contacts

 Review information about available services

 Enter discussions with other software customers

 Research and register for software training

Note: Most of the support areas require that you register as an HP Passport user and sign in. Many

also require an active support contract.

To find more information about support access levels, go to the following URL:

www.hp.com/go/hpsoftwaresupport/new_access_levels

To register for an HP Passport ID, go to the following URL:

www.hp.com/go/hpsoftwaresupport/passport-registration

Technology for better business outcomes

© Copyright 2011 Hewlett-Packard Development Company, L.P. The information
contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial
errors or omissions contained herein.

Linux is a U.S. registered trademark of Linus Torvalds. Microsoft and Windows are
U.S. registered trademarks of Microsoft Corporation. UNIX is a registered
trademark of The Open Group. JavaScript is a registered trademark of Sun
Microsystems, Inc. in the United States and other countries. Oracle is a registered
trademark of Oracle Corporation and/or its affiliates

http://www.hp.com/go/hpsoftwaresupport
outbind://126/www.hp.com/go/hpsoftwaresupport/new_access_levels
outbind://126/www.hp.com/go/hpsoftwaresupport/passport-registration

